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Abstract

We investigate properties of solar-wind-like plasma turbulence using direct numerical simulations. We analyze the
transition from large, magnetohydrodynamic (MHD) scales to the ion characteristic ones using two-dimensional
hybrid (fluid electrons and kinetic ions) simulations. To capture and quantify turbulence properties, we apply the
Karman–Howarth–Monin (KHM) equation for compressible Hall–MHD (extended by considering the plasma
pressure as a tensor quantity) to the numerical results. The KHM analysis indicates that the transition from MHD to
ion scales (the so-called ion break in the power spectrum) results from a combination of an onset of Hall physics
and an effective dissipation owing to the pressure–strain energy-exchange channel and resistivity. We discuss the
simulation results in the context of the solar wind.

Key words: Solar wind – Interplanetary turbulence

1. Introduction

Turbulence in the weakly compressible solar wind plasma
exhibits a clear transition at ion scales (Bruno & Carbone 2013).
At large scales, magnetic power spectra of time series observed
in situ have typically a power-law dependence on the frequency
with a spectral index close to the Kolmogorov −5/3
phenomenological prediction for hydrodynamic turbulence.
Around scales corresponding to ion characteristic scales (the
ion gyroradius and inertial length) the power spectra steepen.
This steepening was initially regarded as a signature of the
dissipation onset (Leamon et al. 1998). However, the Hall term
starts to play on similar scales and leads also to a spectral
steepening without necessarily implying the presence of some
energy dissipation (Ghosh et al. 1996; Galtier 2006; Papini
et al. 2019).

One way to discern and quantify different turbulent
processes is the Kármán–Howarth–Monin (KHM) equation
(de Kármán & Howarth 1938; Monin & Yaglom 1975;
Frisch 1995) that connects the energy decay/injection with
its cascade and dissipation. Recently, the incompressible
version of the KHM equation for the Hall–magnetohydro-
dynamic (MHD) approximation (Politano & Pouquet 1998;
Galtier 2008; Hellinger et al. 2018; Ferrand et al. 2019) was
used to study the ion transition in simulations as well as
observations (Hellinger et al. 2018; Bandyopadhyay et al.
2020; Adhikari et al. 2021). These results indicate that at ion
scales there is indeed a transition from an MHD- to a Hall-
dominated turbulent cascade. However, through this transition
the total cascade rate is observed to decrease and this suggests
some sort of dissipation. Consequently, based on the previous

works above, the ion transition is likely a combination of the
Hall physics onset and dissipation.
Theoretical analyses (Yang et al. 2017, and references

therein) show that one possible channel that leads to energy
exchanges between the magnetic + particle kinetic energy and
the particle internal energies in collisionless plasmas is the
pressure–strain effect, a generalization of the pressure–dilation
effect. Results of kinetic simulations (Yang et al. 2019;
Matthaeus et al. 2020) indicate that this effect can act as an
effective dissipation and may explain the decrease of the
energy cascade rate observed at ion scales. Moreover,
numerical simulations and in situ observations suggest that
the pressure–strain channel is likely responsible for the
correlations between particle-velocity-field gradients and
temperatures (Franci et al. 2016a; Parashar & Matthaeus 2016;
Yang et al. 2019; Pezzi et al. 2021; Yordanova et al. 2021).
In this paper we revisit the work of Hellinger et al. (2018)

and analyze the kinetic simulation results using both the
incompressible and compressible versions of the KHM
equation in order to test the validity of these approximations.
We use the compressible KHM equation derived by Hellinger
et al. (2021a) because, motivated by the previous works of
Yang et al. (2017) and Matthaeus et al. (2020), we want to
determine effects of the pressure–strain coupling while the
alternative approaches (Andrés et al. 2018, and references
therein) assume a scalar pressure along with some particular
closure, thus preventing their extension to the weakly
collisional case with a tensor description of the particle
pressure.
This paper is organized as follows: In Section 2 we present

spectral properties of three two-dimensional (2D) hybrid
simulations. In Section 3 we analyze the hybrid simulations
using the incompressible KHM equation. In Section 4 we
extend the analysis to the compressible KHM equation. In
Section 5 we summarize and discuss the presented results.
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2. Simulation Results

Here we analyze 2D hybrid simulations of decaying plasma
turbulence using the KHM equations. In the hybrid approx-
imation, ions are described by a particle-in-cell model whereas
electrons are a massless, charge-neutralizing fluid (Matthews
1994). We use the 2D version of the code Camelia8 using
a simulation setup that is similar to that of Franci et al.
(2015).

