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ABSTRACT 

 

Computer vision allows to automatically detect and recognize objects from images. 

Nowadays, timely detection of relevant events and efficient recognition of objects in an 

environment is a critical activity for many Cyber-Physical Systems (CPSs). Particularly, the 

detection and recognition of traffic signs (TSDR) from images was and is currently being 

investigated, as it heavily impacts the behaviour of (semi-)autonomous vehicles. TSDR 

provides drivers with critical traffic sign information, constituting an enabling condition for 

autonomous driving and attaining a safe circulation of road vehicles. Misclassifying even a 

single sign may constitute a severe hazard to the environment, infrastructures, and human lives. 

In the last decades, researchers, practitioners, and companies have worked to devise more 

efficient and accurate Traffic Sign Recognition (TSR) subsystems or components to be 

integrated into CPSs. Mostly TSR relies on the same main blocks, namely: i) Datasets 

creation/identification and pre-processing (e.g., histogram equalization for improvement of 

contrast), ii) Feature extraction, i.e., Keypoint Detection and Feature Description, and iii) 

Model learning through non-deep or Deep Neural Networks (DNNs) classifiers. Unfortunately, 

despite many classifiers and feature extraction strategies applied to images sampled by sensors 

installed on vehicles that have been developed throughout the years; those efforts did not 

escalate into a clear benchmark nor provide a comparison of the most common techniques. 

The main target of this thesis is to improve the robustness and efficiency of TSR systems. 

Improving the efficiency of the TSR system means achieving better classification performance 

(classification accuracy) on publicly available datasets, while the robustness of an image 

classifier is defined as sustaining the performance of the model under various image 

corruptions or alterations that in our case due to visual camera malfunctioning.  Albeit TSDR 

embraces both detection and recognition of traffic signs, here we focus on the latter aspect of 

recognition. In the literature, many researchers proposed different techniques for the detection 

of traffic signs in a full-scene image. Therefore, this thesis starts by providing a comprehensive 

quantitative comparison of non-deep Machine Learning (ML) algorithms with different feature 

sets and DNNs for the recognition of traffic signs from three publicly available datasets. 

Afterward, we propose a TSR system that analyses a sliding window of images instead of 

considering individual images sampled by sensors on a vehicle. Such TSR processes the last 
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image and recent images sampled by sensors through ML algorithms that take advantage of 

these multiple information. Particularly, we focused on (i) Long Short-Term Memory (LSTM) 

networks and (ii) Stacking Meta-Learners, which allow for efficiently combining base-learning 

classification episodes into a unified and improved meta-level classification. Experimental 

results by using publicly available datasets show that Stacking Meta-Learners dramatically 

reduce misclassifications of traffic signs and achieve perfect classification on all three 

considered datasets. This shows the potential of our novel approach based on sliding windows 

to be used as an efficient solution for TSR.  

Furthermore, we consider the failures of visual cameras installed on vehicles that may 

compromise the correct acquisition of images, delivering a corrupted image to the TSR system. 

After going through the most common camera failures, we artificially injected 13 different 

types of visual camera failures into each image contained in the three traffic sign datasets. 

Then, we train three DNNs to classify a single image, and compare them to our TSR system 

that uses a sequence (i.e., a sliding window) of images. Experimental results show that sliding 

windows significantly improve the robustness of the TSR system against altered images. 

Further, we dig into the results using LIME, a toolbox for explainable Artificial Intelligence 

(AI). Explainable AI allows an understanding of how a classifier uses the input image to derive 

its output. We confirm our observations through explainable AI, which allows understand why 

different classifiers have different TSR performances in case of visual camera failures.  

Visual camera failures have a negative impact on TSR systems as they may lead to the 

creation of altered images: therefore, it is of utmost importance to build image classifiers that 

are robust to those failures. As such, this part of the thesis explores techniques to make TSR 

systems robust to visual camera failures such as broken lens, blurring, brightness, dead pixels 

or no noise reduction by image signal processor. Particularly, we discuss to what extent training 

image classifiers with images altered due to camera failures can improve the robustness of the 

whole TSR system. Results show that augmenting the training set with altered images 

significantly improves the overall classification performance of DNN image classifiers and 

makes the classifier robust against the majority of visual camera failures. In addition, we found 

that no noise reduction and brightness visual camera failures have a major impact on image 

classification. We discuss how image classifiers trained using altered images have better 

accuracy compared to classifiers trained only with original images, even in presence of such 

failures.  
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Ultimately, we further improve the robustness of the TSR system by crafting a camera 

failure detector component in conjunction with image classifiers trained using altered images 

that further enhance the robustness of the TSR system against visual camera failures. We 

trained different ML-based camera failure detectors (binary classifiers) that work in sequence 

with DNN to check the images are altered to a certain level of failure severity. Based on the 

output of the failure detector, we decide that either image will be passed to DNN for 

classification or will alert the user that the image is severely degraded by visual camera failure 

and DNN may not be able to classify the image correctly. Experimental results reveal that the 

failure detector component in conjunction with image classifiers trained using altered images 

enhances the performance of the TSR system compared to the image classifiers trained using 

altered images, but it reduces the availability of the system which is 100% in case of image 

classifiers trained using altered images without camera failure detector component.   
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1.  INTRODUCTION 

Intelligent transportation systems are nowadays of utmost interest for researchers and 

practitioners as they aim at providing advanced and automatized functionalities, such as 

obstacle detection, traffic sign recognition, car plate recognition, and automatic incident 

detection or stopped vehicle detection systems. Particularly, Traffic Sign Detection and 

Recognition (TSDR) systems aim at detecting (TSD) and recognizing (TSR) traffic signs from 

images sampled by sensors [1], [2], [3] installed on vehicles. Those systems synergize with the 

human driver, who may misinterpret or miss an important traffic sign, potentially leading to 

accidents that may generate safety-related hazards [4]. When integrated into intelligent vehicles 

[5], [6] for Advanced Driver-Assistance Systems (ADAS) [2], [7], [8], [9], TSDR can 

automatically provide drivers with actionable warnings or even trigger reaction strategies (e.g., 

automatic reduction of speed, braking) that may be crucial to avoid or reduce the likelihood of 

accidents [3], [10]. 

