


                                
  



 

Abstract 

 

Nuclear magnetic resonance (NMR)-based metabolomics is an emerging and robust -

omic science that deals with the systematic identification, characterization, and quantification 

of the complete set of metabolites that are present in biological specimens (i.e. cells, tissues, 

biofluids, food-derived matrices, etc.). The metabolome – the object investigated by 

metabolomics – can be described as a highly complex and organized biochemical network in 

which metabolites, lipids, and lipoproteins, thanks to their fluctuations in terms of 

concentration and thanks to their interconnections, are directly responsible for the emerging 

phenotype of the organism. The metabolome represents also a dynamic and evolving entity 

arising from the interaction between genome, transcriptome, and proteome, under the 

combined influence of several endogenous and exogenous stimuli. Considering this dynamic 

behavior of the metabolome, metabolomic data can be easily correlated with the phenotype 

and act as a direct signature of biochemical activity, since metabolites play a central role in 

disease development, cellular signaling, and physiological control. In this light, the very high 

reproducibility, the minimal requirement in sample preparation, and the possibility to 

simultaneously detect all metabolites presenting active nuclei (at least above the detection 

limit) make NMR-based metabolomics one of the most powerful and versatile techniques for 

the analysis of any type of biological sample, providing a global snapshot of the complex 

metabolic, biological and biophysical processes that occur in a specific organism at the time 

of sampling.  

In this scenario, the methodological thesis here presented aims to apply and 

demonstrate the potential of the untargeted metabolomics approach, particularly in the 

biomedical field, covering various topics, obtaining new insights on different biological and 

physiological conditions, shedding light on the dimorphic mechanisms of aging, determining 

how an improving human well-being treatment (i.e. probiotics) could affect the metabotypes, 

characterizing the metabolomic and lipoproteomic profiles associated with the inherited blood 

types (ABO and Rh systems), characterising the metabolic components of two diseases, acute 

ischemic stroke and colorectal cancer, providing prognostic and diagnostic biomarkers of these 

specific pathologies. This thesis also proposes a study in which a robust statistical approach, 

based on the construction of linear regression Random Forest models, is developed to calculate 

several chemical parameters and sensory profiles of olive oil using 1H-NMR spectra. 

In summary, the results here presented suggest that untargeted NMR-based 

metabolomics, in combination with biochemical, analytical chemistry, bioinformatics tools, 



and robust statistical analysis, is a useful and reasonable candidate for increasing knowledge 

in various research fields, especially focusing on biomedical research.  



Main abbreviation and acronyms 
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Chapter 1 

Introduction 
 

1.1  Metabolomics: an emerging field in the -omics sciences   
 

In the last few decades, the fields of sciences known as -omics have exponentially grown. 

A common characteristic among disciplines such as genomics, transcriptomics, and 

proteomics is an integrated approach aimed at comprehensively considering the properties of 

biological systems and their interactions with the environment, identifying the complete set of 

genes, proteins, and other biomolecules contained in a biological sample1.  

  Lifestyle and environmental variables have a significant impact on the organism, 

defining its phenotype. From this point of view, a problem that should not be underestimated 

is that genomics, protein expression, and molecular biology are not sufficient, by themselves, 

to understand how exogenous variables can affect a biological system as a whole at the 

molecular level.  

In this scenario, metabolomics, a member of the -omic club, is the only science capable of 

solving this limitation2. It provides a comprehensive image of biochemistry in several 

organisms (i.e. humans, animals, plants, and microorganisms) and it deals with the 

characterization of different metabolites (<1500 Da) in a specific sample (i.e. cells, tissues, 

biofluids, etc,), considering the metabolic variations deriving from both exogenous and 

endogenous factors3 (Figure 1). 

 

Figure 1: Metabolomics in system biology. According to the central dogma of molecular biology, the flow of 

information proceeds from the genome to the transcriptome, to the proteome, and the metabolome, contributing 

together to determine the phenotype. 
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1.2  Metabolomics and its main experimental approaches 
 

Metabolomic studies can be conducted using two possible methodological approaches: 

targeted and untargeted. Targeted metabolomics focuses on the measurement and monitoring 

of a biochemically and chemically characterized set of metabolites selected from known 

metabolic pathways or previously identified biomarkers4. Instead, untargeted metabolomics –

applied in this methodological thesis – provides a comprehensive overview of all molecular 

features detectable in a specific sample, including, also, chemical unknowns3,5,6. 

Fingerprinting and profiling are currently the two approaches mostly used in untargeted 

metabolomics. The former strategy allows to globally analyse all molecular features present 

in each sample and it is a strategy mainly used to perform sample classification7,8. The latter 

strategy provides the assignment and the quantification of as many as possible molecular 

features in a sample, providing more specific information on potential fluctuations or 

alterations in the activity of specific metabolic pathways in both physiological and 

pathophysiological processes9,10. 

 Once the methodological approach to be followed has been established, it is necessary to 

choose the most appropriate analytical technique. The two most used are Nuclear Magnetic 

Resonance (NMR) spectroscopy – mainly used in this methodological thesis – and Mass 

spectrometry (MS)3,11–13.  

Briefly, MS investigations typically require the separation and derivatization of 

compounds from biological matrices before detection, which is commonly accomplished using 

high-performance liquid chromatography (HPLC) or gas chromatography (GC). Recently, the 

MS analytical technique, in particular LC-MS, is improved to detect various compounds with 

different chemical characteristics, ranging from hydrophobic to hydrophilic ones. Although 

MS has higher sensitivity and the volume of sample required is minimal, its reproducibility in 

the metabolomics field remains a weakness, taking into account that the MS experiments are 

generally slower and might have to be tailored according to which metabolites need to be 

detected. In contrast, NMR turns out to be non-destructive and rapid, as any molecule 

containing active nuclei can be detected simultaneously, and intrinsically quantitative as the 

integral of each peak is proportional to the number of nuclei with non-zero magnetic moment 

generating that peak. Table 1 shows the strengths and weaknesses of both analytical 

techniques.  
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 NMR MS 

Destructive technique No Yes 

Reproducibility Very high Fair – depends on separation 

methods used 

Detection limit Micromolar range  Picomolar range 

Sample preparation  Minimal Onerous – typically requires 

chromatographic separation 

and sample derivatization 

Sample volume 0.1-0.5 mL 0.01-0.2 mL 

Types of compounds detected Any molecule containing 

NMR active nuclei, provided 

concentration is above the 

detection limit. All metabolites 

are detected simultaneously 

Most organic and some 

inorganic. Experiments need to 

be tailored for specific 

chemical species 

Possible sources of error Compounds with degenerate 

chemical shifts, chemical shift 

variability due to experimental 

conditions (i.e. pH, 

temperature, ionic strength) 

Compounds (i.e. isomers) that 

can match the same atomic 

composition or parent ion mass 

 

Table 1: Main NMR and MS strengths and weaknesses for metabolomics studies (adapted from the review 

published by Vignoli et al.3). 

In summary, comparing the different characteristics of the two techniques, they are 

complementary, considering that the NMR technique is more suitable for untargeted 

metabolomics, characterizing metabolic profiles of organisms under different conditions, 

while the MS technique is more suitable for targeted metabolomics, confirming or validating 

the variation or alteration of a metabolic pathway in a specific condition.  

 

1.3  Biological samples analysed by metabolomics 
 

Several types of samples can be analysed using NMR spectroscopy, including human- and 

animal-derived fluids (i.e. serum, plasma, urine, etc.), faeces, cells, tissues from human, 

animal, and plant, culture media, microorganisms (i.e. bacteria and yeast cultures), and food-

derived matrices (i.e. olive oil, fruit juice, wine, fruit and vegetable extracts, etc.). The choice 

of the sample is extremely dependent on the biological question posed by the researcher. NMR 

can identify hundreds of tiny molecules in a sample, including biomolecules belonging to the 

classes of amino acids, carbohydrates, organic acids, nucleotides, osmolytes (i.e. choline), 
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phenolic compounds, and alcohols3. In addition, a large set of large and small lipids and 

lipoproteins (i.e. high-density and low-density lipoproteins, mono-, di-, tri-triglycerides, 

cholesterol, cholesterol esters, short-chain fatty acids, etc.) are also detected using NMR 

spectroscopy, thus allowing not only to have an image of the sample metabolome but also of 

the lipidome and lipoproteome14. 

 Furthermore, it is also important to specify that the samples to be analysed have different 

metabolomic behaviours based on the genetic, biochemical, and environmental conditions in 

which they are at the time of sampling. For example, the cellular metabolome varies according 

to both endogenous and exogenous stimuli15, and, for this reason, in order to have a more 

complete metabolic image, it is also necessary to analyse the exo-metabolome16. Similar 

considerations could be made by analysing the tissue samples. Tissue NMR data result more 

complex to interpret because they reflect the organ-specific biochemistry (i.e. glycolytic or 

ketogenic metabolism, etc.) and they are influenced by the extracellular composition. On the 

other hand, tissue samples provide direct information about diseased organ status. A good 

informational compromise is given by the evaluation of metabolites and lipoproteins 

detectable in biofluids, particularly in plasma, serum, and urine samples. These biofluids, 

although not reflecting a biochemical correlation with a specific organ or apparatus, are simple 

and minimally invasive to collect and represent the overall response of the organism to a 

particular physiological or pathophysiological condition. In terms of chemical composition, 

plasma, serum, and urine samples significantly differ from each other. Urine metabolites are 

highly influenced by lifestyle factors such as nutritional daily uptake, physical activity, and 

drug or supplements usage; in contrast, serum and plasma samples are considered more stable 

biofluids, providing a picture of an organism's metabolic state, offering critical information 

for recognizing, controlling, and monitoring all potential physiological ad pathophysiological 

state conditions17,18. Blood, in fact, plays a key role in transporting nutrients, hormones, 

dissolved gases, maintaining the pH and ion content stability, providing defence against 

infections, and helping to also maintain body temperature. In this methodological thesis, for 

the motivation described above, the plasma and serum samples have been mainly investigated. 

Regarding the food-derived matrices, the metabolome results to be extremely complex due to 

the diversity of chemical compounds found in plants, particularly secondary metabolites that 

are specific to each species. All food-derived matrices have a unique profile, characterized by 

the endogenous molecular features produced by the plant and plant-symbiotic microbial 

community metabolisms, and it is closely connected to their nutritional content, human health-

promoting properties, and sensorial characteristics. The heterogenicity between the different 

food-derived matrices allows using the specific detected metabolites and lipids as potential 

markers for quality, origin, sensorial characteristics, and authenticity of food19.  
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1.4   NMR-based metabolomics workflow 
 

Metabolomic workflow is initially based on the formulation of the biological problem to 

be addressed, crucially determining the next experimental steps to follow. Based on the 

biological question chosen, before proceeding with the workflow, it is necessary to establish 

the type of biological sample to be analysed (i.e. biofluid, cells, tissue, food-derived matrices, 

etc.), the sample size, and the experimental conditions (i.e. the number replicates, the 

frequency of sample collections in longitudinal studies, the choice of an appropriate cohort to 

analyse and its related metadata, the division into sex- and age-matched case and control 

groups, etc.). 

Taking into account the above-mentioned aspects, a schematic and graphical 

representation of a typical NMR-based metabolomics workflow is presented in Figure 2.  

 

Figure 2: NMR-based metabolomics workflow. 

The first and crucial step to be followed is the collection, handling, and storage of a 

specific sample in which the adoption of Standard Operating Procedures (SOPs)20–22 results 

essential to ensure sample stability and data reproducibility. Errors in this phase can 

irreversibly invalidate the experimental study.  

The second step is based on the sample preparation, closely related to the sample type, the 

analytical technique, and the necessary extraction and/or buffering methods chosen. 

The third step regards the NMR-data acquisition in which appropriate NMR pulse 

sequences need to be implemented and applied. After successfully acquiring the NMR spectra, 

a pre-processing phase (baseline and phase correction, calibration to an internal reference 

peak, normalization, and bucketing) is necessary to obtain more comparable metabolomics 

data. After this step it could be useful, in the untargeted metabolomics data, to proceed with 

the assignment and quantification of the molecular features detectable in NMR spectra.  

Lastly, the statistical analysis of the metabolomic data is performed. In particular, 

multivariate approaches, comprising unsupervised (i.e. Principal Component Analysis 

(PCA)23) and supervised methods (i.e. Orthogonal-Partial Least Square Discriminant Analysis 

(OPLS-DA)24, Multilevel Partial Least Squares analysis (M-PLS)25), and machine learning 
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algorithms (i.e. Support Vector Machines26, Random Forest27–29), are used to have an overview 

of the samples, to classify a new sample based on two or more known groups, and to make 

predictions. Univariate approaches (i.e. Kruskal–Wallis test30, Wilcoxon signed-rank test31,32, 

mixed-effect models33,34) are also used to identify associations between a metabolite or a set 

of metabolites with a specific condition. In a more system biology holistic approach, molecular 

features association networks are used to infer metabolic significant associations.  

Concluding, the final step is characterized by the biological interpretation of the results 

obtained, and, for this purpose, several databases (i.e. KEGG, MetaboLights35, etc.) and online 

tools (i.e. MetaboAnalyst36) are available.   

More details about all these procedures and different approaches are deeply reported in 

Chapter 3. 

1.5   NMR-based metabolomics: the state of art 
 

One of the main and extremely relevant characteristics of NMR metabolomics is its 

versatility regarding several fields of application in life science research, including the 

investigation of human health, the metabolic characterization of food-derived matrices, plants, 

animals, microorganisms, and the environment. (Figure 3). 
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Figure 3: NMR-based metabolomics several applications in life sciences. 

Metabolomics provides a comprehensive approach to identify the specific molecular 

profile, derived from both exogenous and endogenous stimuli, with the final aim to investigate 

and to understand the phenotype of an organism, both in physiological and pathophysiological 

conditions.  

As known, NMR-based metabolomics is a technique increasingly used to characterize 

a wide range of human pathophysiological conditions such as cancer37–41, cardiovascular42–44, 

cerebrovascular45,46, and neurological diseases47–49 (disease fingerprint). With the aim of 

achieving a personalized medical approach, metabolomics also offers an important role in 

discovering new drug targets and correctly predicting a potential individual response to a 

specific drug (pharmacometabolomics)50–52. Moreover, it is promising in molecular 

epidemiology, providing information about novel risk biomarkers, and detecting early 

metabolic disorders even before the symptomatic manifestation of disease, thus providing 

early diagnosis53–55. Recently, metabolomics embodied a relevant position in characterizing 

the human physiological processes, such as aging, the endocrine, immune, and gastrointestinal 

systems functions11,56,57. Other applications include the evaluation of dietary uptake (i.e. food, 

supplements, probiotics) to understand the physiological response of the human body to non-

pharmacological exogenous intakes58,59. In this scenario, the food and nutrition research is of 

growing interest in metabolomics, focusing on various aspects, including food quality60, 

taste59,61, adulteration62, traceability63, contaminants and phytomedical64, and effects on human 

metabolism65,66.  

Although this methodological thesis focuses mainly on research in the human 

biomedical field, it is necessary to remember that metabolomics is important both in veterinary 

medicine67–70, characterizing the state of health of the animal, and in the study of plant 

physiology and pathophysiology71–73. 
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Chapter 2 

Aim of the thesis 
 

Metabolomics is a rapidly growing valuable technology used to create a more 

comprehensive picture of the molecular organization of multicellular organisms. The 

combination of enhanced analytical skills and newly specialized statistical, bioinformatics and 

data mining methodologies is starting to widen our understanding of physiological and 

pathophysiological metabolic human mechanisms. In this scenario, this methodological thesis 

covers various topics with the principal aim of applying and demonstrating the potential of the 

untargeted metabolomics approach in the biomedical field. 

In the first section of this work – in the context of human physiological and 

pathophysiological research –, particular attention is dedicated to demonstrating the usefulness 

of the untargeted metabolomics approach to: 

1) investigate, using a holistic system biology approach (statistical and metabolite 

association networking analyses), the complex interconnections and metabolic 

differences between the individual molecular features associated with a specific 

clinical condition, i.e. colorectal cancer (CRC), and with a dimorphic physiological 

condition, i.e. the aging process, unravelling, also, prognostic and diagnostic markers 

of distinct pathophysiological status; 

2) provide predictive metabolic markers of three-months outcomes of ischemic stroke 

(i.e. mortality, development of neurological impairment, haemorrhagic 

transformation of the cerebral lesion, and non-response to the thrombolytic therapy), 

to better characterize the post-stroke course of the pathological condition; 

3) characterize the human metabolic phenotype, highlighting how an exogenous non-

invasive treatment (i.e. the probiotics assumption) could have a strong influence on 

the complex human metabolome; 

4) characterize metabolomic and lipoproteomic profiles specific to different blood group 

systems (ABO and Rh systems) in a healthy population; 

 

In the context of developing new strategies for NMR-based metabolomics data analyses, 

the second and last section of this thesis is dedicated to:  

 

1) developing a robust statistical approach, based on the construction of linear regression 

Random Forest models, to extract several important chemical parameters and sensory 

profiles of olive oil from 1H-NMR fingerprints of the oil samples.
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Chapter 3 

Methodologies 
 

3.1 Sample preparation  
 

To structure a robust metabolomic study, the sample preparation procedure must respect 

important criteria74: i) reproducibility; ii) simplicity of usage; iii) reducing variation and 

artifacts; iv) maintenance and/or improvement of quality resolution and sensitivity of NMR 

spectra.  

In metabolomics, a central and fundamental role is played by the pre-analytical phase 

which involves several steps, including primary sample collection, processing, transport, and 

storage. Errors during this phase or inadequate procedural techniques can lead to severe 

difficulties in comparing metabolomic data collected from different centers or institutes 

(multicentric studies), reducing the data reproducibility. In this perspective, it is important to 

adopt and strictly follow Standard Operating Procedures (SOPs)20–22 related to the different 

types of samples to be analysed. 

Generally, the analytical phase of NMR-sample preparation of biofluids (i.e. serum, 

plasma, urine, etc.) and food-derived fluids (i.e. olive oil, wine, fruit juices, etc.) requires 

minimal essential operative steps, mainly consisting of buffering the solution to avoid pH 

variation and to easily reference chemical shifts to existing resonances databases. In particular, 

a known quantity of a reference compound (i.e. such as tetramethylsilane (TMS) for organic 

solvents and trimethylsilylpropanoic acid (TMSP) or sodium 2,2-dimethyl-2-silapentane-5-

sulphonate (DSS) for aqueous solutions) is added to the sample to be analysed. To allow the 

optimization of NMR peak resolution and to provide a signal for the magnetic field 

stabilization, deuterated solvents, in particular D2O, are also used. For organic fractions 

extraction, chloroform – a non-polar solvent – or methanol-chloroform mixtures are added in 

different proportions, while D2O is preferred to reconstitute polar fractions. Deuterated 

chloroform (CDCl3) is highly used as a solvent for olive oil sample preparation. 

In NMR analysis a volume ranging from 0.1 to 0.5 mL of the original sample is required. 

More information about the pre-analytical and analytical procedures of the fluids 

considered in this methodological thesis is reported in Table 2. 
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Type of sample Pre-analytical steps Analytical steps 

Urine Collection of the first urine of 

the morning (8h fasting). 

Centrifuge the urine within 

120 min after the collection at 

1000–3000 RCF for 5 min at 

+4°C and/or filtrate the 

samples with 0.20 mm cut-off 

filter. 

Recover the urine in sterile 

condition making 1mL 

aliquots. 

Store at -80°C. 

Keep at room temperature (RT) and 

shake. 

Centrifuge at 14000 RCF for 5min at 

4°C. 

Add 630L of sample to  70L  of 

potassiumphosphate buffer (1.5M 

K2HPO4, 100% (v/v) 2H2O, 2mM NaN3, 

5.8 mM TMSP; pH 7.4). 

600L of the mixture may be transferred 

into a 5mm NMR tube. 

Plasma Collect blood into tubes 

containing an anti-coagulant 

(preferred EDTA;  avoid 

heparin). 

Centrifuge within 30 min from 

the collection at 820 RCF for 

10 min at 4°C. 

Recover supernatant in sterile 

condition making 0.5 mL 

aliquots. 

Store at -80°C. 

Keep at RT and shake. 

Add 350L of sample to  350 L of 

sodiumphosphate buffer (70 mM 

Na2HPO4; 20% (v/v) 2H2O, 6.1 mM 

NaN3; 4.6 mM TMSP; pH 7.4). 

Transfer 600L of each mixture into a 

5mm NMR tube. 

Serum Collect blood into 

anticoagulant-free tubes. 

Allow the blood to clot in an 

upright position for 30–60min 

at RT. 

Spin centrifuge within 30 min 

from the collection at 1500 

RCF for 10 min at RT. 

Recover supernatant in sterile 

condition making 0.5 mL 

aliquots. 

Store at -80°C. 

Olive oil Create aliquot portions of 

olive oil samples and store 

them in dark glass vials at 4 

°C 

Add 60 mg of olive oil to 600 μL of 

deuterated chloroform (CDCl3).  
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After 20s of vortexing, transfer 600 μL 

of the prepared mixture into a 5 mm 

NMR tube. 

 

Table 2: NMR sample preparation. In this table (adapted from the review published by Vignoli et al.3), the different 

types of samples analyzed in this methodological thesis, and the pre-analytical and analytical procedures are 

reported. 

 

3.2 NMR-spectra acquisition 

  

NMR may theoretically identify any molecule having one or more atoms with a non-zero 

magnetic moment. Moreover, because isotopes – including 1H, 13C, 14N, 15N, and 31P – present 

non-zero magnetic moments, all biomolecules have at least one NMR signal. The frequency 

(chemical shift), intensity, fine structure, and magnetic relaxation characteristics of these 

signals all reflect the specific surroundings of the detected nucleus75,76. As a result, NMR-

spectroscopy is an efficient and versatile technique for analysing complex biological samples, 

allowing the acquisition of spectra that often include a plethora of information about all 

molecules detectable in a specific sample. Due to the high sensitivity and natural abundance 

of 1H isotope (>99%) in biomolecules, mono-dimensional (1D)1H-NMR spectroscopy is the 

most highly used technique in metabolomics research. 

In NMR-based metabolomics studies, a good compromise between sensitivity, spectra 

resolution, and cost is characterized by the use of a 600 MHz spectrometer for common 

biofluids3, cells, and tissues analyses and a 400 MHz spectrometer for food-derived fluids 

analysis77.  

Considering that most of the 1D 1H-NMR spectra acquired for the metabolomics studies 

are obtained in water, an important aspect of the solution-state NMR experiment is solvent 

suppression74.  Indeed, the biological sample contains a large amount of water and the addition 

of small quantities of D2O is sufficient to generate a signal for deuterium lock. In this scenario, 

the simplest and most suitable strategy for water suppression is known as “pre-saturation” 

which uses mild radio-frequency irradiation for a duration of the order of the solvent T2 to 

selectively saturate the solvent resonance78. Gradient-based solvent suppression approaches, 

such as the WATERGATE system, can also be utilized to provide efficient water signal 

reduction. This scheme employs a composite pulse surrounded by two symmetric pulsed-field 

gradients to attenuate the water resonance79,80. A modulated-shaped pulse is often used for the 

study of food matrices, i.e. olive oil, to suppress the strong lipid signals63. 
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 Standardization of NMR metabolomic experiments has been increasingly requested in 

recent years mainly for the development of a more complete spectra database and data 

comparison and reproducibility. As a result, only a few pulse sequences, that follow standard 

protocols, are applied in the NMR-based metabolomics field76,80–82.  

1D 1H-NOESY-presat (Nuclear Overhauser Effect SpectroscopY)83 spectra give 

resonance signals from both low- and high-molecular weight compounds, giving a highly 

repeatable, robust, and high-quality approach to acquire a thorough overview of metabolites 

and lipoproteins detectable in a sample. CPMG spin-echo84 sequence is also frequently used 

in NMR-based metabolomics, ensuring a more selective acquisition for low-molecular-weight 

molecules (via T2 filtering). The 1H Diffusion-Edited pulse sequence85, on the other hand, 

allows for the selective detection of macromolecules in solutions containing small molecular 

components. The three NMR experiments described above are widely used to evaluate 

metabolites present in the blood (both in serum and plasma samples), since blood contains 

more macromolecules than other biofluids (Figure 4). For the sake of completeness, it should 

be reported that it is possible to physically remove the macromolecules via centrifugation, 

avoiding performing a CPMG experiment, but this strategy was not applied in this work. 

 

Figure 4: 600 MHz 1H-NMR spectra of a serum sample, obtained performing the three more used 

experiments: 1H-NOESY-presat (A), 1H-CPMG (B), and 1H-diffusion edited (C). 

2D spectra are mostly used in metabolomics research to assign novel compounds or in 

doubtful circumstances. J-resolved 1H-1H (JRES)86 represents the most often used 2D 

experiment offering information on multiplicity and coupling patterns (Figure 5). Given the 



| 14 
 

longer acquisition times to perform a 2D NMR experiment compared to a 1D experiment, it is 

necessary to take into account the sample stability before proceeding with the acquisitions.  

 

Figure 5: 600 MHz 1H-NMR spectra of a urine sample, obtained performing JRES 2D experiment. 

Common pulse sequences for NMR-based metabolomics experiments performed in this 

methodological thesis are reported in Table 3.  

Sample 

Analysed  

Experiment performed Pulse sequence 

Plasma; 

Serum 

CPMG with water pre-

saturation 

1D experiment with T2 filter using Carr-

Purcell-Meiboom-Gill sequence with 

presaturation during the relaxation delay 

Plasma; 

Serum 

Diffusion-edited 1D sequence for diffusion measurement using 

stimulated echo and LED with bipolar 

gradient pulses for diffusion, 2 spoil gradients 

and presaturation during the relaxation delay

  

Plasma; 

Serum; 

Urine 

NOESY with water pre-

saturation 

1D with spoil gradient using continuous wave 

presaturation during relaxation delay and 

mixing time and spoil gradient 

Olive oil NOESY shaped pulse 1D with spoil gradient using shaped pulse for 

multiple solvent presaturation (main solvent 

peak on resonance) during relaxation delay 

and continuous wave presaturation during the 

mixing time 

Plasma; 

Serum; 

Urine 

J-resolved homonuclear J-resolved 2D correlation with 

presaturation during relaxation delay using 

gradients 
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Olive oil ZG 1D 1H standard single pulse experiment, i.e. 

RD-P(90°)-acquisition of the free induction 

decay (FID) 

Table 3: NMR-spectra acquisition. In this table, the different types of samples analyzed in this methodological 

thesis, the NMR experiments, and the pulse sequences used are reported. 

3.3 NMR-data processing 

 

After the NMR spectra acquisition, the data processing results be an indispensable 

procedure to transform raw NMR data into a more correct form for secondary statistical 

analysis. It could be divided into different steps: i) baseline and phase correction; ii) calibration 

to an internal reference peak; iii) normalization; iv) bucketing.  

Firstly, phase and baseline corrections are the first processing step in the analysis of raw 

NMR spectra, generally performed automatically. In this specific case, manual corrections are 

not recommended as they increase the likelihood of inserting operator-derived bias. After this 

step, to avoid errors in a chemical shift during the construction of the final matrix, the spectra 

need to be aligned to a known resonance signal that, ideally, does not interact with other 

molecules. For example, in serum or plasma samples, the use of deuterated 

trimethylsilylpropanoic acid (TMSP) is not recommended. TMSP could bind serum/plasma 

macromolecules (i.e. albumin protein) and, for this reason, the use of this signal is not also 

recommended as standard in the quantification procedures. For these biofluids is used another 

internal reference, such as the anomeric doublet of glucose at 5.24 ppm87. Absolute 

quantification of molecules can be performed using alternative approaches, such as the 

production of an artificial NMR signal based upon ERETIC88 method. Software systems like 

the B.I. (Bruker IVDr) platform89 for the analysis and the quantification of 

metabolites/lipoproteins are employed (for more details about assignment and quantification 

procedures see §3.4).  

Calibrated full NMR spectra can be transformed into a multidimensional data matrix, 

usable for subsequent statistical analysis, by binning (or bucketing) techniques. These methods 

are applied to reduce the total number of variables and small misalignment in the NMR spectra. 

The spectra are divided into small spectral regions, called “bins” or “buckets”74,90,91. Many 

complex algorithms for binning 1D NMR spectra are available, but the most common and 

straightforward method is the equidistant binning of 0.02-0.04 ppm90; it allows the spectrum 

to be divided into equally spaced integration regions with a fixed spectral width.  

To compare signals or bins intensities in different biological samples, since considerable 

physiological fluctuations in terms of metabolite concentration are always present, a procedure 
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to correct the dilution effect is required. In particular, the different hydration states of an 

individual could determine a significant variation in metabolites concentration detectable in 

urine, therefore spectra or binned spectra must be normalized to correct global signal intensity. 

For plasma and serum spectra, the normalization procedure is less relevant due to the 

physiological stability of the biofluids. Total area normalization is the most common 

normalization procedure applied. In more detail, in a NMR spectrum, each variable (i.e. a bin 

or a data point) is divided by a constant number that represents the sum of all bins (or all 

points) in the selected spectrum. Actually, for biofluids, especially urine, Probabilistic 

Quotient Normalization (PQN)92 is considered an efficient normalization method, used also in 

this methodological thesis. This method is based on the calculation of a most probable dilution 

factor by looking at the distribution of the quotients of the amplitudes of a test spectrum by 

those of a reference spectrum. PQN assumes that variations in the concentration of biological 

interest, affect only a few portions of the NMR spectrum, while dilution effects will influence 

all signals. For food-derived fluids (i.e. olive oil) normalization according to the sample weight 

is recommended.  

3.4 Metabolite assignment and quantification 
 

To identify potential biomarkers attributable to a particular physiological and/or 

pathophysiological states, regardless of the biofluid or sample examined, it is useful and 

necessary to identify a metabolite/lipoprotein (or a set of metabolites/lipoproteins) in the NMR 

spectrum.  

Due to the complexity of 1H-NMR spectra, the identification of molecular features is not 

considered a simple analytical procedure.  Firstly, some NMR peaks can be directly assigned 

in the one-dimensional spectrum (Figure 6), taking into account the molecular chemical shifts 

and the multiplicity of the resonances. This procedure is supported by the use of specific 

databases or libraries (some of them freely available), like Human Metabolome Database 

(HMDB)93 for human metabolites, PubChem94, Kyoto Encyclopedia of Genes and Genomes 

(KEGG)95, 1H-NMR spectra library of pure organic compounds (BBIOREFCODE, Bruker 

BioSpin)96, etc. In case of doubtful assignment, the spiking of real standard molecules is 

recommended, while, in some cases, 2D NMR spectra provide further information for 

identifying novel metabolites. In recent years the need to develop tools to automatically 

perform metabolite and/or lipoprotein assignment and quantification in 1H-NMR spectra has 

increased. Recently, the B.I. (Bruker IVDr) platform89 for urine, CSF, and serum/plasma 

samples or the NMRpQuant software for large-scale urinary total protein quantification97 have 

been introduced on the market. Meanwhile, other tools for semi-automatic quantitation have 

been developed (i.e. BATMAN98 and BAYESIL99 tools, based on Bayesian inference, 
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ASICS100, and Chenomx Inc101 which offers complete assistance for deconvolution, peak 

fitting, and integration of the selected peaks) but more manual procedures and skilled operators 

are needed to use them. 

 

 

Figure 6: Assignment performed on: A)  1H-NOESY NMR spectrum of a serum sample; B) 1H-NOESY 

NMR spectrum of a urine sample 

3.5 Statistical analysis 

 

Due to the increasing complexity of NMR-based metabolomics data, statistical analysis 

embodies a very important aspect of the metabolomic workflow for obtaining complete and 

meaningful results ready to be interpreted from a biomedical and biochemical point of view. 

Starting independently from bucketed NMR spectra or a list of correctly assigned and 

quantified metabolite concentrations, the metabolomic analysis aims to:  

1) visualize the overall differences, trends, clusters, and relationships among different 

samples;  

2) detect significant metabolic differences potentially present among groups under study 

(i.e. discrimination among healthy and diseased patients, discrimination among 

samples before and after treatment, metabolic dimorphic discrimination, etc.); 

3) highlight all metabolites most responsible for the mentioned differences;  

4) build a robust predictive model to correctly classify new samples; 

5) build a robust regression model and/or metabolite association networks to demonstrate 

relationships among potentially biologically related variables.  

Depending on the experimental settings, several types of data mining and statistical 

approaches can be applied to metabolomics data. In the following subparagraphs, the 

univariate, multivariate, and metabolite association networking statistical approaches, 

performed in this methodological thesis, were described. 
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3.5.1 Multivariate analysis 

 

When two or more variables are measured during an experiment, the resulting data is 

multivariate data. To handle hundreds or thousands of variables simultaneously, as in the case 

of metabolomics data sets, it is necessary to apply a multivariate statistical approach that can 

be divided into two different classes: 

1) Unsupervised multivariate analysis in which no prior knowledge of the data is 

needed; 

2) Supervised multivariate analysis in which samples are divided into classes or each 

sample is associated with a specific outcome. 

Generally, to have an overview of metabolomics data, unsupervised methods are 

preferred as they allow to visualize data, potential outliers, similarities, or dissimilarities 

between metabolic signatures with excellent clarity and low computational cost.  

Principal Component Analysis (PCA)23 results to be the most popular and commonly 

used unsupervised approach and it involves the projection of the original data on a lower 

dimensional space (data reduction) capturing the information in the data, corresponding to the 

observed variation. Briefly, this method expresses variance within a dataset in a new reduced 

matrix of variables, called principal components (PCs), orthogonal and independent from all 

the others. A PC results in a linear combination of the original NMR-based metabolomics data 

(i.e. bins of a bucketed spectrum or a list of correctly assigned and quantified metabolites). 

The first PC (PC1) represents the maximum percentage of variability detectable in the original 

data. The variance value rapidly decreases, and the subsequent PCs are less important, 

expressing noise variability. PCA may be interpreted geometrically as a rotation of the 

reference system to optimize the data structure, reducing noise. The original data matrix (X) 

is factorized into two new matrices, T, the score matrix, and A, the loading matrix. T contains 

the new coordinates of the original data in a new rotated coordinate system determined by the 

PCs and A contains the weights of the original variables and transforms them into scores. Both 

score and loadings matrices are reported in graphical form in Figure 7. If the separation 

between sample groups is evident in the PC1 and PC2 score plots (as observable in Figure 7), 

the corresponding PC loadings provide information on the original variable responsible for 

this discrimination. 
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Figure 7: PCA biplot (a graphical representation of both score and loadings PCA plots). Each point in the plot 

represents a different metabolomic profile corresponding to a specific sample group (i.e. magenta points: group A; 

blue points: group B; orange points: group C); each black arrow represents a higher loading that corresponds to a 

specific metabolite (i.e. metabolite X, Y, J, and Z) that determine the separation and discrimination between groups. 

As reported above, the supervised approaches, in contrast with the unsupervised ones, 

need previous knowledge to build efficient models able to evaluate the effect of interest. These 

approaches could also be divided into two main sets: methods based on projection and data 

reduction, and machine learning methods.  

In the first set, Partial Least Squares (PLS)102–104 and Orthogonal Projections to Latent 

Structures (OPLS)24 are mostly used in metabolomics analyses. PLS is a multivariate linear 

regression approach similar to PCA in that it maximizes the covariance of two matrices, data 

X and response Y, to uncover the relationships between them. This method allows us to 

determine which variables (i.e. bins of bucket spectrum or a set of correctly assigned and 

quantified metabolites) of X are associated with the response (i.e. specific physiological or 

pathophysiological condition) and to perform new sample prediction. OPLS is a variant of the 

PLS approach, with the same predictive ability as PLS but an improved interpretation of 

relevant variables. This is possible by decomposing the data into so-called “predictive” 

information linked to the Y response matrix and “orthogonal” structural information unrelated 

to the response, such as instrumental or biological fluctuation. The multilevel PLS (M-PLS)25 

analysis is used to solve difficulties caused by substantial inter-individual variability. The 

intra-individual variability is separated from the inter-individual variability in an M-PLS by 

removing the individual specific average, allowing to consider in the analysis only the intra-

individual variability. To improve the sample group discriminations, these reduction 

supervised methods can be applied in combination with Canonical Analysis (CA), which 
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enables discriminant projection by maximizing the inter-class variability and minimizing the 

intra-class variability.  

In the context of machine learning methods, k-Nearest Neighbours (k-NN)105, Support 

Vector Machines (SVM)26, and Random Forest (RF)27–29 are mostly used in metabolomics. k-

NN is a simple, easy-to-implement supervised machine learning algorithm that can be used to 

solve both classification and regression problems; it assumes that similar variables exist in 

close proximity, and, for this reason, it works in a local neighbourhood around the object to 

be classified. The determination of the neighbourhood depends on the Euclidean distance and 

the closest k objects are used to classify the new sample. In this way, k is fundamental to 

building the model: small k numbers can determine a model vulnerable to considerable 

statistical fluctuation while big k numbers flatten many characteristics of the distribution, 

reducing statistical errors.  

SVM is commonly used to solve classification problems, but it could be also used for 

regression. It uses a statistical paradigm to construct a “borderline” (i.e. a line, a plane, or, for 

more than three classes, a hyper-plane) tract in a sample place able to maximize the 

discrimination and separation of two (or more) classes. 

Actually, RF represents the most important and powerful machine learning algorithm 

used to solve both classification and regression problems in metabolomics. Many strengths are 

related to this method: it can work with many predictors simultaneously; it avoids overfitting 

problems; it is applicable when there are more variables than samples; the percentage of trees 

in the forest that assigns a sample to a class can be interpreted as a probability of class 

membership; it provides an unbiased estimate of the classification error using out-of-bag 

(OOB) samples, eliminating, in this way, the need to perform additional cross-validation. The 

algorithm works through a few repeated steps: 

1) the original data are randomly divided using bootstrapping into training and test 

sets; 

2) an ensemble of decision trees is grown using the training set. In this step, each tree 

is built on randomly selected NMR variables at each decision node;  

3) after the construction of all decision trees, an unbiased assessment of the 

classification error using the OOB samples is performed; 

4) the estimation of the model performances, starting from a confusion matrix (see 

Table 4), is given. 

As already reported, except for the RF algorithm, the main risk of the supervised models is the 

overfitting of data. To overcome this limit, it is necessary to validate the results using an 

independent validation set, if available, or with the cross-validation (CV) methods. These 
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methods require an initial splitting of the dataset into training and validation sets. After this 

step, one (Leave-One-Out (LOO)) or many (Leave-Many-Out (LMO)) samples are randomly 

removed from the training set and, a second time, they are tested. The model is built on the 

training set, while excluded samples are used to evaluate the model performances, constructing 

a confusion matrix that expresses sensitivity, specificity, and accuracy, as reported in Table 

4. 

 

Confusion matrix 

 Predicted classes 

Group A (positive) Group B (negative) 

Actual 

Classes 

Group A (positive) True Positive (TP) False Negative (FN) 

Group B (negative) False Positive (FP) True Negative (TN) 

 

Model performance measures 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

Sensitivity 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Precision 𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 

Accuracy 𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃
 

 

Table 4: structure of the confusion matrix and model performance measures. 

 

3.5.2 Univariate analysis 

 

Univariate analysis is fundamental in identifying a potential association between a 

metabolite or a set of metabolites – separately and independently examined – with a specific 

clinical outcome or physiological condition. 

Taking into account that the concentrations of the molecular features are not normally 

distributed, it is appropriate to use univariate non-parametric tests. In particular, for comparing 

two-group data – matched samples or repeated measurements on the same samples (pairwise 

comparison) – Wilcoxon-Mann-Whitney test31,32 (the non-parametric version of the classical 

Student t-test106) is used. To compare more than two independent group data, originating from 

the same distribution, Kruskal-Wallis test30 (the non-parametric version of Analysis of 

Variance (ANOVA)107) or Friedman test108 are employed. Recently, the Linear mixed-effects 
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models (LMMs)33,34 are considered robust and powerful univariate tools useful for the 

identification of molecular features significantly related to or affected by a specific factor of 

interest109. An LMM is a statistical model that incorporates fixed effects, which are constant 

across all individuals considered in the specific study, in addition to random effects, which 

vary across all individuals. The generic formula that describes an LMM is reported below: 

𝑦𝑖𝑗 =  𝛽0 + 𝜇0𝑗 +  ∑ 𝛽𝑖𝑘 𝑋𝑗𝑘 +  𝜖𝑖𝑗  (1) 

where:   

• yij corresponds to the concentration of the ith metabolite for the jth sample; 

• β0 is the overall mean or baseline level of metabolite concentration across all samples; 

• μ0j is the random effect of the jth sample (or a selective individual variation); 

• ϵij is the random error of the model associated with metabolites and samples; 

• k is the number of fixed effects, which account for the effect of a factor of interest 

(treatment) or an endogenous factor (age and gender), represented as Xk;  

• βk is the coefficient of the effect associated with factor Xk. 

The significance of all these tests is expressed as a P-value, which is considered the 

probability of obtaining an equally extreme result equal to or a more extreme one than that 

what was observed, assuming the null hypothesis to be true. When the P-value is less than the 

threshold level at 0.05 or 0.01, the null hypothesis is rejected and the specific molecules feature 

and/or variable is considered statistically different in the observed groups. Due to a large 

number of variables tested, the application of statistical approaches in an -omics context 

usually needs to proceed with the correction for multiple tests necessary to reduce the 

probability of having false positives. Bonferroni110,111 and Benjamini-Hochberg112 are the most 

widely used corrections methods.  

An important role in metabolomics in determining metabolic features associated with a 

specific physiological or pathophysiological condition is embodied by the Receiver-Operating 

Characteristic (ROC) and correlation analyses. In more detail, ROC curves are graphical 

representations that illustrate the diagnostic ability of a binary classifier. The curve is 

generated by plotting sensitivity (see Table 4 in §3.2.1) versus [1- specificity] for all possible 

thresholds of the test (for more details about the measures of the predictive model see Table 

4 in §3.2.1). The accuracy is derived from the area under the ROC curve (AUC-ROC). As 

reported in the schematic Figure 8, the area values equal to 1 represent a perfect test, while an 

area of 0.5 represents a worse test.  
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Figure 8: graphical representation of the ROC space that highlights a “better” and a “worse” classification test. 

Moreover, to find, if present, a linear association between molecular features and specific 

clinical or biological data, the Pearson and/or Spearman correlations113 can be calculated. 

Correlations are expressed by a coefficient (R, ρ), ranging from +1 (totally correlated), 0 (no 

correlation), and -1 (totally anticorrelated). Recently, to limit the presence of spurious 

correlations, robust correlation methods114 have been developed and are increasingly used in 

metabolomics. 

3.5.3 Molecular features association network analysis 

 

To infer metabolite-metabolite/metabolite-lipoprotein/lipoprotein-lipoprotein 

association networks, the Probabilistic Context Likelihood of Relatedness based on 

Correlation (PCLRC)115 algorithm was used. In order to remove non-significant background 

correlations, this algorithm provides a robust evaluation of the correlation using a resampling 

strategy in combination with the previously published Context Likelihood of Relatedness 

(CLR)116 approach. The PCLRC algorithm gives like output a probability matrix P showing 

the likelihood pij for each revealed Spearman correlation rij  (which is the ith and jth element 

of the Spearman correlation matrix R) between two metabolites i and j. In metabolomics, as 

the best compromise between network complexity and interpretability, it is recommended to 

consider correlation for which the probabilistic value pij was greater or greater than equal to 

95%/96%, setting to 0 for all remaining correlations. The resulting combination between 

matrices P and R defines the specific network A.  
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To perform the differential connectivity analysis between molecular features 

association networks, given a specific network A, the connectivity 𝜒𝑖
𝐴 for each metabolite i is 

described as: 

𝜒𝑖
𝐴 = (∑|𝑟𝑖𝑗|

𝐽

𝑗=1

) − 1 (2) 

Moreover, the differential connectivity ∆𝑖
𝐴,𝐵

 for each metabolite i among two networks a and 

b could be calculated as follow: 

∆𝑖
𝐴,𝐵= 𝜒𝑖

𝐴 − 𝜒𝑖
𝐵 (3) 

A schematic procedure of the differential connectivity analysis is reported in Figure 9. 

 

Figure 9: graphical representation of node connectivity and differential connectivity analysis. In this figure, each 

node represents a specific molecular feature (i.e. metabolite, lipid, lipoprotein, etc.) and the edge, connecting two 

nodes, represents the existence of an association, expressed in terms of correlation, between two nodes. This figure 

is taken from a published paper reported in §4.1.1. 

The statistical significance of the differentially connected metabolites is determined 

by means of a permutation-test. In order to eliminate the relationship between variables and in 

order to maintain their variance, the columns of each input matrices have to be independently 

permuted defining a permutated matrix X(k). The overall network estimation is performed on 

permutated data matrix, generating the related Spearman correlation R(k) analysis. These 

estimations were subsequentially used to assess, for each metabolite contained in the 

permutated matrix X(k), the permutated connectivity (Equation (4)), and the permutated 

differential connectivity (Equation (5)): 
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𝜒𝑖,𝑘
𝑎 = (∑|𝑟𝑖𝑗

𝑘|

𝐽

𝑗=1

) − 1 (4) 

∆𝑖,𝑘
𝑎,𝑏= 𝜒𝑖,𝑘

𝑎 − 𝜒𝑖,𝑘
𝑏  (5) 

The permutation step was repeated k = 1000 yielding a null distribution Di of permutated 

differential connectivity values. The significance of a given differential connectivity value 

∆𝑖
𝑎,𝑏

 (estimated from the non-permutated original data) is calculated as a P-value, according 

to the following formula: 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 =
1 + (|𝐷𝑖| > |∆𝑖

𝑎,𝑏|)

𝑘
 (6) 

As reported in §3.5.2, to perform a more robust statistical analysis, the P-values may be 

corrected for multiple test comparisons, using, for example, the Benjamini-Hochberg 

approach112. 
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Chapter 4 

Results 
 

4.1 Metabolomics for investigating human physiological and 

pathophysiological processes 
 

Metabolomics provides a dynamic, comprehensive, and accurate image of human 

phenotype, increasing knowledge on both biological mechanisms of human physiological and 

pathological processes. In this perspective, metabolomics explains its potential role in 

characterizing metabolic profiles associated with a specific condition, and, also, in identifying 

metabolites or lipoproteins that play a key role in both normal physiology and the 

pathophysiology of several diseases. 

In this methodological thesis, firstly, untargeted metabolomics has been applied to obtain 

new insights on different biological and physiological conditions, shedding light on the 

dimorphic mechanisms of aging, determining how an improving human well-being treatment 

(i.e. probiotics) could affect the metabotypes, and characterizing the metabolomic and 

lipoproteomic profiles associated with the inherited blood types (ABO and Rh systems). In 

this section, untargeted metabolomics has been also applied to characterize the metabolic 

components of two diseases, acute ischemic stroke and colorectal cancer, providing prognostic 

and diagnostic biomarkers of these specific pathologies, and to investigate the predictive 

potential of the lipoproteomic profile in cardiovascular risk. 

To investigate the complex physiological aging process, that involves progressive 

systemic modification, affecting all levels of an organism, from molecules to organs 117,118, in 

the first studies here proposed, untargeted metabolomics was applied, integrating both 

standard univariate and multivariate analyses with the molecular features-association 

networks.  

Applying a holistic metabolomic approach, the first study here presented aims at 

investigating the difference in terms of architecture and connectivity of sex-specific and 

clinical and biochemical parameters-specific serum metabolic association networks build 

considering a cohort of n=355 nonagenarians from the Italian Mugello study119 (§4.1.1). In 

particular, comparing the metabolic association networks of nonagenarian women and men, 

our results evidenced that serum lipoproteins, branched chains amino acids (BCAAs), alanine, 

and ketone bodies show significant differences in terms of both architecture and connectivity. 

It is known that BCAAs are associated with a reduction in physical activities and a reduction 

in muscle protein synthesis (MPS)120–122. In human serum, levels of acetic acid, a ketone body, 
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are correlated with prolonged fasting and diabetic ketosis, potentially frequent in elderly 

people, but also with the decreasing of estrogens in post-menopausal women. The down-

regulation of gonadotropin induces a glycolytic dysregulation, leading women’s cells from a 

physiological aerobic metabolism to a ketogenic phenotype123,124. The same approach was also 

applied to identify, in the dimorphic clinical and biochemical parameters-specific networks, 

significantly differentially connected molecular features. The results obtained show the 

importance of lipoproteins in diseases, drug treatments, and familiarity disease, indicating their 

ability to participate in many pathophysiological mechanisms in nonagenarians; in fact, 

lipoproteins are not only biomolecules engaged in inter- and intra-cellular signaling regulation 

pathways, but also they can orchestrate inflammation processes and restore the homeostasis125.  

In the women's disease-specific networks, the rewiring of metabolic activity involves ketone 

bodies, BCAAs, threonine, and tyrosine, suggesting a potential greater women's predisposition 

and susceptibility to specific diseases, such as type 1 and 2 diabetes mellitus, sarcopenia, and 

cognitive impairment126,127. Considering the risk factors-specific networks related to women, 

only lipoproteins, negatively associated with estrogens in the post-menopausal period128, are 

statistically differentially connected, suggesting their key role in the emerging of aging’s 

pathologies; glutamine, glucose, proline, and BCAAs, increasing their metabolic activity, 

could be biomarkers to predict the emergence of neurodegenerative diseases, type 2 diabetes 

mellitus, and obesity and sarcopenia129,130. For bio-humoral parameters-specific networks, 

lipoproteins and metabolites are unrelated to the aging metabolic intrinsic dimorphisms and 

the floating of serum parameters131.  

Secondly, using the same cohort described above, applying classical statistical multivariate 

and univariate analyses, the sex-specific nonagenarian metabolic profiles were deeply 

investigated to highlight the molecular features directly involved in the elderly sexual 

dimorphism and to discover potential serum molecules playing important roles in predicting 

the development and progression of elderly disorders, focusing on cognitive impairment and 

geriatric depression (§4.1.2). Cross-validated (LOO-CV) OPLS-DA models were built on 1D-

NOESY, 1D-CPMG, and 1D-diffusion serum bucketed spectra. We observed that the 

discrimination between nonagenarian women and men is less strong (accuracy ~70%; 70%, 

67%, and 68% using 1D-NOESY, 1D-CPMG, and 1D-diffusion experiments respectively) 

than the same discrimination in a younger population (accuracy ~90%)132, probably depending 

on the decreasing of the hormonal activity in elderly subjects. For a better understanding of 

metabolomic sexual dimorphic differences, the pairwise Wilcoxon test was applied on an array 

of 20 metabolites, 190 metabolites ratios, and 7 main lipoprotein parameters, correctly 
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assigned, quantified, and logarithmic scale normalized. In accordance with the results obtained 

in the previous study (§4.1.1), elderly women tend to have a higher level of creatine and lower 

BCAAs – in particular leucine and valine – concentrations, associated with the decreasing of 

MPS and with several reductions in motor activity120,121,133. In accordance with literature56,134, 

higher levels of glycine, cholesterol, triglycerides, HDL, LDL, Apo A1, and Apo B100 

concentrations were observed in elderly women compared with men. To identify potential 

metabolic predictors of the risk of geriatric cognitive impairment, mood disorder, and motor 

impairment logistic regression and ROC curve analyses were performed; we discovered that 

phenylalanine and glutamine/glucose ratio were associated with cognitive impairment, 

suggesting their role in correctly predicting the progress of pathology. Threonine/citric acid 

and threonine/pyruvic acid ratios were associated with geriatric depression, with a modest, but 

statistically significant, contribution. No metabolic associations were observed with elderly 

motor impairments. As a whole, our findings shed light on the sexual dimorphic mechanism 

of aging and reveal potential biomarkers of elderly cognitive and mood disorders. 

The third study here presented, using an untargeted metabolomic approach, aims to 

evaluate and identify the potential correlation between different age-increasing groups and: i) 

the molecular features concentrations; ii) the pairwise molecular features correlations; ii) the 

pairwise molecular features ratios. This innovative approach was proposed to shed light on the 

dynamic of aging molecular mechanisms. This study is based on the TwinGene project135 data, 

characterized by n=2139 participants, with an overall age range of 47.6–93.9 years (§4.1.3). 

We observed that linoleic acid, α-linoleic acid, and carnitine have, in the women cohort, a 

positive correlation trend with age, while monoacylglycerols (MAGs) and 

lysophosphatidylcholines (LPCs) have, in the men cohort, a negative correlation trend with 

age. These results highlight, in women, the effect of the reduction of estrogen activity and the 

increase of testosterone levels on the linoleic acid metabolism and on the energy pool 

metabolism that induces the overall changes in cell membrane composition and cell cycle 

mechanisms136,137. In men, low levels of LPCs concentrations are directly connected with the 

reduction of MAGs levels by the MAG lipase enzymatic activity that induces mitochondrial 

dysfunction138,139. Analyzing the pairwise correlations among molecules, PCs/PCs correlations 

tend to have a positive trend associated with the average ages of women, while MAGs/LPCs 

correlations tend to have a negative trend associated with the average ages of men. These 

results, in both cases, suggest an age-dependent remodeling of fatty acid metabolism that 

induces, overall, remodeling of cell and mitochondrial membranes140. Evaluating the results 

of molecular features ratios, we reported that the decanoyl-L-carnitine/LPC ratio,  in women, 

has a negative association with the increase in the average ages, while, in men, the ratios 

between L-carnitine/PC and L-acetylcarnitine/PC have a positive association with the increase 
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of age, suggesting, in both cases, a radical remodeling of the dynamic membrane fluidity and 

carnitine-shuttle activity140,141. 

To better understand the mechanisms underlying human physiology, it is essential to 

specify that several microorganisms exist and coexist in the human body, promoting the 

regulation of human metabolism and physiology142. In this perspective, probiotics are 

increasingly used, with the final aim of manipulating the composition of the gut microbiota 

and improving balanced microbial communities58,143. In §4.1.4, an untargeted metabolomics 

approach was applied to characterize and understand potential metabolic changes that could 

determine and affect the human phenotype after probiotic assumption. 21 healthy volunteers 

were enrolled in the study based on two different phases: i) Phase I, characterized by no 

supplementation of probiotics, in which 20 urine samples and one serum sample from each 

subject were collected; ii) Phase II, characterized by the supplementation of probiotics, in 

which 20 urine samples and one serum sample from each subject were collected. In Phase II, 

the subjects were randomly divided into two groups, named “High-dosage” (n=10 subjects) 

and “Low-dosage” (n=11 subjects).  This study identified, performing PCA-CA models on 

urine 1H-NMR spectra, that, during the probiotic treatment, individual discrimination 

decreases by 1% (99% in Phase I; 98% in Phase II). This difference of 1% was also maintained 

by dividing the cohort into dosage-dependent groups. This result could be related to the 

probiotic administration, but it is not possible to consider this effect as generating a solid 

structural change. The global and dosage-dependent effect of the probiotic assumption was 

investigated by comparing the entire urine spectra using M-PLS analysis. Moderate 

discrimination (80%) of urine metabolome between the two phases, considering the entire 

cohort, was observed; investigating a dose-dependent effect, interestingly and unexpectedly, 

the subjects treated with a low dose of probiotics tended to have a discrimination accuracy 

higher than the subjects treated with a high dose of probiotics (79% vs 61%). To describe 

metabolic variations, a mixed-effects regression model was implemented for each urinary 

metabolite. Ascending significant trends were observed for formate in both dosage groups and 

phases, acetoacetic acid for both dosage groups during phase II, hippurate for the low dosage 

group during phase I, acetone and 2-hydroxyisobutyric acid for the high dosage group during 

phase I. Decreasing trends were observed for acetoacetic acid in both dosage groups during 

phase I, trimethylamine-NO for both dosage groups during phase II, dTTP, and creatinine for 

the low dosage group during both phases, acetone for the high dosage group during phase II, 

and isoleucine for the low dosage group during phase I. The same approach was also 

performed on serum samples. Using an MPLS-DA model, a fair serum metabolomic profile 
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discrimination (77%) between the two phases, considering the entire cohort, was reported. The 

two dosage-dependent groups have a comparable discrimination accuracy (~77%). Serum 

acetone and pyruvate significantly increased in phase II for both dosage groups, while 

histidine, glutamine, creatinine, acetate, and citrate significantly decreased. 

The ABO and Rh systems, which play a fundamental role in transfusion medicine and 

hematopoietic transplantation, are also related to the pathogenesis and pathophysiology of 

various human diseases, such as cardiovascular144,145 and oncological diseases144,146. In this 

scenario, the work §4.1.5 here presented is the first NMR-based metabolomics work in which 

the specific associations between circulating levels of 28 specific plasma metabolites, and 114 

lipoproteins and the ABO/Rh blood group system were analyzed in a cohort of n=840 Italian 

healthy blood donors. Random Forest (RF) model was applied to investigate whether subjects 

with different ABO and Rh blood group systems could be discriminated from the metabolic 

and lipoproteomic profiles. Overall, weak classification models to discriminate between the 

different ABO groups were obtained (accuracy ~50%). In contrast, subjects with different Rh 

blood groups can be easily and accurately discriminated based on their metabolite and 

lipoproteomic profiles (accuracy=81.9%). The association between the levels of circulating 

plasma metabolites, and lipoproteins and the ABO and Rh groups was assessed using robust 

linear regression, correcting for sex and age. Significant associations for 8 out of 114 

lipoproteins with ABO groups – results confirmed also with a post-hoc test – were reported; 

in particular, the subfractions of HDL (HDL1 and HDL2) and the subfraction of LDL (LDL2) 

resulted to be relevant in ABO lipoproteomic differences. It has been shown in both 

experimental and clinical studies that the higher plasma levels of LDL and cholesterol in non-

O blood groups influence the susceptibility of these groups to develop cardiovascular diseases 

(CVDs), while in the O blood group the higher levels of HDL tend to play a protective role in 

these systemic pathologies147–151, but the molecular mechanisms need to be more deeply 

investigated. The same analyses were performed on Rh groups. Significant associations of 7 

out of 114 lipoprotein fractions and subfractions and 2 out of 28 metabolites with the Rh 

groups were reported. In particular, the lipid main fraction LDL related to triglycerides, and 

Apo B, creatine, and propylene glycol, the particle number of LDL4 and LDL5, the subfraction 

LDL4 and LDL5 related to Apo B and the subfraction LDL4 related to free cholesterol were 

associated with Rh blood factors. Little is known about the association between the Rh 

phenotype and the metabolomic/lipoproteomic profiles and the molecular role played by 

LDL4 and LDL5 in Rh+ and Rh– group subjects has never been deeply investigated. The 

presence of the D antigen on the RBCs membrane was found to be significantly associated 

with lower HDL, higher triglycerides, and, in particular, higher LDL levels than the Rh− group; 
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this metabolic behavior could determine the major predisposition of Rh+ to develop CVDs and 

lipidic metabolic syndromes152,153.  

 

Metabolomics, as said above, is an excellent tool for characterizing and preventing a 

pathophysiological status. In particular, metabolic perturbations are fundamental events that 

contribute to ischemic stroke – the leading cause of death and disability continuously 

increasing154 –, to its progression and development of unfavorable outcomes155,156. Using 

retrospective data from the Italian multicentric observational MAGIC (MArker bioloGici 

nell'Ictus Cerebrale) study157,158, an NMR-based metabolomics approach was applied to 

identify serum metabolic and lipidic predictors of three-month poor outcomes (i.e. mortality, 

development of neurological impairments, hemorrhagic transformation of the cerebral lesion, 

and non-response to intravenous thrombolysis) in acute ischemic stroke (AIS) patients 

(n=243), treated with intravenous recombinant tissue plasminogen activator (rt-PA) (§4.1.6). 

For this purpose, logistic regression and ROC curve analyses were performed on an array of 

18 metabolites and 112 lipoproteins correctly assigned and quantified in serum samples 

collected before (t1) and 24h after (t2) the thrombolytic intervention. Adjusting for clinical and 

demographic determinants of unfavorable outcomes (i.e. age, sex, time onset-to-treatment, 

diabetes, hyperlipidemia, etc.), acetone and 3-hydroxybutyrate were associated with 

symptomatic hemorrhagic transformation and with non-response to rt-PA; while 24 hours after 

rt-PA levels of triglycerides-HDL and triglycerides-LDL were associated with three-month 

mortality. Cholesterol and phospholipids levels, mainly related to smaller and denser VLDL 

and LDL subfractions were associated with three-month poor functional outcomes. Also, 

associations between baseline-24 hours relative variation (Δ) in VLDL subfractions and ΔC-

reactive protein, Δinterleukin-10 levels with hemorrhagic transformation were reported. All 

observed metabolic changes reflect a general condition of energy failure, oxidative stress, and 

systemic inflammation that characterize the development of adverse outcomes159–161.  

As for neurological disorders, cancer research is one of the most important fields 

investigated by -omics sciences, in particular metabolomics, with the aim to discover new 

biomarkers, and refine diagnostic tests and therapies. CRC is the third most commonly 

diagnosed cancer and the second leading cause of cancer-related death worldwide162. Early-

stage diagnosis is associated with a good prognosis, however, survival declines substantially 

when the tumor is identified later and is already metastasized163. With these ideas in mind, in 

§4.1.7, a metabolomics approach was used to investigate the blood metabolite profiles in 

patients with CRC, polyposis, and healthy controls, based on the metabolic information 

reported by Zhu et al.164.  In this work, the aim was to present an evaluation of the serum 
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metabolomic profiles of n=65 CRC and n=74 polyposis (PP) patients with respect to n=87 

healthy controls (CTR) using a metabolite–metabolite association networks approach to 

investigate and explore the existence of molecular mechanisms underlying these different 

clinical profiles. Firstly, RF models show good discriminations for the comparisons between 

CRC and CTR and between CRC and PP obtaining an AUC of 0.875 and 0.871, respectively. 

Conversely, PP and CTR present only slight differences (AUC of 0.661). These data confirm 

that CRC patients develop systemic metabolic alterations that are not present, not only in 

healthy controls but also in PP patients. We compared the networks of CRC, PP, and CTR 

observing that CRC patients have an architecture completely different from the ones of PP and 

CTR. This difference is corroborated also by the differential connectivity analysis and by the 

analysis of the topological parameters. Nodes present in the CRC network are all directly or 

indirectly related to the different pathways involved in the energetic metabolism, depending 

on the fact that cancer cells need to meet a high energy demand to support cell proliferation 

and migration165,166. PP and CTR seem to have a similar architecture with more 

interconnections. Pathway analysis of the differentially connected metabolites reveals the 

involvement of phenylalanine, tyrosine, and tryptophan metabolism in both CRC and PP 

patients. Tryptophan metabolism is linked to the production of serotonin while phenylalanine 

is required to produce tyrosine which is catalyzed by phenylalanine hydroxylase. It has been 

shown that phenylalanine hydroxylase activity can be altered in inflammation or 

malignancy167,168. The landscape of metabolic alterations associated with polyposis appears to 

be more heterogeneous than the ones associated with CRC. We observed the involvement of 

glycolysis and glucogenesis and glycine, serine, and threonine metabolism as a signature for 

polyposis, together with fructose and mannose metabolism, associated with increased risks of 

PP and CRC169. 