We investigate properties of three hybrid simulations with
parameters similar (but not identical) to those in Hellinger et al.
(2018); in contrast to this work, we try here to use the same/
similar parameters for all the runs if possible, see Table 1.
Protons are initially isotropic with different values of βi (run 1:
0.1, run 2: 0.5, and run 3: 2.5). We consider a 2D domain (x,y)
of size 2048× 2048 grid points and resolution Δx=Δy=
di/16 (for runs 1 and 2) and di/8 (for run 3). Here di denotes
the ion inertial length and βi stands for the ion beta, i.e., the
ratio between the ion and magnetic pressures. In order to
reduce the noise, a Gaussian smoothing on 3× 3 points is used
on the proton density and velocity in the code. A uniform
ambient magnetic field B0, directed along z and perpendicular
to the simulation domain is present whereas neutralizing
electrons are assumed to be isotropic and isothermal.
Furthermore, we set the electron beta (i.e., the ratio between
electron and magnetic pressures) as equal to the initial value of
the ion beta (βe= βi). The system is perturbed with an isotropic
2D spectrum of modes with random phases, linear Alfvén
polarization (δB⊥B0), and vanishing correlation between
magnetic field and velocity fluctuations. These modes are in
the range  -k d0.22 i

1 (for runs 1 and 2) and  -k d0.2 i
1 (for

run 3) and have a flat one-dimensional power spectrum with
rms fluctuations δB= 0.25. The time step is D = W-t 0.005 i

1

(for runs 1 and 2) and W-0.01 i
1 (for run 3) for particle

integration (the magnetic field is advanced with a smaller time
step ΔtB=Δt/20); the number of particles per cell Nppc=
8192, and a small resistivity h m= ´ W- v4 10 A i

4
0

2 is used to
avoid energy accumulation at the smallest scales (note that no
explicit viscosity is present in the hybrid model). Here Ωi

denotes the ion cyclotron frequency, μ0 is the magnetic
permeability of the vacuum, and vA stands for the Alfvén
velocity. We let the system evolve beyond the time when it
becomes quasi-stationary (Mininni & Pouquet 2009; Servidio
et al. 2015); henceforth, we analyze properties of plasma
turbulence at such times = W-t 286d i

1, W-290 i
1, and W-299 i

1 for
runs 1, 2, and 3, respectively.

Figure 1 shows the power spectral density of the magnetic
field for the three simulations. The simulated spectra exhibit
two power laws with a smooth transition at ion scales (the so-
called ion spectral break), whose shape and position depend on

the plasma beta: its scale is close to di for small betas whereas
in high-beta plasmas it is around ρi (Franci et al. 2016b). Here
ρi denotes the ion gyroradius. The magnetic power spectral
slopes on large scales are about −5/3, in the subion range the
spectrum steepens, with slopes about −3.5, −3, and −2.9 in
the three simulations (see Franci et al. 2016b). On the other
hand, the magnetic compressibility increases at ion scales
depending on the plasma beta (Matteini et al. 2020). The proton
velocity fluctuating field has a power spectrum on large scales
with a similar slope and decouples from the magnetic
fluctuations around the proton gyroscales. The subion velocity
fluctuations have a limited scale range before reaching the
noise level so that it is difficult to distinguish between an
exponential and a power-law dependence in the subion range.

3. Incompressible KHM Analysis

We start with the incompressible, constant-density, inviscid
(there is no explicit viscosity in the hybrid model), but resistive
Hall–MHD approximation. In this case we have the energy (per
unit mass) budget equation for the kinetic+magnetic energy

(∣ ∣ ∣ ∣ ) ( )¶
¶

+ -u b
t

1

2
, 12 2

Table 1
List of Simulations and Their Relevant Parameters

Run βi δB/B0 kinjdi Δx/di η Nppc ΔtΩi

1 0.1 0.25 0.22 1/16 4 × 10−4 8192 0.005
2 0.5 0.25 0.22 1/16 4 × 10−4 8192 0.005
3 2.5 0.25 0.2 1/8 4 × 10−4 8192 0.01

Note. The resistivity η is given in the units of m WvA i0
2 .

Figure 1. Power spectral densities of (red) the magnetic field and (blue) the
proton velocity field in the three simulations. The dotted lines denote kρi = 1.

