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IMPORTANCE The APOE ε2 and APOE ε4 alleles are the strongest protective and
risk-increasing, respectively, genetic variants for late-onset Alzheimer disease (AD).
However, the mechanisms linking APOE to AD—particularly the apoE protein’s role in AD
pathogenesis and how this is affected by APOE variants—remain poorly understood.
Identifying missense variants in addition to APOE ε2 and APOE ε4 could provide critical new
insights, but given the low frequency of additional missense variants, AD genetic cohorts
have previously been too small to interrogate this question robustly.

OBJECTIVE To determine whether rare missense variants on APOE are associated with AD risk.

DESIGN, SETTING, AND PARTICIPANTS Association with case-control status was tested in a
sequenced discovery sample (stage 1) and followed up in several microarray imputed cohorts as
well as the UK Biobank whole-exome sequencing resource using a proxy-AD phenotype (stages
2 and 3). This study combined case-control, family-based, population-based, and longitudinal
AD-related cohorts that recruited referred and volunteer participants. Stage 1 included 37 409
nonunique participants of European or admixed European ancestry, with 11 868 individuals with
AD and 11 934 controls passing analysis inclusion criteria. In stages 2 and 3, 475 473 participants
were considered across 8 cohorts, of which 84 513 individuals with AD and proxy-AD and
328 372 controls passed inclusion criteria. Selection criteria were cohort specific, and this
study was performed a posteriori on individuals who were genotyped. Among the available
genotypes, 76 195 were excluded. All data were retrieved between September 2015 and
November 2021 and analyzed between April and November 2021.

MAIN OUTCOMES AND MEASURES In primary analyses, the AD risk associated with each
missense variant was estimated, as appropriate, with either linear mixed-model regression
or logistic regression. In secondary analyses, associations were estimated with age at onset
using linear mixed-model regression and risk of conversion to AD using competing-risk
regression.

RESULTS A total of 544 384 participants were analyzed in the primary case-control analysis;
312 476 (57.4%) were female, and the mean (SD; range) age was 64.9 (15.2; 40-110) years.
Two missense variants were associated with a 2-fold to 3-fold decreased AD risk: APOE ε4
(R251G) (odds ratio, 0.44; 95% CI, 0.33-0.59; P = 4.7 × 10−8) and APOE ε3 (V236E) (odds
ratio, 0.37; 95% CI, 0.25-0.56; P = 1.9 × 10−6). Additionally, the cumulative incidence of AD in
carriers of these variants was found to grow more slowly with age compared with noncarriers.

CONCLUSIONS AND RELEVANCE In this genetic association study, a novel variant associated
with AD was identified: R251G always coinherited with ε4 on the APOE gene, which mitigates
the ε4-associated AD risk. The protective effect of the V236E variant, which is always
coinherited with ε3 on the APOE gene, was also confirmed. The location of these variants
confirms that the carboxyl-terminal portion of apoE plays an important role in AD
pathogenesis. The large risk reductions reported here suggest that protein chemistry
and functional assays of these variants should be pursued, as they have the potential
to guide drug development targeting APOE.
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L ate-onset Alzheimer disease (AD) is a highly polygenic
neurodegenerative disorder with, to date, 75 risk loci
associated with AD risk.1 Most of the common single-

nucleotide variants (SNVs) at these loci only contribute a
small amount to an individual’s risk of AD,2 with the excep-
tion of the APOE ε2 and ε4 missense variants that are associ-
ated with substantially decreased3 and increased AD risk,4

respectively. It is estimated that 25% of the genetic variance
of AD can be attributed to APOE ε2 and APOE ε4.5 Despite
the outsized role of these 2 common APOE alleles, more
than 25 years after the initial studies linking them to AD,
their role in pathogenesis remains ill-defined. Human stud-
ies have shown that ε4 speeds and ε2 slows the age-related
misprocessing of β-amyloid, although how this occurs at the
molecular level remains uncertain.6,7 Even the most basic
question, does ε4 act via a loss-of-function or gain-of-
function mechanism, remains a point of contention.8 Loss-
of-function variants on APOE are exceedingly rare, and the
sole case report describing a compound heterozygote with 2
loss-of-function variants involved a patient who was too
young to be informative.9 The study of additional missense
variants on APOE may also help to answer this critical ques-
tion and further elucidate the role of APOE in AD. In addition
to ε2 and ε4, the only common missense variant (with a
minor allele frequency [MAF] greater than 1%) is Arg145Cys
(R145C), an African-ancestry variant always found coinher-
ited with APOE ε3, which we have shown increases risk for
AD.10 The Arg136Ser (R136S) Christchurch variant has
recently been posited to play a protective role in early-onset
AD related to PSEN1 variants, but this study had no statisti-
cal genetics support as it was based on data from a single
patient.11 Finally, strong functional evidence has been mar-
shalled recently to support a protective role for the
Val236Glu (V236E) variant, although this was based on data
from an earlier case-control study with only approximately
9000 participants,12,13 likely underpowered to provide firm
estimates of disease risk.