Humans are expected to naturally miss or misinterpret important traffic signs occasionally 

due to fatigue, adverse operating conditions or distraction [11]. Similarly, to humans, TSDR 

systems are also subject to errors as they may misinterpret or miss a traffic sign due to various 

reasons, such as unsatisfactory road situations, imperfect traffic sign state, adverse 

environmental conditions (e.g., foggy weather [12]) or imperfect analysis processes. 

Nevertheless, researchers and practitioners are trying to minimize those events, called 

misclassifications, expecting automatic TSDR systems to provide drivers with accurate and 

timely notifications.  Available TSD systems can precisely extract areas of an image, which 

are supposed to contain a traffic sign. Thereto, TSR systems that embed Machine Learning 

(ML) algorithms [13], [14], [15], [16], process features that are extracted from those images 

through feature descriptors (e.g., Histogram of Oriented Gradients (HOG) [17], Local Binary 

Pattern (LBP) [16] to recognize traffic sign categories [18], [19]. Alternatively, Deep Neural 

Networks (DNNs), such as AlexNet and googLeNet [20] can directly process images as they 

embed internal representation learning processes, which are orchestrated through multiple 

convolutional and fully connected layers. The focus of this study is to design a robust and 

efficient TSR system that provides correct service and minimize the catastrophic failures that 

impact the users (drivers) and environment. To investigate the performance of TSR, we 

perform a quantitative comparison and based on the results of comparative study, we adopt 

sliding windows based approach that increase the efficiency of TSR. Furthermore, to increase 



17 
 

the robustness of TSR against camera failures, we adopted different strategies such as data 

augmentation and data augmentation in conjunction with camera failure detector component 

for the prevention of faults to design a robust TSR system that is safe enough for the users and 

environment. 

1.1 Structure of the Thesis   

This section provides an overview of our contribution towards this thesis with the help of 

Figure 1, where different chapters of the thesis are highlighted with the main contributions. 

First, chapter 2 provides an overview of different state of the art approaches adopted for TSR, 

different building blocks to implement a TSR system and different camera related failures. This 

thesis mainly focuses on two aspects such as i) improving the efficiency of TSR system, and 

ii) improving the robustness of TSR system against visual camera failures.  Chapter 3 and 

Chapter 4 focuses on the enhancement of the TSR efficiency, while Chapter 5 and Chapter 6 

explore different strategies when visual camera sensor is malfunctioning. To such extent, 

Chapter 3 is the first experimental chapter, where we perform the quantitative comparison of 

different non-deep classifiers train on different feature descriptors and DNNs for single image 

TSR.  While in Chapter 4, we proposed a sliding windows-based approach for enhancing the 

TSR performance considering subsequent sequences of images of a single traffic sign, and the 

proposed approach for TSR is experimentally evaluated on three publicly available datasets. 

In the second part of the thesis, the focus is on the robustness of TSR system against visual 

camera failures. In Chapter 5, we implement different classification strategies such as single 

 

Figure 1: Structure of the thesis  
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classifier for single image classification, multiple classifiers for single image classification, 

single classifier for sliding window based classification and multiple classifiers for sliding 

window based classification, to overcome the effect of visual camera failures on TSR system. 

Furthermore, Chapter 6 discuss two different strategies for robust TSR system against visual 

camera failures such as (i) data augmentation and (ii) data augmentation in conjunction camera 

failure detector and these different approaches are validated through extensive experiments. 

Finally, Chapter 7 concludes the thesis with possible future directions. 

Further sections briefly explain the contribution of each experimental chapter shown in 

Figure 1 i.e., chapter 3 to chapter 6. 

1.2 Comparative Analysis of Non-deep and Deep Neural 

Network Classifiers for Traffic Sign Recognition System 

Throughout the years, many studies tackles TSR [21], [22], [23] using different feature 

descriptors and ML-based classifiers. Different combinations of such classifiers and features 

have been proven to generate heterogeneous classification scores [15], [19], [24], [25], [26], 

[27] motivating the need for comparisons to discover the optimal classifier for a given TSR 

problem [3], [28], [29]. Most of these studies exercise a few classifiers or a single feature set 

on a specific dataset. This does not provide sufficient means to compare different approaches. 

To such extent, our study considers 3 public datasets namely i) the GTSRB dataset [31], ii) the 

BelgiumTSC dataset [32], and iii) the Dataset of Italian Traffic Signs (DITS) [33], which report 

on sequences of images related to a single traffic sign. We are using a pool of eight non-deep 

ML algorithms for the recognition of traffic signs. Images are first processed to extract 14 

different feature sets and additionally 12 different combination of feature descriptors i.e., fusing 

2 or more feature descriptors: each feature set is then provided as input to the non-deep ML 

algorithms for TSR. Furthermore, we employ also 3 DNNs– namely InceptionV3 [40], 

MobileNet-V2 [41] and AlexNet  [34] - that do not need feature sets as they automatically 

extract feature through convolutional layers while training through transfer learning. 

Altogether, these experiments build a quantitative comparison of different ML algorithms to 

benchmark different approaches by using heterogeneous datasets that provides a baseline for 

practitioners and researchers who are willing to setup a TSR component to be embedded in 

autonomous vehicles. Results allow to elaborate the performance of non-deep classifiers 

trained on different feature sets, and DNNs trained using transfer learning. But still, we did not 

find a single classifier that  achieve perfect classification i.e., 100% accuracy on all three 

datasets.   
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1.3 Enhancing Traffic Sign Recognition through Sliding 

Windows 

Based on the results of extensive quantitative comparison, we could not find a single 

classifier that perform perfect classification on all three datasets. This is mostly due to the fact 

that existing solutions for TSR process a single image and output a classification result. Instead, 

vehicles are meant to gradually approach traffic signs during their road trips, generating 

sequences of images: the closer the vehicle is to the traffic sign, the better the quality of the 

image, even under slightly different environmental conditions. Therefore, the problem of TSR 

naturally scales from single images to knowledge extraction from a set or sequence of images 

that potentially contain traffic signs. Accordingly, the classification process should not depend 

only on a single image to make a decision; instead, it should take advantage of the knowledge 

acquired as the vehicle moves forward, i.e., the sequence of images.  We consider a sliding 

window of images to commit classification rather than classifying images individually. First, 

we process each image with the most effective single image classifier for TSR: then, we 

combine classification scores assigned to images in the sliding window to provide a unified 

and improved classification result. Such a combination is performed by appropriate Meta-

Learners [30], which suit model combination, and therefore, show potential to be applied in 

such a context. We use non-deep classifiers both as single-image classifiers and as base-level 

learners of a Stacking meta-learner, which aggregates individual classification scores into 

sliding windows. The meta-level classifier for Stacking are experimentally chosen out of non-

deep classifiers, the Majority Voting [42] and Discrete Hidden Markov Model (DHMM, [43]). 

