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GRAPHICAL ABSTRACT

Seedlings of Passiflora edulis were ex-
posed to ozone in a FACE system.
Anatomical changes observed in leaf tis-
sue may restrain damage progression.
A high level of O3 did not affect physio-
logical processes.

Biochemical leaf traits enable P. edulis to
tolerate oxidative stress.

P. edulis can be considered an Os-
tolerant species.
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Passiflora edulis Sims is a liana species of high economic interest and is an interesting model plant for understand-
ing ozone action on disturbed vegetation. In this work we hypothesized that P. edulis has adaptive responses to
oxidative stress that enable it to tolerate ozone damage based on its capacity to grow under a diversity of envi-
ronmental conditions and to dominate disturbed areas. We exposed seedlings to three levels of ozone in a
Free-Air Controlled Exposure (FACE) system (22, 41 and 58 ppb h AOT40 and 13.52, 17.24 and
20.62 mmol m~2 PODO, over 97 days) for identifying its tolerance mechanisms. Anatomical (leaf blade structure
and fluorescence emission of chloroplast metabolites), physiological (leaf gas exchange, growth rate and biomass
production) and biochemical (pigments, total sugars, starch, enzymatic and non-enzymatic antioxidant metab-
olites, reactive oxygen species and lipid peroxidation derivatives) responses were assessed. Ozone caused de-
creased total number of leaves, hyperplasia and hypertrophy of the mesophyll cells, and accelerated leaf
senescence. However, Os did not affect carbohydrates content, net photosynthetic rate, or total biomass produc-
tion, indicating that the carboxylation efficiency and associated physiological processes were not affected. In ad-
dition, P. edulis showed higher leaf contents of ascorbic acid, glutathione (as well high ratio between their
reduced and total forms), carotenoids, and flavonoids located in the chloroplast outer envelope membrane.
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Tropical environment
Vine species

Our results indicate that P. edulis is an Os-tolerant species due to morphological acclimation responses and an ef-
fective antioxidant defense system represented by non-enzymatic antioxidants, which maintained the cellular
redox balance under ozone.

© 2018 Published by Elsevier B.V.

1. Introduction

Lianas - climbing vines with woody stems - are a key component of
most tropical forests due to their abundance, constituting 10% to 45% of
the woody species (Pivello et al., 2018). They are also the second life-
form in biomass production after trees (DeWalt and Chave, 2004;
Pérez-Salicrup et al., 2004). They ascend in suitable hosts, and live for
decades, occurring also in mid-to-late successional forests (Rossell and
Eggleston, 2017). When present in a high density, they may further re-
duce tree growth and alter tree species composition, changing the forest
physiognomy and reducing the capacity of forests to sequester atmo-
spheric carbon (Phillips et al., 2002; Schnitzer and Bongers, 2002;
Pivello et al., 2018). It is thus important to predict the reasons of the
high abundance of lianas in tropical forests (Schnitzer, 2005; Pivello
et al., 2018). The high capacity of hydraulic redistribution and water
storage, multifocal growth, drought resilience and acquisitive resource
syndrome are among them (Amorim et al., 2018).

Passiflora is the largest genus of Passifloraceae, comprising about 520
species (Wohlmuth et al., 2010) predominantly found in tropical and
subtropical regions (Dhawan et al., 2004; Aradjo et al., 2017). Its distri-
bution is directly determined by the environmental conditions, such as
seasonality in temperature and rain precipitation (Scherer, 2014). Brazil
is the hotspot in Passifloraceae biodiversity, including Passiflora edulis
Sims, which is distributed in heterogeneous environments and in differ-
ent phytogeographic domains (Scherer, 2014; Flora do Brasil 2020,
under construction). In addition, P. edulis shows a higher ability to
adapt and acclimate to drought than other Passiflora species, as reported
in a controlled experiment (Souza et al., 2018).

Tropospheric ozone (0s3) is a strong oxidizing air pollutant formed
through a complex series of reactions involving the action of sunlight
on nitrogen dioxide and hydrocarbons (Ashmore, 2005; Lodovici and
Bigagli, 2011). The tolerance level of plants to O; depends on their ab-
sorption rate, constitutive detoxification capacity (enzymatic and non-
enzymatic antioxidant metabolites), carboxylase ratio and capacity of
antioxidant regeneration (Matyssek et al.,, 2012). After entrance, O3 re-
acts with water, leading to the formation of reactive oxygen species
(ROS) at the interface of cell wall. The oxidative destruction of lipids
and proteins of the plasma membrane and production of other free rad-
icals and reactive intermediates, is a process known as lipid peroxida-
tion (Kanofsky and Sima, 2005; Puckette et al., 2007). Since the half-
lives of mostly ROS are extremely short, stable end products of oxidative
damage in cell macromolecules are used to measure the oxidative stress
(Bhaduri and Fulekar, 2012). ROS may cause oxidative lesions that re-
sult in anatomical leaf changes (Vollenweider et al., 2003), and in nega-
tive impacts on plant metabolism and photosynthesis that may progress
to the appearance of visible leaf O injury and reduction of plant growth
and development (Hernandez-Gimenez et al., 2002; Matyssek and
Sandermann, 2003).

We assumed that P. edulis is an interesting model species for under-
standing O3 action on disturbed vegetation, given its wide distribution
in the tropics (Flora do Brasil 2020, under construction) and its high
abundance in disturbed vegetation by human action, where high O3
levels are expected. Considering its vine characteristics above men-
tioned that enable it to tolerate natural environmental stresses, we
raised the hypothesis that P. edulis also has adaptive responses that en-
able it to tolerate the oxidative stress caused by Os. The knowledge on
the tolerance level of P. edulis to Os is also of economic interest because
several Passiflora species are widely cultivated in tropical and subtropi-
cal regions. The fruits of P. edulis are, in particular, the most consumed

among several species of Passiflora in the international market
(Ocampo et al.,, 2010; Souza et al., 2018). In addition, Passiflora species
have great pharmacological value (Dornelas et al., 2006) because of
the bioactive compounds found in the aerial vegetative organs
(Otobone et al., 2005; Yudasheva et al., 2005; Castro et al., 2007).

