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Abstract 
The microbial composition resemblance among individuals in a group can be summarized in a square covariance matrix and fitted in linear 
models. We investigated eight approaches to create the matrix that quantified the resemblance between animals based on the gut microbiota 
composition. We aimed to compare the performance of different methods in estimating trait microbiability and predicting growth and body 
composition traits in three pig breeds. This study included 651 purebred boars from either breed: Duroc (n = 205), Landrace (n = 226), and Large 
White (n = 220). Growth and body composition traits, including body weight (BW), ultrasound backfat thickness (BF), ultrasound loin depth (LD), 
and ultrasound intramuscular fat (IMF) content, were measured on live animals at the market weight (156 ± 2.5 d of age). Rectal swabs were 
taken from each animal at 158 ± 4 d of age and subjected to 16S rRNA gene sequencing. Eight methods were used to create the microbial 
similarity matrices, including 4 kernel functions (Linear Kernel, LK; Polynomial Kernel, PK; Gaussian Kernel, GK; Arc-cosine Kernel with one 
hidden layer, AK1), 2 dissimilarity methods (Bray-Curtis, BC; Jaccard, JA), and 2 ordination methods (Metric Multidimensional Scaling, MDS; 
Detrended Correspondence analysis, DCA). Based on the matrix used, microbiability estimates ranged from 0.07 to 0.21 and 0.12 to 0.53 for 
Duroc, 0.03 to 0.21 and 0.05 to 0.44 for Landrace, and 0.02 to 0.24 and 0.05 to 0.52 for Large White pigs averaged over traits in the model with 
sire, pen, and microbiome, and model with the only microbiome, respectively. The GK, JA, BC, and AK1 obtained greater microbiability estimates 
than the remaining methods across traits and breeds. Predictions were made within each breed group using four-fold cross-validation based 
on the relatedness of sires in each breed group. The prediction accuracy ranged from 0.03 to 0.18 for BW, 0.08 to 0.31 for BF, 0.21 to 0.48 for 
LD, and 0.04 to 0.16 for IMF when averaged across breeds. The BC, MDS, LK, and JA achieved better accuracy than other methods in most 
predictions. Overall, the PK and DCA exhibited the worst performance compared to other microbiability estimation and prediction methods. The 
current study shows how alternative approaches summarized the resemblance of gut microbiota composition among animals and contributed 
this information to variance component estimation and phenotypic prediction in swine.

Lay Summary 
Gut microbiota has received significant research attention in farm animals because of its close relationship with host performance. We chose 
eight approaches to create a square covariance matrix that characterizes the relationship among animals based on their gut microbiota compo-
sition. Then, we fitted this information with linear models to evaluate the proportion of phenotypic variance explained by gut microbiota com-
position and predict host growth and body composition traits in three pig breeds. We found that different matrices had varying performance in 
predicting host phenotypes, but the results highly depended on the trait and breed considered in the prediction. Our findings highlight possible 
alternative approaches to incorporate gut microbiome data in regression models and emphasize the value of gut microbiome data in better 
understanding complex traits in pigs with diverse genetic backgrounds.
Key words: Gut microbiota, microbial similarity matrix, microbiability, prediction, swine
Abbreviations: AK1, arc-cosine kernel with one hidden layer; ASV, amplicon sequence variant; BC, Bray-Curtis; BF, Backfat thickness; BW, body weight; DCA, 
detrended correspondence analysis; DIC, deviance information criterion; DR, Duroc; GK, gaussian kernel; IMF, intramuscular fat; JA, Jaccard; LD, loin depth; 
LK, linear kernel; LLPM, log-likelihood evaluated at posterior mean; LR, Landrace; LW, Large White; MDS, metric multidimensional scaling; pD, effective number 
of parameters; PK, polynomial kernel; PMLL, posterior mean of the log-likelihood

Introduction
Trillions of diverse microorganisms create a vast and com-
plex ecosystem in the gastrointestinal tracts of humans and 
animals (Savage, 1977; Cryan et al., 2019). The term “micro-

biota” is commonly used to refer to the entire structure of this 
ecological community in microbial research (Turnbaugh et 
al., 2007). Bene!tting from continuous reductions in the cost 
of next-generation sequencing, it is now possible to document 
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the gut microbiota on a broad scale or in a longitudinal pat-
tern. Several studies have tracked the gut microbiota compo-
sitions through the lifetime of pigs, from birth to slaughter 
(Wang et al., 2019; Li et al., 2020). Furthermore, the gut 
microbiota composition has been associated with variations 
in host phenotypes, such as meat quality and carcass traits 
(Khanal et al., 2021), feed ef!ciency (Camarinha-Silva et al., 
2017), nutrient digestibility (Verschuren et al., 2020), and 
feeding behavior (He et al., 2022). This proportion of pheno-
typic variance accounted for by the microbiota composition 
was termed “microbiability” (Difford et al., 2016).

The OTUs (operational taxonomic units) or ASVs (ampli-
con sequence variants) tables are the most common data for-
mats used in the analysis of current microbiome research (Xia 
et al., 2018; Prodan et al., 2020). The microbiome informa-
tion across animals in a group can be quanti!ed in a square 
covariance matrix M and !tted in the mixed linear model 
using methodologies developed for genomic prediction (Ross 
et al., 2013). Currently, most studies created the microbial 
relationship matrix for microbiability estimation and phe-
notype prediction using the method inspired by Ross and 
colleagues (Ross et al., 2013; Camarinha-Silva et al., 2017; 
Difford et al., 2018; Khanal et al., 2020, 2021; Verschuren 
et al., 2020). This approach begins with an n × p matrix X (n 
is the number of samples and p is the number of microbes) 
containing the standardized and log-transformed counts and 
then creates an n × n microbial relationship matrix M through 
(1/p)XXT (Ross et al., 2013).