Additionally, we compare the classification performance of those meta-learners with Long 

Short-Term Memory (LSTM) networks, which naturally deal with sequences of data coming 

at different time instants. We trained those LSTM networks on the same sliding windows of 

images processed through Stacking. Results show how single-image classifiers achieve 100% 

accuracy on the GTRSB, 99.72% on BelgiumTSC and 96.03% on DITS datasets. Then, we 

applied our approach based on sliding windows by using LSTM networks and stacking meta-

learners, finding that both approaches greatly improve the accuracy of TSR: particularly, 

specific stacking meta-learners achieved perfect accuracy (i.e., no misclassifications at all) on 

the three datasets by using a sliding window of two or three images. 
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1.4 Robust Traffic Sign Recognition against Visual Camera 

Failures 

Automatic TSR systems embed ML, and especially DNN classifiers which process image 

images captured by visual cameras installed on the vehicle. Those TSR systems are known to 

accurately classify traffic signs, even reaching perfect classification performance under 

nominal operating conditions [3], [29], [87]. Unfortunately, the adverse environmental 

conditions, or the malfunctions of the visual camera, may produce low-quality images that may 

negatively impact the performance of classifiers. Examples include, but are not limited to 

occlusions, shadows, defects of the visual camera lens, changes in environmental light, 

raindrops on the camera lens, out of focus, and flare [85], [89]. Therefore, to guarantee safety 

of the driving task, it is necessary to study the robustness of TSR systems against the threats, 

and develop solutions to tolerate them [90], [91]. Robustness of an image classifier is defined 

as sustaining the performance of the model under various image alterations. To accomplishes 

this task, first reviewing the challenges and the state of the art, and then proposing and 

evaluating alternative solutions. To such extent, we corrupt images by applying visual camera 

failures that are successively fed to TSR classifiers. We simulate 13 visual camera failures, 

each one with different parameters, obtaining a total of 103 failure configurations to be 

individually injected into each image of the three datasets. The produced data allows examining 

the robustness of three DNNs: AlexNet, InceptionV3, and MobileNet-V2. Based on our 

previous experimental results, we choose DNNs as they performed better compared to non-

deep classifier. We apply each DNN independently to perform single image classification, and 

we also run them in parallel for single image classification; in this second case, classification 

is performed by a stacking meta-learner which is fed with the outputs of the 2 or 3 DNNs. 

Furthermore, we also perform sliding window based classification. we consider the following 

classification strategies based on a sliding window: Sliding window is applied using only one 

DNN as base classifier, Sliding window is applied using two DNNs, where all images in the 

sliding window are individually classified by two base-level DNNs and the predictions of each 

image are input meta-features to the meta-level classifier. Similarly, sliding window is applied 

using three classifiers where all images in the sliding window are individually classified by 

three base-level DNNs; the predictions of each image are input meta-features to the meta-level 

classifier. 

Our results indicate that the occurrence of visual camera failures degrades classification 

performance, especially for single-image classifiers. Instead, approaches based on the sliding 
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window are significantly more robust. Further, we dig into the results using LIME [92], a 

toolbox for explainable Artificial Intelligence (AI). Explainable AI allows understanding how 

a classifier uses the input image to derive its output: we use LIME to explain why the injection 

of the visual camera failures alters the behaviour of the classifiers, and why certain classifiers 

are more robust than others against visual camera failures. 

1.5 Improving Robustness of Deep Neural Network Image 

Classifiers against Visual Camera Failures 

In this part of the thesis, our focus is on devising different strategies to improve the 

robustness of image classifiers and tolerate visual camera failures. Examples include, but are 

not limited to: icing/raindrops on the visual camera lens, broken camera lens, sudden change 

of brightness, and blurring [85], [89].  We present two different strategies to build DNN image 

classifiers that are robust against visual camera failures. The first strategy aims at enriching the 

training set with images altered by injecting the effects of visual camera failures whereas the 

second strategy employs a Camera Failure Detector (CFD) component to be exercised in 

conjunction with the DNN. This discussion paves the way for an experimental campaign in 

which we inject visual camera failures into public datasets that are commonly used for TSR. 

We train each DNN twice on each dataset: 

• Using a clean training set that contains only images from the original datasets, without 

injecting the effects of any visual camera failure. We call those regular classifiers. 

• Using an altered training set that merges the clean training set with altered images in 

which we inject the effects of visual camera failures. This results in an augmented 

classifier. 

Then, we use the six models (clean and altered for each of the three DNNs) to perform 

TSR using different test sets that contain images from the original dataset plus images altered 

with visual camera failures. Our experimental campaign reveals that augmented classifiers 

have far better classification accuracy than regular ones when processing both clean images 

and images altered with visual camera failures. Furthermore, we explore which visual camera 

failures had a major impact on the classification performance of DNNs, finding that specific 

configurations of noise and brightness failures have the most negative impact. Also, we explain 

our results using the LIME framework and we show why augmented classifiers have less 

misclassification than regular ones. Lastly, we train a binary classifier as CFD component and 

apply in conjunction with augmented classifier. First image is passed through CFD and based 

on the output of CFD, we decide that either image will be provided as input to the augmented 
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classifier, or it will be discarded. Experimental results show that the addition of CFD further 

improve the performance of TSR, but on the other side it reduces the availability of the TSR 

system.  

1.6 Main Contributions of the Thesis 

This section describes the main contribution of the thesis. 

• In the literature, many studies have tried to tackle the problem of TSR by using different 

features and ML algorithms. However, they mostly exercise a few classifiers or a single 

feature set on a specific dataset. This does not provide sufficient means to compare 

different approaches. To such an extent, in chapter 3 of the thesis, we consider 3 traffic 

sign datasets and a pool of eight non-deep ML algorithm that are exercised 

independently by feeding them 14 different feature sets and 12 combinations of different 

feature descriptors for the recognition of traffic signs. we employ also 3 DNNs – namely 

InceptionV3, MobileNet-V2, and AlexNet. 