Aiming to test the above mentioned hypothesis, we assessed ana-
tomical (leaf blade structure and fluorescence emission of chloroplast
metabolites), physiological, (leaf gas exchange, stomatal ozone uptake,
growth rate, biomass production) and biochemical (pigments, primary
and secondary metabolites, antioxidants, reactive oxygen species and
lipid peroxidation derivatives) responses in plants exposed to ozone
in a Free-Air Controlled Exposure (FACE) system.

2. Materials and methods
2.1. Experimental design

Seedlings of P. edulis (approx. 20 cm high) were obtained from an
[talian nursery (43.935351 N, 10.928174 E) and transplanted to 17 L
pots filled with a mixture of sand: peat: nursery soil (1:1:1, v/v). Plants
were irrigated every afternoon by a drip irrigation system to avoid
water stress (i.e., volumetric soil water content was maintained to the
field capacity of ~0.295 m® m~3, Paoletti et al., 2017), and fertilized
with N:P:K (10:10:10) every 7 days during the first and second month
of exposure, and once in the last month of the experiment.

The experiment was carried out in an O3 FACE system located in
Sesto Fiorentino, Florence, Italy (43°48’59" N, 11°12’01” E, 55 m a.s.l.).
Details of this experimental facility are given in Paoletti et al. (2017).
The plants were submitted to three O3 levels: ambient air (AA); inter-
mediate ozone level (AA + O3 x 1.5) and elevated ozone level (AA
+ O3 x 2.0) during 97 days of summer season (from June 10th to Sep-
tember 15th, 2017). The system consisted of three plots per Os treat-
ment; each plot (5 x 5 x 2 m, L x W x H respectively) was considered
as a replicate. Three pots of P. edulis were maintained in each plot (n
= 3, totalizing nine plants per Os treatment = 27 plants).

The O3 concentration was continuously monitored in one plot per O3
treatment using monitors (Mod. 202, 2B Technologies, Boulder CO,
USA) and the AOT40 (accumulated O3 exposure over a threshold of
40 ppb) was calculated during daylight hours (global radiation
>50 W m™2), following the protocol described in CLRTAP (2017). Global
solar radiation (GSR), temperature (Temp), relative humidity (RH) and
precipitation (P) were continuously recorded during the experiment by
a Watchdog station (Mod. 2000; Spectrum Technology, Inc., Aurora, IL,
USA) at 2.5 ma.g.l.

2.2. Anatomical responses

Samples for microscopic evaluation were gathered on leaves col-
lected at the end of the experiment. We sampled symptomatic leaves
(chlorosis induced by Os, as shown in Fig. S1 of the Supplementary ma-
terial) of plants from all treatments and asymptomatic leaves only of
plants from the AA treatment. Fragments (approx. 1 cm?) of the median
region of both asymptomatic and symptomatic leaves were fixed in 2.5%
glutaraldehyde buffered at pH 7.0 with 0.067 M Sorensen phosphate
buffer, and placed under vacuum before storing at 4 °C.

Part of the fragments destined to confocal analyses (Zeiss LSM 510-
Meta) were washed in distilled water, cut at 20 um thickness by a
cryomicrotome (Leica CM1100), and mounted in Fluoromount
(Sigma-Aldrich) aqueous medium. The samples were excited with a
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364 nm laser to promote polyphenol (Fernandes et al., 2016) and carot-
enoid emissions (Roshchina, 2008; D'Andrea et al., 2014). Emissions
were taken from 400 to 607 nm and subsequently from 400 to
700 nm in a lambda stack mode (a series of images from the same mi-
croscopic region with different wavelengths with 10 to 11 nm incre-
ments) for better visualization of chloroplast metabolites. In each
image (objective lens 40x ), six chloroplasts of the palisade parenchyma
were randomly selected and the intensities of metabolite emission in
the obtained spectra (400-607 nm and 400-700 nm) were quantified
using the software Zeiss LSM Image Browser. The emission wavelength
(nm) between 450 and 500 nm referred to phenolic compounds,
500-550 nm to carotenoids, and above 650 nm to chlorophylls (chl a
and b).

The other part of the fragments was dehydrated in an ethanol series,
embedded in Technovit 7100 historesin and transversally sectioned to
1.5 um semi-thin cuttings by a rotary microtome Leica (RM2245) for
structural and histochemical analyses. Material was stained with tolui-
dine blue and p-phenylenediamine for metachromasy and lipid identifi-
cation, respectively (Feder and O'Brien, 1968; Kivimdenpdd et al., 2004),
PAS reaction for polysaccharides (Gahan, 1984) and Comassie blue for
proteins (Wetzel et al., 1989).

2.3. Physiological responses

2.3.1. Leaf gas exchange and stomatal ozone uptake (POD)

Gas exchange measurements of fully expanded sun leaves (4th to
6th from the shoot tip) were carried out by a portable infrared gas ana-
lyzer (CIRAS-2 PP Systems, Herts, UK). On 11-14th September, the mea-
surements were taken with a control value of photosynthetic photon
flux density (PPFD) of 1500 umol m—2 s~!, ambient CO, concentration
(Ca) of 400 umol mol ™', relative humidity of 40 to 60% and leaf temper-
ature of 25 °C, from 9:00 to 12:00 h. We determined the light-saturated
net photosynthetic rate (As,¢), stomatal conductance for water vapour
(gsw) and intercellular CO, concentration (Ci) at ambient CO, concen-
tration (400 ppm) for calculating the Ci/Ca ratio.