To conclude, in §4.1.8 is reported a contribution in a chapter in which the aim is to 

highlight the various aspects of metabolomics, focusing on: i) the effects on the individual 

metabolomic fingerprint of non-invasive treatment (i.e. diet or probiotic administration); ii) 

the characterization of metabolic fingerprints of specific diseases (i.e. celiac disease, various 

types of cancer, viral infections, and other diseases); ii) the effects of drugs on the disease 

fingerprint and on its reversal to a healthy metabolomic status.  
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4.1.1 Lipid and metabolite correlation networks specific to clinical and biochemical 

covariate show differences associated with sexual dimorphism in a cohort of 

nonagenarians 
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Supplementary Materials 

Table S1: Complete list of lipid fractions and sub-fractions considered 

Lipid fractions and sub-fractions 

Calcutated Figures (CF) LDL/HDL 

Calcutated Figures (CF) Apo A1/Apo B100 

Calcutated Figures (CF) Total ApoB 

Calcutated Figures (CF) VLDL 

Calcutated Figures (CF) IDL 

Calcutated Figures (CF) LDL  

Calcutated Figures (CF) LDL1 

Calcutated Figures (CF) LDL2 

Calcutated Figures (CF) LDL3  

Calcutated Figures (CF) LDL4 

Calcutated Figures (CF) LDL5 

Calcutated Figures (CF) LDL6 

Lipoprotein Main Fractions (LMF) Triglycerides VLDL 

Lipoprotein Main Fractions (LMF) Triglycerides IDL 

Lipoprotein Main Fractions (LMF) Triglycerides LDL 

Lipoprotein Main Fractions (LMF) Triglycerides HDL 

Lipoprotein Main Fractions (LMF) Cholesterol VLDL 

Lipoprotein Main Fractions (LMF) Cholesterol IDL 

Lipoprotein Main Fractions (LMF) Cholesterol LDL 

Lipoprotein Main Fractions (LMF) Cholesterol HDL 

Lipoprotein Main Fractions (LMF) Free Cholesterol VLDL 

Lipoprotein Main Fractions (LMF) Free Cholesterol IDL 

Lipoprotein Main Fractions (LMF) Free Cholesterol LDL 

Lipoprotein Main Fractions (LMF) Free Cholesterol HDL 

Lipoprotein Main Fractions (LMF) Phospholipids VLDL 

Lipoprotein Main Fractions (LMF) Phospholipids IDL 

Lipoprotein Main Fractions (LMF) Phospholipids LDL 

Lipoprotein Main Fractions (LMF) Phospholipids HDL 

Lipoprotein Main Fractions (LMF) Apo A1 HDL 

Lipoprotein Main Fractions (LMF) Apo A2 HDL 
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Lipoprotein Main Fractions (LMF) Apo B VLDL 

Lipoprotein Main Fractions (LMF) Apo B IDL 

Lipoprotein Main Fractions (LMF) Apo B LDL 

VLDL1 Subfractions Triglycerides  

VLDL2 Subfractions Triglycerides 

VLDL3 Subfractions Triglycerides 

VLDL4 Subfractions Triglycerides 

VLDL5 Subfractions Triglycerides 

VLDL1 Subfractions Cholesterol 

VLDL2 Subfractions Cholesterol 

VLDL3 Subfractions Cholesterol 

VLDL4 Subfractions Cholesterol 

VLDL5 Subfractions Cholesterol 

VLDL1 Subfractions Free Cholesterol 

VLDL2 Subfractions Free Cholesterol  

VLDL3 Subfractions Free Cholesterol 

VLDL4 Subfractions Free Cholesterol 

VLDL5 Subfractions Free Cholesterol 

VLDL1 Subfractions Phospholipids  

VLDL2 Subfractions Phospholipids  

VLDL3 Subfractions Phospholipids  

VLDL4 Subfractions Phospholipids  

VLDL5 Subfractions Phospholipids  

LDL1 Subfractions Triglycerides 

LDL2 Subfractions Triglycerides 

LDL3 Subfractions Triglycerides 

LDL4 Subfractions Triglycerides 

LDL5 Subfractions Triglycerides 

LDL6 Subfractions Triglycerides 

LDL1 Subfractions Cholesterol 

LDL2 Subfractions Cholesterol 
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LDL3 Subfractions Cholesterol 

LDL4 Subfractions Cholesterol 

LDL5 Subfractions Cholesterol 

LDL6 Subfractions Cholesterol 

LDL1 Subfractions Free Cholesterol 

LDL2 Subfractions Free Cholesterol 

LDL3 Subfractions Free Cholesterol 

LDL4 Subfractions Free Cholesterol 

LDL5 Subfractions Free Cholesterol 

LDL6 Subfractions Free Cholesterol 

LDL1 Subfractions Phospholipids 

LDL2 Subfractions Phospholipids  

LDL3 Subfractions Phospholipids  

LDL4 Subfractions Phospholipids  

LDL5 Subfractions Phospholipids  

LDL6 Subfractions Phospholipids  

LDL1 Subfractions Apo B 

LDL2 Subfractions Apo B 

LDL3 Subfractions Apo B 

LDL4 Subfractions Apo B 

LDL5 Subfractions Apo B 

LDL6 Subfractions Apo B 

HDL1 Subfractions Triglycerides 

HDL2 Subfractions Triglycerides 

HDL3 Subfractions Triglycerides 

HDL4 Subfractions Triglycerides 

HDL1 Subfractions Cholesterol  

HDL2 Subfractions Cholesterol  

HDL3 Subfractions Cholesterol  

HDL4 Subfractions Cholesterol  

HDL1 Subfractions Free Cholesterol  

HDL2 Subfractions Free Cholesterol  

HDL3 Subfractions Free Cholesterol  
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HDL4 Subfractions Free Cholesterol  

HDL1 Subfractions Phospholipids 

HDL2 Subfractions Phospholipids 

HDL3 Subfractions Phospholipids 

HDL4 Subfractions Phospholipids 

HDL1 Subfractions Apo A1 

HDL2 Subfractions Apo A1 

HDL3 Subfractions Apo A1 

HDL4 Subfractions Apo A1 

HDL1 Subfractions Apo A2 

HDL2 Subfractions Apo A2 

HDL3 Subfractions Apo A2 

HDL4 Subfractions Apo A2 
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4.1.2 ¹H-NMR-based metabolomics reveals sex-effect in nonagenarian metabolic 

profiles and is a useful tool for the prediction of cognitive impairment and elderly 

depression 
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Abstract 

Life expectancy has increased over the last century and a growing number of people are 

reaching the age of 90 years and over. This phenomenon has become one of the most relevant 

demographic problems in contemporary society. In the nonagenarian population, 

pathophysiological changes affecting the central nervous system and the musculoskeletal 

system are frequent. To investigate the sexual dimorphic metabolic behavior in the 

nonagenarian cohort to understand the complex phenomenon of aging and reveal potential 

associations between molecular features and specific elderly pathologies, cognitive 

impairment, depression, and functional motor activity reduction, we firstly analysed the serum 

metabolic profiles of an Italian nonagenarian population, using an NMR-based metabolomics 

approach. Firstly, we observed that alteration in terms of metabolic and hormonal activity in 

elderly people influenced sex discrimination (70% of accuracy). Analysing the sex-related 

differences in terms of molecular features concentration, we observed that postmenopausal 

women had a greater serum concentration of lipid main-fraction, creatine, glycine, and less 

serum concentration of branched-chain amino acids (BCAAs), considered separately and in 

metabolic ratio, than post-andropausal men. With the aim to investigate the potential 

association between molecular features and elderly cognitive and motor activity reduction, we 

discovered that phenylalanine and glutamine/glucose ratio were associated with cognitive 

impairment, suggesting their role in correctly predicting the progress of pathology. 

Threonine/citric acid and threonine/pyruvic acid ratios were associated with geriatric 

depression, with a modest, but statistically significant, contribution. No metabolic associations 

were observed with elderly motor impairments. As a whole, our findings shed light on the 

sexual dimorphic mechanism of aging and reveal potential biomarkers of elderly cognitive and 

mood disorders. 
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1. Introduction 

As the world population is constantly aging, the nonagenarians, often defined as those 

aged 90 and more tears, present the largest increase in numbers1,2. In Europe, the number of 

nonagenarians (90 and more years), 13.8 million in 2018, is expected to reach 31.8 million by 

2050, while centenarians (>105 years), nearly 106000 in 2018, are expected to be almost half 

a million by 20503. This important growth of the elderly population in developed countries has 

become one of the most relevant studies of the socio-demographic phenomena of 

contemporary society. 

Aging is a complex biological process characterized by variation in systemic 

metabolism4–7. These multi-structured age-related changes determine in aged population 

cognitive, motor, and sensory function impairment, determining an increase in geriatric 

disease frequency, and a reduction in terms of life quality8,9, defining a very intricated clinical 

and biological picture of the mechanisms of aging.  

The steady deterioration of physiological activities reflects irreversible changes 

occurring at the molecular, cell, tissue, and, eventually, organismal levels10,11. It is well known 

that cognitive and motor activities decline with advancing age, but it has been observed that 

the reduction or the complete loss of cognitive functionalities and/or mobility represent one of 

the most significant threats to a nonagenarian’s ability to live in autonomy and self-

sufficiency12–14. The presence and the combination of cognitive and physical disorders increase 

in the population the risk of dementia, immobility, and mortality in nonagenarians and 

centenarians12,15. These physiological alterations are determined by the accumulation of 

molecular changes among the aging mechanisms16–18, including oxidative stress, DNA 

mutations, errors or alteration in protein synthesis, and by-products of enzymatic reactions19. 

In this light, the use of metabolomics, a powerful -omic high-throughput technique, offers 

great promise for the understanding of the mechanisms that underlie aging 10,20,21. The 

investigation of metabolic signatures associated with age and with specific pathophysiological 

conditions can shed light on the potential mechanism that could influence aging and longevity 

and can find potential biomarkers to perform early diagnosis of the cognitive and functional 

activity decline. 

In this scenario, Nuclear magnetic resonance (NMR)-based metabolomics is a useful 

technique able to assign, quantify, and investigate hundreds of various molecular features22–26, 

detectable in biological fluids (i.e. serum, plasma, urine, etc.), providing a global image of the 

complex metabolic, biological, and biophysical processes associated with health 24,25,27 and 

disease 28–31.  

In this work, we take a statistical approach to investigate, firstly, the sexual dimorphic 

metabolic differences, relevant for gender medicine of aging32,33, and, secondly, the 
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associations between metabolites, ratio metabolites, and main lipoproteins parameters and 

elderly clinical frequent pathology, in particular cognitive impairment, mood disorder, and 

motor activity impairment in a cohort of 355 nonagenarians from the Italian Mugello study 34.  

2. Materials and methods 

2.1 Study population 

This study population is based on the framework of the Mugello Study34, an 

epidemiological survey conducted from January 2010 to December 2011 on people aged 90 

years and more, living in the Mugello area, north-eastward of Florence, in Tuscany (Italy). 

Individuals enrolled in this study consisted of 356 subjects (mean age 93 ± 3), of which 96 

men (27%) and 260 women (73%), with an age range of 84-103 years and 88-105 years and 

with mean age 92.6 (± 3.4) and 93.2 (± 3.2) years, respectively. Information on demographic 

and educational data, motor and cognitive status, medical history, and pharmacological 

therapy used by the study cohort was collected at homes or retirement homes through objective 

structured clinical examinations and a series of validated questionnaires. We refer the reader 

to the original publication for more details on the study design and the protocols that have been 

described elsewhere34,35. 

2.2 Elderly clinical outcomes 

The information about the individual health conditions of nonagenarians considered 

in this study could be listed as follow:  

1) to evaluate the elderly cognitive impairment, the cognitive function 

was measured according to the Mini-Mental State Examination (MMSE)36 test, in 

which the higher the score (0–30) indicates an active and healthy cognitive status. 

MMSE scores were divided, according to the existent literature, into three 

categories to distinguish people with severe (0–24) and absent (24-30) cognitive 

impairment; (24–30)37; 

2) to evaluate the elderly mood disorder, the Geriatric Depression Scale 

(GDS)38 was used to consider the presence or absence of depression status; as 

reported above, a higher score (0–15) corresponds to a severe depressive status. 

GDS scores were divided into three categories to distinguish non-depressed (0–

2), moderate and severe depressive status (3–15);  

3) The physical performance was evaluated using the Short Physical 

Performance Battery (SPPB)39, which assesses the walking speed, standing 
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balance, and ability to raise from a chair. The total score ranges from 0-8, 

indicating the bad/worst limb functions, to 8-12, the best motor performance;  

4) The probability to fall and, consequently, an indirect measure of motor 

impairment, was evaluated using the Time up and go test40. The rationale for the 

score interpretation is the same as described above for the other outcomes. The 

total score is calculated in seconds to perform the specific test: <20 seconds 

indicates a normal motor function and >20 seconds indicates severely abnormal 

motor function. 

2.3 Ethical considerations 

The Mugello study34 was conducted in agreement with the principles of the Helsinki 

Declaration on Clinical Research involving human beings (1964) and was approved by the 

Don Carlo Gnocchi Foundation Ethics Committee. Informed written consent was obtained 

from all participants or from their delegates before their inclusion in the study. 

2.4 Experimental procedures 

2.4.1 Sample collection 

Blood samples were collected after overnight fasting, centrifuged at 2000 g for 10 

minutes at 4°C, and stored in aliquots at -80° until analyses following standardized operating 

procedures (SOPs)41–43. 

2.4.2 NMR-sample preparation and spectra acquisition 

NMR sample preparation and measurements were performed at the CERM/CIRMMP 

center, University of Florence, Italy. A total of 356 serum samples were prepared according 

to the validated procedures for NMR serum sample preparation reported by Vignoli et al.23. A 

Bruker 600 MHz spectrometer was used to acquire one-dimensional (1D) ¹H-NMR spectra.  

For each serum sample, three different pulse sequences have been applied to selectively detect 

low and high mass components: NOESY 1D presat (1D-NOESY)44 in which both metabolites 

and macromolecular signals are visible; a spin echo Carr-Purcell- Meiboom-Gill (1D-

CPMG)45 for the selective observation of low molecular weight components; and a standard 

diffusion-edited (1D-diffusion) to permit the isolation of macromolecular components present 

in the solutions (Supplementary Figure 1).  

Details on NMR sample preparation, spectra acquisition parameters, and data processing 

methods are reported in supplementary methods (Supplementary material §1.1 and §1.2). 

Each proton 1D NMR spectrum, within the range of 0.2 to 10 ppm, was segmented 

into 0.02 ppm buckets 4 5. Spectra regions between 4.40 and 4.87 ppm (1D-CPMG), 4.40 and 
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4.80 ppm (1D-NOESY and 1D-diffusion), containing residual water signal, were removed. 

The total spectral area was calculated on the remaining 518 buckets for 1D-CMPG and 522 

buckets for 1D-NOESY and 1D-diffusion.  

2.4.3 Molecular features assignment and quantification 

Metabolites, lipoproteins, lipid fractions, and sub-fractions were assigned, identified, 

and quantified using the AVANCE IVDr (Clinical Screening and In Vitro Diagnostics (IVD) 

research with B.I. Methods, Bruker BioSpin)46. 

2.5 Statistical analysis 

2.5.1 Molecular features log-transformation and metabolite ratio calculation 

The n(n-1)/2 ratios among all n correctly quantified and assigned metabolites (with 

n=20) have been also calculated. 114 lipoproteins, 20 metabolites concentrations, and 190 

ratios of metabolites concentrations were transformed into logarithmic values using the 

formula: log2(x + 1), where x represents the amount of a metabolite, of a ratio, or of a 

lipoprotein quantified in a serum spectrum. These new 324 features were used in all the 

following data analyses. 

2.5.2 Exploratory analysis 

For a preliminary approach, an unsupervised multivariate analysis, Principal 

component analysis (PCA)47, was used on bucketed spectra matrices to detect the presence of 

any potential low-quality spectrum, outliers, and clusters.  

2.5.3 Supervised Multivariate analysis 

Supervised orthogonal projections to latent structures discriminant analysis (OPLS-

DA)48, cross-validated using Monte Carlo algorithm49, was applied for data reduction and 

classification of bucketed spectra; for different output models, confusion matrices and total 

accuracies were estimated using a mean of 100 runs of Monte Carlo algorithm.  

2.5.4 Univariate analysis 

The different distribution of each feature in the nonagenarian dimorphic sexual-

specific group was evaluated using the non-parametric Wilcoxon rank sum test50. To evaluate 

the probability that individual observations within one sex-related group are likely to be 

greater than the observations in the other sex-related group, the effect size, using Cliff's δ 

(delta) statistic51, was calculated. For each metabolic comparison, the magnitude of the 
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separations was considered using the following threshold classification: δ < 0.147 

“negligible”, δ < 0.33 “small”, δ < 0.474 “medium” and δ > 0.474 “large”52. To perform a 

descriptive analysis of sociodemographic, cognitive, and motor characteristics in the three 

principal groups (whole sample, women, and men), continuous variables were reported as 

mean ± standard deviation (SD); categorical and dichotomous variables were reported as 

absolute value frequency followed by percentage distribution.  

2.5.5 Logistic regression  

Logistic regression was performed to assess whether each measured feature, 

considered the dependent variable, was associated with specific motor and cognitive outcomes 

(Short Physical Performance Battery (SPPB), Time up and Go scores; Mini-Mental State 

Examination (MMSE), and Geriatric depression scale (GDS)), adjusted for appropriate 

confounding variables. For more details see §2.3. 

Results obtained were reported as odds ratio (OR), lower and upper confidence limits, 

P-value, and adjusted P-value using the Benjamini-Hochberg53 correction method based on 

false discovery rate (FDR). P-value < 0.01 was deemed statistically significant.  

2.5.6 Receiver Operating Characteristic curves (ROC) analysis 

Discriminant power of potential metabolite and/or lipoproteins biomarkers was 

evaluated by performing the receiver operating characteristics curve54(ROC) analyses, cross-

validated using the Leave One Out Cross-Validation (LOOCV)55 algorithm. In this case, a 

reference model which included only clinical variables potentially affecting the outcome was 

constructed. Then the reference model was compared to a second model in which two 

statistically significant metabolites highlighted by the logistic regression analysis were added 

to the reference model. The areas under the curve (AUC)56 of the two models were compared 

for a statistically significant increment using the AUC test. 

2.6 Software  

All statistical analyses were performed using R (version 4.0.3), open-source software 

for statistical management of data57. To perform ROC analysis “roc” function from the pROC54 

R package was used. 

3. Results and discussion  

3.1 Exploratory analysis of serum metabolomic profiles of nonagenarians 

Unsupervised multivariate analysis (PCA) was performed on bucketed 1D-CPMG, 

1D-NOESY, and 1D-diffusion experiments to obtain an overview of the variation observable 

in the spectra and to highlight the potential presence of bad quality samples, outliers, and 
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clusters (Figure 1). The sample coded “F_C_138” (a serum profile of a women subject) was 

an outlier in the PCA score plot and it was excluded after an appropriate check of the spectra. 

The presence of this outlier depends on the low-quality shimming of the sample. Using this 

exploratory, we observed that we are not able to observe clear discrimination between the two 

sexual dimorphic groups. 

3.2 Discrimination and sexual dimorphic metabolic differences in the nonagenarian 

cohort   

Orthogonal projections to latent structures discriminant analysis (OPLS-DA), a 

supervised statistical method, was built on bucketed 1D-CPMG, 1D-NOESY, and 1D-

diffusion experiments and was established to relate the metabolomic data to the gender classes. 

Due to the unbalanced number of women and men – 259 and 96 respectively –, the OPLS-DA 

Monte Carlo cross-validation was performed randomly by re-sampling 50 nonagenarian 

women and 50 nonagenarian men at each step. The models were performed on 1D-CPMG, 

1D-NOESY, and 1D-diffusion serum spectra, respectively. The average accuracies obtained 

for the correct identification of women were 69%, 65%, and 64% and for the correct 

identification of men were 72%, 69%, and 71%. The overall predictive accuracies of the model 

were 70%, 67%, and 68%, using, respectively, 1D-CPMG, 1D-NOESY, and 1D-diffusion 

spectra. In Figure 2 is reported the OPLD-DA score plot and the confusion matrices with the 

performance measures of the models are reported in Table 1.  

Interestingly, using a fingerprinting analytic approach, the discrimination of 

nonagenarian men and women is less strong (accuracy ~70%) than the same discrimination in 

the younger population (accuracy ~90%)58, even if still higher than that obtained for newborns 

(accuracy ~50%)59. This phenomenon is potentially connected with the remodeling, in an 

elderly population, of the overall metabolic and hormonal activity, generating a slight 

reduction in sex-dependent metabolic discrimination compared to an adult population. It is 

necessary to specify that this reduction does not affect the sex-dependent metabolic behavior 

as a whole but represents an age-derived global metabolic change-dependent similarity32,60,61.  

For a better understanding of metabolomic differences between the sex-specific 

nonagenarian groups, a pairwise Wilcoxon signed rank sum test was applied on 20 

metabolites, on 190 ratios, and on 7 main lipid parameters. 3 metabolites (creatine, glycine 

and leucine), 24 metabolite ratios (glutamic acid/glycine, glutamine/glycine, 

creatine/histidine, glycine/histidine, creatine/isoleucine, glycine/isoleucine, creatine/leucine, 

glycine/leucine, creatine/phenylalanine, glycine/phenylalanine, creatine/tyrosine, 
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glycine/tyrosine, creatine/valine, glycine/valine, creatine/acetic acid, glutamine/acetic acid, 

creatine/citric acid, glycine/citric acid, creatine/acetoacetic acid, glycine/acetoacetic acid, 

isoleucine/acetoacetic acid, leucine/acetoacetic acid, creatine/pyruvic acid, glycine/pyruvic 

acid) and 5 lipid parameters (cholesterol, LDL cholesterol, HDL cholesterol, ApoA1 and 

ApoB100) remains significantly different after P-value FDR correction. In Figures 3 and 

Figure 4, the statistically significant differentially distributed serum metabolites (individually 

and in ratio considered) and lipoproteins, with an adjusted P-value < 0.01, were, respectively, 

reported. The effect size, calculated using Cliff’s δ (delta) statistic, was also reported.  

The alterations in the ratios between two single metabolites may describe a 

perturbation or a fluctuation in terms of activity in pathways relevant to a certain specific 

phenotype. In this work, the pairwise metabolite ratios are considered potential biomarkers of 

age-related sex metabolic differences62,63.  

Interestingly, we observed that women nonagenarians tend to have higher levels of 

creatine serum concentration. The reduction of men's serum creatine in older muscle is 

congruent with research that describes how skeletal muscle becomes more oxidative with 

aging, observing a decreased reliance on glycolysis and lactate dehydrogenase activity64–66. 

Post-menopausal women tend to have lower levels of BCAAs (Branched-Chain Amino 

Acids), in particular, leucine and valine, considered separately and in ratio, depending 

probably on the reduction of Muscle Mass Protein Synthesis (MPS) activity 67–70. According 

to the literature71,72, could observe also higher levels in terms of concentration of glycine 

concentrations (separately and in ratio) in elderly women, compared with the serum values in 

men.  The biological motivation behind this difference related to sexual dimorphism in a 

nonagenarian population has yet to be deeply investigated. Probably, from current knowledge 

of molecular biology, glycine plays a fundamental role in counteracting cellular oxidative 

stress. It is known that glutathione, an important molecule that prevents cell damage due 

to oxidative stress, is composed of cysteine, glutamate, and glycine73. Reduction in glycine 

concentration directly determines and higher risk in elderly men being exposed to cell damage 

from oxidative stress68. 

Moreover, cholesterol, triglycerides, High-Density Lipoprotein (HDL), Low-Density 

Lipoprotein (LDL), apolipoprotein-A1, and apolipoprotein-B concentrations were higher in 

elderly women than men; this result, depends on changes in nutrient intakes, health status, and 

BMI levels74,75, that tends to be altered in the elderly female population.  

3.3 Potential biomarker discovery of elderly cognitive and motor impairment 

To predict the risk to increase and/or decrease cognitive and motor activities in the 

nonagenarian cohort, logistic regression analyses were performed considering metabolites, 

https://www.sciencedirect.com/topics/medicine-and-dentistry/glutathione
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ratios, and main lipid component concentrations. Four clinical parameters have been 

considered: MMSE score, to parametrize cognitive impairment, GDS score, to parametrize the 

presence or absence of depression status, SPPB value, to evaluate lower limb function, and 

Time up and Go score, to evaluate function with correlates to balance and fall risk. 

Supplementary Tables 1, 2, 3, and 4 show the socio-demographic, cognitive, and motor 

functionality variables in the whole sample, women, and men, associated, respectively, with 

cognitive functionality impairment (MMSE), elderly depression (GDS), limb function 

(SPPB), and elderly fall risk (Time up and Go). 

The logistic regression model, adjusted for age, education – both expressed in years – 

and gender shows that the fluctuations in terms of concentrations of phenylalanine and 

glucose, considered separately and/or related with other different metabolites, are significantly 

associated (P-value < 0.01) with the risk of cognitive impairment in whole samples enrolled 

and in nonagenarian women only (Table 2). In this case, no metabolites, ratios of metabolites, 

or lipids remain significant after correction for multiple testing, suggesting the existence of a 

statistically significant but not robust association. The same analysis was performed also 

considering the elderly depression status (Table 3). Threonine concentrations, considered 

separately and/or related to other metabolites, are significantly associated (P-value < 0.01) 

with the risk of depression in nonagenarian women only. As reported for MMSE, the 

associations observed are not statistically relevant after multiple corrections. In contrast, no 

significant metabolic associations with lower limb functionality, evaluated using the SPPB 

score, and with fall risk, evaluated using the Time up and Go score, were observed. No main 

lipid components were significantly associated with clinical parameters analyzed in this study. 

To evaluate whether the most relevant features highlighted by logistic regression could 

provide prognostic information about the reduction of cognitive function and increase of mood 

disorder, area under the curve (AUC) of receiver operating characteristic (ROC) curve 

analyses, cross-validated using Leave One Out Cross-Validation (LOOCV) algorithm, were 

performed. Firstly, a model including only clinical variables was built (age and educational 

status information for predicting cognitive disorder, and age, BMI, handgrip, MMSE score, 

and the number of family nuclei per sample for predicting depression disorder). These 

biomarker-free models were compared to the same models with the addition of selected 

features. In particular, log-transformed phenylalanine concentration and log transformed 

glutamine/glucose ratio in terms of concentrations were selected as potential predictors for 

MMSE Score, while log transformed threonine/citric acid and log transformed 

threonine/pyruvic acid ratios in terms of concentrations were selected as predictors for GDS 
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score. As shown in Figure 5, the ROC cross-validated analysis demonstrated that the addition 

of these potential biomarkers (model 2, red lines in Figure 5) to the base model (model 1, blue 

lines in Figure 5) improved the area under the curve of cognitive impairment model [model 1 

MMSE: AUC = 0.68 (95% CI: 0.61-0.75), model 2 MMSE: AUC = 0.75 (95% CI: 0.69-0.81), 

P-value = 0.003] and (slightly) the area under the curve of mood disorder model [model 1 

GDS: AUC = 0.63 (95% CI: 0.54-0.71), model 2 GDS: AUC = 0.68 (95% CI: 0.59-0.76, P-

value = 0.05)]. 

It is demonstrated that alteration in glucose and glutamate-glutamine homeostasis and 

metabolism is associated with an increase in the probability of developing brain pathologies, 

in particular dementia76–78, confirming the result observed in this work. Furthermore, high 

levels of phenylalanine, also, could alter brain functionality in several ways, including 

competition in situ with the competition with other large neutral amino acids (LNAAs) for 

transport at the blood-brain barrier79, decreased brain protein synthesis, and increased myelin 

turnover 80,81. Depression disorder is associated with alteration of pyruvate metabolism, via the 

tricarboxylic acid (TCA) cycle, linked to the metabolism of amino acids (in particular 

threonine), as observed also in our study82–84.  

 

4. Conclusion 

In this study we first addressed the problem of investigating the serum metabolic profiles of a 

nonagenarian population, living in an enclosed area – in Tuscany –, using an NMR-based 

metabolomics approach. Firstly, we examined the sex effect on metabolic profiles, and we 

observed that alteration and decrease in terms of metabolic and hormonal activity in elderly 

people influenced the ability to discriminate between the two sex-specific subgroups. 

Postmenopausal women had a greater serum concentration of lipid main-fraction, creatine, 

glycine, and less serum concentration of BCAAs (leucine and valine), considered separately 

and in ratio, than post-andropausal men. These results are in line with the decreasing MPS in 

women. Moreover, glycine reduction plays a relevant role in increasing the risk of oxidative 

stress in nonagenarian men. Secondly, the aim was to investigate the potential association 

between metabolites, ratio metabolites, and main lipid parameters and cognitive and motor 

activity reduction. We discovered that phenylalanine and glutamine/glucose ratio were 

associated with cognitive impairment, suggesting their role in correctly predicting the 

pathology progress. Threonine/citric acid and threonine/pyruvic acid ratios were associated 

with geriatric depression, with a modest, but statistically significant, contribution. No 

metabolic associations were observed with elderly motor impairments. 
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FIGURES 

 

Figure 1: Principal component analysis (PCA) performed on serum nonagenarians 1H NMR spectra. Each dot 

represents a single NMR serum spectrum: women's samples are represented with red dots and men's samples with 

blue dots. A) analysis performed on bucketed 1D-CPMG spectra; B) analysis performed on bucketed 1D-NOESY 

spectra; C) analysis performed on bucketed 1D-diffusion spectra. 

 

 

Figure 2: Supervised OPLS-DA score plots. Each dot represents a single NMR serum spectrum: a balanced group 

of 50 women samples was represented with red dots and 50 men with blue dots. A) analysis performed on bucketed 

1D-CPMG spectra; B) analysis performed on bucketed 1D-NOESY spectra; C) analysis performed on bucketed 

1D-diffusion spectra.  
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Figure 3: Metabolites and ratios of metabolites logarithmic concentrations in nonagenarian women and men. 

Different distribution of metabolites and metabolites ratios in women (red boxplot) and men (blue boxplot); for 

each comparison the adjusted P-value and the effect size were calculated using Wilcoxon rank sum-test and Cliff’s 

δ (delta) statistic algorithm, respectively. 
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Figure 4: Main lipid parameters logarithmic concentrations in nonagenarian women and me. Different 

distribution of main lipids components in women (red boxplot) and men (blue boxplot); for each comparison the 

adjusted P-value and the effect size were calculated using Wilcoxon rank sum-test and Cliff’s δ (delta) statistic 

algorithm, respectively. 
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TABLES 

 

Table 1: 100 times re-sampling average confusion matrices and accuracy values of OPLS-DA cross-validate 

models performed on: A) 1D-CPMG nonagenarians serum spectra; B) 1D-NOESY nonagenarians serum spectra; 

C) 1D-diffusion nonagenarians serum spectra. 
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Table 2: Logistic regression model adjusted for age (years), education (years), and gender showing the association 

of log-transformed metabolites and ratio concentrations with MMSE. 
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Table 3: Logistic regression model adjusted for age (years), BMI (kg/m²), Handgrip (kg), living with (number of 

family nuclei), MMSE-score, and gender showing the association of log-transformed metabolites concentrations 

and ratios with GDS. 
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Supplementary Tables 

 

Molecular features Compound 

CHEBI codes 

Choline 15354 

Creatinine 16737 

e-Caprolactam 28579 

DL-2-Aminooctanoic acid 75145 

Γ-Caprolactone 85235 

L-Proline 17203 

Betaine 17750 

Salicylic acid 16914|15365 

Theobromine 28946 

Creatine 16919 

L-Leucine 15603|18347 

Hypoxanthine 17368 

3-Pyridylacetic acid|trigonelline 86390|18123 

Stachydrine 35280 

Benzenebutanoic acid 41500 

Indole-3-carbinol 24814 

Acetaminophen 46195 

2-Ketohexanoic acid 17308 

S-(4,5-Dihydro-2-methyl-3-furanyl) ethanethioate 131456 

L-Carnitine 16347 

L-Phenylalanine 17295 

Uric acid 17775 

Indoleacetic acid 16411 

Paraxanthine|Theophylline 25858|28177 

L-Tyrosine|o-Tyrosine 17895|89461 

Naproxen 7476 

L-Tryptophan 16828 

3-Indolepropionic acid 43580 

1,3,7-Trimethyluric acid 691622 

Caffeine 27732 

Hippuric acid 18089 

L-Acetylcarnitine 57589 

Indolelactic acid 24813 

Pantothenic acid 7916 

Flavone 42491 

Butyryl-L-carnitine|Isobutyryl-L-carnitine 21949|84838 
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Geranyl acetoacetate 85255 

Dodecanedioic acid 4676 

5a-Androst-3-en-17-one 86393 

Propranolol 8499 

γ-Glutamyl-leucine 68433 

Myristic acid 28875 

Α-Linolenic acid 27432 

L-Aspartyl-L-phenylalanine 73830 

Pentadecanoic acid 42504 

D-erythro-sphingosine 46964 

Oleamide 116314 

Piperine 28821 

L-Octanoylcarnitine 18102 

Palmitoleic acid 28716 

2,6 dimethylheptanoyl carnitine 84095 

4-Androsten-11Beta-ol-3,17-dione 27967|27967 

Arachidonic acid 15843 

Heptadecanoic aicd 32365 

Phenylalanylphenylalanine 72723 

Decanoyl-L-carnitine 28717 

Fatty acid C20:5 methyl ester 91031 

Linoleic acid 17351 

Arachidonic acid methyl ester 78033 

MAG(14:0) 87249 

10-nitro-9E-octadecenoic acid|9-nitro-9E-octadecenoic 

acid 86285|86329 

Fatty acid C22:6 36005 

4,8 dimethylnonanoyl carnitine 63874 

Arachidonic acid ethyl ester 84873 

MAG(18:0) 87255 

C12 Carnitine 73054 

Corticosterone 16827 

MAG(16:1) 87253 

MAG(16:0) 87251 

MAG(18:3) 87258 

Treprostinil 50861 

Prostaglandin J2 27485 

Hyodeoxycholic acid 52023 

Deoxycholic acid 28834 

Cortisol 17650 

6-hydroxy-5-cholestanol|cholesterol |16113 

cis-5-Tetradecenoylcarnitine 73060 

Cholic acid 16359 
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MAG(18:2) 87257 

MAG(18:1) 87256 

Stearic acid 28842 

MAG(20:5) 86397 

C16 Carnitine 73067 

7-Ketocholesterol 64294 

17-phenyl trinor Prostaglandin E2|17-phenyl trinor 

Prostaglandin D2 87820|87821 

sodium glycochenodeoxycholate 87818 

Deoxycholic acid glycine conjugate 27471 

Chenodeoxycholic acid 16755 

Linoleyl carnitine 73072 

Oleoyl-L-carnitine hydrochloride 91318 

Α-Tocopherol 22470 

3a,6b,7b-Trihydroxy-5b-cholanoic acid 81298 

Barogenin 86509 

Γ-Tocopherol 18185 

Dodecanoic acid 30805 

dehydroepiandrosterone sulfate 91028 

LPE(16:0) 90452 

1-palmitoyl-2-hydroxy-sn-glycero-3-PE 73134 

GCA 17687 

1-O-1'-(Z)-octadecenyl-2-hydroxy-sn-glycero-3-PE 87823 

LPE(18:2) 91296 

PC(15:2/0:0)|PE(18:2/0:0) 131590|91296 

LPE(18:1) 64575 

1-oleoyl-2-hydroxy-sn-glycero-3-PE 75168 

LPE(18:0) 64576 

1-Stearoyl-2-Hydroxy-sn-Glycero-3-PE 83047 

2a-(3-Hydroxypropyl)-1a,25-dihydroxy-19-norvitamin 

D3 91006 

PC(37:5)|PE(40:5) 85767|71745 

LPC(0:0/16:1) 91298 

LPC(16:1/0:0) 91305 

LPC(0:0/16:0) 91297 

1-palmitoyl-2-hydroxy-sn-glycero-3-PC 72998 

LPE(20:4) 64569 

PC(O-18:1/0:0)|PC(P-18:0/0:0) 64591|88779 

LPC(18e:0/0:0) 75216 

Lyso-PAF C-18 91144 

PS(18:0) 131443 
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LPC(18:3) 64565 

LPC(0:0/18:2) 91302 

LPC(18:2/0:0) 91309 

LPC(18:1) 64566 

1-oleoyl-2-hydroxy-sn-glycero-3-PC 28610 

LPC(0:0/18:0) 91299 

1-stearoyl-2-hydroxy-sn-glycero-3-PC 73858 

LPC(0:0/20:4) 91303 

LPC(20:4/0:0) 91310 

LPC(20:3) 64481 

LPC(20:4) 64481 

LPC(20:2) 67056 

LPC(20:1) 67057 

3-cis-Hydroxy-b,e-Caroten-3'-one HMDB02890 

Palmitic acid 15756 

1-arachidoyl-2-hydroxy-sn-glycero-3-PC 74968 

LPC(0:0/20:5) 91304 

LPC(20:5/0:0) 91311 

LPC(22:7) 74349 

LPC(22:6) 74349 

LPC(22:5) 74349 

LPC(22:4) 91312 

Biliverdin hydrochloride b 91027 

Biliverdin hydrochloride a 91027 

Biliribin I 16990 

Biliribin II 16990 

D-Urobilinogen|I-Urobilin 4260|36378 

cis/trans-Oleic acid 36021 

1-linoleoyl-2-stearoyl-sn-glycerol 86337 

1-vaccenoyl-2-palmitoyl-sn-glycerol 86346 

Ceramide PE(33:1)|SPM(30:1) 86515|72505 

Ceramide PE(34:1) 86517 

Ceramide PE(35:2)|SPM(32:2) 86523|72510 

PC(28:2) 65292 

Ceramide PE(35:1)|SPM(32:1) 86519|64586 

PC(28:1) 65293 

Ceramide PE(36:2) 86525 

PC(29:1) 131438 

Ornithine 18257 

Ceramide PE(37:2)|SPM(34:2) 86527|64587 

PC(30:2) 65301 

N-palmitoyl-D-erythro-sphingosylphosphorylcholine 78646 

PC(30:1) 65302 
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Ceramide PE(38:2) 86968 

SPM(d18:2/18:1) 105799 

N-(9Z-octadecenoyl)-sphing-4-enine-1-PC 84487 

1,2-dipalmitoleoyl-sn-glycero-3-PC 83717 

N-(octadecanoyl)-sphing-4-enine-1-PC 83358 

PC(32:1) 66849 

1,2-dipalmitoyl-sn-glycero-3-PC 72999 

1,2-dilinoleoyl-sn-glycero-3-PC 42027 

PC(33:1)|PE(36:1) 86472|71727 

PC(34:5)|PE(37:5) 66854|131584 

PC(34:4) 64423 

PC(34:3) 64424 

PC(34:2)|PE(37:2) 64516|131583 

1-oleoyl-2-palmitoyl-sn-glycero-3-PC 74667 

PC(34:0) 66855 

C16-20:5 PC unknown 

PC(35:4)|PE(38:4) 91322|71737 

1-stearoyl-2-arachidonoyl-sn-glycero-3-PE|C15-20:4 PC 79110|86344 

PC(35:3)|PE(38:3) 131439|71736 

PC(35:2)|PE(38:2) 85766|71735 

PC(34:3)|PE(37:3) 64424|131581 

PC(36:6) 66856 

PC(36:5) 64504 

1,2-dilinoleoyl-sn-glycero-4-PC 42027 

PC(36:3)|PE(39:3) 64523|131585 

SPM(40:2) 72529 

1,2-dioleoyl-sn-glycero-3-PC|1,2-dipetroselenoyl-sn-

glycero-3-PC 74669|86330 

PC(36:1) 66857 

SPM(41:2) 85762 

PC(38:7) 64498 

1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-PC 74963 

PC(38:5)|PE(41:5) 64525|131586 

PC(38:4) 64526 

PC(38:3) 64446 

PC(38:2) 66859 

N-(15Z-tetracosenoyl)-sphinganine-1-PC 91146 

PC(40:6) 64431 

SPM(42:3) 72535 

LacCer(d18:1/14:0) 91034 

PC(40:5) 64524 
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PC(42:7) 131440 

Lactosyl ceramide(d18:1/16:0) 84758 

 

Table S1: List of metabolites and lipids tested and CHEBI codes. Abbreviation: LPC = Lysophosphatidylcholine; 

LPE = lysophosphatidylethenolamine; PC = phosphatidylcholine; PE = phosphatidylethanolamine; MAG = 

monoacylglycerol; GCA = glycocholic acid; SPM = sphingomyelin. See Figure 2 for an overview of the statistical 

procedure. 

 

Women (n1=804) Men (n2=1078) 

Group 

Age range 

(min – max) 

years 

Age mean±sd 

years 

n. individuals 

per group 
Group 

Age range 

(min- max) 

years 

Age mean±sd 

years 

n. individuals 

per group 

W1 48.4-55.1 51.8±2.1 41 M1 47.6-53.8 51.3±1.5 54 

W2 55.1-58.6 57.1±1.1 40 M2 53.8-57.8 55.9±1.2 54 

W3 58.6-60.7 59.8±0.6 40 M3 57.8-60.2 59.2±0.7 54 

W4 60.7-62.5 61.5±0.5 40 M4 60.2-62.7 61.5±0.7 54 

W5 62.5-64.3 63.3±0.5 40 M5 62.7-64.4 63.6±0.5 54 

W6 64.3-65.1 64.8±0.2 40 M6 64.4-65.2 64.8±0.2 55 

W7 65.1-65.5 65.3±0.1 42 M7 65.2-65.8 65.4±0.2 52 

W8 65.5-66.1 65.8±0.2 39 M8 65.8-66.4 66.0±0.2 54 

W9 66.1-66.8 66.4±0.2 40 M9 66.4-67.5 67.0±0.3 54 

W10 66.8-67.6 67.2±0.2 40 M10 67.5-68.6 68.1±0.3 54 

W11 67.6-68.9 68.2±0.4 40 M11 68.6-69.7 69.1±0.3 54 

W12 68.9-69.9 69.4±0.3 40 M12 69.7-70.6 70.2±0.3 54 

W13 69.9-70.8 70.4±0.3 40 M13 70.6-71.5 71.1±0.3 54 

W14 70.8-72.5 71.6±0.5 41 M14 71.5-73.1 72.3±0.5 53 

W15 72.5-74.4 73.5±0.5 40 M15 73.1-74.5 73.9±0.4 54 
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W16 74.4-76.0 75.1±0.4 40 M16 74.5-75.7 75.1±0.3 54 

W17 76.0-77.8 76.9±0.5 40 M17 75.7-77.2 76.5±0.4 54 

W18 77.8-80.3 78.9±0.7 40 M18 77.2-79.2 78.1±0.5 54 

W19 80.3-84.2 82.2±1.1 40 M19 79.2-81.7 80.3±0.7 54 

W20 84.2-93.9 87.0±2.4 41 M20 81.7-93.3 85.0±2.9 54 

Table S2: Characteristics of the 20 groups resulting from the stratification of subjects by age using the 20 quantiles 

of the age distribution of women and men.  For each group, the number of subjects per group, age-range, and age 

mean±standard deviation were reported. See figure 1 for a graphical illustration of the stratification procedure. 
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Association of abundance of molecular features a with age 

W
o

m
en

 (n
W

=
8

0
4

) 

Molecular features Correlation 

P-value P-value 

adjusted 

Validation 

(>50%) 

1. C-16 Carnitine 0.79 7x10-5 9x10-4 79 

2. Pentadecanoic acid 
0.58 

7x10-5 9x10-4 22 

3. Palmitic acid 
0.55 

8x10-5 9x10-4 41 

4. Oleoyl-L-carnitine hydrochloride 
0.72 

8x10-5 9x10-4 32 

5. Heptadecanoic acid 
0.67 

8x10-5 9x10-4 32 

6. Myristic acid 
0.67 

9x10-5 0.001 34 

7. cis/trans-Oleic acid 
0.67 

9x10-5 0.001 42 

8. cis-5-Tetradecenoylcarnitine 
0.57 

9x10-5 0.001 20 

9. Propranolol 
0.52 

1x10-4 
0.001 

10 

10. Choline 
0.51 

1x10-4 
0.001 

15 

11. Linoleyl carnitine 
0.50 

1x10-4 
0.001 

26 

12. Corticosterone 
0.58 

2x10-4 
0.003 

44 

13. L-Acetylcarnitine 
0.57 

2x10-4 0.003 36 

14. Dodecanoic acid 
0.57 

2x10-4 0.003 29 

15. 10-nitro-9E-octadecenoic acid|9-

nitro-9E-octadecenoic acid 
0.55 

2x10-4 0.003 41 

16. Barogenin 
0.35 

3x10-4 0.003 37 

17. Dodecanedioic acid 
0.52 

3x10-4 0.003 40 

18. PC(15:2/0:0)|PE(18:2/0:0) 
0.52 

4x10-4 0.003 21 

19. LPC(20:1) 
0.52 

4x10-4 0.003 17 

20. 5a-Androst-3-en-17-one 
-0.52 

4x10-4 0.003 30 

21. MAG(16:0) 
0.42 

4x10-4 0.003 12 

22. 4,8 dimethylnonanoyl carnitine 
0.51 

4x10-4 0.003 32 

23. C12 Carnitine 
0.51 

4x10-4 0.003 39 

24. 2a-(3-Hydroxypropyl)-1a,25-

dihydroxy-19-norvitamin D3 
0.51 

4x10-4 0.003 22 
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25. gamma-Glutamyl-leucine 
0.50 

4x10-4 0.003 19 

26. 7-Ketocholesterol 
0.49 

4x10-4 0.003 16 

27. 3-Indolepropionic acid 
-0.50 

4x10-4 0.003 26 

28. Naproxen 
-0.49 

4x10-4 0.003 23 

29. Ceramide PE(38:2) 
0.57 

4x10-4 0.003 20 

30. Theobromine 
0.47 

4x10-4 0.003 5 

31. Paraxanthine|Theophylline 
-0.46 

5x10-4 0.003 6 

32. PC(28:1) 
0.46 

5x10-4 0.003 11 

33. Ceramide PE(35:1)|SPM(32:1) 
0.46 

5x10-4 0.003 25 

34. Deoxycholic acid glycine conjugate 
0.45 

6x10-4 0.003 27 

35. Ceramide PE(36:2) 
0.44 

6x10-4 
0.003 

36 

36. MAG(14:0) 
0.48 

7x10-4 0.004 28 

37. Uric acid 
0.43 

7x10-4 0.004 15 

38. 1-Stearoyl-2-Hydroxy-sn-Glycero-3-

PE 
0.43 

8x10-4 0.004 18 

39. sodium glycochenodeoxycholate 
0.42 

8x10-4 0.004 22 

40. L-Proline 
0.42 

9x10-4 
0.004 

36 

41. Caffeine 
-0.41 

9x10-4 
0.004 

45 

42. Indole-3-carbinol 
0.41 

9x10-4 
0.004 

42 

43. L-Octanoylcarnitine 
0.40 

0.001 
0.008 

31 

44. Geranyl acetoacetate 
0.40 

0.001 
0.008 

22 

45. L-Leucine|L-Norleucine 
0.40 

0.001 
0.008 

29 

46. SPM(41:2) 
-0.39 

0.002 
0.01 

37 

47. 1-palmitoyl-2-hydroxy-sn-glycero-3-

PE 
0.39 

0.002 

0.01 

42 

48. Biliverdin hydrochloride a 
-0.39 

0.002 
0.01 

24 

49. Linoleic acid 0.66 0.002 0.01 59 

50. -Linolenic acid 0.65 
0.003 

0.01 
66 
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51. Butyryl-L-carnitine|Isobutyryl-L-

carnitine 
0.38 

0.004 

0.02 

23 

52. Cholic acid 
0.38 

0.004 0.02 4 

53. Deoxycholic acid 
0.38 

0.004 0.02 16 

54. LPC(18e:0/0:0) 
0.38 

0.005 0.02 21 

55. LPE(18:1) 
0.38 

0.005 0.02 12 

56. LPE(18:2) 
0.38 

0.005 0.02 10 

57. PC(30:1) 
0.38 

0.005 0.02 37 

58. Creatine 
0.38 

0.005 0.02 22 

59. 1,3,7-Trimethyluric acid 
0.38 

0.005 0.02 6 

60. PC(42:7) 
0.37 

0.006 0.02 22 

61. Decanoyl-L-carnitine 0.37 0.006 0.02 15 

62. Stearic acid 0.37 0.007 0.02 30 

63. Palmitoleic acid 0.37 0.007 0.02 17 

64. N-palmitoyl-D-erythro-

sphingosylphosphorylcholine 
0.36 

0.007 0.02 8 

65. Lactosyl ceramide(d18:1/16:0) 
0.36 

0.008 0.02 19 

66. Treprostinil 
0.36 

0.008 0.02 22 

67. PC(29:1) 
0.36 

0.008 0.02 19 

68. 4-Androsten-11Beta-ol-3,17-

dione|11-Hydroxy-4-androstene-3,17-

dione 
-0.36 

0.008 0.02 20 

69. Ceramide PE(37:2)|SPM(34:2) 
0.36 

0.009 0.02 20 

70. N-(octadecanoyl)-sphing-4-enine-1-

PC 
0.36 

0.009 0.02 2 

71. PC(37:5)|PE(40:5) 
0.35 

0.009 0.02 14 

72. Hyodeoxycholic acid 
0.35 

0.009 0.02 12 

73. Pantothenic acid 
0.34 

0.009 0.02 13 

74. 1,4-dipalmitoyl-sn-glycero-3-PC 
0.34 

0.009 0.02 12 

75. LPE(16:0) 
0.34 

0.009 0.02 5 
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76. MAG(18:0) 0.33 0.01 0.02 10 

77. Chenodeoxycholic acid 0.33 0.01 0.02 11 

78. 2,6 dimethylheptanoyl carnitine 0.33 0.01 0.02 6 

79. SPM(42:3) 
-0.33 

0.01 0.02 2 

80. Fatty acid C22:6 0.33 0.01 0.02 2 

81. Ornithine 0.33 0.01 0.02 1 

82. PC(30:2) 0.33 0.01 0.02 16 

83. Ceramide PE(34:1) 
0.31 

0.01 0.02 14 

84. N-(15Z-tetracosenoyl)-sphinganine-

1-PC 
-0.31 

0.02 

0.04 

13 

85. 1-stearoyl-2-arachidonoyl-sn-glycero-

3-PE|C15-20:4 PC 
-0.31 

0.02 0.04 18 

86. LPE(18:0) 0.31 0.02 0.04 22 

87. MAG(18:1) 0.31 0.02 0.04 29 

88. Lyso-PAF C-18 
0.30 

0.02 0.04 22 

89. Prostaglandin J2 
-0.30 

0.02 0.04 12 

90. LPE(20:4) 0.30 0.02 0.04 36 

91. PC(34:3) 0.30 0.02 0.04 17 

92. 2-Ketohexanoic acid 
-0.28 

0.02 0.04 15 

93. DL-2-Aminooctanoic acid 
0.28 

0.02 0.04 10 

94. LacCer(d18:1/14:0) 
0.28 

0.02 0.04 4 

95. Piperine 
-0.27 

0.02 0.04 13 

96. 1,2-dilinoleoyl-sn-glycero-3-PC 
-0.27 

0.03 
0.06 

2 

97. D-Urobilinogen|I-Urobilin 
0.27 

0.03 
0.06 

11 

98. C16-20:5 PC 
-0.27 

0.03 
0.06 

2 

99. Ceramide PE(33:1)|SPM(30:1) 0.26 0.03 
0.06 

12 

100. D-erythro-sphingosine 0.26 0.03 
0.06 

26 
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101. 3a,6b,7b-Trihydroxy-5b-cholanoic 

acid 
0.26 

0.03 

0.06 

29 

102. LPC(20:4/0:0) 
-0.25 

0.04 
0.08 

14 

103. PC(35:3)|PE(38:3) 
0.25 

0.04 
0.08 

17 

104. LPC(16:1/0:0) 
-0.24 

0.05 
0.09 

11 

105. PC(O-18:1/0:0)|PC(P-18:0/0:0) 
0.24 

0.05 0.09 11 

106. 3-cis-Hydroxy-b,e-Caroten-3'-one -0.23 0.05 0.09 3 

107. PS(18:0) 0.23 0.05 0.09 5 

108. Acetaminophen 0.23 0.05 0.09 19 

109. LPC(0:0/16:0) 
0.23 

0.05 0.09 2 

110. Arachidonic acid 0.22 0.05 0.09 17 

111. Biliribin I -0.22 0.05 0.09 25 

112. Cortisol 0.22 0.05 0.09 12 

113. MAG(18:3) 0.22 0.05 0.09 1 

114. Glycocholic acid 0.22 0.05 0.09 1 

115. LPC(20:3) 0.22 0.05 0.09 3 

116. Indolelactic acid 0.22 0.06 
0.10 

5 

117. PC(38:7) 
-0.22 

0.06 0.10 5 

118. 1-palmitoyl-2-hydroxy-sn-glycero-3-

PC 

0.21 0.06 0.10 1 

119. Hippuric acid 0.21 0.07 
0.12 

1 

120. MAG(20:5) 0.21 0.07 
0.12 

1 

121. 1,3-dipalmitoleoyl-sn-glycero-3-PC 0.21 0.08 
0.13 

15 

122. Biliribin II 
-0.21 

0.08 
0.13 

26 

123. 3-Pyridylacetic acid|trigonelline 
-0.20 

0.09 
0.14 

4 

124. PC(38:4) 
-0.20 

0.09 0.14 6 

125. Gamma-Tocopherol 0.20 0.09 0.14 12 

126. MAG(18:2) 0.20 0.09 0.14 14 

127. 1-arachidoyl-2-hydroxy-sn-glycero-3-

PC 

0.20 0.10 

0.16 

14 
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128. PC(34:4) 
-0.20 

0.10 0.16 2 

129. PC(36:5) 
-0.19 

0.10 0.16 2 

130. Creatinine 0.19 0.10 0.16 3 

131. N-(9Z-octadecenoyl)-sphing-4-enine-

1-PC 

0.19 0.11 

0.17 

15 

132. S-(4,5-Dihydro-2-methyl-3-furanyl) 

ethanethioate 
-0.18 

0.11 0.17 2 

133. SPM(d18:2/18:1) 
0.18 

0.11 0.17 15 

134. LPC(0:0/16:1) 
-0.17 

0.12 
0.18 

9 

135. 6-hydroxy-5-cholestanol|cholesterol 
-0.17 

0.12 0.18 10 

136. LPC(20:3) 0.17 0.12 0.18 13 

137. Alpha-Tocopherol -0.17 0.13 
0.19 

14 

138. SPM(40:2) -0.17 0.13 0.19 16 

139. LPC(18:3) 
0.16 

0.13 0.19 2 

140. 1,2-dilinoleoyl-sn-glycero-3-PC 
0.16 

0.14 
0.20 

4 

141. PC(38:2) 
-0.16 

0.14 
0.20 

5 

142. LPC(0:0/20:4) 
-0.16 

0.15 
0.21 

13 

143. 1-palmitoyl-2-docosahexaenoyl-sn-

glycero-3-PC 
0.16 

0.15 

0.21 

21 

144. PC(36:1) 
-0.15 

0.16 
0.22 

12 

145. Arachidonic acid ethyl ester 
0.15 

0.16 
0.22 

10 

146. 1-stearoyl-2-hydroxy-sn-glycero-3-

PC 
0.14 

0.17 

0.23 

8 

147. Oleamide 0.14 0.17 
0.23 

9 

148. PC(35:2)|PE(38:2) 0.14 0.17 
0.23 

9 

149. 1-vaccenoyl-2-palmitoyl-sn-glycerol 0.14 0.18 
0.24 

7 

150. 1,2-dioleoyl-sn-glycero-3-PC|1,2-

dipetroselenoyl-sn-glycero-3-PC 
-0.13 

0.19 

0.25 

5 

151. Arachidonic acid methyl ester 
-0.13 

0.19 
0.25 

10 
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152. LPC(0:0/18:0) 
0.13 

0.20 
0.26 

10 

153. LPC(22:4) 
-0.12 

0.20 
0.26 

12 

154. PC(34:3)|PE(37:3) 
-0.12 

0.20 
0.26 

4 

155. PC(33:1)|PE(36:1) 
0.12 

0.21 
0.27 

2 

156. MAG(16:1) 0.11 0.21 
0.27 

1 

157. Indoleacetic acid 0.10 0.25 
0.32 

2 

158. PC(40:6) 
0.10 

0.25 0.32 15 

159. Hypoxanthine 
-0.11 

0.25 0.32 1 

160. 1-O-1'-(Z)-octadecenyl-2-hydroxy-

sn-glycero-3-PE 
0.20 

0.27 

0.34 

1 

161. LPC(20:2) 
0.20 

0.27 
0.34 

14 

162. PC(38:5)|PE(41:5) 
-0.19 

0.33 
0.41 

6 

163. Flavone 
-0.18 

0.35 
0.43 

4 

164. L-Tryptophan 0.19 0.35 
0.43 

4 

165. 17-phenyl trinor Prostaglandin E2|17-

phenyl trinor Prostaglandin D2 

0.18 0.35 0.43 10 

166. PC(32:1) 0.18 0.35 0.43 5 

167. LPC (22:5) 
-0.18 

0.38 
0.46 

5 

168. e-Caprolactam 
0.18 

0.39 
0.47 

9 

169. L-Phenylalanine 
-0.17 

0.40 
0.48 

2 

170. Benzenebutanoic acid 0.16 0.40 0.48 10 

171. Salicylic acid|Aspirin 0.16 0.41 0.48 1 

172. Phenylalanine 
0.16 

0.43 
0.51 

15 

173. Stachydrine 
-0.15 

0.45 
0.52 

13 

174. dehydroepiandrosterone sulfate 
0.10 

0.45 
0.52 

2 

175. LPC(22:5) 
0.17 

0.50 
0.58 

1 

176. LPC(20:5/0:0) 
0.10 

0.55 
0.63 

0 

177. PC(36:6) 
0.14 

0.58 
0.66 

1 

178. 1-oleoyl-2-hydroxy-sn-glycero-3-PC 
0.17 

0.59 
0.67 

6 
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179. -Caprolactone 
0.14 

0.62 
0.70 

6 

180. L-Carnitine 
0.11 

0.63 
0.70 

8 

181. PC(36:3)|PE(39:3) 
-0.29 

0.73 
0.81 

6 

182. 1-oleoyl-2-hydroxy-sn-glycero-3-PE 
0.29 

0.74 
0.82 

1 

183. LPC (18:1) 
0.29 

0.77 
0.85 

10 

184. 1-oleoyl-2-palmitoyl-sn-glycero-3-PC 
-0.29 

0.78 
0.86 

3 

185. L-Tyrosine|o-Tyrosine 
0.28 

0.79 
0.86 

2 

186. PC(34:2)|PE(37:2) 
-0.11 

0.80 
0.87 

1 

187. Betaine 
-0.10 

0.82 
0.88 

13 

188. PC(34:5)|PE(37:5) 
0.17 

0.84 
0.90 

12 

189. 1-linoleoyl-2-stearoyl-sn-glycerol 
-0.15 

0.85 0.90 14 

190. PC(34:0) 
-0.15 

0.85 0.90 7 

191. L-Aspartyl-L-phenylalanine 
0.13 

0.85 0.90 1 

192. LPC(0:0/20:5) 
0.16 

0.86 
0.91 

1 

193. LPC(0:0/18:2) 
-0.14 

0.8 0.91 12 

194. PC(35:4)|PE(38:4) 
-0.13 

0.87 0.91 1 

195. PC(40:5) 
0.12 

0.87 0.91 2 

196. LPC(22:5) 
0.11 

0.90 
0.92 

4 

197. LPC(18:2/0:0) 
-0.09 

0.90 
0.92 

10 

198. Fatty acid C20:5 methyl ester 
0.08 

0.91 
0.93 

1 

199. Biliverdin hydrochloride b 
-0.06 

0.91 0.93 1 

200. PC(28:2) 
0.05 

0.92 0.93 1 

201. PC(38:3) 
0.05 

0.92 0.93 1 

202. Ceramide PE(35:2)|SPM(32:2) 
-0.10 

0.95 
0.97 

2 

M
en

 (n
M

=
1
0

7
8

) 

1. 1,2-dipalmitoleoyl-sn-glycero-3-PC -0.78 9x10-5 0.005 
6 

2. PC(34:4) -0.76 9x10-5 0.005 10 

3. PC(34:3)|PE(37:3) -0.76 9x10-5 0.005 18 
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4. Hippuric acid 0.74 9x10-5 0.005 3 

5. MAG(18:0) -0.65 2x10-4 
0.005 53 

6. 1-palmitoyl-2-hydroxy-sn-glycero-3-

PC -0.67 

2x10-4 0.005 58 

7. PC(38:7) -0.75 2x10-4 0.005 20 

8. 2-Ketohexanoic acid -0.70 3x10-4 
0.006 

27 

9. LPC(16:1/0:0) -0.67 3x10-4 
0.006 2 

10. LPC(0:0/16:0) -0.69 3x10-4 0.006 1 

11. Indole-3-carbinol  0.67 4x10-4 0.006 46 

12. PC(38:3) 0.63 4x10-4 0.006 37 

13. PS(18:0) -0.63 4x10-4 0.006 39 

14. LPC(0:0/18:0) -0.65 5x10-4 
0.008 

62 

15. LPC(22:5) -0.63 5x10-4 0.008 44 

16. PC(36:6) -0.62 5x10-4 0.008 48 

17. LPC(0:0/16:1) -0.59 5x10-4 0.008 42 

18. LPC(18:1) -0.62 8x10-4 0.008 44 

19. LPC(20:3) -0.62 8x10-4 0.008 6 

20. LPC(20:1) -0.61 8x10-4 0.008 38 

21. PC(36:5) -0.61 0.001 
0.008 10 

22. 1,2-dilinoleoyl-sn-glycero-3-PC -0.62 0.001 
0.008 20 

23. PC(36:3)|PE(39:3) -0.62 0.001 
0.008 15 

24. Indoleacetic acid 0.60 0.001 
0.008 19 

25. MAG(16:0) -0.58 0.002 0.01 
22 

26. LPC(22:4) -0.59 0.002 
0.01 19 

27. PC(34:5)|PE(37:5) -0.60 
0.002 

0.01 22 

28. LPC(0:0/20:4) -0.57 0.002 
0.01 3 

29. Corticosterone 
-0.56 0.002 

0.01 20 

30. PC(38:4) 
-0.53 0.002 

0.01 19 

31. PC(32:1) 
-0.53 0.002 

0.01 25 
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32. Decanoyl-L-carnitine 
0.53 0.002 

0.01 41 

33. LPC(20:4/0:0) 
-0.53 0.002 

0.01 32 

34. Biliverdin hydrochloride a 
-0.53 0.002 

0.01 6 

35. Geranyl acetoacetate 
-0.52 0.002 

0.01 9 

36. Arachidonic acid ethyl ester 
-0.52 0.002 

0.01 18 

37. PC(34:2)|PE(37:2) 
-0.52 0.002 

0.01 17 

38. MAG(18:1) 
-0.52 0.002 

0.01 25 

39. 4-Androsten-11Beta-ol-3,17-

dione|11-Hydroxy-4-androstene-3,17-

dione 
0.52 0.002 

0.01 23 

40. PC(40:5) 
-0.51 0.002 

0.01 21 

41. LPC(22:5) 
-0.51 0.002 

0.01 15 

42. MAG(14:0) 
-0.51 0.003 

0.01 14 

43. Cholic acid 
0.50 0.003 

0.01 12 

44. L-Octanoylcarnitine 
0.50 0.004 0.02 

6 

45. LPC(22:5) 
-0.49 0.004 

0.02 9 

46. PC(35:4)|PE(38:4) 
-0.49 0.004 

0.02 5 

47. Prostaglandin J2 
0.49 0.005 

0.02 5 

48. PC(38:5)|PE(41:5) 
-0.48 0.005 

0.02 2 

49. LPE(18:1) 
-0.48 0.005 

0.02 1 

50. Gamma-Tocopherol 
-0.47 0.005 

0.02 10 

51. LPC(18:1) 
-0.47 0.005 

0.02 12 

52. LPC(20:5/0:0) 
-0.46 0.005 

0.02 15 

53. 1-oleoyl-2-hydroxy-sn-glycero-3-PC 
-0.46 0.005 

0.02 12 

54. L-Aspartyl-L-phenylalanine 
0.46 0.005 

0.02 12 

55. 1,2-dioleoyl-sn-glycero-3-

phosphocholine|1,2-dipetroselenoyl-

sn-glycero-3-PC 
-0.46 0.005 

0.02 13 

56. Treprostinil 
0.45 0.005 

0.02 21 
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57. PC(36:1) 
-0.45 0.005 

0.02 24 

58. C16-20:5 PC 
-0.44 0.005 

0.02 31 

59. 1-stearoyl-2-arachidonoyl-sn-glycero-

3-PE|C15-20:4 PC 
-0.44 0.005 

0.02 9 

60. 2a-(3-Hydroxypropyl)-1a,25-

dihydroxy-19-norvitamin D3 
0.44 0.005 

0.02 19 

61. Biliribin II 
-0.43 0.005 

0.02 5 

62. MAG(18:2) 
-0.42 0.005 

0.02 2 

63. Piperine 
-0.42 0.005 

0.02 2 

64. Betaine 
-0.41 0.005 

0.02 10 

65. PC(34:0) 
-0.41 0.005 

0.02 15 

66. PC(42:7) 
0.41 0.005 

0.02 14 

67. LPE(18:0) 
-0.41 0.005 

0.02 14 

68. L-Tryptophan 
-0.41 0.006 

0.02 12 

69. Ceramide PE(35:2)|SPM(32:2) 
0.41 0.006 

0.02 21 

70. Dodecanedioic acid 
0.40 0.006 

0.02 21 

71. PC(28:2) 0.40 
0.006 

0.02 25 

72. LPC(0:0/18:2) -0.40 
0.006 

0.02 5 

73. Butyryl-L-carnitine|Isobutyryl-L-

carnitine 

0.40 

0.006 

0.02 5 

74. 1-Stearoyl-2-Hydroxy-sn-Glycero-3-

PE 

-0.40 

0.008 

0.02 9 

75. PC(33:1)|PE(36:1) 
0.39 0.009 

0.02 3 

76. 3a,6b,7b-Trihydroxy-5b-cholanoic 

acid 

0.39 

0.009 

0.02 1 

77. LPC(18:2/0:0) -0.39 
0.009 

0.02 1 

78. Linoleic acid -0.39 
0.009 

0.02 1 

79. Propranolol 0.39 
0.01 

0.02 2 

80. 1-arachidoyl-2-hydroxy-sn-glycero-3-

PC 
-0.38 0.01 

0.02 10 

81. Stearic acid -0.38 
0.01 

0.02 12 
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82. Biliribin I -0.38 
0.01 