8 http://www.asu.cas.cz/~helinger/camelia.html
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where u is the velocity field, b is the magnetic field in the
Alfvén units (b= B/ρ1/2, B being the magnetic field and ρ the
plasma density assumed to be constant; here we assume SI
units except for the magnetic permeability μ0, which is set to
one), and

 ( )h  = á ñb b: 2

is the resistive dissipation rate (per unit mass). Following
Hellinger et al. (2018) we define the effective dissipation/
cascade rate (per unit mass) * given by the corresponding
KHM equation (the superscript (i) will henceforth denote
incompressible, constant-density quantities):

 ( )
( )

( ) ( ) ( )h
= -

¶
¶

+ + + D*
S

t
K K S

1

4 2
, 3

i
i i

b
i

MHD H

where ( )Sb
i , ( )Su

i , and ( ) ( ) ( )= +S S Si
b

i
u

i are the second-order
structure functions:

∣ ∣ ∣ ∣ ( )( ) ( )d d= á ñ = á ñb uS S, , 4b
i

u
i2 2

( )K i
MHD, and

( )K i
H are given by

· · ( )( ) ( ) ( ) ( ) = - = -Y HK K
1

4
, and

1

4
, 5i i i i

MHD H

respectively, involving the third structure functions:

(∣ ∣ ∣ ∣ ) ( · ) ( )( ) d d d d d d= á + - ñY u u b b u b2 , 6i 2 2

( · ) ∣ ∣ ( )( ) d d d d d= -H b b j j b
1

2
. 7i 2

Here δ denotes the increment for the spatial separation l, δu= u
(x+ l)− u(x), etc., j is the electric current in the Alfvén units
(j= J/(en), J being the electric current, e the proton charge,
and n the proton number density). In Equation (3), ( )Su

i and ( )Sb
i

represent the separation-scale distribution of the kinetic and
magnetic energy (per unit mass), respectively, ( )K i

MHD and ( )K i
H

are the MHD and Hall cascade rates, respectively, and
( )hDS 2b
i describes the resistive dissipation.

Equation (3) constitutes an energy-per-mass budget relation-
ship. It describes the balance between injection, energy cascade
flux, and dissipation; the KHM equation corresponds to the
case when  = =* const. We can now directly verify the
predicted constancy of the right-hand side of Equation (3) in
the simulations, and compare the relative importance of the
different terms across the separation scales. Figure 2 shows the
results of such analysis, displaying the effective cascade rate *
and its contributing terms as functions of the scale separation l
for the three simulations. The different terms are calculated at
the times td; ∂S/∂t is estimated by the finite difference
(S(td+Δt)− S(td))/Δt using the simulation (particle) time
step.

Figure 2 demonstrates that the effective cascade rate in the
three simulations * is constant on large scales but larger than
the expected resistive dissipation rate ò. The cascade rate *
decreases at ion scales and this transition shifts to larger scales
for larger βi (and larger ρi). This behavior was already seen in
Hellinger et al. (2018) but in this work the decrease was
underestimated since the Hall terms had twice the correct value
(see Ferrand et al. 2019). These properties indicate the
existence of an additional dissipation channel not captured in
this analysis.

4. Compressible KHM Analysis

We now relax the incompressibility and constant-density
assumption (but we still neglect the viscosity) and, moreover,
we consider a weakly collisional plasma where the pressure is
described as a pressure tensor (P). The kinetic+magnetic
energy budget equation reads then

(∣ ∣ ∣ ∣ ) ( )¶
¶

+ = -w B
t

Q
1

2
, 82 2

where we include the (square root of the) plasma density into
the velocity field r=w u (Kida & Orszag 1990), and where
we define the total effective dissipation rate (per unit volume
here in contrast to the incompressible case)

( )= +h SQ Q Q 9

Figure 2. Incompressible KHM–Hall–MHD equation results for the three
simulations (from top to bottom: βi = 0.1, βi = 0.5, and βi = 2.5): The cascade
rate * normalized to the resistive heating rate ò as a function of the spatial-
scale separation l is shown as a black curve. The different contributing terms to
* are also shown as (blue) − ∂S( i)/∂t/4, (green) ( )K i

MHD, (orange)
( )K i
H , and

(red) ( )hDS 2b
i (note that dotted lines denote negative values). The dashed–

dotted lines denote l = ρi.
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with

( )h h = á ñ = á ñh B BQ J: 102

being the resistive dissipation rate (simply related to the
resistive dissipation rate per unit mass as Qη= 〈ρ〉ò; here 〈ρ〉 is
the background/average plasma density needed to relate the
normalizations per unit mass and per unit volume) and

( )S= -á ñS PQ : 11

representing the pressure–strain coupling (Yang et al. 2017; Σ
being the velocity–strain tensor, Σ=∇u). To generalize
Equation (3), we consider the compressible KHM equation
(Equation (4) of Hellinger et al. 2021a); we express the
resistive dissipation rate as a function of the remaining terms
and add the pressure–strain term QΣ to both sides and we
define an effective cascade rate Q* as