The O3 dose during the experiment was calculated as phytotoxic
ozone dose (PODy) above an hourly stomatal uptake threshold of
0 nmol m~2 s~ (PODy). PODy is given as follows:

PODy = » * max(Fy—Y, 0) 1)

where F, is an hourly mean stomatal O; uptake (nmolm~—2s~')and Y is
a species-specific threshold of stomatal Os; uptake (nmol m~2s™1). As it
was not clear which threshold Y can be applied to this species, we did
not set a threshold i.e. Y = 0 (PODy) in the present study. F; was calcu-
lated according to CLRTAP (2017), as follows:

r
Fse = pﬂ'gs'firc @)

where [0s] is the hourly Os concentration (ppb), g is the stomatal con-
ductance for O3 (m s~ 1), r. is the leaf surface resistance (r. =1/ (g +
Zext), Where e, = 0.0004 m s~ ! indicates a cuticular and/or external
leaf conductance), and ry, is the leaf boundary layer resistance (ms™1).
Stomatal conductance was estimated by the multiplicative empirical
model (Jarvis, 1976; CLRTAP, 2017; Hoshika et al., 2018). The detail is
described in the Supplementary file.

2.3.2. Growth rate and biomass production

Growth characteristics were monthly assessed by measuring plant
height, stem diameter (near the base) and total number of leaves. The
measuring times were referred as TO (initial measurement) to T3
(final measurement). For the determination of stem height and diame-
ter, a measuring tape and a digital caliper (data expressed in cm)
(Digimess, Sao Paulo, Brazil) were used (Sa et al., 2014), respectively.
Relative growth rate (RGR) was calculated every month in relation to

the previous measurement (T1 — T0; T2 — T1 and T3 — T2) and also be-
tween the initial and final measurements (T3 — T0), using the formula
proposed by Benincasa (1988).

At the end of the exposure period, leaves, stems/branches and roots
of each plant were harvested, stored in paper packaging and dried in an
oven at 60 °C until constant weight. The leaf, stem/branch and root bio-
masses of an additional lot of 5 plants were determined at the beginning
of the experiment in order to obtain the TO values. Shoot to root ratios
were calculated according to Moura et al. (2017).

24. Biochemical responses

The biochemical responses were measured on a composite sample
of four fully-expanded and sun-exposed leaves per plant, according to
the methods described below. The composite leaf samples were stored
in an ultra-freezer, under —80 °C. For biochemical responses, three an-
alytical replicates were performed in asymptomatic leaf samples.

24.1. Pigments

The pigment Chl a and b and carotenoids (CAR) content was deter-
mined in the same leaf extracts by spectrophotometric UV-vis method.
The extracts were obtained by homogenizing frozen leaves in ethanol
(96%). The supernatant was measured at 470 nm to determine the
levels of carotenoids, at 649 nm to determine Chl a and at 666 nm to de-
termine Chl b (Wintermans and De Mots, 1965).

24.2. Primary and secondary metabolites

Total carbohydrate contents in the frozen leaf samples (100 mg)
were extracted in 80% ethanol and determined colorimetrically at
490 nm using the phenol-sulfuric acid method (Dubois et al., 1956).
Starch content was determined by using 10 mg of the freeze-dried res-
idue after ethanol extraction. The absorbance was measured in an Elisa
plate at 490 nm (Amaral et al., 2007).

The total flavonoids were extracted from the frozen leaves (100 mg)
with 80% methanol in dry bath (at 70 °C for 1 h). The amounts of total
flavonoids were quantified using aluminum chloride 5% method at
420 nm (Santos and Furlan, 2013).

24.3. Antioxidants

Ascorbic acid, in its reduced (AsA) and total (totAA) forms, was an-
alyzed in frozen leaves using the chromatographic method described
by Lopez et al. (2005) and a HPLC (Metrohm) connected to an UV-Vis
detector.

Glutathione in its reduced (GSH), oxidized (GSSG) and total (totG)
content was determined in frozen leaves according to the method de-
scribed by Israr et al. (2006).

Superoxide dismutase (SOD), ascorbate peroxidase (APX) and cata-
lase (CAT) activities were analyzed by spectrophotometric UV-vis using
extracts of frozen leaves. SOD and APX activities were determined ac-
cording to a slightly modified version of the method described by
Reddy et al. (2004). CAT activity was determined as described by
Kraus et al. (1995) with some modifications proposed by Azevedo
etal. (1998). The activity of glutathione reductase (GR) was determined
in frozen leaves according to the method of Reddy et al. (2004).

Further analytical details about enzymatic and non-enzymatic com-
pounds can be found in Esposito et al. (2016).

2.4.4. Reactive oxygen species, malondialdehyde and hydroperoxide conju-
gated diene

The principle of the *OH radical assay was the quantification of the 2-
deoxyribose degradation product, malondialdehyde (MDA), by its con-
densation with thiobarbituric acid (TBA). The reactions started by the
addition of Fe (II) to solutions containing 2-deoxyribose, iron chelator,
phosphate buffer (pH = 7.2) and then were stopped by the addition
of phosphoric acid followed by TBA. The absorbance of this mixture
was measured at 532 nm (Lopes et al., 1999).
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The H,0, contents were determined following Alexieva et al. (2001).
The reaction mixture consisted of supernatant extract (frozen leaves +
trichloroacetic acid), potassium phosphate buffer (100 mM, pH 7.0) and
reagent potassium iodide (KI). The reaction was developed for 1 h in
darkness and absorbance was measured at 390 nm.

The O,*~ production rate was determined using the hydroxylamine
oxidation method (Wang and Luo, 1990) with some modifications. The
supernatant was mixed with potassium phosphate buffer (pH 7.8) and
hydroxylamine chloride. p-Aminobenzene sulfonic acid, o-
naphthylamine and n-butyl alcohol were added and the final superna-
tant was used for measuring absorbance at 530 nm.

The concentrations of MDA were determined following the method
proposed by Hodges et al. (1999) with the corrected equation proposed
by Landi (2017) and concentrations of hydroperoxide conjugated diene
(HPCD) were obtained from frozen leaves in ethanol (96%) by spectro-
photometric UV-Vis method. The absorbance was measured at 234 nm
(Levin and Pignata, 1995).

Further analytical details about ROS and indicators of oxidative
stress can be found in Esposito et al. (2018).