However, microbiome data have a complex structure 
with several unique characteristics, such as high dimensions, 
sparseness, and great dispersity, which increase the dif!culty 
for analysis (Xia et al., 2018; Coenen et al., 2020). Other 
methods, such as dissimilarity and ordination metrics, can 
be considered alternative approaches to measure the differ-
ences in microbiota composition across samples to inform the 
regression models. In recent research on livestock animals, 
Maltecca et al. (Maltecca et al., 2019) investigated the role 
of the Jensen-Shannon distance matrix in the model to pre-
dict host phenotypes. Saborío-Montero and colleagues (Sab-
orío-Montero et al., 2021) created different dissimilarity and 
ordination matrices on ruminal microbiota and assessed their 
contributions in estimating microbiability for methane emis-
sion in cattle.

To our knowledge, the use of various microbial relation-
ship matrices to investigate the association between the 
microbial community and host phenotypes has not been stud-
ied in swine. However, an appropriate method for modeling 
large-scale microbiome data is critical to better understand 
the role of gut microbiota in pork production. Thus, in this 
study, we selected eight approaches from the general kernel, 
dissimilarity, and ordination methods that are extensively 
used in microbial and genomic research to create the matrices 
quantifying the relationship among animals based on their 
gut microbiota composition. We aimed to assess how effective 
the matrices are at estimating microbiability and predicting 
host growth and body composition traits in three pig breeds.

Materials and Methods
Data
The data used in this study were collected from animals kept 
in a commercial routine operated by Smith!eld Premium 
Genetics (SPG; Rose Hill, NC). Thus, animal use approval 

was not required for this study. Our previous work provided 
a general description of animals and their rearing conditions 
(He et al., 2022). Brie#y, data were collected on 651 boars 
from either 3 breeds: Duroc (DR; n = 205), Landrace (LR; 
n = 226), and Large White (LW; n = 220). Growth and body 
composition traits, including body weight (BW), ultrasound 
backfat thickness (BF), ultrasound loin depth (LD), and 
ultrasound intramuscular fat (IMF) content, were measured 
on live animals that had reached the market weight (around 
120 kg) at an average age of 156 ± 2.5 d. Ultrasound pictures 
were captured over the last 3 ribs using an Aloka 500 Ultra-
sound machine (Corometrics Medical Systems, Wallingford, 
CT). Descriptive statistics of traits for each breed are depicted 
in Fig. 1. This study used the rectal swabs taken from each pig 
at 158 ± 4 d of age for microbiome.

16S rRNA gene sequencing and microbiome data
Rectal swabs were subjected to 16S rRNA gene sequenc-
ing, and the procedures were detailed in our previous stud-
ies (Lu et al., 2018; He et al., 2022). The sequencing was 
performed in the DNA Sequencing Innovation Lab at the 
Center for Genome Sciences and Systems Biology at Wash-
ington University (St. Louis, MO). The bioinformatics pipe-
line for processing the sequencing data was described in 
previous publications (Lu et al., 2018; He et al., 2022). An 
amplicon sequence variant (ASV) feature table along with 
taxonomic information was constructed. The ASVs were 
removed if the overall counts were less than 1,000 across 
all samples and the prevalence rate was less than 0.05. A 
total of 824 ASVs passed the quality control and were used 
in subsequent analyses.

Statistical analysis
Microbial relationship/similarity matrices
This study used eight methods to construct the microbial 
similarity matrix M capturing the resemblance among ani-
mals based on their gut microbiota abundance. First, we 
chose the 4 general kernel functions described by Montesi-
nos-López and colleagues (Montesinos-López et al., 2021): 
Linear Kernel (LK), Polynomial Kernel (PK), Gaussian 
Kernel (GK), and Arc-cosine Kernel with one hidden layer 
(AK1) to create the M matrix in R environment (R Core 
Team, 2021). These methods have been effectively used in 
mixed linear models to describe the genomic relationship 
and guide the prediction (Schaid, 2010; Jiang and Reif, 
2015; Cuevas et al., 2019; Souza et al., 2019). In this study, 
we treated the LK as the baseline method because it is the 
most common method used in current microbiome research 
(Ross et al., 2013; Camarinha-Silva et al., 2017; Difford 
et al., 2018; Khanal et al., 2020, 2021; Verschuren et al., 
2020). Before applying the kernel functions, the ASV counts 
were log-transformed, then centered and scaled (Montesi-
nos-López et al., 2021).

Second, we chose two dissimilarity approaches: Bray-Cur-
tis (BC) and Jaccard (JA), to measure the differences in the 
gut microbiota composition between pairs of animals. The 
BC dissimilarity is often applied on microbial count data, 
considering the difference in the abundance of individual 
microbes and the total abundance of the samples (Greenacre 
and Primicerio, 2014). The JA dissimilarity, which is based 
on the presence/absence of microbes, particularly consid-
ers rare and low-abundance microbes in the measurement  
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(Greenacre and Primicerio, 2014). The dissimilarity matri-
ces were created using the vegdist function of vegan pack-
age (Oksanen et al., 2020) on the log-transformed ASV 
count data in R environment (R Core Team, 2021). The 
resulting matrices were square, with zero on the diagonal 
and off-diagonal values ranging from zero to one. The M 
matrix was then obtained as one minus the dissimilarity 
matrix.