( )h
= -

¶
¶

+ + + Y + D*Q
S

t
K K S

1

4 2
. 12BMHD H

Here the second-order structure functions are given as

∣ ∣ ∣ ∣d d= á ñ = á ñ = +w BS S S S S, , and ,w B w B
2 2

and the following quantities:

· [ ]

· [ ] ( )





=- - + ´

=- + ´

r

r

Y u B J

H B j J

K R C

K C

, ,

, 13

MHD
1

4

1

4

1

2

H
1

4

1

4

are connected, similarly to the previous case, with the third-
order structure functions:

(∣ ∣ ∣ ∣ ) ( · )

( · ) ∣ ∣ ( )

d d d d d d

d d d d d

=á + - ñ

= -

Y u w B B u B

H B j B j B

2 ,

1

2
. 14

2 2

2

The third-order structure functions Y and H represent the
compressible generalizations of Y(i) and H(i) (note that
H= 〈ρ〉H(i)), whereas R is a compressible term that does not
seem to be easily expressible as a structure function but can be
given as

· ( ) ( )d q q= < ¢ - ¢ >w w wR , 15

where θ is the dilatation field,

· ( )q = u, 16

and where the primes denote quantities evaluated at ¢ =x
+x l. Equation (13) defining KMHD and KH also involves

“correction” terms related to the density variations given by

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

[ ] · ·r
r

r
r

=
¢
- ¢ +

¢
- ¢r a b a b a bC , 1 1 .

Similarly to the incompressible Equation (3), in
Equation (12) Sw and ( )r= á ñS SB b

i represent the separation-
scale distribution of the kinetic and magnetic energy, KMHD

and KH are the MHD and Hall cascade rates, respectively, and
ηΔSB/2 describes the resistive dissipation. Furthermore, Ψ
represents the pressure–strain effect,

⎜ ⎟
⎛

⎝

⎞

⎠
· · ( )d d

r


Y = - + Sw
P

Q
1

2
. 17

This term is different from that defined in Hellinger et al.
(2021a), here we have added the pressure–strain rate QΣ.
Equation (12) describes an energy budget relationship

and the KHM equation corresponds to the equality
= =*Q Q const. Figure 3 shows the test of the KHM

equation, the cascade rate Q*, and its contributing terms as
functions of the separation scale l in the three simulations.
Figure 3 demonstrates that the compressibility and inclusion of
the pressure–strain effect significantly improves the conserva-
tion of the effective cascade/dissipation rate. Q* is relatively
constant in the three simulations, and the decrease of the MHD
+ Hall cascade rate observed at the transition from the MHD to
subion scales is compensated by the resistive and pressure–
strain coupling. The contribution from this pressure–strain
coupling term is of similar amplitude as the resistive one at low
and moderate beta, while it dominates in the high-beta case of
run 3. Besides the constancy, Q* is close to its expected value
Q; the relative error is small |Q

*

|/Q 0.1 and is likely related
to numerical limitation of the code.

Figure 3. KHM equation results for βi = 0.1, βi = 0.5, and βi = 2.5 (from top
to bottom). The cascade rate Q* normalized to the total effective heating rate Q
as a function of l is shown as a black curve. The different contributing terms to
Q* are also shown as (blue) − ∂S/∂t/4, (green) KMHD, (orange) KH, (magenta)
Ψ, and (red) ηΔSb/2 (note that dotted lines denote negative values). The
dashed–dotted lines denote l = ρi.
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Comparing more in detail individual contributions in the two
approaches, we see that the compressibility and density
variations are not important in the current simulations. The
Hall contributions are almost the same, ( )rá ñ K Ki

H H, and the
MHD contributions are close to each other, ( )rá ñ ~K Ki

MHD MHD;
the relative difference is about 10% for βi= 0.1 (mostly owing
to the compressible term R) and decreases for higher betas. The
main difference between the presentations of these terms in
Figures 2 and 3 is owing to the different normalizations (ò
versus Q); this normalization has actually a highly physical
meaning that expresses the inertial-range picture relating the
cascade rate to the dissipation one. In order to have the cascade
rate equal the dissipation one, one has to include the pressure–
strain contribution to the dissipation rate. We conclude that the
substantial difference between Equations (3) and (12) for the
three simulations investigated in this paper is owing to the
inclusion of the pressure–strain effect.