0.02 11 

83. LPC(0:0/20:5) -0.38 
0.01 

0.02 10 

84. 1-oleoyl-2-palmitoyl-sn-glycero-3-PC -0.38 
0.01 

0.02 19 

85. L-Proline 
-0.37 0.01 

0.02 14 

86. cis-5-Tetradecenoylcarnitine 0.37 
0.01 

0.02 7 

87. Arachidonic acid methyl ester -0.37 
0.01 

0.02 14 

88. Alpha-Tocopherol -0.37 
0.01 

0.02 5 

89. Arachidonic acid 
-0.36 0.01 

0.02 21 

90. Uric acid 
-0.35 0.02 0.04 

10 

91. PC(34:3) -0.35 
0.02 

0.04 1 

92. PC(35:3)|PE(38:3) -0.35 
0.02 

0.04 2 

93. Ornithine -0.35 
0.03 0.06 

1 

94. MAG(16:1) -0.35 
0.03 

0.06 1 

95. C12 Carnitine 
0.35 0.03 

0.06 2 

96. Palmitic acid 
-0.34 0.03 

0.06 6 

97. 3-Pyridylacetic acid|trigonelline 
0.33 0.03 

0.06 3 

98. 10-nitro-9E-octadecenoic acid|9-

nitro-9E-octadecenoic acid 
0.32 0.04 0.08 

3 

99. MAG(20:5) 
-0.32 0.04 0.08 

4 

100. 1-linoleoyl-2-stearoyl-sn-glycerol 
-0.32 0.04 0.08 

14 

101. Indolelactic acid 
0.32 0.05 0.10 

14 

102. 3-cis-Hydroxy-b,e-Caroten-3'-one 
-0.31 0.06 0.12 

12 

103. LPC(20:2) 
-0.31 0.06 0.12 

15 

104. 1,2-dilinoleoyl-sn-glycero-3-PC 
-0.31 0.07 0.13 

2 

105. Hypoxanthine 
-0.30 0.07 0.13 

1 

106. Alpha-Linolenic acid 
-0.30 0.08 0.15 

2 

107. Barogenin 
0.30 0.08 

0.15 2 
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108. Fatty acid C20:5 methyl ester 
-0.29 0.08 

0.15 2 

109. dehydroepiandrosterone sulfate 

(sodium salt) 
0.28 0.08 

0.15 1 

110. Theobromine 
-0.27 0.09 0.16 

1 

111. cis/trans-Oleic acid 
-0.27 0.09 

0.16 1 

112. Creatinine 
0.27 0.09 

0.16 10 

113. sodium glycochenodeoxycholate 
0.26 0.1 0.18 

1 

114. Oleoyl-L-carnitine hydrochloride 
0.26 0.1 0.18 

1 

115. L-Tyrosine|o-Tyrosine 
-0.26 0.11 0.19 

4 

116. 1,3,7-Trimethyluric acid 
-0.25 0.11 

0.19 6 

117. 1-O-1'-(Z)-octadecenyl-2-hydroxy-

sn-glycero-3-PE 
-0.25 0.11 

0.19 4 

118. LPE(20:4) 
-0.25 0.12 0.20 

3 

119. Choline 
0.25 0.12 

0.20 3 

120. Ceramide PE(34:1) 
0.25 0.12 

0.20 3 

121. LPE(18:2) 
-0.24 0.12 

0.20 2 

122. LPC(18e:0/0:0) 
-0.24 0.13 0.21 

1 

123. C16 Carnitine 
0.24 0.13 

0.21 1 

124. Deoxycholic acid glycine conjugate 
0.23 0.13 

0.21 1 

125. SPM(42:3) 
0.23 0.13 

0.21 1 

126. N-(15Z-tetracosenoyl)-sphinganine-

1-PC 
-0.23 0.13 

0.21 1 

127. PC(28:1) 
-0.23 0.13 

0.21 10 

128. Gamma-Caprolactone 
0.22 0.14 

0.21 1 

129. Ceramide PE(35:1)|SPM(32:1) 
-0.22 0.14 

0.21 9 

130. Biliverdin hydrochloride b 
-0.22 0.14 

0.21 5 

131. gamma-Glutamyl-leucine 
-0.21 0.14 

0.21 5 

132. DL-2-Aminooctanoic acid 
-0.21 0.14 

0.21 12 

133. PC(40:6) 
0.21 0.14 

0.21 12 

134. D-erythro-sphingosine 
0.21 0.15 0.22 

5 
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135. Deoxycholic acid 
0.21 0.15 

0.22 2 

136. PC(38:2) 
0.21 0.15 

0.22 14 

137. Ceramide 

PE(33:1)|Sphingomyelin(30:1) 
0.20 0.15 

0.22 10 

138. Acetaminophen 0.20 
0.17 0.25 

11 

139. Lactosyl ceramide(d18:1/16:0) 0.20 
0.17 0.25 

12 

140. Dodecanoic acid 
0.19 0.18 0.26 

10 

141. 1-palmitoyl-2-docosahexaenoyl-sn-

glycero-3-PC 
-0.19 0.18 

0.26 1 

142. Stachydrine 
0.19 0.2 

0.26 1 

143. PC(35:2)|PE(38:2) 
-0.19 0.2 0.28 

12 

144. Creatine 
-0.19 0.21 0.29 

1 

145. D-Urobilinogen|I-Urobilin 
0.18 0.21 0.29 

4 

146. Ceramide PE(36:2) 
0.17 0.22 0.30 

6 

147. 1-oleoyl-2-hydroxy-sn-glycero-3-PE 
-0.16 0.22 0.30 

19 

148. Chenodeoxycholic acid 
0.16 0.25 0.34 

8 

149. 5a-Androst-3-en-17-one 
-0.16 0.25 

0.34 7 

150. Flavone 
0.15 0.25 

0.34 12 

151. LacCer(d18:1/14:0) 
0.15 0.27 0.36 

10 

152. Lyso-PAF C-18 
-0.15 0.27 0.36 

1 

153. Linoleyl carnitine 
0.15 0.3 0.40 

2 

154. L-Acetylcarnitine 
0.15 0.31 0.41 

2 

155. MAG(18:3) 
-0.14 0.32 0.41 

2 

156. L-Leucine|L-Norleucine 
-0.14 0.32 0.41 

3 

157. LPC(18:3) 
-0.14 0.32 

0.41 4 

158. Oleamide 
0.14 0.32 

0.41 5 

159. 6-hydroxy-5-cholestanol|cholesterol 
-0.14 0.33 

0.41 6 

160. 7-Ketocholesterol 
-0.14 0.33 

0.41 3 
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161. e-Caprolactam 
-0.13 0.33 

0.41 2 

162. 1,2-dipalmitoyl-sn-glycero-3-PC 
0.13 0.34 0.42 

2 

163. LPC(20:1) 
-0.13 0.34 

0.42 4 

164. 1-vaccenoyl-2-palmitoyl-sn-glycerol 
-0.13 0.34 

0.42 1 

165. PC(O-18:1/0:0)|PC(P-18:0/0:0) 
0.12 0.35 0.43 

1 

166. Palmitoleic acid 
-0.12 0.35 0.43 

10 

167. Cortisol 
-0.12 0.36 0.44 

1 

168. Hyodeoxycholic acid 
0.12 0.37 

0.44 1 

169. 17-phenyl trinor Prostaglandin E2|17-

phenyl trinor Prostaglandin D2 
0.12 0.37 

0.44 10 

170. Paraxanthine|Theophylline 
0.11 0.38 0.45 

1 

171. SPM(41:2) 0.11 
0.4 0.47 

2 

172. Phenylalanine 0.11 
0.45 0.53 

1 

173. PC(30:2) -0.11 
0.46 0.53 

10 

174. SPM(d18:2/18:1) -0.11 
0.46 0.53 

1 

175. Naproxen 0.11 
0.46 0.53 

1 

176. SPM(40:2) 
-0.10 0.52 0.60 

1 

177. Caffeine 
-0.10 0.55 0.63 

1 

178. S-(4,5-Dihydro-2-methyl-3-furanyl) 

ethanethioate 
0.10 0.57 0.65 

12 

179. PC(29:1) 
0.10 0.58 0.65 

1 

180. Ceramide PE(37:2)|SPM(34:2) -0.10 
0.58 0.65 

2 

181. 2,6 dimethylheptanoyl carnitine -0.10 
0.61 0.68 

3 

182. N-(9Z-octadecenoyl)-sphing-4-enine-

1-PC 
-0.10 0.62 0.69 

3 

183. L-Phenylalanine 0.10 
0.63 0.69 

1 

184. PC(37:5)|PE(40:5) 0.10 
0.63 0.69 

2 

185. 4,8 dimethylnonanoyl carnitine 0.10 
0.65 0.71 

2 

186. Fatty acid C22:6 
0.10 0.68 0.74 

1 

187. Myristic acid 
-0.10 0.71 0.77 

5 



Results | 113 
 
 

 

188. N-(octadecanoyl)-sphing-4-enine-1-

PC 
-0.10 0.73 0.78 

9 

189. Ceramide PE(38:2) 
-0.10 0.75 0.80 

6 

190. LPE(16:0) 
-0.10 0.83 0.882 

7 

191. L-Carnitine 
-0.10 0.85 0.90 

1 

192. PC(15:2/0:0)|PE(18:2/0:0) 
0.10 0.86 

0.90 1 

193. Pantothenic acid 
-0,09 0.87 

0.90 1 

194. Heptadecanoic acid -0,09 
0.87 

0.90 2 

195. Pentadecanoic acid -0,09 
0.87 

0.90 2 

196. Salicylic acid|Aspirin 0,09 
0.88 

0.90 2 

197. 3-Indolepropionic acid 0,09 
0.88 

0.90 3 

198. 1-palmitoyl-2-hydroxy-sn-glycero-3-

PE 

0,09 

0.89 

0.90 4 

199. Benzenebutanoic acid -0,09 
0.89 

0.90 2 

200. PC(30:1) -0,09 
0.9 

0.90 1 

201. N-palmitoyl-D-erythro-

sphingosylphosphorylcholine 

0,09 

0.93 0.93 

1 

202. Glycocholic acid 0,09 
0.95 0.95 

1 

Association of correlation among molecular features a with age 

W
o

m
en

 (n
W

=
8

0
4

) 

Molecular features Correlation 

P-value P-value 

adjusted 

Validation 

(>50%) 

1. Palmitoleic acid – Stearic acid -0.75 3x10-4 0.008 2 

2. Linoleic acid – Stearic acid -0.73 4x10-4 0.008 1 

3. Stearic acid – Palmitic acid -0.72 4x10-4 0.008 34 

4. Stearic acid – cis/trans-Oleic acid -0.70 4x10-4 0.008 1 

5. PC(32:1) – PC(35:3)|PE(38:3) 0.72 5x10-4 0.008 54 

6. Ceramide PE(35:2)|SPM(32:2) – 

PC(32:1) 0.70 5x10-4 0.008 

2 
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7. 1-Stearoyl-2-Hydroxy-sn-Glycero-3-

PE – LPE(20:4) -0.65 

6x10-4 0.008 27 

8. 1-2-dipalmitoyl-sn-glycero-3-PC – N-

(15Z-tetracosenoyl)-sphinganine-1-

PC 

-0.69 

6x10-4 0.008 28 

9. PC(28:2) – PC(32:1) 0.69 0.001 0.008 57 

10. SPM(40:2) – Lactosyl 

ceramide(d18:1/16:0) -0.67 

0.001 

0.008 25 

11. Heptadecanoic acid – Stearic acid -0.64 0.001 
0.008 4 

12. Biliverdin hydrochloride b – Bilirubin 

II -0.63 

0.001 

0.008 25 

13. LPC(20:4/0:0) – PC(38:4) -0.65 0.001 
0.008 1 

14. N-(15Z-tetracosenoyl)-sphinganine-

1-PC – Lactosyl 

ceramide(d18:1/16:0) 

-0.65 

0.002 0.01 

20 

15. Deoxycholic acid – Deoxycholic acid 

glycine conjugate -0.63 

0.002 

0.01 26 

16. N-palmitoyl-D-erythro-

sphingosylphosphorylcholine – 

SPM(40:2) 

-0.62 

0.002 

0.01 26 

17. PC(34:4) – PC(38:7) 0.62 0.002 
0.01 2 

18. 1-2-dilinoleoyl-sn-glycero-3-PC – 

PC(38:4) -0.62 

0.003 

0.01 20 

19. Ceramide PE(35:2)|SPM(32:2) – 1-

oleoyl-2-palmitoyl-sn-glycero-3-PC 0.61 

0.003 

0.01 2 

20. PC(34:4) – PC(35:3)|PE(38:3) 0.61 0.003 
0.01 37 

21. PC(30:1) – SPM(40:2) -0.61 0.003 
0.01 36 

22. Deoxycholic acid glycine conjugate – 

Chenodeoxycholic acid -0.60 

0.004 0.02 

23 

23. Fatty acid C20:5 methyl ester – 

PC(34:5)|PE(37:5) -0.60 

0.004 

0.02 1 

24. PC(28:2) – 1-oleoyl-2-palmitoyl-sn-

glycero-3-PC 0.60 

0.004 

0.02 2 

25. PC(28:2) – PC(34:0) 0.59 0.004 
0.02 13 
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26. 1-palmitoyl-2-hydroxy-sn-glycero-3-

PE – LPE(20:4) -0.59 

0.005 

0.02 13 

27. Biliverdin hydrochloride b – 

Biliverdin hydrochloride a -0.59 

0.006 

0.02 29 

28. Biliverdin hydrochloride b – Bilirubin 

I -0.59 

0.006 

0.02 16 

29. Myristic acid – Stearic acid -0.58 0.007 
0.02 1 

30. LPC(20:5/0:0) – PC(34:5)|PE(37:5) -0.58 0.007 
0.02 26 

31. Fatty acid C20:5 methyl ester – 

PC(38:7) -0.58 

0.007 

0.02 1 

32. 1-stearoyl-2-hydroxy-sn-glycero-3-

PC – PC(40:5) -0.52 

0.007 

0.02 12 

33. D-Urobilinogen|I-Urobilin – 

PC(40:5) -0.51 

0.008 

0.02 13 

34. PC(36:6) – PC(38:7) 0.51 0.008 
0.02 5 

35. PC(36:5) – PC(38:7) 0.50 0.008 
0.02 28 

36. 4-8 dimethylnonanoyl carnitine – 

PC(40:5) 0.48 

0.009 

0.02 17 

37. MAG(18:3) –PC(40:5) -0.42 0.009 
0.02 9 

38. MAG(18:0) –PC(38:5)|PE(41:5) -0.41 0.009 
0.02 41 

39. Arachidonic acid –PC(38:5)|PE(41:5) 0.42 0.009 
0.02 21 

40. Heptadecanoic acid –

PC(38:5)|PE(41:5) -0.43 

0.009 

0.02 22 

41. Phenylalanine –PC(38:5)|PE(41:5) 0.40 0.01 
0.02 13 

42. 7-Ketocholesterol –Alpha-

Tocopherol -0.30 

0.01 

0.02 2 

43. 17-phenyl trinor Prostaglandin E2|17 

– phenyl trinor Prostaglandin D2-

Alpha-Tocopherol 

-0.33 

0.01 

0.02 10 

44. sodium glycochenodeoxycholate – 

Alpha-Tocopherol -0.30 

0.01 

0.02 6 



| 116 
 

45. Deoxycholic acid glycine conjugate – 

Alpha-Tocopherol -0.31 

0.01 

0.02 12 

46. Chenodeoxycholic acid – Alpha-

Tocopherol -0.30 

0.01 

0.02 15 

47. Linoleyl carnitine –Alpha-Tocopherol -0.30 0.02 0.04 
5 

48. Choline – Arachidonic acid 0.40 0.02 
0.04 8 

49. Creatinine – Arachidonic acid 0.42 0.02 
0.04 18 

50. LPC(20:4/0:0) – LPC(22:5) -0.40 0.03 0.06 
7 

51. LPC(20:3) – LPC(22:5) -0.42 0.03 
0.06 23 

52. LPC(20:5/0:0) – LPC(22:5) -0.41 0.03 
0.06 19 

53. LPC(22:4) – N-(9Z-octadecenoyl)-

sphing-4-enine-1-PC -0.39 

0.04 0.07 

2 

54. Biliverdin hydrochloride b – N-(9Z-

octadecenoyl)-sphing-4-enine-1-PC -0.21 

0.04 

0.07 1 

55. Biliverdin hydrochloride a – N-(9Z-

octadecenoyl)-sphing-4-enine-1-PC -0.19 

0.04 

0.07 1 

56. Biliribin I – N-(9Z-octadecenoyl)-

sphing-4-enine-1-PC -0.20 

0.05 0.09 

1 

57. Flavone – N-(octadecanoyl)-sphing-

4-enine-1-PC -0.23 

0.05 0.09 

23 

58. Geranyl acetoacetate – N-

(octadecanoyl)-sphing-4-enine-1-PC -0.22 

0.07 0.12 

12 

59. Dodecanedioic acid – N-

(octadecanoyl)-sphing-4-enine-1-PC -0.25 

0.07 

0.12 1 

60. 1-3-7-Trimethyluric acid – N-

palmitoyl-D-erythro-

sphingosylphosphorylcholine 

0.25 

0.07 

0.12 14 

61. L-Aspartyl-L-phenylalanine – 

LPC(16:1/0:0) -0.30 

0.09 0.15 

4 

62. Heptadecanoic acid – LPC(16:1/0:0) -0.32 0.09 0.15 
4 

63. Choline – 10-nitro-9E-octadecenoic 

acid|9-nitro-9E-octadecenoic acid -0.29 

0.1 0.16 

2 

64. 3-Pyridylacetic acid|trigonelline – 

Alpha-Linolenic acid -0.28 

0.12 0.19 

3 
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65. Stachydrine – Alpha-Linolenic acid -0.29 0.12 0.19 
5 

66. Benzenebutanoic acid – Alpha-

Linolenic acid -0.22 

0.13 0.20 

10 

67. Geranyl acetoacetate – Arachidonic 

acid -0.30 

0.15 0.22 

1 

68. Dodecanedioic acid – Arachidonic 

acid -0.28 

0.15 

0.22 1 

69. 5a-Androst-3-en-17-one – 

Arachidonic acid 0.25 

0.15 

0.22 6 

70. Caffeine – Barogenin -0.26 0.19 0.27 
7 

71. Hippuric acid – Barogenin 0.25 0.19 
0.27 2 

72. L-Acetylcarnitine – Barogenin -0.25 0.19 
0.27 14 

73. Indolelactic acid – Barogenin -0.28 0.20 0.28 
11 

74. Geranyl acetoacetate – Biliribin I 0.25 0.20 0.28 
10 

75. Dodecanedioic acid – Biliribin I 0.23 0.22 0.30 
1 

76. 5a-Androst-3-en-17-one – Biliribin I 0.22 0.22 0.30 
1 

77. Propranolol – Biliribin I 0.23 0.25 0.33 
2 

78. L-Phenylalanine – Biliverdin 

hydrochloride a -0.24 

0.3 0.40 

9 

79. 2-6 dimethylheptanoyl carnitine – 

Stearic acid -0.22 

0.35 0.45 

8 

80. 4-Androsten-11Beta-ol-3-17-

dione|11-Hydroxy-4-androstene-3-

17-dione – Stearic acid 

-0.13 

0.35 0.45 

5 

81. Arachidonic acid – Stearic acid -0.20 0.37 0.47 
11 

82. MAG(16:1) – Treprostinil -0.23 0.4 0.50 
15 

83. MAG(16:0) – Treprostinil -0.25 0.42 0.52 
10 

84. MAG(18:3) – Treprostinil -0.23 0.45 0.55 
1 

85. Choline – Uric acid -0.22 0.47 0.56 
1 

86. Betaine – Uric acid -0.23 0.47 0.56 
1 
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87. Barogenin – LPC(22:4) -0.23 0.49 0.57 
1 

88. GCA – LPC(22:4) -0.24 0.49 
0.57 2 

89. Uric acid – D-Urobilinogen|I-

Urobilin 0.15 

0.5 

0.57 5 

90. L-Leucine|L-Norleucine – 1-stearoyl-

2-hydroxy-sn-glycero-3-PC 0.21 

0.5 

0.57 6 

91. Hypoxanthine – 1-stearoyl-2-

hydroxy-sn-glycero-3-PC 0.22 

0.55 0.62 

4 

92. PC(O-18:1/0:0)|PE(P-18:0/0:0) – 1-

stearoyl-2-hydroxy-sn-glycero-3-PC 0.22 

0.58 0.64 

2 

93. L-Tyrosine|o-Tyrosine – 1-

vaccenoyl-2-palmitoyl-sn-glycerol -0.23 

0.58 0.64 

2 

94. Naproxen – 1-vaccenoyl-2-palmitoyl-

sn-glycerol 0.23 

0.6 0.66 

1 

95. Oleamide – 2-6 dimethylheptanoyl 

carnitine -0.22 

0.62 0.67 

1 

96. Pentadecanoic acid – 2a-(3-

Hydroxypropyl)-1a-25-dihydroxy-19-

norvitamin D3 

-0.23 

0.62 

0.67 1 

97. 3-Pyridylacetic acid|trigonelline – 7-

Ketocholesterol 0.21 

0.64 

0.67 2 

98. Stachydrine – 7 -Ketocholesterol 0.22 0.64 
0.67 1 

99. Flavone – 5a-Androst-3-en-17-one 0.25 0.64 
0.67 1 

100. LPC(18:2/0:0) – 3-cis-Hydroxy-b-e-

Caroten-3'-one -0.20 

0.69 0.71 

2 

101. Indole-3-carbinol – 3a-6b-7b-

Trihydroxy-5b-cholanoic acid -0.15 

0.72 0.73 

3 

102. MAG(16:1) – LPC(0:0/16:1) 0.20 0.82 0.83 
4 

103. LPC(18:3) – LPC(18:2/0:0) 0.25 0.93 0.93 
2 

M
en

 (n
M

=
1
0

7
8

) 

1. Palmitoleic acid – MAG(16:1) -0.85 1x10-5 0.001 21 

2. MAG(16:0) – LPC(16:1/0:0) -0.81 4x10-5 0.002 53 

3. PC(35:3)|PE(38:3) – 

PC(36:3)|PE(39:3) 0.81 4x10-5 0.002 

2 
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4. MAG(16:0) – LPC(0:0/16:1) -0.80 6x10-5 0.002 59 

5. MAG(18:1) – LPC(16:1/0:0) -0.78 1x10-4 0.003 60 

6. MAG(18:0) – LPC(0:0/16:1) -0.76 2x10-4 0.004 53 

7. MAG(16:1) – LPC(16:1/0:0) -0.76 2x10-4 0.004 42 

8. MAG(16:1) – cis/trans-Oleic acid -0.77 2x10-4 0.004 35 

9. Ceramide PE(37:2)|SPM(34:2) – 

SPM(d18:2/18:1) 0.77 2x10-4 0.004 

2 

10. LPE(18:2) – LPC(18:3) 0.74 4x10-4 0.004 13 

11. PC(30:2) – SPM(d18:2/18:1) 0.74 4x10-4 0.004 9 

12. LPE(18:2) – LPC(0:0/18:2) 0.73 5x10-4 0.005 
18 

13. MAG(18:0) – PC(32:1) -0.72 6x10-4 
0.005 49 

14. LPE(18:2) – LPC(18:2/0:0) 0.71 8x10-4 
0.005 45 

15. Palmitoleic acid – LPC(0:0/16:1) -0.71 8x10-4 
0.005 16 

16. N-(9Z-octadecenoyl)-sphing-4-enine-

1-PC – 1,2-dilinoleoyl-sn-glycero-3-

PC 

0.71 

9x10-4 

0.005 1 

17. Palmitoleic acid – LPC(16:1/0:0) -0.70 9x10-4 0.005 1 

18. Arachidonic acid ethyl ester – 

LPC(16:1/0:0) -0.71 

9x10-4 0.005 21 

19. LPC(0:0/16:1) – Palmitic acid -0.70 9x10-4 0.005 37 

20. MAG(16:1) – LPC(0:0/16:1) -0.70 0.001 
0.005 14 

21. LPC(18:3) – LPC(18:2/0:0) 0.70 0.001 
0.005 42 

22. Salicylic acid|Aspirin – 10-nitro-9E-

octadecenoic acid|9-nitro-9E-

octadecenoic acid 

0.69 

0.001 

0.005 12 

23. Theobromine – 10-nitro-9E-

octadecenoic acid|9-nitro-9E-

octadecenoic acid 

0.69 

0.002 0.009 

32 

24. Creatine – 10-nitro-9E-octadecenoic 

acid|9-nitro-9E-octadecenoic acid 0.68 

0.002 

0.009 24 
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25. L-Leucine|L-Norleucine – 10-nitro-

9E-octadecenoic acid|9-nitro-9E-

octadecenoic acid 

0.68 

0.002 

0.009 28 

26. MAG(14:0) – LPE(18:0) 0.69 0.004 0.02 
8 

27. 10-nitro-9E-octadecenoic acid|9-

nitro-9E-octadecenoic acid – 

LPE(18:0) 

0.69 

0.004 

0.02 16 

28. Fatty acid C22:6 – LPE(18:0) 0.67 0.004 
0.02 17 

29. 4-8 dimethylnonanoyl carnitine – 

LPE(18:0) 0.65 

0.006 

0.02 9 

30. Indole-3-carbinol – 10-nitro-9E-

octadecenoic acid|9-nitro-9E-

octadecenoic acid 

0.64 

0.006 

0.02 2 

31. Acetaminophen – 10-nitro-9E-

octadecenoic acid|9-nitro-9E-

octadecenoic acid 

0.65 

0.006 

0.02 1 

32. 2-Ketohexanoic acid – 10-nitro-9E-

octadecenoic acid|9-nitro-9E-

octadecenoic acid 

0.64 

0.006 0.02 

1 

33. S-(4-5-Dihydro-2-methyl-3-furanyl) 

ethanethioate – 10-nitro-9E-

octadecenoic acid|9-nitro-9E-

octadecenoic acid 

0.63 

0.009 0.03 

32 

34. L-Carnitine – 10-nitro-9E-

octadecenoic acid|9-nitro-9E-

octadecenoic acid 

0.63 

0.009 

0.03 31 

35. L-Phenylalanine – 10-nitro-9E-

octadecenoic acid|9-nitro-9E-

octadecenoic acid 

0.62 

0.009 

0.03 26 

36. Uric acid – 10-nitro-9E-octadecenoic 

acid|9-nitro-9E-octadecenoic acid 0.62 

0.009 

0.03 21 

37. L-Tyrosine|o-Tyrosine – LPE(20:4) 0.60 0.01 
0.03 20 

38. Naproxen – LPE(20:4) 0.60 0.01 
0.03 15 

39. e-Caprolactam – DL-2-

Aminooctanoic acid -0.59 

0.01 

0.03 19 

40. Choline – Gamma-Caprolactone -0.56 0.01 
0.03 5 
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41. Creatinine – Gamma-Caprolactone -0.58 0.02 0.05 
9 

42. e-Caprolactam – Gamma-

Caprolactone 0.59 

0.02 

0.05 12 

43. DL-2-Aminooctanoic acid – Gamma-

Caprolactone -0.56 

0.02 

0.05 12 

44. Choline – L-Proline 0.53 0.03 0.07 
5 

45. Creatinine – L-Proline 0.52 0.03 
0.07 6 

46. e-Caprolactam – L-Proline -0.52 0.03 
0.07 13 

47. DL-2-Aminooctanoic acid – L-

Proline -0.51 

0.05 0.12 

21 

48. Gamma – Caprolactone-L-Proline -0.50 0.05 0.12 
13 

49. Benzenebutanoic acid – Alpha-

Linolenic acid 0.49 

0.06 0.13 

21 

50. Geranyl acetoacetate – Arachidonic 

acid 0.48 

0.06 0.13 

5 

51. LPC(20:4/0:0 – PC(34:0) -0.46 0.06 0.13 
12 

52. LPC(20:2) – PC(34:0) -0.45 0.07 0.15 
11 

53. LPC(20:3) – PC(34:0) -0.45 0.07 
0.15 11 

54. 1-3-7-Trimethyluric acid – C16-20:5 

PC 0.40 

0.07 

0.15 32 

55. Deoxycholic acid glycine conjugate – 

PC(35:3)|PE(38:3) -0.39 

0.09 0.18 

18 

56. LPC(20:3) – Biliverdin hydrochloride 

a -0.34 

0.09 0.18 

19 

57. Lyso-PAF C-18 – Biliverdin 

hydrochloride a 0.33 

0.11 0.21 

9 

58. LPC(20:2) – Biliverdin hydrochloride 

a -0.32 

0.11 

0.21 8 

59. LPC(20:1) – Biliverdin hydrochloride 

a -0.34 

0.11 

0.21 5 

60. PS(18:0) – Biliribin I 0.32 0.13 0.24 
2 
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61. L-Carnitine – LPC(22:5) 0.35 0.13 0.24 
2 

62. Biliribin II – PC(34:2)|PE(37:2) -0.33 0.15 0.27 
2 

63. D-Urobilinogen|I-Urobilin – 

PC(34:2)|PE(37:2) -0.31 

0.15 

0.27 1 

64. cis/trans-Oleic acid – 

PC(34:2)|PE(37:2) 0.30 

0.15 

0.27 1 

65. 1-linoleoyl-2-stearoyl-sn-glycerol – 

PC(34:2)|PE(37:2) 0.32 

0.17 0.29 

2 

66. 1-vaccenoyl-2-palmitoyl-sn-glycerol 

– PC(34:2)|PE(37:2) -0.31 

0.17 0.29 

3 

67. Ceramide PE(33:1)|SPM(30:1) – 1-

oleoyl-2-palmitoyl-sn-glycero-3-PC 0.31 

0.18 0.30 

5 

68. Ceramide PE(34:1) – 1-oleoyl-2-

palmitoyl-sn-glycero-3-PC 0.31 

0.18 0.30 

6 

69. Stearic acid – cis/trans-Oleic acid -0.30 0.19 0.31 
5 

70. PC(32:1) – PC(35:3)|PE(38:3) 0.30 0.19 0.31 
7 

71. Deoxycholic acid glycine conjugate – 

Chenodeoxycholic acid 0.35 

0.21 0.33 

10 

72. Fatty acid C20:5 methyl ester – 

PC(34:5)|PE(37:5) 0.34 

0.21 

0.33 1 

73. Cortisol – SPM(41:2) 0.35 0.21 
0.33 2 

74. 6-hydroxy-5-cholestanol|cholesterol – 

SPM(41:2) -0.36 

0.25 0.39 

2 

75. cis-5-Tetradecenoylcarnitine – 

SPM(41:2) 0.34 

0.27 0.41 

2 

76. 6-hydroxy-5-cholestanol|cholesterol – 

PC(38:7) 0.36 

0.32 0.47 

1 

77. cis-5-Tetradecenoylcarnitine – 

PC(38:7) 0.38 

0.32 0.47 

3 

78. Cholic acid – PC(38:7) -0.37 0.34 0.48 
14 

79. PC(36:5) – PC(38:7) -0.38 0.34 
0.48 12 

80. 1-2-dilinoleoyl-sn-glycero-3-PC – 

PC(38:7) -0.39 

0.34 

0.48 11 
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81. PC(36:3)|PE(39:3) – PC(38:7) -0.35 0.35 
0.48 11 

82. SPM(41:2) – N-(15Z-tetracosenoyl)-

sphinganine-1-PC 0.38 

0.35 

0.48 10 

83. MAG(16:0) – C16-20:5 PC -0.39 0.36 
0.48 2 

84. MAG(18:3) – C16-20:5 PC -0.40 0.36 
0.48 2 

85. L-Leucine|L-Norleucine – 1-stearoyl-

2-hydroxy-sn-glycero-3-PC -0.40 

0.36 

0.48 1 

86. Hypoxanthine – 1-stearoyl-2-

hydroxy-sn-glycero-3-PC -0.41 

0.41 0.53 

3 

87. Caffeine – GCA -0.40 0.41 
0.53 1 

88. Creatinine – 1-Stearoyl-2-Hydroxy-

sn-Glycero-3-PE -0.40 

0.41 

0.53 1 

89. MAG(18:2) –   LPC(0:0/18:2) -0.41 0.45 0.57 
2 

90. Deoxycholic acid – cis-5-

Tetradecenoylcarnitine 0.42 

0.45 0.57 

2 

91. cis-5-Tetradecenoylcarnitine – 2a-(3-

Hydroxypropyl)-1a,25-dihydroxy-19-

norvitamin D3 

0.39 

0.46 0.57 

3 

92. LPC(0:0/20:4) – Biliverdin 

hydrochloride b -0.39 

0.46 0.57 

2 

93. LPC(20:4/0:0) – Biliverdin 

hydrochloride b -0.38 

0.52 0.64 

4 

94. 4-Androsten-11Beta-ol-3-17-

dione|11-Hydroxy-4-androstene-3-

17-dione – PC(35:3)|PE(38:3) 

0.37 

0.55 0.67 

10 

95. Arachidonic acid – 

PC(35:3)|PE(38:3) 0.36 

0.57 0.68 

1 

96. Myristic acid – PC(36:5) 0.33 0.58 
0.68 10 

97. 1-vaccenoyl-2-palmitoyl-sn-glycerol 

– SPM(40:2) 0.30 

0.58 

0.68 12 

98. Ceramide PE(33:1)|SPM(30:1) – 

SPM(40:2) -0.30 

0.61 0.71 

1 
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99. Ceramide PE(34:1) – SPM(40:2) -0.29 0.62 
0.71 2 

100. Oleoyl-L-carnitine hydrochloride – 

PC(36:1) 0.28 

0.63 

0.71 1 

101. Alpha-Tocopherol – PC(36:1) 0.29 0.63 
0.71 12 

102. 3a-6b-7b-Trihydroxy-5b-cholanoic 

acid – PC(36:1) -0.26 

0.65 0.72 

10 

103. 1-O-1'-(Z)-octadecenyl-2-hydroxy-

sn-glycero-3-phosphoethanolamine – 

PC(36:1) 

-0.27 

0.65 0.72 

2 

104. D-erythro-sphingosine – PC(36:6) 0.25 0.68 0.75 
5 

105. Oleamide – PC(36:6) 0.24 0.71 0.77 
3 

106. Piperine – PC(36:6) 0.22 0.73 0.79 
5 

107. dehydroepiandrosterone sulfate – 

PC(35:3)|PE(38:3) 0.22 

0.75 0.80 

3 

108. LPE(16:0) – PC(35:3)|PE(38:3) 0.20 0.83 0.88 
2 

109. LPC(0:0/20:5) – 1,2-dipalmitoleoyl-

sn-glycero-3-PC -0.19 

0.85 0.89 

1 

110. DL-2-Aminooctanoic acid– 

LPE(18:1) 0.20 

0.86 0.89 

1 

111. L-Tyrosine|o-Tyrosine – Biliverdin 

hydrochloride b -0.18 

0.88 0.90 

2 

112. Naproxen – Biliverdin hydrochloride 

b -0.15 

0.9 0.92 

1 

113. L-Tryptophan – Biliverdin 

hydrochloride b 0.15 

0.93 0.94 

2 

114. 16. 1-O-1'-(Z)-octadecenyl-2-

hydroxy-sn-glycero-3-PE – 

LPC(20:5/0:0) 

0.12 

0.97 0.97 

2 

Association of ratios among molecular features a with age 

W
o

m
en

 (n
W

=
8

0
4

) 

Molecular features Correlation 

P-value BH P-

value 

adjusted 

Validation 

(>50%) 

1. Acetaminophen/1-Stearoyl-2-

Hydroxy-sn-Glycero-3-PE -0.67 2x10-4 0.002 

15 
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2. Arachidonic acid ethyl ester/1-

vaccenoyl-2-palmitoyl-sn-glycerol 0.67 2x10-4 0.002 

21 

3. Deoxycholic acid glycine 

conjugate/N-palmitoyl-D-erythro-

sphingosylphosphorylcholine 

0.66 2x10-4 0.002 

23 

4. 10-nitro-9E-octadecenoic acid|9-

nitro-9E-octadecenoic 

acid/PC(15:2/0:0)|PE(18:2/0:0) 

-0.64 

2x10-4 0.002 11 

5. Paraxanthine|Theophylline/GCA -0.64 2x10-4 0.002 1 

6. Arachidonic acid/GCA -0.63 2x10-4 0.002 35 

7. Pantothenic acid/Ceramide 

PE(35:2)|SPM(32:2) 0.63 

2x10-4 0.002 3 

8. Acetaminophen/GCA -0.62 2x10-4 0.002 49 

9. Decanoyl-L-carnitine/LPC(0:0/18:2) -0.67 3x10-4 0.002 56 

10. LPC(0:0/20:5)/1,2-dipalmitoleoyl-sn-

glycero-3-PC 0.62 3x10-4 0.002 

23 

11. DL-2-Aminooctanoic acid/LPE(18:1) -0.61 3x10-4 0.002 12 

12. 1-O-1'-(Z)-octadecenyl-2-hydroxy-

sn-glycero-3-PE/ LPC(0:0/18:2) -0.60 3x10-4 0.002 

2 

13. MAG(16:0)/PC(15:2/0:0)|PE(18:2/0:

0) -0.60 4x10-4 0.002 

1 

14. 6-hydroxy-5-cholestanol|cholesterol/ 

PC(15:2/0:0)|PE(18:2/0:0) -0.60 4x10-4 0.002 

34 

15. L-Carnitine/1-Stearoyl-2-Hydroxy-

sn-Glyce:ro-3-PE -0.59 4x10-4 0.002 

33 

16. 1-O-1'-(Z)-octadecenyl-2-hydroxy-

sn-glycero-3-PE/LPC(20:5/0:0) -0.59 4x10-4 0.002 

25 

17. Arachidonic acid methyl 

ester/LPC(18:1) 0.60 4x10-4 0.002 

11 

18. Prostaglandin J2/1-palmitoyl-2-

hydroxy-sn-glycero-3-

phosphoethanolamine 

-0.59 

0.001 0.005 

10 
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19. Caffeine/GCA -0.59 0.001 0.005 
42 

20. Creatinine/1-Stearoyl-2-Hydroxy-sn-

Glycero-3-PE -0.59 

0.001 0.005 

15 

21. 2a-(3-Hydroxypropyl)-1a,25-

dihydroxy-19-norvitamin D3/2a-(3-

Hydroxypropyl)-1a,25-dihydroxy-19-

norvitamin D3 

-0.59 

0.001 0.005 

12 

22. Arachidonic acid methyl 

ester/PC(35:3)|PE(38:3) 0.66 

0.002 

0.009 2 

23. Indolelactic acid/GCA -0.58 0.002 
0.009 34 

24. Pantothenic acid/GCA -0.58 0.002 0.009 
63 

25. Dodecanedioic acid/GCA -0.58 0.003 
0.01 68 

26. Arachidonic acid methyl 

ester/PC(15:2/0:0)|PE(18:2/0:0) -0.58 

0.003 

0.01 15 

27. MAG(20:5)/PC(15:2/0:0)|PE(18:2/0:

0) -0.58 

0.004 

0.01 2 

28. 7-

Ketocholesterol/PC(15:2/0:0)|PE(18:

2/0:0) 

-0.58 

0.004 

0.01 2 

29. MAG(18:3)/2a-(3-Hydroxypropyl)-

1a,25-dihydroxy-19-norvitamin D3 -0.58 

0.004 

0.01 1 

30. MAG(18:2)/ LPC(0:0/18:2) -0.58 0.004 
0.01 36 

31. Deoxycholic acid/cis-5-

Tetradecenoylcarnitine 0.58 

0.004 0.01 

34 

32. cis-5-Tetradecenoylcarnitine/2a-(3-

Hydroxypropyl)-1a,25-dihydroxy-19-

norvitamin D3 

-0.58 

0.005 

0.02 1 

33. LPE(16:0)/Palmitic acid 0.58 0.005 
0.02 2 

34. Arachidonic acid ethyl 

ester/Biliverdin hydrochloride b 0.58 

0.006 

0.02 9 

35. Myristic acid/Biliribin II -0.58 0.006 
0.02 21 

36. L-Carnitine/LPC(22:5) 0.67 0.006 
0.02 12 

37. Oleoyl-L-carnitine 

hydrochloride/PC(36:1) 0.68 

0.006 

0.02 32 
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38. Alpha-Tocopherol/PC(36:1) -0.67 0.006 
0.02 21 

39. 3a-6b-7b-Trihydroxy-5b-cholanoic 

acid/PC(36:1) -0.66 

0.006 

0.02 5 

40. 1-O-1'-(Z)-octadecenyl-2-hydroxy-

sn-glycero-3-PE/PC(36:1) -0.65 

0.006 

0.02 21 

41. Heptadecanoic acid/SPM(40:2) 0.64 0.007 
0.02 22 

42. Phenylalanine/SPM(40:2) 0.63 0.007 
0.02 31 

43. Ceramide 

PE(37:2)|SPM(34:2)/SPM(40:2) 0.62 

0.007 

0.02 15 

44. PC(30:2)/SPM(40:2) 0.62 0.007 
0.02 26 

45. N-palmitoyl-D-erythro-

sphingosylphosphorylcholine/SPM(4

0:2) 

0.63 

0.007 

0.02 29 

46. Arachidonic acid/PC(35:3)|PE(38:3) 0.62 0.007 
0.02 15 

47. Myristic acid/PC(36:5) 0.61 0.007 
0.02 18 

48. 1-vaccenoyl-2-palmitoyl-sn-

glycerol/SPM(40:2) 0.61 

0.008 

0.02 39 

49. Ceramide 

PE(33:1)|SPM(30:1)/SPM(40:2) 0.60 

0.008 

0.02 42 

50. Ceramide PE(34:1)/SPM(40:2) 0.60 0.008 
0.02 12 

51. 3-cis-Hydroxy-b-e-Caroten-3'-one/N-

(9Z-octadecenoyl)-sphing-4-enine-1-

PC 

-0.59 

0.008 

0.02 25 

52. Creatinine/1-Stearoyl-2-Hydroxy-sn-

Glycero-3-PE -0.58 

0.009 

0.02 26 

53. MAG(18:2)/LPC(0:0/18:2) -0.58 0.009 
0.02 15 

54. Deoxycholic acid/cis-5-

Tetradecenoylcarnitine -0.59 

0.009 

0.02 3 

55. cis-5-Tetradecenoylcarnitine/2a-(3-

Hydroxypropyl)-1a,25-dihydroxy-19-

norvitamin D3 

-0.57 

0.009 

0.02 15 
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56. LPC(0:0/20:4)/Biliverdin 

hydrochloride b -0.56 

0.009 

0.02 19 

57. Lyso-PAF C-18/PC(34:3) 0.57 0.01 0.02 
26 

58. PS(18:0)/PC(34:3) 0.56 0.01 0.02 
2 

59. LPC(18:3)/PC(34:3) 0.56 0.01 0.02 
4 

60. 6-hydroxy-5-

cholestanol|cholesterol/Ceramide 

PE(37:2)|SPM(34:2) 

-0.55 

0.02 0.03 

21 

61. cis-5-

Tetradecenoylcarnitine/Ceramide 

PE(37:2)|SPM(34:2) 

-0.55 

0.02 0.03 

10 

62. Cholic acid/Ceramide 

PE(37:2)|SPM(34:2) -0.52 

0.05 0.08 

11 

63. MAG(18:2)/Ceramide 

PE(37:2)|SPM(34:2) -0.53 

0.07 0.13 

11 

64. MAG(18:1)-Ceramide 

PE(37:2)|SPM(34:2) -0.52 

0.09 0.15 

6 

65. Oleamide/PC(36:6) 0.51 0.10 
0.16 9 

66. Piperine/PC(36:6) 0.52 0.10 
0.16 15 

67. dehydroepiandrosterone 

sulfate/PC(35:3)|PE(38:3) 0.51 

0.10 0.16 

12 

68. Ceramide 

PE(35:2)|SPM(32:2)/PC(30:1) 0.50 

0.14 0.21 

3 

69. PC(28:2)/PC(30:1) 0.50 0.14 0.21 
12 

70. Ceramide 

PE(35:1)|SPM(32:1)/PC(30:1) 0.49 

0.15 0.22 

1 

71. Hippuric acid – Barogenin -0.48 0.25 0.25 5 

72. L-Acetylcarnitine – Barogenin -0.47 0.17 0.25 
4 

73. Ceramide PE(34:1)/PC(30:1) 0.46 0.19 
0.27 7 

74. LPC(22:4)-Ornithine -0.43 0.19 
0.27 16 

75. Biliverdin hydrochloride b-Ornithine -0.42 0.20 
0.27 14 

76. Biliverdin hydrochloride a-Ornithine -0.40 0.20 0.27 
12 
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77. LPE(18:2)/1-2-dioleoyl-sn-glycero-3-

PC|1-2-dipetroselenoyl-sn-glycero-3-

PC 

0.41 

0.21 0.28 

2 

78. PC(15:2/0:0)|PE(18:2/0:0)/1-2-

dioleoyl-sn-glycero-3-PC|1-2-

dipetroselenoyl-sn-glycero-3-PC 

0.40 

0.22 0.29 

1 

79. LPE(18:1)/1-2-dioleoyl-sn-glycero-3-

PC|1-2-dipetroselenoyl-sn-glycero-3-

PC 

0.39 

0.23 0.30 

2 

80. 1-oleoyl-2-hydroxy-sn-glycero-3-

PE/1-2-dioleoyl-sn-glycero-3-PC|1-2-

dipetroselenoyl-sn-glycero-3-PC 

-0.39 

0.24 0.31 

3 

81. Stearic acid/Ornithine -0.38 0.25 0.32 
4 

82. Heptadecanoic acid/MAG(20:5) 0.37 0.27 0.34 
54 

83. MAG(16:0)/PC(35:4)|PE(38:4) -0.36 0.30 0.38 
1 

84. 4,8 dimethylnonanoyl carnitine/2a-(3-

Hydroxypropyl)-1a,25-dihydroxy-19-

norvitamin D3 

0.35 

0.35 0.43 

12 

85. 3-Pyridylacetic acid|trigonelline/1-2-

dioleoyl-sn-glycero-3-PC|1-2-

dipetroselenoyl-sn-glycero-3-PC 

-0.35 

0.37 0.45 

1 

86. Stachydrine/1-2-dioleoyl-sn-glycero-

3-PC|1-2-dipetroselenoyl-sn-glycero-

3-PC 

-0.34 

0.39 0.47 

3 

87. Benzenebutanoic acid/1-2-dioleoyl-

sn-glycero-3-PC|1-2-dipetroselenoyl-

sn-glycero-3-PC 

-0.34 

0.40 0.49 

5 

88. Myristic acid/SPM(d18:2/18:1) -0.33 0.45 0.53 
6 

89. LPC(0:0/16:1)/Ceramide PE(38:2) 
-0.33 0.50 0.58 

9 

90. LPC(0:0/16:0)/Ceramide PE(38:2) -0.32 0.51 0.59 
4 

91. LPC(18:3)/D-Urobilinogen|I-Urobilin 0.31 0.69 0.798 
1 

92. LPC(0:0/18:2)/D-Urobilinogen|I-

Urobilin 0.30 

0.72 0.81 

5 
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93. LPC(18:2/0:0)/D-Urobilinogen|I-

Urobilin 0.30 

0.73 0.82 

2 

94. 1-palmitoyl-2-hydroxy-sn-glycero-3-

PC/cis/trans-Oleic acid -0.29 

0.75 0.83 

1 

95. LPE(20:4)/cis/trans-Oleic acid -0.29 0.77 0.84 
3 

96. PC(O-18:1/0:0)|PC(P-

18:0/0:0)/cis/trans-Oleic acid -0.28 

0.79 0.86 

6 

97. LPC(18e:0/0:0)/cis/trans-Oleic acid -0.28 0.81 0.87 
5 

98. LPC(22:5)-D-Urobilinogen|I-Urobilin -0.28 0.82 0.87 
1 

99. 5a-Androst-3-en-17-

one/PC(35:4)|PE(38:4) -0.27 

0.83 0.87 

2 

100. Decanoyl-L-

Carnitine/PC(35:4)|PE(38:4) -0.24 

0.91 0.93 

1 

101. 4-Androsten-11Beta-ol-3,17-

dione|11-Hydroxy-4-androstene-3,17-

dione/2a−(3−Hydroxypropyl)−1a−25

−dihydroxy−19−norvitamin D3 

-0.23 

0.91 

0.93 1 

102. Gamma-Caprolactone/1-2-

dilinoleoyl-sn-glycero-3-PC -0.18 

0.91 

0.93 1 

103. Deoxycholic acid glycine 

conjugate/PC(32:1) -0.16 

0.92 

0.93 2 

104. LPC(22:4)-Biliribin II 0.14 0.95 0.95 
3 

M
en

 (n
M

=
1
0

7
8

) 

1. Arachidonic acid ethyl 

ester/PC(35:4)|PE(38:4) 0.92 1x10-7 

2x10-5 

2 

2. Fatty acid C20:5 methyl 

ester/PC(35:4)|PE(38:4) 0.9 4x10-7 

4x10-5 16 

3. Cortisol/PC(35:4)|PE(38:4) 0.9 5x10-7 4x10-5 19 

4. C16 Carnitine/PC(35:4)|PE(38:4) 0.9 7x10-7 4x10-5 6 

5. 4,8 dimethylnonanoyl 

carnitine/PC(35:4)|PE(38:4) 0.88 2x10-6 

9x10-5 45 

6. Hippuric acid/PC(34:5)|PE(37:5) 0.87 3x10-6 1x10-4 43 

7. Deoxycholic acid glycine 

conjugate/PC(35:4)|PE(38:4) 0.86 4x10-6 

1x10-4 12 
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8. 1,3,7-Trimethyluric 

acid/PC(34:5)|PE(37:5) 0.86 5x10-6 

1x10-4 10 

9. Barogenin/PC(35:4)|PE(38:4) 0.86 5x10-6 1x10-4 8 

10. 17-phenyl trinor Prostaglandin E2|17-

phenyl trinor Prostaglandin 

D2/PC(35:4)|PE(38:4) 

0.85 6x10-6 

1x10-4 13 

11. L-Acetylcarnitine/PC(37:5)|PE(40:5) 0.85 7x10-6 1x10-4 55 

12. L-Carnitine/PC(37:5)|PE(40:5) 0.85 1x10-5 2x10-4 51 

13. 2-Ketohexanoic 

acid/PC(37:5)|PE(40:5) 0.84 1x10-5 

2x10-4 0 

14. Naproxen/PC(37:5)|PE(40:5) 0.85 1x10-5 2x10-4 46 

15. sodium 

glycochenodeoxycholate/PC(35:4)|PE

(38:4) 

0.84 1x10-5 

2x10-4 2 

16. Arachidonic acid ethyl ester/2a-(3-

Hydroxypropyl)-1a,25-dihydroxy-19-

norvitamin D3 

0.83 2x10-5 2x10-4 

35 

17. MAG(16:1)/2a-(3-Hydroxypropyl)-

1a,25-dihydroxy-19-norvitamin D3 0.83 2x10-5 2x10-4 

12 

18. 1-oleoyl-2-hydroxy-sn-glycero-3-PE/ 

2a−(3−Hydroxypropyl)−1a−25−dihy

droxy−19−norvitamin D3 

0.83 2x10-5 2x10-4 

2 

19. Indole-3-carbinol/PC(37:5)|PE(40:5) 0.82 2x10-5 2x10-4 41 

20. L-Phenylalanine/PC(37:5)|PE(40:5) 0.83 2x10-5 2x10-4 26 

21. L-Tryptophan/PC(37:5)|PE(40:5) 0.83 2x10-5 2x10-4 11 

22. Caffeine/PC(34:5)|PE(37:5) 0.84 2x10-5 2x10-4 2 

23. cis-5-

Tetradecenoylcarnitine/PC(35:4)|PE(

38:4) 

0.83 2x10-5 2x10-4 

13 

24. Cholic acid/PC(35:4)|PE(38:4) 0.83 2x10-5 2x10-4 27 

25. LPE(18:0)/ 2a-(3-Hydroxypropyl)-

1a,25-dihydroxy-19-norvitamin D3 0.82 3x10-5 3x10-4 

16 



| 132 
 

26. S-(4,5-Dihydro-2-methyl-3-furanyl) 

ethanethioate/PC(37:5)|PE(40:5) 0.82 3x10-5 3x10-4 

1 

27. Treprostinil/PC(35:4)|PE(38:4) 0.82 3x10-5 3x10-4 1 

28. Stearic acid/PC(35:4)|PE(38:4) 0.82 3x10-5 3x10-4 1 

29. Linoleic acid/2a-(3-Hydroxypropyl)-

1a,25-dihydroxy-19-norvitamin D3 0.81 4x10-5 3x10-4 

2 

30. Barogenin/2a-(3-Hydroxypropyl)-

1a,25-dihydroxy-19-norvitamin D3 0.79 4x10-5 3x10-4 

12 

31. MAG(18:3)/PC(35:4)|PE(38:4) 0.83 4x10-5 3x10-4 6 

32. Heptadecanoic acid/MAG(20:5) -0.79 5x10-5 4x10-4 5 

33. MAG(16:0)/PC(35:4)|PE(38:4) 0.79 5x10-5 4x10-4 38 

34. 4,8 dimethylnonanoyl carnitine/2a-(3-

Hydroxypropyl)-1a,25-dihydroxy-19-

norvitamin D3 

0.78 5x10-5 

4x10-4 42 

35. 10-nitro-9E-octadecenoic acid|9-

nitro-9E-octadecenoic acid/PE(38:4) 0.78 6x10-5 

4x10-4 16 

36. Prostaglandin J2/PC(35:4)|PE(38:4) 0.78 6x10-5 4x10-4 11 

37. PC(O-18:1/0:0)|PC(P-

18:0/0:0)/LPC(20:1) -0.76 6x10-5 

4x10-4 54 

38. Oleoyl-L-carnitine hydrochloride/2a-

(3-Hydroxypropyl)-1a,25-dihydroxy-

19-norvitamin D3 

0.73 7x10-5 

4x10-4 36 

39. Pantothenic acid/PC(35:4)|PE(38:4) 0.73 7x10-5 4x10-4 10 

40. 5a-Androst-3-en-17-

one/PC(35:4)|PE(38:4) 0.73 7x10-5 

4x10-4 12 

41. Decanoyl-L-

Carnitine/PC(35:4)|PE(38:4) 0.73 7x10-5 

4x10-4 5 

42. 4-Androsten-11Beta-ol-3,17-

dione|11-Hydroxy-4-androstene-3,17-

dione/2a−(3−Hydroxypropyl)−1a−25

−dihydroxy−19−norvitamin D3 

0.72 8x10-5 

4x10-4 52 

43. MAG(18:2)/PC(35:4)|PE(38:4) 0.71 8x10-5 4x10-4 54 

44. L-Octanoylcarnitine/LPC(22:5) 0.70 8x10-5 4x10-4 10 



Results | 133 
 
 

 

45. 1-linoleoyl-2-stearoyl-sn-

glycerol/Ceramide PE(36:2) 0.70 9x10-5 5x10-4 

12 

46. PC(15:2/0:0)|PE(18:2/0:0)/PC(30:1) 0.70 1x10-4 5x10-4 36 

47. Flavone/PC(35:4)|PE(38:4) 0.70 1x10-4 5x10-4 22 

48. Butyryl-L-carnitine|Isobutyryl-L-

carnitine/PE(38:4) 0.70 1x10-4 5x10-4 

24 

49. L-Carnitine/LPC(22:5) 0.70 2x10-4 0.001 35 

50. 10-nitro-9E-octadecenoic acid|9-

nitro-9E-octadecenoic 

acid/LPC(22:5) 

0.70 2x10-4 

0.001 5 

51. LPC(18e:0/0:0)/PC(40:6) 0.69 2x10-4 0.001 10 

52. Lyso-PAF C-18/PC(40:6) 0.69 3x10-4 0.001 2 

53. PS(18:0)/PC(40:6) 0.68 3x10-4 0.001 6 

54. LPC(18:3)/PC(40:6) 0.69 3x10-4 0.001 0 

55. LPC(0:0/18:2)-PC(40:6) 0.68 3x10-4 0.001 24 

56. Flavone/SPM(42:3) -0.68 4x10-4 0.002 23 

57. Butyryl-L-carnitine|Isobutyryl-L-

carnitine/SPM(42:3) -0.67 5x10-4 

0.002 14 

58. Geranyl acetoacetate/SPM(42:3) -0.67 5x10-4 0.002 6 

59. N-(9Z-octadecenoyl)-sphing-4-enine-

1-PC/SPM(42:3) -0.68 5x10-4 

0.002 1 

60. 1-2-dipalmitoleoyl-sn-glycero-3-

PC/SPM(42:3) -0.66 5x10-4 

0.002 3 

61. Biliribin I/LacCer(d18:1/14:0) 0.69 6x10-4 0.002 12 

62. PC(32:1)-SPM(42:3) -0.65 8x10-4 0.003 17 

63. L-Carnitine/LPC(22:5) -0.68 9x10-4 0.003 9 

64. Biliribin II/PC(34:2)|PE(37:2) 0.69 9x10-4 0.003 4 

65. S-(4-5-Dihydro-2-methyl-3-furanyl) 

ethanethioate/PC(40:5) 0.67 9x10-4 

0.003 0 

66. L-Carnitine/PC(40:5) 0.69 0.001 0.004 11 
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67. L-Phenylalanine/PC(40:5) 0.68 0.001 0.004 1 

68. Treprostinil/ LPC(0:0/18:2) -0.68 0.001 0.004 9 

69. LPC(0:0/20:5)/1,2-dipalmitoleoyl-sn-

glycero-3-PC -0.67 0.001 

0.004 19 

70. DL-2-Aminooctanoic acid/LPE(18:1) 0.65 0.005 0.02 21 

71. 1-O-1'-(Z)-octadecenyl-2-hydroxy-

sn-glycero-3-PE/ LPC(0:0/18:2) -0.67 0.005 

0.02 17 

72. 1-O-1'-(Z)-octadecenyl-2-hydroxy-

sn-glycero-3-PE/1-2-dioleoyl-sn-

glycero-3-PC|1-2-dipetroselenoyl-sn-

glycero-3-PC 

0.66 0.006 

0.02 7 

73. LPE(18:2)/1-2-dioleoyl-sn-glycero-3-

PC|1-2-dipetroselenoyl-sn-glycero-3-

PC 

-0.68 0.007 

0.02 4 

74. PC(15:2/0:0)|PE(18:2/0:0)/1-2-

dioleoyl-sn-glycero-3-PC|1-2-

dipetroselenoyl-sn-glycero-3-PC 

-0.66 0.007 

0.02 2 

75. LPE(18:1)/1-2-dioleoyl-sn-glycero-3-

PC|1-2-dipetroselenoyl-sn-glycero-3-

PC 

-0.65 0.007 

0.02 3 

76. 1-oleoyl-2-hydroxy-sn-glycero-3-

PE/1-2-dioleoyl-sn-glycero-3-PC|1-2-

dipetroselenoyl-sn-glycero-3-PC 

0.65 0.008 

0.02 1 

77. Lyso-PAF C-18/PC(34:3) -0.64 0.008 0.02 3 

78. PS(18:0)/PC(34:3) -0.63 0.008 0.02 1 

79. LPC(18:3)/PC(34:3) -0.62 0.008 0.02 10 

80. e-Caprolactam/1-2-dilinoleoyl-sn-

glycero-3-PC 0.61 0.008 

0.02 12 

81. DL-2-Aminooctanoic acid/1-2-

dilinoleoyl-sn-glycero-3-PC 0.62 0.009 0.03 

13 

82. Gamma-Caprolactone/1-2-

dilinoleoyl-sn-glycero-3-PC 0.61 0.009 0.03 

12 

83. Deoxycholic acid glycine 

conjugate/PC(32:1) 0.60 0.009 0.03 

20 

84. Choline/PC(34:3) -0.60 0.01 0.03 4 



Results | 135 
 
 

 

85. Creatinine/PC(34:3) -0.61 0.01 0.03 6 

86. e-Caprolactam/PC(34:3) -0.59 0.02 0.06 0 

87. DL-2-Aminooctanoic acid/PC(34:3) -0.62 0.02 0.06 1 

88. Oleoyl-L-carnitine 

hydrochloride/PC(36:1) -0.58 0.02 0.06 

22 

89. Alpha-Tocopherol/3a-6b-7b-

Trihydroxy-5b-cholanoic acid -0.62 0.03 0.08 

12 

90. 3a-6b-7b-Trihydroxy-5b-cholanoic 

acid/PC(36:1) -0.61 0.03 

0.08 13 

91. 1-O-1'-(Z)-octadecenyl-2-hydroxy-

sn-glycero-3-PE/PC(36:1) -0.62 0.03 

0.08 5 

92. MAG(20:5)/N-(octadecanoyl)-

sphing-4-enine-1-PC 0.58 0.03 

0.08 4 

93. Acetaminophen/PC(32:1) 0.57 0.03 0.08 2 

94. 2-Ketohexanoic acid/PC(32:1) 0.57 0.04 0.10 6 

95. S-(4-5-Dihydro-2-methyl-3-furanyl) 

ethanethioate/PC(32:1) 0.57 0.04 

0.10 7 

96. L-Carnitine/PC(32:1) 0.56 0.04 0.10 1 

97. e-Caprolactam/Gamma-Caprolactone -0.53 0.04 0.10 5 

98. DL-2-Aminooctanoic acid/Gamma-

Caprolactone -0.52 0.04 

0.10 2 

99. e-Caprolactam/L-Proline -0.50 0.05 0.12 3 

100. DL-2-Aminooctanoic acid/L-Proline 0.51 0.05 0.12 3 

101. gamma-Glutamyl-leucine/1-2-

dipalmitoleoyl-sn-glycero-3-PC -0.50 0.05 

0.12 4 

102. 3-Pyridylacetic acid|trigonelline/1-2-

dioleoyl-sn-glycero-3-PC|1-2-

dipetroselenoyl-sn-glycero-3-PC 

0.50 0.09 0.21 

14 

103. Stachydrine/1-2-dioleoyl-sn-glycero-

3-PC|1-2-dipetroselenoyl-sn-glycero-

3-PC 

0.51 0.10 0.23 

6 
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104. Benzenebutanoic acid/1-2-dioleoyl-

sn-glycero-3-PC|1-2-dipetroselenoyl-

sn-glycero-3-PC 

0.52 0.11 0.25 

8 

105. C12 Carnitine/1-2-dipalmitoleoyl-sn-

glycero-3-PC -0.51 0.11 0.25 

15 

106. Corticosterone/1-2-dipalmitoleoyl-sn-

glycero-3-PC -0.52 0.12 

0.27 

0 

107. LPC(0:0/16:1)/N-(9Z-octadecenoyl)-

sphing-4-enine-1-PC 0.52 0.12 

0.27 

11 

108. LPC(16:1/0:0)/N-(9Z-octadecenoyl)-

sphing-4-enine-1-PC 0.51 0.12 

0.27 

2 

109. LPC(0:0/16:0)/N-(9Z-octadecenoyl)-

sphing-4-enine-1-PC 0.49 0.13 

0.28 

13 

110. Heptadecanoic acid/SPM(40:2) 0.48 0.13 0.28 
27 

111. Phenylalanine/SPM(40:2) 0.48 0.13 0.28 
16 

112. Decanoyl-L-carnitine/SPM(40:2) -0.48 0.13 0.28 
1 

113. 5a-Androst-3-en-17-

one/SPM(d18:2/18:1) 0.49 0.14 0.29 

1 

114. Propranolol/SPM(d18:2/18:1) 0.49 0.14 0.29 1 

115. gamma-Glutamyl-

leucine/SPM(d18:2/18:1) -0.47 0.14 

0.29 2 

116. Myristic acid/SPM(d18:2/18:1) -0.47 0.14 0.29 12 

117. LPC(0:0/16:1)/Ceramide PE(38:2) 0.46 0.15 0.30 23 

118. LPC(16:1/0:0)/Ceramide PE(38:2) 0.46 0.15 0.30 6 

119. LPC(0:0/16:0)-Ceramide PE(38:2) 0.45 0.15 0.30 9 

120. Oleamide/PC(36:6) -0.42 0.18 0.36 14 

121. Piperine/PC(36:6) -0.43 0.22 0.44 2 

122. dehydroepiandrosterone 

sulfate/PC(35:3)|PE(38:3) -0.45 0.25 0.50 

5 

123. LPC(22:4)/Ornithine -0.44 0.26 0.51 1 

124. Biliverdin hydrochloride b/Ornithine -0.44 0.26 0.51 1 

125. Biliverdin hydrochloride a/Ornithine -0.42 0.27 0.51 1 
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126. LPC(22:4)-Biliribin II -0.41 0.27 0.51 2 

127. 6-hydroxy-5-

cholestanol|cholesterol/LPC(20:5/0:0) -0.40 0.27 

0.51 4 

128. cis-5-

Tetradecenoylcarnitine/LPC(20:5/0:0

) 