• Regardless of the outcomes of comparison studies, majority of the existing solutions for 

TSR process a single image and output a classification result. Instead, vehicles 

gradually approach traffic signs during their road trips, generating sequences of 

images: the closer the vehicle is to the traffic sign, the better the quality of the image, 

even under slightly different environmental conditions. Therefore, the problem of TSR 

naturally scales to knowledge extraction from a set or sequence of images that 

potentially contain traffic signs. To such extent in chapter 4 of the thesis, we propose a 

sliding windows-based framework for TSR that processes the sequences of traffic sign 

images. To the best of our knowledge, there is no study available in the literature which 

consider sliding windows approach for traffic sign recognition. 

• The adverse environmental conditions, or the malfunctions of the visual camera, may 

produce low-quality images that may negatively impact the performance of classifiers. 

To guarantee safety of the driving task, in chapter 5 we inject a complete set of visual 

camera failures to study the robustness of TSR systems against the visual camera 

failures, and to apply different classification strategies to tolerate them. 

• In chapter 6 of the thesis, we have two contributions to increase the robustness of TSR 

against camera failures: data augmentation with altered images and addition of 

camera failure detector. To the best of our knowledge, there is no study that applies 

data augmentation to tolerate failures of the visual camera. Furthermore, addition of 
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camera failure detector component filters out the images that a TSR system may 

incorrectly classify, that ultimately increase the robustness of TSR.  

1.7 Limitations to Validity 

We report here possible limitations to the validity and the applicability of our study. These 

are not to be intended as showstoppers when considering the conclusions of this thesis. Instead, 

they should be interpreted as boundaries or possible future implications which may impact the 

validity of this study. 

1.7.1 Usage of Public Data 

The usage of public image datasets and public tools to run algorithms was a prerequisite 

of our analysis, to allow reproducibility and to rely on proven-in-use data. However, the 

heterogeneity of data sources and their potential lack of documentation may limit the 

understandability of data. In addition, such datasets are not under our control; therefore, 

possible actions, such as changing the way data is generated, are out of consideration. For 

example, creating longer sequences of traffic signs or creating a time-sequenced version of the 

BelgiumTSC is not possible at all. 

1.7.2 Parameters of Classifiers 

Each classifier relies on its own parameters. Finding the optimal values of parameters is a 

substantial process that requires sensitive analyses and is directly linked with the scenario in 

which the classifier is going to be exercised. When applying classifiers to different datasets it 

is not always possible to precisely tune these parameters: instead, in this study, we perform 

grid searches, which run a classifier with different parameter values and choose the parameter 

that maximizes accuracy. This does not guarantee finding the absolute optimum value of a 

parameter for a given classifier on a given dataset but constitutes a good approximation [84]. 

1.7.3 Classifier Performance Metric 

We are using accuracy as a performance metric that is a quite conservative metric for TSR 

as it considers all misclassifications at the same level. Instead, we may not be too worried about 

misclassifying an informative sign with a stop sign, whereas the opposite represents a very 

dangerous event. Accuracy and all other classifier performance metrics are originally designed 

for binary classification, while TSR is a multi-class classification problem. Instead of accuracy, 

other performance metrics can be used to analyse the effectiveness of TSR system. 
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1.7.4 Injection of Camera Failures to Traffic Signs 

The validity of some part of the work also depends on whether the injected malfunctions / 

distortions of camera failure will fit, what would happen to the image in practice because of 

actual natural hazards or camera distortions. 
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2.  BASICS AND LITERATURE REVIEW 

This chapter provide a brief overview of dependability basics, state-of-the-art approaches 

for Traffic Sign Recognition (TSR) systems, visual camera failures, and explain briefly about 

different building blocks of the TSR system.  

2.1 Basics of Dependability 

Dependability of a system is especially important characteristic of a system and must be 

considered during design phase of the system. Before going to define dependability, we 

describe briefly different basic notations of dependability defined in [136] such as: System, 

service, faults, errors, and failures. 

2.1.1 System, Service, Errors, Faults, and Failures  

First, we define the system, boundary, and environment of the system.  

Definition 1. A system is an entity that interacts with other entities, i.e., other systems, 

including hardware, software, humans, and the physical world with its natural phenomena. 

These other systems are the environment of the given system. The system boundary is the 

common frontier between the system and its environment. 

After defining system, environment and boundary of a system we describe the service 

delivered by a system. A system can deliver more than one services by implementation more 

functions. 

Definition 2. The service delivered by a system is its behaviour as it is perceived by its user(s); 

a user is another system that receives provided service. The part of the provider’s system 

boundary where service delivery takes place is the provider’s service interface. 

Definition 3. Correct service is delivered when the service implements the system function. A 

service failure, also abbreviated with failure, is an event that occurs when the service delivered 

deviates from correct service.  

When correct service output is different from the correct output are called service failure 

modes. Failure modes are ranked based on the severity of failure. Fault and error are defined 

as follows:  

Definition 4. The part of the system state that is liable to lead to subsequent failure is called 

an error.  

Definition 5. The adjudged or hypothesized cause of an error is called a fault. 
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An active fault causes an error, otherwise if the fault is not active then it is dormant. Error 

propagation to the service interface causes service failure that results in a different delivered 

service than the correct service. All faults are categorized from total eight viewpoints into 

different fault types. Figure 2 shows eight fault classes that can be divided into three partially 

overlapped categories such as development faults, physical faults and interaction faults. 

Development faults occur during the development phase of the system, while physical faults 

include all those faults that effect the hardware of the system. Finally, all external faults are 

under the umbrella of interaction faults. 

To describe taxonomy of failures there are different ways in which the eccentricity of a 

failed service reveals itself are the modes of service failure. Each mode can have multiple 

austerities of service failure that characterize the failed service based on four aspects: 

1. the consistency of failures 

2. the consequences of failures on environment 

 

Figure 2: Elementary fault classes from eight viewpoints [136] 

 



27 
 

3. the failure domain 

4. the detectability of failures 

Details about these four failure viewpoints can be find in [136]. Two limiting levels can be 

defined based on the consequences of failure and in the absence of failures the benefit provided 

by the service delivered. There are two types of failures such as minor failures and catastrophic 

failures. Catastrophic failures are risky, and they may have more negative effects in order of 

magnitude than the advantages of correct service delivery. While the costs of repercussions for 

minor failures are same to the advantages that are offered by correct service delivery. 