On this background, we aimed to investigate, at large scale,
the association of rare missense variants on APOE with AD risk.
We used the Alzheimer’s Disease Sequencing Project (ADSP)
whole-genome sequencing (WGS) and whole-exome sequenc-
ing (WES) data as our discovery sample (stage 1) and sought
to replicate significant variants (stages 2 and 3) in multiple co-
horts using microarray data imputed on the Trans-Omics for
Precision Medicine (TOPMed) reference panel (National Insti-
tutes of Health),14 or by using directly sequenced and geno-
typed variants from a large Danish general prospective popu-
lation cohort,15 as well as using the proxy-AD phenotype1 in
the UK Biobank WES data. After filtering, 3 variants, Leu28Pro
(L28P), Val236Glu (V236E), and Arg251Gly (R251G), were tested
for their association with AD risk after adjusting for ε2 and ε4
dosages. In complementary analyses, we assessed these as-
sociations in an APOE-stratified approach to account for the
complete linkage disequilibrium of these variants with either
the ε2, ε3, or ε4 allele. In secondary analyses, combining stage
1 and 2 data sets, we tested their association with age at onset
in individuals with AD and with risk of conversion to AD using
competing-risk regression.

Methods

Participants and Sources of Data
Participants or their caregivers provided written informed con-
sent in the original studies. The current study protocol was
granted an exemption by the Stanford University Institutional
Review Board because the analyses were carried out on dei-
dentified, off-the-shelf data; therefore, additional informed con-
sent was not required. For stage 1 and stage 2, phenotypic in-
formation and genotypes were obtained from publicly released
genome-wide association study data sets assembled by the
Alzheimer’s Disease Genetics Consortium (ADGC) and derived
from WES and WGS data generated by the ADSP, with pheno-
type and genotype ascertainment described elsewhere.16-20 The
cohorts’ queried accession numbers, as well as the sequencing
technology or SNV genotyping platforms are described in
eTables 1 and 2 in Supplement 1. Information about stage 3,
which included external replication cohorts and UK Biobank,
is provided in the eMethods in Supplement 1. Briefly, these in-
cluded European Alzheimer’s Disease DNA Biobank (EADB) core,
European Alzheimer’s Disease Initiative (EADI), Genetic and
Environmental Risk in Alzheimer’s Disease Consortium
(GERAD), Norwegian Dementia Genetics Network (Dem-
Gene), and Genome Research at Fundació Alzheimer Center Bar-
celona (GR@ACE)/Dementia Genetics Spanish Consortium
(DEGESCO) cohorts for which phenotype, genotype quality con-
trol, and imputation have already been described in Bellen-
guez et al1; and the Copenhagen City Heart Study (CCHS) and
the Copenhagen General Population Study (CGPS) APOE se-
quencing and genotyping were described in Rasmussen et al.15

The following sections describe quality control procedures and
ancestry determination applied to the ADSP and ADGC samples,
respectively, used as stage 1 and stage 2. This study followed the
Strengthening the Reporting of Genetic Association Studies
(STREGA) reporting guideline. UK Biobank WES data were
analyzed under Application Number 45420.

Quality Control Procedures
Prior to ancestry, principal components, and relatedness de-
termination, in each cohort platform, variants were excluded
based on genotyping rate (less than 95%), MAF less than 1%,
and Hardy-Weinberg equilibrium in controls (P < 10−6) using

Key Points
Question Are APOE missense variants, other than the common
APOE alleles ε2 and ε4, associated with Alzheimer disease
(AD) risk?

Findings In this genetic association study including 544 384
participants, multiple studies including 67 896 individuals with
AD, 28 484 with proxy-AD, and 340 306 healthy controls were
meta-analyzed. Two rare missense variants (APOE ε3 [V236E] and
APOE ε4 [R251G]) substantially reduced the risk of AD (by more
than 60% and more than 50%, respectively).