2.5. Statistics

The significant differences between the treatments relative to fluo-
rescence emission of chloroplast metabolites, physiological and bio-
chemical responses and relative growth rates between the initial and
final measurements (T3 — TO) were determined by one-way ANOVA.
When necessary, the data were transformed to reach normal distribu-
tion and equal variances. The Holm-Sidak method was employed to
identify significant differences between the three treatments (AA, AA
+ 03 x 1.5 and AA + O3 x 2.0). The significant differences in monthly
relative growth rates (RGR) were tested by two-way ANOVA with re-
peated measures (factor 1: O3 treatment; factor 2: measurement
time). After testing the interaction of both factors, the Holm-Sidak
method was employed to identify significant differences between the

55 4

three treatments and different measurement times. Results were con-
sidered significant at p < 0.05.

3. Results
3.1. Environmental conditions during the experimental period

During the experimental period, the average daily (24 h) air tempera-
ture varied between 19 and 32 °C and daily maximum hourly values var-
ied between 21 and 43 °C (Fig. 1). Average daily GSR was 57-400 W m 2
and daily maximum hourly values were 927-1186 W m 2. Total daily
precipitation varied between 0 and 62 mm, and average daily relative hu-
midity was 23-85%. The mean daily Os; concentrations (24 h) varied be-
tween 17 and 71 ppb at AA, 23 and 91 ppb at AA + O3 x 1.5 ppb and
28 and 111 ppb at AA + O3 x 2.0 (Fig. 1). After 97 days of exposure,
AOT40 reached 22, 41 and 58 ppm h at AA, AA + O3 x 1.5 and AA + O3
x 2.0 treatments, respectively.

3.2. Anatomical responses

The asymptomatic leaf blade of AA plants showed uniseriated epi-
dermis and thin cuticle. The leaf blade had a uniseriate hypostomatic
epidermis and a thin cuticle. The mesophyll was dorsiventral with one
layer of palisade parenchyma and 4-5 layers of spongy parenchyma
cells. The parenchyma cells showed thin cell walls, peripheral flattened
chloroplasts with starch grains, hyaline vacuole and pronounced inter-
cellular spaces (Fig. 2A-D). A strong reaction to total proteins stain
was observed in the chloroplasts (Fig. 2E).

Symptomatic leaves from intermediate and elevated levels of O3 (AA
+ 03 x 1.5and AA + O3 x 2.0, respectively) showed changes in cell wall
of the palisade parenchyma cells, that exhibited a sinuous shape
(Fig. 2G). An apparent reduction in the size and density of chloroplasts
and changes in their shapes was observed in the palisade cells along
the leaf blade (Fig. 2F-H). In addition, the starch grains inside the
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Fig. 1. Environmental conditions over the experimental period (from June 10th to September 15th, 2017 = 97 days of exposure). (*) indicates the absence of data. Daily average of
temperature (Temp average), relative humidity (RH average), global solar radiation (GSR average), ozone concentrations at ambient air (AA), intermediate ozone level (AA + O3
x 1.5) and elevated ozone level (AA + O3 x 2.0) and total daily precipitation (P). Daily maximum of temperature (Temp max) and global solar radiation (GSR max).
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Fig. 2. Structural aspects of P. edulis leaves from ambient air (A-E) and from ozone treatments (AA + Oz x 1.5 and AA + O3 x 2.0) (F-M). Parenchyma cells with thin cell walls, hyaline
vacuole and pronounced intercellular spaces (A). Flattened chloroplasts diffusely distributed in the palisade parenchyma (B) and spongy parenchyma cells (C). Starch grains inside the
chloroplasts (D). A strong reaction to total proteins stain inside the chloroplasts (E). An apparent reduction in the amount, size and density of chloroplasts along the leaf blade (F-H).
Changes in cell wall and chloroplasts shape (arrowheads, G). Chloroplasts do not accumulate starch grains (I). Collapse of palisade (arrows, J) and spongy parenchyma cells close to
stomata (red arrows, K). Weak reaction to protein stain. Proteins accumulated in the protoplast (black asterisk, L). Hyperplasia of palisade parenchyma (Hp) and hypertrophy (Hy) of
spongy parenchyma cells in AA + O3 x 2.0 (M). Toluidine blue (A-C, F-H, J-L, M); PAS test, total polysaccharides (D and I); Coomassie blue, total proteins (D and L). Bars = 25 pm.

chloroplasts in the parenchyma palisade were smaller or absent
(Fig. 2I). Small groups of collapsed cells were observed in the palisade
(Fig. 2]) and spongy parenchyma (Fig. 2K). A weaker reaction to protein
stain and a positive reaction in the protoplast were observed in Os-
exposed leaves compared to AA (Fig. 2E vs L).

The symptomatic leaves from AA + O3 x 2.0 showed reductions of
intercellular spaces resulting from hyperplasia of palisade parenchyma,
identified as an increase in the number of cell layers, and hypertrophy of
spongy parenchyma, characterized by an increase in its cell size
(Fig. 20).

Asymptomatic leaves exhibited low emission intensity of constitu-
tive flavonoids located in the outer envelope membrane (OEM) and of
carotenoids, with the emission intensity of carotenoids higher than
that of OEM-flavonoids (Fig. 3A). There was also a low emission inten-
sity of pheophytins (Fig. 3A). In addition, a high emission intensity of
chlorophylls (>650 nm) was observed regardless of the region of inter-
est (ROI) selected for analysis (Fig. 3B). In contrast, symptomatic sam-
ples from ozone treatments (AA + O35 x 1.5 and AA + 05 x 2.0) had
an increase of the emission intensity of flavonoids, carotenoids,
pheophytins and lipofuscins-like (Fig. 3C). The chlorotic cells did not ex-
hibit chlorophyll emission, while adjacent chlorotic cells (ROI 2) exhib-
ited a similar emission intensity pattern as the one observed in the AA
samples (Fig. 3D). The emission intensity of lipofuscin-like and OEM fla-
vonoids in the chloroplasts were significantly higher in the samples
from treatments with intermediate and elevated levels of O3 when com-
pared to those from the AA treatment (Fig. 3E). Although the emission
intensity of carotenoids in leaf samples from the treatments with

ozone was higher than that obtained in the AA treatment, only the re-
sults from the AA + Os x 1.5 differed significantly from the AA treat-
ment (Fig. 3E). There were no significant differences between
treatments in terms of chlorophyll and pheophytin emission intensities
(Fig. 3E).