2.1.2 Dependability and its Characteristics 

Dependability can be defined as follows: 

Definition 6. Dependability is the ability of a system to deliver a service that can justifiably be 

trusted.  

The definition of dependability emphasises the need for trust justification. Dependability 

has five main characteristics such as availability, reliability, safety, integrity, and 

maintainability. The first characteristic availability means that the how much the system is 

ready for correct services, where reliability is concerned with the continuity of service. Safety 

is concerned to avoid catastrophic consequences on the environment and user, while integrity 

means the absence of improper alterations. The ability to undergo repairs and modifications is 

maintainability. There are diverse ways to achieve dependability are as follows: 

1. Fault prevention means to avoid occurrence of faults. 

2. Fault removal means to reduce the severity and number of faults.  

3. Fault tolerance means in the presence of faults avoid the service failures. 

4. Fault forecasting means to calculate the present number of faults and predicting the 

likelihood of future incidents and their consequences. 

If we consider camera as a component, the acquired degraded image is considered as failure 

that may happen due to malfunctioning of the part of camera or due to out-of-distribution 

samples. Then we are performing the robustness testing, where we provide the faulty images 

as input to the classifier and the output of the classifier maybe a failure or correct service to the 

user interface. This thesis focuses on the fault tolerance and fault removal. Through different 

approaches we are trying to minimize the number of misclassifications of a TSR system and 

for that purpose quantitative evaluation of different approaches are performed. Furthermore, 
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we are applying different strategies to avoid service failures of TSR even in the presence of 

faults. 

2.2 Overview of Basic Building Blocks of TSR system 

TSR system in most of the cases depends on the feature sets that are provided as input for 

training and testing of conventional non-deep classifiers, while DNN classifiers do not need 

explicit feature extraction and meta classifiers (when processing the sliding windows of 

images) are fed the output of base classifiers as input meta features. We have also utilized 

LSTM for processing sliding windows of images and it’s required the input features. This 

section provides a brief overview of the main building blocks of the TSR system. 

2.2.1 Feature Detectors and Descriptors 

Many different Keypoint Detectors and Feature Descriptors were proposed throughout the 

years. While the detectors aim at identifying interesting keypoints/regions of an image, and the 

descriptor describes features around the keypoints extracted to be processed by classifiers. 

2.2.1.1 Feature detectors 

Key points and interest points are the same thing that makes an image intriguing or specific 

spatial positions or spots within the image.  First step is to identify the main keypoints inside 

an image. Most of the existing studies concerning Keypoint detectors (e.g., [21], [22], [24], 

[44]) employ KAZE, SURF, MSER, BRISK, FAST, Harris and Minimum Eigenvalue keypoint 

detectors to identify keypoints in images, we discuss them as follows:  

Maximally Stable Extremal Regions (MSER) [121] are defined through the difference in 

intensity inside and on the outer boundary of a region. First images are   grey-scaled, then pixels 

are converted into black and white according to a specific threshold. Afterwards, black pixels 

equivalent to local intensity minima will be grouped and progressively merged to build 

connected components. When two connected components are recursively merged, all pixels of 

the smaller components are joined into the larger component. Finally, the area of each 

connected component is stored as a function of intensity, which is used to define thresholds 

that construct MSER regions. As a result, each MSER is characterized by i) a threshold and ii) 

the location of a local intensity minima/maxima. 

Harris-Stephens [122], FAST [123] and Minimum eigenvalue [124] algorithms are used to 

detect the corner points. Corners are the locations in an image that have large intensity changes 

in more than one direction. Moving a window in any direction will result in a large intensity 
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change. FREAK and HOG descriptors used to extract features around the corners selected by 

Harris-Stephens algorithm, FAST and Minimum eigenvalue algorithm. 

Robust Invariant Scalable Keypoints (BRISK) [125] provides high-quality keypoints with the 

minimal computational cost. It is a feature detection and description algorithm with rotation 

and scale invariance. It constructs a scale-space pyramid and in continuous scale space the 

stable extreme points of sub-pixel precision are extracted. To increase computational 

efficiency, keypoints are distinguished in octave layers of the image pyramid and in between 

layers. The local image binary feature descriptor is constructed by using the gray-scale 

relationship of the random sample point pairs in the image neighbourhood.  

Fast Retina Keypoint (FREAK) [126] detects keypoints through a process inspired by the 

human retina that computes pixel-wise comparison of intensities to devise a sequence of one-

bit Difference of Gaussians (DoG). It is similar to BRISK as both extraction processes are 

circular; on the other hand, BRISK points are equally spaced on the circle while FREAK 

concentrates keypoints close to the center. 

2.2.1.2 Feature descriptors 

A technique for extracting the feature descriptions for a keypoint or full image is called a 

feature descriptor. The ability to distinguish between several characteristics is made possible 

by the way feature descriptors encode important information in a string of numbers. Our 

literature review also allowed identifying the most commonly used feature descriptors, which 

are summarized below.  

Speeded Up Robust Features (SURF) [127] is both a keypoint detector and feature descriptor 

as it first derives features by using integral images, which guarantees low computational 

complexity. SURF builds rotation and scale invariant descriptors through Hessian matrix 

approximation, which can be calculated efficiently with respect to other keypoint detectors. 

Features are then extracted by SURF descriptor by using Haar wavelet filters [128] that 

calculate the sum of the Haar wavelet responses. 

KAZE features [129] describe multiscale 2D features in nonlinear space. Due to nonlinear 

diffusion filtering, it retains the object boundaries and achieves higher localization accuracy. 

On the other hand, it is computationally more expensive than features extracted with other 

descriptors, e.g., SURF.  

Histograms of Oriented Gradients (HOG) mostly provide information about each keypoint in 

images. The process partitions an image into small squared patches and computes HOG for 
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keypoint in the square. Lastly, the result is normalized and a descriptor for each cell is returned 

[17]. 

Local Binary Patterns (LBP) encode the local texture [16] of the image by partitioning each 

image into non-overlapping cells: the larger the cell, the less accurate the description. This 

method aims at isolating local binary patterns and is therefore recommended with small gray-

scale discrepancies, as its behaviour is invariant to the monotonic transformation of gray-scale. 

2.2.2 Deep Features 

Two pre-trained DNNs such as AlexNet and ResNet-18 are utilized to extract deep features 

from traffic sign images are described below. 