Meaning Single amino acid alterations of the APOE ε3 and APOE
ε4 isoforms can result in substantial risk reduction for AD.
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PLINK version 1.9.21 gnomAD22 database–derived informa-
tion was used to filter out SNVs that met one of the following
exclusion criteria23,24: (1) located in a low-complexity region,
(2) located within common structural variants (MAF greater
than 1%), (3) multiallelic SNVs with MAF greater than 1% for
at least 2 alternate alleles, (4) located within a common inser-
tion or deletion, (5) having any flag different than PASS (passed
all variant filters) in gnomAD version 3, and (6) having poten-
tial probe variants. The latter are defined as SNVs for which
the probe may have variable affinity owing to the presence of
other SNV(s) within 20 base pairs and with MAF greater than
1%. Individuals with more than 5% genotype missingness were
excluded. Duplicate individuals were identified with KING
(Kinship-based Inference for GWAS)25 and their clinical, diag-
nostic, and pathological data (including age at onset of cogni-
tive symptoms, age at examination for clinical diagnosis, age
at last examination, and age at death), as well as sex, race, and
APOE genotype were cross-referenced across cohorts. Dupli-
cate entries with irreconcilable phenotype or discordant sex
were flagged for exclusion. For individuals with duplicated
genotype in sequencing and imputed data, the sequencing
entry was used in the stage 1 discovery set and the imputed
entry was not included in the stage 2 replication set. To apply
the PC-AiR and PC-Relate methods, we simply considered the
intersection of the variants passing quality control in both ADSP
WES and ADSP WGS in the discovery set and similarly the in-
tersection of the variants across cohorts genotyping platform
in the replication set.

Ancestry Determination
For each cohort, we first determined the ancestry of each indi-
vidual with SNPWeights version 2 (Harvard)26 using reference
populations from the 1000 Genomes Consortium.27 By apply-
ing an ancestry percentage cutoff greater than 75%, the samples
were stratified into 5 super populations: South Asian, East Asian,
United States, African, and European individuals and an ad-
mixed group composed of individuals not passing the 75% cut-
off in any single ancestry (eTable 3 in Supplement 1).10,23 Since
the APOE missense variants of interest L28P, V236E, and R251G
are too rare to assess reliably in non–European ancestry popu-
lations (eTable 4 in Supplement 1), we restricted our analysis to
European and admixed European individuals. Admixed Euro-
pean individuals were also included in the main analysis and
were part of the admixed group defined above and had at least
15% European ancestry. We performed sensitivity analyses in
increments of 30%, including admixed European individuals
at 45% and 75% cutoffs. The latter corresponding to the super
population threshold.

Imputation
Each cohort genotyping platform was imputed on the TOPMed
imputation server per ancestry group to obtain an imputa-
tion quality (R2) per ancestry group. We retained cohorts with
R2 greater than 0.70 at rs199768005 for the V236E analyses
and at rs267606661 for the R251G analyses. As there was no
significant association signal for rs769452 (L28P) in the stage
1 primary analysis, we did not check its imputation quality in
stage 2 samples.

APOE Genotype Ascertainment
We directed specific attention to the genotyping of the SNVs
determining the main APOE genotype (rs429358 and rs7412),
rs769452-C (APOE [L28P]), rs199768005-A (APOE [V236E]),
and rs267606661-G (APOE [R251G]) and followed the proce-
dure described in Le Guen et al.10 Note that Leu28Pro (L28P),
Val236Glu (V236E), and Arg251Gly (R251G) are also some-
times referred to as L46P, V254E, and R269G, respectively,
when the first 18 codons of APOE encoding a signal peptide
are included.