Finally, 2 distance-based ordination methods: standard 
Metric Multidimensional Scaling (MDS; also known as 
Principal Coordinates Analysis) and Detrended Correspon-
dence Analysis (DCA) were used to build the M matrices 
from the BC dissimilarity matrix. The standard MDS cal-
culates the coordinates of samples based on their microbi-
ome composition in multidimensional space to determine 
their similarity (Zhang and Takane, 2010). This method is 
mainly used to visualize clusters of samples in a low-dimen-
sional space depending on the resemblance/difference of 
their microbiota composition (Nasidze et al., 2009; Larsen 
and Dai, 2015). The DCA is another distance-based ordina-
tion technique often used to detect microbial resemblance 
between samples while also addressing the distortion prob-
lem that other linear ordination methods suffer from (Hill 
and Gauch, 1980; Podani and Miklós 2002). The proce-
dures for constructing the M matrix using MDS and DCA 
methods were similar to those published by Saborío-Mon-
tero et al. (2021). Ordinates for MDS and projections for 
DCA were obtained using the ordinate function of the phy-
loseq package (McMurdie and Holmes, 2013) in R envi-
ronment (R Core Team, 2021). Table 1 shows the functions 
and brief descriptions of the eight approaches to create the 
M matrix.

Estimation of variance components and 
microbiability
We used the following 3 models to estimate the proportion 
of phenotypic variance accounted for by the gut microbiota 
composition, rearing environment, and host factor within 
each breed group.

1. Model_S_P:yijk = µ + sirei + penj + eijk
2. Model_S_P_M:yijkl = µ + sirei + penj + mk + eijkl
3. Model_M:ykl = µ + mk + ekl

In these models, y was the phenotypic trait measured, µ was 
the overall intercept, sirei was the random effects of ith sire, 
penj is the random effect of jth pen, mk contains the ran-
dom effect of gut microbiota with m ~ N(0, Mσ2

m), where 
M is the microbial relationship matrix created by one of the 
eight methods described in the previous section and σ2

m is 
the microbial variance, e is the residual. The effects of sire, 
pen, and residual were assumed to be distributed as N(0, Iσ2

s), 
N(0, Iσ2

p), and N(0, Iσ2
e), respectively; where I was an identity 

matrix, and σ2
s, σ

2
p, and σ2

e were the variances for the respec-
tive effects.

We !tted a standard microbial best linear unbiased pre-
diction (MBLUP) model implemented of BGLR package 
(Pérez and De Los Campos, 2014) in R environment (R Core 
Team, 2021). The analysis was carried out using a Markov 
chain Monte Carlo (MCMC) algorithm with 150,000 itera-
tions, 50,000 iterations discarded as burn-in, and a thinning 
interval of 10 iterations. Model convergence was checked by 
examining the trace plots for each parameter posterior distri-
bution and using geweke.diag function with the default set-
ting implemented of CODA package (Plummer et al., 2006) 

Figure 1. Descriptive statistics of growth and body composition traits by breed. Dots in the middle are the mean with values labeled. Different letters a, 
b, and c denote P < 0.05 for each trait among breeds. Colors represent each breed group. DR: Duroc; LR: Landrace; LW: Large White.
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in R environment (R Core Team, 2021). The proportion of 
phenotypic variance explained by the microbial composition 
was calculated as the σ2

m over the total phenotypic variance.

m2 =
σ2
m

σ2
m + (σ2

s + σ2
p) + σ2

e

Microbial prediction and cross-validation
To better evaluate the role of gut microbiome information 
summarized in the covariance matrix for predicting host phe-
notypes, we performed the prediction using the Model_M 
with one of eight microbial similarity matrices within each 
breed group. A four-fold cross-validation strategy was used 
to split the data into training (~75% of individuals) and val-
idation (~25% of individuals) sets based on the relatedness 
of sires in each breed group. In each round, the training set 
contained progenies of 75% of sires, while the validation set 
had the progenies of the remaining sires. Pearson’s correlation 
between predicted and measured phenotypes in the validation 
set was computed as the prediction accuracy. Additionally, 
mean squared errors (MSE) and associated standard devia-
tions were estimated and reported.

Post-analysis on microbiability estimates and 
prediction accuracy
To comprehensively compare the microbiability estimates and 
predictive performance among models using different micro-
bial matrices, ANOVA was performed using the PROC GLM 
in SAS (v9.4, SAS Institute, Carry, NC, USA). The following 
regression model was !tted:

yijkl = µ + Bi + Tj + Mk + BTij + eijkl

where yijkl was the microbiability estimate or predictive accu-
racy of each breed/trait/matrix combination, Bi was the !xed 
effects of breed (3 levels: DR, LR, and LW), Tj was the !xed 

effects of trait (4 levels: BW, BF, LD, and IMF), Mk was the 
!xed effects of matrix (8 levels: LK, PK, GK, AK1, BC, JA, 
MDS, and DCA), BTij was the interaction effects between 
breed and trait, and eijkl was the residual with a distribu-
tion assumption N(0, Iσ2

e). The least squares mean (LSM) 
was compared using Tukey’s multiple comparisons test in 
the LSMEANS statement of the PROC GLM. An adjusted 
P-value equal or less than to 0.05 was considered signi!cant.

Moreover, we reported the Deviance Information Crite-
rion (DIC), estimated effective number of parameters (pD), 
log-likelihood evaluated at posterior mean (LLPM), and pos-
terior mean of the log-likelihood (PMLL) to compare Bayes-
ian models for microbiability estimation and phenotypic 
prediction using different microbial similarity matrices.

Results
Data summary
Descriptive statistics of growth and body composition traits 
of pigs are depicted by breed in Fig.1. Mean values of each 
trait were compared among the three breeds using one-way 
ANOVA with Tukey’s multiple comparisons test. An adjusted 
P-value of equal or less than 0.05 was considered signi!cant. 
Differences in all traits among breeds were observed (Fig. 1). 
The greatest IMF was observed in DR (2.07%), followed by 
LW (1.98%) and then LR (1.82%) pigs. The LW had greater 
BW and BF but lower LD than DR and LR pigs (P <0.05).