AlexNet Features (AFeat) are extracted through a pre-trained AlexNet [34], composed of 

five convolutional layers and three fully connected layers. Convolutional layers are basically 

extracting deep features from RGB images of size 227 × 227. We extract a feature vector of 

4096 items by fetching data at the fully connected layer “fc7”. 

ResNet Features (RFeat) are extracted from a ResNet-18 [35], a convolutional neural 

network with 18 hidden layers. Convolutional layers are extracting deep features from RGB 

images of size 224 × 224 Similarly to AlexNet, we extract 512 features by extracting data at 

the global average pooling layer “pool5”. 

2.2.3 Non-deep Classifiers 

Non-deep classifiers process features extracted from images as described in Section 2.2.1. 

Amongst the many alternatives, we summarize below those algorithms that frequently appear 

in most studies about TSR. 

 K Nearest Neighbours (KNN) algorithm [13] classifies a data point based on the class of its 

neighbours, or rather other data points that have a small Euclidean distance with respect to the 

novel data point. The size k of the neighbourhood has a major impact on classification, and 

therefore, needs careful tuning, which is mostly achieved through grid or random searches. 

Support Vector Machines (SVMs) [14], instead, separate the input space through hyperplanes, 

whose shape is defined by a kernel. This allows performing either linear or non-linear (e.g., 

radial basis function RBF kernel) classification. When SVM is used for multi-class 

classification, the problem is divided into multiple binary classification problems [79]. 

Decision Tree provides a branching classification of data and is widely used to approximate 

discrete functions [36]. The split of internal nodes is usually driven by the discriminative power 
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of features, measured either with Gini or Entropy Gain. Training of decision trees employs a 

given number of iterations and a final pruning step to limit overfitting. 

Boosting (AdaBoostM2) [39] ensembles combine multiple (weak) learners to build a strong 

learner by weighting the results of individual weak learners. Those are created iteratively by 

building specialized decision stumps that focus on “hard” areas of input space. 

Feed-Forward [130] and Cascaded [131] Neural Networks (FFNN and CNN) are instead 

inspired by the human brain. As such, they consist of many interlaced layers that are bridged 

by nodes (neurons) through weighted edges. Initial weights are assigned randomly and adjusted 

during training until a stop condition or a given number of training epochs is reached. Training 

may rely on multiple training functions as Gradient Descent algorithms (traingd, traingdm, 

trainrp, traincgp), Quasi-Newton algorithms (trainbfg,trainlm) and Conjugate Gradient 

algorithms (trainscg, traincgf) [132]. 

Linear Discriminant Analysis (LDA) is used to find out the linear combination of features that 

efficiently separates different classes by distributing samples into the same type of category 

[38]. This process uses a derivation of Fisher discriminant to fit multi-class problems. 

Random Forests [37] build ensembles of Decision Trees, each of them trained with a subset 

of the training set extracted by random sampling with replacement of examples. 

2.2.4 Deep Neural Networks 

DNNs may be either built from scratch or more likely—by adapting existing 

models to a given problem through transfer learning (i.e., knowledge transfer). Through 

transfer learning, we fine tune the fully connected layers of DNN, letting all convolutional 

layers remain unchanged. Commonly used DNNs for the classification 

of images and object recognition are below. 

AlexNet [34] is composed of eight layers, i.e., five convolutional layers and three fully 

connected layers that were previously trained on the ImageNet database [80], which 

contains images of 227 × 227 pixels with RGB channels. The output of the last fully 

connected layer is provided to the SoftMax function, which provides the distribution 

of overall categories of images. 

 InceptionV3 is a deep convolutional neural network built by 48 layers that were 

trained using the ImageNet database [80], which includes images (299 × 299 with RGB 

channels) belonging to 1000 categories. InceptionV3 builds on (i) the basic convolutional 
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block, (ii) the Inception module and finally (iii) the classifier. A 1x1 convolutional 

kernel is used in the InceptionV3 model to accelerate the training process by decreasing 

the number of feature channels; further speedup is achieved by partitioning large 

convolutions into small convolutions [40]. 

MobileNet-V2 [41] embeds 53 layers trained on ImageNet database [80]. Differently 

from others, it can be considered a lightweight and efficient deep convolutional neural 

network with fewer parameters to tune for mobile and embedded computer vision 

applications. MobileNet-V2 embeds two types of blocks: the residual block and a 

downsizing block, with three layers each. 

Those DNNs can be tailored to TSR through transfer learning. Fully connected 

layers are trained on defined categories of traffic signs with different learning rates (LR) to 

fine-tune the models which are already trained on the ImageNet database of 1000 categories. 

2.2.5 Stacking Meta-level Classifiers 

Stacking meta-learners orchestrate a set of base-learners, which provide meta-data to 

the meta-level learner. In our study, we foresee the usage of different meta-level learners as 

listed below. 

Majority Voting [42] commits the final decision based on the class the majority of 

base-learners agree upon. This technique is not very sophisticated, albeit it was and 

is widely used to manage redundancy in complex systems [81] and to build robust machine 

learners [82]. 

Discrete Hidden Markov Model (DHMM) [43]. For each class, a separate Discrete 

HMM returns the probability of an image belonging to that class. The classification 

result of the images within the sliding window is given as input to all three DHMMs. 

Each DHMM returns the likelihood of the sequence to a specific class. The higher the 

likelihood to a specific class is decided as a final label for that specific sequence. 

 Non-deep Classifiers in Section 2.2.3. These classifiers can be employed as meta-level 

learners as meta-data resembles a set of features coming from base-learning episodes. 

     We are using Non-deep classifiers as meta-level classifier, because the meta level classifiers 

have the ability the process the input numeric feature vectors and furthermore, computationally 

its efficient compared to deep classifiers.  
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2.2.6 Long Short-Term Memory Networks (LSTM)  

As an alternative to stacking, we plan the usage of LSTM networks [75], [76]. An LSTM 

network is a Recurrent Neural Network that learns the long-term dependencies between time 

steps of sequence data by orchestrating two layers. Those networks do not have a meta-learning 

structure as a stacker: however, they perfectly fit the analysis of sliding windows of traffic 

signs as they are intended to be used for the classification of sets or sequences by directly 

processing multiple images. The first layer contains a sequence of inputs, which are then 

forwarded to the LSTM fully connected layer, and finally, the output layer shows the 

classification result.  