Samples Analyzed
Our discovery sample (stage 1) was composed of individuals
of European and admixed European ancestry from the ADSP
WES and WGS, corresponding to 11 868 individuals with AD and
11 934 cognitively normal controls (Table 1). eFigure 1 in
Supplement 1 provides a flowchart of the filtering steps lead-
ing to the inclusion of these individuals and describes how
these data sets were combined. To build a replication sample
(stage 2) for V236E and R251G, we queried for individuals of
European and admixed European ancestry in all the publicly
available microarray genetic data sets that we had access to at
the time of the study in July 2021 (Table 1). These data sets are
largely part of the ADGC, and as such, this replication will be
referred to hereafter as the ADGC replication in stage 2. After
quality control and duplicate removal, 7768 individuals with
AD and 8059 controls remained in the ADGC replication
sample. eTable 5 in Supplement 1 presents the demographic
characteristics of the remaining individuals with AD and cog-
nitively unimpaired controls. In stage 3, we pursued addi-
tional replication in external data sets (not publicly available)
and in the UK Biobank WES using the proxy-AD phenotype
(Table 1; eMethods in Supplement 1). Overall, the external
replications included 36 393 individuals with AD and 150 943
controls, and the UK Biobank replication included 28 484 in-
dividuals with proxy-AD and 157 436 controls. Across cohorts
reported in Table 1, the APOE genotype were split as follows:
ε2/ε2, 0.5%; ε2/ε3, 10.4%; ε3/ε3, 54.5%; ε2/ε4, 2.5%; ε3/ε4,
27.6%; ε4/ε4, 4.4%.

Study Design and Statistical Analysis
In our analysis, we only considered missense variants with a
minor allele count greater than 10 in any APOE main geno-
type groups in our next-generation sequencing discovery (stage
1) to avoid outlier-confounded effect size estimates.28 Three
APOE missense variants were retained for further analyses:
L28P, V236E, and R251G (eTable 4 in Supplement 1). The V236E
variant is always coinherited with APOE ε3, and the L28P and
R251G are always coinherited with APOE ε4 (eTable 6 in Supple-
ment 1). Two variants are coinherited when they are on the
same chromosome copy and close enough to each other that
a meiotic crossover event never occurs between them. We thus
developed 2 complementary approaches to take into account
these linkage disequilibrium structures. In primary analyses,
we estimated the AD risk associated with L28P, V236E, and
R251G on case-control diagnoses using linear mixed-model
regression (stages 1 and 2 and UK Biobank) and logistic
regression model (stage 3), adjusted for ε2 and ε4 dosages, in
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addition to the covariates described below for all analyses. The
adjustment by the common ε3 and ε4 APOE alleles is neces-
sary because the rare variants tested here are always coinher-
ited with either the ε3 or ε4 APOE allele. In complementary
analyses, we also estimated the AD risk associated with V236E
and R251G stratified by their associated common APOE allele
genotype. V236E was assessed in APOE ε3/ε3 and R251G was
assessed in the APOE ε3/ε4 stratum. An association was con-
sidered significant in stage 1 if it reached a Bonferroni-
corrected P value threshold of .017 (.05/3) in the model ad-
justed for ε2 and ε4 dosages; all P values were 2-tailed. L28P
was not associated with AD risk in this model and was not stud-
ied further.

Sample sizes and demographic characteristics for the strati-
fied analyses are shown in eTable 5 in Supplement 1. In sen-
sitivity analyses, we estimated AD risk associations for differ-
ent European ancestry inclusion thresholds. In secondary
analyses, combining stages 1 and 2 data sets, we estimated the
influence of significant stage 1 variants on age at onset in AD
cases using linear mixed-model regression and risk of conver-
sion to AD using competing-risk regression. In secondary analy-
ses, associations were considered significant when passing
the nominal P value threshold of .05. The case-control and
age-at-onset analyses used linear mixed-model regression
available through the GENESIS package version 3.12.29 Multi-
variate competing-risk regression and cumulative incidence
estimation were implemented using the cmprsk package ver-
sion 2.2.30 In this time-to-event analysis, failure events were
defined as age at onset for individuals who developed AD (con-
version to AD) and age at death for controls. Controls without
reported death were right-censored at age at last visit. Left cen-
soring was set at age 50 years, and younger individuals were
excluded from the analysis. All statistical analyses were ad-
justed for sex and 4 genetic principal components estimated
with the PC-AiR method31 implemented in GENESIS. Linear
mixed-model analyses were additionally covaried by a sparse
genetic association matrix estimated with the PC-Relate
method32 implemented in GENESIS. Case-control analyses
were not adjusted for age given that correcting for age when
individuals with AD are younger than controls leads to the
model incorrectly inferring the age effect on AD risk, result-
ing in statistical power loss.23

Case-control analyses in stage 3, external replication co-
horts and proxy-AD phenotype in UK Biobank, were imple-
mented to be consistent with the stage 1 primary analyses.
Exact model/analysis details are described in the eMethods in
Supplement 1. For the ADSP/ADGC cohorts, all statistical analy-
ses were performed in R version 4.0.2 (The R Foundation). All
meta-analyses were implemented with a fixed-effect inverse
variance–weighted design implemented in the metafor R pack-
age version 3.0.2.33