-0.40 0.27 

0.51 12 

129. cis/trans-Oleic acid/PC(30:2) 0.40 0.28 0.51 10 

130. 1-linoleoyl-2-stearoyl-sn-

glycerol/PC(30:2) 0.39 0.28 

0.51 2 

131. 1-vaccenoyl-2-palmitoyl-sn-

glycerol/PC(30:2) 0.38 0.28 

0.51 6 

132. Ceramide 

PE(33:1)|SPM(30:1)/PC(30:2) -0.39 0.28 

0.51 12 

133. Arachidonic acid/1-arachidoyl-2-

hydroxy-sn-glycero-3-PC -0.37 0.28 

0.51 3 

134. Heptadecanoic acid/1-arachidoyl-2-

hydroxy-sn-glycero-3-PC -0.37 0.28 

0.51 1 

135. SPM(30:1)/PC(30:2)/1-arachidoyl-2-

hydroxy-sn-glycero-3-PC -0.36 0.29 0.52 

1 

136. Decanoyl-L-carnitine-1-arachidoyl-2-

hydroxy-sn-glycero-3-

phosphocholine 

-0.35 0.29 

0.52 1 

137. 2-6 dimethylheptanoyl carnitine/3-

cis-Hydroxy-b-e-Caroten-3'-one 0.34 0.30 

0.52 2 

138. 4-Androsten-11Beta-ol-3-17-

dione|11-Hydroxy-4-androstene-3-

17-dione/3-cis-Hydroxy-b-e-Caroten-

3'-one 

0.34 0.30 

0.52 5 

139. Arachidonic acid/3-cis-Hydroxy-b-e-

Caroten-3'-one 0.33 0.30 

0.52 2 

140. Decanoyl-L-carnitine/LPC(0:0/18:2) 0.34 0.33 0.56 2 

141. LPC(0:0/20:5)/1,2-dipalmitoleoyl-sn-

glycero-3-PC -0.34 0.33 0.56 

3 
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142. DL-2-Aminooctanoic acid/LPE(18:1) -0.33 0.33 0.56 1 

143. MAG(18:3)/3-cis-Hydroxy-b-e-

Caroten-3'-one 0.31 0.33 0.56 

1 

144. Cholic acid/Ornithine -0.31 0.33 0.56 2 

145. MAG(18:2)/Ornithine -0.31 0.34 0.57 4 

146. MAG(18:1)/Ornithine -0.30 0.35 0.58 1 

147. Stearic acid/Ornithine -0.30 0.42 0.69 1 

148. L-Proline/Lyso-PAF C-18 0.31 0.43 0.70 5 

149. Betaine/Lyso-PAF C-18 0.29 0.44 0.72 6 

150. Salicylic acid|Aspirin/Lyso-PAF C-

18 0.30 0.45 

0.72 8 

151. Prostaglandin J2/LPC(20:1) -0.29 0.45 0.72 2 

152. Hyodeoxycholic acid/LPC(20:1) -0.32 0.45 0.72 2 

153. Deoxycholic acid/LPC(20:1) -0.34 0.48 0.75 1 

154. Cortisol/LPC(20:1) -0.32 0.48 0.75 1 

155. 4-8 dimethylnonanoyl 

carnitine/LPC(0:0/16:0) -0.29 0.48 0.75 

1 

156. Arachidonic acid ethyl 

ester/LPC(0:0/16:0) -0.29 0.49 0.76 

1 

157. MAG(18:0)/LPC(0:0/16:0) -0.28 0.50 0.76 1 

158. 17-phenyl trinor Prostaglandin E2|17-

phenyl trinor Prostaglandin 

D2/LPC(16:1/0:0) 

0.27 0.50 0.76 

1 

159. Sodium 

glycochenodeoxycholate/LPC(16:1/0:

0) 

0.28 0.50 0.76 

1 

160. Deoxycholic acid glycine 

conjugate/LPC(16:1/0:0) 0.29 0.55 0.83 

3 

161. Chenodeoxycholic 

acid/LPC(16:1/0:0) 0.28 0.60 0.89 

1 

162. LPC(22:5)/D-Urobilinogen|I-Urobilin -0.26 0.60 0.89 2 

163. MAG(16:0)/LPC(16:1/0:0) 0.25 0.60 0.89 15 



Results | 139 
 
 

 

164. Ceramide 

PE(35:2)|SPM(32:2)/PC(30:1) 0.27 0.62 

0.89 1 

165. PC(28:2)/PC(30:1) -0.26 0.62 0.91 2 

166. Ceramide 

PE(35:1)|SPM(32:1)/PC(30:1) 0.26 0.63 0.91 

3 

167. PC(30:1)/SPM(40:2) -0.26 0.63 0.92 1 

168. Deoxycholic acid glycine 

conjugate/Chenodeoxycholic acid 0.24 0.65 0.92 

1 

169. Fatty acid C20:5 methyl 

ester/PC(34:5)|PE(37:5) 0.25 0.65 0.93 

1 

170. PC(28:2)/ 1-oleoyl-2-palmitoyl-sn-

glycero-3-PC 0.28 0.67 0.93 

1 

171. PC(28:2)/PC(34:0) -0.25 0.67 0.95 3 

172. L-Phenylalanine/LPC(0:0/16:1) 0.21 0.67 0.95 2 

173. Uric acid/LPC(0:0/16:1) 0.21 0.69 0.95 2 

174. PC(32:1)/PC(35:3)|PE(38:3) -0.24 0.69 0.95 2 

175. Stearic acid/Palmitic acid 0.22 0.69 0.95 3 

176. Stearic acid/cis/trans-Oleic acid 0.22 0.70 0.95 4 

177. Ceramide 

PE(35:2)|SPM(32:2)/PC(32:1) -0.24 

0.70 0.95 4 

178. PC(28:2)/PC(32:1) -0.24 0.70 0.95 1 

179. Deoxycholic acid glycine 

conjugate/2a-(3-Hydroxypropyl)-1a-

25-dihydroxy-19-norvitamin D3 

-0.22 

0.70 0.95 12 

180. Chenodeoxycholic acid/2a-(3-

Hydroxypropyl)-1a-25-dihydroxy-19-

norvitamin D3 

-0.22 0.71 

0.95 1 

181. Linoleyl carnitine/2a-(3-

Hydroxypropyl)-1a-25-dihydroxy-19-

norvitamin D3 

-0.22 0.71 

0.95 2 
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182. Oleoyl-L-carnitine hydrochloride/2a-

(3-Hydroxypropyl)-1a-25-dihydroxy-

19-norvitamin D3 

-0.23 0.71 

0.95 2 

183. Alpha-Tocopherol/2a-(3-

Hydroxypropyl)-1a-25-dihydroxy-19-

norvitamin D3 

-0.22 0.72 

0.95 8 

184. cis-5-

Tetradecenoylcarnitine/LPC(0:0/16:1

) 

0.21 0.72 

0.95 7 

185. Cholic acid/LPC(0:0/16:1) 0.22 0.72 0.95 11 

186. MAG(18:2)/LPC(0:0/16:1) 0.22 0.73 0.95 1 

187. MAG(18:1)/LPC(0:0/16:1) 0.22 0.74 0.96 2 

188. LPE(18:0)/1-Stearoyl-2-Hydroxy-sn-

Glycero-3-PE 0.21 0.74 

0.96 3 

189. Choline/2a-(3-Hydroxypropyl)-1a-

25-dihydroxy-19-norvitamin D3 -0.21 0.75 

0.96 1 

190. Creatinine/2a-(3-Hydroxypropyl)-1a-

25-dihydroxy-19-norvitamin D3 -0.21 0.75 

0.96 1 

191. Fatty acid 

C22:6/PC(15:2/0:0)|PE(18:2/0:0) 0.20 0.77 0.97 

1 

192. 4-8 dimethylnonanoyl 

carnitine/PC(15:2/0:0)|PE(18:2/0:0) 0.21 0.77 

0.97 5 

193. Arachidonic acid ethyl 

ester/PC(15:2/0:0)|PE(18:2/0:0) 0.21 0.78 

0.97 3 

194. MAG(18:0)/PC(15:2/0:0)|PE(18:2/0:

0) 0.20 0.78 

0.97 1 

195. Cholic 

acid/PC(15:2/0:0)|PE(18:2/0:0) 0.20 0.80 

0.97 12 

196. 1-palmitoyl-2-hydroxy-sn-glycero-3-

PC/cis/trans-Oleic acid -0.20 0.80 

0.97 4 

197. LPE(20:4)/cis/trans-Oleic acid -0.20 0.81 0.97 2 

198. PC(O-18:1/0:0)|PC(P-

18:0/0:0)/cis/trans-Oleic acid -0.22 0.81 

0.97 3 

199. LPC(18e:0/0:0)/cis/trans-Oleic acid -0.22 0.81 0.97 8 
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200. LPE(16:0)/1-palmitoyl-2-hydroxy-sn-

glycero-3-PE 0.22 0.82 

0.97 7 

201. Choline/GCA -0.20 0.82 0.97 7 

202. Creatinine/GCA -0.19 0.82 0.97 6 

203. e-Caprolactam/GCA -0.19 0.84 0.97 2 

204. DL-2-Aminooctanoic acid/GCA -0.18 0.84 0.97 2 

205. Gamma-Caprolactone/GCA -0.18 0.84 0.97 2 

206. C12 Carnitine/Gamma-Tocopherol 0.20 0.85 0.97 1 

207. Corticosterone/Gamma-Tocopherol 0.21 0.85 0.97 2 

208. MAG(16:1)/Gamma-Tocopherol 0.22 0.85 0.97 1 

209. MAG(16:0)/Gamma-Tocopherol 0.22 0.85 0.97 1 

210. Myristic acid/LPE(18:0) -0.23 0.87 0.97 1 

211. Alpha-Linolenic acid/LPE(18:0) -0.24 0.87 0.97 3 

212. L-Aspartyl-L-

phenylalanine/LPE(18:0) -0.24 

0.87 0.97 2 

213. Propranolol/3a-6b-7b-Trihydroxy-5b-

cholanoic acid 0.22 0.90 

0.97 1 

214. gamma-Glutamyl-leucine/3a-6b-7b-

Trihydroxy-5b-cholanoic acid 0.21 

0.90 0.97 1 

215. Myristic acid/3a-6b-7b-Trihydroxy-

5b-cholanoic acid 0.20 

0.90 0.97 1 

216. Alpha-Linolenic acid/3a-6b-7b-

Trihydroxy-5b-cholanoic acid 0.22 

0.90 0.97 1 

217. 2-Ketohexanoic acid/Alpha-

Tocopherol 0.20 0.91 

0.97 1 

218. C12 Carnitine/PC(30:1) -0.20 0.91 0.97 2 

219. Corticosterone/PC(30:1) -0.21 0.91 0.97 2 

220. MAG(16:1)/PC(30:1) -0.21 0.91 0.97 2 

221. MAG(16:0)/PC(30:1) -0.22 0.92 0.97 1 

222. L-Carnitine/Linoleyl carnitine -0.20 0.92 0.97 1 
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223. L-Phenylalanine/Linoleyl carnitine -0.18 0.92 0.97 1 

224. Uric acid/Linoleyl carnitine -0.19 0.92 0.97 1 

225. Indoleacetic acid/Linoleyl carnitine -0.18 0.92 0.97 2 

226. Paraxanthine|Theophylline/Linoleyl 

carnitine -0.17 0.93 

0.97 1 

227. MAG(18:0)/3a-6b-7b-Trihydroxy-5b-

cholanoic acid 0.18 0.93 

0.97 3 

228. PS(18:0)/D-Urobilinogen|I-Urobilin 0.19 0.93 0.97 1 

229. LPC(18:3)/D-Urobilinogen|I-Urobilin 0.19 0.93 0.97 3 

230. LPC(0:0/18:2)/D-Urobilinogen|I-

Urobilin 0.19 0.94 

0.97 5 

231. LPC(18:2/0:0)/D-Urobilinogen|I-

Urobilin 0.18 

0.94 0.97 5 

232. Caffeine/LPC(22:5) -0.16 0.94 0.97 4 

233. Hippuric acid/LPC(22:5) -0.19 0.94 0.97 1 

234. L-Acetylcarnitine/LPC(22:5) -0.18 0.95 0.97 6 

235. Indolelactic acid/LPC(22:5) -0.18 0.95 0.97 1 

236. 1-2-dioleoyl-sn-glycero-3-

phosphocholine|1-2-dipetroselenoyl-

sn-glycero-3-PC/PC(36:1) 

0.17 

0.95 0.97 4 

237. Indoleacetic acid/PC(2:7) 0.16 0.95 0.97 1 

238. Paraxanthine|Theophylline/PC(42:7) 0.16 0.96 0.97 3 

239. L-Tyrosine|o-Tyrosine/PC (42:7) 0.15 0.96 0.97 2 

240. Naproxen/PC(42:7) 0.13 0.97 0.97 1 

241. Prostaglandin J2/1-palmitoyl-2-

hydroxy-sn-glycero-3-PE 0.12 

0.97 0.97 1 

242. Caffeine/GCA -0.10 0.97 0.97 1 

243. Creatinine/1-Stearoyl-2-Hydroxy-sn-

Glycero-3-PE 0.15 

0.97 0.97 1 

Table S3: Association with age of molecular feature abundances, correlation and ratios for women and men. 

Compound names, Winsorized Pearson’s correlation coefficient, the P-values, the Benjamini-Hochberg adjusted 

P-values, and the number of time that the association with age was validated are given. The correlation with age of 
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abundances, correlation and ratios is given by Equations (6) – (8). An overview of the statistical procedure used to 

establish such association is given in Figure 2. Abbreviations: LPC = Lysophosphatidylcholine; LPE = 

lysophosphatidylethenolamine; PC = phosphatidylcholine; PE = phosphatidylethanolamine; MAG = 

monoacylglycerol; GCA = glycocholic acid; SPM = sphingomyelin. 
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4.1.4 1H-NMR metabolomics to investigate the overall and dosage-dependent effect of 

probiotics on human urine and serum metabolome 
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Abstract 

The human gut hosts around one thousand different species of commensal microorganisms 

that play a crucial role in health promotion, implementing the host’s physiology and 

metabolism. In this perspective, probiotics are increasingly used, with the final aim of 

manipulating the composition of the gut microbiota, and with the aim of improving balanced 

microbial communities. In this context, the challenge is to characterize and understand 

potential metabolic changes that could determine and affect the dynamic relationship between 

host and microbiome. Nuclear Magnetic Resonance (NMR)-based metabolomics offers the 

possibility to investigate hundreds of various metabolites and lipids detectable in biological 

fluids (i.e. serum, urine, etc.), providing a global representation of the molecular mechanisms 

and potential effects of the dynamic and evolving interactions between the microflora and host, 

and of the response to probiotic assumption. In this study, using an NMR-based metabolomic 

approach, we highlighted the molecular effects obtained by microorganisms modulation 

through probiotic treatment, on human urine and serum metabolome. Twenty-one healthy 

volunteers were enrolled in the study and administered two different dosages of probiotics 

(high and low) for a total of 8 weeks. 20 urine samples per subject and 1 serum sample per 

subject were collected before and during the probiotic assumption. Univariate and multivariate 

statistical analyses were used to evaluate the 1H-NMR urine and serum spectra acquired, and 

to characterize the individual effects of the treatment.  
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1 Introduction 

Several numbers of microorganisms, approximately 1.3 times more than host cells, exist and 

coexist in the human gastrointestinal tract, and they directly maintain and modulate the 

metabolic and molecular balance of the gut environment1–4. It is demonstrated that the highly 

complex net of microorganisms that compose the gut microbiota, thanks to the production of 

specific antimicrobial proteins and the change of redox status, pH, and nutrient distribution, 

prevent the adhesion and proliferation of exogenous organisms, determining the fortification 

of the host’s gut immunity barrier5–8. Moreover, gut microorganisms are responsible for the 

regulation of many important human physiological pathways, including those involved in the 

synthesis of proinflammatory cytokines9,10, reactive oxygen compounds11,12, enzymes able to 

digest polysaccharides13,14, and the production of vitamin K, and most of the water‐soluble B 

vitamins, such as biotin, cobalamin, folates, nicotinic acid, pantothenic acid, pyridoxine, 

riboflavin, and thiamine15–17 in humans. The human microbiota, in this way, contributes to the 

host’s metabolism and physiology. 

In this scenario, it is possible to define the constant host-microbiome interactions as 

generative, from a genetic and a metabolic point of view, of a superorganism, called the 

holobiont18,19 and the individual phenotypes are seen as direct results of this complex and 

dynamic interactions20–23. The gut-microbiota composition regularly experiences changes in 

terms of structure and function. These changes could be dependent on physiological aspects 

(i.e. age, sex, BMI, etc.) and lifestyle and clinical aspects (i.e. diet, medical condition, drug 

treatments, etc.)24,25. When the microflora balance is definitely altered, human well-being 

could be compromised, driving several pathophysiological alterations26–29. In this light, to 

preserve and promote the healthy interactions between host and microbiota, probiotics, defined 

as “living microorganisms, which when administered in adequate amounts confer health 

benefits on the host”30–32, are increasingly used as dietary supplements or functional food for 

improving balanced microbial communities, for the suppression of potential pathogens, for the 

immunomodulation, and the stimulation of epithelial cells proliferation and fortification33. 

Currently, high-throughput metagenomic studies have been widely conducted to achieve deep 

characterization of the gut microbiome strain-level composition after the probiotics 

treatments34–37, but the metabolic interaction between probiotics and host remains only 

partially understood and investigated. Therefore, in order to better understand the holobiont 

metabolic interactions in health, changes in the functional and metabolic composition of the 

gut microbiota should be deeply explored. 

In this context, nuclear magnetic resonance (NMR)-based metabolomics represents a powerful 

technique to bring to light the complex molecular mechanisms and the highly interconnected 

dynamics between the host and the associated microbiota, taking into account the response to 
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probiotics administration, providing crucial information about several metabolites detectable 

in biological fluids (i.e. serum, plasma, urine), shedding a deeper light on the metabolic 

function that the microbiota exerts on human health.  

Several metabolomics studies on the administration of probiotics in patients in the state of 

health and disease demonstrated that the microbiota is intrinsically associated with overall 

health, including gut pathologies in both adults and children, clarifying how much probiotics 

can influence the healthy community and the physiological functions38–42. In this work, we 

analysed and characterised by NMR spectroscopy the metabolic concentration changes in 

urine and plasma samples of 21 healthy adult volunteers, regularly administered with two 

different probiotic posologies. The probiotic blends were composed of strains of the 

Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus fermentum and 

Bifidobacterium longum species and the period of the administration was characterised by a 

total of 8 weeks. As previously demonstrated 38, in order to have a more robust image of the 

metabolic behaviour of the holobiont, a strong point that we propose in this work is the use of 

different biofluids and 20 samples per subject for urine, considered much more related to 

inherent variability than serum. Univariate and multivariate analyses were used to evaluate the 

unidimensional NMR urine and serum spectra, and to evaluate the direct effect of the 

probiotics on the human metabolome. 
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2 Materials and Methods 

2.1 Study population 

The trial was registered at clinical.trials.gov with the registration number NCT04506385. The 

study group consists of twenty-one adult healthy volunteers with an overall age range from 24 

to 64 years (6 men with a mean age of 52.8±10.8 years and 15 women with a mean age of 

40.7±10.8 years), whose demographic characteristics are reported in Table 1. The exclusion 

criteria were: previous chronic and common diseases, previous surgery on the intestinal tract, 

probiotic/prebiotic and antibiotic treatments within 2 months, before the beginning of the 

study.  In addition, each subject declared to keep their diet and lifestyle stable during the entire 

duration of the study. 

2.2 Ethical issues 

The study was conducted in accordance with the Declaration of Helsinki (1964) and its later 

amendments. Informed, written consent was obtained from all participants. Ethical approval 

(protocol n◦ 294/CE, study n◦ CE 14/20, International Ethics Committee A.O.U. “Maggiore 

della Carità”, Novara, Italy) was obtained. 

2.3 Sample collection 

Forty-two serum and 840 urine samples were collected during the entire course of the study. 

All the serum samples were collected under overnight fasting conditions. For urine, the 

midstream of the first urine of the morning was collected. The pre-analytical treatment of all 

the samples followed standard operating procedures (SOPs) to obtain high-quality specimens 

for metabolomic analysis43–45. 

Blood samples were collected in serum blood collection tubes without anticoagulants at room 

temperature. The samples were processed within two hours of the blood draw. The samples 

were centrifuged at room temperature for 10 min at 1500 g, then serum was collected, and the 

aliquots were transferred into pre-labeled cryovials. Urine samples were collected in sterile 

plastic cups. All the samples were processed within two hours from the collection; 

centrifugation at 1000 to 3000 g for 5 min at + 4 °C was followed by a filtration using 0.20 µm 

cut-off filters.  All the processing procedures are detailed in the paper by Takis et al.46. 

After the processing, both serum and urine samples were stored at -80 °C. 

2.4 Probiotic formulations 

The commercial probiotic formulation (2.5 g) administered during the study was a blend of 

four strains belonging to Probiotical S.P.A. collection. The formulation was made up of 
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Lactobacillus plantarum LP01 (LMG P-21021), Lactobacillus fermentum LF16 (DSM 26956), 

Lactobacillus rhamnosus LR06 (DSM 21981) and Bifidobacterium longum 04 (DSM 23233) 

blended with maltodextrin to obtain a cell load of 1x109 CFU/dose or 10x109 CFU/dose 

(Biolab Research Method 014-06). The probiotic formulations were referred to as Dosage A 

and Dosage B for the blend carrying 1x109 CFU/dose and 10x109 CFU/dose, respectively. 

2.5 NMR sample preparation 

NMR samples were prepared according to SOPs for urine and serum. Frozen samples were 

thawed at room temperature and shaken before use. A total of 300 µL of each plasma sample 

was added to 300 µL of a phosphate sodium buffer (70 mM Na2HPO4; 20% (v/v) 2H2O; 

0.025% (v/v) NaN3; 0.8% (w/v) sodium trimethylsilyl [2,2,3,3–2H4] propionate (TSP) pH 

7.4); a total of 750 μL of each urine sample was centrifuged at 14000 g for 5 min, and 630 μL 

of the supernatant was added to 70 μL of a potassium phosphate buffer (1.5 M K2HPO4, 100% 

(v/v) 2H2O, 10 mM sodium trimethylsilyl [2,2,3,3−2H4] propionate (TMSP) pH 7.4).The 

mixtures were homogenised by vortexing for 30 s and a total of 600 μL of each mixture was 

transferred into a 5.00 mm NMR tube (Bruker BioSpin, Rheinstetten, Germany) for analysis. 

2.6 NMR analysis and processing 

Monodimensional (1D) 1H-NMR spectra were acquired using a Bruker 600 MHz spectrometer 

(Bruker BioSpin s.r.l., Germany) optimised for metabolomics samples, operating at 600.13 

MHz and equipped with a 5 mm cryoprobe, an automatic tuning-matching (ATM), and an 

automatic sample changer. In the NMR probe, the samples were kept for 3 minutes ahead for 

temperature equilibration and maintenance. The acquisition temperature used was 300 K for 

urine and 310 K for serum samples. 

According to standard procedures, for each serum sample, three monodimensional 1H NMR 

spectra were acquired with water peak suppression and different pulse sequences: (i) a 

standard NOESY (Nuclear Overhauser Effect Spectroscopy) 1Dpresat (noesygppr1d.comp; 

Bruker BioSpin) pulse sequence, using  32 scans, 98304 data points, a spectral width of 

18028.846 Hz, an acquisition time of 2.7 s, a relaxation delay of 4 s and a mixing time of 0.1 s. 

(ii) a standard CPMG [43] (cpmgpr1d.comp; Bruker BioSpin) pulse sequence, using 32 scans, 

73728 data points, a spectral width of 12019.230 Hz, and a relaxation delay of 4 s. (iii) a 

standard diffusion-edited (ledbgppr2s1d.comp; Bruker BioSpin) pulse sequence, using 32 

scans, 98304 data points, a spectral width of 18028.846 Hz, and a relaxation delay of 4s. 

For each urine sample, only monodimensional 1H NMR spectra were acquired with water peak 

suppression and a standard NOESY47 pulse sequence using 64 scans, 65536 data points, a 
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spectral width of 12019.230 Hz, an acquisition time of 2.7 s, a relaxation delay of 4 s and a 

mixing time of 0.1 s. Samples collected from the different subjects were mixed and acquired 

in a totally random order to avoid any batch effects. All the NMR spectra were automatically 

corrected for phase and baseline distortions and calibrated to the reference signal of TMSP at 

δ 0.00 ppm, and to the glucose doublet at δ 5.24 ppm, for urine and serum respectively, using 

TopSpin 3.6.2 (Bruker BioSpin Gmbh, Germany). Each spectrum in the range 0.2 -10.0 ppm 

was segmented into 0.02 ppm chemical shift bins and the corresponding areas were integrated 

using AssureNMR software (Bruker BioSpin s.r.l., Germany); the region between 6.0 - 4.5 

ppm containing residual water signal was excluded. For urine samples, normalisation was 

applied to the obtained bins to minimise dilution effects caused, for example, by variation in 

fluid intake; the area of each bin was normalised using Probabilistic Quotient Normalisation 

(PQN)48. Unlike urine, the serum is not affected by dilution effects, and solute concentrations 

are tightly controlled; thus, serum spectra and any normalisation method has been applied. 

2.7 Metabolite assignment and quantification 

Twenty-eight metabolites in serum samples and 40 metabolites in urine samples were correctly 

assigned in all spectra using a 1H-NMR spectra library of pure organic compounds 

(BBIOREFCODE, Bruker BioSpin), public databases, as Human Metabolome Database49, 

storing reference 1H-NMR spectra of metabolites, and using information available in the 

literature. Matching between new NMR data and databases was performed using the 

AssureNMR and AMIX software (Bruker BioSpin s.r.l., Germany). The quantification of the 

assigned metabolites was performed directly by integrating the signals in the spectra in a 

defined spectral range, using a house-developed tool. 

For completeness, the metabolites correctly assigned and quantified in both urine and serum 

samples are presented in Table 2. 

2.8 Statistical analysis 

2.8.1 Multivariate analysis 

Firstly, the principal component analysis (PCA)-canonical analysis (CA)50,51 was performed 

to increase the supervised data visualization, data space reduction, cluster detections, and 

analyzed group discrimination. 

To obtain pairwise comparisons, before and after the treatment, multilevel Partial Least Square 

Discriminant Analysis (mPLS-DA)52 was employed. For all classification models, accuracy, 

sensitivity, and specificity were calculated according to the standard definition. Moreover, the 

results were validated using the Monte Carlo cross-validation algorithm (MCCV)53. Using this 

approach, the original dataset was randomly split into a training set, characterised by 80% of 
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the data, which was used to test the test set, characterised by the remaining 20% of data. This 

procedure was repeated k = 100-times. 

2.8.2 Univariate analysis 

To study the metabolites trends and their relationship with the treatment, a mixed-effects linear 

regression framework was employed for each metabolite. Using a simplified notation, the full 

model for the log-quantification of a generic serum metabolite was specified as it follows: 

log(𝑄) = 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 + 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ∗ 𝐷𝑎𝑦 +  𝛽0 +  𝛽1𝐷𝑎𝑦 + 𝛽2(𝑇𝑖𝑚𝑒 = 𝑃𝑂𝑆𝑇)

+ 𝛽3(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = ℎ𝑖𝑔ℎ) + 𝛽4 𝐷𝑎𝑦: (𝑇𝑖𝑚𝑒 = 𝑃𝑂𝑆𝑇)

+ 𝛽5(𝑇𝑖𝑚𝑒 = 𝑃𝑂𝑆𝑇): (𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = ℎ𝑖𝑔ℎ)

+ 𝛽6𝐷𝑎𝑦: (𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = ℎ𝑖𝑔ℎ)

+ 𝛽7𝐷𝑎𝑦: (𝑇𝑖𝑚𝑒 = 𝑃𝑂𝑆𝑇): (𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = ℎ𝑖𝑔ℎ) + 𝛽8𝐴𝑔𝑒

+ 𝛽9(𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹𝑒𝑚𝑎𝑙𝑒) +  𝛽10𝐵𝑀𝐼 

where: 

● 𝑙𝑜𝑔(𝑄) is the dependent variable of the model, i.e. the log-quantification of a generic 

metabolite; 

● 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 + 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ⋅ 𝐷𝑎𝑦 is the random part of the model: each subject has a random 

intercept and slope, hence, for each subject, the temporal trend defined by the variable 

𝐷𝑎𝑦 could be different; 

● 𝛽0 is the fixed intercept; 

● 𝛽1to 𝛽7 are the coefficients for the day of the measurement (numerical, from 1 to 40, 

one for each subsequent subject’s measurement), treatment dosage (categorical, low 

or high dosage), time (categorical, PRE if the measurement belongs to the phase I, 

POST otherwise), and their interactions; 

● 𝛽8to 𝛽10 are the coefficients for age, gender, and BMI which were included in the 

models as they are considered possible confounding variables; 

● the reference level for this model is represented by a male subject, belonging to the 

low dosage group, before the treatment intake starts. 

To obtain a reduced model, more parsimonious than the full model, but with a comparable 

ability to describe the data variability, a stepwise model selection procedure was used. In 

detail, a log-likelihood ratio test is used to determine which variables are not significant for a 
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given metabolite (p-value threshold = 0.1). In addition, two different models are estimated in 

each step of the selection: the first one with an undefined intra-group correlation structure 

between observations and a second model with an autoregressive correlation structure of the 

first order. In the latter model a relationship between consecutive observations is hypothesised 

(e.g., day 1 and day 2, day 2 and day 3, etc.). The Akaike Information Criterion (AIC) is used 

to choose between the two models. 

Similarly, the full model for the log-quantification of a generic urine metabolite was specified 

as it follows: 

log(𝑄) = 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 + 𝛽0 +  𝛽1(𝑇𝑖𝑚𝑒 = 𝑃𝑂𝑆𝑇) +  𝛽2(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = ℎ𝑖𝑔ℎ)

+  𝛽3(𝑇𝑖𝑚𝑒 = 𝑃𝑂𝑆𝑇): (𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 

= ℎ𝑖𝑔ℎ) +  𝛽4𝐴𝑔𝑒 + 𝛽5(𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹𝑒𝑚𝑎𝑙𝑒) +  𝛽6𝐵𝑀𝐼 

 

where: 

● 𝑙𝑜𝑔(𝑄) is the dependent variable of the model, i.e., the log-quantification of a generic 

metabolite; 

● 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 is the random intercept for each subject; 

● 𝛽0 is the fixed intercept; 

● 𝛽1to 𝛽3 are the coefficients for the time of the measurement (categorical, PRE if the 

measurement belongs to the pre-treatment period, POST otherwise), treatment dosage 

(categorical, low or high dosage), and their interactions; 

● 𝛽4to 𝛽6 are the coefficients for age, gender, and BMI which were included in the 

models as they are considered possible confounding variables; 

● the reference level for this model is represented by a male subject, belonging to the 

low dosage group, before the treatment intake starts. 

Once the models had been estimated, linear combinations of the parameters were used, and 

95% confidence intervals were computed to describe trends (i.e. average differences between 

subsequent measurements) and average differences between phases for each metabolic log-

quantification. 

2.9 Software 

All calculations were performed in the R (version 4.0.3) statistical environment. All plots were 

obtained using the ggplot254 R package. The multivariate analyses were carried out using a R 
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software developed in-house. The mixed-effects models were estimated using the “nlme” 55,56 

R package. 
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3 Results 

3.1 Study design  

The study was based on two different phases (Figure 1A and 1B):  

I. Phase I: as performed by Ghini et al.38, the first phase of the study is characterised by 

a period of 4 weeks during which the healthy volunteers did not take any 

supplementation of probiotics. During this phase, each volunteer collected twenty 

urine samples (1 sample per day, excluding the weekend and the menstrual cycle days) 

and proceeded with their usual diet and lifestyle. At the beginning of Phase I, a serum 

sample from each subject was also collected. 

II. Phase II: the second phase of the study is a period of 8 weeks during which the 

volunteers were administered a daily dose of probiotics. In this phase, the subjects 

were randomly divided into two groups, named “High-dosage” and “Low-dosage”. 

The “high-dosage” group is characterise by n = 10 subjects; the “low-dosage” group 

is characterised by n = 11 subjects. Starting from day 28 of probiotic assumption, each 

volunteer collected twenty urine samples (1 sample per day, excluding the weekend 

and the menstrual cycle days) and proceeded with their usual diet and lifestyle. In the 

4th week of probiotic assumption of Phase II, a serum sample from each subject was 

also collected. 

3.2 The effect of dose-dependent probiotics administration on urinary metabolic human 

phenotype  

To characterise the urinary individual metabolic phenotype of the healthy subjects, and to 

investigate the effect of the probiotics and the dose-specific probiotic assumption on the 

metabolic profile, the Principal Component Analysis - Canonical Analysis - K-Nearest 

Neighbours (PCA-CA-KNN) statistical analysis, also used in previous studies conducted by 

our research group, was performed50. 

As expected21,38, considering all urine samples collected before the administration of the 

probiotics at the baseline reference (Phase I), the individual discrimination was almost perfect, 

with an accuracy value of 99% (Figure 2A). During the probiotic treatment, individual 

discrimination decreases by 1% passing from 99% in Phase I to 98% in Phase II (Figure 2B). 

Performing the same analysis on the dose-specific groups separately, we observed the same 

behaviour. In particular, the subjects treated with a low dose of probiotics, showed, in Phase I 

(Figure 3A) accuracy discrimination of 99% and, after the treatment, accuracy discrimination 

of 98% (Figure 3B). The subjects treated with a high dose of probiotics pass from an 

individual discrimination accuracy of 98% before the treatment (Figure 3C) to 97% after 

treatment (Figure 3D). 
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The decrease of the individual discrimination accuracy among subjects, also considering the 

dose-effect, could be related to the probiotic administration, but we cannot consider this effect 

as generating a solid structural change. 

3.3 Effect of different doses of probiotics on the urinary metabolome 

To highlight a potential global effect and a potential dose-dependent effect of the probiotic 

assumption, minimising the intra-individual variability, the entire urine spectra collected 

during the two treatment phases were compared using Multilevel - Partial Least Squares (M-

PLS) analysis (Figure 4). Using this statistical approach, we evaluated how much the urinary 

profile changes after the introduction of an exogenous set of microorganisms. 

We observed moderate discrimination (80%) and good separation between urine metabolome 

before and after treatment, considering the entire cohort of healthy volunteers (Figure 4A). 

Investigating a dose-dependent effect, we interestingly and unexpectedly observed that the 

subjects treated with a low dose of probiotics tended to have a discrimination accuracy higher 

than the subjects treated with a high dose of probiotics (Figure 4B, 4C); more precisely 79% 

accuracy for the first group and 61% for the second group. This result suggests that, after 8 

weeks of treatment, the metabolome reacts more efficiently to low doses than high doses of 

probiotics. 

To describe metabolic variations, a mixed-effects regression model was implemented for each 

urinary metabolite (see Methods).  

Firstly, log-quantification levels were tested for differences between the 10-th measure of 

phase II and the 10-th measure of phase I (net of other variables). 3-hydroxyisobutyric acid, 

4-hydroxyphenylacetate, and sugar-unknown (range ppm = 5.218-5.200) were decreased in 

phase II for both dosage groups, valine and isoleucine were significantly decreased only for 

the low dosage group, allantoin was decreased only for the high dosage group, while tartrate 

was significantly increased for the low dosage group (Table 3).  

3.4 Effect of different doses of probiotics on serum metabolome 

To evaluate the overall effect of probiotics on serum samples, 1H-NMR serum spectra, 

collected during both phases, were compared using the same statistical approach performed 

on urine: M-PLS analysis. As reported before, a multilevel approach could be useful for 

reducing intra-individual variability. 

We observed fair discrimination (77%) and good separation between serum metabolic profiles 

before and after treatment, considering the entire cohort of healthy volunteers (Figure 5A). 
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Investigating a dose-dependent effect, as expected, but in contrast with what we assessed in 

urine samples, we observed that the subjects treated with a low dose of probiotics tend to have 

a discrimination accuracy (76%) comparable to that evaluated in the subjects treated with a 

high dose of probiotics (78%) (Figure 5B, 5C). 

Similar to the analysis of metabolic variations in urine, a simple mixed-effects regression 

model was implemented for each serum metabolite (see Methods).  

Log-quantification levels were tested for differences between phase II and phase I (net of other 

variables). Acetone and pyruvate were significantly increased in phase II for both dosage 

groups, while histidine, glutamine, creatinine, acetate, and citrate were significantly decreased 

(Table 4).  

4 Discussion 

This study demonstrates that a probiotic administration can lead to changes in metabolites at 

urinary and serum system levels, without altering significantly the individual metabotypes. 

Our study also demonstrated the paramount role of having access to multiple and prolonged 

collections of samples in the pre-treatment condition to define a reliable baseline. 

It is currently well recognised that gut microbiota can produce a wide range of metabolites by 

human endogenous or exogenous factors (e.g. food compounds) and some of them are 

exclusive of bacterial origin with a key role in host-microbiota cross-talk57. These metabolic 

changes driven by bacteria have been documented at faecal, urine, and serum level. Dietary 

interventions are emerging as a strategy to re-shaping and modulate not only the gut microbiota 

composition but even their metabolomes with concomitant positive effects on the hosts58. 

Similarly, it is demonstrated that the administration of exogenous beneficial bacteria in a close 

pre-existent ecosystem generates metabolic mutualistic benefits for both microbial 

communities and host59,60. 

In this work we observed that the administration of probiotics reduces the urinary individual 

discrimination accuracy by 1%, suggesting that probiotic leads to greater similarity in the 

metabolic host-microbiome cross-talk38. Although present, we are not able to consider this 

highlighted effect statistically robust. 

Reducing the intra-individual variability, we determined the overall effect of probiotics on 

urine subject-specific metabolomic profile. In particular, the urine profiles related to the 

baseline period were discriminated from the urine profiles collected during the administration 

of the probiotics with an accuracy of 80%. The same approach was also conducted by dividing 

our cohort into dosage-dependent groups. Interestingly, a greater overall effect of the non-

invasive treatment on the low-dosage group (accuracy = 79%) compared with the high-dosage 
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group (accuracy = 61%) was recorded. The same approach was also performed on serum 

samples. The overall effect of probiotics assumption on serum metabolomic profiles was about 

77%, considering the entire cohort of study and the two dosage-dependent sub-groups. The 

molecular mechanisms by which these different dosage-dependent effects are generated in 

urine metabolomes are still not clear and need to be more deeply investigated; probably the 

indigenous microbiome suffered increased gut selection pressure with the invasion of higher-

dosage of probiotics, generating, in this way, an initial antagonistic relationship61,62.  

Several differences at the metabolic level, derived from the probiotic treatment, were 

highlighted in both biofluids considered in this study. The metabolic variations in urine 

samples were evaluated taking into account the differences between the 10-th measure of 

phase II and the 10-th measure of phase I. In particular, in urine samples, we observed that 3-

hydroxyisobutyric acid, 4-hydroxyphenylacetate, and resonance of a sugar detectable in ranges 

from 5.218 to 5.200  significantly decreased after the probiotic treatment in both dosage-

dependent groups. Interesting is the role played by 4-hydroxyphenylacetate, an intermediate 

of tyrosine metabolism, both in humans and in microbes. In the human gut, the amino acids 

that are not digested and absorbed can be metabolized by the gut microbiota to form the 3- and 

4-hydroxyphenylacetate organic acids. Higher levels of these compounds are considered 

markers to reflect protein malabsorption or dysbiosis63–66. The reduction of urinary 4-

hydroxyphenylacetate confirms, in our study, the potentiality of probiotics to re-balance the 

pre-existent gut microflora, ensuring an improvement in the absorption and bioavailability of 

molecules, AAs, necessary for human well-being. Although we are not able to perform a 

precise assignment of the resonance in 5.218-5.200  ppm, we can affirm that, due to its 

spectroscopic characteristics, this signal belongs to a sugar. It is well known that the presence 

of sugars in the urine indicates an alteration of their metabolism67. Although the concentration 

of this sugar in phase one is in the normal range, as a result of the probiotic we notice a 

decrease, suggesting that the overall rebalancing of the intestinal microbiota also plays a 

fundamental role in improving the metabolism of sugars68.  

In the low dosage-dependent group only, we observed a significant decrease in valine and 

isoleucine concentration, while, in the high-dosage-dependent group only, we observed a 

decrease in allantoin. The branched-chain amino acids (BCAAs), in particular valine and 

isoleucine, are essential nutrients with important roles in protein synthesis in humans. The gut 

microbiota is a major source of circulating BCAAs through biosynthesis and absorption 

modification but elevated circulating BCAAs are associated with metabolic disorders (i.e., 

Type 1 and 2 diabetes)69. The same behaviour is observed for 3-hydroxyisobutyric acid. A 
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global reduction of BCAAs and of 3-hydroxyisobutyric acid indicates a potential role of these 

probiotics to promote both correct reabsorption and/or modification in the gut but also a 

potential protective role in pathologies that involve the alteration of the metabolism of 

BCAAs69,70. 

Urinary allantoin, an end product of purine metabolism, is normally present in urine and is 

formed from uric acid through reactions with oxidative species. The increase in terms of 

concentration of this molecule is directly associated with a systemic increase in oxidative 

stress71,72. In this perspective, the probiotics assumption reveal to be efficient in rebalancing 

the allantoin concentration in urine, promoting a reduction of this oxidative stress biomarker73.   

Lastly, tartaric acid significantly increases in the low-dosage dependent group. The biological 

and molecular significance linked to the increase of this compound is still to be discovered74. 

Considering the serum samples, the levels of the log-quantification metabolites were tested for 

differences between phase II and phase I. In this case, acetone and pyruvate were significantly 

increased in phase II, while histidine, glutamine, creatinine, acetate, and citrate were 

significantly decreased, for both dosage-dependent groups. Pyruvate performs several 

functions in human metabolism, revesting important roles in ATP production. We can 

speculate that the use of these probiotic strains could be useful for counteracting pathologies 

and/or dysbiosis phenomena that lead to a malfunction and a reduction in the activity of the 

glycolytic processes.  It is demonstrated that the glycolysis impairment can cause a lowering 

of pyruvate and, also, lactate levels and an increase of glucose in serum, in particular in 

diabetic and coeliac patients38,68,75. A revertant effect could be stimulated by the use of 

probiotics, resulting in a remodeling of the gut microflora.  

The decrease of histidine could be directly related to bacterial fermentation; in fact, the gut 

microbiota converts histidine into an immunoregulatory signal, histamine, able to suppress 

pro-inflammatory TNF production that could generate several local and/or systemic 

diseases70,76. 

It is also known that the gut microbiota utilizes glutamine as a nitrogen source for optimal 

survival and growth. Alteration in microbiota composition can profoundly influence glutamine 

metabolism, determining metabolic alteration in pathologies such as fibromyalgia77,78. 

Probiotic treatments, especially mixtures of Lactobacilli, are also used in promoting healthy 

kidney function; in particular, it was observed in the literature that exogenous microorganisms 

reduce the overall blood creatinine concentration, which is one of the most relevant biomarkers 

of chronic kidney disease79,80.  
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Table 

 All Women Men 

n (n, %) 21 15 (71.4) 6 (28.6) 

Age (yrs ± SD) 45.9 ± 11.8 40.7 ± 10.8 52.8 ± 10.8 

Heigh (m ± SD) 1.70 ± 0.09 1.65 ± 0.05 1.82 ± 0.07 

Weight (kg ± SD) 66.5 ± 14.7 59.4 ± 8.3 84.3 ± 11.9 

BMI (kg/m2 ± SD) 22.7 ± 3.1 21.7 ± 2.8 25.4 ± 2.3 

Table 1: Demographic characteristics of healthy adult volunteers enrolled in the study.  

Serum Metabolites 

Acetate Creatinine Histidine Phenylalanine 

Acetone Formate Isoleucine Proline 

Alanine Glycoprotein Lactate Pyruvate 

Betaine Glucose Leucine Threonine 

Citrate Glutamine Lysine Tyrosine 

Creatine Glycine Mannose Valine 

Urine Metabolites 

Acetoacetic Acid dTTP Leucine 3-hydroxyisobutyric acid 

Acetone Formate Lysine 3-hydroxymandelate 

Alanine Fumarate Phenylacetylglutamine 3-hydroxypropanoic acid 

(HPHPA) 

Allantoin Glycine Tartrate 4-hydroxyphenylacetate 

Asparagine Glucose Trimethylamine-N-oxide 

(TMAO) 

Unk (ppm range = 0.940 - 

0.932, singlet) 

Betaine Hippurate Trigonelline Unk2 (ppm range = 2.910 - 

2.886, singlet) 

Citrate Histidine Tyrosine Unk3 (ppm range = 2.790 - 

2.781, singlet) 
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Creatine + 

Creatinine 

Isoleucine Valine Unk4 (ppm range = 5.401 - 

5.387, singlet) 

Creatinine Indoxyl-sulphate 1-methylnicotinamide Sugar_unk (ppm range = 

5.218 - 5.200) 

Dimethylamine Lactic acid + 

Threonine 

2-hydroxyisobutyric acid  

 

Table 2: List of metabolites assigned and quantified in both serum and urine samples. 

Metabolites Estimate Lower Upper Dosage 

Tartrate 0.402 0.210 0.594 low 

Valine -0.036 -0.071 -0.001 low 

3-hydroxyisobutyric acid -0.040 -0.075 -0.004 low and high 

4-hydroxyphenylacetate -0.050 -0.090 -0.010 low and high 

Isoleucine -0.053 -0.088 -0.018 low 

Allantoin -0.087 -0.150 -0.025 high 

Sugar_unk (ppm range = 

5.218 - 5.200) 

-0.127 -0.183 -0.071 low and high 

Table 3: Average differences between the 30-th (middle Phase II) and the 10-th (middle Phase 

I) measurements for urinary metabolites log-quantifications (95% confidence intervals), net of 

other variables.  

 

Metabolites Estimate Lower Upper 

Pyruvate 0.144 0.022 0.266 
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Histidine -0.038 -0.070 -0.005 

Glutamine -0.048 -0.094 -0.002 

Creatinine -0.066 -0.123 -0.010 

 

Table 4: Average differences between Phase II and Phase I for serum metabolites log-

quantifications (with 95% confidence intervals), net of other variables. 
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Figure 

 

Figure 1: Study design. A) Experimental scheme of the two phases of the project; B) Temporal 

scheme of urine and serum sampling in Phase I and Phase II. 
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Figure 2: Urinary subject-specific metabolic phenotype discrimination in (A) Phase I; (B) 

Phase II. Each colour in the PCA-CA score plot represents a different healthy subject. At the 

bottom of the score plot the Accuracy of the model, expressed in percentage, is also reported. 
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Figure 3: Discrimination of urinary dose-dependent subject-specific metabolic phenotype 

in (A) Phase I in subjects administered with a low dose of probiotics; (B) Phase II in subjects 

administrated with a low dose of probiotics; (C) Phase I in subjects administrated with a high 

dose of probiotics; (D) in subjects administered with a high dose of probiotics. Each colour in 

the PCA-CA score plot represents a different healthy subject. At the bottom of the score plot 

the Accuracy of the model, expressed in percentage, is also reported. 
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Figure 4: Score plots of M-PLS discrimination between urine samples collected (A) for all 

subjects during Phase I (blue dots) and Phase II (red dots); (B) for subjects administered with 

a low dose of probiotics during Phase I (blue dots) and Phase II (red dots); (C) for subjects 

administered with a high dose of probiotics during Phase I (blue dots) and Phase II (red dots). 

Discrimination accuracy values for the three pairwise comparisons were also reported. The 

median spectrum of each subject at every phase was calculated and used to build the MPLS 

models. 

 

Figure 5: Score plots of M-PLS discrimination between serum samples collected (A) for 

all subjects during Phase I (blue dots) and Phase II (red dots); (B) for subjects administered 

with a low dose of probiotics during Phase I (blue dots) and Phase II (red dots); (C) for subjects 

administered with a high dose of probiotics during Phase I (blue dots) and Phase II (red dots). 

Discrimination accuracy values for the three pairwise comparisons were also reported. The 
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median spectrum of each subject in each phase was calculated and used to build the MPLS 

models. 
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4.1.5 Associations of plasma metabolites and lipoproteins with Rh and ABO blood 

systems in healthy subjects 
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4.1.6 NMR-based metabolomics to predict early and late adverse outcomes in ischemic 

stroke treated with intravenous thrombolysis 
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Supplementary tables  

Table S1: Complete list of metabolites and lipoproteins correctly assigned and quantified in serum 

NMR spectra 

Metab

olites 

Lipoproteins 

Creatini
ne 

Trigl 
LMF_Trigl_ID
L 

LMF_ApoB_
IDL 

SubPhosp_
VLDL-2 

SubFreeCho
l_LDL-3 

SubTrigl_H
DL-3 

SubApoA2
_HDL-1 

Ala Chol 
LMF_Trigl_L

DL 

LMF_ApoB_

LDL 

SubPhosp_

VLDL-3 

SubFreeCho

l_LDL-4 

SubTrigl_H

DL-4 

SubApoA2

_HDL-2 

Glu LDL-Chol 
LMF_Trigl_H
DL 

SubTrigl_VL
DL-1 

SubPhosp_
VLDL-4 

SubFreeCho
l_LDL-5 

SubChol_H
DL-1 

SubApoA2
_HDL-3 

Gln HDL-Chol 
LMF_Chol_V

LDL 

SubTrigl_VL

DL-2 

SubPhosp_

VLDL-5 

SubFreeCho

l_LDL-6 

SubChol_H

DL-2 

SubApoA2

_HDL-4 

Gly Apo-A1 
LMF_Chol_ID
L 

SubTrigl_VL
DL-3 

SubTrigl_L
DL-1 

SubPhosp_L
DL-1 

SubChol_H
DL-3 

 

His Apo-A2 
LMF_Chol_L

DL 

SubTrigl_VL

DL-4 

SubTrigl_L

DL-2 

SubPhosp_L

DL-2 

SubChol_H

DL-4 

 

Ile Apo-B100 
LMF_Chol_H
DL 

SubTrigl_VL
DL-5 

SubTrigl_L
DL-3 

SubPhosp_L
DL-3 

SubFreeChol
_HDL-1 

 

Leu 
Apo-B100-

Apo-A1 

LMF_FreeCho

l_VLDL 

SubChol_VL

DL-1 

SubTrigl_L

DL-4 

SubPhosp_L

DL-4 

SubFreeChol

_HDL-2 

 

Phe VLDL_PN 
LMF_FreeCho
l_IDL 

SubChol_VL
DL-2 

SubTrigl_L
DL-5 

SubPhosp_L
DL-5 

SubFreeChol
_HDL-3 

 

Tyr IDL_PN 
LMF_FreeCho

l_LDL 

SubChol_VL

DL-3 

SubTrigl_L

DL-6 

SubPhosp_L

DL-6 

SubFreeChol

_HDL-4 

 

Val LDL_PN 
LMF_FreeCho
l_HDL 

SubChol_VL
DL-4 

SubChol_L
DL-1 

SubApoB_L
DL-1 

SubPhosp_H
DL-1 

 

Acetic 

acid 
LDL1_PN 

LMF_Phosp_

VLDL 

SubChol_VL

DL-5 

SubChol_L

DL-2 

SubApoB_L

DL-2 

SubPhosp_H

DL-2 

 

Citric 
acid 

LDL2_PN 
LMF_Phosp_I
DL 

SubFreeChol
_VLDL-1 

SubChol_L
DL-3 

SubApoB_L
DL-3 

SubPhosp_H
DL-3 

 

Lactic 

acid 
LDL3_PN 

LMF_Phosp_L

DL 

SubFreeChol

_VLDL-2 

SubChol_L

DL-4 

SubApoB_L

DL-4 

SubPhosp_H

DL-4 

 

3-HB LDL4_PN 
LMF_Phosp_
HDL 

SubFreeChol
_VLDL-3 

SubChol_L
DL-5 

SubApoB_L
DL-5 

SubApoA1_
HDL-1 

 

Aceton

e 
LDL5_PN 

LMF_ApoA1_

HDL 

SubFreeChol

_VLDL-4 

SubChol_L

DL-6 

SubApoB_L

DL-5 

SubApoA1_

HDL-2 

 

Pyruvic 
acid 

LDL6_PN 
LMF_ApoA2_
HDL 

SubFreeChol
_VLDL-5 

SubFreeCho
l_LDL-1 

SubTrigl_H
DL-1 

SubApoA1_
HDL-3 

 

Glucos

e 

LMF_Trigl

_VLDL 

LMF_ApoB_

VLDL 

SubPhosp_V

LDL-1 

SubFreeCho

l_LDL-2 

SubTrigl_H

DL-2 

SubApoA1_

HDL-4 

 

*Main abbreviations: trigl: triglycerides; chol: cholesterol; phosp: phospholipids; Apo: apolipoprotein; 

LMF: lipoprotein main fraction; PN: particle number; sub: subfractions; phosp: phospholipids; 3-HB: 

3-hydroxybutyrate. Amino acids are reported with the three letters code.  
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Table S2: Comparison between demographic and clinical characteristics of patients enrolled in the 

original study (n = 327) and the presented metabolomic study (n = 243). 

Demographics 

Patients cohort of the 

presented study 

(n = 243) 

Patients cohort of 

the original study 

(n = 327) 

P-value 

Age, years, mean, and SD 68.8 ± 11.9 68.9 ± 12 0.88 

Sex (male), n (%) 137/243 (56.4%) 190/327 (58.1%) 0.68 

Onset to treatment time, 

minutes, mean, and SD 

163.4 ± 83.7 163.5 ± 75.7 0.86 

Baseline NIHSS, mean, and 

SD 

11.9 ± 6.1 11.9 ± 6.0 0.94 

Baseline systolic blood 

pressure, mmHg, mean, and 

SD 

147.5 ± 21.3 148.2 ± 21.7 0.69 

Baseline diastolic blood 

pressure, mmHg, mean, and 

SD 

79.7 ± 12.7 80.1 ± 12.7 0.71 

Blood glucose, mg/dL, 

mean, and SD  

130.2 ± 49.5 130.2 ± 47.9 0.99 

Risk factors 

Hypertension, n (%) 143/243 (58.8%) 197/327 (61.0%) 0.77 

Diabetes, n (%) 36/243 (14.8%) 50/327 (15.4%) 0.89 

Hyperlipidemia, n (%) 56/243 (23%) 81/327 (25.8%) 0.68 

Current smoking, n (%) 35/243 (14.4%) 51/327 (15.9%) 0.70 

Atrial fibrillation, n (%) 56/243 (23%) 73/327 (22.7%) 0.83 

Congestive heart failure, n 

(%) 

26/243 (10.7%) 35/327 (10.9%) 0.98 

Abbreviation used: SD = Standard Deviation; NIHSS = National Institute of Health Stroke Scale 
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Table S3: Pearson correlation analysis bewteen molecular features and inflammatory markers 

evalutated in t1. Only stastistically significant correlation were reported (P-value<0.05). For 

completeness FDR P-value was also reported 

Molecular features 

Inflammatory 

markers P-value 

FDR P-

value Correlation coefficient 

SubApoA2_HDL.4 CRP 2.82E-05 9.43E-05 0.265 

SubApoA1_HDL.4 CRP 6.85E-05 0.0002 0.253 

SubChol_HDL.4 CRP 0.0001 0.0004 0.244 

SubFreeChol_HDL.4 CRP 0.0002 0.0007 0.235 

SubPhosp_HDL.4 CRP 0.0003 0.001 0.228 

SubApoA2_HDL.4 IL6 0.003 0.007 0.191 

SubFreeChol_HDL.4 IL8 0.003 0.008 0.189 

SubPhosp_HDL.4 IL6 0.004 0.009 0.185 

SubChol_HDL.4 IL6 0.004 0.010 0.183 

SubPhosp_HDL.4 IL8 0.008 0.019 0.169 

SubChol_HDL.4 IL8 0.010 0.023 0.165 

SubPhosp_LDL.4 CRP 0.012 0.027 0.162 

LDL4_PN CRP 0.012 0.028 0.160 

SubApoB_LDL.4 CRP 0.012 0.028 0.160 

SubTrigl_VLDL.3 IL12 0.013 0.028 0.160 

SubChol_LDL.4 CRP 0.014 0.030 0.158 

SubApoA1_HDL.4 IL6 0.014 0.031 0.158 

LMF_FreeChol_LDL CRP 0.016 0.036 0.154 

Creatinine MCPI 0.017 0.036 0.153 

SubFreeChol_HDL.3 CRP 0.018 0.039 0.152 

Glucose TNFalpha 0.019 0.041 0.150 

SubFreeChol_LDL.4 CRP 0.019 0.042 0.150 

Apo.A2 CRP 0.022 0.046 0.147 

SubFreeChol_LDL.5 CRP 0.023 0.049 0.146 

SubTrigl_VLDL.4 IL12 0.024 0.051 0.145 

SubChol_LDL.3 CRP 0.024 0.051 0.145 

SubFreeChol_HDL.4 IL6 0.030 0.061 0.140 

Glucose IL8 0.030 0.063 0.139 

SubTrigl_HDL.4 CRP 0.034 0.070 0.136 

SubFreeChol_LDL.3 CRP 0.035 0.072 0.135 

SubPhosp_VLDL.3 IL12 0.037 0.074 0.134 

SubApoA2_HDL.4 IL8 0.037 0.074 0.134 

SubFreeChol_HDL.4 IL10 0.039 0.078 0.133 

SubPhosp_LDL.3 CRP 0.039 0.079 0.132 

SubPhosp_VLDL.2 IL12 0.043 0.086 0.130 

LMF_ApoA2_HDL CRP 0.044 0.086 0.129 

SubPhosp_LDL.5 CRP 0.047 0.093 0.127 

SubApoA2_HDL.4 MCPI 0.048 0.093 0.127 

SubTrigl_LDL.4 IL10 0.048 0.094 0.127 

SubChol_HDL.3 IL8 0.048 0.095 -0.127 

LMF_FreeChol_HDL A2M 0.047 0.091 -0.128 

LMF_FreeChol_HDL A2M.1 0.047 0.091 -0.128 
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Val IL10 0.046 0.091 -0.128 

His IL8 0.046 0.090 -0.128 

Apo.A1 IL10 0.045 0.089 -0.129 

SubTrigl_HDL.2 TNFalpha 0.044 0.087 -0.129 

SubApoA1_HDL.2 IL12 0.044 0.086 -0.129 

SubApoA1_HDL.1 IL1ra 0.043 0.084 -0.130 

Val TNFalpha 0.042 0.084 -0.130 

SubChol_VLDL.1 IL10 0.042 0.084 -0.130 

SubChol_HDL.3 IL10 0.041 0.082 -0.131 

LMF_Phosp_HDL MCPI 0.041 0.082 -0.131 

SubPhosp_LDL.6 IL10 0.039 0.078 -0.132 

SubChol_HDL.1 MMP9 0.039 0.078 -0.133 

SubApoA2_HDL.1 IL12 0.038 0.076 -0.133 

SubApoA1_HDL.3 IL12 0.038 0.076 -0.133 

SubTrigl_VLDL.5 IL8 0.037 0.075 -0.134 

Glu IL8 0.037 0.074 -0.134 

SubTrigl_LDL.6 IL10 0.037 0.074 -0.134 

SubFreeChol_LDL.2 IL8 0.036 0.073 -0.135 

Apo.A1 IL8 0.035 0.071 -0.135 

SubFreeChol_LDL.1 IL8 0.034 0.069 -0.136 

SubPhosp_HDL.1 IL12 0.034 0.069 -0.136 

Gly IL1ra 0.034 0.069 -0.136 

Pyruvicacid IL10 0.034 0.069 -0.136 

SubFreeChol_HDL.1 IL12 0.033 0.067 -0.137 

Glu IL10 0.031 0.064 -0.138 

Gly IL10 0.031 0.063 -0.139 

SubChol_HDL.2 IL1ra 0.030 0.063 -0.139 

SubChol_VLDL.5 MCPI 0.030 0.062 -0.139 

SubFreeChol_VLDL.5 IL10 0.030 0.062 -0.139 

Val IL12 0.029 0.060 -0.140 

SubTrigl_HDL.1 MCPI 0.029 0.060 -0.140 

Pyruvicacid IL1ra 0.029 0.060 -0.140 

Glu IL1ra 0.028 0.059 -0.141 

Ala IL12 0.027 0.057 -0.142 

SubTrigl_HDL.1 IL1ra 0.026 0.055 -0.143 

SubApoB_LDL.6 IL10 0.026 0.054 -0.143 

LDL6_PN IL10 0.026 0.054 -0.143 

SubTrigl_HDL.1 IL6 0.024 0.051 -0.145 

LMF_Phosp_HDL IL8 0.024 0.050 -0.145 

SubChol_HDL.1 MCPI 0.023 0.050 -0.145 

SubPhosp_VLDL.4 IL6 0.023 0.050 -0.145 

LMF_Phosp_HDL IL10 0.023 0.049 -0.146 

SubChol_HDL.2 CRP 0.023 0.049 -0.146 

SubPhosp_HDL.2 IL6 0.022 0.047 -0.147 
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LMF_ApoA1_HDL IL10 0.022 0.047 -0.147 

Pyruvicacid MCPI 0.020 0.044 -0.149 

SubPhosp_HDL.2 IL1ra 0.020 0.043 -0.149 

Phe TNFalpha 0.020 0.042 -0.150 

Gly CRP 0.020 0.042 -0.150 

LMF_FreeChol_HDL MCPI 0.019 0.042 -0.150 

LMF_FreeChol_HDL IL8 0.019 0.042 -0.150 

LMF_FreeChol_IDL IL6 0.019 0.041 -0.150 

SubTrigl_VLDL.5 IL10 0.019 0.040 -0.151 

Val CRP 0.018 0.039 -0.152 

SubApoA1_HDL.1 IL12 0.018 0.039 -0.152 

SubTrigl_VLDL.5 IL1ra 0.017 0.037 -0.153 

Ile TNFalpha 0.017 0.037 -0.153 

SubTrigl_HDL.3 IL1ra 0.017 0.037 -0.153 

SubFreeChol_HDL.2 IL12 0.016 0.036 -0.154 

SubFreeChol_HDL.2 IL10 0.016 0.035 -0.155 

LMF_ApoA1_HDL IL8 0.016 0.035 -0.155 

SubPhosp_HDL.1 MCPI 0.016 0.035 -0.155 

Lactic acid MCPI 0.016 0.035 -0.155 

Glu IL12 0.016 0.034 -0.155 

SubPhosp_LDL.1 IL8 0.016 0.034 -0.155 

LMF_Trigl_HDL IL1ra 0.015 0.033 -0.156 

SubPhosp_HDL.2 CRP 0.015 0.033 -0.156 

SubFreeChol_HDL.2 IL8 0.015 0.033 -0.156 

SubChol_VLDL.1 IL8 0.015 0.032 -0.156 

Ile IL10 0.014 0.032 -0.157 

SubTrigl_HDL.2 MCPI 0.014 0.032 -0.157 

Ile IL1ra 0.014 0.032 -0.157 

Phe IL6 0.014 0.031 -0.157 

Val IL8 0.014 0.031 -0.158 

LMF_ApoB_IDL IL6 0.013 0.030 -0.158 

Ile IL8 0.013 0.030 -0.159 

IDL_PN IL6 0.013 0.030 -0.159 

His IL10 0.013 0.030 -0.159 

SubPhosp_VLDL.5 MCPI 0.013 0.030 -0.159 

LMF_Chol_IDL IL6 0.013 0.030 -0.159 

SubFreeChol_HDL.1 MMP9 0.013 0.029 -0.160 

SubChol_LDL.1 IL8 0.013 0.029 -0.160 

SubApoA1_HDL.1 MCPI 0.012 0.028 -0.160 

LMF_FreeChol_HDL IL12 0.012 0.028 -0.160 

SubPhosp_VLDL.5 CRP 0.012 0.028 -0.160 

LMF_Trigl_HDL IL6 0.012 0.027 -0.161 

HDL.Chol IL8 0.012 0.027 -0.161 

LMF_Chol_HDL IL8 0.012 0.027 -0.161 

His IL12 0.012 0.027 -0.162 

HDL.Chol IL10 0.012 0.027 -0.162 
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LMF_Chol_HDL IL10 0.012 0.027 -0.162 

Lactic acid TNFalpha 0.011 0.026 -0.162 

SubPhosp_VLDL.5 IL1ra 0.010 0.023 -0.165 

SubTrigl_HDL.3 CRP 0.010 0.023 -0.165 

Phe IL1ra 0.009 0.022 -0.166 

His IL1ra 0.009 0.021 -0.168 

SubTrigl_HDL.3 IL10 0.009 0.020 -0.168 

SubChol_HDL.2 IL6 0.008 0.019 -0.169 

SubFreeChol_HDL.1 IL8 0.008 0.019 -0.169 

SubTrigl_HDL.2 IL12 0.008 0.019 -0.170 

SubApoA2_HDL.2 IL10 0.008 0.019 -0.170 

SubFreeChol_VLDL.5 IL8 0.008 0.018 -0.171 

LMF_Trigl_HDL IL10 0.008 0.018 -0.171 

Gly IL6 0.008 0.018 -0.171 

SubPhosp_VLDL.5 IL6 0.008 0.018 -0.171 

LDL1_PN IL8 0.007 0.018 -0.171 

SubApoB_LDL.1 IL8 0.007 0.018 -0.171 

Lactic acid IL1ra 0.007 0.018 -0.171 

SubChol_VLDL.5 CRP 0.007 0.017 -0.172 

SubApoA1_HDL.3 IL10 0.007 0.016 -0.173 

Glu MCPI 0.007 0.016 -0.173 

TPN IL6 0.007 0.016 -0.174 

Apo.B100 IL6 0.007 0.016 -0.174 

Tyr IL12 0.006 0.014 -0.176 

Leu IL6 0.006 0.014 -0.177 

Ile IL12 0.006 0.014 -0.177 

LMF_FreeChol_HDL MMP9 0.005 0.013 -0.178 

SubTrigl_VLDL.5 MCPI 0.005 0.013 -0.178 

SubTrigl_LDL.2 IL6 0.005 0.012 -0.179 

Leu CRP 0.005 0.012 -0.179 

SubApoA1_HDL.3 IL8 0.005 0.012 -0.180 

SubTrigl_LDL.3 MCPI 0.005 0.012 -0.180 

SubChol_VLDL.5 IL6 0.005 0.012 -0.180 

Citricacid CRP 0.005 0.012 -0.180 

SubApoA2_HDL.2 IL8 0.005 0.012 -0.181 

SubApoA1_HDL.2 IL8 0.005 0.011 -0.181 

SubChol_VLDL.4 IL6 0.004 0.011 -0.182 

Leu TNFalpha 0.004 0.011 -0.182 

SubChol_HDL.2 MCPI 0.004 0.010 -0.184 

LMF_FreeChol_HDL IL10 0.004 0.010 -0.184 

Leu MCPI 0.004 0.010 -0.184 

SubFreeChol_VLDL.4 IL6 0.004 0.009 -0.186 

SubTrigl_HDL.3 IL8 0.003 0.008 -0.189 

SubTrigl_LDL.1 IL6 0.003 0.007 -0.190 
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LMF_Trigl_LDL IL6 0.003 0.007 -0.190 