2.2.7 Traffic Sign Datasets 

We conducted extensive research to identify commonly used labeled datasets reporting on 

sequences of traffic signs with overlapping categories. We selected three public datasets which 

report on sequences of images of traffic signs, namely: (i) the BelgiumTSC dataset [32], (ii) 

the GTSRB dataset [31], and (iii) the DITS [33]. We performed the data augmentation with 

scaling and translation. Details about their structure and the categories of traffic signs are in 

Table 1 and Table 2, respectively.  

2.2.7.1 German traffic signs recognition benchmark dataset 

The German Traffic Signs Recognition Benchmark (GTSRB [31]) dataset is widely used 

in the literature [15], [18], [19], [31] as it reports on images of traffic signs belonging to eight 

categories with heterogeneous illumination, occlusion and distance from the camera. The 

dataset contains sequences of 30 images for each traffic sign, which were gathered as the 

vehicle was approaching it. The authors made available 1307 training and 419 testing 

sequences of images for a total of 51,780 images contained in the dataset. Table 2 depicts 

examples of traffic signs for each category of traffic sign contained in this dataset. Importantly, 

the rectangular traffic signs we mapped into category 8 in the table do not appear in the GTSRB 

dataset but appear in other datasets considered in this study.  

Table 1: Details of the three datasets used in this study 

Dataset Train Images Test Images 
Images per 

Sequence 

Training 

Sequences 
Test Sequences 

GTSRB 39210 12570 30 1307 419 

DITS 7500 1159 15 500 123 

BelgiumTSC 4581 2505 3 1527 835 
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2.2.7.2  BelgiumTSC dataset 

The BelgiumTSC dataset [32] is another dataset of traffic signs which was extensively used 

in the last decade [32], [70]. The BelgiumTSC contains eight categories of traffic signs, shown 

from category 1 to category 8 in Table 2. The dataset is smaller than the GTSRB: the 

BelgiumTSC contains only 2362 sets of three images taken with different cameras from 

different viewpoints. It follows that this dataset reports triple images for each traffic sign which 

are all taken at the same time and thus are not time- ordered. 

2.2.7.3 Dataset of Italian traffic signs dataset 

The Dataset of Italian Traffic Signs (DITS) dataset is considered more challenging than 

others in the literature [33] as it contains traffic signs images that were taken under non-optimal 

lighting conditions, e.g., day, night-time, foggy weather. The DITS contains 623 sequences 

containing a varying, time-ordered, number of frames. We point out that DITS is the only 

dataset in this study that contains all the nine categories of traffic signs reported in Table 2 and 

as such, it provides a complete view of all potential traffic signs. The dataset contains 500 

training sequences and 123 testing sequences of varying lengths as summarized in Table 1.  

2.2.8 Classification Performance Metric  

The performance of classifiers for TSR is usually compared by means of classification 

metrics. These metrics are mostly designed for binary classification problems, but they can be 

adapted also to measure multi-class classification performance. Correct classifications i.e., 

True Positive (TP) and True Negative (TN) reside in the diagonal of the confusion matrix, 

whereas any other item such as True Negative (TN) and False Negative (FN) of the confusion 

matrix is counted as a misclassification. 

2.2.8.1 Accuracy 

Amongst the many alternatives, TSR mostly relies on accuracy [77], [78], which measures 

the overall correct and incorrect classifications. Accuracy can be defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
                                            (1) 

Table 2: Categorization of Traffic Signs into 9 categories based on their shape, color, and 
content. 

Category 1 2 3 4 5 6 7 8 9 

Traffic Signs 

   
      

GTSRB 

✔ ✔ ✔ ✔ ✔ ✔ ✔ 

    ✔ 

BelgiumTSC ✔     

DITS ✔ ✔ 
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It should be noticed that this is a quite conservative metric for TSR as it considers all 

misclassifications at the same level. Instead, we may not be too worried about misclassifying 

an informative sign (e.g., Category 8 in Table 2) with a stop sign, whereas the opposite 

represents a very dangerous event. That being said, for ease of comparison with existing 

studies, we calculate accuracy according to its formulation, thus considering each 

misclassification as equally harmful. 

2.2.8.2 Specificity  

It also called true negative rate, can be defined as a ratio of the true negatives to all 

negatives. The purpose behind specificity is to reduce the false alarms. Higher specificity 

means low false positives and vice versa. Based on confusion matrix, we can define specificity 

as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN+FP
                                                    (2) 

2.2.8.3 Recall 

Recall is also known as true positive rate or sensitivity. It can be defined as the ratio of true 

positives to total positives with the aim to reduce false negatives. In the TSR system the FN 

are very crucial and intolerable, e.g., classifying a stop sign as a speed limit sign that will result 

in catastrophic event. Mathematically it can be defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN
                                                             (3) 

2.2.8.4 Precision 

It can be defined as the ratio of true positives to the total positives predicted. Higher number 

of false positives will result in lower precision and vice versa. We can define precision as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
                                                       (4) 

2.2.8.5 F1-Measure 

F1-measure can be defined as the harmonic mean of precision and recall. Based on 

confusion matrix, we can define F1-measure as follows: 

𝐹1 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 x 
Precision x Recall

Precision+ Recall
                     (5) 

2.2.8.6 F-AA 

 

We are calculating F-AA for TSR system inspired by the formulation of F1-measure 

between precision and recall. In formulation of F-AA precision and recall are replaced by the 
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accuracy and availability of the TSR system, where we are giving equal importance to accuracy 

and availability of the TSR system. F-AA can be defined as: 

𝐹 − 𝐴𝐴 = 2 x 
Accuracy x Availability

Accuracy+ Availability
                           (6) 

 

2.3 Related Works on Different TSR Approaches  

In the last decade, researchers, practitioners, and companies devised automatic TSR 

systems to be integrated into Advance Driving Assistance System (ADAS). Amongst all the 

possible approaches, most TSR systems rely on the same main blocks, namely: (i) Dataset 

creation/identification, (ii) pre-processing (e.g., resizing, histogram equalization), (iii) Feature 

extraction and non-deep model learning, or (iv) model learning through Deep Neural Networks 

(DNNs) i.e., deep learners.    