Results
A total of 544 384 participants were analyzed in the primary
case-control analysis; 312 476 (57.4%) were female, and the
mean (SD; range) age was 64.9 (15.2; 40-110) years. In stage 1

primary analyses, V236E (rs199768005-A) and R251G
(rs267606661-G) were associated with a 4-fold to 5-fold
decreased AD risk in nonstratified analyses adjusted for ε2
and ε4 dosages (V236E: odds ratio [OR], 0.23; 95% CI, 0.09-
0.56; P = .001; R251G: OR, 0.20; 95% CI, 0.08-0.49;
P = 3.7 × 10−4) (Figure 1; Table 2). Similarly, in APOE-
stratified analyses, V236E was associated with a 3-fold
decreased AD risk in individuals with ε3/ε3 (OR, 0.31;
95% CI, 0.12-0.82; P = .02), and R251G was associated with a
5-fold decreased AD risk in individuals with ε3/ε4 (OR, 0.17;
95% CI, 0.06-0.48; P = 7.8 × 10−4) (Table 2). The L28P vari-
ant (rs769452-C) was not associated with AD risk in the non-
stratified analyses (OR, 1.12; 95% CI, 0.77-1.62; P = .56). As
such, it was not investigated further.

In stages 2 and 3, across multiple replication cohorts, the
effects of V236E and R251G in nonstratified analyses were con-
cordant and both were significantly associated with AD risk
(V236E: OR, 0.42; 95% CI, 0.27-0.66; P = 2.0 × 10−4; R251G: OR,
0.48; 95% CI, 0.35-0.66; P = 5.8 × 10−6). The overall meta-
analysis (Figure 1; Table 2) provides robust effect size esti-
mate for these 2 variants and confirmed their association
with a 2-fold to 3-fold decreased AD risk (V236E: OR, 0.37;
95% CI, 0.25-0.56; P = 1.9 × 10−6; R251G: OR, 0.44; 95% CI,
0.33-0.59; P = 4.7 × 10−8). Similar results were obtained in
APOE-stratified meta-analyses (Table 2; eFigure 2 in Supple-
ment 1). We further estimated the odds per APOE genotype
group, using individuals with ε3/ε3 who did not carry V236E
as the reference (ie, OR of individuals with APOE ε3/ε3 equals
1), by meta-analyzing the ADSP discovery and ADGC replica-
tion cohorts. Compared with the reference ε3/ε3 group, the
ε3/ε3 (V236E) and ε3/ε4 (R251G) groups had AD risk lower than
or similar to the ε2/ε3 group (Figure 2).

Results of sensitivity analyses evaluating different Euro-
pean ancestry cutoffs are shown in eTable 8 and eFigure 3 in
Supplement 1. Briefly, the results remained unchanged when
selecting individuals with admixed ancestry with at least 45%
European ancestry or when restricting the analysis to indi-
viduals with European ancestry (75% cutoff). We note that the
ORs in the combined ADSP/ADGC data sets for V236E and
R251G remain unchanged at different ancestry cutoffs. For ex-
ample, using an ancestry cutoff at 75%, the nonstratified meta-
analysis yielded an OR of 0.27 (95% CI, 0.12-0.58;
P = 8.6 × 10−4) for V236E compared with an OR of 0.26
(95% CI, 0.12-0.56; P = 5.4 × 10−4) using a cutoff of 15%. Simi-
lar observations were made for the R251G variant. As addi-
tional supplementary analyses, we assessed the effect of the
inclusion of all dementia (rather than AD specifically) in the
CCHS and CGPS data set, and we estimated the significance
without including UK Biobank. Overall, the significance of the
results slightly improved when including a broader dementia
category (R251G: OR, 0.44; 95% CI, 0.33-0.59; P = 3.5 × 10−8)
(eTable 9 in Supplement 1). While removing UK Biobank
proxy-AD phenotype samples reduced the significance of our
results slightly, the ORs became slightly more protective
(R251G: OR, 0.39; 95% CI, 0.27-0.56; P = 1.2 × 10−7) (eTable 10
in Supplement 1).