3.3. Physiological and biochemical responses

3.3.1. Leaf gas exchange

One-way ANOVA revealed that the light-saturated net photosyn-
thetic rate (Asa¢) of P. edulis leaves did not differ significantly among
O3 treatments (Table 1). Stomatal conductance (gs,) and the Ci/Ca
ratio were not statistically different among O treatments. PODO varied
between 13.52 mmol m~2 at AA, 17.24 mmol m—? at AA + O; x 1.5 and
20.62 mmol m~2 at AA + 05 x 2.0 treatments.

3.3.2. Relative growth rates

The interacting effects of both factors (O3 treatment and time of mea-
surement) on the relative growth rates (RGR) were not significant for any
growth parameter (p > 0.05). The elevated Os level (AA + Os3 x 2.0) re-
duced the RGR in leaf number during all time intervals in comparison to
the other treatments. No significant effect of O3 was proved on the RGR
in diameter. However, in relation to RGR in height, significant differences
were found among times of measurement. In general, lower RGRs were
observed during the last month of experiment (T3 and T2) for all param-
eters (Fig. 4).
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Fig. 3. Emission spectra of chloroplasts (A-D) and quantification of the emission intensity of chloroplast metabolites (E) in leaves of P. edulis from ambient air (AA) (A, B and E) and ozone
treatments (AA + O3 x 1.5 and AA + 03 x 2.0) (C, D and E). Emission spectra of chloroplasts from AA (regions of interest; ROI 1 in the palisade parenchyma): the peak between 450 and
500 nm refers to flavonoids, 500 and 550 nm to carotenoids and 550 and 600 pheophytins (A). Emission referring only to chlorophyll (above 650 nm; ROI 1 in the palisade parenchyma)
from AA (B). Emission spectra of chloroplasts from ozone treatments (C). Note that the peaks related to carotenoids (500-550 nm), flavonoids (450-500 nm) and pheophytins
(550-600 nm) increase and appears lipofuscin-like peaks (peak between 400 and 450 nm refers to lipofuscin). Emission referring only to chlorophyll in the palisade parenchyma from
ozone treatments (D). Note the absence of chlorophyll emission from some groups of palisade parenchyma cells (ROI 1), while adjacent cells (ROI 2) exhibited. Median values (4
standard deviation) of the intensity of lipofuscins, flavonoids, carotenoids, pheophytins and chlorophyll fluorescence emission peaks from chloroplasts (E). Different letters indicate

significant differences in each treatment (p < 0.05, Holm-Sidak method test, N = 3).

Table 1

Photosynthetic traits (Asa, light-saturated net photosynthetic rate; g, stomatal conduc-
tance for water vapour; Ci/Ca, ratio of intercellular CO, concentration (Ci) to ambient
CO, concentration) of leaves of P. edulis seedlings exposed to three treatments of ozone
(AA = ambient air, AA + O3 x 1.5 = intermediate and AA + O3 x 2.0 = elevated ozone
levels) for 97 days. Data are shown as mean =+ S.E. (n = 3). Different letters indicate sig-
nificant differences between the treatments by Holm-Sidak test (p < 0.05),n = 3.

Treatment Asot (molm 25~ 1) g, (molm~2s~") Ci/Ca ratio (fraction)
AA 88+0.1a 0.10 £ 0.01a 0.58 +0.03 a
AA +03x 1.5 77 +05a 0.07 +0.01a 049 +0.03 a
AA + 03 x20 69+ 0.6a 0.07 + 0.01 a 0.50 4+ 0.04 a

The biomass of leaf, stem and root as well as the shoot to root ra-
tios did not vary significantly among the O5 treatments (data not
shown).

3.3.3. Pigments

The chlorophyll a content, chlorophyll a/b ratio and carotenoid con-
tent were significantly higher in the treatment with elevated levels of
ozone than in AA and AA + Os x 1.5 (Table 2).

3.3.4. Primary and secondary metabolites

The leaf content of total sugars did not differ among treatments and
the leaf content of starch was significantly higher in the AA + O3 x 1.5
treatment than in the others (Table 2).
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Fig. 4. Relative growth rates (RGR) per day of fumigation between monthly intervals of
measurement (T1 — TO, T2 — T1, T3 — T2) and between the initial and final
measurements (T3 — T0), of: total number of leaves (A), diameter (B) and height (C) of
P. edulis plants exposed to three treatments of ozone (AA = ambient air, AA + O3 x 1.5 =
intermediate and AA + O3 x 2.0 = elevated ozone levels) for 97 days. Different lower
case letters indicate significant differences between the treatments during the same
monthly interval of measurement. Different upper case letters indicate differences in the
RGR between monthly intervals of measurement in the same treatment. p < 0.05, Holm-
Sidak method, N = 3.

Leaf accumulation of total flavonoids was higher in plants exposed
to AA + O3 x 2.0 and to AA + 05 x 1.5 than in plants from AA.

3.3.5. Antioxidants

The content of non-enzymatic antioxidants - ascorbic acid and
glutathione in their reduced, oxidized and total forms - was signifi-
cantly enhanced in the treatments with intermediate and elevated
levels of ozone when compared to AA treatment (Table 2). There
was no difference between the ozone treatments (x1.5 and x2.0).
The redox potential of both ascorbic acid (medians > 0.71) and gluta-
thione (medians > 0.48) was high but did not differ between the
ozone treatments. The activity of enzymatic antioxidants - CAT, GR
and APX - was significantly higher in the plants grown in the AA
treatment than in the plants included in the treatments with ozone
addition. The activity of SOD did not differ among the treatments
(Table 2).

3.3.6. Reactive oxygen species and lipid peroxidation derivatives

The leaf accumulation of *OH was similar in plants from all treat-
ments, but the O,*~ ion and the H,0, content were higher in the treat-
ments with intermediate and elevated levels of 0ozone when compared
to AA.