The microbial composition at the family level and alpha 
diversity measured by the Shannon, Simpson, and Inverse 
Simpson indices for three breeds were reported in a previ-
ous study in our group (Bergamaschi et al., 2020b). Pearson’s 
correlation coef!cients (r) between off-diagonal elements 
(beta-diversity) of the microbial similarity matrices in each 
breed group are depicted in Fig. 2. In general, the correlations 
between matrices had a similar pattern across breeds. Among 
the matrices created by general kernel methods, the LK and 
AK1 showed higher correlations than other pairs, ranging 
from 0.63 to 0.79 in all three breeds. The strongest correlations  

Table 1. Summary of methods and the associated dissimilarity matrix to build microbial similarity matrix

Group Method1 Input Data Function2 Construction of M matrix 

General Kernel LK Centred and scaled
log(count + 1)

LK = XXT( 1p )
 LK

PK PK = (XXT( 1p ))
3  PK

GK GK = e−
1
p [X

TX−2XTX+XTX]  GK

AK1 θ = cos−1( XTX
‖X‖‖X‖ )

AK1 = 1
π ‖X‖ ‖X‖ [sin (θ) + (π − θ)cos(θ)]

 AK1

Dissimilarity BC log(count + 1) BC =
∑

|ai− bi|∑
(ai+ bi)

 1 – BC

JA JA = y+z
x+y+z

 1 – JA

Ordination MDS log(count + 1) BC =
∑

|ai− bi|∑
(ai+ bi)

X = Vectors

XXT( 1p )

DCA BC =
∑

|ai− bi|∑
(ai+ bi)

X = Projections

XXT( 1p )

1LK: linear kernel; PK: polynomial kernel; GK: gaussian kernel; AK1: arc-cosine kernel with one hidden layer; BC: Bray-Curtis; JA: Jaccard; MDS: metric 
multidimensional scaling; DCA: detrended correspondence analysis.
2For general kernel matrices, the matrix X contained log-transformed, centered, scaled ASV abundance, with a dimension of n × p, where n is the number of 
samples and p is the number of ASVs. For dissimilarity matrices, ai and bi were the log-transformed counts of ASVi in samples a and b. The x is the number 
of species shared by two samples, y and z are the number of species unique in each pairwise sample. In the Chi-square distance, ci is the total counts of ASVi 
across samples.
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(r = 0.99 to 1.00) were found between two dissimilarity matri-
ces (JA and BC), while small correlations (r = 0.09 to 0.31) 
were noticed between the two ordination matrices (MDS and 
DCA). Strong positive correlations (r = 0.60 to 0.97) were 
also found between LK and MDS, BC and GK, JA and GK, 
and MDS and AK1 matrices. The beta-diversity captured by 
JA and BC matrices was distinct from that by DCA, AK1, 
and PK with negative to small positive associations in three 
breeds.

Estimation of variance components and 
microbiability
Using all three models, we estimated the variance compo-
nents and computed the proportion of host phenotypic  

variances due to pen, sire, or gut microbiota composition. 
The pen factor explained a minor proportion (7% to 25%) 
of variances for BW, BF, and IMF, but it accounted for 41% 
to 48% of variances for LD across three breeds in the Mod-
el_S_P_M (Fig. S1). Similarly, the sire factor accounted for 
7% to 22% of variances across traits and breeds. The pro-
portions of phenotypic variances due to pen and sire were 
similar between the Model_S_P and Model_S_P_M (Fig.3). 
Because the microbiome was included in the model, the pro-
portion of phenotypic variances due to residuals was lower 
in the Model_S_P_M than in Model_S_P. Variations in the 
microbiability estimates were observed among matrices used, 
traits, and breed groups. The microbiability estimated by 
Model_S_P_M ranged from 0.06 to 0.22, 0.03 to 0.20, and 
0.03 to 0.32 for BW, from 0.11 to 0.29, 0.02 to 0.24, and 

Figure 2. Pearson’s correlation coefficient between the off-diagonal elements of microbial similarity matrices by breed. Legend: Colors represent 
negative and positive correlations. LK: linear kernel; PK: polynomial kernel; GK: gaussian kernel; AK1: arc-cosine kernel with one hidden layer; BC: Bray-
Curtis; JA: Jaccard; MDS: metric multidimensional scaling; DCA: detrended correspondence analysis.

Figure 3. Proportion of total phenotypic variance explained by pen, sire, microbiota, or residual in the Model_S_P_M and Model_M for each trait by 
breed. Legend: Plots for Model_S_P_M are in the odd row, while for Model_M are in the even row. Colors represent the proportion of phenotypic 
variance explained by pen, sire, microbiota composition, or residual. The x axis represents 8 matrices. The proportion value is indicated on the y axis. 
DR: Duroc; LR: Landrace; LW: Large White; LK: linear kernel; PK: polynomial kernel; GK: gaussian kernel; AK1: arc-cosine kernel with one hidden layer; 
BC: Bray-Curtis; JA: Jaccard; MDS: metric multidimensional scaling; DCA: detrended correspondence analysis.
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0.02 to 0.25 for BF, from 0.02 to 0.14, 0.03 to 0.18, and 
0.02 to 0.18 for LD, and from 0.05 to 0.20, 0.04 to 0.24,  
and 0.02 to 0.21 for IMF, in DR, LR, and LW pigs, respec-
tively. Overall, the microbiability estimates obtained by Mod-
el_M were higher than those estimated by Model_S_P_M. 
The Model_M estimated the microbiability ranging from 
0.09 to 0.47, 0.02 to 0.25, and 0.02 to 0.52 for BW, from 
0.20 to 0.64, 0.02 to 0.51, and 0.05 to 0.49 for BF, from 0.10 
to 0.63, 0.08 to 0.67, and 0.10 to 0.69 for LD, and from 0.09 
to 0.41, 0.06 to 0.42, and 0.03 to 0.46 for IMF, in DR, LR, 
and LW pigs, respectively. Interestingly, the gut microbiota in 
the Model_M absorbed the majority of phenotypic variances 
that were explained by pen, sire, and microbiota together in 
the Model_S_P_M.