In secondary analyses, including data from stages 1 and
2, we considered the meta-analysis of ADSP/ADGC samples
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(eTable 5 in Supplement 1). In non-APOE stratified analyses
adjusted for ε2 and ε4 dosages (eTable 7 in Supplement 1),
V236E carriers had a mean age at AD onset 10.5 years older
than non-carriers (β = 10.64; 95% CI, 1.78-19.49; P = .02) and
slower incidence with age (hazard ratio [HR], 0.30; 95% CI,
0.12-0.76; P = .01). While R251G’s association with age at
onset was not significant (β = 0.97; 95% CI, −2.96 to 4.91;
P = .63), its association with reduced AD incidence with age
was just nominally significant (HR, 0.67; 95% CI, 0.46-0.97;
P = .04). In APOE-stratified analyses (eTable 7 in Supple-
ment 1), a similar association of V236E with age at AD onset
was observed in individuals with ε3/ε3 (β = 10.93; 95% CI,
1.06-20.81; P = .03). R251G carriers had a mean age at AD
onset 6 years older than noncarriers of ε3/ε4, but this asso-
ciation was not significant (β = 6.04; 95% CI, −0.71 to 12.79;
P = .08). The competing risk results emphasized that the
cumulative incidence of AD in participants with ε3/ε3 grows
slower with age in individuals carrying the V236E variant
(HR, 0.40; 95% CI, 0.17-0.97; P = .04) and similarly in par-
ticipants with ε3/ε4 carrying the R251G variant (HR, 0.26;
95% CI, 0.13-0.54; P = 2.9 × 10−4).

Discussion
We have shown that 2 missense variants V236E and R251G are
each associated with a more than 2-fold reduction in AD risk
(Figure 2). These variants have an allele frequency of less than
0.1% in gnomAD version 3.1, even when restricting this fre-
quency estimate to individuals of European ancestry (eTable 4

in Supplement 1). Because of their rarity and linkage disequi-
librium with the common APOE ε3 and ε4 alleles, they have
not been identified in prior genome-wide association studies.1

The protective effect of V236E has already been reported in a
smaller prior study focused on APOE13 and was suggestive in
a population-based study,15 but we validated this finding here
in a large-scale genomic study and provide an improved esti-
mate of its effect size. To our knowledge, the association of
R251G with AD risk has not been previously reported. This vari-
ant, carried on the same haplotype as ε4, is the first APOE vari-
ant found to mitigate the AD risk attributable to the ε4 iso-
form of the apoE protein. Notably, having R251G in association
with APOE ε4 results in a risk estimate similar to APOE ε2, as
shown in Figure 2 where APOE ε3/ε4 (R251G) and APOE ε2/ε3
have an equivalent OR.

Regarding potential mechanisms driving these associa-
tions, it is notable that these 2 variants are on apoE’s
C-terminal domain. The common APOE ε2 and APOE ε4
alleles are located on the N-terminal domain of the protein
near the receptor-binding region. Their outsized role in AD
risk has, understandably, focused attention on the
N-terminal domain and the differential capacity of these
alleles to, for example, bind apoE’s receptors.34,35 The cur-
rent results add support to studies suggesting that the
C-terminal domain is also of critical importance for AD
pathogenesis.36-38 R251G is located within apoE’s lipid-
binding region (amino acid residues 244 to 272), while
V236E is adjacent to this region.8 A 2021 publication12 pro-
vided evidence for the protectiveness of V236E against AD
pathology and explored the functional mechanism support-

Figure 1. Association of V236E and R251G With Alzheimer Disease (AD) Risk Across All Cohorts

0.05 0.5 20.2
Odds ratio (95% CI)

0.1 1
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ADSP (WGS and WES)
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Summary estimate (P = 1.9 × 10–6)

UK Biobank proxy-AD (WES) 0.45 (0.23-0.89)

0.37 (0.25-0.56)

ADGC (TOPMed imputed) 0.35 (0.08-1.51)
0.23 (0.09-0.56)

EADB core (TOPMed imputed) 0.59 (0.19-1.80)
GERAD (TOPMed imputed) 0.37 (0.07-1.90)
DemGene (TOPMed imputed) 0.21 (0.05-0.90)
CCHS and CGPS (APOE sequencing and genotyping) 0.45 (0.11-1.84)

APOE V236EA
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Odds ratio (95% CI)

CCHS and CGPS (APOE sequencing and genotyping) 0.41 (0.10-1.72)

0.57 (0.34-0.98)
0.44 (0.33-0.59)

ADGC (TOPMed imputed) 0.29 (0.12-0.70)
0.20 (0.08-0.49)