SubPhosp_HDL.2 MCPI 0.003 0.007 -0.190 

SubTrigl_HDL.2 IL1ra 0.003 0.007 -0.191 

SubChol_HDL.1 IL10 0.003 0.007 -0.192 

SubFreeChol_HDL.1 IL10 0.003 0.007 -0.192 

SubTrigl_HDL.1 IL10 0.003 0.007 -0.192 

SubApoA1_HDL.2 IL10 0.003 0.007 -0.192 

SubApoA2_HDL.1 IL8 0.003 0.007 -0.192 

Phe IL10 0.002 0.006 -0.194 

SubTrigl_LDL.3 IL6 0.002 0.006 -0.196 

Apo.B100.Apo.A1 IL6 0.002 0.005 -0.198 

SubPhosp_HDL.1 IL10 0.002 0.005 -0.199 

SubApoA2_HDL.1 IL10 0.002 0.005 -0.199 

SubChol_HDL.2 IL12 0.002 0.005 -0.200 

SubTrigl_HDL.2 IL10 0.001 0.004 -0.204 

Gly IL8 0.001 0.004 -0.204 

SubChol_HDL.1 IL8 0.001 0.004 -0.204 

SubTrigl_VLDL.5 IL6 0.001 0.004 -0.205 

SubTrigl_HDL.2 CRP 0.001 0.003 -0.205 

Leu IL8 0.001 0.003 -0.208 

SubTrigl_VLDL.5 CRP 0.001 0.003 -0.208 

Lactic acid IL10 0.001 0.003 -0.208 

Leu IL1ra 0.001 0.003 -0.208 

SubPhosp_HDL.2 IL12 0.001 0.003 -0.209 

Gly IL12 0.0010 0.003 -0.211 

LMF_Trigl_HDL IL8 0.0009 0.003 -0.211 

SubPhosp_HDL.1 IL8 0.0009 0.003 -0.211 

SubChol_LDL.1 IL6 0.0009 0.002 -0.212 

SubApoA1_HDL.1 IL10 0.0008 0.002 -0.214 

SubChol_LDL.2 IL6 0.0006 0.002 -0.218 

Pyruvicacid IL8 0.0005 0.002 -0.221 

SubPhosp_LDL.2 IL6 0.0005 0.001 -0.223 

SubPhosp_LDL.1 IL6 0.0004 0.001 -0.224 

SubFreeChol_LDL.1 IL6 0.0004 0.001 -0.224 

Gly TNFalpha 0.0003 0.0008 -0.231 

Leu IL10 0.0003 0.0008 -0.231 

SubChol_HDL.2 IL10 0.0003 0.0008 -0.233 

SubPhosp_HDL.2 IL10 0.0002 0.0007 -0.235 

SubApoA1_HDL.1 IL8 0.0002 0.0006 -0.236 

SubTrigl_HDL.1 IL8 0.0002 0.0005 -0.239 

SubApoB_LDL.1 IL6 0.0002 0.0005 -0.239 

LDL1_PN IL6 0.0002 0.0005 -0.239 

SubTrigl_HDL.2 IL8 0.0002 0.0005 -0.240 

LDL2_PN IL6 0.0001 0.0003 -0.246 

SubApoB_LDL.2 IL6 0.0001 0.0003 -0.246 

SubTrigl_HDL.3 IL6 6.31E-05 0.0002 -0.254 
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SubFreeChol_LDL.2 IL6 5.89E-05 0.0002 -0.255 

Leu IL12 5.49E-05 0.0002 -0.256 

Phe IL12 5.22E-05 0.0002 -0.256 

SubPhosp_HDL.2 IL8 3.15E-05 0.0001 -0.264 

SubChol_HDL.2 IL8 2.55E-05 8.57E-05 -0.267 

SubTrigl_HDL.2 IL6 1.54E-05 5.32E-05 -0.273 

Phe CRP 1.52E-05 5.23E-05 -0.274 

Lactic acid IL8 4.67E-10 2.29E-09 -0.386 

 

Table S4: Pearson correlation analysis bewteen molecular features and inflammatory markers 

evalutated in t2. Only stastistically significant correlation were reported (P-value<0.05). For 

completeness FDR P-value was also reported 

Molecular features Metalloproteins P-value 
FDR P-

value Correlation coefficient 

SubTrigl_HDL.2 CRP 2.46E-07 9.45E-07 -0.324 

SubTrigl_HDL.3 CRP 9.19E-07 3.36E-06 -0.309 

SubTrigl_LDL.1 IL6 2.65E-06 9.31E-06 -0.296 

SubTrigl_HDL.1 CRP 3.55E-06 1.23E-05 -0.292 

LMF_Trigl_HDL CRP 4.75E-06 1.63E-05 -0.289 

SubTrigl_HDL.3 IL6 2.97E-05 9.47E-05 -0.264 

SubTrigl_LDL.2 IL6 4.67E-05 0.0001 -0.258 

Gly CRP 6.05E-05 0.0002 -0.254 

LMF_Trigl_LDL IL6 6.11E-05 0.0002 -0.254 

SubApoB_LDL.1 IL6 0.0001 0.0003 -0.245 

LDL1_PN IL6 0.0001 0.0003 -0.245 

SubPhosp_LDL.1 IL6 0.0002 0.0005 -0.240 

SubTrigl_HDL.2 IL6 0.0004 0.001 -0.225 

LMF_Trigl_HDL IL6 0.0004 0.001 -0.224 

SubTrigl_LDL.3 IL6 0.0006 0.002 -0.218 

SubChol_LDL.1 IL6 0.0007 0.002 -0.217 

SubFreeChol_LDL.1 IL6 0.0007 0.002 -0.216 

IDL_PN CRP 0.001 0.003 -0.208 

LMF_ApoB_IDL CRP 0.001 0.003 -0.208 

IDL_PN IL6 0.001 0.003 -0.208 

LMF_ApoB_IDL IL6 0.001 0.003 -0.208 

SubFreeChol_VLDL.5 CRP 0.002 0.004 -0.202 

SubTrigl_HDL.4 IL8 0.002 0.004 -0.200 

Gly IL6 0.002 0.005 -0.199 

SubApoA1_HDL.2 IL10 0.002 0.005 -0.199 

SubTrigl_LDL.1 CRP 0.002 0.005 -0.198 

Apo.A1 IL8 0.002 0.005 -0.196 

LMF_Phosp_HDL IL10 0.002 0.006 -0.194 

LMF_ApoA1_HDL IL8 0.003 0.006 -0.192 

SubPhosp_HDL.3 IL10 0.003 0.007 -0.191 
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LMF_FreeChol_IDL IL6 0.003 0.008 -0.189 

SubTrigl_HDL.1 IL6 0.003 0.008 -0.187 

SubPhosp_HDL.3 MCPI 0.004 0.010 -0.183 

SubChol_VLDL.4 IL6 0.004 0.011 -0.182 

SubApoA1_HDL.3 IL8 0.005 0.011 -0.182 

SubFreeChol_VLDL.4 CRP 0.005 0.011 -0.181 

SubPhosp_HDL.2 IL10 0.005 0.012 -0.179 

LDL2_PN IL6 0.005 0.012 -0.178 

SubApoB_LDL.2 IL6 0.005 0.012 -0.178 

LMF_Chol_IDL IL6 0.005 0.013 -0.178 

SubFreeChol_VLDL.4 IL6 0.006 0.014 -0.176 

Apo.B100.Apo.A1 IL6 0.006 0.015 -0.175 

LMF_Phosp_HDL MCPI 0.006 0.015 -0.175 

Ile CRP 0.006 0.015 -0.174 

SubChol_VLDL.1 CRP 0.007 0.015 -0.174 

LMF_FreeChol_IDL CRP 0.007 0.016 -0.173 

LMF_Chol_IDL CRP 0.008 0.018 -0.171 

Pyruvicacid MCPI 0.008 0.018 -0.171 

SubTrigl_LDL.3 MCPI 0.008 0.019 -0.169 

SubChol_VLDL.5 IL6 0.010 0.022 -0.166 

VLDL_PN IL6 0.010 0.022 -0.166 

LMF_ApoB_VLDL IL6 0.010 0.022 -0.166 

SubPhosp_HDL.3 IL8 0.010 0.022 -0.165 

SubApoA2_HDL.2 CRP 0.010 0.023 -0.165 

SubPhosp_LDL.1 MCPI 0.010 0.023 -0.165 

SubTrigl_LDL.2 CRP 0.011 0.025 -0.162 

SubPhosp_VLDL.4 IL6 0.011 0.025 -0.162 

Glucose MCPI 0.012 0.027 -0.160 

SubChol_VLDL.5 IL1ra 0.013 0.028 -0.160 

SubPhosp_HDL.2 MCPI 0.013 0.028 -0.160 

LMF_Trigl_LDL CRP 0.013 0.029 -0.159 

SubTrigl_VLDL.5 CRP 0.014 0.030 -0.158 

Trigl CRP 0.014 0.031 -0.157 

Gln IL8 0.014 0.031 -0.157 

SubTrigl_HDL.4 IL6 0.014 0.031 -0.157 

SubFreeChol_VLDL.1 CRP 0.014 0.031 -0.157 

LMF_ApoA1_HDL IL10 0.016 0.034 -0.155 

Apo.A1 IL10 0.016 0.035 -0.154 

SubApoA1_HDL.2 MCPI 0.016 0.035 -0.154 

SubPhosp_LDL.1 TNFalpha 0.017 0.037 -0.153 

LMF_ApoB_VLDL CRP 0.017 0.037 -0.152 

VLDL_PN CRP 0.017 0.037 -0.152 

SubChol_VLDL.5 A2M 0.018 0.038 -0.152 

SubChol_VLDL.5 A2M.1 0.018 0.038 -0.152 

SubFreeChol_LDL.2 IL6 0.018 0.039 -0.151 

SubApoB_LDL.1 MCPI 0.019 0.040 -0.151 
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LDL1_PN MCPI 0.019 0.040 -0.150 

SubPhosp_LDL.2 IL6 0.019 0.040 -0.150 

SubChol_HDL.2 IL10 0.020 0.042 -0.149 

SubApoA1_HDL.3 IL10 0.020 0.042 -0.149 

SubChol_VLDL.5 TNFalpha 0.020 0.043 -0.149 

SubPhosp_LDL.1 IL8 0.021 0.044 -0.148 

HDL.Chol MMP9 0.021 0.044 -0.148 

LMF_Chol_HDL MMP9 0.021 0.044 -0.148 

LDL1_PN CRP 0.021 0.045 -0.147 

SubChol_LDL.1 MCPI 0.021 0.045 -0.147 

SubApoB_LDL.1 CRP 0.021 0.045 -0.147 

SubTrigl_VLDL.5 A2M 0.022 0.045 -0.147 

SubTrigl_VLDL.5 A2M.1 0.022 0.045 -0.147 

SubChol_LDL.1 IL8 0.022 0.045 -0.147 

SubFreeChol_LDL.1 IL8 0.022 0.046 -0.147 

HDL.Chol IL10 0.022 0.046 -0.147 

LMF_Chol_HDL IL10 0.022 0.046 -0.147 

SubPhosp_HDL.2 CRP 0.022 0.047 -0.146 

Gln IL6 0.023 0.047 -0.146 

LMF_Chol_VLDL CRP 0.023 0.047 -0.146 

Val CRP 0.023 0.048 -0.146 

SubPhosp_VLDL.5 IL6 0.023 0.048 -0.145 

SubPhosp_VLDL.1 CRP 0.023 0.049 -0.145 

LMF_Chol_VLDL IL6 0.024 0.049 -0.145 

LDL1_PN TNFalpha 0.024 0.050 -0.145 

TPN IL6 0.024 0.050 -0.145 

Apo.B100 IL6 0.024 0.050 -0.145 

SubApoB_LDL.1 TNFalpha 0.024 0.050 -0.145 

SubChol_VLDL.5 IL12 0.025 0.051 -0.144 

SubChol_LDL.1 TNFalpha 0.025 0.052 -0.144 

SubApoA1_HDL.1 IL10 0.026 0.053 -0.143 

SubPhosp_VLDL.5 IL8 0.027 0.055 -0.142 

SubTrigl_LDL.2 MCPI 0.027 0.055 -0.142 

SubApoA1_HDL.4 IL8 0.027 0.056 -0.141 

SubTrigl_LDL.1 MCPI 0.028 0.056 -0.141 

SubChol_VLDL.4 CRP 0.028 0.056 -0.141 

SubTrigl_VLDL.5 IL6 0.029 0.058 -0.140 

SubChol_HDL.2 MCPI 0.030 0.061 -0.139 

SubTrigl_HDL.4 IL1ra 0.030 0.061 -0.139 

SubChol_VLDL.5 IL8 0.030 0.061 -0.139 

Gln MCPI 0.031 0.061 -0.139 

SubFreeChol_VLDL.5 IL6 0.031 0.062 -0.139 

SubChol_LDL.2 IL6 0.031 0.063 -0.138 

LMF_Trigl_HDL IL8 0.033 0.065 -0.137 
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SubChol_VLDL.5 MCPI 0.033 0.066 -0.137 

SubPhosp_HDL.1 A2M 0.033 0.066 -0.137 

SubPhosp_HDL.1 A2M.1 0.033 0.066 -0.137 

SubFreeChol_LDL.1 TNFalpha 0.034 0.067 -0.136 

SubChol_VLDL.2 IL6 0.034 0.068 -0.136 

SubTrigl_HDL.1 A2M 0.034 0.068 -0.136 

SubTrigl_HDL.1 A2M.1 0.034 0.068 -0.136 

SubTrigl_LDL.2 TNFalpha 0.036 0.071 -0.135 

SubTrigl_LDL.1 IL1ra 0.036 0.071 -0.134 

SubApoA1_HDL.1 A2M 0.036 0.071 -0.134 

SubApoA1_HDL.1 A2M.1 0.036 0.071 -0.134 

LMF_Phosp_IDL IL6 0.038 0.075 -0.133 

SubPhosp_VLDL.4 CRP 0.039 0.076 -0.133 

SubFreeChol_LDL.1 MCPI 0.039 0.076 -0.132 

SubPhosp_VLDL.5 IL1ra 0.040 0.078 -0.132 

LMF_Phosp_HDL IL8 0.040 0.078 -0.132 

Gly TNFalpha 0.041 0.079 -0.131 

SubTrigl_VLDL.1 CRP 0.041 0.079 -0.131 

Leu CRP 0.041 0.080 -0.131 

SubChol_HDL.3 IL8 0.042 0.081 -0.131 

SubApoB_LDL.1 IL8 0.042 0.082 -0.130 

LDL1_PN IL8 0.042 0.082 -0.130 

SubPhosp_LDL.1 CRP 0.044 0.084 -0.129 

Gln IL1ra 0.044 0.085 -0.129 

LMF_ApoA1_HDL MMP9 0.044 0.085 -0.129 

SubTrigl_LDL.5 IL6 0.045 0.086 -0.129 

Trigl IL6 0.045 0.086 -0.129 

SubTrigl_LDL.4 IL6 0.045 0.087 -0.129 

SubFreeChol_VLDL.3 CRP 0.045 0.087 -0.128 

SubApoA1_HDL.1 CRP 0.046 0.088 -0.128 

LMF_ApoA1_HDL MCPI 0.046 0.089 -0.128 

SubChol_HDL.1 A2M 0.047 0.089 -0.128 

SubChol_HDL.1 A2M.1 0.047 0.089 -0.128 

His IL10 0.048 0.092 -0.127 

SubFreeChol_LDL.6 IL12 0.050 0.094 0.126 

SubFreeChol_VLDL.2 IL12 0.048 0.091 0.127 

SubFreeChol_LDL.6 IL1ra 0.044 0.085 0.129 

Glu TNFalpha 0.041 0.080 0.131 

SubChol_LDL.6 TNFalpha 0.041 0.079 0.131 

SubTrigl_VLDL.3 IL12 0.041 0.079 0.131 

SubFreeChol_VLDL.4 IL12 0.039 0.076 0.132 

LMF_FreeChol_IDL IL12 0.037 0.072 0.134 

SubChol_VLDL.4 IL12 0.034 0.067 0.136 

SubPhosp_VLDL.2 IL12 0.034 0.067 0.136 

SubChol_LDL.6 IL12 0.033 0.066 0.137 

Lactic acid IL1ra 0.030 0.061 0.139 
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Citricacid IL8 0.028 0.057 0.141 

LDL4_PN CRP 0.024 0.050 0.144 

SubApoB_LDL.4 CRP 0.024 0.050 0.144 

LMF_Chol_IDL IL12 0.024 0.049 0.145 

SubApoA2_HDL.4 IL6 0.022 0.046 0.147 

Citricacid IL12 0.022 0.045 0.147 

Lactic acid MCPI 0.020 0.042 0.149 

Citricacid IL10 0.019 0.040 0.150 

SubFreeChol_HDL.4 IL6 0.019 0.040 0.151 

Glucose MMP9 0.019 0.039 0.151 

SubFreeChol_VLDL.3 IL12 0.018 0.039 0.151 

X3.HB IL10 0.017 0.036 0.153 

LDL3_PN CRP 0.016 0.035 0.154 

SubApoB_LDL.3 CRP 0.016 0.035 0.154 

Phe IL8 0.016 0.035 0.154 

Lactic acid IL8 0.015 0.032 0.156 

SubTrigl_LDL.6 IL1ra 0.015 0.032 0.156 

SubChol_HDL.4 IL6 0.014 0.031 0.157 

SubChol_VLDL.3 IL12 0.011 0.025 0.163 

SubPhosp_VLDL.3 IL12 0.009 0.020 0.168 

SubChol_LDL.4 CRP 0.008 0.018 0.170 

SubPhosp_LDL.4 CRP 0.008 0.018 0.171 

Val MMP9 0.008 0.018 0.171 

Tyr IL8 0.007 0.017 0.172 

SubFreeChol_LDL.4 CRP 0.007 0.016 0.174 

SubFreeChol_HDL.3 CRP 0.007 0.015 0.174 

SubPhosp_LDL.3 CRP 0.003 0.008 0.187 

SubFreeChol_LDL.3 CRP 0.002 0.005 0.199 

SubApoA1_HDL.4 CRP 0.002 0.005 0.199 

Lactic acid IL12 0.002 0.005 0.199 

SubChol_LDL.3 CRP 0.001 0.004 0.203 

SubApoA2_HDL.4 CRP 0.0006 0.002 0.218 

SubPhosp_HDL.4 CRP 0.0004 0.001 0.225 

SubChol_HDL.4 CRP 6.43E-05 0.0002 0.253 

SubFreeChol_HDL.4 CRP 3.10E-05 9.86E-05 0.264 

 

 

Table S5: Effect of pre (t1) rt-PA metabolites and lipids levels on early (i.e. sICH, non-response to 

thrombolysis) and late (i.e. three-month mortality and three-month mRS 3-6) adverse outcomes, 

adjusting for the major determinants for unfavourable outcomes. 

 Early outcomes Late outcomes 

 sICH Non-response to thrombolysis Three-month mortality Three-month mRS 3-6 

Molecular features 
OR (95% CI) P FDR OR (95% CI) P FDR OR (95% CI) P 

FD

R 
OR (95% CI) P FDR 

Creatinine 
1.072 (0.763-

1.506) 0.725 0.998 

1.272 (0.932-

1.737) 0.102 0.615 

1.512 (1.042-
2.193) 0.100 

0.77
7 

0.908 (0.633-

1.302) 0.619 0.880 
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Ala 
0.844 (0.511-

1.393) 0.549 0.998 

0.935 (0.699-

1.25) 0.650 0.909 

1.144 (0.754-
1.734) 0.562 

0.86
9 

1.235 (0.865-

1.765) 0.262 0.880 

Glu 
0.955 (0.606-

1.507) 0.860 0.998 

1.086 (0.818-

1.443) 0.570 0.909 

1.263 (0.844-
1.89) 0.300 

0.86
9 

0.837 (0.586-

1.196) 0.334 0.880 

Gln 
1.188 (0.707-

1.996) 0.557 0.998 

0.931 (0.684-

1.267) 0.650 0.909 

1.043 (0.627-
1.736) 0.884 

0.93
6 

0.879 (0.617-

1.251) 0.484 0.880 

Gly 
0.819 (0.487-

1.378) 0.489 0.998 

0.906 (0.679-

1.21) 0.507 0.909 

1.158 (0.747-
1.794) 0.549 

0.86
9 

1.047 (0.734-

1.495) 0.806 0.931 

His 
1.075 (0.827-

1.396) 0.635 0.998 

0.92 (0.748-

1.131) 0.424 0.909 

1.149 (0.918-
1.439) 0.220 

0.79
3 

1.103 (0.891-

1.365) 0.367 0.880 

Ile 
0.985 (0.632-

1.535) 0.951 0.998 

0.981 (0.75-

1.282) 0.886 0.940 

1.003 (0.66-
1.524) 0.990 

0.99
0 

1.004 (0.711-

1.417) 0.984 0.984 

Leu 
0.977 (0.635-

1.503) 0.925 0.998 

0.948 (0.728-

1.236) 0.697 0.909 

1.144 (0.772-
1.695) 0.552 

0.86
9 

1.087 (0.785-

1.506) 0.636 0.880 

Phe 
0.977 (0.636-

1.502) 0.925 0.998 

0.877 (0.669-

1.148) 0.341 0.909 

1.095 (0.742-
1.615) 0.676 

0.86
9 

1.232 (0.897-

1.69) 0.216 0.880 

Tyr 
0.883 (0.561-

1.392) 0.626 0.998 

0.947 (0.715-

1.255) 0.707 0.909 

1.137 (0.748-
1.728) 0.578 

0.86
9 

1.296 (0.92-

1.826) 0.152 0.880 

Val 
0.737 (0.454-

1.194) 0.252 0.998 

1.011 (0.76-

1.346) 0.940 0.940 

1.598 (0.989-
2.58) 0.074 

0.77
7 

1.099 (0.781-

1.547) 0.598 0.880 

Acetic acid 
1.001 (0.621-

1.615) 0.998 0.998 

1.142 (0.853-

1.528) 0.354 0.909 

1.09 (0.781-
1.52) 0.673 

0.86
9 

0.976 (0.715-

1.333) 0.882 0.934 

Citric acid 
1.291 (0.867-

1.922) 0.450 0.998 

1.14 (0.786-

1.655) 0.498 0.909 

1.075 (0.738-
1.566) 0.737 

0.88
4 

0.938 (0.611-

1.44) 0.828 0.931 

Lactic acid 
0.845 (0.453-

1.578) 0.642 0.998 

1.017 (0.763-

1.357) 0.908 0.940 

1.431 (0.898-
2.281) 0.197 

0.79
3 

1.093 (0.769-

1.555) 0.634 0.880 

3-HB 
1.457 (1.062-

1.998) 0.025 0.455 

0.718 (0.531-

0.97) 0.024 0.219 

0.897 (0.605-
1.33) 0.604 

0.86
9 

1.121 (0.833-

1.508) 0.465 0.880 

Acetone 
1.393 (1.016-

1.909) 0.046 0.502 

0.696 (0.509-

0.95) 0.017 0.219 

0.963 (0.634-
1.465) 0.874 

0.93
6 

1.148 (0.836-

1.576) 0.407 0.880 

Pyruvic acid 
1.124 (0.713-1.77) 0.738 0.998 

1.09 (0.827-

1.435) 0.537 0.909 

1.456 (1.021-
2.077) 0.129 

0.77
7 

1.077 (0.76-

1.525) 0.723 0.929 

Glucose 
0.828 (0.343-

1.998) 0.712 0.998 

0.96 (0.679-

1.357) 0.818 0.940 

1.293 (0.564-
2.965) 0.578 

0.86
9 

1.364 (0.721-

2.58) 0.354 0.880 

Trigl 1.053 (0.684-1.62) 0.832 0.999 

1.131 (0.862-

1.484) 0.375 0.956 

0.839 (0.497-
1.417) 0.549 

0.99
4 

1.09 (0.768-

1.547) 0.641 0.812 

Chol 0.864 (0.541-1.38) 0.578 0.999 

0.96 (0.721-

1.278) 0.780 0.998 

0.947 (0.568-
1.58) 0.851 

0.99
4 

1.207 (0.841-

1.734) 0.320 0.629 

LDL-Chol 

0.933 (0.593-

1.468) 0.787 0.999 

0.916 (0.688-

1.221) 0.551 0.966 

1.034 (0.632-
1.69) 0.905 

0.99
4 

1.377 (0.965-

1.965) 0.083 0.392 

HDL-Chol 

0.997 (0.638-

1.558) 0.991 0.999 

0.908 (0.679-

1.216) 0.521 0.956 

0.746 (0.457-
1.216) 0.273 

0.99
4 

0.741 (0.516-

1.063) 0.111 0.448 

Apo-A1 

0.936 (0.591-

1.483) 0.795 0.999 

1.035 (0.767-

1.396) 0.822 0.998 

0.704 (0.428-
1.157) 0.195 

0.99
4 

0.698 (0.478-

1.018) 0.066 0.387 

Apo-A2 0.854 (0.54-1.35) 0.535 0.999 

0.946 (0.7-

1.277) 0.717 0.998 

0.861 (0.523-
1.416) 0.589 

0.99
4 

0.825 (0.574-

1.187) 0.311 0.623 

Apo-B100 

0.967 (0.609-

1.536) 0.898 0.999 

1.033 (0.783-

1.362) 0.820 0.998 

0.94 (0.556-
1.589) 0.836 

0.99
4 

1.403 (0.982-

2.004) 0.068 0.387 

Apo-B100-Apo-A1 

0.996 (0.663-

1.497) 0.987 0.999 

0.988 (0.751-

1.299) 0.932 0.998 

1.212 (0.803-
1.831) 0.395 

0.99
4 

1.63 (1.131-

2.349) 0.007 0.209 

VLDL_PN 

1.073 (0.708-

1.626) 0.762 0.999 

1.203 (0.915-

1.581) 0.183 0.956 

0.857 (0.521-
1.411) 0.579 

0.99
4 

1.068 (0.752-

1.516) 0.722 0.858 

IDL_PN 

1.006 (0.651-

1.553) 0.981 0.999 

1.14 (0.868-

1.499) 0.347 0.956 

1.009 (0.624-
1.63) 0.975 

0.99
4 

1.144 (0.807-

1.621) 0.465 0.680 

LDL_PN 

0.975 (0.622-

1.529) 0.920 0.999 

0.942 (0.713-

1.244) 0.674 0.998 

1.095 (0.664-
1.806) 0.747 

0.99
4 

1.392 (0.974-

1.989) 0.075 0.387 

LDL1_PN 

1.165 (0.745-

1.823) 0.542 0.999 1 (0.745-1.344) 0.998 0.998 

0.936 (0.572-
1.533) 0.812 

0.99
4 

1.006 (0.705-

1.434) 0.975 0.984 

LDL2_PN 

1.131 (0.721-

1.775) 0.623 0.999 

0.998 (0.74-

1.346) 0.991 0.998 

0.77 (0.465-
1.275) 0.353 

0.99
4 

1.153 (0.822-

1.618) 0.419 0.680 

LDL3_PN 1.01 (0.643-1.587) 0.968 0.999 

0.879 (0.658-

1.175) 0.384 0.956 

1.271 (0.774-
2.088) 0.394 

0.99
4 

1.335 (0.934-

1.907) 0.121 0.448 

LDL4_PN 

0.957 (0.638-

1.436) 0.842 0.999 

0.933 (0.704-

1.238) 0.632 0.998 

1.401 (0.924-
2.124) 0.164 

0.99
4 

1.109 (0.799-

1.541) 0.546 0.731 

LDL5_PN 

0.884 (0.557-

1.401) 0.626 0.999 

1.025 (0.773-

1.359) 0.866 0.998 

1.081 (0.654-
1.784) 0.784 

0.99
4 

1.25 (0.885-

1.764) 0.216 0.564 

LDL6_PN 

0.827 (0.492-

1.389) 0.515 0.999 

0.978 (0.745-

1.285) 0.874 0.998 

0.949 (0.533-
1.689) 0.875 

0.99
4 

1.418 (1.022-

1.967) 0.044 0.331 

LMF_Trigl_VLDL 

1.007 (0.643-

1.578) 0.978 0.999 

1.111 (0.845-

1.461) 0.452 0.956 

0.871 (0.515-
1.475) 0.644 

0.99
4 

1.154 (0.811-

1.641) 0.442 0.680 

LMF_Trigl_IDL 1.09 (0.717-1.656) 0.717 0.999 

1.125 (0.86-

1.471) 0.391 0.956 

0.825 (0.489-
1.392) 0.508 

0.99
4 

1.047 (0.741-

1.479) 0.801 0.897 

LMF_Trigl_LDL 

1.103 (0.741-

1.641) 0.659 0.999 

1.156 (0.876-

1.524) 0.305 0.956 

1.034 (0.671-
1.594) 0.887 

0.99
4 

1.146 (0.814-

1.614) 0.449 0.680 

LMF_Trigl_HDL 1.06 (0.691-1.625) 0.806 0.999 

1.375 (1.016-

1.862) 0.036 0.956 

0.711 (0.43-
1.177) 0.220 

0.99
4 

0.791 (0.554-

1.13) 0.204 0.564 

LMF_Chol_VLDL 

0.906 (0.575-

1.428) 0.698 0.999 

1.209 (0.92-

1.587) 0.171 0.956 

0.856 (0.497-
1.473) 0.614 

0.99
4 

1.069 (0.754-

1.516) 0.718 0.858 

LMF_Chol_IDL 0.892 (0.56-1.42) 0.660 0.999 

1.14 (0.865-

1.502) 0.354 0.956 

1.039 (0.62-
1.742) 0.896 

0.99
4 

1.239 (0.869-

1.765) 0.251 0.584 

LMF_Chol_LDL 

0.933 (0.593-

1.468) 0.787 0.999 

0.916 (0.688-

1.221) 0.551 0.966 

1.034 (0.632-
1.69) 0.905 

0.99
4 

1.377 (0.965-

1.965) 0.083 0.392 

LMF_Chol_HDL 

0.997 (0.638-

1.558) 0.991 0.999 

0.908 (0.679-

1.216) 0.521 0.956 

0.746 (0.457-
1.216) 0.273 

0.99
4 

0.741 (0.516-

1.063) 0.111 0.448 

LMF_FreeChol_VLDL 0.964 (0.611-1.52) 0.885 0.999 

1.166 (0.887-

1.534) 0.271 0.956 

0.796 (0.458-
1.383) 0.462 

0.99
4 

1.065 (0.748-

1.517) 0.735 0.864 

LMF_FreeChol_IDL 0.93 (0.588-1.471) 0.778 0.999 

1.147 (0.871-

1.511) 0.329 0.956 

0.991 (0.594-
1.655) 0.976 

0.99
4 

1.192 (0.835-

1.702) 0.347 0.671 

LMF_FreeChol_LDL 

0.873 (0.551-

1.382) 0.596 0.999 

0.895 (0.669-

1.198) 0.458 0.956 

1.189 (0.713-
1.985) 0.551 

0.99
4 

1.363 (0.947-

1.961) 0.101 0.445 

LMF_FreeChol_HDL 

0.763 (0.486-

1.197) 0.275 0.999 

0.901 (0.67-

1.211) 0.491 0.956 

0.865 (0.532-
1.407) 0.592 

0.99
4 

0.872 (0.591-

1.287) 0.506 0.714 
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LMF_Phosp_VLDL 1 (0.637-1.572) 0.999 0.999 

1.131 (0.858-

1.491) 0.383 0.956 

0.852 (0.505-
1.438) 0.586 

0.99
4 

1.04 (0.729-

1.484) 0.832 0.912 

LMF_Phosp_IDL 

0.967 (0.608-

1.538) 0.898 0.999 

1.118 (0.85-

1.47) 0.425 0.956 

0.945 (0.565-
1.581) 0.846 

0.99
4 

1.155 (0.812-

1.643) 0.438 0.680 

LMF_Phosp_LDL 

0.974 (0.618-

1.537) 0.920 0.999 

0.905 (0.678-

1.207) 0.497 0.956 

1.083 (0.659-
1.779) 0.776 

0.99
4 

1.303 (0.911-

1.866) 0.156 0.528 

LMF_Phosp_HDL 

1.079 (0.676-

1.723) 0.772 0.999 

0.955 (0.711-

1.283) 0.762 0.998 

0.793 (0.477-
1.319) 0.409 

0.99
4 

0.584 (0.393-

0.867) 0.008 0.209 

LMF_ApoA1_HDL 

0.989 (0.633-

1.544) 0.964 0.999 

1.072 (0.796-

1.444) 0.649 0.998 

0.627 (0.379-
1.038) 0.086 

0.99
4 

0.674 (0.465-

0.978) 0.040 0.331 

LMF_ApoA2_HDL 

0.882 (0.556-

1.398) 0.625 0.999 

0.951 (0.706-

1.28) 0.740 0.998 

0.841 (0.509-
1.389) 0.535 

0.99
4 

0.821 (0.571-

1.18) 0.298 0.623 

LMF_ApoB_VLDL 

1.073 (0.708-

1.626) 0.762 0.999 

1.203 (0.915-

1.581) 0.183 0.956 

0.857 (0.521-
1.412) 0.580 

0.99
4 

1.068 (0.752-

1.516) 0.722 0.858 

LMF_ApoB_IDL 

1.006 (0.652-

1.553) 0.981 0.999 

1.141 (0.868-

1.499) 0.346 0.956 

1.009 (0.624-
1.63) 0.975 

0.99
4 

1.144 (0.807-

1.621) 0.465 0.680 

LMF_ApoB_LDL 

0.975 (0.622-

1.529) 0.920 0.999 

0.942 (0.714-

1.244) 0.675 0.998 

1.095 (0.664-
1.806) 0.747 

0.99
4 

1.392 (0.974-

1.989) 0.075 0.387 

SubTrigl_VLDL-1 1.01 (0.642-1.59) 0.968 0.999 

1.048 (0.794-

1.383) 0.743 0.998 

0.855 (0.508-
1.441) 0.592 

0.99
4 

1.16 (0.811-

1.659) 0.433 0.680 

SubTrigl_VLDL-2 0.87 (0.553-1.37) 0.576 0.999 

1.152 (0.873-

1.52) 0.317 0.956 

1.072 (0.647-
1.777) 0.807 

0.99
4 

1.246 (0.881-

1.763) 0.233 0.564 

SubTrigl_VLDL-3 

0.894 (0.565-

1.415) 0.660 0.999 

1.199 (0.906-

1.588) 0.203 0.956 

0.995 (0.593-
1.668) 0.985 

0.99
4 

1.227 (0.858-

1.755) 0.278 0.610 

SubTrigl_VLDL-4 

1.038 (0.672-

1.602) 0.878 0.999 

1.221 (0.925-

1.613) 0.157 0.956 

0.904 (0.551-
1.484) 0.716 

0.99
4 

1.102 (0.777-

1.562) 0.596 0.781 

SubTrigl_VLDL-5 1.169 (0.764-1.79) 0.510 0.999 

1.099 (0.839-

1.439) 0.496 0.956 

0.758 (0.473-
1.215) 0.298 

0.99
4 

0.801 (0.568-

1.131) 0.219 0.564 

SubChol_VLDL-1 0.993 (0.632-1.56) 0.977 0.999 

1.113 (0.843-

1.469) 0.451 0.956 

0.819 (0.477-
1.407) 0.510 

0.99
4 

1.074 (0.751-

1.535) 0.706 0.858 

SubChol_VLDL-2 

0.866 (0.552-

1.356) 0.563 0.999 

1.224 (0.932-

1.608) 0.143 0.956 

0.976 (0.577-
1.65) 0.935 

0.99
4 

1.06 (0.75-

1.498) 0.750 0.872 

SubChol_VLDL-3 0.832 (0.52-1.332) 0.482 0.999 

1.222 (0.927-

1.611) 0.153 0.956 1 (0.588-1.702) 0.999 

0.99
9 

1.184 (0.835-

1.679) 0.360 0.680 

SubChol_VLDL-4 0.855 (0.54-1.353) 0.536 0.999 

1.249 (0.946-

1.65) 0.115 0.956 

0.928 (0.554-
1.554) 0.796 

0.99
4 

1.042 (0.735-

1.476) 0.824 0.912 

SubChol_VLDL-5 1.293 (0.84-1.99) 0.283 0.999 

1.113 (0.84-

1.475) 0.456 0.956 

0.701 (0.431-
1.141) 0.186 

0.99
4 

0.618 (0.427-

0.893) 0.011 0.209 

SubFreeChol_VLDL-1 1.04 (0.664-1.63) 0.876 0.999 

1.11 (0.842-

1.463) 0.460 0.956 

0.806 (0.467-
1.392) 0.479 

0.99
4 

1.074 (0.752-

1.535) 0.704 0.858 

SubFreeChol_VLDL-2 

0.951 (0.611-

1.481) 0.839 0.999 

1.207 (0.92-

1.583) 0.174 0.956 

0.928 (0.547-
1.577) 0.806 

0.99
4 

1.149 (0.811-

1.628) 0.451 0.680 

SubFreeChol_VLDL-3 

0.942 (0.599-

1.481) 0.813 0.999 

1.188 (0.903-

1.562) 0.217 0.956 

0.922 (0.545-
1.562) 0.787 

0.99
4 

1.176 (0.829-

1.669) 0.380 0.680 

SubFreeChol_VLDL-4 

0.904 (0.574-

1.424) 0.691 0.999 

1.234 (0.938-

1.623) 0.133 0.956 

0.966 (0.577-
1.62) 0.907 

0.99
4 

1.08 (0.764-

1.528) 0.671 0.841 

SubFreeChol_VLDL-5 

1.201 (0.778-

1.854) 0.457 0.999 

1.101 (0.828-

1.464) 0.508 0.956 

0.673 (0.391-
1.158) 0.177 

0.99
4 

0.816 (0.56-

1.189) 0.303 0.623 

SubPhosp_VLDL-1 

0.983 (0.625-

1.548) 0.948 0.999 

1.066 (0.809-

1.404) 0.653 0.998 

0.832 (0.489-
1.416) 0.537 

0.99
4 

1.16 (0.811-

1.659) 0.431 0.680 

SubPhosp_VLDL-2 

0.873 (0.559-

1.362) 0.578 0.999 

1.177 (0.895-

1.547) 0.243 0.956 

1.055 (0.633-
1.758) 0.851 

0.99
4 

1.223 (0.865-

1.729) 0.274 0.610 

SubPhosp_VLDL-3 

0.937 (0.599-

1.467) 0.795 0.999 

1.229 (0.933-

1.618) 0.140 0.956 

0.971 (0.583-
1.619) 0.920 

0.99
4 

1.178 (0.829-

1.673) 0.375 0.680 

SubPhosp_VLDL-4 

0.964 (0.621-

1.497) 0.881 0.999 

1.262 (0.957-

1.663) 0.097 0.956 

0.951 (0.578-
1.565) 0.856 

0.99
4 

1.058 (0.747-

1.497) 0.758 0.873 

SubPhosp_VLDL-5 

1.164 (0.756-

1.792) 0.527 0.999 

1.147 (0.869-

1.514) 0.333 0.956 

0.67 (0.409-
1.095) 0.142 

0.99
4 

0.641 (0.444-

0.926) 0.019 0.268 

SubTrigl_LDL-1 

1.193 (0.821-

1.734) 0.392 0.999 

1.145 (0.869-

1.51) 0.336 0.956 

0.923 (0.602-
1.415) 0.732 

0.99
4 

0.992 (0.704-

1.399) 0.966 0.984 

SubTrigl_LDL-2 

1.252 (0.856-

1.832) 0.285 0.999 

1.116 (0.842-

1.48) 0.445 0.956 

1.018 (0.675-
1.536) 0.937 

0.99
4 

1.024 (0.724-

1.448) 0.896 0.946 

SubTrigl_LDL-3 

1.205 (0.809-

1.794) 0.407 0.999 

1.004 (0.762-

1.323) 0.977 0.998 

1.045 (0.681-
1.605) 0.853 

0.99
4 

0.998 (0.707-

1.409) 0.992 0.992 

SubTrigl_LDL-4 

1.054 (0.694-

1.602) 0.820 0.999 

1.096 (0.825-

1.457) 0.526 0.956 

1.286 (0.831-
1.99) 0.300 

0.99
4 

1.048 (0.74-

1.483) 0.799 0.897 

SubTrigl_LDL-5 

0.951 (0.616-

1.469) 0.835 0.999 

1.093 (0.834-

1.432) 0.522 0.956 

1.285 (0.807-
2.048) 0.336 

0.99
4 

1.092 (0.778-

1.532) 0.621 0.795 

SubTrigl_LDL-6 

0.792 (0.476-

1.318) 0.412 0.999 

0.917 (0.699-

1.201) 0.528 0.956 

1.224 (0.758-
1.975) 0.465 

0.99
4 

1.464 (1.059-

2.025) 0.024 0.268 

SubChol_LDL-1 

1.125 (0.709-

1.786) 0.651 0.999 

0.971 (0.722-

1.306) 0.845 0.998 

0.928 (0.563-
1.531) 0.792 

0.99
4 

0.99 (0.697-

1.407) 0.956 0.984 

SubChol_LDL-2 

1.101 (0.703-

1.726) 0.699 0.999 

0.96 (0.714-

1.291) 0.790 0.998 

0.765 (0.463-
1.265) 0.340 

0.99
4 

1.163 (0.831-

1.628) 0.389 0.680 

SubChol_LDL-3 

0.959 (0.618-

1.489) 0.864 0.999 

0.853 (0.64-

1.138) 0.279 0.956 

1.23 (0.758-
1.994) 0.450 

0.99
4 

1.326 (0.934-

1.883) 0.122 0.448 

SubChol_LDL-4 

0.917 (0.606-

1.389) 0.699 0.999 

0.892 (0.671-

1.187) 0.431 0.956 

1.406 (0.932-
2.12) 0.153 

0.99
4 

1.122 (0.81-

1.554) 0.499 0.714 

SubChol_LDL-5 

0.898 (0.568-

1.417) 0.667 0.999 

0.993 (0.746-

1.321) 0.961 0.998 

1.055 (0.639-
1.743) 0.850 

0.99
4 

1.242 (0.877-

1.757) 0.233 0.564 

SubChol_LDL-6 

0.826 (0.496-

1.377) 0.505 0.999 

0.935 (0.71-

1.232) 0.634 0.998 

0.96 (0.547-
1.687) 0.900 

0.99
4 

1.461 (1.049-

2.035) 0.029 0.280 

SubFreeChol_LDL-1 

1.032 (0.643-

1.655) 0.906 0.999 

1.001 (0.742-

1.35) 0.993 0.998 

0.926 (0.555-
1.543) 0.788 

0.99
4 

1.033 (0.726-

1.471) 0.859 0.925 

SubFreeChol_LDL-2 

1.013 (0.646-

1.586) 0.960 0.999 

1.004 (0.742-

1.36) 0.977 0.998 

0.695 (0.414-
1.167) 0.202 

0.99
4 

1.162 (0.826-

1.634) 0.399 0.680 
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SubFreeChol_LDL-3 

0.987 (0.623-

1.564) 0.959 0.999 

0.867 (0.648-

1.16) 0.338 0.956 

1.142 (0.696-
1.875) 0.635 

0.99
4 

1.264 (0.883-

1.808) 0.210 0.564 

SubFreeChol_LDL-4 

0.953 (0.621-

1.461) 0.837 0.999 

0.873 (0.653-

1.169) 0.361 0.956 

1.312 (0.817-
2.108) 0.325 

0.99
4 

1.228 (0.868-

1.737) 0.258 0.588 

SubFreeChol_LDL-5 

0.883 (0.556-

1.401) 0.624 0.999 

0.964 (0.723-

1.285) 0.802 0.998 

1.109 (0.665-
1.849) 0.721 

0.99
4 

1.29 (0.909-

1.831) 0.162 0.528 

SubFreeChol_LDL-6 

0.741 (0.457-

1.201) 0.257 0.999 

0.93 (0.708-

1.222) 0.605 0.998 

1.016 (0.603-
1.71) 0.958 

0.99
4 

1.575 (1.116-

2.221) 0.011 0.209 

SubPhosp_LDL-1 1.172 (0.74-1.855) 0.539 0.999 

0.99 (0.735-

1.333) 0.947 0.998 

0.908 (0.55-
1.499) 0.732 

0.99
4 

0.955 (0.669-

1.362) 0.803 0.897 

SubPhosp_LDL-2 

1.136 (0.722-

1.788) 0.612 0.999 

0.973 (0.723-

1.309) 0.859 0.998 

0.786 (0.476-
1.299) 0.392 

0.99
4 

1.122 (0.8-

1.573) 0.513 0.714 

SubPhosp_LDL-3 0.99 (0.634-1.545) 0.967 0.999 

0.853 (0.638-

1.14) 0.282 0.956 

1.237 (0.759-
2.015) 0.442 

0.99
4 

1.294 (0.909-

1.843) 0.162 0.528 

SubPhosp_LDL-4 

0.946 (0.631-

1.419) 0.801 0.999 

0.883 (0.662-

1.177) 0.392 0.956 

1.418 (0.94-
2.14) 0.142 

0.99
4 

1.135 (0.817-

1.576) 0.462 0.680 

SubPhosp_LDL-5 

0.906 (0.576-

1.426) 0.694 0.999 1 (0.752-1.33) 0.998 0.998 

1.067 (0.649-
1.753) 0.817 

0.99
4 

1.207 (0.853-

1.709) 0.300 0.623 

SubPhosp_LDL-6 

0.836 (0.503-

1.388) 0.531 0.999 

0.929 (0.706-

1.223) 0.601 0.998 

0.956 (0.546-
1.672) 0.888 

0.99
4 

1.392 (1.003-

1.931) 0.056 0.379 

SubApoB_LDL-1 

1.165 (0.745-

1.823) 0.541 0.999 1 (0.745-1.344) 0.998 0.998 

0.936 (0.572-
1.533) 0.813 

0.99
4 

1.006 (0.705-

1.435) 0.975 0.984 

SubApoB_LDL-2 

1.132 (0.721-

1.776) 0.623 0.999 

0.998 (0.74-

1.346) 0.991 0.998 

0.77 (0.465-
1.275) 0.353 

0.99
4 

1.153 (0.822-

1.618) 0.419 0.680 

SubApoB_LDL-3 1.01 (0.643-1.587) 0.969 0.999 

0.879 (0.658-

1.175) 0.384 0.956 

1.271 (0.774-
2.088) 0.394 

0.99
4 

1.335 (0.935-

1.907) 0.120 0.448 

SubApoB_LDL-4 

0.957 (0.638-

1.436) 0.842 0.999 

0.933 (0.704-

1.238) 0.632 0.998 

1.401 (0.924-
2.124) 0.164 

0.99
4 

1.109 (0.799-

1.541) 0.546 0.731 

SubApoB_LDL-5 

0.884 (0.557-

1.401) 0.627 0.999 

1.025 (0.773-

1.359) 0.866 0.998 

1.081 (0.654-
1.784) 0.784 

0.99
4 

1.25 (0.885-

1.764) 0.216 0.564 

SubApoB_LDL-6 

0.827 (0.492-

1.389) 0.515 0.999 

0.978 (0.745-

1.285) 0.874 0.998 

0.948 (0.533-
1.688) 0.874 

0.99
4 

1.418 (1.022-

1.967) 0.044 0.331 

SubTrigl_HDL-1 

1.071 (0.694-

1.652) 0.779 0.999 

1.249 (0.925-

1.687) 0.144 0.956 

0.808 (0.494-
1.321) 0.429 

0.99
4 

0.873 (0.612-

1.246) 0.465 0.680 

SubTrigl_HDL-2 

1.008 (0.656-

1.548) 0.974 0.999 

1.327 (0.979-

1.797) 0.066 0.956 

0.735 (0.452-
1.194) 0.245 

0.99
4 

0.861 (0.605-

1.226) 0.418 0.680 

SubTrigl_HDL-3 

1.071 (0.711-

1.615) 0.761 0.999 

1.343 (0.998-

1.806) 0.049 0.956 

0.61 (0.372-
1.002) 0.045 

0.99
4 

0.805 (0.569-

1.139) 0.231 0.564 

SubTrigl_HDL-4 

1.057 (0.673-

1.661) 0.826 0.999 

1.242 (0.929-

1.661) 0.142 0.956 

0.609 (0.353-
1.051) 0.097 

0.99
4 

0.746 (0.508-

1.094) 0.144 0.511 

SubChol_HDL-1 1.021 (0.636-1.64) 0.937 0.999 

0.956 (0.712-

1.283) 0.766 0.998 

0.845 (0.504-
1.418) 0.558 

0.99
4 

0.892 (0.617-

1.289) 0.552 0.731 

SubChol_HDL-2 

1.093 (0.698-

1.711) 0.721 0.999 

1.004 (0.747-

1.349) 0.979 0.998 

0.781 (0.48-
1.269) 0.354 

0.99
4 

0.725 (0.502-

1.046) 0.092 0.420 

SubChol_HDL-3 

1.044 (0.675-

1.613) 0.860 0.999 

0.87 (0.644-

1.176) 0.369 0.956 

0.79 (0.478-
1.305) 0.396 

0.99
4 

0.689 (0.472-

1.004) 0.056 0.379 

SubChol_HDL-4 0.9 (0.585-1.384) 0.656 0.999 

0.806 (0.598-

1.088) 0.159 0.956 

0.942 (0.568-
1.563) 0.836 

0.99
4 

0.908 (0.635-

1.299) 0.610 0.790 

SubFreeChol_HDL-1 0.8 (0.496-1.291) 0.401 0.999 

0.933 (0.699-

1.247) 0.642 0.998 

1.019 (0.627-
1.656) 0.943 

0.99
4 

0.976 (0.672-

1.417) 0.902 0.946 

SubFreeChol_HDL-2 

0.769 (0.478-

1.238) 0.317 0.999 

0.941 (0.698-

1.27) 0.694 0.998 

1.248 (0.748-
2.082) 0.447 

0.99
4 

0.877 (0.6-

1.283) 0.512 0.714 

SubFreeChol_HDL-3 

0.785 (0.488-

1.264) 0.351 0.999 

0.892 (0.654-

1.217) 0.472 0.956 

0.979 (0.572-
1.676) 0.945 

0.99
4 

0.886 (0.602-

1.303) 0.548 0.731 

SubFreeChol_HDL-4 0.836 (0.529-1.32) 0.469 0.999 

0.847 (0.625-

1.149) 0.285 0.956 

1.138 (0.692-
1.871) 0.650 

0.99
4 

1.023 (0.709-

1.477) 0.904 0.946 

SubPhosp_HDL-1 

1.053 (0.654-

1.697) 0.848 0.999 

1.013 (0.754-

1.361) 0.932 0.998 

0.869 (0.516-
1.463) 0.627 

0.99
4 

0.791 (0.539-

1.16) 0.237 0.564 

SubPhosp_HDL-2 

1.167 (0.735-

1.854) 0.552 0.999 

1.043 (0.777-

1.4) 0.782 0.998 

0.797 (0.483-
1.316) 0.412 

0.99
4 

0.633 (0.429-

0.934) 0.022 0.268 

SubPhosp_HDL-3 

1.174 (0.755-

1.825) 0.514 0.999 

0.944 (0.706-

1.264) 0.703 0.998 

0.763 (0.454-
1.28) 0.351 

0.99
4 

0.549 (0.365-

0.826) 0.004 0.209 

SubPhosp_HDL-4 

0.964 (0.633-

1.469) 0.875 0.999 

0.842 (0.625-

1.135) 0.259 0.956 

0.967 (0.58-
1.613) 0.908 

0.99
4 

0.775 (0.536-

1.121) 0.188 0.564 

SubApoA1_HDL-1 

1.033 (0.651-

1.638) 0.901 0.999 

1.116 (0.829-

1.503) 0.471 0.956 

0.722 (0.423-
1.235) 0.267 

0.99
4 

0.768 (0.523-

1.129) 0.185 0.564 

SubApoA1_HDL-2 

1.135 (0.725-

1.777) 0.618 0.999 

1.016 (0.765-

1.348) 0.913 0.998 

0.765 (0.469-
1.249) 0.319 

0.99
4 

0.644 (0.438-

0.946) 0.026 0.268 

SubApoA1_HDL-3 

1.094 (0.707-

1.692) 0.713 0.999 

0.977 (0.73-

1.309) 0.880 0.998 

0.687 (0.41-
1.152) 0.185 

0.99
4 

0.637 (0.43-

0.944) 0.025 0.268 

SubApoA1_HDL-4 

0.862 (0.549-

1.354) 0.551 0.999 

0.891 (0.657-

1.208) 0.458 0.956 

0.784 (0.468-
1.314) 0.404 

0.99
4 

0.86 (0.593-

1.249) 0.443 0.680 

SubApoA2_HDL-1 

1.043 (0.662-

1.643) 0.871 0.999 

1.067 (0.807-

1.41) 0.651 0.998 

0.956 (0.593-
1.541) 0.865 

0.99
4 

0.794 (0.55-

1.145) 0.223 0.564 

SubApoA2_HDL-2 1.126 (0.73-1.735) 0.631 0.999 

1.052 (0.799-

1.387) 0.717 0.998 

0.955 (0.607-
1.504) 0.855 

0.99
4 

0.829 (0.582-

1.181) 0.308 0.623 

SubApoA2_HDL-3 

1.043 (0.667-

1.632) 0.867 0.999 

1.007 (0.756-

1.34) 0.963 0.998 

0.907 (0.556-
1.48) 0.721 

0.99
4 

0.781 (0.538-

1.133) 0.201 0.564 

SubApoA2_HDL-4 0.83 (0.53-1.301) 0.449 0.999 

0.834 (0.614-

1.134) 0.246 0.956 

1.047 (0.622-
1.762) 0.879 

0.99
4 

0.967 (0.673-

1.389) 0.860 0.925 

 

Table S6: Effect of 24h post (t2) rt-PA metabolites and lipids levels on early (i.e. sICH, non-response 

to thrombolysis) and late (i.e. three-month mortality and three-month mRS 3-6) adverse outcomes, 

adjusting for the major determinants for unfavourable outcomes. 

 Early outcomes Late outcomes 

 sICH Non-response to thrombolysis Three-month mortality Three-month mRS 3-6 
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Molecular features 
OR (95% CI) P FDR OR (95% CI) P FDR OR (95% CI) P 

FD

R 
OR (95% CI) P FDR 

Creatinine 
1.46 (1.003-2.123) 

0.062 0.460 0.806 (0.599-

1.083) 0.147 0.469 

1.346 (0.837-
2.164) 

0.2
80 

0.6
30 

1.177 (0.83-

1.67) 0.379 0.745 

Ala 
0.806 (0.522-1.243) 

0.362 0.811 1.204 (0.909-

1.595) 0.196 0.469 

1.211 (0.779-
1.883) 

0.4
35 

0.7
66 

1.061 (0.75-

1.502) 0.745 0.818 

Glu 
0.844 (0.529-1.345) 

0.506 0.886 0.791 (0.579-

1.081) 0.142 0.469 

1.289 (0.773-
2.15) 

0.3
72 

0.7
43 

1.068 (0.734-

1.554) 0.736 0.818 

Gln 
1.009 (0.652-1.563) 

0.970 0.976 1.168 (0.867-

1.573) 0.309 0.469 

1.09 (0.694-
1.713) 

0.7
29 

0.7
82 

0.705 (0.482-

1.032) 0.074 0.445 

Gly 
0.956 (0.592-1.545) 

0.868 0.976 0.979 (0.735-

1.304) 0.886 0.886 

1.183 (0.73-
1.919) 

0.5
46 

0.7
66 

0.936 (0.66-

1.327) 0.717 0.818 

His 
1.072 (0.828-1.388) 

0.640 0.886 0.9 (0.728-

1.112) 0.313 0.469 

1.137 (0.898-
1.439) 

0.2
74 

0.6
30 

1.091 (0.882-

1.349) 0.414 0.745 

Ile 
0.815 (0.524-1.267) 

0.406 0.811 0.914 (0.703-

1.189) 0.506 0.569 

0.702 (0.408-
1.207) 

0.2
57 

0.6
30 

0.949 (0.677-

1.331) 0.773 0.818 

Leu 
1.141 (0.765-1.703) 

0.559 0.886 0.854 (0.651-

1.121) 0.258 0.469 

1.183 (0.742-
1.886) 

0.5
53 

0.7
66 

0.916 (0.643-

1.306) 0.644 0.818 

Phe 
1.389 (0.944-2.042) 

0.128 0.460 0.722 (0.542-

0.962) 0.024 0.143 

1.396 (0.917-
2.126) 

0.1
47 

0.6
04 

1.243 (0.889-

1.739) 0.212 0.637 

Tyr 
1.009 (0.691-1.473) 

0.966 0.976 0.9 (0.687-

1.18) 0.446 0.535 

1.079 (0.716-
1.626) 

0.7
38 

0.7
82 

1.319 (0.929-

1.873) 0.132 0.476 

Val 
0.993 (0.66-1.494) 

0.976 0.976 0.894 (0.675-

1.184) 0.434 0.535 

1.384 (0.906-
2.112) 

0.1
68 

0.6
04 

0.94 (0.675-

1.31) 0.724 0.818 

Acetic acid 
0.877 (0.561-1.372) 

0.591 0.886 1.181 (0.883-

1.579) 0.262 0.469 

0.851 (0.559-
1.294) 

0.4
72 

0.7
66 

1.651 (1.133-

2.407) 0.010 0.173 

Citric acid 
1.019 (0.688-1.508) 

0.931 0.976 0.911 (0.669-

1.241) 0.555 0.587 

1.408 (0.956-
2.073) 

0.1
15 

0.6
04 

1.237 (0.858-

1.783) 0.265 0.682 

Lactic acid 
1.245 (0.83-1.869) 

0.352 0.811 0.842 (0.642-

1.103) 0.213 0.469 

1.468 (1.001-
2.153) 

0.0
65 

0.6
04 

1.302 (0.934-

1.814) 0.121 0.476 

3-HB 
1.382 (0.953-2.004) 

0.115 0.460 0.571 (0.413-

0.791) 0.000 0.007 

1.108 (0.756-
1.625) 

0.6
34 

0.7
82 

1.434 (1.013-

2.032) 0.045 0.403 

Acetone 
1.223 (0.886-1.688) 

0.246 0.738 0.609 (0.43-

0.863) 0.003 0.026 

1.042 (0.757-
1.433) 

0.8
13 

0.8
13 

1.177 (0.831-

1.666) 0.377 0.745 

Pyruvic acid 
1.453 (0.962-2.194) 

0.105 0.460 0.83 (0.633-

1.088) 0.177 0.469 

1.426 (0.927-
2.196) 

0.1
45 

0.6
04 

0.882 (0.626-

1.243) 0.486 0.796 

Glucose 
1.589 (1.002-2.519) 

0.071 0.460 0.846 (0.582-

1.23) 0.385 0.533 

0.867 (0.477-
1.574) 

0.6
74 

0.7
82 

1.051 (0.677-

1.633) 0.829 0.829 

Trigl 0.483 (0.241-0.968) 0.044 0.276 

1.16 (0.858-

1.568) 0.334 0.686 

1.3 (0.708-
2.385) 

0.4
83 

0.9
87 

1.363 (0.924-

2.012) 0.133 0.353 

Chol 0.813 (0.511-1.294) 0.421 0.819 

0.899 (0.672-

1.204) 0.477 0.724 

1.151 (0.67-
1.978) 

0.6
51 

0.9
87 

1.376 (0.939-

2.018) 0.111 0.327 

LDL-Chol 1.025 (0.655-1.605) 0.920 0.973 

0.841 (0.629-

1.125) 0.243 0.686 

1.092 (0.653-
1.825) 

0.7
66 

0.9
87 

1.461 (0.997-

2.14) 0.056 0.280 

HDL-Chol 1.075 (0.707-1.636) 0.754 0.961 

0.861 (0.644-

1.151) 0.313 0.686 

1.018 (0.61-
1.701) 

0.9
50 

0.9
87 

0.837 (0.584-

1.199) 0.344 0.560 

Apo-A1 0.861 (0.549-1.35) 0.547 0.890 

1.035 (0.762-

1.405) 0.829 0.976 

0.713 (0.424-
1.2) 

0.2
48 

0.9
87 

0.765 (0.519-

1.127) 0.186 0.436 

Apo-A2 0.879 (0.555-1.393) 0.616 0.936 

0.99 (0.728-

1.344) 0.946 0.976 

0.927 (0.554-
1.551) 

0.7
95 

0.9
87 

0.993 (0.68-

1.452) 0.973 0.990 

Apo-B100 0.897 (0.572-1.407) 0.663 0.946 

0.889 (0.67-

1.179) 0.415 0.696 

1.143 (0.689-
1.896) 

0.6
43 

0.9
87 

1.595 (1.087-

2.339) 0.018 0.175 

Apo-B100-Apo-A1 1.054 (0.714-1.556) 0.807 0.973 

0.975 (0.74-

1.285) 0.857 0.976 

1.261 (0.818-
1.945) 

0.3
32 

0.9
87 

1.738 (1.17-

2.583) 0.006 0.076 

VLDL_PN 0.636 (0.371-1.092) 0.114 0.511 

0.901 (0.682-

1.19) 0.462 0.714 

1.236 (0.711-
2.147) 

0.5
12 

0.9
87 

1.198 (0.813-

1.766) 0.378 0.580 

IDL_PN 0.829 (0.531-1.295) 0.438 0.819 

0.889 (0.67-

1.179) 0.415 0.696 

1.095 (0.684-
1.752) 

0.7
31 

0.9
87 

1.403 (0.966-

2.037) 0.084 0.280 

LDL_PN 1.001 (0.646-1.552) 0.997 0.997 

1.235 (0.92-

1.659) 0.159 0.686 

1.13 (0.688-
1.858) 

0.6
64 

0.9
87 

1.524 (1.044-

2.226) 0.031 0.246 

LDL1_PN 1.178 (0.77-1.801) 0.489 0.870 

1.013 (0.769-

1.335) 0.926 0.976 

1.005 (0.625-
1.616) 

0.9
85 

0.9
87 

1.11 (0.765-

1.61) 0.593 0.727 

LDL2_PN 1.426 (0.883-2.303) 0.176 0.558 

0.846 (0.637-

1.123) 0.246 0.686 

0.751 (0.428-
1.317) 

0.3
74 

0.9
87 

1.164 (0.799-

1.696) 0.441 0.606 

LDL3_PN 1.515 (0.937-2.449) 0.123 0.511 

0.858 (0.635-

1.16) 0.320 0.686 

0.971 (0.562-
1.679) 

0.9
28 

0.9
87 

1.448 (0.993-

2.112) 0.061 0.280 

LDL4_PN 0.98 (0.647-1.486) 0.930 0.973 

0.857 (0.631-

1.163) 0.322 0.686 

1.189 (0.681-
2.075) 

0.5
97 

0.9
87 

1.17 (0.817-

1.674) 0.410 0.592 

LDL5_PN 0.786 (0.491-1.257) 0.347 0.791 

0.78 (0.582-

1.044) 0.094 0.686 

1.035 (0.601-
1.783) 

0.9
12 

0.9
87 

1.289 (0.882-

1.884) 0.203 0.436 

LDL6_PN 0.658 (0.379-1.142) 0.161 0.540 

0.962 (0.723-

1.281) 0.791 0.976 

1.797 (1.056-
3.055) 

0.0
69 

0.9
82 

1.79 (1.233-

2.597) 0.002 0.040 

LMF_Trigl_VLDL 0.405 (0.19-0.867) 0.020 0.178 

0.994 (0.741-

1.333) 0.968 0.976 

1.604 (0.873-
2.948) 

0.2
05 

0.9
87 

1.488 (1.004-

2.206) 0.055 0.280 

LMF_Trigl_IDL 0.487 (0.247-0.962) 0.040 0.271 

0.899 (0.676-

1.196) 0.463 0.714 

1.123 (0.588-
2.145) 

0.7
73 

0.9
87 

1.198 (0.809-

1.776) 0.383 0.580 

LMF_Trigl_LDL 1.024 (0.713-1.471) 0.905 0.973 

1.163 (0.855-

1.582) 0.336 0.686 

0.983 (0.668-
1.447) 

0.9
35 

0.9
87 

1.278 (0.884-

1.848) 0.195 0.436 

LMF_Trigl_HDL 0.743 (0.477-1.156) 0.223 0.604 

1.194 (0.878-

1.623) 0.257 0.686 

0.526 (0.299-
0.927) 