The indicators of lipid peroxidation - MDA and HPCD - and flavo-
noids also increased in the plants included in the treatments with inter-
mediate and elevated levels of ozone when compared to AA treatment
(Table 2).

4. Discussion

The occurrence of symptomatic leaves indicated that P. edulis plants
exposed to high levels of ozone showed injury of leaf cells and tissues.
The visible O3 symptoms were restricted to foliar yellowing, which is
generally a consequence of chlorophyll degradation (Giinthardt-Goerg
and Vollenweider, 2007). The appearance of visible injury is a common
symptom observed in vine species exposed to Os. It was registered for
example by Saitanis (2003) in Vitis vinifera in Greece, by Manning and
Godzik (2004) in Humulus lupulus in Central and Eastern Europe and
by Ferreira et al. (2012) in Ipomoea nil ‘Scarlet O'Hara’ in the state of
Sdo Paulo, Brazil. The confocal analyses indicated a degradation of chlo-
rophylls inside the chloroplasts of chlorotic leaves under elevated ozone
levels, compared to chlorophyll emissions in asymptomatic leaves of
plants exposed to ambient ozone level. However, such difference was
not statistically significant. Peaks related to products of oxidative
damage were observed by confocal analyses (lipofuscin-like and
pheophytins). Pheophytins are the first product resulting from the deg-
radation of chlorophyll under air pollution (Gowin and Goral, 1977),
characterized by the loss of the central Mg of the chlorophyll molecule
(Eijckelhoff and Dekker, 1997). Although pheophytin emission in-
creased in symptomatic leaf samples under the ozone treatments, the
chlorophyll emission under confocal analysis did not change signifi-
cantly. The confocal analysis does not distinguish chlorophyll a and b,
as well as pheophytin a and b. The chlorophyll analysis from asymptom-
atic leaves revealed an increase in the concentration ratio between chlo-
rophylls a and b due to enhanced levels of chlorophyll a in plants
exposed to the highest level of ozone, which explains the non-
significant variation in chlorophyll emission in the confocal analyses.
These results indicated the conversion of chlorophyll b to pheophytins
b (Xu et al., 2001). In addition, the chl a/b ratio is very low as compared
to commonly observed values in higher plants.

The foliar yellowing and chlorophyll alterations can be indicative of
premature foliar senescence in response to ozone (Pell et al., 1997). Ac-
celerated senescence in response to O3 exposure was observed in the
vine Vitis vinifera in controlled-exposure experiments (Soja et al.,
1997). Accelerated foliar senescence may be one of the explanations
for the significantly lower leaf number of P. edulis plants under the
highest level of Os. This effect might be considered an avoidance mech-
anism that restrains the progression of O3 damage in the plants. This
mechanism, together with the anatomical, biochemical and physiologi-
cal responses discussed below, may contribute to improve O3 tolerance
in P. edulis, as suggested by no significant effect on biomass.

P. edulis mesophyll cells showed typical structural markers of accel-
erated cell senescence (ACS) in response to Os, such as chloroplast de-
generation, reduced chloroplast size or irregular shape (Giinthardt-
Goerg and Vollenweider, 2007) and decreased protein cell content
(Glinthardt-Goerg et al., 1997; Giinthardt-Goerg and Vollenweider,
2007; Vollenweider et al., 2013; Moura et al., 2018). The proteins accu-
mulated in the chloroplasts and protoplast suggest that they may be en-
zymes linked to senescence processes, since hydrolytic enzymes are
involved in the degradation of cellular components in senescent leaves
(Diaz-Mendoza et al., 2016).

Reduction in number and size, and degradation of starch grains in
the chloroplasts induced by ozone were also reported in other con-
trolled experiments and were associated with accelerated senescence
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Table 2

Mean, median and range between minimum and maximum values of biochemical markers in leaves of P. edulis exposed to three treatments of ozone (AA = ambient air, AA + 03 x 1.5 =
intermediate and AA + O3 x 2.0 = elevated ozone levels) for 97 days: reduced (AsA), oxidized (DHA), total (totAA) ascorbic acid (mg/g ™" dw), redox potential of ascorbic acid (AsA/AsA
+ DHA), reduced (GSH), oxidized (GSSG), total (totG) glutathione (pumol/g~' dw), redox potential of glutathione (GSH/GSH + GSSG), catalase (CAT, unit/g ' dw), glutathione reductase
(GR, unit/g ! dw), ascorbate peroxidase (APX, unit/g~! dw) superoxide dismutase (SOD, unit/g~"' dw), total sugars (mg/g ' dw), starch (mg/g ! dw), total flavonoids (%), carotenoids
(CAR, mg/g~" dw), chlorophylls a, b and total (Chl a, Chl b, Chl total, mg/g~" dw), chlorophyll ratio (Chl a/b), hydroxyl radical (+OH, % 2'-deoxyribose oxidative degradation dw), super-
oxide (0,*~, nmol/g dw), hydrogen peroxide (H,0,, umol/g dw), malondialdehyde (MDA, mM ™! dw) and hydroperoxide conjugated diene (HPCD pmol/g~' dw). Different letters indicate
significant differences between the treatments for each parameter median by Holm-Sidak test (p < 0.05), n = 3.