EADB core (TOPMed imputed) 0.51 (0.26-0.99)
GR@ACE (TOPMed imputed) 0.35 (0.12-1.01)
EADI (TOPMed imputed) 0.68 (0.22-2.09)
GERAD (TOPMed imputed)

Summary estimate (P = 4.7 × 10–8)
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Forest plots show the results for the
non–APOE-stratified analyses
adjusted by ε2 and ε4 dosages.
eFigure 2 in Supplement 1 presents
equivalent forest plots for these 2
variants in the APOE-stratified
sensitivity analyses, showing
consistent findings. ADGC indicates
Alzheimer’s Disease Genetic
Consortium; ADSP, Alzheimer’s
Disease Sequencing Project;
CCHS, Copenhagen City Heart Study;
CGPS, Copenhagen General
Population Study; DemGene,
Norwegian Dementia Genetics
Network; EADB, European
Alzheimer’s Disease DNA Biobank;
EADI, European Alzheimer’s
Disease Initiative; GERAD, Genetic
and Environmental Risk in
Alzheimer's Disease Consortium;
GR@ACE, Genome Research at
Fundació Alzheimer Center
Barcelona; TOPMed, Trans-Omics
for Precision Medicine;
WES, whole-exome sequencing;
WGS, whole-genome sequencing.
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ing its protective role. The lipid-binding region, with its
abundance of nonpolar residues, is thought to be a region
that can foster oligomerization.39-41 Switching a nonpolar

valine for an acidic glutamic acid might be predicted to
reduce the hydrophobicity of this region and reduce its ten-
dency to oligomerize. Notably, the authors showed reduced
levels of insoluble β-amyloid and apoE aggregates in the
brain of V236E carriers compared with noncarriers.12 In
5×FAD mice, they observed that APOE ε3 (V236E) reduced
Aβ deposition, plaque-associated immune response, and
neuritic dystrophy around amyloid plaques.12 Chemically,
they noted that APOE ε3 (V236E) primarily remains as a
monomer and is less likely to form oligomers compared with
the canonical APOE ε3 allele.12 This propensity of V236E to
reduce apoE aggregation was also observed when this vari-
ant was introduced on an APOE ε4 allele. It is worth noting,
however, that V236E also appears to increase dimerization
(see Figure S1012), which may affect apoE’s ability to bind to
its receptors.42-44

Given that R251G is located squarely in the lipid-binding
region of the protein, it is possible that R251G confers a pro-
tective effect by reducing apoE’s ability to form insoluble
oligomers. The switch from a charged arginine amino acid to
a nonpolar glycine might, however, be expected to increase
rather than decrease oligomerization. Changes in this region
could also enhance apoE ε4’s ability to bind lipids rendering
it more like ε3 or ε2 in this capacity.45 Alternatively, the
introduction of glycine could disrupt the α helix structure

Table 2. Association of V236E and R251G With Alzheimer Disease (AD) Riska

Sample

AD case-control regression (nonstratified) AD case-control regression (APOE stratified)

Individuals, No. MAC OR (95% CI) P value Individuals, No. MAC OR (95% CI) P value

V236Eb

ADSP 23 427 20 0.23 (0.09-0.56) .001 12 604 17 0.31 (0.12-0.82) .02

ADGC imputed 11 652 10 0.35 (0.08-1.51) .16 5741 10 0.40 (0.10-1.57) .19

EADB core 41 033 27.17 0.59 (0.19-1.80) .34 21 650 21.28 0.53 (0.15-1.92) .30

GERAD 9996 17.72 0.37 (0.07-1.90) .18 5219 9.43 0.77 (0.10-6.06) .78

DemGene 7598 58.68 0.21 (0.05-0.90) .009 3773 35.88 0.56 (0.13-2.46) .40

CCHS and CGPS 104 084 240 0.45 (0.11-1.84) .23 57 955 191 0.18 (0.01-2.97) .27

UK Biobank proxy-AD 185 741 277 0.45 (0.23-0.89) .02 109 120 219 0.47 (0.21-1.04) .06

Meta-analysis 383 531 650.57 0.37 (0.25-0.56) 1.9 × 10−6 216 062 503.59 0.43 (0.27-0.69) 4.4 × 10−4