We numerically ranked the microbiability estimates for 
the given trait in each breed from highest to lowest val-
ues obtained using different matrices in the model, and we 
summarized the frequency and proportion of the rank by 

matrix and model in Table 2. In both models, the GK, JA, 
BC, and AK1 tended to obtain greater microbiability values 
than other matrices, while the DCA had the lowest micro-
biability in most cases. In addition, we performed ANOVA 
to statistically compare the microbiability estimates among 
the levels of matrix, breed, or trait. Figure 4 shows the LSM 
of microbiability with a 95% con!dence interval and the sig-
ni!cance of contrasts. In agreement with the results in Table 
2, the microbiability estimates obtained by GK, JA, BC, and 
AK1 were signi!cantly higher (P < 0.05) than those obtained 
by the remaining matrices in both models averaged over 
breeds and traits. The microbiability differed between breeds 
depending on the trait. The LW pigs had higher microbiabil-
ity for BW compared to DR and LR pigs (P < 0.0001) in the 
Model_S_P_M and LR pigs (P < 0.0001) in the Model_M. 
The microbiability estimated in DR pigs was greater for BF 
than that in other breeds (P < 0.0001) in both models. When 
comparing across traits within each breed, the microbiability 

Table 2. Frequency and proportion of the ranking for the microbiability estimates using different matrices in each model1

Matrix2 Model Frequency
(proportion, %)

I II III IV V VI VII VIII 

LK Model_S_P_M 1
(8.3)

7
(58.3)

4
(33.3)

PK 2
(16.7)

2
(16.7)

4
(33.3)

3
(25.0)

1
(8.3)

GK 7
(58.3)

3
(25.0)

2
(16.7)

AK1 1
(8.3)

1
(8.3)

4
(33.3)

5
(41.7)

1
(8.3)

BC 2
(16.7)

3
(25.0)

3
(25.0)

3
(25.0)

1
(8.3)

JA 4
(33.3)

6
(50.0)

2
(16.7)

MDS 1
(8.3)

3
(25.0)

8
(66.7)

DCA 1
(8.3)

11
(91.7)

LK Model_M 1
(8.3)

1
(8.3)

9
(75.0)

1
(8.3)

PK 1
(8.3)

3
(25.0)

7
(58.3)

1
(8.3)

GK 7
(58.3)

2
(16.7)

3
(25.0)

AK1 1
(8.3)

2
(16.7)

2
(16.7)

6
(50.0)

1
(8.3)

BC 3
(25.0)

3
(25.0)

4
(33.3)

2
(16.7)

JA 4
(33.3)

5
(41.7)

3
(16.7)

1
(8.3)

MDS 8
(66.7)

4
(33.3)

DCA 1
(8.3)

11
(91.7)

1The microbiability estimates were numerically ranked from the highest to lowest values for each trait within each breed group. The sum of the frequency 
for each line is 12 due to four traits in 3 breeds. The Roman numbers represent the rank. The Arabic numbers represent the frequency and proportion for 
each rank. The top 4 best matrices are highlighted in bold.
2LK: linear kernel; PK: polynomial kernel; GK: gaussian kernel; AK1: arc-cosine kernel with one hidden layer; BC: Bray-Curtis; JA: Jaccard; MDS: metric 
multidimensional scaling; DCA: detrended correspondence analysis.
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Figure 4. Least squares means of microbiability with 95% confidence interval and contrasts among levels of factors interested. Different letters denote 
P < 0.05 for each level of the factor interested. (A) LSM of microbiability and contrasts among eight matrices used in the Model_S_P_M and Model_M. 
LK: linear kernel; PK: polynomial kernel; GK: gaussian kernel; AK1: arc-cosine kernel with one hidden layer; BC: Bray-Curtis; JA: Jaccard; MDS: metric 
multidimensional scaling; DCA: detrended correspondence analysis. (B) LSM of microbiability and contrasts among three breeds for Model_S_P_M and 
Model_M. DR: Duroc; LR: Landrace; LW: Large White. C. LSM of microbiability and contrasts among four traits for Model_S_P_M and Model_M. B. 
BW: body weight; BF: backfat thickness; LD: loin depth; IMF: intramuscular fat.
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estimates for BF in DR pigs and BW and BF in LW pigs were 
higher (P < 0.05) than that for the rest traits in the Mod-
el_S_P_M, whereas they were higher (P < 0.0001) for BF and 
LD in DR pigs and LD in LR and LW pigs than that for 
the rest traits in the Model_M. The disparity in the contrasts 
of microbiability among traits within each breed between 
the two models may be due to the microbiota in Model_M 
accounting for the majority of the phenotypic variations 
explained by pen and sire in the Model S_P_M, as described 
in the preceding paragraph.

Table S1 summarizes several criteria for model !t using 
various matrices for variance component estimation. The 
GK, AK1, JA, and BC had a better !t in both models, with 
smaller DIC and higher LLPM, PMLL, and pD values than 
the remaining matrices. The Model_S_P_M had smaller DIC 
values compared to the Model_M because more variables 
were !tted in the model. Interestingly, the Model_S_P_M had 
smaller pD values than the Model_M when using GK, AK1, 
JA, or BC matrix in the model.

Evaluation of predictive performance
Figure 5 illustrates the prediction accuracy for each trait by 
breed using the Model_M with one of the eight matrices. 
Each boxplot summarizes four accuracy values obtained 
by the four-fold cross-validation. For the given trait in each 
breed group, there were differences in prediction accuracy 
between matrices used. The PK and DCA had lower accu-
racy than the other matrices in most predictions, except 
for predicting the BW in LR pigs and IMF in DR and LR 
pigs. The Model_M was more accurate in predicting BW for 
DR and LW than LR pigs and BF for DR pigs than the rest 
breeds, while had similar accuracies in prediction LD and 
IMF among the three breeds. Interestingly, a greater standard  

deviation of prediction accuracy across four-folds was 
observed in DR pigs for predicting LD and IMF compared 
to the other breeds.