Biochemical markers AA AA+05x15 AA 4+ 05 x20

Mean Range Mean Range Mean Range
Pigments
Chla 0.50b 0.38-0.63 0.56 b 0.38-0.71 0.63a 0.48-0.75
Chl b 0.81a 0.55-0.99 0.83 a 0.53-1.06 0.67 a 0.39-0.92
Chl total 131a 0.98-1.58 1.39a 0.99-1.68 1.30a 0.94-1.68
Chla/b 0.62b 0.56-0.78 0.70 b 0.36-0.97 097 a 0.73-1.38
CAR 0.03b 0.01-0.03 0.03b 0.01-0.06 0.06 a 0.04-0.06
Primary and secondary metabolites
Total sugars 86.76 a 70.06-120.98 101.70 a 83.41-139.58 101.16 a 82.24-118.65
Starch 52.19b 29.46-77.06 73.97 a 52.80-86.60 48.02b 34.78-90.66
Total flavonoids 020 ¢ 0.18-0.21 028 b 0.27-0.29 032a 0.31-0.33
Antioxidants
AsA 1.51b 1.24-2.37 214 a 1.50-2.83 3.03a 2.61-3.34
DHA 0.62b 0.22-1.80 0.86 a 0.25-1.63 0.50 a 0.15-1.02
totAA 2.13b 1.55-3.33 3.00a 2.80-3.47 353a 3.17-3.84
AsA/AsA + DHA 0.73a 0.45-0.89 0.71a 0.47-0.91 0.85a 0.73-0.95
GSH 23.56b 11.93-38.96 32.76 a 20.33-47.06 54.60 a 31.14-114.26
GSSG 22.19b 8.99-35.70 31.07a 17.34-44.60 5253 a 30.81-94.61
totG 45.75b 20.92-74.67 63.83a 54.73-79.47 107.13 a 61.95-208.88
GSH/GSH + GSSG 0.57a 0.39-0.75 0.51a 0.35-0.70 0.50a 0.37-0.56
CAT 206.33a 129.98-317.85 179.89 b 119.65-244.10 170.72 b 135.00-194.88
GR 0.83a 0.10-1.70 0.28b 0.08-0.60 021b 0.05-0.53
APX 2417 a 13.42-39.54 1095b 4.49-24.84 12.61b 3.90-29.14
SOD 024 a 0.10-0.49 0.27 a 0.16-0.38 0.13a 0.01-0.33
Reactive oxygen species
*OH 47.27 a 44.19-50.20 4932 a 42.26-53.97 47.71a 40.02-54.48
0y~ 26.14b 20.25-36.75 59.09 a 44.61-69.00 68.37 a 33.91-87.00
H,0, 65.29 b 58.11-69.77 76.01 a 58.84-96.94 7642 a 71.17-86.63
Lipid peroxidation
MDA 18.47b 13.56-24.18 22.27b 12.86-35.03 28.46 a 22.01-37.82
HPDC 0.62b 0.55-0.78 0.70 b 0.36-0.97 097 a 0.73-1.38

(Badck et al., 1999; Moura et al., 2018), and with the decline in the car-
boxylation efficiency (Oksanen et al., 2001). The reduction of starch
grains in ozone-fumigated leaves suggest that less carbon was available
for tissue repairing, production of antioxidants and growth (Back et al.,
1999). However, we observed few alterations in the starch contents of
the leaf tissues under high levels of ozone and we did not observe
changes in the content of total sugars and in net photosynthesis and bio-
mass production, indicating that changes in the structure of starch
grains inside the chloroplasts did not affect the associated physiological
processes.

The partial or total collapse of groups of cells frequently observed in
the palisade parenchyma was also indicative of the programmed cell
death (PCD) process following the ACS induced by Os in P. edulis. In-
creased ROS concentrations (as observed for hydrogen peroxide and su-
peroxide in the present study) can cause rapid localized cell death,
characterized by incomplete cellular degradation, altered cell mem-
brane integrity and cell wall changes leading to cell collapse, processes
that do not require energy (Giinthardt-Goerg and Vollenweider,
2007). These cellular alterations indicate hypersensitive response-like
(HR-like, similar to those induced by biotic stress) commonly found in
03 fumigated species, including native vine species (Moura et al.,
2011; Alves et al., 2016). We suggest that the deformation of the chloro-
plasts and the sinuous cell walls of palisade parenchyma were the first
stages in the cell death process that culminated in the total collapse of
groups of cells. In addition, cell collapse in the spongy parenchyma
was also observed in the present study, although less frequently, mainly
around the stomata. The same evidences were observed in the vine spe-
cies Ipomoea nil under controlled conditions (Moura et al., 2011).

Hypertrophy and hyperplasia of the mesophyll cells were observed
in studies that simulated the effect of acid rain on leaves (Silva et al.,
2005; Sant'Anna-Santos et al., 2006). Although this is unusual, hypertro-
phy may also occur in the mesophyll in response to O5 (Fink, 1999). We
suggest that the hypertrophy and hyperplasia observed in mesophyll
cells in P. edulis indicated acclimation to ozone. Both phenomena in-
crease the compactness of the mesophyll layer, thus increasing the re-
sistance to ozone diffusion. In addition, the increase of mesophyll
compactness resulted in a higher leaf mass per area in leaves belonging
to AA + 05 x 2.0 treated plants, which can explain unchanged levels of
biomass production among treatments in concomitance with reduction
of RGR of leaves under high ozone.

Lipofuscin-like compounds were detected by confocal analyses in
higher proportion inside the chloroplasts of leaf tissues from the
high ozone treatment than in those from the AA treatment.
Lipofuscins are liposoluble fluorescent products originating from
the interaction of malonyl-dialdehyde with protein amino groups
(Roshchina and Roshchina, 2003; Roshchina et al., 2015). Peak emis-
sion of this lipid peroxidation indicator was evidenced in pollen of
Passiflora caerulea after 0.15 ppm-5 ppm h O3 doses (Roshchina
and Mel'nikova, 2001). In addition, the increased contents of MDA
and HPDC in leaves from the O3 x 2.0 treatment suggest that the
lipid peroxidation resulted in ACS. In fact, these compounds are pro-
duced at the beginning and end of the lipid peroxidation chain, re-
spectively. The ACS can be accelerated by an early onset of visible
injury and also occurs in younger tissues, in response to increased
ROS concentrations (Giinthardt-Goerg and Vollenweider, 2007;
Alves et al., 2016).
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The increased hydrogen peroxide and superoxide leaf concentra-
tions might also have stimulated antioxidant responses in P. edulis ex-
posed to ozone, such as enhancement in the levels of flavonoids,
ascorbic acid, glutathione and carotenoids. The constitutive flavonoids
(of C-glycoside type) are one of the main bioactive compounds found
in leaves of P. edulis (Ayres et al., 2015). We can assume that a great
part of the increase in the leaf content of flavonoids came from the chlo-
roplasts, based on the direct observation of in situ emission of these
compounds by confocal laser scanning microscopy. The flavonoids lo-
cated in the outer envelope membranes of the chloroplast (OEM)
have antioxidant functions, limit the diffusion of ROS out of the chloro-
plast and preserve the outer membrane against oxidative damage
(Roshchina and Roshchina, 2003; Agati et al., 2007, 2012). Besides, the
biosynthesis of some flavonoids occurs inside of the chloroplasts
(Agati et al., 2007).