R251Gc

ADSP 23 314 26 0.20 (0.08-0.49) 3.7 × 10−4 7335 18 0.17 (0.06-0.48) 7.8 × 10−4

ADGC imputed 14 134 29 0.29 (0.12-0.70) .006 4630 16 0.19 (0.07-0.54) .002

EADB core 41 033 59.16 0.51 (0.26-0.99) .049 12 393 40.27 0.34 (0.15-0.76) .008

GR@ACE 15 894 21.27 0.35 (0.12-1.01) .049 4049 17.81 0.22 (0.06-0.77) .01

EADI 8728 19.21 0.68 (0.22-2.09) .49 1994 13.32 1.14 (0.32-4.04) .84

GERAD 9996 23.17 0.50 (0.17-1.47) .18 2933 16.82 0.57 (0.18-1.88) .34

CCHS and CGPS 104 087 105 0.41 (0.10-2.72) .23 26 437 75 0.33 (0.05-2.43) .28

UK Biobank proxy-AD 185 735 335 0.57 (0.34-0.98) .04 43 820 262 0.67 (0.36-1.22) .19

Meta-analysis 402 921 617.81 0.44 (0.33-0.59) 4.7 × 10−8 103 591 459.22 0.41 (0.29-0.57) 3.2 × 10−7

Abbreviations: ADGC, Alzheimer’s Disease Genetic Consortium;
ADSP, Alzheimer’s Disease Sequencing Project; CCHS, Copenhagen City Heart
Study; CGPS, Copenhagen General Population Study; DemGene, Norwegian
Dementia Genetics Network; EADB, European Alzheimer’s Disease DNA
Biobank; EADI, European Alzheimer’s Disease Initiative; GERAD, Genetic and
Environmental Risk in Alzheimer’s Disease Consortium; GR@ACE, Genome
Research at Fundació Alzheimer Center Barcelona; MAC, minor allele count;
OR, odds ratio.
a The significance of their association with AD risk was equivalent in

nonstratified analyses adjusted by APOE ε2 and ε4 dosages and in
APOE-stratified analysis considering the main APOE genotype group with the
most carriers for each variant, namely ε3/ε3 and ε3/ε4 for V236E and R251G,
respectively.

b For V236E, all APOE alleles are used in nonstratified analyses
and the ε3/ε3 alleles only in APOE-stratified analyses.

c For R251G, all APOE alleles are used in nonstratified analyses
and the ε3/ε4 alleles only in APOE-stratified analyses.

Figure 2. Risk Equivalence of APOE ε3/ε3 (V236E)
and APOE ε3/ε4 (R251G) to ε2/ε3 Carriers
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Alzheimer disease risk per APOE genotype was compared with the APOE ε3/ε3
reference group (ie, odds ratio [OR] for APOE ε3/ε3 equals to 1), meta-analyzing
results from the Alzheimer’s Disease Genetic Consortium and Alzheimer’s
Disease Sequencing Project cohorts (stages 1 and 2). eFigure 3 in Supplement 1
presents equivalent results at different inclusion cutoffs for European ancestry.
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of the C-terminal impacting apoE ε4’s hypothesized
N-terminal–C-terminal domain interaction.34,35 In any case,
pending protein chemistry experiments exploring potential
structural and functional changes, the mechanism underly-
ing the substantial protective effect of R251G remains to be
elucidated.

Limitations
Our study has several limitations. The V236E association
was not genome-wide significant. We included the UK Bio-
bank data set that does not include a direct clinical diagnosis
of AD. Because of the paucity of variant carriers of non-
European ancestries, we did not assess these variants in
other ancestries (although they can be found in African
American individuals and admixed Latino individuals based
on gnomAD estimates; eTable 4 in Supplement 1). These
caveats point to the need for further confirmation of these
variants as available AD data sets grow and become more
ancestrally diverse.

Conclusions

Our work was performed on, to our knowledge, the largest
available sample to date for APOE ε3 (V236E) and APOE ε4
(R251G). These findings validate the protective effect of the
V236E variant and has uncovered a novel protective mis-
sense variant on APOE ε4. Each variant had a substantial
association with reducing the risk of AD. While some com-
pelling functional data suggest that V236E confers protec-
tion by reducing oligomerization of apoE, there are alterna-
tive mechanisms that merit consideration (increasing
dimerization, for one). The protective mechanism of R251G
remains unexplored, but finding a single amino acid substi-
tution that renders the APOE -ε4 allele protective supports
the idea that APOE ε4–specific treatments are worth
exploring.46,47 We anticipate that the findings reported here
will spark additional mechanistic work on apoE’s role in AD
pathogenesis.
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