0.0
48 

0.9
82 

0.797 (0.553-

1.147) 0.235 0.490 

LMF_Chol_VLDL 0.452 (0.251-0.812) 0.010 0.128 

0.942 (0.721-

1.231) 0.665 0.960 

1.093 (0.61-
1.959) 

0.7
92 

0.9
87 

1.161 (0.798-

1.688) 0.450 0.611 

LMF_Chol_IDL 0.711 (0.441-1.146) 0.187 0.563 

1.316 (0.971-

1.785) 0.074 0.686 

1.085 (0.655-
1.796) 

0.7
75 

0.9
87 

1.5 (1.034-

2.177) 0.037 0.246 

LMF_Chol_LDL 1.025 (0.655-1.605) 0.920 0.973 

1.247 (0.929-

1.674) 0.139 0.686 

1.092 (0.653-
1.825) 

0.7
66 

0.9
87 

1.461 (0.997-

2.14) 0.056 0.280 
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LMF_Chol_HDL 1.075 (0.707-1.636) 0.754 0.961 

1.017 (0.768-

1.345) 0.909 0.976 

1.018 (0.61-
1.701) 

0.9
50 

0.9
87 

0.837 (0.584-

1.199) 0.344 0.560 

LMF_FreeChol_VLDL 0.419 (0.222-0.793) 0.009 0.128 

0.841 (0.629-

1.125) 0.243 0.686 

1.394 (0.755-
2.575) 

0.3
65 

0.9
87 

1.244 (0.844-

1.834) 0.286 0.515 

LMF_FreeChol_IDL 0.725 (0.45-1.167) 0.212 0.604 

0.861 (0.644-

1.151) 0.313 0.686 

1.014 (0.606-
1.695) 

0.9
63 

0.9
87 

1.414 (0.974-

2.054) 0.076 0.280 

LMF_FreeChol_LDL 1.039 (0.657-1.644) 0.882 0.973 

1.23 (0.908-

1.667) 0.179 0.686 

1.159 (0.678-
1.98) 

0.6
36 

0.9
87 

1.532 (1.043-

2.251) 0.033 0.246 

LMF_FreeChol_HDL 0.904 (0.59-1.385) 0.670 0.946 

1.044 (0.788-

1.384) 0.763 0.976 

1.18 (0.705-
1.975) 

0.5
86 

0.9
87 

1.045 (0.729-

1.498) 0.818 0.897 

LMF_Phosp_VLDL 0.382 (0.194-0.753) 0.006 0.128 

0.801 (0.597-

1.073) 0.136 0.686 

1.575 (0.845-
2.934) 

0.2
27 

0.9
87 

1.207 (0.809-

1.8) 0.373 0.580 

LMF_Phosp_IDL 0.647 (0.384-1.09) 0.120 0.511 

0.853 (0.641-

1.134) 0.272 0.686 

1.065 (0.607-
1.869) 

0.8
46 

0.9
87 

1.336 (0.915-

1.951) 0.147 0.372 

LMF_Phosp_LDL 1.067 (0.683-1.669) 0.795 0.973 

1.293 (0.946-

1.767) 0.104 0.686 

1.06 (0.635-
1.769) 

0.8
43 

0.9
87 

1.369 (0.937-

1.998) 0.112 0.327 

LMF_Phosp_HDL 1.111 (0.708-1.744) 0.673 0.946 

1.058 (0.793-

1.411) 0.705 0.976 

0.747 (0.436-
1.279) 

0.3
37 

0.9
87 

0.669 (0.458-

0.977) 0.041 0.257 

LMF_ApoA1_HDL 0.894 (0.575-1.39) 0.644 0.946 

0.836 (0.625-

1.119) 0.228 0.686 

0.675 (0.396-
1.152) 

0.1
89 

0.9
87 

0.718 (0.489-

1.055) 0.098 0.311 

LMF_ApoA2_HDL 0.902 (0.566-1.436) 0.691 0.949 

0.898 (0.662-

1.219) 0.493 0.740 

0.952 (0.561-
1.616) 

0.8
71 

0.9
87 1 (0.683-1.467) 0.998 0.998 

LMF_ApoB_VLDL 0.636 (0.371-1.092) 0.114 0.511 

1.021 (0.752-

1.385) 0.894 0.976 

1.236 (0.712-
2.148) 

0.5
11 

0.9
87 

1.198 (0.813-

1.766) 0.378 0.580 

LMF_ApoB_IDL 0.829 (0.53-1.295) 0.438 0.819 

0.985 (0.725-

1.337) 0.921 0.976 

1.095 (0.684-
1.752) 

0.7
31 

0.9
87 

1.403 (0.966-

2.038) 0.083 0.280 

LMF_ApoB_LDL 1.001 (0.646-1.552) 0.997 0.997 

1.236 (0.92-

1.659) 0.159 0.686 

1.13 (0.688-
1.858) 

0.6
64 

0.9
87 

1.524 (1.044-

2.226) 0.031 0.246 

SubTrigl_VLDL-1 0.458 (0.198-1.057) 0.075 0.426 

1.013 (0.769-

1.335) 0.926 0.976 

1.685 (0.905-
3.138) 

0.1
83 

0.9
87 

1.533 (1.044-

2.251) 0.037 0.246 

SubTrigl_VLDL-2 0.372 (0.193-0.717) 0.003 0.097 

0.846 (0.637-

1.123) 0.246 0.686 

1.574 (0.866-
2.861) 

0.2
05 

0.9
87 

1.275 (0.861-

1.888) 0.242 0.490 

SubTrigl_VLDL-3 0.44 (0.242-0.803) 0.008 0.128 

1.085 (0.797-

1.476) 0.604 0.883 

1.476 (0.817-
2.667) 

0.2
63 

0.9
87 

1.315 (0.886-

1.953) 0.188 0.436 

SubTrigl_VLDL-4 0.656 (0.393-1.096) 0.126 0.511 

1.233 (0.908-

1.675) 0.179 0.686 

1.415 (0.808-
2.477) 

0.2
87 

0.9
87 

1.239 (0.843-

1.821) 0.289 0.515 

SubTrigl_VLDL-5 0.917 (0.594-1.416) 0.720 0.961 

1.271 (0.939-

1.72) 0.119 0.686 

1.341 (0.776-
2.319) 

0.3
61 

0.9
87 

0.833 (0.584-

1.189) 0.331 0.559 

SubChol_VLDL-1 0.395 (0.179-0.869) 0.024 0.194 

1.213 (0.906-

1.622) 0.194 0.686 

1.244 (0.655-
2.365) 

0.5
83 

0.9
87 

1.364 (0.932-

1.996) 0.128 0.353 

SubChol_VLDL-2 0.383 (0.203-0.719) 0.003 0.097 

1.121 (0.845-

1.488) 0.429 0.696 

1.044 (0.577-
1.889) 

0.9
00 

0.9
87 

1.106 (0.764-

1.6) 0.607 0.729 

SubChol_VLDL-3 0.465 (0.262-0.825) 0.010 0.128 

1.137 (0.839-

1.54) 0.408 0.696 

1.151 (0.657-
2.016) 

0.6
62 

0.9
87 

1.341 (0.925-

1.945) 0.133 0.353 

SubChol_VLDL-4 0.575 (0.349-0.947) 0.038 0.270 

1.252 (0.936-

1.674) 0.127 0.686 

1.014 (0.604-
1.7) 

0.9
63 

0.9
87 

1.075 (0.75-

1.542) 0.704 0.810 

SubChol_VLDL-5 1.005 (0.649-1.556) 0.984 0.997 

1.188 (0.89-

1.586) 0.242 0.686 

0.771 (0.444-
1.342) 

0.4
17 

0.9
87 

0.497 (0.334-

0.738) 0.000 0.040 

SubFreeChol_VLDL-1 0.424 (0.195-0.923) 0.031 0.237 

1.214 (0.915-

1.612) 0.178 0.686 

1.131 (0.584-
2.191) 

0.7
63 

0.9
87 

1.305 (0.886-

1.92) 0.198 0.436 

SubFreeChol_VLDL-2 0.46 (0.249-0.852) 0.014 0.164 

1.226 (0.92-

1.633) 0.163 0.686 

1.283 (0.718-
2.293) 

0.4
71 

0.9
87 

1.326 (0.906-

1.942) 0.159 0.394 

SubFreeChol_VLDL-3 0.468 (0.253-0.868) 0.018 0.171 

1.173 (0.869-

1.584) 0.296 0.686 

1.31 (0.735-
2.336) 

0.4
32 

0.9
87 

1.441 (0.984-

2.11) 0.068 0.280 

SubFreeChol_VLDL-4 0.681 (0.425-1.09) 0.130 0.511 

1.239 (0.922-

1.665) 0.153 0.686 

1.071 (0.648-
1.77) 

0.8
08 

0.9
87 

1.202 (0.837-

1.726) 0.334 0.559 

SubFreeChol_VLDL-5 0.732 (0.411-1.304) 0.336 0.791 

1.183 (0.882-

1.586) 0.262 0.686 

1.362 (0.743-
2.496) 

0.3
93 

0.9
87 

0.975 (0.645-

1.473) 0.907 0.949 

SubPhosp_VLDL-1 0.361 (0.157-0.832) 0.017 0.171 

1.145 (0.864-

1.517) 0.346 0.686 

1.389 (0.735-
2.624) 

0.4
05 

0.9
87 

1.457 (0.984-

2.157) 0.071 0.280 

SubPhosp_VLDL-2 0.364 (0.193-0.687) 0.001 0.097 

1.157 (0.849-

1.577) 0.354 0.686 

1.346 (0.74-
2.446) 

0.4
06 

0.9
87 

1.251 (0.853-

1.834) 0.268 0.501 

SubPhosp_VLDL-3 0.46 (0.257-0.822) 0.010 0.128 

1.14 (0.838-

1.551) 0.406 0.696 

1.292 (0.729-
2.289) 

0.4
47 

0.9
87 

1.31 (0.891-

1.925) 0.181 0.436 

SubPhosp_VLDL-4 0.646 (0.396-1.052) 0.096 0.511 

1.275 (0.942-

1.726) 0.113 0.686 

1.132 (0.667-
1.922) 

0.6
82 

0.9
87 

1.088 (0.752-

1.575) 0.664 0.780 

SubPhosp_VLDL-5 0.812 (0.525-1.255) 0.389 0.819 

1.292 (0.96-

1.739) 0.089 0.686 

0.841 (0.493-
1.435) 

0.5
77 

0.9
87 

0.585 (0.401-

0.852) 0.006 0.076 

SubTrigl_LDL-1 1.082 (0.765-1.53) 0.680 0.946 

1.224 (0.921-

1.627) 0.164 0.686 

0.97 (0.652-
1.443) 

0.8
87 

0.9
87 

1.131 (0.787-

1.625) 0.518 0.667 

SubTrigl_LDL-2 1.155 (0.825-1.617) 0.437 0.819 

1.323 (0.992-

1.766) 0.055 0.686 

1.026 (0.711-
1.48) 

0.8
97 

0.9
87 

1.099 (0.772-

1.564) 0.614 0.729 

SubTrigl_LDL-3 1.166 (0.818-1.661) 0.437 0.819 

0.975 (0.742-

1.281) 0.855 0.976 

1.063 (0.727-
1.553) 

0.7
70 

0.9
87 

1.057 (0.755-

1.479) 0.754 0.857 

SubTrigl_LDL-4 1.01 (0.695-1.469) 0.960 0.995 

0.953 (0.723-

1.257) 0.734 0.976 

1.016 (0.681-
1.517) 

0.9
41 

0.9
87 

1.055 (0.744-

1.495) 0.773 0.864 

SubTrigl_LDL-5 0.803 (0.515-1.25) 0.358 0.801 

0.883 (0.669-

1.166) 0.379 0.696 

1.041 (0.665-
1.629) 

0.8
73 

0.9
87 

1.159 (0.819-

1.642) 0.420 0.598 

SubTrigl_LDL-6 0.706 (0.405-1.231) 0.249 0.661 

0.992 (0.756-

1.302) 0.954 0.976 

1.751 (1.182-
2.594) 

0.0
10 

0.9
82 

1.745 (1.213-

2.508) 0.001 0.040 

SubChol_LDL-1 1.162 (0.728-1.856) 0.565 0.895 

1.024 (0.782-

1.342) 0.864 0.976 

0.936 (0.551-
1.592) 

0.8
27 

0.9
87 

1.043 (0.715-

1.52) 0.834 0.905 

SubChol_LDL-2 1.405 (0.874-2.259) 0.192 0.563 

0.782 (0.582-

1.051) 0.092 0.686 

0.802 (0.457-
1.406) 

0.4
98 

0.9
87 

1.169 (0.806-

1.695) 0.425 0.598 

SubChol_LDL-3 1.451 (0.909-2.317) 0.154 0.540 

0.879 (0.648-

1.194) 0.413 0.696 

1.036 (0.601-
1.786) 

0.9
11 

0.9
87 

1.406 (0.968-

2.04) 0.081 0.280 

SubChol_LDL-4 1.004 (0.665-1.514) 0.987 0.997 

0.845 (0.624-

1.144) 0.277 0.686 

1.188 (0.682-
2.069) 

0.5
96 

0.9
87 

1.146 (0.799-

1.645) 0.475 0.630 

SubChol_LDL-5 0.811 (0.504-1.306) 0.420 0.819 

0.803 (0.602-

1.07) 0.133 0.686 

1.071 (0.613-
1.872) 

0.8
30 

0.9
87 

1.258 (0.854-

1.851) 0.260 0.493 

SubChol_LDL-6 0.691 (0.41-1.165) 0.190 0.563 

0.959 (0.718-

1.28) 0.775 0.976 

1.804 (1.084-
3.003) 

0.0
42 

0.9
82 

1.743 (1.207-

2.516) 0.003 0.049 
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SubFreeChol_LDL-1 1.082 (0.682-1.718) 0.759 0.961 

1.006 (0.746-

1.358) 0.967 0.976 

0.92 (0.546-
1.552) 

0.7
77 

0.9
87 

1.127 (0.773-

1.643) 0.546 0.691 

SubFreeChol_LDL-2 1.213 (0.778-1.894) 0.428 0.819 

0.888 (0.667-

1.184) 0.418 0.696 

0.873 (0.508-
1.499) 

0.6
62 

0.9
87 

1.253 (0.864-

1.818) 0.246 0.490 

SubFreeChol_LDL-3 1.538 (0.939-2.52) 0.120 0.511 

0.874 (0.644-

1.185) 0.388 0.696 

1.077 (0.622-
1.865) 

0.8
17 

0.9
87 

1.427 (0.975-

2.086) 0.073 0.280 

SubFreeChol_LDL-4 1.114 (0.723-1.717) 0.652 0.946 

0.852 (0.63-

1.153) 0.301 0.686 

1.099 (0.633-
1.909) 

0.7
69 

0.9
87 

1.337 (0.925-

1.931) 0.134 0.353 

SubFreeChol_LDL-5 0.879 (0.553-1.399) 0.615 0.936 

0.755 (0.562-

1.014) 0.060 0.686 

1.075 (0.628-
1.839) 

0.8
14 

0.9
87 

1.444 (0.978-

2.13) 0.071 0.280 

SubFreeChol_LDL-6 0.767 (0.487-1.207) 0.281 0.728 

0.855 (0.639-

1.144) 0.291 0.686 

1.267 (0.771-
2.081) 

0.4
00 

0.9
87 

1.844 (1.266-

2.687) 0.001 0.040 

SubPhosp_LDL-1 1.181 (0.756-1.843) 0.504 0.870 

0.906 (0.673-

1.221) 0.519 0.768 

0.935 (0.562-
1.557) 

0.8
14 

0.9
87 

1.007 (0.693-

1.465) 0.971 0.990 

SubPhosp_LDL-2 1.483 (0.903-2.434) 0.147 0.540 

0.84 (0.631-

1.118) 0.230 0.686 

0.781 (0.439-
1.389) 

0.4
58 

0.9
87 

1.121 (0.768-

1.636) 0.567 0.710 

SubPhosp_LDL-3 1.492 (0.919-2.422) 0.140 0.533 

0.885 (0.652-

1.2) 0.434 0.696 

0.962 (0.553-
1.672) 

0.9
04 

0.9
87 

1.342 (0.921-

1.954) 0.136 0.353 

SubPhosp_LDL-4 1.025 (0.682-1.541) 0.912 0.973 

0.841 (0.618-

1.145) 0.272 0.686 

1.171 (0.675-
2.033) 

0.6
24 

0.9
87 

1.138 (0.792-

1.635) 0.501 0.657 

SubPhosp_LDL-5 0.817 (0.511-1.306) 0.430 0.819 

0.796 (0.595-

1.065) 0.123 0.686 

1.009 (0.579-
1.759) 

0.9
78 

0.9
87 

1.19 (0.813-

1.742) 0.387 0.580 

SubPhosp_LDL-6 0.712 (0.429-1.184) 0.218 0.604 

0.959 (0.718-

1.281) 0.778 0.976 

1.764 (1.056-
2.947) 

0.0
63 

0.9
82 

1.701 (1.184-

2.445) 0.004 0.061 

SubApoB_LDL-1 1.178 (0.77-1.801) 0.489 0.870 

1.015 (0.754-

1.366) 0.921 0.976 

1.005 (0.625-
1.616) 

0.9
85 

0.9
87 

1.11 (0.765-

1.61) 0.593 0.727 

SubApoB_LDL-2 1.425 (0.882-2.302) 0.176 0.558 

0.875 (0.657-

1.164) 0.356 0.686 

0.751 (0.428-
1.316) 

0.3
74 

0.9
87 

1.164 (0.799-

1.695) 0.441 0.606 

SubApoB_LDL-3 1.515 (0.937-2.449) 0.123 0.511 

0.858 (0.635-

1.16) 0.320 0.686 

0.972 (0.562-
1.68) 

0.9
28 

0.9
87 

1.448 (0.992-

2.112) 0.061 0.280 

SubApoB_LDL-4 0.98 (0.647-1.486) 0.930 0.973 

0.857 (0.632-

1.163) 0.323 0.686 

1.189 (0.681-
2.076) 

0.5
97 

0.9
87 

1.17 (0.817-

1.674) 0.410 0.592 

SubApoB_LDL-5 0.786 (0.491-1.258) 0.347 0.791 

0.78 (0.583-

1.044) 0.094 0.686 

1.036 (0.601-
1.784) 

0.9
11 

0.9
87 

1.289 (0.882-

1.884) 0.203 0.436 

SubApoB_LDL-6 0.658 (0.379-1.142) 0.161 0.540 

0.962 (0.722-

1.281) 0.791 0.976 

1.797 (1.057-
3.056) 

0.0
69 

0.9
82 

1.79 (1.233-

2.597) 0.002 0.040 

SubTrigl_HDL-1 0.839 (0.526-1.338) 0.497 0.870 

0.994 (0.741-

1.333) 0.967 0.976 

0.692 (0.39-
1.227) 

0.2
55 

0.9
87 

0.948 (0.649-

1.383) 0.787 0.871 

SubTrigl_HDL-2 0.83 (0.542-1.271) 0.426 0.819 

0.899 (0.676-

1.196) 0.463 0.714 

0.601 (0.347-
1.041) 

0.0
99 

0.9
87 

0.909 (0.635-

1.302) 0.613 0.729 

SubTrigl_HDL-3 0.784 (0.512-1.202) 0.299 0.757 

1.161 (0.85-

1.586) 0.348 0.686 

0.543 (0.309-
0.952) 

0.0
52 

0.9
82 

0.868 (0.606-

1.244) 0.456 0.611 

SubTrigl_HDL-4 0.619 (0.385-0.994) 0.060 0.363 

1.193 (0.884-

1.61) 0.249 0.686 

0.527 (0.296-
0.936) 

0.0
57 

0.9
82 

0.681 (0.455-

1.018) 0.066 0.280 

SubChol_HDL-1 1.022 (0.655-1.594) 0.930 0.973 

1.325 (0.981-

1.79) 0.064 0.686 

1.213 (0.704-
2.089) 

0.5
35 

0.9
87 

1.08 (0.743-

1.569) 0.696 0.810 

SubChol_HDL-2 1.276 (0.826-1.974) 0.307 0.761 

1.559 (1.135-

2.143) 0.005 0.586 

0.974 (0.575-
1.65) 

0.9
29 

0.9
87 

0.806 (0.561-

1.16) 0.257 0.493 

SubChol_HDL-3 1.167 (0.761-1.788) 0.516 0.878 

0.853 (0.633-

1.149) 0.297 0.686 

0.917 (0.558-
1.506) 

0.7
59 

0.9
87 

0.889 (0.628-

1.26) 0.520 0.667 

SubChol_HDL-4 0.972 (0.622-1.52) 0.910 0.973 

0.814 (0.6-

1.105) 0.186 0.686 

1.036 (0.608-
1.765) 

0.9
07 

0.9
87 

0.836 (0.567-

1.233) 0.379 0.580 

SubFreeChol_HDL-1 0.962 (0.62-1.494) 0.875 0.973 

0.865 (0.646-

1.159) 0.334 0.686 

1.148 (0.686-
1.923) 

0.6
40 

0.9
87 

1.256 (0.873-

1.808) 0.238 0.490 

SubFreeChol_HDL-2 1.092 (0.69-1.728) 0.735 0.961 

0.978 (0.719-

1.33) 0.886 0.976 

1.101 (0.631-
1.919) 

0.7
68 

0.9
87 

1.247 (0.866-

1.794) 0.249 0.490 

SubFreeChol_HDL-3 0.852 (0.535-1.358) 0.539 0.890 

0.817 (0.612-

1.092) 0.171 0.686 

0.811 (0.473-
1.388) 

0.4
94 

0.9
87 

1.014 (0.693-

1.483) 0.946 0.980 

SubFreeChol_HDL-4 0.921 (0.582-1.457) 0.745 0.961 

0.741 (0.546-

1.005) 0.051 0.686 

0.985 (0.563-
1.722) 

0.9
62 

0.9
87 

1.027 (0.701-

1.505) 0.894 0.944 

SubPhosp_HDL-1 1.045 (0.656-1.663) 0.865 0.973 

0.942 (0.697-

1.273) 0.699 0.976 

0.992 (0.565-
1.741) 

0.9
81 

0.9
87 

0.94 (0.638-

1.383) 0.760 0.857 

SubPhosp_HDL-2 1.283 (0.815-2.02) 0.318 0.771 

0.947 (0.699-

1.282) 0.723 0.976 

0.804 (0.462-
1.4) 

0.4
87 

0.9
87 

0.718 (0.492-

1.046) 0.090 0.294 

SubPhosp_HDL-3 1.153 (0.741-1.795) 0.561 0.895 

0.883 (0.65-

1.2) 0.429 0.696 

0.689 (0.412-
1.153) 

0.2
03 

0.9
87 

0.701 (0.486-

1.011) 0.062 0.280 

SubPhosp_HDL-4 0.954 (0.613-1.483) 0.845 0.973 

0.864 (0.632-

1.181) 0.361 0.686 

0.831 (0.484-
1.427) 

0.5
47 

0.9
87 

0.693 (0.465-

1.033) 0.076 0.280 

SubApoA1_HDL-1 0.959 (0.605-1.52) 0.869 0.973 

0.949 (0.705-

1.277) 0.729 0.976 

0.731 (0.413-
1.292) 

0.3
27 

0.9
87 

0.808 (0.544-

1.199) 0.301 0.527 

SubApoA1_HDL-2 1.041 (0.665-1.628) 0.872 0.973 

1.044 (0.768-

1.419) 0.786 0.976 

0.747 (0.45-
1.241) 

0.3
11 

0.9
87 

0.726 (0.499-

1.055) 0.101 0.311 

SubApoA1_HDL-3 1.033 (0.66-1.618) 0.895 0.973 

0.977 (0.721-

1.323) 0.881 0.976 

0.817 (0.475-
1.404) 

0.5
15 

0.9
87 

0.813 (0.564-

1.17) 0.278 0.511 

SubApoA1_HDL-4 0.825 (0.52-1.308) 0.448 0.824 

1.003 (0.746-

1.349) 0.984 0.984 

0.887 (0.515-
1.528) 

0.6
99 

0.9
87 

0.808 (0.539-

1.21) 0.313 0.541 

SubApoA2_HDL-1 0.928 (0.577-1.493) 0.779 0.973 

0.967 (0.717-

1.303) 0.826 0.976 

0.904 (0.513-
1.591) 

0.7
55 

0.9
87 

0.999 (0.685-

1.456) 0.994 0.998 

SubApoA2_HDL-2 0.964 (0.599-1.55) 0.891 0.973 

1.063 (0.775-

1.457) 0.707 0.976 

1.005 (0.57-
1.774) 

0.9
87 

0.9
87 

1.176 (0.815-

1.698) 0.404 0.592 

SubApoA2_HDL-3 0.909 (0.566-1.459) 0.720 0.961 

0.979 (0.729-

1.315) 0.889 0.976 

0.818 (0.48-
1.392) 

0.5
09 

0.9
87 

1.033 (0.712-

1.498) 0.870 0.926 

SubApoA2_HDL-4 0.869 (0.549-1.376) 0.581 0.907 

0.988 (0.737-

1.325) 0.937 0.976 

1.047 (0.612-
1.793) 

0.8
81 

0.9
87 

0.963 (0.651-

1.424) 0.853 0.917 
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Table S7: Effect of pre-post-rtPA variations of metabolites and lipids levels on early (i.e. sICH, non-

response to thrombolysis) and late (i.e. three-month mortality and three-month mRS 3-6) adverse 

outcomes, adjusting for the major determinants for unfavourable outcomes. 

 Early outcomes Late outcomes 

 sICH Non-response to thrombolysis Three-month mortality Three-month mRS 3-6 

Molecular features 
OR (95% 

CI) 
P FDR 

OR (95% 

CI) 
P FDR 

OR 

(95% 

CI) 

P FDR 

OR 

(95% 

CI) 

P FDR 

Creatinine 
1.285 

(0.887-

1.861) 0.229 0.796 

0.755 

(0.568-

1.003) 0.047 0.238 

0.691 
(0.429-
1.114) 0.166 0.819 

1.185 
(0.837-
1.677) 0.365 0.766 

Ala 
0.919 

(0.603-

1.401) 0.719 0.846 

1.327 

(0.994-

1.771) 0.053 0.238 

1.031 
(0.667-
1.595) 0.898 0.957 

0.909 
(0.645-
1.282) 0.596 0.766 

Glu 
0.925 

(0.593-

1.442) 0.752 0.846 

0.822 

(0.605-

1.116) 0.208 0.558 

1.042 
(0.654-
1.66) 0.876 0.957 

1.565 
(1.069-
2.29) 0.023 0.412 

Gln 
0.889 

(0.596-

1.325) 0.619 0.796 

1.285 

(0.922-

1.791) 0.132 0.474 

1.083 
(0.763-
1.535) 0.680 0.957 

0.864 
(0.612-
1.221) 0.413 0.766 

Gly 
1.245 

(0.814-

1.904) 0.351 0.796 

1.04 

(0.789-

1.371) 0.783 0.888 

0.786 
(0.489-
1.263) 0.362 0.930 

0.903 
(0.639-
1.276) 0.576 0.766 

His 
0.996 

(0.666-

1.488) 0.984 0.984 

0.938 

(0.711-

1.237) 0.652 0.888 

1.165 
(0.784-
1.731) 0.481 0.957 

1.127 
(0.804-
1.579) 0.508 0.766 

Ile 
0.803 

(0.549-

1.174) 0.292 0.796 

0.986 

(0.756-

1.287) 0.919 0.919 

0.678 
(0.448-
1.024) 0.084 0.819 

0.911 
(0.657-
1.262) 0.585 0.766 

Leu 
1.176 

(0.791-

1.749) 0.457 0.796 

0.946 

(0.727-

1.232) 0.683 0.888 

0.832 
(0.55-
1.257) 0.422 0.949 

0.833 
(0.596-
1.165) 0.302 0.766 

Phe 
1.736 

(1.157-

2.605) 0.015 0.274 

0.86 

(0.654-

1.131) 0.280 0.558 

1.133 
(0.735-
1.746) 0.610 0.957 

1.023 
(0.73-
1.433) 0.898 0.898 

Tyr 
1.125 

(0.759-

1.668) 0.596 0.796 

0.972 

(0.742-

1.274) 0.839 0.888 

0.937 
(0.63-
1.392) 0.764 0.957 

0.948 
(0.69-
1.301) 0.746 0.790 

Val 
1.119 

(0.749-

1.671) 0.614 0.796 

0.92 

(0.703-

1.204) 0.543 0.888 

0.969 
(0.637-
1.474) 0.893 0.957 

0.894 
(0.649-
1.231) 0.503 0.766 

Acetic acid 
0.993 

(0.611-

1.615) 0.980 0.984 

0.962 

(0.719-

1.286) 0.793 0.888 

0.965 
(0.575-
1.62) 0.904 0.957 

1.45 
(0.972-
2.165) 0.073 0.527 

Citric acid 
1.239 

(0.808-

1.901) 0.362 0.796 

0.832 

(0.614-

1.13) 0.239 0.558 

1.265 
(0.829-
1.931) 0.302 0.907 

1.399 
(0.958-
2.044) 0.088 0.527 

Lactic acid 1.55 (0.969-

2.479) 0.093 0.417 

0.853 

(0.642-

1.134) 0.275 0.558 

1.461 
(0.886-
2.41) 0.182 0.819 

1.272 
(0.895-
1.808) 0.192 0.766 

3-HB 
1.214 

(0.783-

1.883) 0.423 0.796 

0.725 

(0.543-

0.969) 0.028 0.238 

1.394 
(0.823-
2.361) 0.259 0.907 

1.238 
(0.867-
1.768) 0.250 0.766 

Acetone 
1.162 

(0.753-

1.794) 0.531 0.796 

0.684 

(0.516-

0.906) 0.007 0.129 

1.073 
(0.668-
1.724) 0.790 0.957 

1.226 
(0.865-
1.738) 0.261 0.766 

Pyruvic acid 
1.692 

(1.062-

2.695) 0.035 0.297 

0.86 

(0.643-

1.15) 0.310 0.558 

1.512 
(0.943-
2.425) 0.107 0.819 

0.927 
(0.646-
1.33) 0.689 0.775 

Glucose 1.68 (1.042-

2.707) 0.050 0.297 

0.955 

(0.717-

1.272) 0.757 0.888 

1.006 
(0.618-
1.636) 0.984 0.984 

0.926 
(0.671-
1.279) 0.649 0.775 

Trigl 

0.651 

(0.431-

0.985) 0.057 0.339 

0.961 

(0.72-

1.283) 0.788 0.990 

1.179 
(0.741-
1.877) 0.513 0.976 

1.148 
(0.791-
1.665) 0.479 0.973 

Chol 

0.91 (0.599-

1.382) 0.681 0.955 

0.948 

(0.718-

1.253) 0.711 0.990 

1.15 
(0.761-
1.737) 0.543 0.976 

1.172 
(0.827-
1.662) 0.387 0.973 

LDL-Chol 

0.871 

(0.586-

1.295) 0.528 0.955 

0.976 

(0.735-

1.297) 0.868 0.990 

0.964 
(0.648-
1.433) 0.865 0.976 

0.906 
(0.63-
1.305) 0.610 0.973 

HDL-Chol 

1.121 

(0.738-

1.703) 0.621 0.955 

0.938 

(0.708-

1.244) 0.659 0.990 

1.242 
(0.776-
1.99) 0.411 0.976 

1.209 
(0.841-
1.739) 0.320 0.973 

Apo-A1 

0.869 

(0.575-

1.313) 0.538 0.955 

0.997 

(0.756-

1.315) 0.981 0.990 

1.002 
(0.659-
1.525) 0.992 0.992 

1.221 
(0.85-
1.755) 0.295 0.973 

Apo-A2 

1.044 

(0.695-

1.568) 0.851 0.980 

1.037 

(0.79-

1.362) 0.793 0.990 

0.926 
(0.613-
1.397) 0.734 0.976 

1.244 
(0.882-
1.756) 0.225 0.973 

Apo-B100 

0.909 

(0.606-

1.363) 0.669 0.955 

0.785 

(0.592-

1.041) 0.090 0.990 

1.08 
(0.715-
1.632) 0.734 0.976 

1.104 
(0.778-
1.565) 0.593 0.973 

Apo-B100-Apo-A1 

1.015 

(0.656-

1.571) 0.952 0.997 

1.016 

(0.767-

1.346) 0.914 0.990 

1.088 
(0.697-
1.7) 0.737 0.976 

0.933 
(0.652-
1.335) 0.720 0.979 

VLDL_PN 

0.597 (0.39-

0.914) 0.024 0.301 

0.776 

(0.58-

1.038) 0.081 0.990 

1.095 
(0.687-
1.747) 0.723 0.976 

1.044 
(0.724-
1.505) 0.822 0.979 
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IDL_PN 

0.87 (0.591-

1.283) 0.517 0.955 

0.785 

(0.592-

1.041) 0.090 0.990 

0.917 
(0.603-
1.395) 0.710 0.976 

1.268 
(0.904-
1.779) 0.177 0.973 

LDL_PN 

1.054 

(0.709-

1.567) 0.811 0.955 

0.943 

(0.704-

1.265) 0.698 0.990 

0.918 
(0.601-
1.402) 0.714 0.976 

1.025 
(0.709-
1.483) 0.898 0.985 

LDL1_PN 

1.092 

(0.728-

1.638) 0.698 0.955 

0.842 

(0.642-

1.106) 0.216 0.990 

0.864 
(0.525-
1.421) 0.612 0.976 

1.161 
(0.819-
1.646) 0.420 0.973 

LDL2_PN 

1.023 

(0.687-

1.525) 0.917 0.987 

0.839 

(0.632-

1.114) 0.225 0.990 

0.764 
(0.468-
1.249) 0.334 0.976 

0.956 
(0.68-
1.343) 0.800 0.979 

LDL3_PN 

1.237 (0.8-

1.913) 0.388 0.955 

0.875 

(0.668-

1.146) 0.330 0.990 

0.725 
(0.458-
1.149) 0.193 0.976 

1.034 
(0.712-
1.503) 0.866 0.979 

LDL4_PN 

0.769 

(0.506-

1.171) 0.257 0.826 

0.873 

(0.646-

1.18) 0.376 0.990 

1.192 
(0.744-
1.91) 0.506 0.976 

1.093 
(0.764-
1.563) 0.637 0.973 

LDL5_PN 

0.827 

(0.564-

1.214) 0.370 0.955 

0.765 

(0.567-

1.032) 0.076 0.990 

0.752 
(0.51-
1.108) 0.170 0.976 

0.881 
(0.637-
1.219) 0.454 0.973 

LDL6_PN 

0.97 (0.659-

1.428) 0.887 0.982 

1.01 

(0.766-

1.331) 0.944 0.990 

1.31 
(0.83-
2.069) 0.275 0.976 

1.197 
(0.846-
1.694) 0.332 0.973 

LMF_Trigl_VLDL 

0.639 

(0.418-

0.977) 0.051 0.339 

0.969 

(0.733-

1.28) 0.824 0.990 

1.21 
(0.764-
1.918) 0.443 0.976 

1.188 
(0.821-
1.721) 0.373 0.973 

LMF_Trigl_IDL 

0.609 

(0.383-0.97) 0.047 0.339 

0.87 

(0.652-

1.162) 0.346 0.990 

0.951 
(0.615-
1.471) 0.834 0.976 

1.267 
(0.887-
1.808) 0.203 0.973 

LMF_Trigl_LDL 

0.944 

(0.656-

1.358) 0.775 0.955 

0.976 

(0.729-

1.306) 0.870 0.990 

0.609 
(0.414-
0.897) 0.023 0.934 

1.035 
(0.734-
1.458) 0.854 0.979 

LMF_Trigl_HDL 

0.803 

(0.574-

1.124) 0.245 0.826 

0.972 

(0.727-1.3) 0.851 0.990 

0.597 
(0.404-
0.882) 0.031 0.934 

0.885 
(0.664-
1.18) 0.417 0.973 

LMF_Chol_VLDL 

0.611 

(0.405-

0.921) 0.026 0.301 

0.808 

(0.611-

1.067) 0.123 0.990 

1.066 
(0.685-
1.66) 0.790 0.976 

1.119 
(0.783-
1.599) 0.548 0.973 

LMF_Chol_IDL 

0.893 

(0.607-

1.313) 0.596 0.955 

0.969 

(0.75-

1.252) 0.811 0.990 

1.049 
(0.701-
1.569) 0.827 0.976 

1.337 
(0.96-
1.863) 0.092 0.973 

LMF_Chol_LDL 

0.871 

(0.586-

1.295) 0.528 0.955 

1.032 

(0.777-

1.372) 0.827 0.990 

0.964 
(0.648-
1.433) 0.865 0.976 

0.906 
(0.63-
1.305) 0.610 0.973 

LMF_Chol_HDL 

1.121 

(0.738-

1.703) 0.621 0.955 

0.875 

(0.665-

1.152) 0.342 0.990 

1.242 
(0.776-
1.99) 0.411 0.976 

1.209 
(0.841-
1.739) 0.320 0.973 

LMF_FreeChol_VLDL 

0.602 

(0.399-0.91) 0.023 0.301 

0.976 

(0.735-

1.297) 0.868 0.990 

1.221 
(0.781-
1.909) 0.404 0.976 

1.141 
(0.791-
1.646) 0.490 0.973 

LMF_FreeChol_IDL 

0.873 

(0.598-

1.274) 0.520 0.955 

0.938 

(0.708-

1.244) 0.659 0.990 

0.976 
(0.659-
1.446) 0.910 0.985 

1.277 
(0.921-
1.772) 0.150 0.973 

LMF_FreeChol_LDL 

1.29 (0.843-

1.971) 0.283 0.872 

1.01 

(0.755-

1.35) 0.947 0.990 

0.991 
(0.649-
1.515) 0.970 0.992 

1.106 
(0.764-
1.601) 0.607 0.973 

LMF_FreeChol_HDL 

1.352 

(0.863-2.12) 0.226 0.822 

0.905 

(0.688-

1.191) 0.479 0.990 

1.606 
(0.977-
2.639) 0.088 0.976 

1.308 
(0.893-
1.914) 0.179 0.973 

LMF_Phosp_VLDL 

0.525 

(0.339-

0.814) 0.006 0.301 

0.858 

(0.639-

1.151) 0.307 0.990 

1.159 
(0.735-
1.827) 0.548 0.976 

1.126 
(0.778-
1.628) 0.540 0.973 

LMF_Phosp_IDL 

0.799 

(0.528-1.21) 0.331 0.920 

0.918 

(0.69-

1.223) 0.561 0.990 

0.898 
(0.582-
1.386) 0.660 0.976 

1.05 
(0.75-
1.47) 0.783 0.979 

LMF_Phosp_LDL 

1.068 

(0.714-

1.598) 0.767 0.955 

1.11 

(0.825-

1.493) 0.491 0.990 

0.907 
(0.597-
1.377) 0.668 0.976 

0.965 
(0.668-
1.394) 0.855 0.979 

LMF_Phosp_HDL 

1.023 

(0.662-

1.581) 0.926 0.987 

1.019 

(0.779-

1.333) 0.894 0.990 

0.932 
(0.581-
1.494) 0.790 0.976 

1.216 
(0.849-
1.742) 0.302 0.973 

LMF_ApoA1_HDL 

0.851 

(0.575-

1.261) 0.452 0.955 

0.918 

(0.691-

1.218) 0.553 0.990 

1.037 
(0.691-
1.558) 0.871 0.976 

1.171 
(0.834-
1.645) 0.370 0.973 

LMF_ApoA2_HDL 

1.058 

(0.703-

1.592) 0.807 0.955 

0.947 

(0.713-

1.258) 0.709 0.990 

0.938 
(0.617-
1.427) 0.783 0.976 

1.249 
(0.883-
1.766) 0.222 0.973 

LMF_ApoB_VLDL 

0.597 (0.39-

0.914) 0.024 0.301 

0.905 

(0.688-

1.191) 0.478 0.990 

1.095 
(0.687-
1.747) 0.723 0.976 

1.044 
(0.724-
1.505) 0.822 0.979 

LMF_ApoB_IDL 

0.87 (0.591-

1.282) 0.516 0.955 

1.03 

(0.784-

1.354) 0.831 0.990 

0.917 
(0.603-
1.395) 0.708 0.976 

1.269 
(0.904-
1.78) 0.177 0.973 

LMF_ApoB_LDL 

1.054 

(0.709-

1.566) 0.811 0.955 

0.944 

(0.704-

1.265) 0.698 0.990 

0.918 
(0.601-
1.402) 0.714 0.976 

1.025 
(0.709-
1.483) 0.898 0.985 
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SubTrigl_VLDL-1 

0.727 

(0.468-

1.129) 0.186 0.772 

0.842 

(0.642-

1.106) 0.216 0.990 

1.113 
(0.716-
1.729) 0.657 0.976 

1.045 
(0.733-
1.49) 0.815 0.979 

SubTrigl_VLDL-2 

0.608 

(0.392-

0.945) 0.041 0.339 

0.839 

(0.632-

1.114) 0.224 0.990 

1.064 
(0.659-
1.718) 0.816 0.976 

0.986 
(0.68-
1.431) 0.944 0.985 

SubTrigl_VLDL-3 

0.643 

(0.406-1.02) 0.082 0.435 

1.012 

(0.762-

1.344) 0.935 0.990 

1.114 
(0.677-
1.834) 0.705 0.976 

1.042 
(0.719-
1.51) 0.836 0.979 

SubTrigl_VLDL-4 

0.602 

(0.372-

0.973) 0.047 0.339 

1.236 

(0.928-

1.648) 0.146 0.990 

1.159 
(0.735-
1.828) 0.571 0.976 

1.06 
(0.755-
1.488) 0.741 0.979 

SubTrigl_VLDL-5 

0.734 

(0.478-

1.126) 0.190 0.772 

1.194 

(0.902-

1.579) 0.214 0.990 

1.359 
(0.922-
2.002) 0.165 0.976 

0.952 
(0.691-
1.312) 0.768 0.979 

SubChol_VLDL-1 

0.704 

(0.464-

1.068) 0.121 0.573 

0.921 

(0.691-

1.228) 0.575 0.990 

1.101 
(0.712-
1.704) 0.684 0.976 

1.186 
(0.824-
1.706) 0.368 0.973 

SubChol_VLDL-2 

0.554 

(0.366-

0.838) 0.009 0.301 

0.914 

(0.692-

1.207) 0.524 0.990 

1.018 
(0.626-
1.654) 0.949 0.985 

1.075 
(0.746-
1.55) 0.708 0.979 

SubChol_VLDL-3 

0.631 

(0.406-

0.981) 0.055 0.339 

0.989 

(0.745-

1.314) 0.942 0.990 

1.119 
(0.707-
1.771) 0.657 0.976 

1.224 
(0.857-
1.747) 0.278 0.973 

SubChol_VLDL-4 

0.667 

(0.453-

0.982) 0.056 0.339 

1.119 

(0.849-

1.475) 0.425 0.990 

0.966 
(0.647-
1.441) 0.873 0.976 

1.085 
(0.779-
1.511) 0.636 0.973 

SubChol_VLDL-5 

0.841 

(0.556-

1.271) 0.448 0.955 

1.051 

(0.793-

1.392) 0.733 0.990 

0.775 
(0.483-
1.243) 0.327 0.976 

0.885 
(0.618-
1.266) 0.518 0.973 

SubFreeChol_VLDL-1 

0.57 (0.363-

0.896) 0.020 0.301 

1.006 

(0.76-

1.331) 0.965 0.990 

1.025 
(0.647-
1.623) 0.924 0.985 

1.02 
(0.72-
1.445) 0.912 0.985 

SubFreeChol_VLDL-2 

0.676 

(0.443-

1.031) 0.090 0.446 

0.972 

(0.735-

1.285) 0.842 0.990 

1.08 
(0.683-
1.71) 0.764 0.976 

1.1 
(0.773-
1.564) 0.607 0.973 

SubFreeChol_VLDL-3 

0.661 

(0.425-

1.029) 0.084 0.435 

1.006 

(0.754-

1.343) 0.969 0.990 

1.156 
(0.715-
1.87) 0.582 0.976 

1.277 
(0.882-
1.85) 0.208 0.973 

SubFreeChol_VLDL-4 

0.777 

(0.538-

1.124) 0.218 0.822 

1.069 

(0.814-

1.404) 0.631 0.990 

1.054 
(0.711-
1.563) 0.804 0.976 

1.236 
(0.89-
1.717) 0.212 0.973 

SubFreeChol_VLDL-5 

0.719 

(0.471-

1.097) 0.157 0.714 

0.986 

(0.742-

1.311) 0.925 0.990 

1.323 
(0.861-
2.034) 0.242 0.976 

0.897 
(0.641-
1.254) 0.533 0.973 

SubPhosp_VLDL-1 

0.63 (0.401-

0.989) 0.061 0.345 

0.898 

(0.677-

1.19) 0.455 0.990 

1.131 
(0.704-
1.816) 0.637 0.976 

1.13 
(0.781-
1.636) 0.530 0.973 

SubPhosp_VLDL-2 

0.501 

(0.323-

0.777) 0.004 0.301 

1.008 

(0.765-

1.328) 0.957 0.990 

1.125 
(0.664-
1.906) 0.691 0.976 

1.068 
(0.731-
1.561) 0.740 0.979 

SubPhosp_VLDL-3 

0.534 

(0.332-0.86) 0.014 0.301 

1.027 

(0.768-

1.372) 0.858 0.990 

1.059 
(0.645-
1.738) 0.838 0.976 

1.149 
(0.798-
1.653) 0.471 0.973 

SubPhosp_VLDL-4 

0.627 

(0.412-

0.952) 0.039 0.339 

1.179 

(0.878-

1.584) 0.272 0.990 

0.961 
(0.623-
1.484) 0.869 0.976 

1.043 
(0.737-
1.475) 0.817 0.979 

SubPhosp_VLDL-5 

0.74 (0.502-

1.091) 0.165 0.723 

1.058 

(0.797-

1.405) 0.698 0.990 

0.957 
(0.625-
1.467) 0.853 0.976 

0.862 
(0.614-
1.209) 0.403 0.973 

SubTrigl_LDL-1 

0.939 

(0.633-

1.392) 0.776 0.955 

0.962 

(0.721-

1.284) 0.794 0.990 

0.576 
(0.357-
0.927) 0.041 0.934 

1.017 
(0.716-
1.444) 0.929 0.985 

SubTrigl_LDL-2 

1.007 

(0.668-

1.518) 0.977 0.997 

1.069 

(0.81-1.41) 0.638 0.990 

0.567 
(0.353-
0.912) 0.039 0.934 

1.048 
(0.73-
1.504) 0.813 0.979 

SubTrigl_LDL-3 

1 (0.65-

1.538) 0.999 0.999 

0.832 

(0.631-

1.097) 0.187 0.990 

0.859 
(0.533-
1.383) 0.567 0.976 

1.105 
(0.774-
1.578) 0.609 0.973 

SubTrigl_LDL-4 

0.799 

(0.502-

1.272) 0.393 0.955 

0.866 

(0.661-

1.135) 0.294 0.990 

0.755 
(0.439-
1.297) 0.370 0.976 

0.998 
(0.694-
1.436) 0.991 0.991 

SubTrigl_LDL-5 

0.783 

(0.531-

1.154) 0.261 0.826 

0.787 

(0.589-

1.054) 0.102 0.990 

0.717 
(0.455-
1.131) 0.207 0.976 

1.095 
(0.788-
1.522) 0.603 0.973 

SubTrigl_LDL-6 

0.999 

(0.651-

1.531) 0.995 0.999 

0.962 

(0.732-

1.263) 0.779 0.990 

1.478 
(0.93-
2.35) 0.151 0.976 

1.075 
(0.752-
1.537) 0.704 0.979 

SubChol_LDL-1 

1.107 

(0.731-

1.676) 0.662 0.955 

0.934 

(0.717-

1.215) 0.609 0.990 

0.826 
(0.504-
1.351) 0.490 0.976 

1.07 
(0.752-
1.521) 0.719 0.979 

SubChol_LDL-2 

1.083 

(0.729-1.61) 0.716 0.955 

0.85 

(0.637-

1.136) 0.271 0.990 

0.953 
(0.616-
1.473) 0.841 0.976 

0.951 
(0.682-
1.325) 0.771 0.979 

SubChol_LDL-3 

1.081 

(0.695-1.68) 0.754 0.955 

0.971 

(0.743-

1.27) 0.833 0.990 

0.84 
(0.525-
1.343) 0.501 0.976 

0.926 
(0.633-
1.354) 0.703 0.979 

SubChol_LDL-4 

0.803 

(0.537-

1.201) 0.321 0.914 

0.933 

(0.698-

1.248) 0.642 0.990 

0.97 
(0.633-
1.484) 0.896 0.985 

0.934 
(0.664-
1.313) 0.702 0.979 

SubChol_LDL-5 

0.849 

(0.579-

1.246) 0.437 0.955 

0.97 (0.73-

1.289) 0.834 0.990 

0.819 
(0.56-
1.197) 0.335 0.976 

0.791 
(0.569-
1.099) 0.165 0.973 
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SubChol_LDL-6 

0.989 

(0.677-

1.445) 0.958 0.997 

1.156 

(0.882-

1.514) 0.295 0.990 

1.209 
(0.786-
1.86) 0.417 0.976 

1.136 
(0.809-
1.594) 0.484 0.973 

SubFreeChol_LDL-1 

1.159 

(0.775-

1.735) 0.512 0.955 

1.006 

(0.764-

1.323) 0.969 0.990 

0.816 
(0.508-
1.311) 0.458 0.976 

1.1 
(0.782-
1.548) 0.595 0.973 

SubFreeChol_LDL-2 

1.099 

(0.763-

1.583) 0.635 0.955 

0.913 

(0.688-

1.212) 0.530 0.990 

1.08 
(0.701-
1.665) 0.751 0.976 

0.993 
(0.717-
1.376) 0.967 0.985 

SubFreeChol_LDL-3 

1.385 (0.87-

2.205) 0.231 0.822 

0.906 

(0.693-

1.183) 0.467 0.990 

0.928 
(0.585-
1.471) 0.776 0.976 

1.009 
(0.699-
1.454) 0.965 0.985 

SubFreeChol_LDL-4 

0.94 (0.606-

1.457) 0.801 0.955 

0.907 

(0.677-

1.216) 0.515 0.990 

0.945 
(0.614-
1.455) 0.812 0.976 

0.894 
(0.625-
1.279) 0.553 0.973 

SubFreeChol_LDL-5 

0.919 

(0.621-1.36) 0.701 0.955 

0.913 

(0.688-

1.211) 0.529 0.990 

0.851 
(0.588-
1.231) 0.424 0.976 

0.901 
(0.657-
1.237) 0.528 0.973 

SubFreeChol_LDL-6 

1.067 

(0.703-

1.619) 0.778 0.955 

0.977 

(0.735-

1.299) 0.875 0.990 

0.901 
(0.598-
1.356) 0.640 0.976 

0.918 
(0.65-
1.298) 0.640 0.973 

SubPhosp_LDL-1 

1.095 

(0.723-1.66) 0.697 0.955 

0.944 

(0.722-

1.235) 0.677 0.990 

0.795 
(0.483-
1.307) 0.413 0.976 

1.077 
(0.759-
1.529) 0.691 0.979 

SubPhosp_LDL-2 

1.074 

(0.713-

1.618) 0.756 0.955 

0.979 

(0.743-

1.29) 0.882 0.990 

0.743 
(0.457-
1.207) 0.276 0.976 

1.007 
(0.714-
1.421) 0.968 0.985 

SubPhosp_LDL-3 

1.266 

(0.788-

2.033) 0.381 0.955 

0.945 

(0.723-

1.235) 0.677 0.990 

0.793 
(0.502-
1.253) 0.354 0.976 

1.015 
(0.696-
1.481) 0.941 0.985 

SubPhosp_LDL-4 

0.872 

(0.568-

1.339) 0.566 0.955 

0.852 

(0.627-

1.158) 0.302 0.990 

1.025 
(0.64-
1.643) 0.924 0.985 

1.071 
(0.737-
1.555) 0.729 0.979 

SubPhosp_LDL-5 

0.872 

(0.586-

1.297) 0.535 0.955 

0.836 

(0.626-

1.116) 0.224 0.990 

0.804 
(0.542-
1.193) 0.314 0.976 

0.84 
(0.602-
1.172) 0.311 0.973 

SubPhosp_LDL-6 

0.978 

(0.656-

1.456) 0.917 0.987 

1.133 

(0.855-1.5) 0.386 0.990 

1.286 
(0.819-
2.02) 0.311 0.976 

1.144 
(0.806-
1.622) 0.469 0.973 

SubApoB_LDL-1 

1.092 

(0.728-

1.638) 0.698 0.955 

0.964 

(0.726-

1.28) 0.801 0.990 

0.864 
(0.525-
1.421) 0.612 0.976 

1.161 
(0.819-
1.646) 0.420 0.973 

SubApoB_LDL-2 

1.023 

(0.687-

1.525) 0.917 0.987 

0.917 

(0.688-

1.223) 0.558 0.990 

0.764 
(0.468-
1.249) 0.335 0.976 

0.956 
(0.681-
1.344) 0.802 0.979 

SubApoB_LDL-3 

1.236 (0.8-

1.912) 0.389 0.955 

0.875 

(0.668-

1.146) 0.330 0.990 

0.726 
(0.458-
1.149) 0.193 0.976 

1.034 
(0.711-
1.502) 0.867 0.979 

SubApoB_LDL-4 

0.769 

(0.505-

1.171) 0.256 0.826 

0.873 

(0.646-

1.18) 0.376 0.990 

1.192 
(0.743-
1.91) 0.506 0.976 

1.093 
(0.764-
1.563) 0.637 0.973 

SubApoB_LDL-5 

0.837 (0.57-

1.228) 0.400 0.955 

0.765 

(0.567-

1.032) 0.076 0.990 

0.762 
(0.519-
1.12) 0.190 0.976 

0.846 
(0.606-
1.182) 0.335 0.973 

SubApoB_LDL-6 

0.971 

(0.659-

1.428) 0.887 0.982 

1.01 

(0.766-

1.331) 0.944 0.990 

1.311 
(0.83-
2.069) 0.274 0.976 

1.197 
(0.846-
1.694) 0.332 0.973 

SubTrigl_HDL-1 

0.88 (0.594-

1.302) 0.562 0.955 

0.996 

(0.752-

1.318) 0.975 0.990 

0.887 
(0.54-
1.457) 0.683 0.976 

1.193 
(0.857-
1.661) 0.307 0.973 

SubTrigl_HDL-2 

0.773 

(0.535-

1.116) 0.204 0.802 

0.87 

(0.652-

1.162) 0.347 0.990 

0.821 
(0.533-
1.264) 0.426 0.976 

1.023 
(0.747-
1.401) 0.889 0.985 

SubTrigl_HDL-3 

0.626 (0.43-

0.912) 0.019 0.301 

0.877 

(0.668-

1.15) 0.340 0.990 

0.737 
(0.481-
1.13) 0.220 0.976 

1.003 
(0.736-
1.367) 0.986 0.991 

SubTrigl_HDL-4 

0.656 

(0.449-

0.959) 0.037 0.339 

0.874 

(0.659-

1.158) 0.344 0.990 

0.634 
(0.429-
0.937) 0.040 0.934 

0.823 
(0.59-
1.147) 0.267 0.973 

SubChol_HDL-1 

0.992 

(0.661-

1.487) 0.971 0.997 

0.972 

(0.742-

1.275) 0.839 0.990 

1.497 
(0.909-
2.465) 0.176 0.976 

1.315 
(0.936-
1.848) 0.130 0.973 

SubChol_HDL-2 

1.094 

(0.767-1.56) 0.658 0.955 

1.386 

(1.026-

1.872) 0.028 0.990 

1.207 
(0.75-
1.943) 0.523 0.976 

1.276 
(0.929-
1.754) 0.141 0.973 

SubChol_HDL-3 

1.149 

(0.743-

1.776) 0.570 0.955 

0.915 

(0.699-

1.198) 0.518 0.990 

0.983 
(0.613-
1.577) 0.950 0.985 

1.265 
(0.879-
1.821) 0.215 0.973 

SubChol_HDL-4 

1.095 

(0.748-

1.602) 0.672 0.955 

0.771 

(0.57-

1.042) 0.074 0.990 

1.112 
(0.754-
1.642) 0.613 0.976 

1.165 
(0.836-
1.624) 0.409 0.973 

SubFreeChol_HDL-1 

1.148 

(0.735-

1.793) 0.579 0.955 

1.009 

(0.761-

1.338) 0.951 0.990 

1.234 
(0.767-
1.985) 0.420 0.976 

1.252 
(0.858-
1.828) 0.257 0.973 

SubFreeChol_HDL-2 

1.273 (0.84-

1.928) 0.295 0.884 

1.182 

(0.902-

1.548) 0.219 0.990 

0.997 
(0.639-
1.556) 0.991 0.992 

1.405 
(0.973-
2.027) 0.073 0.973 
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SubFreeChol_HDL-3 

1.144 (0.72-

1.819) 0.625 0.955 

0.885 

(0.664-

1.18) 0.406 0.990 

0.87 
(0.569-
1.331) 0.578 0.976 

1.16 
(0.82-
1.642) 0.411 0.973 

SubFreeChol_HDL-4 

1.077 

(0.707-1.64) 0.757 0.955 

0.815 

(0.615-

1.081) 0.156 0.990 

1.107 
(0.758-
1.616) 0.628 0.976 

1.097 
(0.797-
1.508) 0.581 0.973 

SubPhosp_HDL-1 

0.994 

(0.659-1.5) 0.980 0.997 

1.058 

(0.806-

1.388) 0.686 0.990 

1.396 
(0.832-
2.342) 0.290 0.976 

1.367 
(0.979-
1.91) 0.076 0.973 

SubPhosp_HDL-2 

1.084 

(0.736-

1.596) 0.719 0.955 

1.117 

(0.852-

1.463) 0.423 0.990 

1.024 
(0.617-
1.702) 0.936 0.985 

1.292 
(0.943-
1.769) 0.121 0.973 

SubPhosp_HDL-3 

0.964 

(0.618-

1.502) 0.882 0.982 

0.861 

(0.654-

1.135) 0.283 0.990 

0.738 
(0.441-
1.236) 0.297 0.976 

1.224 
(0.845-
1.772) 0.300 0.973 

SubPhosp_HDL-4 

0.927 (0.6-

1.432) 0.758 0.955 

0.799 (0.6-

1.063) 0.115 0.990 

0.927 
(0.576-
1.493) 0.776 0.976 

1.042 
(0.719-
1.509) 0.839 0.979 

SubApoA1_HDL-1 

0.96 (0.682-

1.352) 0.828 0.963 

1.024 

(0.771-

1.36) 0.872 0.990 

1.072 
(0.714-
1.611) 0.762 0.976 

1.113 
(0.82-
1.509) 0.504 0.973 

SubApoA1_HDL-2 

0.935 

(0.606-

1.442) 0.782 0.955 

1.26 

(0.956-

1.661) 0.095 0.990 

0.997 
(0.646-
1.538) 0.989 0.992 

1.207 
(0.852-
1.711) 0.306 0.973 

SubApoA1_HDL-3 

0.94 (0.612-

1.444) 0.796 0.955 

0.937 

(0.724-

1.212) 0.620 0.990 

1.095 
(0.696-
1.722) 0.717 0.976 

1.269 
(0.888-
1.812) 0.200 0.973 

SubApoA1_HDL-4 

0.904 

(0.604-

1.353) 0.649 0.955 

1.002 

(0.757-

1.325) 0.990 0.990 

1.089 
(0.734-
1.617) 0.689 0.976 

1.018 
(0.712-
1.455) 0.925 0.985 

SubApoA2_HDL-1 

0.942 

(0.603-1.47) 0.813 0.955 

1.012 

(0.762-

1.342) 0.937 0.990 

1.151 
(0.713-
1.859) 0.606 0.976 

1.38 
(0.978-
1.946) 0.044 0.973 

SubApoA2_HDL-2 

0.96 (0.624-

1.475) 0.865 0.982 

1.237 

(0.935-

1.636) 0.135 0.990 

1.056 
(0.666-
1.674) 0.832 0.976 

1.419 
(1.004-
2.006) 0.042 0.973 

SubApoA2_HDL-3 

0.918 

(0.605-

1.394) 0.716 0.955 

0.892 

(0.675-

1.177) 0.419 0.990 

0.774 
(0.491-
1.22) 0.311 0.976 

1.277 
(0.899-
1.815) 0.184 0.973 

SubApoA2_HDL-4 

1.112 

(0.747-

1.656) 0.631 0.955 

0.914 

(0.692-

1.208) 0.530 0.990 

1.026 
(0.703-
1.497) 0.900 0.985 

1.108 
(0.796-
1.542) 0.560 0.973 
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ABSTRACT 

BACKGROUND: Colorectal cancer (CRC), one of the most prevalent and deadly cancers 

worldwide, generally evolves from adenomatous polyps. The understanding of the molecular 

mechanisms underlying this pathological evolution is crucial for diagnostic and prognostic 

purposes. Integrative systems biology approaches offer an optimal point of view to analyze 

CRC and polyp patients. 

METHODS: Here we present the study of the association networks constructed from a 

publicly available array of 113 serum metabolites measured on a cohort of 234 subjects from 

three groups (66 CRC patients, 76 polyp patients, and 92 healthy controls).  The concentrations 

of serum metabolites were obtained via targeted liquid chromatography-tandem mass 

spectrometry. 

RESULTS: In terms of architecture, topology, and connectivity, the metabolite-metabolite 

association network of CRC patients appears to be completely different with respect to polyp 

patients and healthy controls. The most relevant nodes in the CRC network are those related 

to energy metabolism. Interestingly, phenylalanine, tyrosine, and tryptophan metabolism are 

found to be involved in both CRC and polyposis. 

CONCLUSIONS: Our results demonstrate that the characterization of metabolite–metabolite 

association networks is a promising and powerful tool to investigate molecular aspects of 

CRC. 
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1. INTRODUCTION 

Colorectal cancer is the third most commonly diagnosed cancer and the second leading 

cause of cancer-related death worldwide1. The major risk factors for developing CRC include 

increased age, male sex, inflammatory bowel disease, alcohol intake, smoking, obesity, a diet 

rich in red meat, and family history2,3. Early-stage diagnosis is associated with a good 

prognosis (~90% 5-year survival), however, survival declines substantially when the tumor is 

identified later and is already metastasized4. In its early stages, CRC remains often 

asymptomatic; thus, organized screening programs aimed at increasing CRC early diagnosis 

are needed to decrease its morbidity and mortality3. Currently, occult blood in the feces is the 

most commonly used marker in clinical practice; however, it lacks the sensitivity and 

specificity needed for unambiguous early diagnosis5. Colonoscopy is currently recognized as 

the gold-standard diagnostic method for CRC: it offers high sensitivity, specificity, and 

accuracy; unfortunately, it is a costly and extremely invasive procedure6. Therefore, the 

development of new methodologies able to identify CRC with minimal invasiveness and high 

accuracy at an early stage is highly desirable. 

It is well known from the clinical literature that about 95% of CRC begin as colonic 

adenomatous polyps7. A series of still not completely characterized molecular alterations 

induce CRC growth. Broadly speaking, the development of CRC can be attributable to a 

complex multistep process, ignited by the growth of a benign polyp with the potential to evolve 

into an in-situ carcinoma by the accumulation of additional somatic mutations8,9. When 

detected, polyps’ excision and adequate treatment10 can prevent further tumor development. 

To develop therapeutic strategies able to prevent the transition from health epithelium to 

polyps to CRC it is necessary to fully understand the puzzle of the underlying biochemical 

mechanisms. The biochemistry of early carcinogenesis is controlled by an interplay between 

genomic susceptibility, metabolic reprogramming, and the local microenvironment. The 

development of adenomatous polyps probably passes through the impact of oxidative stress 

on the metabolic pathways involved in the renewal of the colon epithelium. The immune 

system also plays a role because chronic inflammation promotes cell proliferation and 

differentiation. Last, but not least, microbiota dysregulation may influence 

microenvironmental homeostasis altering the integrity of the colon mucosa8.  

Considering that all these entangled effects have an impact on the local and systemic 

patient metabolism, metabolomics represents a valid instrument to provide further insight into 

the CRC metabolic mechanisms. Indeed, metabolomics has already proved to be an excellent 

tool for biomedical investigations11–17, and it has been opportunely applied to the study of CRC 

adopting different analytical strategies and kind of samples5. To expand the vision from the 
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particular to the general, it is necessary to perform a further step considering the shape of the 

metabolite-metabolite association networks18. Changes in metabolite association patterns are 

associated with changes in the pathophysiological conditions, and the resulting networks can 

be compared across conditions under the postulate that the differences and commonalities 

observed in the parameters of the reconstructed networks19–23 faithfully mirror the reshape of 

the underlying biological networks.  

With this premise, we decided to apply a metabolite-metabolite association network 

approach (Figure 1) to the openly available data published by Zhu et al.24. In that study, the 

authors applied a mass spectrometry-based metabolic profiling approach to discover candidate 

biomarkers for CRC detection using human serum samples. The authors found a robust 

metabolic signature able to discriminate between healthy controls (CTR), CRC patients, and 

polyp patients (PP). From our analysis, it emerges that the network calculated on serum 

samples of CRC patients has a different architecture with respect to that of PP and CTR 

patients, while no relevant differences emerge comparing colon and rectus cancers. 