Table 3 summarizes the mean and standard deviation of 
MSE over four folds in each breed group. Matrices with 
greater prediction accuracy also had lower MSE estimates. 
In addition, the MSE estimates for the given trait differed 
among the three breeds. In contrast to the prediction accu-
racy, the Model_M had smaller MSE in LR pigs compared to 
DR and LW pigs, regardless of the matrix used to predict BW. 
Furthermore, the DR pigs had smaller MSE when predicting 
BF and LD but larger when predicting IMF, compared to the 
other two breeds. We also numerically ranked the prediction 
accuracy from greatest to lowest values and MSE in the oppo-
site direction. Table 4 shows the frequency and proportion 
distribution of the rank across the eight matrices used in the 
predictive model. The matrices ranked similarly in terms of 
accuracy and MSE. The BC, MDS, LK, and AK1 matrices 
performed relatively better than the other matrices in the pre-
diction.

To evaluate the factors in the experimental design, we per-
formed a post-analysis on the prediction accuracy. Figure 6 
depicts the LSM of prediction accuracy with a 95% con!-
dence interval and the signi!cance of contrasts among levels 
of interest factors. Overall, the LSM of prediction accuracy 
ranged from 0.12 to 0.28 across matrices used averaged over 
traits and breeds (Fig. 6A). The PK and DCA matrices in the 
model got signi!cantly lower accuracy than the other matri-
ces in the prediction (P < 0.05). No signi!cant difference in 
the accuracy was observed among the models using LK, GK, 
AK1, BC, JA, or MDS matrix (P >0.05). Variations in pre-
diction accuracy among breeds highly depended on the trait 
predicted. The gut microbiota performed better in predicting 
BW for DR and LW pigs (P < 0.0001) and BF for DR pigs (P 

Figure 5. Prediction accuracy obtained by Model_M with one of 8 matrices for each trait by breed. Legend: Each boxplot was created from the 
accuracy values of 4-fold cross-validation in the prediction. Star sign with the label is the mean of prediction accuracy over four values from the cross-
validation for each matrix/trait/breed combination. Colors represent different matrices used in the model. DR: Duroc; LR: Landrace; LW: Large White; 
LK: linear kernel; PK: polynomial kernel; GK: gaussian kernel; AK1: arc-cosine kernel with one hidden layer; BC: Bray-Curtis; JA: Jaccard; MDS: metric 
multidimensional scaling; DCA: detrended correspondence analysis.
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< 0.0001), with no differences among the three breeds when 
predicting LD and IMF (Fig. 6B). Within each breed group, 
the gut microbiota better informed the model to predict BF 
(r = 0.42; P < 0.0001) in DR pigs and LD in all three breeds 
(DR: r = 0.38; LR: r = 0.43; LW: r = 0.43; P < 0.05) compared 
with the remaining traits (Fig. 6C). Table S2 summarizes sev-
eral parameters for model comparisons. The Model_M with 
the GK, JA, BC, or AK1 matrix had a lower DIC and higher 
LLPM, PMLL, and pD than the other matrices. The GK 
matrix in the model achieved the best !t, with the lowest DIC 
and the highest pD.

Discussion
Various metrics have been investigated for their ability to 
measure the similarity or difference in microbiota composi-
tion among individuals (Barwell et al., 2015; Lin et al., 2015; 
Yang et al., 2021). To the extent of our knowledge, this is the 
!rst study to evaluate the use of different methods measuring 
the variations in gut microbiota among animals in estimating 
microbiability and predicting host phenotypes in swine.

We observed variations in the beta-diversity measured 
by different approaches through calculating the correlation 
between the off-diagonal elements of pairwise matrices. We 
found correlations close to unity between the JA and BC 
matrices in all breeds. Saborío-Montero et al. reported sim-
ilar results based on the ruminal microbiota in dairy cattle  

(Saborío-Montero et al., 2021). These two metrices have 
become popular approaches to comprehensively analyze 
microbiome data (Li et al., 2016; Knowles et al., 2019; Koh 
et al., 2019). The Bray-Curtis dissimilarity is a common abun-
dance-based metric that quanti!es variation in microbiota 
composition among samples by taking into account both indi-
vidual taxa abundance and total abundance of a sample (Bray 
and Curtis, 1957; Greenacre and Primicerio, 2014; Barwell et 
al., 2015). On the other hand, the classical Jaccard dissimi-
larity measures the dissimilarity of microbiota composition 
among samples based on the presence-absence of species in 
pairwise samples and is thus more sensitive to the presence of 
rare species (Jaccard, 1912; Greenacre and Primicerio, 2014). 
In our study, the beta-diversity among animals captured by 
the JA or BC matrices was different from that measured  
by the PK, AK1, or DCA method. This is because components 
of the microbiome data are evaluated differently when calcu-
lating the beta-diversity between pairs of samples using differ-
ent approaches (Tuomisto, 2010a, 2010b).

Using three models in each breed group, we estimated 
the proportion of host phenotypic variances accounted 
by pen, sire, or gut microbiota. Regardless of the matrix 
used, adding gut microbiota to the model explained more 
phenotypic variances for all traits than the baseline model 
with only pen and sire. Moreover, the total proportions of 
phenotypic variances absorbed by the effects were com-
parable between the model with pen, sire, and microbiota 

Table 3. Mean-squared error of prediction using the Model_M with 8 microbial matrices1

Trait2 Breed3  Matrix4

LK PK GK AK1 BC JA MDS DCA 

BW, kg DR 125.32
(34.99)

131.24
(37.79)

125.85
(38.01)

125.01
(35.02)

124.20
(35.58)

124.82
(36.34)

123.7
(35.03)

128.54
(33.44)

LR 112.90
(26.71)

107.68
(25.32)

110.55
(24.61)

112.13
(25.76)

112.59
(26.59)

111.67
(26.23)

114.92
(27.90)