5. Discussion

In this paper we investigated the transition from MHD to
subion scales in 2D hybrid simulations using the KHM
equations. We analyzed three 2D hybrid simulations with
parameters similar (but not identical) to those in Hellinger et al.
(2018). We observe qualitatively the same results as in
Hellinger et al. (2018), the incompressible, constant-density
KHM equation shows that the effective cascade/dissipation
rate decreases at subion scales. Note that the incompressible
Hall cascade rate in Hellinger et al. (2018) is twice the correct
value (see Ferrand et al. 2019) so that the decrease of the
effective incompressible cascade rate at subion scales is
underestimated there. The decrease of the incompressible rate
at subion scales is in agreement with other previous simulation
and observation works (Bandyopadhyay et al. 2020; Adhikari
et al. 2021).

The compressible version of the KHM equation (Hellinger
et al. 2021a) that includes the pressure–strain coupling (Yang
et al. 2017) exhibits a good conservation property and the
effective cascade/dissipation rate is constant; the decrease of
the cascade rate at ion scales is compensated by the resistive
effects, and, more importantly, the pressure–strain coupling.
The effective cascade/dissipation rate is close to the expected
value. We observe a small but nonnegligible discrepancy that is
likely connected with numerical issues of the particle-in-cell,
finite difference scheme. The discrepancy between the predic-
tion of the KHM equation and the simulation results depends
on many numerical as well as physical parameters. In fact, the
KHM equation may serve as a test of numerical codes. We
were not able to discern and analyze all the relevant parameters.
Additional simulations show that the error decreases with an
increasing number of particles per cell and decreasing beta.
This indicates that the numerical noise due to the limited
number of particles per cell contributes to the error; the finite
difference scheme for the resistivity is a possible source of
additional errors, and the pressure–strain coupling is prone to
be affected by the numerical noise.

In a more general context, our study suggests that, for quite a
wide range of plasma and turbulence parameters, the actual
compressibility and density variations are weak; one can use an
incompressible approach but pressure–strain effect needs to be
retained. The same probably applies for the weakly compres-
sible solar wind (Zank et al. 2017). The spatial scale of the

pressure–strain onset increases with βi (and ρi). Our current
results do not, however, show a clear connection between this
onset scale and ρi and/or di. The characteristic scales of the
pressure–strain channel, P:Σ, are apparently difficult to
determine (Del Sarto & Pegoraro 2018).
The pressure–strain effect is in principle reversible but, in

contrast to fluid cases (Hellinger et al. 2021a, 2021b), it appears
to work only in one direction and acts as an effective
dissipation rate in the kinetic case. Our kinetic/hybrid KHM
results are similar to the spatial filtering analysis of fully kinetic
simulations (Matthaeus et al. 2020) and constitute a comple-
mentary and independent confirmation that pressure–strain
coupling plays the role of a dissipation channel that appears at
ion scales. More kinetic simulations are needed to discern its
characteristic scales and the roles of different ion and electron
species and their parameters; the KHM equation needs to be
extended to the multifluid framework (Andrés et al. 2016). We
also note that multiple different processes may contribute to the
pressure–strain effect, such as quasilinear damping, magnetic
reconnection, etc., and one has to go beyond the KHM equation
to distinguish them.
We plan to continue this work using the spectral transfer

analysis that allows a clearer connection between the different
energy-transfer channels and the power spectra (see Papini
et al. 2021). We also plan to extend this analysis to a three-
dimensional geometry (see Verdini et al. 2015; Franci et al.
2018) to investigate the anisotropy of the energy cascade and
dissipation including the pressure–strain effect. Results
obtained in this work by means of numerical simulations need
to be complemented by in situ observations. In this respect, it is
already challenging to extend the incompressible KHM
equation to the Hall regime (Bandyopadhyay et al. 2020).
However, multipoint spacecraft observations (by, e.g., the
Magnetospheric Multiscale Mission) may possibly be used to
measure the compressible Hall–MHD in situ, also including the
pressure–strain effect (Bandyopadhyay et al. 2021).

This work was performed using the Cambridge Service for
Data Driven Discovery (CSD3), part of which is operated by
the University of Cambridge Research Computing on behalf of
the STFC DiRAC HPC Facility. The DiRAC component of
CSD3 was funded by BEIS capital funding via STFC capital
grant Nos. ST/P002307/1 and ST/R002452/1 and STFC
operations grant No. ST/R00689X/1. This work also used
computing resources provided by STFC DiRAC HPC Facility
at Durham (grant Nos. ST/P002293/1, ST/R002371/1, ST/
S002502/1, ST/R000832/1) for project “dp170” and by
Cineca and INAF (Accordo Quadro MoU Nuove frontiere in
Astrofisica) for project “INA20_C6A55”. L.F. is supported by
the STFC grant No. ST/T00018X/1.
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