 

2. MATERIALS AND METHODS 

2.1. Dataset description  

We re-analyzed the metabolomics data set collected by Zhu et al.24. Data and sample 

information were downloaded from the UC San-Diego Metabolomics Workbench public 

repository25 (https://www.metabolomicsworkbench.org/) with the following Project ID 

number PR000226. For further details on the clinical samples, sample collection and 

preparation, Mass Spectrometry experiments, and metabolite annotation and quantification we 

refer the readers to the original paper24.  

 The original data set contains 113 metabolites measured using Mass Spectroscopy on 

n=234 serum samples from three different groups. Patients with colorectal cancer (CRC) 

which included patients with colon and rectal cancer, patient with polyposis (PP), and healthy 

controls (CTR). The patients enrolled were age- and gender-matched in each group.  

 We removed n = 8 outliers (see Section 2.2.1), leaving n=226 samples/subjects for 

analysis, (see Supplementary Material, Figure S1) divided into n=65 CRC patients (n1=35 

men, n2=30 women), n=74 PP patients (n1=35 men, n2=39 women), and n=87 CTR (n1=42 

men, n2=45 women).  

 The mean age ± standard deviation (SD) of each group is 58.4±13.3 yrs, 55.5±7.0 yrs, 

and 54.2±13.6 yrs, respectively. The n=65 CRC patients were also divided into n=39 colon 

cancer patients (n1=20 men, n2=19 women) and n=26 rectal cancer patients (n1=15 men, n2=11 

women), with a mean of age ± standard deviation (SD) of 58.7±14.2 yrs and 58.0±12.0 yrs, 

respectively. 
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2.2. Data pre-processing 

2.2.1. Data overview and normalization 

Outliers were determined as those samples/subjects falling outside the 95% 

confidence ellipses on a two-dimensional space reduced with Principal component analysis 

(PCA)26,27; a total of 8 patients (3.4%) (1 CRC patient, forming part of the rectal cancer sub-

group, 2 PP patients, and 5 CTR) were removed from the analysis (see Supplementary Material 

Figure 1S). 

Metabolites’ abundances were normalized using “RankNorm” function before 

analysis. The offset k=(3/8) default parameter, corresponding to the Blom’s transformation28, 

was used. This method applies the rank-based inverse normal transform (INT) in two-steps. 

Firstly, the observations were transformed into the scale of probabilities using the empirical 

cumulative distribution function (eCDF)29. Subsequently, the observations were transformed 

into Z-scores, using the probit function30. 

 

2.3. Univariate analysis 

Univariate Student’s t-test31 was used to compare normalized metabolite 

concentrations between patient groups (CRC vs CTR, PP vs CTR, and CRC vs PP). 

Benjamini- Hochberg method was used to correct for multiple testing32 and FDR adjusted P-

values < 0.05 were considered statistically significant. Variables were transformed by taking 

the square root of the values to correct for heteroscedasticity33,34   

 

2.4. Multivariate analysis 

Principal Component Analysis (PCA)26,27 was applied to data scaled to unit variance 

to explore data patterns.  

The Random Forest (RF) algorithm35–37 was employed for pairwise classification 

comparing CRC and healthy patients, CRC and PP patients, and PP and CTR patients. To 

reduce the potential bias due to an unbalanced number of subjects/samples per group, we 

imposed a number of k=100 resampling, retaining 85% of data for each group to be compared. 

Accuracy, sensitivity, specificity, and corresponding 95% CI were calculated according to the 

standard definitions and given as average over the 100 resamplings. The model quality 

statistics (accuracy, sensitivity, specificity, and the area under the ROC, AUROC) were 

calculated according to standard definitions. The significance of the model and the importance 

metrics were determined with a permutation-test using k=1000 times permutations. In 

particular, the permutation-test yields a null distribution Dperm of permutated model quality 

measures. The significance of each measure was calculated as a P-value by comparing the 
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value model0 obtained from the original and non-permuted data with the values model1, 

model2, ..., modelK obtained from the k-times permutation-test. The P-value for a specific 

model measure is calculated as follows: 

𝑃 − 𝑣𝑎𝑙𝑢𝑒(𝑚𝑒𝑎𝑠𝑢𝑟𝑒) =
1 + (|𝐷𝑝𝑒𝑟𝑚|𝑚𝑒𝑎𝑠𝑢𝑟𝑒| > |𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑚𝑜𝑑𝑒𝑙0|)

𝑘
 (1) 

 

2.5. Network analysis 

2.5.1. Reconstruction of the metabolite association network 

The Probabilistic Context Likelihood of Relatedness based on Correlation (PCLRC)38 

algorithm was used to infer metabolite-metabolite association networks. In order to remove 

non-significant background correlations, this algorithm provides a robust evaluation of the 

correlation using a resampling strategy in combination with the previously published Context 

Likelihood of Relatedness (CLR)39 approach.  Spearman correlation was used as a measure of 

association between metabolites40. The PCLRC algorithm outputs a probability matrix P 

giving the likelihood pij for each Spearman correlation rij between metabolites i and j. A 

detailed description of the PCLRC approach is provided in the Supplementary Methods 

(Section 1). 

 

2.5.2. Pathway enrichment analysis  

Pathway enrichment analysis on the set of statistically differential connected 

metabolites obtained comparing CRC vs CTR and PP vs CTR was performed using the tool 

available on MetaboAnalyst 4.041 (www.metaboanalyst.ca), implementing a hypergeometric 

test. The pathway impact score is calculated by this tool as the sum of the importance measures 

of the matched metabolites normalized by the sum of the importance measures of all 

metabolites in each pathway. Only enriched pathways with an impact score > 0.01 were 

considered.  

 

2.5.3. Measures for network topology 

Network topology and node (metabolite) characteristics were evaluated using several 

standard metrics in addition to connectivity (node degree). We used Average Shortest Path 

Length, Betweenness Centrality, Closeness Centrality, Clustering Coefficient, Degree, 

Eccentricity, Neighborhood Connectivity, Radiality, Stress, and Topological Coefficient. 

These measures were calculated using Network Analyzer42, a Java plugin available for the 

Cytoscape platform43.  A brief overview of the measures is given in the Supplementary 

Methods (Section 2). 

 

2.6. Software 



Results | 253 
 
 

 

Calculations were performed using R statistical software (version 3.3.2). The R 

implementation of PCRLC algorithm and the code to perform differential connectivity 

analysis are available at the following link: semantics.systemsbiology.nl. The RNOmi R 

package44 was used to normalize metabolic abundance. To generate RF-classification models, 

the “randomForest” function, implemented in the R package Random Forest45, was used to 

grow a decision forest composed of 1000 trees, using default parameters. To estimate the 

significance of importance metrics for the RF models by 1000-times permuting the response 

variable, the “rp.importance” function, implemented in the R package rfPermute, was used.  

The network visualization and the estimation of network topology and statistics were 

performed using Cytoscape platform (version 3.8.2)43, integrated with the NetworkAnalyzer 

plugin42. 

 

3. RESULTS 

3.1. Exploratory analysis of serum metabolomic profiles of CRC, polyposis, and healthy 

patients 

To analyze comprehensively the metabolic profiles of the subjects from the three 

analyzed groups (CRC, PP, and CTR patients), a Principal Component Analysis (PCA) model 

was performed on the n=226 serum samples.  

The PCA score plot (Figure 2a) shows that the CRC, PP patients, and CTR subjects 

are not clearly separated, suggesting that metabolic differences are too subtle to be resolved 

using an unsupervised multivariate approach. 

Moreover, to evaluate the metabolic differences among the three groups, a univariate 

Student’s t-test was performed on normalized metabolite concentration. As reported in Table 

1, 24 metabolites showed statistically significant (FDR adjusted P-value < 0.05) differences 

comparing CRC with CTR subjects. Instead, no significantly different metabolites were found 

comparing PP with CTR subjects. 23 metabolites showed statistically significant (FDR 

adjusted P-value < 0.05) differences comparing CRC with PP subjects (Table 1). 

 

3.2. Classification of CRC, polyposis, and healthy patients 

We used Random Forest classification to investigate whether the metabolomic profiles 

could be used to discriminate in a predictive way CRC, PP patients, and CTR subjects. 

Classification results are given in Table 2. Overall, we obtained good classification models to 

discriminate between CRC patients and healthy control (78.2% mean accuracy) (Figure 2b) 

and between CRC patients and PP patients (79.5% mean accuracy) (Figure 2c). A weaker 

predictive model (62.2% mean accuracy) (Figure 2d) was obtained for the discrimination of 

http://semantics.systemsbiology.nl/
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CTR subjects and PP patients. Hippuric acid, malonic acid/3-hydroxybutyric acid, linolenic 

acid, histidine, glycochenodeoxycholate, adenylsuccinate, phosphoenolpyruvic acid (PEP), 

glyceraldehyde, fructose 1,6 bisphosphate/ fructose 2,6 bisphosphate (F16BP/F26BP), 

linolenic acid, maleic acid, adipic acid, glycocholate, and gamma-aminobutyrate are the most 

relevant and significant variables in the model discriminating CRC with respect to CTR 

(Figure S3a). PEP, adenosine, glyceraldehyde, methionine, hippuric acid, 2-deoxyuridine, 

linolenic acid, creatinine, xanthurenate, linoleic acid, uridine, glycocholate, aspartic acid, 

glycochenodeoxycholate, dimethylglycine, adipic acid, glutaric acid, lysine, and histidine are 

the metabolites that contribute significantly in the discrimination between CRC and PP 

(Figure S3b). Only a few variables, namely F16BP/F26BP, adenosine, tryptophan, 

xanthurenate, salicylurate, G16BP, oxaloacetate, glyceraldehyde, and histidine, significantly 

discriminate PP and CTR subjects. Taken together these results indicate the presence of a 

strong metabolic signature specific to CRC patients and a weaker signature specific to 

polyposis (Figure S3c). 

 

3.1. Analysis of metabolite-metabolite association networks specific to colorectal cancer, 

polyposis, and healthy subjects 

The metabolite-metabolite association networks of CRC, PP, and CTR patients are 

given in Figure 3a-c, respectively. Comparing the three metabolic structures, we observed 

that the CRC-specific network has a different topology than polyposis and healthy control-

specific networks. In particular, the CRC network (Figure 3a) tends to be poorly connected 

but establishes robust connections (|rij|>0.6) between glucose, lactate, oxalic acid, aconitate, 

citraconic acid, leucine/isoleucine, valine, and guanidinoacetate. In contrast, the polyposis 

(Figure 3b) and the healthy control networks (Figure 3c) are more interconnected, showing a 

very similar topology. 

 

3.1. Comparison of the topological properties of metabolite-metabolite association 

network  

To compare comprehensively CRC, PP, and CTR metabolite-metabolite association 

networks, we examined the topological and statistical network parameters via PCA (Figure 

4). Analyzing the PCA biplot, the network specific to the healthy control and the polyposis 

patients are characterized by different Topological Coefficient and Eccentricity. This means 

that the nodes in the two networks tend to have different shared neighbors. Eccentricity is a 

measure of centrality thus indicating the importance of a node (i.e. metabolite) in the networks 

and in this case the two networks tend to have different important nodes. The CRC network 

differs from the PP and CTR network on node characteristics like Betweenness, Centrality, 

and Average Shortest Path Length, which describe how the different nodes, i.e. metabolites, 
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are interconnected reflecting the low connectedness of the CRC network. Moreover, the 

metabolite-metabolite association networks for the two CRC sub-groups (colon and rectal 

cancer) show no differences in terms of topological parameters (Supplementary Material 

Figure S3). 

 

3.1. Differential Connectivity analysis  

To quantify the difference in metabolite association patterns and to highlight possible 

underlying metabolic differences within the three groups as well as within the two CRC sub-

groups (colon and rectal cancer), a differential connectivity analysis was performed comparing 

the CRC and the polyposis networks against the control (healthy) network, the CRC against 

polyposis, and the colon cancer against rectal cancer: results are shown in Figure 5. 

 We observed a large number of metabolites (amino acids and metabolites involved in 

carbohydrates metabolism) that are differentially connected in the CRC and CTR networks 

(Figure 5a) and in the CRC and PP networks (Figure 5b).  In contrast, we observed a limited 

number of differentially connected metabolites when comparing the CTR and the PP networks 

(Figure 5c), in complementary agreement with the Random Forest predictive models (Table 

1).  When comparing the networks of the two sub-groups of colon and rectal cancer, we 

observed differential connectivity only for 4-pyridoxic acid, L-kynurenine, and phenylalanine 

(Figure 4(d)), which indicates similarity among the two networks. 

Metabolite pathway enrichment analysis was performed on the set of statistically 

differential metabolites found comparing CRC vs CTR, PP vs CTR group: results are shown 

in Figure 6. We found a total of 22 unique enriched pathways (impact score > 0.01) in CRC 

compared with CTR network and in PP compared with CTR network. The most impacted and 

differential enriched pathways are: i) the phenylalanine, tyrosine, and tryptophan biosynthesis 

and phenylalanine metabolism in both CRC and PP compared to the CTR group, ii) the 

synthesis and degradation of ketone bodies in polyposis compared to CTR, and iii) the glycine, 

serine, and threonine metabolism in CRC compared to CTR. Moreover, the aminoacyl−tRNA 

biosynthesis pathway plays a statistically significant role (FDR adjusted P-value < 0.05) with 

a moderate impact position in CRC with respect to CTR. 

 

4. DISCUSSION 

Colorectal carcinomas principally evolve from adenomatous polyps. The adenoma–

carcinoma sequence is a central tenet for the early diagnosis and prevention of CRC. 

Fortunately, more than 90% of adenomas do not progress to cancer; however, it is currently 

not possible to reliably identify those ones that will progress and those not, thus the complete 
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resection of polyps during colonoscopy represents the only available option to eliminate the 

risk of cancer derived from that adenomas46. Malignant tumors are characterized by peculiar 

metabolic alterations such as increased gluconeogenesis, glycolysis and fat mobilization, and 

decreased protein synthesis. These alterations as well as the individual immune-metabolic 

response induced by the presence of cancer constitute the characteristic metabolic signature of 

CRC patients24,47. In the analyses here proposed, we present an evaluation of the serum 

metabolomic profiles of CRC and PP patients with respect to healthy controls using a 

metabolite–metabolite association networks approach to investigate and explore the existence 

of molecular mechanisms underlying these different clinical profiles. 

Supervised balanced RF models show good discriminations for the comparisons 

between CRC and CTR and between CRC and PP obtaining an AUC of 0.875 and of 0.871 

respectively. Conversely, PP and CTR present only slight differences (AUC of 0.661). Despite 

the different statistical approaches employed, our results are in line with those reported in the 

original publication of Zhu and coauthors24. These data confirm that CRC patients develop 

systemic metabolic alterations that are not present, not only in healthy controls but also in PP 

patients. 

We compared the metabolite-metabolite association networks of CRC, PP, and CTR 

to explore the magnitude, topology, and architecture of metabolite connections and their 

variability. The rationale of this systems-based approach is that metabolites behave in an 

orchestrated fashion; perturbations of the systems induced by different pathophysiological 

conditions cause modifications in the relationships among metabolites which are reflected not 

only in their levels but also in their connectivity patterns22.  

From our analysis, it emerges that the network calculated on serum samples of CRC 

patients has an architecture completely different from the ones of PP and CTR, whereas no 

relevant difference emerges comparing colon and rectus cancers. The CRC network is 

characterized by a relatively low number of strong connections. This difference is corroborated 

also by the differential connectivity analysis and by the analysis of the topological parameters: 

CRC differs from PP and CTR for betweenness, centrality, average shortest path length, and 

for the number of differential connections reflecting the less interconnection of this network. 

Of note, nodes present in the CRC network are all directly or indirectly related to the different 

pathways involved in the energetic metabolism. Cancer cells need to meet a high energy 

demand to support cell proliferation and migration, thus they acquire molecular substrates and 

energy through unusual metabolic pathways. This need induces a profound rewiring of their 

metabolic network that extends beyond the Warburg effect and alterations of individual 

metabolic flux48,49.  

We can speculate that the defragmentation of the CRC network could be the result of 

the multiple activations of several metabolic pathways and that these profound alterations are 
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reflected at a systemic level in the sera of CRC patients. On the other hand, PP and CTR seem 

to have a similar architecture with more interconnections. However, they are characterized by 

different topological coefficients and eccentricity; this means that the same node (metabolite) 

in the two networks has different importance and is connected with diverse metabolites. 

Pathway analysis of the differentially connected metabolites reveals the involvement 

of phenylalanine, tyrosine, and tryptophan metabolism in both colorectal cancer and polyposis.  

Tryptophan and phenylalanine are essential amino acids: tryptophan metabolism is linked to 

the production of serotonin while phenylalanine is required for the production of tyrosine 

which is catalyzed by phenylalanine hydroxylase. It has been shown that phenylalanine 

hydroxylase activity can be altered in inflammation or malignancy50,51. Tyrosine is converted 

into several metabolites, including L-DOPA, pyruvate, fumarate, and phenol, the latter 

conversion is mediated by the enzyme tyrosine phenol-lyase (β-tyrosinase)52. Alterations in 

the profiles of these metabolites have been reported in colorectal cancer53 and other cancer 

types54,55 but, to the best of our knowledge, alterations in these pathways have never been 

reported in association with polyposis. 

The landscape of metabolic alterations associated with polyposis appears to be more 

heterogenous than the ones associated with colorectal cancer. We observed the involvement 

of glycolysis and glucogenesis and glycine, serine, and threonine metabolism as a signature 

for polyposis, together with fructose and mannose metabolism. However, none of these 

alterations are statistically significant after FDR correction.  

The alteration of fructose and mannose metabolism is of particular interest since a 

previous article demonstrated that higher levels of D-Mannose are associated with increased 

risks of PP and CRC56. Mannose is a monosaccharide that is a key metabolite in human 

metabolism, involved in the glycosylation of proteins57: mannose and glucose are involved in 

the production of mannose-6-phosphate, which is then converted to mannose-1-phosphate and 

guanosine diphosphate mannose for the process of N-linked glycosylation58. Increased 

concentrations of mannose have been observed in metastatic breast cancer in comparison with 

localized early disease59 suggesting the altered anabolic requirements of cancer cells60,61 and 

incompletion of the glycosylation process62. 

 

5. CONCLUSIONS 

In this study we-reanalyzed a publicly available data set24 concerning a metabolomic 

investigation of blood metabolite profiles in patients with colorectal cancer, polyposis, and 

healthy controls. We expanded the original analysis by integrating classical univariate analysis 

of metabolite abundances with predictive multivariate modelling and the analysis of 
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metabolite-metabolite association patterns.  We observed that both colorectal cancer and 

polyposis possess specific metabolic signatures that distinguish them from healthy control 

profiles. In both cases, we observed deregulation of phenylalanine, tyrosine, and tryptophan 

metabolism. However, the metabolic landscape associated with polyposis appears to be more 

variegated than that of colorectal cancer, with several affected pathways, although these 

dysregulations are subtle, as indicated by the relatively weaker discriminating models between 

healthy and polyposis.  Noteworthy, metabolite network analysis indicates the involvement of 

mannose and mannose metabolism in polyposis, a new result not found in the original study, 

suggesting the need for follow-up studies in this direction. 
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FIGURES 

 

Figure 1. Study design. 

 

Figure 2. (a) Principal Component Analysis (PCA) model score plot (PC1 (13.4%) vs PC2 (8.0%) vs PC3 (7.3%)). 

Each dot represents a single metabolic profile colored by the different groups of patients: n=65 CRC patients 

(magenta dots), n=74 PP patients (green dots), and n=87 CTR patients (dark orange dots). Balanced Random Forest 

score plot and overall accuracy of the model discriminating: (b) n=55 randomly selected CRC (magenta dots) and 

n=55 randomly selected CTR patients (dark orange dots); (c) n =55 randomly selected CRC (magenta dots) and 

n=55 randomly selected PP patients (green dots); (d) n=62 randomly selected PP (green dots) and n=62 randomly 
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selected CTR patients (dark orange dots). 55 patients were randomly selected to guarantee unbiased RF predictive 

models. 

 

 

 

Figure 3. Metabolite-metabolite association network of (a) CRC patients; (b) PP patients; (c) CTR. Only the 

connections of statistically significant (Benjamini-Hochberg adjusted P-value ≤ 0.05) differentially connected 

metabolites are reported. Nodes are colored according to their mean of a normalized metabolite concentration (from 

light blue to red) and their dimension is proportional to the increasing metabolite-metabolite degree of connectivity. 

Edges represent correlation with |r| ≥ 0.6 and their transparency depends on the likelihood of the metabolic 

connections. 
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Figure 4. Principal component analysis (PCA) biplot performed on topological metabolite-metabolite association 

network parameter. PCA dots are colored according to the CRC (magenta dot), PP (green dot), and CTR (dark 

orange dot) group. PCA loadings represent the following network statistical parameters: Average Shortest Path 

Length, Betweenness Centrality, Closeness Centrality, Clustering Coefficient, Degree, Eccentricity, Neighborhood 

Connectivity, Radiality, Stress, and Topological Coefficient. 

 



Results | 265 
 
 

 

 

Figure 5. Differences in terms of connectivity in metabolite-metabolite association networks of (a) CRC and 

healthy control group, (b) CRC and PP group, (c) PP and CTR group, and (d) colon cancer sub-group and rectal 

cancer sub-group are reported against each specific node. Blue dots correspond to a no statistically significant 

metabolite and red dots correspond to a statistically significant metabolite. The threshold for significance of 

corrected P-values (using Benjamini-Hochberg correction) ≤ 0.05 was im-posed. 
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Figure 6. Pathway analysis plot according to the statistically differential connected metabolites (Benjamini-

Hochberg adjusted P-value ≤ 0.05) in (a) CRC compared with CTR, and (b) PP compared with CTR. Dots are 

colored according to the metabolic pathway impact score and their dimensions are proportional to their significance. 

Only enriched pathways with an impact score per cohort > 0.1 were considered. For each pathway, raw P-value, 

FDR adjusted P-value, and the impact score were also reported. 
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TABLES 

Table 1: Statistically significant (FDR adjusted P-value < 0.05) metabolic differences obtained using univariate 

Student’s t-test comparing CRC vs PP and CRC vs CTR). No significance (FDR adjusted P-value < 0.05) was 

observed comparing PP vs CTR. 

 

Metabolite CRC vs. PP CRC vs. CTR 

1-Methyladenosine  > 0.05 0.04 

2'-Deoxyuridine  > 0.05 0.003 

Adenylosuccinate  > 0.05 0.03 

Alanine  0.03 > 0.05 

Allantoin  > 0.05 0.005 

Alpha-Ketoglutaric Acid  0.01 0.01 

Aspartic Acid  0.01 0.01 

Biotin  0.01 > 0.05 

Cystathionine  > 0.05 0.01 

Dimethylglycine  0.002 0.01 

gama-Aminobutyrate  0.02 > 0.05 

Glutamic acid  0.03 0.03 

Glutamine  0.001 0.003 

Glyceraldehyde  0.0003 0.002 

Glycochenodeoxycholate  0.004 0.01 

Glycocholate  0.01 0.02 

Histidine  0.0002 0.00002 

Hydroxyproline/Aminolevulinate  > 0.05 0.04 

Hyppuric Acid  0.0009 0.004 

Kynorenate  > 0.05 0.01 

Linoleic Acid  0.01 > 0.05 

Linolenic Acid  0.0004 0.002 

Lysine  0.00007 0.0005 

Maleic Acid  > 0.05 0.01 

Margaric Acid  0.04 > 0.05 

Methionine  0.00007 0.0005 

N-AcetylGlycine  0.01 0.03 

Oxalic Acid  > 0.05 0.04 

PEP  0.002 0.04 

Urate  0.04 > 0.05 
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Uridine  0.0008 > 0.05 

Xanthurenate  0.02 > 0.05 

 

 

Table 2: Mean values of Accuracy. Specificity. Sensitivity. and Area under the curve (AUC) of RF models built 

comparing CRC and CTR patients. CRC and PP patients. and PP and CTR patients. 

 

 
Mean Accuracy % 

(95% CI) 

Mean Specificity % 

(95% CI) 

Mean Sensitivity 

% 

(95% CI) 

AUC 

(95% CI) 

CRC vs CTR 

groups 
78.2 (77.8 – 78.5) 79.0 (78.6 – 79.3) 77.1 (76.6 – 77.7) 

0.875 (0.873 – 

0.877) 

CRC vs PP 

groups 
79.5 (79.2 – 79.9) 77.7 (77.1 – 78.3) 81.2 (70.8 – 81.7) 

0.871 (0.869 – 

0.872) 

PP vs CTR 

groups 
62.2 (61.8 – 62.6) 63.1 (62.3 – 63.8) 61.5 (60.9 – 63.8) 

0.661 (0.658 – 

0.665) 

 



Results | 269 
 
 

 

SUPPLEMENTARY METHODS 

1. Reconstruction of metabolite association network 

The Probabilistic Context Likelihood of Relatedness based on Correlation (PCLRC)1 

algorithm was used to infer metabolite-metabolite association networks. In order to remove 

non-significant background correlations, this algorithm provides a robust evaluation of the 

correlation using a resampling strategy in combination with the previously published Context 

Likelihood of Relatedness (CLR)2 approach. The PCLRC algorithm gives like output a 

probability matrix P showing the likelihood pij for each revealed Spearman correlation rij 

between two metabolites i and j. We considered correlation for which the probabilistic value 

pij was > 97% and we set to 0 all remaining correlations: 

𝑟𝑖𝑗 = {
𝑟𝑖𝑗      𝑖𝑓𝑝𝑖𝑗 ≥ 0.97

0        𝑖𝑓𝑝𝑖𝑗 < 0.97
 (2) 

The 0.97 probability threshold was chosen as the best compromise between network 

complexity (i.e. number of nodes) and interpretability. PCRLC was used with default 

parameters, with 1000 resampling iterations, and 75% of samples were kept in each iteration 

and the top 30% correlation retained for each iteration. 

 

2.6.1. Differential connectivity analysis 

Given a specific network a, the connectivity 𝜒𝑖
𝑎 for each metabolite i is described as: 

𝜒𝑖
𝑎 = (∑|𝑟𝑖𝑗|

𝐽

𝑗=1

) − 1 (3) 

Moreover, the differential connectivity ∆𝑖
𝑎,𝑏

 for each metabolite i among two networks 

a and b is calculated as follows: 

∆𝑖
𝑎,𝑏= 𝜒𝑖

𝑎 − 𝜒𝑖
𝑏 (4) 

The statistical significance of the differentially connected metabolites was determined 

by means of a permutation-test. In order to eliminate the relationship between variables and in 

order to maintain their variance, the columns of each input matrix were independently 

permuted defining a permutated matrix X(k). The overall network estimation is performed on 

permutated data matrix, generating the related Spearman correlation R(k) analysis. These 

estimations were subsequentially used to assess, for each metabolite contained in the 

permutated matrix X(k), the permutated connectivity (Equation (4)), and the permutated 

differential connectivity (Equation (5)): 
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𝜒𝑖,𝑘
𝑎 = (∑|𝑟𝑖𝑗

𝑘|

𝐽

𝑗=1

) − 1 (5) 

∆𝑖,𝑘
𝑎,𝑏= 𝜒𝑖,𝑘

𝑎 − 𝜒𝑖,𝑘
𝑏  (6) 

The permutation step was repeated k = 1000 yielding a null distribution Di of 

permutated differential connectivity values. The significance of a given differential 

connectivity value ∆𝑖
𝑎,𝑏

 (estimated from the non-permutated original data) was calculated as a 

P-value, according to the following formula: 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 =
1 + (|𝐷𝑖| > |∆𝑖

𝑎,𝑏|)

𝑘
 (7) 

All P-values were corrected for multiple test comparisons using the Benjamini-

Hochberg approach3. 

 

2. Measures for network topology 

Network topology and node (metabolite) characteristics were evaluated using several 

standard metrics in addition to connectivity (node degree). We used Average Shortest Path 

Length, Betweenness Centrality, Closeness Centrality, Clustering Coefficient, Degree, 

Eccentricity, Neighborhood Connectivity, Radiality, Stress, and Topological Coefficient. 

These measures were calculated using Network Analyzer4, a Java plugin available for the 

Cytoscape platform5.  A brief overview of the measure is given in the following. 

 The Average Shortest Path Length 6 , also known as the characteristic path length, 

indicates the expected distance between two connected nodes. The shortest path length is 

considered the shortest distance between two nodes i and j, denoted by L(i,j). The shortest path 

length distribution gives the number of node pairs (i,j) with L(i,j). = k for k = 1,2, …, and it 

indicates small-word properties of a network.  

The Eccentricity of a metabolite a is the maximum noninfinite length of the shortest path 

between a metabolite i and another metabolite in the network. 

 The Betweenness Centrality 𝐵𝑐𝑖  7 of a node i is calculated as follows: 

𝐵𝑐𝑖 = ∑
𝜎𝑠𝑖𝑗

𝜎𝑠𝑗
𝑠≠𝑖≠𝑗,

  (8) 

where s and j are nodes in the network different from node i, 𝜎𝑠𝑗 denotes the number of shortest 

paths from nodes s and j, and 𝜎𝑠𝑖𝑗 is considered the number of shortest paths from s to j passing 

through node i. The Betweenness Centrality could be normalized by dividing the number of 

node pairs excluding i: 

𝐵𝑐𝑖

(𝑁 − 1)(𝑁 − 2)
2

 

(9)

 



Results | 271 
 
 

 

where N is the total number of nodes in the connected component that i belongs to. This 

parameter reflects the degree of control that given node exercises over the interactions of the 

other nodes in the network. 

 The Closeness Centrality 𝐶𝑐𝑖 
8 of a node i is the reciprocal of the average shortest path 

length and it is a number between 0 and 1. 𝐶𝑐𝑖 measures the distance of a node i to all other 

nodes and it is calculated as follows: 

𝐶𝑐𝑖 =  
1

∑ 𝑑𝑖𝑗𝑗

𝑁 − 1
 (10)

 

where 𝑑𝑖𝑗 is the distance between node i and j.  

 In the undirected networks, the Clustering 𝐶𝑖
6,9,10 of a node i is defined as a ratio 

𝑁

𝑀
, 

where N is the number of edges between the neighbors of i, and M is the maximum number 

of edges that could possibly exist between the neighbors of i. This coefficient is always a 

number between 0 and 1. The network clustering coefficient is the average of the clustering 

coefficients of all nodes in the network and it is used to highlight a modular organization of 

metabolic networks10. 

 The Neighborhood Connectivity11 of node i is the average connectivity of all neighbors 

of i. 

 The Radiality9 is a node centrality index and gives high centralities to nodes that have 

a small distance to any other node in their reachable neighborhood compared to their diameter. 

The Stress12 of a node i is the number of shortest paths passing through i. 

The Topological Coefficient 𝑇𝑖
13 of a node i with kn as the number of neighbors of node i is 

calculated as follows:  

𝑇𝑖 =  
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐽(𝑖, 𝑗))

𝑘𝑖
 (11) 

 

where the value 𝐽(𝑖, 𝑗) is the number of neighbors shared between the nodes i and j. This 

coefficient indicates the tendency of the nodes in the network to have shared neighbors. 

In order to compare the metabolite-metabolite association networks topology, we evaluate the 

average of node characteristics and connectivity among metabolite i and j. 
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Abstract 

The aim of this chapter is to highlight the various aspects of metabolomics in relation to health 

and diseases, starting from the definition of metabolic space and of how individuals tend to 

maintain their own position in this space. Physio-pathological stimuli may cause individuals 

to lose their position and then regain it, or move irreversibly to other positions. By way of 

examples, mostly selected from our own work using 1H NMR on biological fluids, we describe 

the effects on the individual metabolomic fingerprint of mild external interventions, such as 

diet or probiotic administration. Then we move to pathologies (such as celiac disease, various 

types of cancer, viral infections, and other diseases), each characterized by a well-defined 

metabolomic fingerprint. We describe the effects of drugs on the disease fingerprint and on its 

reversal to a healthy metabolomic status. Drug toxicity can be also monitored by 

metabolomics. We also show how the individual metabolomic fingerprint at the onset of 

disease may discriminate responders from non-responders to a given drug, or how it may be 

prognostic of e.g., cancer recurrence after many years. In parallel with fingerprinting, profiling 

(i.e., the identification and quantification of many metabolites and, in the case of selected 

biofluids, of the lipoprotein components that contribute to the 1H NMR spectral features) can 

provide hints on the metabolic pathways that are altered by disease and assess their restoration 

after treatment.  
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1 INTRODUCTION  

The use of metabolomics in personalized medicine originates from two basic facts 

i) the existence of an individual metabolic phenotype characteristic for each individual, 

i.e. of an invariant part of the metabolome that allows each subject to be discriminated 

from all others; 

ii)  the existence of a signature of the disease, which may range from very weak to very 

strong depending on the pathology or its severity. The disease transiently alters the 

individual metabolic phenotype, but this alteration disappears when the individual 

reverts to the “healthy” status following medical or pharmaceutical interventions. 

 

Despite 1H NMR features a lower sensitivity (detection limit in the order of µM) with respect 

to MS analysis, which downsizes the total number of measurable metabolites, it is exquisitely 

amenable to the untargeted fingerprinting of the sample metabolome due to its very high 

reproducibility and capability for high throughput analysis (Griffiths, 2008; Takis et al., 2019; 

Vignoli et al., 2019a).  

With the exception of inorganic ions, almost all small molecules contain hydrogen atoms that 

can be measured simultaneously, providing rapid and distinct global spectral patterns (or 

fingerprints) of the samples under investigation (Klupczyńska et al., 2015; Vignoli et al., 

2019a). Thus, the fingerprint of a sample is a recapitulation of its current metabolome, 

independently of the identification of the metabolites. Conversely, metabolomic profiling is 

a global evaluation of the metabolite contents of all the samples in a comparative fashion. The 

final aim is to identify and accurately quantify as many compounds as possible. This approach 

enables the detection of changes in the concentration of the measurable metabolites related to 

specific physiological conditions. 

Here, we first provide a series of examples demonstrating how untargeted 1H NMR 

metabolomic fingerprinting can be used to identify the individual metabolic phenotype and 

assess its stability over a long timescale in the absence of important physio-pathological 

alterations. The existence of this individual fingerprint has been observed in several 

biosamples (such as urine, saliva, blood, and breath condensate) that are commonly used in 

metabolomics. Then we provide a series of examples spanning from celiac disease to cancer 

and viral infections. These pathologies are very different in their etiology and clinical 

manifestation, and involve different organs. Likewise, in our lab we have observed 

metabolomic alterations that are clearly characteristic of each of them. Additionally, we have 
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monitored the response to pharmaceutical treatments, and in some cases we have been able to 

identify features of the individual metabolome before treatment that are prognostics to 

discriminate responders from non-responders.  

To help readers assess the potentiality of the NMR-based approach, we describe a series of 

case studies drawn on the many years of experience of our group. 

 

1.1 The individual metabolic phenotype  

In 2008 our research group (Assfalg et al., 2008) demonstrated, for the first time, that the NMR 

detectable part of the metabolome of urine contains an invariant part, which can be considered 

as the chemical signature of each individual. Multivariate statistical analysis of multiple urine 

samples of different individuals enables the definition of their “metabolic space”, where the 

metabolomic fingerprint of each subject can be visualized and discriminated from that of the 

other subjects with an accuracy close to 100%.  Over a timescale of 10 years (Ghini et al., 

2015a), in the absence of important stressful perturbations, each individual still occupies its 

specific region of the metabolic space; daily intra-individual variability leads to small 

fluctuations inside the individual metabolic space; conversely, shifts to other distinct regions 

are associated to significant changes of the individual metabolomic phenotype as a 

consequence of the occurrence of important physio-pathological conditions (Figure 1).  

 

 

Fig. 1 A schematic representation of the individual metabolic phenotype. Each individual (represented by a 

different color code in the picture) has a stable phenotype, which distinguishes him/her from the other subjects 

(inter-individual variability). This phenotype is flexible enough to compensate for day-by-day changes and external 
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stimuli (intra-individual variability). This capacity is lost at the onset of a disease but can be restored after a 

complete recovery. 

 

A strong individual phenotype also exists in saliva (Wallner-Liebmann et al., 2016) and blood 

(Holmes et al., 2008). For the latter two biofluids, their intrinsic nature causes daily intra-

individual fluctuations in metabolome composition that are smaller than what occurs in urine; 

this is particularly true for blood, the composition of which is tightly regulated by homeostasis. 

Additionally, at variance with urine and saliva that have individual metabolomic fingerprints 

dominated by low-molecular weight molecules, in both plasma and serum the presence of 

lipids and lipoproteins significantly contributes to the individual fingerprint.  

For serum/plasma stability of the individual phenotype has been reported over a period of 7 

years (but is likely to be much longer), while no information about the long-term stability of 

the metabolic phenotype in the saliva is yet available. 

 

1.2 Modulation of the individual metabolic phenotype  

Besides the genetic components, all endogenous and exogenous metabolites derived from 

extrinsic factors such as diet, drugs, gut microflora, stressors, and pollutants contribute to the 

definition of the human metabolic phenotype. Thus, several studies have been performed to 

understand the effects of mild dietary interventions on the metabolomic profile (Andersen et 

al., 2014; O’Sullivan et al., 2011). Importantly, despite the levels of a large set of metabolites 

have been reported to be modulated by the different dietary habits and to become more 

homogeneous in individuals undergoing diet standardization for a short period of time, diet 

regimes do not significantly change the individual signatures, which remain equally evident 

in all types of biofluids (Lenz et al., 2003; Marianne C Walsh, 2006; Wallner-Liebmann et al., 

2015; Winnike et al., 2009). The same effects are reported for probiotics assumption in 22 

healthy volunteers for 8 weeks (Ghini et al., 2020b). Because of the probiotic treatment, 

significant modulations in the levels of a few urine and serum metabolites are observed, but 

the observed changes are not so strong as to hamper individual recognition in the metabolic 

space. Another example is represented by the evaluation of the metabolomic effects induced 

by the administration of bioactive molecules in the sera profiles of volunteers at risk of 

metabolic syndrome. This study was performed in the context of the EC-funded project 

PATHWAY-27 (FP-KBBE # 311876). In this framework, beneficial effects of DHA 

administration on serum metabolomic profiles could be assessed. However, this was only 

possible by suppressing the intra-individual variations using paired approaches that compare 



| 278 
 

the serum paired samples collected at the beginning and at the end of the trial for each subject 

(Ghini et al., 2017).  

The above examples demonstrate that little or no alteration of the individual phenotype is 

brought about by mild treatments, whereas it can be profoundly affected by the presence of 

pathologies and major surgical interventions, such as bariatric surgery. Currently, bariatric 

surgery is the only available treatment to provide sustained weight loss (Buchwald et al., 

2009), improve glucose regulation, and to even promote complete remission of type 2 diabetes 

in severely obese patients (Meijer et al., 2011). All three different bariatric procedures, i.e. 

sleeve gastrectomy, proximal Roux-en-Y gastric bypass, and distal bypass, are associated with 

a strong alteration of the serum metabolomic fingerprints of the patients (Gralka et al., 2015). 

Within the common strong alterations, distal bypass patients could be discriminated from the 

other two groups of patients, suggesting a stronger impact of this procedure on the metabolic 

fingerprint. Different short term and long-term alterations are also observed. The serum 

metabolomic profiles of severe obese patients are characterized by high levels of aromatic and 

branched-chain amino acids (AAA and BCAA, respectively), and of metabolites related to 

energy metabolism (pyruvate and citrate). Elevated levels of some metabolites related to the 

gut microbiota such as formate, methanol and isopropanol are also associated with obesity. 

Interestingly, after bariatric surgery, independently of the type of procedure used, a significant 

reduction of AAA, BCAA, pyruvate, methanol and isopropanol concentrations, along with an 

increase in arginine and glutamine levels are observed, indicating that surgically induced 

weight loss can, at least in part, normalize the alterations in amino acid metabolism associated 

with obesity (Gralka et al., 2015).  

 

2 DISEASE FINGERPRINTING AND INDIVIDUAL RESPONSE TO PHARMACOLOGICAL 

THERAPY 

As anticipated, several pathologies have a strong metabolomic fingerprint at the systemic 

level. Below we provide some examples from our lab of the metabolomic characterization of 

different types of diseases. In these examples, NMR-based metabolomics successfully 

provided a medium-to-strong fingerprint of the disease and a definition of the molecular 

profile of the pathology in terms of small molecules and lipoprotein parameters. Additionally, 

NMR was used to monitor the evolution of the metabolomic fingerprint and profile along the 

disease evolution and in particular following pharmacological treatments. Indeed, 

pharmacometabolomics is defined as the determination of the individual metabolic phenotype 

to characterize signatures, both before and after drug administration, that might inform 

treatment outcomes, map the effects of drugs on metabolism and identify molecular pathways 

contributing to drug-response and drug-toxicity phenotypes (Kaddurah-Daouk et al., 2014). 
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2.1 Celiac disease 

The celiac disease (CD) originates from an aberrant adaptive immune response against gluten. 

The presence of a characteristic metabolomic fingerprint of CD has been demonstrated by 

multivariate analysis of the NMR spectra of serum and urine samples from affected subjects 

and healthy controls (Bernini et al., 2011a; Bertini et al., 2009; Vignoli et al., 2019b). For 

example, when comparing adult patients with sex and age matched controls, a discrimination 

accuracy in the range of 75-83% was obtained in urine, which rises to 81-94% in serum, 

depending on the study cohorts.  The differences originate from variations in the levels of 

metabolites related to three main mechanisms: malabsorption, altered energy metabolism, and 

altered gut microflora (Bertini et al., 2009).  

In serum samples, the main reported differences between CD patients and controls consist in 

lower levels of several amino acids (asparagine, isoleucine, methionine, proline, and valine) 

and of pyruvate, lactate, and lipids, and in higher levels of glucose and 3-hydroxybutyric acid. 

The decreased levels of pyruvate and lactate along with higher levels of glucose are indicative 

of an impaired glycolysis process. Enhanced beta-oxidation and malabsorption can instead 

explain the lower levels of amino acids and lipids observed. A possible increase of the use of 

ketonic bodies as a source of energy in coeliac patients is consistent with the high levels of 3-

hydroxybutyric acid. Energy conversion from lipids and catabolism of ketonic bodies is far 

less efficient than that from glucids; consistently, coeliac subjects often report symptoms of 

fatigue. Further, urine samples of CD patients are characterized by high levels of some 

metabolites related to gut microbiota, i.e. indoxyl sulphate, meta-[hydroxyphenyl] propionic 

acid, phenylacetylglycine and p-cresolsulfate. All these findings are consistent with the 

hypothesis that in CD patients the gut microflora of the small bowel is altered or presents 

peculiar microbial species with their own metabolome. 

Notably, the so-called potential coeliac patients i.e., those individuals who tested positive for 

the antibodies but have no evidence of intestinal damage, have an NMR fingerprint that is 

similar to that of the patients, suggesting that the dysmetabolism precedes the intestinal 

damage (Bernini et al., 2011a). 

Celiac disease represents one example where dietary intervention induces relevant changes in 

the metabolomic fingerprint (Bernini et al., 2011a). The treatment of choice for this disorder 

is to follow a gluten-free diet. One of the most interesting findings was that the metabolic 

fingerprint of CD patients reverts to normality after 12 months of a strict gluten-free diet. After 
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the gluten-free diet normal levels of glucose and 3-hydroxy-butyric acids are restored, and the 

sense of fatigue tends to be reduced. 

 

2.2 Cancer 

Metabolomics can be used to derive information on cancer at various levels. Several studies 

concern the characterization of the metabolome of cancer cell lines as a complementary 

approach with respect to classical biochemical analyses and to other omics, with the aim to 

derive information on altered metabolic pathways (Cuperlovic-Culf et al., 2012; Li et al., 

2017) and to conduct preclinical tests of new anticancer agents (D’Alessandro et al., 2019; 

Ghini et al., 2021; Li et al., 2019; Resendiz-Acevedo et al., 2021). NMR is particularly suitable 

for this purpose, as it allows for a fast untargeted characterization of the endo and 

exometabolome (i.e., the intracellular and extracellular composition in terms of metabolites), 

also at multiple post-drug treatment times. Additionally, isotopically labelled substrates (e.g., 

13C labelled glucose) can be used to define metabolic fluxes by following the metabolism of 

labelled substrates into their pathway products at specific time points (Antoniewicz, 2018; 

Saborano et al., 2019).  

Tumors can also be characterized at the level of the tissue metabolome; this approach provides 

a specific view of cancer cells and their cross-talk with the tumor microenvironment (Márquez 

and Matés, 2021). Cancer tissues represent the localized site of the disease. 1H NMR, in its 

HR-MAS version, is applicable to acquire spectra of small quantities of cryo-preserved tissues 

(of the order of 10 mg), provided they have not undergone any further sample manipulation 

(Vignoli et al., 2019a). Indeed, the use of tissues for ex-vivo metabolomics raises a number of 

criticalities, ranging from ethical to technical issues. Surgical specimens collected at different 

times of intraoperative (warm) or post-operative (cold) ischemia undergo significant molecular 

degradation, so that the measured “metabolome” no longer reflects the original physiological 

state of the tissues before intervention (Cacciatore et al., 2013). The need of suitable frozen 

material collected and handled under strict preanalytical conditions conflicts with ethics that 

assigns precedence, during intraoperative procedures, to the best surgical performances and 

afterwards to the diagnostic needs of the pathologist. 

Instead, the metabolomic analysis of biofluids, such as serum or plasma, or urine, presents 

several advantages. Sample collection is only minimally invasive, and multiple collection at 

different times points can be easily obtained to establish a metabolomic signature both before 

and after a given drug therapy. The preanalytical SOPs are simple and easily satisfied (Ghini 

et al., 2019; “ISO/DIS 23118,” 2021; Vignoli et al., 2022). The resulting analyses might inform 
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on the presence of specific features of prognostic value and on treatment outcomes, 

respectively. 

Below we provide examples that have seen a significant contribution from our group and that 

regard the characterization of three of the most common types of cancer, namely breast cancer, 

colorectal cancer, and lung cancer; all of them are based on patients’ serum/plasma (Figure 2). 

 

 

Fig. 2 Types of samples that can be analyzed via NMR-based metabolomics: cells, tissues, and biofluids. In 

particular, in section 2.2 we will focus on the analysis of biofluids (i.e. serum, plasma, and urine) to investigate 

pathophysiological conditions associated with breast cancer, lung cancer, and colon cancer. 

 

2.2.1 Breast cancer 

Female breast cancer (BC) is the most commonly diagnosed cancer, with an estimated 2.3 

million new cases per year  (11.7%), and is the leading cause of cancer death in women (Sung 

et al., 2021). For many years BC has been considered a unique clinical entity and treated with 

only one general approach. However, it has become extremely clear that there is a high degree 

of diversity between and within the BC subclasses (Polyak, 2011). Based on their molecular 

characteristics BC is classified into three major subtypes: luminal (positive for estrogen and 

progesterone receptors), human epidermal growth factor receptor 2+ (HER2+) enriched, and 

basal (the majority of the latter tumors are also called triple-negative BC). Currently, these 

different tumor subtypes are treated with specific therapies improving patient survival: 

hormone receptor-positive disease is generally treated with endocrine therapy (Early Breast 

Cancer Trialists’ Collaborative Group (EBCTCG), 2005; Lerner et al., 1976; Wiggans et al., 

1979); HER2+ disease is now cured with targeted agents, which have significantly improved 

outcomes in both the (neo)adjuvant (Gianni et al., 2012; Martin et al., 2017; Slamon et al., 
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2011; von Minckwitz et al., 2019, 2017) and the metastatic setting (Swain et al., 2013; Verma 

et al., 2012). 

Metabolomics can distinguish patients with BC with respect to healthy controls with high 

predictive accuracies: PLS models with Q2 > 0.6 for studies on serum/plasma (Cala et al., 

2018; Lécuyer et al., 2018; Silva et al., 2019; Singh et al., 2017; Sitter et al., 2006; Slupsky et 

al., 2010; Suman et al., 2018; Tayyari et al., 2018; Wojtowicz et al., 2020; Zhou et al., 2017), 

and models with Q2 > 0.5 for urinary studies (Silva et al., 2019; Slupsky et al., 2010; Zhou et 

al., 2017) were obtained. 

Metabolomics proved useful in discriminating the plasma profiles of patients with different 

BC molecular subtypes as compared to controls (Díaz-Beltrán et al., 2021): as compared to 

HER2- patients, the HER2+ group showed elevated aerobic glycolysis, gluconeogenesis, and 

increased fatty acid biosynthesis with reduced Krebs cycle. ER+ patients, as compared to ER- 

ones, showed elevated alanine, aspartate and glutamate metabolism, decreased glycerol-lipid 

catabolism, and enhanced purine metabolism (Fan et al., 2016). 

Given these premises, in the framework of BC precision oncology, it is crucial to identify, in 

each BC subtype, patients at higher risk of cancer recurrence and drug-response profiles able 

to guide patients’ management (Vignoli et al., 2021b; Bendinelli et al., 2021). The NMR-based 

metabolomics has shown to be a valuable prognostic instrument and examples of its 

application with the abovementioned objectives are provided below. 

 

2.2.1.1 Response to Chemotherapy 

The possible association between different metabolic profiles and response to chemotherapy 

has been extensively investigated via NMR-based metabolomics of blood derivatives.  

Pharmacometabolomics on blood plasma/serum with the aim of predicting which patients will 

benefit most from a specific treatment has provided significant results. First in 2012, our group 

demonstrated that NMR-based metabolomics may play a role in identifying patients with 

metastatic breast cancer (MBC) with HER2+ disease with greater sensitivity to paclitaxel plus 

lapatinib (Tenori et al., 2012). With a similar approach, Jiang and colleagues predict response 

to gemcitabine/carboplatin chemotherapy via NMR metabolomics (Jiang et al., 2018). 

More recently, the general research attention has focused on neo-adjuvant chemotherapy 

(NAC), the preferred treatment strategy for patients with large primary tumors and/or locally 

advanced disease (Thompson and Moulder-Thompson, 2012). NAC offers the unquestionable 

benefit of downstaging disease and reducing the tumor size prior to surgery, thus making 

patients with inoperable tumors candidates for surgical resection (Debik et al., 2019; 
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Thompson and Moulder-Thompson, 2012). Nonetheless, only less than 30% of patients overall 

exhibit pathological complete response (disappearance of all invasive cancer in the breast) to 

NAC (Wei et al., 2013), with lower rates of response observed in endocrine receptor-positive, 

HER2- disease.  

In 2020 our research group, for the first time, has investigated the capability of predicting 

pathological complete response, using the baseline host immune cytokines and nuclear 

magnetic resonance (1H NMR) metabolomic fingerprints in a highly homogeneous population 

of HER2+ BC patients enrolled for NAC treatment (Vignoli et al., 2020a). For this study 43 

HER2+ BC patients, stratified according to their ER status in 22 ER+ and 21 ER-, were 

enrolled at baseline prior to any interventions. The pathological complete response was 

obtained in 13 out of 22 ER+ patients and in 11 out of 21 ER- patients. The plasma 

metabolomic fingerprint can distinguish ER+ and ER- patients with 74.4% discrimination 

accuracy, suggesting a differential host–cancer interaction in these two subtypes of BC. 

Moreover, in the ER+ BC patients the baseline metabolomic fingerprint can be predictive of 

pathological complete response (72.7% accuracy). The good responders, as compared to poor 

responders, are characterized by lower concentrations of branched-chain amino acids, 

isoleucine, and valine, as well as ethanol, several phospholipids and cholesterol associated to 

almost all classes of lipoproteins assigned by 1H NMR.  In the ER+ subgroup the combination 

of a cytokine (TNF-α) and a metabolite (valine) was found to significantly enhance 

discrimination between complete and partial response to NAC, yielding an area under the 

receiver operating characteristic (ROC) curve of 0.92, and an accuracy of 90.9%. Conversely, 

no predictivity was observed in ER- BC patients. In their pilot study, Wei et al. had already 

shown that metabolic profiling, performed by combining NMR and LC–MS method, can 

distinguish groups of BC patients with no, partial, or complete response; our study confirms 

this evidence and enriches this scenario by coupling NMR-based metabolomics with the 

analysis of a panel of 10 different cytokines. 

Conversely, from blood serum analyses, NMR-based metabolomics studies performed on 

breast biopsies did not reveal significant metabolic differences between complete pathological 

response and pathological non-responders before treatment (Choi et al., 2013; Euceda et al., 

2017), implying that the host-cancer interaction at a systemic level plays a crucial role in the 

response to treatment. As a confirmation, a metabolomic study performed via MS on both 

blood serum and tissue biopsies (collected before, during and after NAC) showed that only 

marginally correlations are present between the two biospecimens, and that only the serum 

profile is predictive of NAC response (Debik et al., 2019). 
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Other relevant serum/plasma metabolomic studies have been targeted at characterizing the 

impact of NAC on the patient metabolism. The NAC induces relevant alterations in patient 

metabolism during  and after treatment (Corona et al., 2021; Debik et al., 2019; Jobard et al., 

2017). In particular, Jobard et al (Jobard et al., 2017) have shown that the administration of 

trastuzumab and everolimus in combination induced systemic effects by altering lipid, glucose 

and ketone bodies metabolisms. These alterations are observable on the metabolic profiles of 

patients even several weeks after the end of the drug intervention. 

 

2.2.1.2 Disease Recurrence 

Despite all efforts aimed at better stratifying BC patients, there is still a significant proportion 

of early breast cancer patients who are overtreated. Clinicians are looking for prognostic tools 

able to distinguish early BC patients at high risk of disease recurrence, who need to be treated 

with aggressive adjuvant therapies, with respect to low risk patients, who may be cured by 

locoregional therapy alone (McCartney et al., 2018, 2017). NMR-based metabolomics of 

blood derivatives has shown to play a role in this scenario. 

The first evidence supporting the application of metabolomics as potential prognostic tool for 

recurrence prediction was published by Asiago et al. in 2010 (Asiago et al., 2010). They 

utilized metabolic profiling approach, obtained by combining metabolites detected by both 

NMR and MS, to identify breast cancer relapse before it occurs. Over the past decade our 

group has pursued this research line using a fingerprinting approach. We have established a 

reproducible method, based on serum NMR metabolomic analysis, able to distinguish early 

and metastatic breast cancer patients with high discrimination accuracy. Furthermore, we 

demonstrated that this model can be used to predict cancer relapse: early BC patients 

“misclassified” as metastatic on the basis of their metabolomic fingerprint showed indeed high 

risk of recurrence, whereas early BC patients correctly classified as early BC can be considered 

at low risk. The recurrence prediction with this approach has been validated and reproduced 

in monocentric and multicentric cohorts of patients (Figure 3) providing successful results 

(Tenori et al., 2015; Hart et al., 2017; McCartney et al., 2019). In our 2015 and 2019 studies 

serum samples of early BC patients were collected before surgery, thus when the tumor was 

still in place, whereas in the multicentric study of 2017 samples were collected after surgery 

but before starting (when indicated) adjuvant chemotherapy or radiotherapy. Moreover, the 

early BC patients enrolled for the studies of 2017 and 2019 had ER+ breast cancer, whereas 

those of the study of 2015 were diagnosed with ER- breast cancer. The reproducibility of our 

approach, despite these differences in the study design, reinforces the evidence that NMR-

based metabolomics is really a promising instrument for the stratification of patients with early 

breast cancer. 
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From our multicentric study (Hart et al., 2017) it emerged that, as compared with metastatic 

BC patients, patients with early ER+ BC are characterized by lower serum levels of citrate, 

choline, acetate, formate, lactate, glutamate, 3-hydroxybutyrate, phenylalanine, glycine, 

leucine, alanine, proline, tyrosine, isoleucine, creatine, creatinine and methionine, and higher 

serum levels of glucose and glutamine. Interestingly, in the subgroup of early BC patients with 

either relapse or no-relapse (with a follow up of at least 6 years), the patients who relapsed 

showed significantly higher serum levels of choline, phenylalanine, leucine, histidine, 

glutamate, glycine, tyrosine, valine, lactate and isoleucine, thus resembling a “micro-

metastatic” profile already at diagnosis. The decrease of tyrosine and lactate in early BC 

patients confirmed what already seen in the ER- negative cohort examined in 2015, whereas 

glucose and histidine showed opposite trends in ER- BC patients. 

 

 

 

Fig. 3 A) The study design of the three metabolomic studies performed in our laboratory (Tenori et al., 2015; Hart 

et al., 2017; McCartney et al., 2019) on serum samples of BC patients. Early BC patients were randomly divided 

into a training and a validation set. Using the early BC training set and the metastatic BC group, a random forest 

model was calculated on the serum NMR data. Then the early BC validation set was used to test the hypothesis that 

early BC patients at high risk of cancer recurrence could be classified as metastatic by the RF model. B) The results 

of the three studies are summarized reporting for each of them the RF proximity plot (early BC green dots, 

metastatic BC red dots) along with the RF model accuracy, and the area under the ROC curve of the validation set 

used for the recurrence prediction. 
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2.2.2 Lung cancer 

Lung cancer (LC) is the second most common cancer in both men and women  and is by far 

the leading cause of cancer death worldwide, making up almost 25% of all cancer deaths. Most 

of the patients (>84%) with LC are affected by non-small cell lung cancer (NSCLC), with the 

majority of patients presenting with advanced, unresectable disease at the time of diagnosis 

(Siegel et al., 2021). Currently used treatments for advanced NSCLC include chemotherapy, 

targeted drug therapy, immunotherapy, or chemo-immunotherapy (Hirsch et al., 2017). 

Treatment options are based mainly on the tumor histology but other factors, such as certain 

cancer traits like PDL-1 TPS (tumor proportion score) and the presence of specific genomic 

mutations, are also important.  

 

2.2.2.1 Response to Immunotherapy 

Among all the therapeutic strategies, immunotherapy has become an attractive treatment 

modality for chemo-refractory solid tumors (Postow et al., 2015). NSCLC cells have the ability 

to evade the immune system by expressing on their surfaces certain “immune checkpoint” 

molecules that normally protect against autoimmunity and inflammation, such as cytotoxic T-

lymphocyte antigen-4 (CTLA-4), programmed cell death protein 1 and its ligand (PD-1 and 

PDL-1, respectively). Immune Checkpoint Inhibitor agents (ICIs), such as the monoclonal 

antibodies nivolumab and pembrolizumab, reactivate T lymphocyte-mediated immune 

response against the cancer cells by blocking the immune checkpoint molecules (Brahmer, 

2014; Hamada et al., 2018). Several ICIs have shown outstanding early success in many tumor 

types and have established an important role in the first line of treatment of advanced lung 

cancer as a monotherapy or in combination with chemotherapy, as well as in second line after 

standard treatment (Borghaei et al., 2015; Gandhi et al., 2018; Gettinger et al., 2015; Herbst et 

al., 2016; Rittmeyer et al., 2017).  

Unfortunately, not all patients respond to ICIs; the response rates are modest (approximately 

30% or less in LC), the associated costs are high, and true predictive markers of treatment 

efficacy do not exist. Thus, the identification of biomarkers able to identify the patients that 

are most likely to respond to, and benefit from, ICIs treatment is of pivotal importance 

(Brahmer, 2014). In this framework, metabolomic fingerprinting of biofluids may represent a 

timely tool to define metabolomic signatures that might inform on treatment outcomes. 

In 2020 our research group conducted a pilot study based on 1H NMR metabolomic 

investigation of sera samples from NSCLC patients treated with immune checkpoint inhibitors 

(Ghini et al., 2020a). The experimental scheme of the study is reported in Figure 4. A total of 
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53 patients with advanced NSCLC were enrolled; thirty-four patients were treated with 

nivolumab (monoclonal antibody directed against PD-1) and 19 patients were treated with 

pembrolizumab (monoclonal antibody against PDL-1). All the analyzed samples were 

collected before the beginning of the treatment (T0) with the aim to a-priori identify responder 

and non-responder subjects. Significantly, we could show that the metabolomic fingerprint of 

T0 serum acts as a predictive biomarker of immune checkpoint inhibitors response, being able 

to predict individual therapy outcome with > 80% accuracy (Ghini et al., 2020a). In the serum 

samples of non-responder subjects, we detected significantly higher levels of pyruvate and 

alanine along with, even if not statistically significant, higher lactate and glycine levels and 

lower citrate levels. All these changes are evocative of increased glycolysis and decreased 

TCA pathway in non-responders. It is important to underline that the significance of the 

univariate analysis performed on single metabolite levels strongly relies on the number of 

subjects included in the study. Thus, further investigations, enrolling much higher numbers of 

subjects are necessary to confirm these findings.  

To our knowledge, this represents the first study using NMR-based metabolomic 

fingerprinting of serum/plasma samples to predict the individual response to anti PD-1 therapy 

in NSCLC. Instead, a few other examples based on MS metabolomic profiling can be found 

in the literature. In 2020, Hatae et al. analysed by GC-MS the plasma samples of 55 NSCLC 

patients treated with nivolumab and found that a combination of 4 plasma metabolites and 

several T cell markers could be used as a good biomarker for responder identification (area 

under the ROC curve = 0.96). The four selected metabolites include molecules related to i) gut 

microbiota (hippuric acid), ii) fatty acid oxidation (butyryl-carnitine), and iii) redox-related 

metabolites (cystine and glutathione disulfide) (Hatae et al., 2020). One year later, in 2021 Nie 

X. et al. used LC-MS profiling of early on-treatment serum to explore predictors of clinical 

outcomes of anti-PD-1 treatment in 74 Chinese NSCLC patients. Serum samples were 

collected 2–3 weeks after the first infusion of PD-1 inhibitor. A small metabolite panel 

consisting of hypoxanthine and histidine was identified and validated as a predictor of 

treatment response, and high levels of both hypoxanthine and histidine were associated with 

improved progression-free survival and overall survival (Nie et al., 2021). The completely 

different metabolites observed in the reported investigations and proposed as treatment-

efficacy biomarkers derive from different analytical platforms, which allow for the observation 

of different panels of metabolites. 

The strength of our study relies on the uniqueness of the 1H NMR fingerprinting, which takes 

advantage of its intrinsically untargeted nature and high reproducibility. This approach 
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allowed us to identify a metabolomic signature associated to ICIs response that is independent 

of metabolite assignment and acts as a stronger “collective” biomarker with respect to a single 

molecule or to a panel of a few molecules. 

 

 

Fig. 4 A) Experimental scheme to evaluate individual response to immunotherapy. B) O-PLS discrimination 

between NSCLC responders and non-responders to immune check points inhibitors, adapted from (Ghini et al., 

2020a). Score plot, PC1 vs. PC2. Each symbol in the O-PLS score plot represents the fingerprint of the NMR 

spectrum of each patient recruited for the study. Red dots: nivolumab responder subjects; blues dots: nivolumab 

non-responder subjects. Red crosses: pembrolizumab subjects predicted as responders; blue crosses: 

pembrolizumab subjects predicted as non-responders. 

 

2.2.3 Colon Cancer 

Colorectal cancer (CRC) is the third most prevalent malignancy after breast and lung cancer, 

and the second most lethal disease in the world, with an anticipated 1.9 million new cases and 

0.9 million deaths in 2020 (Xi and Xu, 2021). The stage of CRC at diagnosis is the most 

important predictor of survival: if colon cancer is detected early, a relative 5-year survival rate 

of around 90% has been demonstrated for patients diagnosed with localized-stage disease, 

declining to around 71% and 14% for those diagnosed with regional and distant stages, 

respectively (Salmerón et al., 2022). Despite that, over the last 20 years, breakthroughs in CRC 

treatment have resulted in a steady increase in median overall survival (Dekker et al., 2019), 

CRC is still one of the most lethal diseases. CRC is known for its significant variety in clinical 
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presentation and underlying tumor biology, as well as its relationship with numerous types of 

etiological variables (Cunningham et al., 2010). Metabolomics of several biofluids is also 

increasingly used for successful patient classification in CRC, determining a strong signature 

of the disease. This allows for discrimination of CRC patients from healthy subjects (Nannini 

et al., 2020; Turano, 2014), and permits the prediction of the overall survival (OS) within a set 

of metastatic patients using serum samples (Bertini et al., 2012).  

NMR based metabolomics of minimally invasive biospecimens such as feces can correctly 

classify not only CRC patient from healthy subjects, as it was already shown by several studies 

(Le Gall et al., 2018; Lin et al., 2019, 2016; Monleón et al., 2009), but can also discriminate 

CRC from patients with adenomatous polyps (AP) (Nannini et al., 2021). Some of the 

identified metabolites suggest that metabolic changes in CRC and adenoma are associated with 

different pathways, mainly involving amino acids metabolism. It is well known that 95% of 

CRCs begin as colonic AP or adenomas, and the possibility to correctly differentiate these two 

forms is of primary importance for the early detection of the tumor. 

 

2.2.3.1 Disease Recurrence  

Using metabolomics to determine the distinct profiles of CRCs might allow for more 

personalized or informed cancer therapy adjustments, contributing to precision medicine 

(Wishart, 2015). Indeed, CRC shows different characteristics of clinical onset and individual 

response, even at the same pathological stage. Despite 80% of CRCs are diagnosed at early 

stage and immediately treated with surgery, 35% of these treated patients develop cancer 

relapse within 2-3 years after surgery (Guraya, 2019). The assessment of recurrence risk in 

colon cancer primarily relies on the pathological stage defined by the TNM system, based on 

the depth of tumor invasion (T), lymph nodes involvement (N), and distant metastases (M). 