113.66
(28.61)

LW 133.01
(45.47)

145.95
(41.39)

138.98
(43.43)

133.53
(44.48)

138.36
(45.98)

139.22
(45.78)

140.45
(47.36)

148.23
(45.91)

BF, mm DR 5.21
(0.77)

6.57
(1.59)

5.61
(1.13)

5.32
(0.87)

5.18
(0.91)

5.31
(0.95)

5.07
(0.93)

5.80
(1.25)

LR 8.34
(1.08)

8.73
(1.39)

8.42
(1.33)

8.32
(1.51)

8.24
(1.07)

8.29
(1.16)

8.23
(1.04)

9.23
(1.43)

LW 10.33
(3.44)

11.11
(3.73)

10.66
(3.43)

10.39
(3.39)

10.20
(3.39)

10.21
(3.41)

10.39
(3.45)

11.10
(3.92)

LD, mm DR 33.42
(10.83)

42.45
(17.41)

36.43
(14.17)

34.53
(11.75)

33.57
(11.27)

34.49
(12.23)

31.73
(9.83)

41.17
(14.42)

LR 34.45
(6.18)

43.21
(10.29)

37.63
(8.66)

34.95
(6.65)

33.77
(5.78)

34.97
(6.93)

33.27
(4.82)

42.87
(10.67)

LW 37.92
(14.70)

47.54
(14.14)

40.27
(15.49)

37.90
(14.64)

39.03
(15.27)

39.68
(15.91)

39.91
(14.39)

45.90
(19.23)

IMF, % DR 0.79
(0.35)

0.80
(0.37)

0.81
(0.37)

0.79
(0.35)

0.81
(0.36)

0.81
(0.36)

0.80
(0.34)

0.80
(0.35)

LR 0.57
(0.11)

0.58
(0.13)

0.56
(0.12)

0.57
(0.11)

0.57
(0.11)

0.57
(0.12)

0.57
(0.11)

0.57
(0.09)

LW 0.57
(0.11)

0.61
(0.13)

0.59
(0.13)

0.58
(0.11)

0.58
(0.12)

0.58
(0.13)

0.58
(0.12)

0.62
(0.14)

1Data are presented as the mean (SD) over 4 folds of the cross-validation for each trait/breed/matrix combination. Least MSE mean across the 8 matrices 
used is in bold for each combination.
2BW: body weight (kg); BF: backfat thickness (mm); LD: loin depth (mm); IMF: intramuscular fat content (%).
3DR: Duroc; LR: Landrace; LW: Large White.
4LK: linear kernel; PK: polynomial kernel; GK: gaussian kernel; AK1: arc-cosine kernel with one hidden layer; BC: Bray-Curtis; JA: Jaccard; MDS: metric 
multidimensional scaling; DCA: detrended correspondence analysis.
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and the model with only microbiota. Numerous studies 
in humans have shown that the gut microbiota composi-
tions of individuals who share the same environment or 
are genetically related are similar (Spor et al., 2011). In 
pigs, the gut microbiota community is under direct control 
by the host’s genetics, with small to moderate heritabili-
ties (Lu et al., 2018; Bergamaschi et al., 2020a). Maltecca 
et al. (2021) further confirmed this by finding that sires 
significantly influenced their offspring’s gut microbiota 
composition. In terms of environmental influence, Hildeb-
rand and colleagues (2013) found that the microenviron-
ment accounted for approximately 30% of the variance in 
mouse gut microbiota and that mice kept in the same cage 
exhibited similar gut microbiota. Our findings show that 
the gut microbiota may capture some variance in the envi-
ronment and host genetics and could be a valuable source 
of information for understanding and improving growth 
and body composition traits in swine, particularly when 
such systematic information is unavailable. Estimates of 

microbiability were higher for GK and JA, along with bet-
ter model fit compared to other methods in both Mod-
el_S_P_M and Model_M. Interestingly, the Model_S_P_M 
with GK, AK1, JA, and BC matrices had lower DIC values 
than Model_M with the same matrices without increas-
ing model complexity as measured by pD. The DIC, which 
accounts for both model fit and complexity, is a criterion 
for model selection in Bayesian statistics (Spiegelhalter 
et al., 2002). However, due to the growing debate over 
the use of DIC in model selection (Plummer, 2008), more 
research is required to validate our findings.

To evaluate the predictive performance of different micro-
bial similarity matrices, we used the microbiome as the only 
predictor in the Model_M with cross-validation based on sire 
relatedness. The results were highly dependent on the trait 
and breed used in the prediction. In most cases, the models 
with LK, GK, AK1, BC, JA, or MDS matrix performed better 
than those with PK and DCA matrix. In the current study, 
we used log-transformed count data as input to generate  

Table 4. Frequency and proportion of the ranking for the prediction accuracy and MSE among different matrices used in the Model_M1

Prediction
performance 

Matrix2 Frequency
(proportion, %)

I II III IV V VI VII VIII 

Accuracy LK 1
(8.3)

3
(25.0)

2
(16.7)

2
(16.7)

2
(16.7)

2
(16.7)

PK 1
(8.3)

1
(8.3)

5
(41.7)

5
(41.7)

GK 1
(8.3)

2
(16.7)

2
(16.7)

6
(50.0)

1
(8.3)

AK1 2
(16.7)

2
(16.7)

2
(16.7)

5
(41.7)

1
(8.3)

BC 2
(16.7)

3
(25.0)

2
(16.7)

3
(25.0)

1
(8.3)

1
(8.3)

JA 1
(8.3)

4
(33.3)

2
(16.7)

3
(25.0)

1
(8.3)

1
(8.3)

MDS 4
(33.3)

1
(8.3)

2
(16.7)

1
(8.3)

1
(8.3)

2
(16.7)

1
(8.3)

DCA 1
(8.3)

1
(8.3)

5
(41.7)

5
(41.7)