Plants are equipped with an efficient antioxidant apparatus com-
posed by antioxidant and non-enzymatic components which balance
the cellular redox homeostasis and protect them against excessive
ROS-triggered oxidative stress. The ascorbate-glutathione cycle ensures
the regeneration of ascorbate by a sequence of redox reactions involving
glutathione and nicotinamide adenine dinucleotide phosphate
(NADPH) (Foyer and Noctor, 2011). The antioxidant power is not only
limited to ascorbate and glutathione but also the antioxidant com-
pounds such as superoxide dismutase, peroxidases and catalases
(Caregnato et al., 2008). Under favorable conditions, a fully-functional
antioxidant machinery maintains the redox balance with plant cells.
However, enhancement of ROS generation promoted by different envi-
ronmental cues, such as ozone, can lead to the alteration of redox bal-
ance, this promoting oxidative stress events (Bray et al., 2000).

In addition to ROS scavenging promoted by ascorbate-glutathione
components, other secondary metabolites with a strong free-radical-
scavenging ability can sensibly participate in ROS controlling in leaves,
these including flavonoids (Agati et al., 2013).

A decrease in the activity of APX in the chloroplasts may be followed
by an increase in the levels of flavonoids to control ROS propagation.
This response was observed in the plants of P. edulis exposed to high
ozone concentrations. Flavonoids like rutin and quercetin are also scav-
engers of superoxide anions (Yuting et al., 1990) and for this reason
they may act in place of SOD thereby explaining the decrease of the ac-
tivity of this enzyme in leaf samples of P. edulis. SOD catalyzes the
dismutation of the superoxide radical in HO, and H0 in the presence
of proton H (Scandalios, 1993). In foliar samples of P. edulis the incre-
ment of H,0, suggests the inhability of CAT and APX to control the level
of H,0, generated by the superoxide anion scavenging ability orches-
trated by flavonoids and SOD activity. Flavonoids are capable of
inhibiting glutathione reductase (Elliot et al., 1992) which also could ex-
plain the decrease of activity of this enzyme in leaf samples of P. edulis.
Although some studies (e.g. Furlan et al., 2010; Santos and Furlan, 2013)
reported an increase in the concentrations of flavonoids in plants ex-
posed to ozone, none of them related this enhancement with the induc-
tion of OEM flavonoids. Foliar levels of other non-enzymatic
antioxidants (ascorbic acid and glutathione) were enhanced in plants
exposed to the AA + O3 x 1.5 and AA + O3 x 2.0 treatments, respec-
tively, when compared to plants grown in AA. The high leaf contents
of ascorbic acid and glutathione, as well as their high and stable redox
potential, as indicated by the ratio between their reduced and total
forms (AsA/AsA + DHA; GSH/GSH + GSSG), were key responses for
maintaining high redox equilibrium in P. edulis under ozone, although
enhanced lipid peroxidation or MDA by-products were observed in
plants exposed to the highest ozone concentrations. In our experiment
the increment of AsA and the higher AsA/AsA + DHA suggest that
P. edulis plants were able to efficiently regenerate the oxidized DHA to
reduced AsA which is the biological active form of ascorbate capable
of ROS scavenging (Burkey et al., 2006), this support the Os tolerance
of P. edulis. Similar results were obtained for other species, under either
experimental or natural conditions (e.g. Burkey et al., 2006; Aguiar-Silva

etal., 2016; Esposito et al., 2016; Brandao et al,, 2017). The high levels of
carotenoids, observed inside the chloroplasts in plants fumigated with
high ozone, can be also considered biochemical responses associated
to the high tolerance of P. edulis against environmental oxidative
stressors. Carotenoids are natural pigments mostly responsible for the
yellow, orange and red color of the fruits (Da Silva et al., 2014), being
z-carotene identified as the predominant compound in passion fruit
(Pertuzatti et al., 2015). Carotenoids are essential for the correct assem-
bly and functioning of photosystems and protect from photo-oxidative
damage preventing and quenching ROS generated from triplet excited
chlorophylls via xanthophyll cycle (Esteban et al., 2015). While non-
enzymatic antioxidants generally showed higher concentration in the
ozone-addition treatments, the enzymatic activity of CAT, APX and GR
decreased at the elevated ozone treatment (O3 x 2.0). The lowest activ-
ity level of these enzymes in plants from this treatment coincided with
the highest contents of ascorbic acid and glutathione, showing that the
ascorbate-glutathione cycle of P. edulis was stimulated in response to
0s. Dafré-Martinelli et al. (2011) analyzed the redox state of the vine
Ipomoea nil ‘Scarlet O'Hara’ growing under Os in an urban area in
Brazil, and concluded that ascorbic acid and glutathione were crucial
for increasing plant tolerance to ozone.

5. Conclusions

Exposure to high levels of O did not significantly affect the content
of total sugars, net photosynthesis, growth parameters (diameter and
height) and biomass production. P. edulis showed several reactive
mechanisms against the effects of O3, such an effective enhancement
antioxidant system, principally consisting of non-enzymatic antioxi-
dants (ascorbic acid, carotenoids, glutathione and flavonoids located
in the outer envelope membranes of the chloroplast), hyperplasia and
hypertrophy of the mesophyll cells (thus reducing the intercellular
space and increasing the resistance to ozone diffusion), and accelerated
cell senescence which may have accelerated leaf abscission and thus re-
duced the number of leaves per plant. So, these leaf traits indicate
P. edulis as tolerant to the oxidative stress caused by Os.
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