Risk stratification is of fundamental importance for the choice of adjuvant treatment; however, 

only a small portion of patients benefits from it, with the majority being already cured by 

primary surgery, and other experiencing disease relapse despite having received adjuvant 

therapy. Improved identification of individuals who would benefit most from adjuvant 

chemotherapy is a critical aim, particularly in older patients who are more susceptible to 

treatment-related toxicity. 

In 2021 our group demonstrated that NMR based metabolomics on serum samples can 

improve risk stratification in elderly patients with early CRC (Di Donato et al., 2021). For this 

study 169 serum samples, taken from three distinct clinical trials, were collected before 



| 290 
 

treatment from elderly CRC patients. Of these, 94 were patients with early CRC (65 relapse 

free and 29 relapsed) and 75 from patients with metastatic CRC (Figure 5). The model built 

using a supervised algorithm to discriminate the serum fingerprint of the relapse-free patients 

in the early CRC cohort and the patients in the metastatic CRC cohort, yielded 70% accuracy, 

71% sensitivity and 69% specificity. Then, with the hypothesis that the metabolomic 

fingerprint of relapsed early CRC patients would be more similar to that of patients with 

metastatic CRC, the model was used as training to predict the remaining early CRC who had 

disease recurrence. Among the early CRC patients, 69% were correctly predicted as metastatic 

(and therefore considered at high relapse risk). This suggests that even in the absence of 

clinically visible metastatic spread, the metabolomic fingerprint of individuals with early 

CRC, who may have cancer recurrence, has a potential "metastatic signature."   

Furthermore, when the metabolomic classification of all patients with early CRC was analyzed 

using Kaplan-Meier curves, a strong prognostic effect was observed, with patients with a 

metabolomic profile similar to that of patients metastatic CRC having a significantly higher 

probability of disease relapse than those with a low risk metabolomic score (High vs. Low 

risk: Hazard Ratio= 3.68, p-value=0.001). Histidine and glutamine were shown to be 

significantly decreased in the serum of metastatic CRC patients. Previous evidences already 

suggested an association of glutamine with cancer progression and poor cancer-specific 

survival (Bertini, 2012; Sirniö et al., 2019). Also, the downregulation of histidine was already 

observed in other studies (Tan et al., 2013; Zhu et al., 2014) and its alteration was correlated 

with an increased activity of histidine decarboxylase.  

Our research group, in another recent paper (Vignoli et al., 2021a), investigated the CRC 

relapse in the serum samples of a group of pre-chemotherapy CRC patients undergoing 

surgery. We demonstrated that several differences between post- and pre-operative serum 

samples are associated with cancer recurrence, in particular an increment of HDL-Chol 

subfractions coupled with a decrement of VLDL-Chol subfractions. This may corroborate the 

hypothesis that the development of CRC disrupts the physiological equilibrium of lipids and 

lipoproteins, leading to lipid metabolic disorders (Zhang et al., 2014).  

Urine samples have been also used for an NMR based metabolomic approach to predict relapse 

in a group of 62 CRC patients, yielding an area under the ROC curve of 0.650 for cancer 

recurrence (Dykstra et al., 2017). Interestingly, here the authors use the NMR data to predict 

treatment delay which could depend on reaction to chemotherapy, reaching an area under the 

ROC curve values of 0.750. 
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Fig. 5 Experimental scheme (A) and results (B) extracted from (Di Donato et al., 2021). Dots in the score plots of 

the multivariate supervised PCA-CA kNN model represent the fingerprint of the NMR spectra of each patient 

recruited for the study. Red dots code for metastatic CRC (mCRC) patients, blue dots for early CRC (eCRC) relapse 

free patients, green triangles for eCRC relapsed patients predicted as “metastatic”, while green squares represent 

the CRC relapsed predicted as early CRC free from relapse. The Kaplan-Meier plot on the bottom right was used 

by the authors to estimate the outcome distribution. 

2.2.3.2 Pre-surgical effects of anesthesia 

The biofluids used by the various studies have been shown to contain important information 

detectable with metabolomics for the characterization of CRC patients. However, it is 

important to use the right pre-analytical procedures on the samples to obtain reliable results. 

We have highlighted (Ghini et al., 2015b) that the moment of blood sample collection can 
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strongly influence the plasma metabolomic profile. Blood samples were taken from 70 CRC 

patients (40 non-metastatic and 30 with liver metastasis) preoperatively, both prior and after 

anesthesia administration. Anesthesia depresses the metabolisms in uneven ways, thus 

reducing the information content of the metabolic profile and hence reducing the 

discrimination capability of the method. Consequently, post anesthesia samples are not very 

suitable for standard metabolomics studies. 

2.3 Viral infections 

Viruses utilize and/or rewire the host metabolism. Therefore, metabolomics is an excellent 

tool to study the effect of viral infection, either in vitro using infected cell cultures, or ex-vivo 

in biosamples from infected animals or humans. In terms of practical applicability, obvious 

limitations arise from biosecurity, which requires the evaluation of the viral load and infectious 

risk of the different biological matrices as a function of their nature and of the nature of the 

infective agent, as well as of the biocontainment level of the laboratory.  

On the other hand, identifying the metabolic pathways utilized by a virus has the potential to 

help revealing drug targets, to monitor the response to antiviral agents but also to evaluate the 

effect of vaccine administration, although very little is available on this aspect. 

Here, we report examples from our laboratory on the metabolomic characterization of viral 

hepatitis and of SARS-CoV-2 infection. 

2.3.1 Hepatitis 

Viral hepatitis is a global health issue that affect millions of individuals and is associated with 

a high fatality rate. Except for the hepatitis A virus (HAV), all hepatotropic viruses, including 

hepatitis B, C, D, and E viruses (HBV, HCV, HDV, and HEV), can induce chronic infections. 

HBV and HCV are the most common viral causes of liver disease. According to the updated 

estimate of the WHO, there are about 300 million people suffering from chronic HBV and 6 

million people suffering from chronic HCV (World Health Organization, 2021).  

Viral hepatitis chronic infection can cause progressive liver damage leading to fibrosis and 

cirrhosis. Cirrhosis is the end-stage of every chronic liver disease and is the major risk factor 

of hepatocellular carcinoma (HCC). HBV and HCV are the leading cause of HCC worldwide, 

accounting for a significant mortality of more than 1.3 million death per year (Ringehan et al., 

2017). 

Prevention campaigns are one of the main weapons to limit the incidence of these viruses, 

especially for HCV for which a vaccine is not yet available. Direct-acting antivirals (DAAs) 

were approved in 2014, revolutionizing HCV therapy and allowing almost all patients to be 
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cured. DAAs are very effective and well-tolerated, and they constitute the gold standard for 

the treatment of HCV chronic infection in patients at all stages of liver disease.  

Metabolomics analysis is being utilized to better understand host–pathogen interactions and 

screen host biospecimen for biomarkers that are characteristic of the viral infection. In 2019 

an interesting picture emerged of the metabolomic fingerprint of HCV infection compared to 

both healthy subjects (HS) and HBV-infected patients (Meoni et al., 2019), suggesting that the 

two viruses exert a different impact on human metabolism. Indeed, by the comparison of the 

1H-NMR serum profiles of HCV- and HBV-infected patients, we identified characteristic 

metabolomic fingerprints of the two viral infections, obtaining an overall discrimination 

accuracy of 86% (OPLS-DA algorithm). As expected, the serum fingerprint of HCV- and 

HBV- infected patients resulted to be extremely different also from the serum fingerprint of 

HS, with a classification accuracy of 98.7% in the model built to discriminate HCV vs. HS, 

and a classification accuracy of 80% in the model built of HBV vs. HS (Figure 6). Similarly, 

Godoy et al., 2010, using the 1H-NMR fingerprinting approach, were able to accurately 

discriminate (95% predictive accuracy) the urine samples of HCV-infected patients from those 

of HCV-negative subjects, corroborating the potential of 1H-NMR fingerprinting for the fast, 

non-invasive diagnosis of HCV infection using a urine sample.  

The common changes we detected in the serum metabolomic profile of HBV- and HCV- 

infected patients when compared to HS (e.g. increased levels of 3-hydroxybutyrate, acetate, 

lactate, and pyruvate) support the hypothesis that these viruses preferentially stimulate 

glycolysis over oxidative phosphorylation, analogously to the Warburg effect in cancer 

(Okuda et al., 2002). Instead, in the comparison of HCV- and HBV-infected patients we noted 

a different behavior of several metabolites, suggesting that the perturbation could be 

attributable to a direct action of the two types of viruses rather than to the host response. 

Interestingly, the higher levels of 2-oxoglutarate and 3-hydroxybutyrate in HCV patients 

compared to HBV, also identified as biomarkers of cardiovascular disease and ketoacidosis, 

could explain why some extrahepatic manifestation, such as cardiovascular diseases and 

diabetes, are common in patients with chronic HCV and not in patients with HBV (Bernini et 

al., 2011b; Chen et al., 2014; Du et al., 2014).  

Metabolomics proved useful also for disease staging and for characterizing the response to 

treatment. Anti-HCV treatment has advanced significantly in recent years, with direct-acting 

antivirals (DAAs) replacing pegylated interferon and ribavirin and providing effective 

treatment and less adverse effects. In our work we characterized also the metabolomic 

fingerprint and the profile of HCV patients before and after effective DAA treatment. In this 
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case we identified a major contribution of the low molecular weight molecules in 

characterizing the changes introduced in the individual metabolomic profile by the therapy, 

suggesting also that the perturbation in lipid metabolism induced by the infection persists after 

viral eradication.  

According to other studies (Cano et al., 2017; Nguyen et al., 2021; Sarfaraz et al., 2016) 

tyrosine and formate levels increase on passing from no/mild fibrosis to severe fibrosis. 

Furthermore, differences in metabolite levels between patients with higher and lower fibrosis 

scores were reduced after DAAs therapy, confirming that altered metabolites are restored, 

most likely due to liver damage regression after viral eradication.  

Regarding the effect of treatment on sera of HBV infected patients, Nguyen et al., 2021, 

recently published a study confirming that NMR based metabolomics is capable of revealing 

in serum samples a gradual metabolic transition from pretreatment to early treatment and then 

to a longer treatment period, as well as of accurately distinguishing the serum of  patients who 

needed medical treatment (patients who would commence treatment within 6 months from 

sampling) from those who did not. 

 

 

Fig. 6 Fingerprinting of the Hepatitis C and B viruses in serum samples resulting from OPLS-DA models. A) HCV- 

(red dots) vs HBV- (purple triangles) infected patients; B) HCV-infected patients vs HS (sky-blue triangles); C) 

HBV-infected patients vs HS. Adapted from (Meoni et al., 2019). 
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2.3.2 COVID-19 

The COVID-19 pandemic has heavily reshaped research activities world-wide. Along with an 

incredibly fast development of vaccines that could bring the pandemic under control, efforts 

were also directed towards the development of antiviral drugs and monoclonal antibodies. 

Additionally, the pandemic has led to a rush to repurpose existing drugs. The pandemic has 

also stimulated researchers operating in fields complementary to pharmacology and 

vaccinology to contribute to the understanding of the physiopathology of the disease and to 

the characterization of risk factors and response to treatments. Coordinated efforts have been 

searched via the creation of networks that facilitate discussion among participants and 

communication of the key results prior to publication, together with establishment of strategic 

transnational collaborations. Worth mentioning in this context are: i) the Covid19-NMR 

project (https://covid19-nmr.de/), dealing with the determination of the structures of RNA and 

proteins of SARS-CoV-2 to investigate their drugability by small molecules; ii) the NMR 

international COVID-19 Research Network (CV19 Research Network) a metabolomics-based 

initiative consisting of several institutions that collaborate, using standardized NMR 

procedures, to detect the infection, predict outcomes during hospitalization, and direct efforts 

towards Long COVID.  

Suitable biofluids from COVID-19 patients for metabolomics are serum, plasma, and urine, 

thanks to their low viral load, albeit collection of research samples during the worse phases of 

the COVID-19 pandemic was a further burden for the clinicians. In this frame, we present here 

some activities from our lab directed towards the use of NMR-based metabolomics and 

lipoproteomics to characterize the COVID-19 metabolomic fingerprints, to monitor the effect 

of repurposed drugs and vaccination follow-up (Ghini et al., 2022a; Meoni et al., 2021). 

We and others (Ballout et al., 2021; Baranovicova et al., 2021; Bizkarguenaga et al., 2021; 

Bruzzone et al., 2020; Julkunen et al., 2021; Kimhofer et al., 2020; Lodge et al., 2021; Masuda 

et al., 2021) have shown that SARS-CoV-2 infection induces profound changes in the 

metabolic phenotype of the patients (Millet, “Prospective metabolomic studies in precision 

medicine. The AKRIBEA project.”; Rogers, “The Metabolomics of Critical Illness”). 

Accordingly, 1H NMR spectra of plasma samples of COVID-19 patients could be strongly 

discriminated from the spectra of both healthy subjects and COVID-19-recovered subjects, 

with a discrimination accuracy higher than 90% in both cases. The differences originate from 

significant alterations in the concentrations of several metabolites and of a panel of lipoprotein 

components. The metabolites and lipoprotein parameters that are significantly dysregulated in 

COVID-19 acute subjects are listed in Figure 7. 



| 296 
 

Characteristic trends in metabolite and lipoprotein levels are also observed as a function of the 

disease severity  (Ghini et al., 2022b). The analysis of the specific changes and correlations 

with clinical data enabled the identification of potential biochemical determinants of the 

disease fingerprint, which found confirmation in other studies performed at different centers 

worldwide and in some cases dealing with much larger cohorts. The parameters that are found 

altered in COVID-19 patients with respect to recovered individuals overlap with the acute 

infection biomarkers identified in the comparison with healthy subjects, indicating the 

substantial metabolic healing of COVID-19-recovered subjects. During the healing process, 

the metabolome and lipoproteome revert back to the “healthy” state with different rates; during 

either spontaneous healing or pharmacological treatments the metabolites are reverted faster 

than lipoproteins. Notably, several other metabolomics papers have been published, which 

identify common molecular features as characteristic for the COVID-19 profile. High 

convergence on common biomarkers from different metabolomics studies is not so common, 

and denotes the presence of a strong profile, independent of confounding factors like place of 

origin, sex, age, comorbidities. 

Regarding the pharmacological treatments, we had the chance to analyze the effect of 

tocilizumab on a very small cohort (8 patients) treated at the Florence University hospital 

during the first wave of COVID-19 in spring 2020. Tocilizumab is a monoclonal antibody that 

attaches to the receptor of the cytokine interleukin-6, whose levels are elevated in response to 

systemic inflammation, and plays an important role in severe COVID-19 disease and 

associated respiratory failure. On December 6th 2021, the European Medicines Agency 

(EMA) recommended extending the indication of RoActemra (tocilizumab) to include the 

treatment of adult COVID-19 patients who are receiving systemic treatment with 

corticosteroids and require supplemental oxygen or mechanical ventilation.  

When measuring the post-treatment levels of metabolites and lipoproteins that are significantly 

altered by the infection, we found that eight metabolites (namely, acetone, citrate, glutamine, 

glycine, lactate, mannose, phenylalanine, and pyruvate) partially or completely revert towards 

the levels of CTR subjects. Some lipoprotein main- and sub-fractions were also significantly 

affected by the tocilizumab treatment, but, they did not revert back to “healthy” values, in line 

with the above-reported observation that the recovery of the lipoproteome is slower than that 

of the metabolome along the healing process (Meoni et al., 2021). 

Finally, 1H NMR spectra of sera have also been used to define the changes induced by 

vaccination with Pfizer-BioNTech vaccine in a cohort of 20 healthcare workers, 10 COVID-

19 naïve and 10 with a previous history of COVID-19 infection (infected in the period March-

April 2020 with the Wuhan strain and recovered from the disease 208-280 days before 
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vaccination). All of them received two doses of vaccine, 21 days apart, and their serum 

samples were collected at 6 different time points to monitor time-dependent changes induced 

by the vaccination. Importantly, the vaccination does not induce a major modification of the 

metabolic phenotype of the subjects; the intra-individual differences remain smaller than the 

inter-individual ones during all the course of the study, with an individual discrimination 

accuracy >85% (considering the six samples collected for each subject). Nevertheless, in 

response to vaccination we could observe some common changes that are consistently 

occurring in all subjects within each group. While vaccination does not induce any significant 

variation in the metabolome, it causes changes at the level of lipoproteins that are smaller for 

COVID-19-recovered subjects with respect to naïve subjects, suggesting that a previous 

infection reduces the vaccine modulation of the lipoproteome composition. The differences 

between the two groups involve the nature and number of affected lipoprotein parameters. 

Additionally, the effect of the second dose is essentially negligible for the COVID-19-

recovered subjects (Ghini et al., 2022a). 

 

Fig. 7 Metabolites and lipoprotein parameters that are found significantly up- or down- regulated in COVID-19 

patients with respect to healthy controls according to different Metabolomics papers [ref 6 (Meoni et al., 2021); 

ref 7 (Bruzzone et al., 2020); ref 8 (Kimhofer et al., 2020); ref 9 (Lodge et al., 2021); ref 10 (Ballout et al., 2021); 

ref 11 (Masuda et al., 2021); ref 12 (Julkunen et al., 2021); ref 13 (Baranovicova et al., 2021); ref 14 (Bruzzone et 

al., 2020) and COMETA project (Ghini et al., 2022b). Up-/down- regulated features are indicated by red/blue 

cells. A) Metabolites; B) Lipoprotein Main Parameters; C) Lipoprotein Subfractions. Adapted from (Ghini et al., 

2022b). 
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2.4 Chronic Obstructive Pulmonary Disease  

As highlighted in Chapter 12 (Lacy, “Metabolomics of Respiratory Diseases”), chronic 

obstructive pulmonary disease (COPD) is a pathological condition characterized by the 

chronic, poorly reversible and progressive development of airflow limitation often associated 

with parenchymal destruction and emphysema (Barnes, 2000).  

Although abnormal respiratory inflammation is crucial for COPD development, the complex 

COPD pathophysiology is not yet fully understood. Currently, no validated biomarker is 

accepted for disease prognosis or COPD therapy monitoring (Ghosh et al., 2016).  

Several studies have identified serum, exhaled breath condensate (EBC)  and urine 1H NMR-

based metabolomic fingerprints of COPD patients, also showing the ability of EBC 

metabolomics to assess airway inflammation (Airoldi et al., 2016; Laurentiis et al., 2008; 

Motta et al., 2012; Wang et al., 2013; Ząbek et al., 2015). In this frame, a study from our group 

(Bertini et al., 2014) showed that NMR-metabolomics of EBC could discriminate COPD 

patients from controls with an overall accuracy of 86%. As compared to controls, EBC from 

COPD patients featured significantly lower levels of acetone, valine and lysine, and 

significantly higher levels of lactate, acetate, propionate, serine, proline, and tyrosine. Lower 

levels of valine and lysine (two essential amino acids) appear consistent with muscle wasting 

and weight loss that are known to occur in advanced COPD (Agusti et al., 2002). The 

hypothesis of a possible presence of a subclinical malnutrition in COPD is also discussed in 

Chapter 12, where the reader can find a more comprehensive overview of the metabolic 

alterations observed in sera of COPD patients.  

The application of pharmacometabolomics in the context of COPD is aimed at identifying the 

appropriate treatment for each individual COPD patient, predicting his/her response to 

therapy.  Our group applied an original and holistic approach, dubbed “breathomics”, to 

monitor the effects of treatment with and withdrawal from inhaled beclomethasone/formoterol 

in patients with COPD (Montuschi et al., 2018). In our application, breathomics combined two 

electronic noses (carbon polymer sensor e-nose, quartz crystal sensor e-nose), EBC NMR-

based metabolomics, sputum cell counts, sputum supernatant and EBC prostaglandin E2 

(PGE2) and 15-F2t-isoprostane, fraction of exhaled nitric oxide, and spirometry data. 

Breathomics improves the identification of pharmacological treatment-induced effects as 

compared with standard spirometry. Furthermore, this approach provides insights into the anti-

inflammatory effects of inhaled corticosteroids in COPD patients as reflected by reduced 

levels of sputum PGE2 and EBC acetate during treatment with formoterol alone. This research 

line was further explored with the analysis of urine, serum and sputum supernatant, 

demonstrating that different biological matrices provide complementary information on the 
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effects of beclomethasone/formoterol administration in COPD patients, and thus their 

integration could  be useful for elucidating the metabolic mechanism of action of inhaled 

corticosteroids (Vignoli et al., 2020b). An overview of the metabolite correlation patterns 

among the different biofluids is presented in Figure 8. 

  

 

Fig. 8 Heatmap showing correlations among metabolites quantified in the urine, serum, exhaled breath 

condensate (EBC), and sputum supernatant samples of 14 patients with COPD. Correlation values (R) are 

reported as different degrees of color intensity (blue, negative correlation; red, positive correlations). The figure is 

adapted and reprinted with permission from (Vignoli et al., 2020b). Copyright 2020 American Chemical Society. 

2.5 Drug Toxicity 

Pharmacometabolomics includes drug safety evaluation, that is an important step in the drug 

pipeline and a main concern for regulatory agencies. Safety evaluation is required across the 

whole process of drug development, from preclinical studies to clinical trials, as well as in 

post-approval safety surveillance. Biochemical and histological analyses are the major 

approaches used for drug safety evaluation. These approaches are effective in most cases to 

determine the safety profile of drug candidates (Wang et al., 2017). However, these methods 

can neither provide detailed information nor explore the mechanisms of drug toxicity 

(Nicholson et al., 2002). Metabolomics is ideally positioned to address the challenges of drug 
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toxicity (Hertz, “Chemotherapy-induced Peripheral Neuropathy”). It represents a powerful 

tool for collecting mechanistic information, indicating not only the extent of a toxic insult but 

also its underlying mechanisms (Ramirez et al., 2013). Several examples exist in the literature 

of NMR-based metabolomic applications in toxicology and drug safety evaluation. Just to cite 

few of them, drugs and toxicants like flutamide (Choucha Snouber et al., 2013), hydrazine 

(Garrod et al., 2005; Lindon et al., 2003), and gentamicin (Lenz et al., 2005) have been 

assessed.    

A typical example of a clinically useful class of molecules that presents high rates of therapy 

discontinuation due to acute side effects is represented by V-phosphodiesterase (PDE5) 

inhibitors (PDE5i)  (Corona et al., 2016). These molecules are the first-line therapy for erectile 

dysfunction (ED), a widespread health problem in the general population of middle-aged men 

(Ayta et al., 1999; Yafi et al., 2016). Administration of PDE5i proved beneficial in 60–70% 

of patients with varying etiologies of sexual dysfunction (Yafi et al., 2016). However adverse 

effects are a common drawback. In a study from our research group, we retrospectively 

evaluated serum and urine NMR-based metabolomic profiles to identify prognostic 

biomarkers of unfavorable efficacy/safety profile of PDE5i before drug administration. To the 

best of our knowledge this is the first and only NMR-based metabolomic study focused on 

PDE5i toxicity. Patients who are likely to experience adverse effects can be identified with an 

accuracy of 77% using pre-treatment serum samples. Adverse drug reactions showed to be 

associated with high levels of LDL-lipoprotein subfractions at baseline (Rocca et al., 2020). 

The results of this pilot study underline how metabolomics may help in identifying the 

metabolic bases underlying efficacy/safety profile of the PDE5i therapy. 
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Abstract 

 

Olive oil quality is assessed by determining several parameters. Multivariate analysis was used 

to streamline the task due to the huge number of tests required for this verification as well as 

the drawbacks of using toxic solvents, the use of a lot of oil samples, waste generation, and a 

longer execution time. In this work, 49 significant olive oil quality parameters (chemical and 

sensorial analyses) were simultaneously determined using 1H-NMR spectra to build 

multivariate models using Random Forest linear regressions. The models were also used to 

forecast all parameters for external samples, allowing us to ascertain how these values alter as 

olive oil ages, how these values change according to two of the most common Tuscany 

cultivars, Moraiolo and Leccino, and finally as a result of post-harvest practices like filtering. 

These results corroborate the goodness of the model prediction and demonstrate that 1H-NMR 

spectra can also be used to simultaneously detect information about olive oil quality, 

significantly reducing analysis time, reagent, olive oil and solvent consumption, and waste 

generation. 
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1 Introduction 

Olive oil (Olea europea L.) has been consumed by humans since antiquity and it remains 

a highly valued food today1,2. Due to the sensory and nutritional quality, there is a growing 

interest in extra virgin olive oils in the world market. Since 1991 international regulations have 

established analytical criteria to define olive oil genuineness and quality grade (European 

communities 1991, International olive oil council 1995, Characterization of Italian extra virgin 

olive oils using 1H-NMR spectroscopy, 1998). 

Generally, the assessment of olive oil grade is carried out by standard analytical 

methods3,4. These methods are often time-consuming, elaborate, and expensive, and require a 

large number of samples and solvents. As a fast and viable alternative is represented by 1H-

NMR spectroscopy combined with chemometrics5–8 and this approach has been proposed in 

this study. Chemometric linear regression technique as Random Forest (RF) is used to 

highlight the correlations between the NMR spectra and the parameters of interest. We 

recorded the proton NMR spectra of olive oil with a 400 MHz spectrometer. RF linear 

regression models for prediction were built using the following analytical and sensorial data: 

UV spectrophotometric indices (K232, K268), acidity, peroxide value, the composition of 

fatty acids, tocopherols, the composition of biophenols, total biophenols, bitter, sweet, spicy, 

gustatory intense, olfactory fruity, olfactory intense, and overall pleasantness. 

Therefore, in this work 1H-NMR coupled with the RF regression technique is used to 

perform the simultaneous determination of 49 important olive oil quality parameters. In this 

context, considering a large number of analyses, as well as the use of toxic solvents and waste 

generation, our approach is suggested to reduce the time of the analyses, the number of 

samples, and the waste production. 

Despite the considerable cost of an NMR spectrometer, many advantages are using this 

technique9,10. In particular, measurements can be performed quickly and simultaneously for 

multiple analytes present in a complex mixture. 

Moreover, the models were also used to forecast chemical and sensorial parameters for 

external olive oil samples. 

Using these predicted values, we attempted to describe: i) what happens in olive oil during 

one year of aging; ii) how different in terms of composition two of the most common Italian 

olive oil cultivars (Moraiolo cv and Leccino cv), iii) how different are filtered and not-filtered 

olive oils in terms of the predicted parameters.  
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2 Materials and methods 

2.1Olive oil samples 

n=221 bottles of olive oil were purchased from different Italian productores. All olive oil 

bottles were stored in the original dark green glass bottles at the same temperatures and under 

typical house-lighting conditions. In parallel, to evaluate the olive oil aging effect, a total of 

49 samples were followed for one year. In particular, three spectra were recorded for each of 

these samples at different time points: t0 at the opening of the bottle; t1 after 4 months; t2 after 

12 months. 

2.2 Chemical analyses 

The free acidity, peroxide value, UV spectrophotometric indices (K232, K268), and the 

determination of composition of fatty acids of the olive oil samples were determined according 

to the analytical methods (EEC Reg. 2568/1991). The tocopherols of the olive oil samples 

were determined according to ISO 9936:2006/Corr.   1:2008 analytical method (ISO   

9936/2008). 

2.2.1 Determination of biophenols in olive oils by High-performance liquid 

chromatography (HPLC)  

Two grams of olive oil were added to a plastic test tube together with 1 mL of the internal 

standard (syringic acid, 1.504 mg mL−1 in a MeOH/H2O 80:20 solution) and 5 mL of an 

EtOH/H2O 80:20 solution. The mixture was homogenized by whirl for 1 min, then sonicated 

at room temperature for 15 min in the ultrasonic bath. The mixture was then centrifuged at 

5000 rev/min for 25 min. An aliquot of the supernatant was then taken through a 5mL plastic 

syringe and filtered using 0.45 μm PVDF filter into a 1.5 mL vial. The solution thus obtained 

was immediately used for the chromatographic analysis. The chromatographic analysis was 

performed by an HP 1100 Liquid Chromatograph equipped with 1100 Autosampler, column 

heater module, quaternary pump, coupled with DAD and MS detectors, and an HP 1100 MSD 

API-electrospray as an interface (all from Agilent Technologies, Palo Alto, AC, USA). The 

column was a Hypersil Gold QRP-18 (4.6 mm internal diameter, 250 mm length; particle size 

3 μm, Thermo Electron Corporation, Austin, Texas), equipped with a 10 × 4 mm pre-column 

of the same phase and maintained at 30 °C. Elution was performed at a flow rate of 0.8 mL 

min−1 using H2O at pH 3.2 by formic acid (A), acetonitrile (B), and methanol (C). The three-

step linear gradient of both B and C changed as follows: from 2.5% to 27.5% in 45 min and 

increased to 50% in 10 min. Isocratic elution with 50% of B and 50% of C was then maintained 

for 5 min. All solvents used were of HPLC grade. 
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Total phenolic compounds were quantified according to the COI/T.20/Doc. no. 29 

analytical method (COI/T.20/Doc.29, 2009). 

2.2.2 Sensory evaluation 

Sensory evaluation of olive oil was performed according to the  European Union (EU) 

official method11. However, the number of descriptors on the official profile sheet was 

increased to obtain a detailed description of perceptions. Six trained tasters were requested to 

evaluate olive oil samples. A total of n=8 characteristic tastes were considered in this study: 

bitter, sweet, spicy, gustatory intense, olfactory fruity, olfactory intense, and overall 

pleasantness. 

2.3 1H NMR analyses 

For sample preparation, approximately 60 mg of olive oil was dissolved in 600 L of 

deuterated chloroform (CDCl3).  Into a 5 mm NMR tube 600 L of the prepared mixture was 

transferred. NMR spectra acquisition was performed using an AVANCE III 400 MHz Bruker 

spectrometer working at 300K.  For each olive oil sample, the following 1H-NMR experiments 

were performed: i) ZG1H: a standard single pulse experiment, i.e. RD-P(90°)-acquisition of 

the free induction decay (FID); ii) NOESYGPPS: a one-dimensional 1H-NMR pulse sequence 

with strong saturating signals suppression. For more information about the experimental 

parameters used for both NMR experiments, we refer the reader to Dourou et al.5. 

The phase and baseline corrections were automatically performed using the NMR 

processing software Topspin (version 3.5 pl 7 Bruker BioSpin Srl). Spectra were aligned to 

0.7 ppm, in correspondence of β-sitosterol singlet. Before proceeding with the statistical 

analysis, each 1D-NMR spectrum was segmented into 0.02 chemical bins and the integration 

of the corresponding spectral areas were performed using AssureNMR software (version 3.8.4, 

Bruker BioSpin Srl). This procedure, called binning or bucketing, is an NMR pre-processing 

method for the reduction of the number of total variables and for the compensation of the small 

shifts in the signals, necessary to generate more robust and reproducible NMR data. The 

binned matrix of ZG1H spectra was obtained considering whole spectra (from 0.2 to 11.9 ppm) 

except for chloroform residual signal (7.24 ppm) resulting in a system of 580 bins. Binning of 

NOESYGPPS spectra (from 0.2 to 11.9 ppm) was obtained by removing all suppressed 

saturating signals and the dimension of the system was reduced to 515 bins. To obtain a 

complete informative spectrum, only the bins from 11.90 to 5.62 of the NOESYGPPS 

experiment and the bins from 6.20 to 0.30 of the ZG1H experiment were considered and 

merged. Each resulting binned spectrum was scaled according to the oil weight measured 
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during the sample preparation. Probabilistic Quotient Normalization (PQN)12 was applied 

concluding the 1D spectral processing phase.  

2.4 NMR molecular assignment and quantification  

41 molecular features in olive oil samples were correctly assigned in all spectra performed 

using a library of NMR spectra of pure organic compounds, public databases13 (i.e. FooDB, 

PhytoHub, PhenolExplorer, etc.) storing reference, and literature data. Each NMR-identified 

metabolite was aligned to a reference value of chemical shift, obtaining a perfect alignment 

among all the spectra. The quantification of the assigned metabolites was performed directly 

by integrating the signals in the spectra in a defined spectral range, using a house-developed 

tool. For completeness, the 41 metabolites assigned and quantified are presented in 

Supplementary Table 1, reporting the spectral region of the assignment. 

2.5 Statistical analysis 

To correctly and robustly predict n=42 analytical variables and n=7 sensorial 

characteristics, using the 1H-NMR information, 100-times Random Forest (RF) regression 

models14–17, using a total of 1000 trees per model, were performed. For each analytical and 

sensorial variable predicted (precisely, 100 values per olive oil spectrum), the final prediction 

value was calculated by performing an average among the k=100 prediction obtained for each 

specific model. Pearson R2 18 was calculated by comparing the real value and the 100-times 

average predicted values. The same rationale was applied to identify which 1H-NMR variables 

mostly contributed to correctly predicting that specific analytical and/or sensorial 

characteristic. In particular, the variable importance was calculated by extracting the mean 

decrease Gini coefficients of all 1H-NMR variables per k=100 RF model. Subsequently, the 

mean decrease Gini coefficients were ranked where the highest coefficients corresponded with 

the highest ranks coefficients and the lowest coefficients with the lowest ranks. To obtain a 

unique and univocal value representing the most incident NMR variables, the 100-times ranks 

obtained for each model performed were averaged. 

To correctly classify the different cultivars (Moraiolo vs Leccino) and the different post-

harvest procedures (filtered vs non-filtered), classification RF models14–17,  using a total of 

1000 trees per model, were performed on both bucketed olive oil spectra and on the matrix of 

previously correctly predicted (using 100-times RF regression models) analytical and sensorial 

profiles.  

The univariate analysis was performed to evaluate metabolic (both predicted analytical 

and direct NMR integrated metabolic profiles) and sensorial differences in: i) olive oils 

collected in three-distinct timepoints, to evaluate the effect of natural oxidation in the olive oil 

aging process; ii) olive oils of two different cultivars: Moraiolo and Leccino; iii) olive oils 
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treated with two different post-harvest procedure: filtering and non-filtering. The Friedman 

test followed by post-hoc Nemenyi analysis19,20 was chosen to infer differences between more 

than two classes of samples (case i) described above) and the Wilcoxon test21 was chosen to 

infer pairwise differences between two classes of samples (case ii) and iii) described above). 

Benjamini- Hochberg method was used to correct for multiple testing22 and FDR-adjusted P-

values < 0.05 were considered statistically significant. 

2.6 Software 

All analyses were performed with R (version 4.1.0) software23. The randomForest package 

14,15 was used to build Random Forest models. To perform The Friedman test followed by post-

hoc Nemenyi analysis the “frdAllPairsNemenyiTest” function of PMCMRplus24 R package 

was used. All plots were obtained using the ggplot225 R package. 
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3 Results and discussion 

3.1 Prediction of chemical analyses 

It is well accepted that olive oil (OO), the principal product of olive (Olea europaea L., 

Oleaceae) and a crucial component of the Mediterranean diet1, has significant nutritional and 

health benefits. Its importance is ascribed to its high proportion of monounsaturated and 

polyunsaturated fatty acids (MUFA and PUFA, respectively)26, as well as minor polar 

compounds with a strong antioxidant profile27,28. In this scenario, the aim was to evaluate if, 

using the information contained in the entire olive oil NMR spectra, we were able to correctly 

indirectly quantify these relevant compounds that characterize the olive oil chemical profile. 

The 100-times RF regression models were used to relate the 1H-NMR bucketed spectra 

with the analytical results of several important chemical parameters of olive oil. Models were 

constructed for each of the n=42 responses separately. As described in the materials and 

methods section, for each olive oil spectrum, the average predicted value of chemical 

parameters was obtained by the k=100 independent RF regression models built. 

For each analytical parameter, the mean of spectrum-specific real and correctly average 

predicted values, the standard deviation (sd), the Pearson’s R2, the P-values, the regression 

equation, the Root-mean-square deviation (RMSE), and the Error ((RMSE/meananaltycal 

parameter)*100)  expressed in percentage are reported in Table 1.  

The regulated physiochemical quality parameters (free acidity, peroxide value), and UV 

absorption characteristics (K268 and K232) were predicted from 1H-NMR bucketed spectra 

with a resulting R2 of 0.98, 0.91, 0.89, and 0.89, respectively, while the %Error, excepting for 

the peroxide index, is minor of 15% (Table 1, SF1). Each fatty acid component has been also 

analysed. Oleic acid (C18:1), the most abundant fatty acid in olive oil (mean of 73.03% m/m 

in the olive oil samples collected for this study), fits with an R2 of 0.99 and a %Error of 0.38, 

indicating that this value can be optimally predicted using NMR spectra. As well, linoleic acid 

(C18:2), the second most abundant fatty acid (8.18%m/m), shows an R2 of 0.99 and a %Error 

of 1.82. Optimal data can be obtained by the RF linear regression built to predict the 

concentration of palmitic acid (C16:0) resulting in a regression coefficient value of 0.99 and a 

%Error value of 1.67. The other less abundant fatty acids present in olive oil show, in any case, 

good fitting, resulting in an R2>0.80 and a %Error value < 5%, except for the Lignoceric acid 

(C24:0) and Margaric acid (C17:0), with a %Error of 18.75 and 12.20 respectively (Table 1). 

RF statistics for total biophenols and for the different biophenol components are also 

examined (see Table 1, SF1). The sum of biophenols detectable in olive oil is composed mainly 

of simple phenolic acids, phenyl alcohols, secoiridoids, and flavonoids. The main phenolic 

alcohols identified in virgin olive oil are hydroxytyrosol and tyrosol. Their concentrations are 
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usually low in fresh samples but proportionally increase with advanced storage time due to the 

hydrolysis of secoiridoids (oleuropein and ligstroside aglycones)3. The phenyl alcohols tyrosol 

and hydroxytyrosol, together with the secoiridoids, constitute approximately 90% of the total 

biophenols of olive oil28. Hydroxytyrosol and tyrosol models show an optimal R2 of 0.99 with 

a %Error of 30.93 and 28.25 respectively. Amongst secoiridoids, several compounds are listed 

and are described generally as oxidized and/or hydroxylic forms (i.e., decarboxymethyl 

oleuropein aglycone, oxidized dialdehyde form; decarboxymethyl ligstroside aglycone, 

oxidized dialdehyde form; oleuropein aglycone, oxidized aldehyde, and hydroxylic form; 

ligstroside aglycone, oxidized aldehyde, and hydroxylic form). In general, all of them show 

excellent R2, however, the predicted values of the aldehyde hydroxylic form of oleuropein and 

the oxidized aldehydic form of hydroxylic ligstroside (R2 0.94 and 0.92, respectively) are 

characterized by high %Error values (>20). The total biophenol fraction RF model shows an 

R2 of 0.99 and a %Error of 4.38. The total tocopherol fraction shows the perfect fitting (R2 

1.00), with a %Error of 3.28.  

Other polyphenols considered were: vanilline, p- and o- coumaric acid, hydroxytyrosol 

acetate, ferulic acid, pinoresinol, cinnamic acid, luteolin, apigenin, and methyl luteolin. In this 

case, variables are very well predicted (R2>0.90) but the %Error values were about 20/25.  

To evaluate the spectral regions that mainly determine the good RF regression models 

prediction, the variable importance, considering the mean ranks based on the mean decrease 

Gini index, was also considered. In figure 1, for each analytical variable predicted, the top 5 

average ranks NMR spectra regions were reported.  

3.2 Prediction of sensory analysis 

The same approach was also used to relate the 1H-NMR bucketed spectra with the sensory 

profiles. 

In Table 2 are reported the RF linear regression results for each model and the corresponding 

plots are reported in SF2. Independent models were built on 42 different olive oil samples for 

each sensory descriptor: bitter, sweet, and spicy taste, gustatory intensity, fruity olfactory 

intensity, and overall pleasantness. Other sensory attributes (rancid, fruity, heated, winey, 

metallic, and frostbitten olive) were excluded because of missing information (only 22 samples 

out of 42). Interestingly, using the NMR-based information we observed that the regression 

coefficients are optimal (R2>0.97) and the calculated %Error values are about 15, suggesting 

that, using the entire olive oil spectra, we can correctly predict the sensorial profile.  
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The same rationale applied in §3.1 was also considered here. To highlight the spectral 

regions that mainly determine the good RF regression models prediction, the variable 

importance, considering the average ranks based on the mean decrease Gini index, was also 

considered. In Figure 2 for each sensorial variable predicted the top 5 average ranks NMR 

spectra regions were reported.  

3.3 Characterization of the olive oil aging process using predicted values and molecules identified 

using the 1H-NMR spectra 

With the aim to evaluate the effect of natural olive oil aging on the metabolic and sensorial 

profiles of olive oils, a total of 49 samples were followed for one year. In particular, three 

spectra were recorded for each of these samples at different time points: the first at t0 at the 

opening of the bottle; the second after 4 months, t1; the third after 12 months, t2. The Friedman 

test followed by post-hoc Nemenyi analysis was chosen to ascertain pairwise differences 

among three different times collections of olive oil samples. Figure 1 shows the boxplot of the 

statistically significant (adjusted P-value<0.05) molecules, directly and indirectly, quantified 

using NMR spectra, and the olive oil sensory values.  

Monitoring molecules’ trends during a time course, suggests an increase in production of 

the following parameters: K 232, K 268, lignoceric acid (C24:0), margaroleic acid (C17:1), 

peroxide index (Figure 3 A) – all of them indirectly quantified (samples predicted on the best 

performing RF linear regression models) –, and hydroperoxides derivates (1), (2), and (3) – 

directly quantified (Figure 1 B). Indeed, a statistically significant decrement in terms of 

molecular features is significantly statistically detectable for methyl luteolin, oleuropein – 

indirectly quantified –, 1,2 diglycerides, alkenals, (E)-2-alkenals, and aldehyde – directly 

quantified.  

The aging process is also connected to an alteration of sensorial profile. In particular, we 

observed an increase in a sweet taste and a significant decrease in olfactory and gustatory 

intensity and bitter taste (Figure 3 C). As known, olive oil is highly subject, as a result of 

oxidation phenomena, to alterations of the entire organoleptic profile and, interestingly, the 

age-dependent chemical and sensorial profile alterations observed in this study are totally in 

line with the results reported in the literature29–31. 

3.4 Characterization of Moraiolo and Leccino cultivars 

The RF classification model was performed to ascertain if it was possible to distinguish 

and classify Moraiolo and Leccino cultivars using the entire NMR spectra (fingerprinting 

approach) or using the matrix of the quantified and predicted molecules and the predicted 

sensorial profiles. This analysis aims to verify if we can rapidly determine the olive oil cultivar 

using our data. It might be interesting to be able to guarantee, with a single analysis, using a 
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whole spectrum or a pool of molecules, the exact cultivar of a monovarietal olive oil. To the 

best of our knowledge, we are the first that used this approach to identify the chemical and 

sensorial differences between the two important Italian olive oil cultivars5,32–34.  

The RF models have been built starting from a group of 221 olive oil samples (83 different 

olive oil samples: 69x3 independent replicates and 14 single samples) for which the cultivar 

has been confirmed by genetic analysis harvested and acquired in three different years: 2019 

(26 samples: 14 Leccino cv., and 12 Moraiolo cv.); 2020 (19 samples: 10 Leccino cv., and 9 

Moraiolo cv.); and 2021 (38 samples: 17 Leccino cv., and 21 Moraiolo cv.). Therefore, the 

models have been built only on these two cultivars: Leccino (n=109) and Moraiolo (n=112). 

1H-NMR bucketed spectra consisting of a matrix of 551x221 dimensions were used to build a 

fingerprint model with the aim of correctly classifying 1H-NMR olive oil spectra according to 

the cultivar. The resulting overall predictive accuracy is 75.9% (Table 3). Instead, using the 

matrix (dim: 221x91) of identified, and predicted molecules and sensory results, provides an 

overall predictive accuracy of 80.4% (Table 4). Both RF classification models have been built 

by iteratively and randomly removing from the training set all the 2 replicates belonging to the 

same olive oil samples, to avoid a classification bias due to the similarity of the samples.  

The Wilcoxon univariate analysis was then performed to determine the discriminant 

molecules between the two cultivars (Figure 4). We observed that Moraiolo tends to have 

higher concentrations of free acidity, arachic acid (C20:0), behenic acid (C22:0), dialdehyde 

aglicone ligstroside, eicosanoic acid (C20:1), lignoceric acid (C24:0), luteolin, oleic acid 

(C18:1), oxidized aldehydic form of hydroxylic ligstoside aglycon, oxidized aldehydic form 

of hydroxylic oleuropein aglycon – indirectly quantified (Figure 4 A) –,1,2 

diglycerides/triolein, and squalene – directly quantified (Figure 4 B). 

In contrast, Leccino cultivar is characterized by higher levels of dialdehyde 

decarboxymethyl ligstroside aglycon, dialdehyde decarboxymethyl oleuropein aglycon, 

linoleic acid (C18:2), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), 

total tocopherols, vanilline – indirectly quantified (Figure 4 A)–, 4-hydroxy-trans-alkenals, 

aldehydic forms of oleuropein and ligstroside, beta-sitosterol, cycloartenol, cyclopropane, 

hydroperoxides derivates (1), linoleic acid, linoneyl/linolenyl, terpene (1), terpene (2), and 

terpene (3),  – directly quantified (Figure 4 B)35.   

Moraiolo, compared to Leccino, results to be fruity, and less spicy, and is characterized 

by a more bitter taste (Figure 4 C)36,37. 
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3.5 Characterization of filtered and not-filtred olive oil samples. 

The same approach of §3.4 was also applied to filtered and not-filtered olive oil samples, 

with the aim of correctly classifying samples according to these two different post-harvest 

procedures. RF classification models have been built on bucketed spectra and on identified (in 

direct and indirect ways) molecules and predicted sensorial profile of 12 not-filtered olive oil 

samples and 10 filtered olive oil samples. In this case, triplicates were not present in the 

dataset, and therefore all samples have been used to build the RF models. The resulting 

accuracy of the RF models built on bucketed spectra is 84.8% (Table 5) while the RF models 

built on olive oil's overall metabolic and sensorial profile is 75.8% (Table 6).   

The Wilcoxon univariate analysis on olive oil molecules was performed to determine the 

change detectable in the olive oils according to the filtration step. As reported in violin plots 

of Figure 3, filtered olive oils tend to have higher levels of cinnamic acid, dialdehyde 

decarboxymthyl ligstroside aglycon – indirectly quantified (Figure 5 A) –, (E)-2-alkenals, 

aldehydic forms of oleuropein and ligstroside, linolenyl, and aldehydes – directly quantified 

(Figure 5 B). In contrast, non-filtered olive oils tend to have higher free acidity and K268 and 

higher levels of hydroxytyrosol, hydroxytyrosol acetate, luteoline, and tyrosol – indirectly 

quantified (Figure 5 A). 

Regarding the sensorial profile, filtered olive oils tend to have a more spicy, bitter, and 

olfactory fruity taste than non-filtered oils (Figure 5 B)38–40. 

  

4 Conclusions 

 

In this study we have developed a robust statistical approach to indirectly derive, starting 

only from the information contained in the 1H-NMR spectrum, both the specific chemical and 

sensory parameters of olive oil. The Random Forest regression predictive models, iterated 100 

times for each variable considered, determine optimal (R2 > 0.98) and good (R2 < 0.98) 

prediction of 49 important olive oil quality parameters. Using these predicted values, 

combined with the directly assigned and quantified compounds in the 1H-NMR spectra, we 

highlighted statistically significant differences in terms of both chemical and sensorial profiles 

considering the olive oil aging phenomenon, considering two different commonly used Italian 

olive oil cultivars (Leccino cv and Moraiolo), and, lastly, considering two different post-

harvest procedures (filtration and non-filtration).   
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Tables 

 

 

Parameters  unit 
mean±sd 

(analytic.) 
mean±sd (pred.) R2 

P-

value 
RMSE 

Error 

% 

Free acidity 
%oleic 

acid 
0.331±0.169 0.345±0.144 0.98 <0.001 0.04 12.08 

peroxide index meq/kg 11.539±13.709 13.301±10.942 0.91 <0.001 4.787 41.49 

uv        

K 232 nm 2.108±0.765 2.205±0.699 0.89 <0.001 0.184 8.73 

K 268 nm 0.162±0.132 0.174±0.128 0.89 <0.001 0.024 14.81 

Methyl esters of fatty acids %m/m       

Palmitic acid (C16:0)  13.855±1.276 13.865±1.127 0.99 <0.001 0.232 1.67 

Palmitoleic acid (C16:1)  1.031±0.22 1.038±0.176 0.88 <0.001 0.087 8.44 

Margaric acid (C17:0)  0.041±0.012 0.042±0.008 0.92 <0.001 0.005 12.20 

Margaroleic acid (C17:1)  0.082±0.021 0.082±0.015 0.96 <0.001 0.008 9.76 

Stearic acid (C18:0)  2.167±0.26 2.155±0.218 0.99 <0.001 0.059 2.72 

Oleic acid (C18:1)  73.034±1.756 73.036±1.614 0.99 <0.001 0.278 0.38 

Linoleic acid (C18:2)  8.181±1.042 8.186±0.982 0.99 <0.001 0.149 1.82 

Arachic acid (C20:0)  0.355±0.028 0.355±0.022 0.99 <0.001 0.008 2.25 

Linolenic acid (C18:3)  0.813±0.143 0.822±0.121 0.98 <0.001 0.029 3.57 

Eicosanoic acid (C20:1)  0.289±0.03 0.289±0.026 0.98 <0.001 0.007 2.42 

Behenic acid (C22:0)  0.102±0.016 0.102±0.013 0.97 <0.001 0.005 4.90 

Lignoceric acid (C24:0)  0.048±0.023 0.054±0.017 0.98 <0.001 0.009 18.75 

Profile of biophenols mg/kg       

Hydroxytyrosol  9.652±15.00 9.561±12.583 0.99 <0.001 2.985 30.93 

Tyrosol  10.147±13.958 10.989±11.712 0.99 <0.001 2.867 28.25 

Vanillic acid+ Caffeic acid  1.462±0.94 1.48±0.657 0.97 <0.001 0.338 23.12 

Vanilline  2.654±1.166 2.626±0.847 0.97 <0.001 0.397 14.96 

p-Coumaric acid  1.691±0.968 1.809±0.741 0.98 <0.001 0.311 18.39 

Hydroxytyrosol acetate  1.781±1.289 12.07±0.799 0.95 <0.001 0.654 36.72 

Ferulic acid  2.271±1.363 2.416±0.934 0.98 <0.001 0.509 22.41 

o-Coumaric acdid  1.869±1.219 1.737±0.899 0.95 <0.001 0.488 26.11 

Oxidized Dialdehyde form of 

Decarboxymethyloleuropein 

Aglycon 
 5.899±6.691 5.864±5.521 0.97 <0.001 1.678 28.45 
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Dialdehyde 

Decarboxymethyloleuropein 

Aglycon 
 65.208±62.009 64.646±60.034 0.99 <0.001 5.709 11.82 

Oleuropein  9.091±10.519 8.817±9.342 0.98 <0.001 1.901 20.91 

Dialdehyde Oleuropein 

Aglycon 
 9.214±11.35 9.115±10.334 0.98 <0.001 1.684 18.28 

Oxidized Dialdehyde form of 

Decarboxymethyl ligstroside 

Aglycon 
 10.539±9.458 10.908±7.671 0.91 <0.001 2.854 27.08 

Dialdehyde Decarboxymethyl 

ligstroside Aglycon 
 49.665±23.265 49.428±18.764 0.98 <0.001 6.059 12.20 

Pinoresinol, 1-

acetoxypinoresinol 
 23.148±17.976 23.078±15.665 0.98 <0.001 3.569 15.42 

Cinnamic acid  7.146±8.465 7.249±7.416 0.96 <0.001 1.797 25.15 

Dialdehyde Aglicone 

Ligstroside 
 9.143±13.165 9.723±10.992 0.92 <0.001 3.276 35.83 

Oxidized Aldehydic form of 

Hydroxylic Oleuropein 

Aglycon 
 16.265±7.524 16.347±6.186 0.98 <0.001 1.926 11.84 

Luteolin  6.545±5.547 6.835±4.433 0.97 <0.001 1.559 23.82 

Aldehydic Hydroxylic 

Oleuropein Aglycon 
 34.316±40.796 32.829±32.018 0.94 <0.001 11.672 34.01 

Oxidized Aldehydic form of 

Hydroxylic Ligstroside 

Aglycon 
 48.186±48.014 48.076±40.185 0.92 <0.001 10.812 22.44 

Apigenin  4.977±2.937 4.957±1.977 0.97 <0.001 1.064 21.38 

Methyl luteolin  8.543±5.317 8.348±3.904 0.95 <0.001 1.731 20.26 

Aldehydic Hydroxylic 

Ligstroside Aglycon 
 13.535±14.571 13.578±12.603 0.93 <0.001 2.954 21.82 

Total biophenols mg/kg 355.069±163.529 353.699±156.928 0.99 <0.001 15.568 4.38 

Total Tocopherols mg/kg 307.049±120.319 301.417±111.924 0.99 <0.001 10.083 3.28 

Table 1: RF regression models performed on analytical chemical compounds. For each analytical parameter the 

mean of spectrum-specific real and correctly average predicted values ± the standard deviation (sd), the Pearson’s 

R2, the P-values, the Root-mean-square deviation (RMSE), and the %Error (RMSE/meananaltycal parameter*100) are 

reported. 

  

 

Parameters mean±sd (analytic.) mean±sd (pred.) R2 P-value RMSE Error % 

Bitter 3.629±1.707 3.653±1.465 0.98 <0.001 0.393 10.83 

Sweet 1.501±0.896 1.509±0.67 0.98 <0.001 0.274 18.25 

Spicy 3.446±1.488 3.429±1.121 0.98 <0.001 0.459 13.32 

Gustatory intense 3.963±0.917 3.951±0.697 0.97 <0.001 0.283 7.14 

Olfactory Fruity 3.119±1.433 3.098±1.019 0.97 <0.001 0.486 15.58 

Olfactory intense 4.272±0.973 4.248±0.73 0.97 <0.001 0.316 7.40 
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Overall pleasantness 4.226±1.791 4.355±1.299 0.97 <0.001 0.609 14.41 

Table 2: RF regression models performed on sensorial profiles. For each sensorial characteristic the mean of 

spectrum-specific real and correctly average predicted values ± the standard deviation (sd), the Pearson’s R2, the 

P-values, the Root-mean-square deviation (RMSE) and the %Error (RMSE/meananaltycal parameter*100) are reported. 

 

 Moraiolo Leccino 

Moraiolo 77.6 22.4 

Leccino 25.8 74.2 

Overall accuracy: 75.9% 

Table 3: RF classification confusion matrix performed on bucketed spectra to correctly classify the two main 

olive oil cultivars (Moraiolo vs Leccino). The overall accuracy of the RF model was also reported. 

 

 Moraiolo Leccino 

Moraiolo 72.3 27.7 

Leccino 11.5 88.5 

Overall accuracy: 80.4% 

Table 4: RF classification confusion matrix performed on indirectly and directly quantified molecular feature, 

and sensory profiles to correctly classify the two main olive oil cultivars (Moraiolo vs Leccino). The overall 

accuracy of the RF model was also reported. 

 

 Filtered Non-filtered 

Filtered 83.3 16.7 

Non-filtered 33.5 66.7 

Overall accuracy: 75.8% 

Table 5: RF classification confusion matrix performed on bucketed spectra to correctly classify the two main post-

harvest olive oil procedures (filtration vs non-filtration). The overall accuracy of the RF model was also reported  

 

 

  Filtered Non-filtered 

Filtered 100 0 

Non-filtered 33.3 66.7 

Overall accuracy: 84.8% 

 

Table 6: RF classification confusion matrix performed on indirectly and directly quantified molecular feature, 

and sensory profiles to correctly classify the two main post-harvest olive oil procedures (filtration vs non-

filtration). The overall accuracy of the RF model was also reported 
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Figure 1: Spectra regions (ppm) RF importance plot. The top 5 average importances ranks for each analytical 

parameter are reported 

 

 

 

Figure 2: Spectra regions (ppm) RF importance plot. The top 5 average importances ranks for each sensorial 

parameter are reported 
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Figure 3: Univariate analysis performed on the three timepoints sampling of olive oils, t0, t1, and t2, respectively. 

The violin plots are related to A) indirectly quantified molecular features, B) directly quantified molecular features, 

and C) the sensorial profile. The yellow violins correspond to t0 olive oil samples, the magenta violins to t1 olive 

oil samples, and the dark blue violin to the t2 olive oil samples.  
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Figure 4: Univariate analysis performed on the two olive oil cultivars: Leccino and Morellino. The violin plots are 

related to A) indirectly quantified molecular features, B) directly quantified molecular features, and C) the sensorial 

profile. The light blue violins correspond to the Leccino olive oil samples, and the light red violins to Morellino 

olive oil samples.  

 

 

 

Figure 5: Univariate analysis performed on the two post-harvest procedure: filtration and non-filtration, 

respectively. The violin plots are related to A) indirectly quantified molecular features, B) directly quantified 

molecular features, and C) the sensorial profile. The orange violins correspond to the filtered olive oil samples, and 

the green violins to the non-filtered olive oil samples.  



Results | 335 
 
 

 

Supplementary Materials  

 

Metabolite names range ppm experiment 

cycloartenol (1) 0.365-0.3181 zg 

cycloartenol (2) 0.5805-0.5575 zg 

cyclopropene 0.5557-0.5435 zg 

unknown 1  0.6326-0.6107 zg 

beta-sitosterol 0.7033-0.684 zg 

all acids 0.9279-0.8445 zg 

linolenyl/omega3 1.0119-1.0007 zg 

all acyl chains (1) 1.4248-1.188 zg 

all acyl chains (1) 1.6722-1.5381 zg 

squalene 1.7064-1.68 zg 

oleic+linoleic 2.0961-1.9435 zg 

unkown 2 2.2135-2.1994 zg 

all acyl chains (3) 2.3608-2.2512 zg 

hydrogenation saturation 2.3857-2.3635 zg 

linoleic acid (1) 2.6456-2.6005 zg 

linoleyl + linolenyl 2.869-2.7145 zg 

linoleic acid (2) 2.958-2.894 zg 

unkown 3 3.3204-3.2616 zg 

beta-sitosterol + stigmasterol 3.5743-3.4956 zg 

1,2 diglycerides 3.7693-3.7171 zg 

Acetate 4.004-3.997 zg 

Glycerol triglycerides + 1,3 

diglycerides  4.2112-4.0678 zg 

Glycerol triglycerides + 1,2 

diglycerides + linoleic 4.4186-4.2292 zg 

Glycerol-13C3 4.5211-4.4584 zg 

unkown 4 4.7665-4.7486 zg 

1,2 diglycerides/triolein 5.2064-5.0544 zg 

Terpene (1) 4.618-4.577 NOESYGPPS 

Terpene (2) 4.6873-4.6608 NOESYGPPS 

Terpene (3) 4.7386-4.7146 NOESYGPPS 

Hydroperoxides derivates (1) 6.0567-5.8958 NOESYGPPS 

Hydroperoxides derivates (2) 6.6213-6.5358 NOESYGPPS 

Hydroperoxides derivates (3) 6.313-6.2201 NOESYGPPS 

aldehyde (1) 7.6692-7.6536 NOESYGPPS 

Formaldehyde 8.0268-8.0032 NOESYGPPS 

aldehydic forms of oleuropein and 

ligstroside 9.2601-9.2141 NOESYGPPS 

aldehyde (2) 9.296-9.2792 NOESYGPPS 

n_alchenale 9.7846-9.7592 NOESYGPPS 

4-hydroxy-trans-alkenals 9.6712-9.6348 NOESYGPPS 
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E,E-2,4-alkadienals 9.5609-9.541 NOESYGPPS 

(E)-2-alkenals 9.5165-9.506 NOESYGPPS 

oxidized dialdehyde form of 

decarboxymethyloleuropein aglycon 11.82-11.8 NOESYGPPS 

 

Supplementary Table 1: List of compounds directly assign and quantified on olive oil spectrum; the range of ppm 

and the 1H NMR experiment in which the assignment was performed are also reported  
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Supplementary Figure S1: Linear regression RF models performed on chemical olive oil parameters. In the 

multipanel here presented the R2 and the P-value are also reported.  
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Supplementary Figure S2: Linear regression RF models performed on sensory olive oil parameters. In the 

multipanel here presented the R2, the P-value, and the regression equation are also reported.  
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 Conclusions 
 

The results presented in this three-year methodological PhD thesis primarily extolled 

the potential of untargeted metabolomics for various applications in the biomedical field, 

focusing on the investigation of both human physiological and pathophysiological processes, 

while also emphasizing the fundamental synergy between chemistry, biochemistry, and 

different statistical approaches for a better understanding the dynamic, comprehensive, and 

accurate image of human phenotype, thus increasing knowledge on biological mechanisms of 

human metabolism in healthy and diseased status.  

In this methodological thesis, firstly, untargeted metabolomics has been applied to 

obtain new insights into different biological and physiological conditions. To investigate the 

complex physiological aging process and to shed light on the sexual dimorphic mechanisms 

of aging, in the first studies here proposed (§4.1.1, §4.1.2, and §4.1.3), untargeted 

metabolomics was applied, integrating both standard univariate and multivariate analyses with 

the molecular features-association networks. In more detail, applying a holistic metabolomic 

approach, in the first study presented in this thesis, the untargeted approach proved to be 

decisive in investigating the difference in terms of architecture and connectivity of sex-specific 

and clinical and biochemical parameters-specific serum metabolic association networks build 

considering a cohort of nonagenarians. Secondly, using the same cohort described above, the 

NMR untargeted metabolomics, combined with classical statistical multivariate and univariate 

analyses, highlighted the sexual dimorphic metabolic differences in nonagenarians and it was, 

also, relevant for determining potential biomarkers for predicting the risk of developing 

geriatric diseases, particularly decreased cognitive function and geriatric depression. Thirdly, 

the untargeted metabolomic approach reveals to be important to evaluate and identify the 

potential correlation between different age-increasing groups and: i) the molecular features 

concentrations; ii) the pairwise molecular features correlations; ii) the pairwise molecular 

features ratios. This innovative approach in metabolomics was proposed to shed light on the 

dynamic of aging molecular mechanisms.  

Moreover, to better understand the mechanisms underlying human physiology, 

considering that in the human body several microorganisms exist and coexist, an NMR 

untargeted metabolomics approach was applied in §4.1.4 to characterize and understand 

potential metabolic changes that could determine and affect the human phenotype after 

assumption of a non-invasive exogenous treatment – probiotics.   

As known, the ABO and Rh systems play a fundamental role in transfusion medicine 

and hematopoietic transplantation and are also related to the pathogenesis and 
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pathophysiology of various human diseases, such as cardiovascular and oncological diseases. 

In this scenario, the work §4.1.5 here presented is the first NMR-based metabolomics work in 

which the specific associations between circulating levels of plasma metabolites and 

lipoproteins and the ABO/Rh blood group system were analyzed in a cohort of Italian healthy 

blood donors. 

Metabolomics is also an excellent tool for characterizing and preventing a 

pathophysiological status. In particular, metabolic perturbations are fundamental events that 

contribute to ischemic stroke, its progression, and the development of unfavorable outcomes. 

Using retrospective data from the Italian multicentric observational study, in §4.1.6 an NMR-

based metabolomics approach was applied to identify serum biomarkers of three-month poor 

outcomes (i.e. mortality, development of neurological impairments, hemorrhagic 

transformation of the cerebral lesion, and non-response to intravenous thrombolysis) in AIS 

patients, treated with intravenous recombinant tissue plasminogen activator.  

As for neurological disorders, cancer research is one of the most important fields 

investigated by metabolomics, with the aim to discover new biomarkers and refine diagnostic 

tests and therapies. With these ideas in mind, in §4.1.7, an untargeted metabolomics approach 

was used to investigate the blood metabolite profiles in patients with CRC, polyposis, and 

healthy controls, using a metabolite–metabolite association networks analysis to investigate 

and explore the existence of molecular mechanisms underlying these different clinical profiles 

and with the aim to highlight potential biomarkers of the disease.  

To conclude, in §4.1.8, is reported a contribution highlighting the various aspects of 

the NMR-based untargeted metabolomics, focusing on: i) the effects on the individual 

metabolomic fingerprint of non-invasive treatment; ii) the characterization of metabolic 

fingerprints of specific diseases; ii) the effects of drugs on the disease fingerprint and on its 

reversal to a healthy metabolomic status. 

In this methodological thesis, §4.2.1 is dedicated to the development of a robust 

statistical approach, based on the construction of linear regression Random Forest models, to 

relate the 1H-NMR bucketed olive oil spectra with the analytical results of several important 

chemical parameters and sensory profile of olive oil, thus determining an indirect 

quantification of both chemical and organoleptic parameters. 

In conclusion, even if a significant fraction of the presented material is still in 

preparation and touches on different research areas, this methodological thesis may contribute 

to the demonstration that untargeted metabolomics, combined with bioinformatic tools and 
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robust statistical analyses, might be regarded as a complete and powerful analytical technique 

with fair and realistic possibilities to be structurally implemented in the heterogeneous but 

integrated field, ranging, in particular, from biomedical to food research. 
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