MSE LK 3
(25.0)

2
(16.7)

3
(25.0)

2
(16.7)

2
(16.7)

PK 1
(8.3)

1
(8.3)

3
(25.0)

7
(58.3)

GK 1
(8.3)

1
(8.3)

1
(8.3)

8
(66.7)

1
(8.3)

AK1 1
(8.3)

3
(25.0)

5
(41.7)

3
(25.0)

BC 1
(8.3)

4
(33.3)

4
(33.3)

1
(8.3)

1
(8.3)

1
(8.3)

JA 2
(16.7)

4
(33.3)

3
(25.0)

2
(16.7)

1
(8.3)

MDS 5
(41.7)

1
(8.3)

2
(16.7)

2
(16.7)

1
(8.3)

1
(8.3)

DCA 1
(8.3)

8
(66.7)

3
(25.0)

1Prediction accuracies were numerically ranked from the highest to lowest values, while the MSE estimates were numerically ranked from the lowest to 
the highest values, for each trait within each breed group. The sum of the frequency for each line is 12 due to 4 traits in 3 breeds. The Roman numbers 
represent the rank. The Arabic numbers represent the frequency and proportion for each rank. The top 4 best matrices are highlighted in bold.
2LK: linear kernel; PK: polynomial kernel; GK: gaussian kernel; AK1: arc-cosine kernel with one hidden layer; BC: Bray-Curtis; JA: Jaccard; MDS: metric 
multidimensional scaling; DCA: detrended correspondence analysis.
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various microbial similarity matrices for prediction. Our !nd-
ings on using LK and PK matrices for phenotype prediction 
agree with those of Carrieri and colleagues (Carrieri et al., 
2016). They looked at the effects of different normalization 
methods on microbiome count data for predicting host phe-
notypes from various kernel matrices, including linear and 
polynomial kernels (Carrieri et al., 2016). Across all datasets 
studied, the LK outperformed the PK in terms of predictive 
performance when the input count data were log-transformed 
(Carrieri et al., 2016). In contrast, the PK could outperform 
the LK when other data normalization methods were used 
(Carrieri et al., 2016). We believe that if an appropriate data 
normalization method for each microbial similarity matrix 
could be identi!ed, the results would be more robust, but this 
needs to be investigated further. According to our post-anal-
ysis, there was no signi!cant difference in prediction accu-
racy between models with the LK, GK, AK1, BC, JA, or MDS 
matrix. The GK, AK1, BC, and JA matrix, on the other hand, 
outperformed the baseline model with the LK matrix in terms 
of model !t in the prediction.

Our results showed that the microbiability and predictive 
ability of gut microbiota composition varied across three 
breeds for body weight and backfat thickness. Differences 
in microbiota composition between breeds may contribute 
to this variation for the given trait. According to our previ-
ous study using a related dataset (Bergamaschi et al., 2020b), 
pigs of different breeds exhibited distinct patterns in the gut 
microbiota composition in terms of overall diversity and indi-

vidual taxa. The gut microbiota composition of Duroc pigs 
was found to be different from that of Landrace and Large 
White/Yorkshire pigs among the three breeds studied (Alain 
Pajarillo et al., 2014; Bergamaschi et al., 2020b). As typical 
terminal sires used in pork production, Duroc pigs have been 
extensively selected for lean or fat growth (Lonergan et al., 
2001). Based on the results of the post-analysis, we found 
that the microbiota composition explained a greater amount 
of the phenotypic variance and achieved a higher prediction 
accuracy for backfat thickness in Duroc pigs than in other 
breeds. These !ndings suggest that the gut microbiota com-
position may carry more valuable information to understand 
fat deposition in Duroc pigs than in other populations and 
thus, could be used to guide the selection for related traits. 
Future research will focus on partitioning microbiability on 
individual microbes at various taxonomic levels to identify 
speci!c taxa that hold primary responsibility for explaining 
phenotypic variance.

Conclusions
We investigated alternative approaches for quantifying 
resemblance between animals based on their gut microbi-
ota composition and assessed the use of this information in 
estimating variance components and predicting host growth 
and body composition traits in three western breeds. We 
demonstrated that eight approaches differently character-
ized the microbial similarity between animals. We observed 

Figure 6. Least squares means of prediction accuracy with 95% confidence interval and contrasts among levels of factors interested in the Model_M. 
Legend: Different letters denote P < 0.05 for each level of the factor interested. (A) LSM of prediction accuracy and contrasts among eight matrices. 
LK: linear kernel; PK: polynomial kernel; GK: gaussian kernel; AK1: arc-cosine kernel with one hidden layer; BC: Bray-Curtis; JA: Jaccard; MDS: metric 
multidimensional scaling; DCA: detrended correspondence analysis. (B) LSM of prediction accuracy and contrasts for each trait among three breeds. 
DR: Duroc; LR: Landrace; LW: Large White. (C) LSM of prediction accuracy and contrasts for each breed among 4 traits. (B) BW: body weight; BF: 
backfat thickness; LD: loin depth; IMF: intramuscular fat.
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variation in the microbiability obtained by different matrices 
for the given trait. Furthermore, we demonstrated that the 
gut microbiota could be a valuable source of information 
for understanding and improving complex traits in swine, 
particularly when environmental and family information is 
limited. The prediction accuracy varied across models with 
different matrices, traits, and breeds. Except for the matrices 
built using the polynomial kernel and detrended correspon-
dence analysis methods, the remaining matrices achieved 
comparable prediction accuracy for the given trait in each 
breed. Models with the matrix constructed by the gaussian 
kernel, arc-cosine kernel with one hidden layer, Bray-Curtis, 
and Jaccard methods had a better !t compared those that 
used matrices built with other methods. The current study 
shows alternative methods for summarizing microbiota com-
position between animals and incorporating this information 
into prediction models, emphasizing the importance of con-
sidering genetic background in swine microbiome research.
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