Feature extractors and non-deep classifiers have been arranged differently to minimize 

misclassifications in a wide variety of domains. Soni et al. [24] processed the Chinese traffic 

sign dataset through SVM, trained on the HOG or LBP after Principal Component Analysis 

(PCA), reaching an accuracy of 84.44%. A similar setup was used by Manisha and Liyanage 

[21], who achieved 98.6% accuracy on vehicles moving at 40–45 km/h. Moreover, Matoš et 

al. [22] used an SVM trained on HOG features and achieved recognition of 93.75% accuracy 

on the GTSRB dataset. The same dataset was used in [44], where Extreme Learning Machine 

(ELM) improved accuracy to 96%. Agrawal and Chaurasiya [45] extracted HOG features from 

the traffic signs of the GTSRB dataset and applied PCA for the dimensionality reduction to 

obtain an accuracy of 73.99%, 66.46%, 91.86% on denial, mandatory and danger traffic sign 

categories. Similar studies as [15], [46], [47] processed the same datasets with different feature 

sets and algorithms, obtaining similar scores.  

DNNs and the Viola–Jones framework allowed the authors of [8] to enhance classification 

on the GTSRB dataset with up to 90% of accuracy. Li et al. [28] proposed a new Convolutional 

Neural Network and trained on the GTSRB and BelgiumTSC datasets. The proposed 

architecture achieved an accuracy of 98.1% and 97.4% on BelgiumTSC and GTSRB datasets, 

respectively. In [48], the fifteen-layer WAF-LeNet network reached a detection accuracy of 

96.5% on GTSRB. The authors of [49] proposed an approach for Traffic Sign Detection and 

Recognition (TSDR) using SegU-Net and a modified Tversky loss function With L1-

Constraint that achieved 94.60% and 80.21% precision and recall, respectively, on the CURE-

TSD dataset. Liu et al. [50] proposed traffic sign recognition and detection approaches, which 
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first extract the region of interest and after verification of the traffic sign through an SVM 

classifier, it classifies the traffic sign into traffic sign categories. The proposed approach 

achieves the highest accuracy 94.81%.  

Another study [51] used the InceptionV3 model trained with transfer learning on the 

BelgiumTSC dataset, obtaining an accuracy of 99.18%. In [52], the authors found that the Tiny-

YOLOv2 network is fast but outperformed by YOLOv2 or YOLOv3 DNNs. While the authors 

of [53] introduced real time image enhancement CNN and achieved an accuracy of 99.25% for 

the BelgiumTSC, 99.75% for GTSRB, and 99.55% for Croatian Traffic Sign (rMASTIF). 

Authors of [54], developed a real time TSR by using the You Only Look Once (YOLO) 

algorithm to train the model for Malaysian traffic sign recognition and tested it on five types 

of warning traffic signs. In [55] authors propose a lightweight CNN architecture for the 

recognition of the traffic sign GTSRB dataset, and they achieved 99.15% accuracy. In one 

another study [56], a novel semi supervised classification technique is adopted for TSR with 

weakly-supervised learning and self-training. An ensemble of CNN was used for the 

recognition of the traffic signs and achieved higher than 99% accuracy for the circular traffic 

signs of the German and BelgiumTSC datasets [57]. Lu et al. [58] use multi-modal tree 

structure embedded multitask learning for the GTSRB dataset and achieved an overall accuracy 

of 98.27%. In [59], the authors improved the VGG-16 DNN by removing some redundant 

convolutional layers and adding Batch Normalization and global average pooling layer to 

improve the performance of the network, while [60] proposed a hybrid 2D-3D CNN. In [61], 

the authors proposed a traffic sign recognition system that learns learning hierarchical features 

based on multi-scale CNNs. In one another study [62], the authors proposed a real-time TSDR 

for Chinese and German roads. In [63] authors proposed a robust custom feature extraction 

method and multilayer artificial neural network for the recognition of traffic signs in real time. 

Only a few comparative studies have been proposed in the literature. For example, Jo [15] 

trained different non-deep classifiers on HOG features extracted from the GTSRB dataset. 

Similarly, Schuszter [70] reported on experiments with the BelgiumTSC dataset [32], where 

HOG features were extracted from images and then fed to the SVM to classify one of the six 

basic traffic sign subclasses. Yang et al. [19] provide a comparison of different classifiers, such 

as the KNN, SVM, Random Forest and AdaBoost trained by using combinations of features. 

This study reported the highest accuracy by using Random Forest with the combination of LBP 

and HOG features. Another study [29] compared non-deep classifiers and DNNs on three 

datasets, i.e., GTSRB, BelgiumTSC and DITS considering three broad categories of traffic 
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signs, i.e., red circular, blue circular and red triangular. Noticeably, both non-deep classifiers 

and DNNs achieved perfect accuracy on GTSRB. Moreover, the authors of [18] trained 

different classifiers for traffic sign recognition. They considered the GTSRB dataset and 

extracted HOG features to train LDA and Random Forest. Additionally, they used the 

committee of Convolutional Neural Networks (CNN) and multiscale-scale CNN. While in the 

study [31] authors organized a competition to classify GTSRB dataset traffic signs. These 

traffic signs were categorized by human and ML algorithms and an accuracy of 98.98% was 

achieved which is comparable to human performance on this dataset. Therefor there is need to 

perform systematic comparative analysis of different non-deep machine learning techniques, 

where different feature sets are provided as an input and DNN for TSR to benchmark these 

different approaches on heterogenous datasets.   

Furthermore, we know that as vehicle is approaching to a traffic sign during this time input 

visual camera can capture multiple images that can be processed to commit the final decision 

about a traffic sign. In this context there are only a few works that perform classification 

depending considering multiple images. In a study [64], authors considered the sequences of 

images of the street view and synthetic images and they achieved an 87.03% evaluation score, 

i.e., the ratio of true positive and true positive + false positive + false negative. In another study, 

Yuan et al. [65] proposed a video-based traffic sign detection and recognition mechanism to 

fuse the result of all images for final classification. They utilized a multi-class SVM with two 

different fusion strategies, i.e., equal weighting and a scale-based weighting scheme which 

achieved 99.48% accuracy on the MASTIF dataset. In the literature, there are many studies 

[66], [67], [68], [69] focusing on single image TSR, and very few studies [64], [65] that process 

multiple images. The difference with our work is that they fuse the result of all frames for final 

decision that means the system will wait till the last frame, while in our case sliding window-

based method will start giving decision as we have the minimum number of traffic sign images 

available i.e., 2 and 3 according to the sliding window size. Furthermore, they are not achieving 

the perfect classification on the data sets they are using for the experiments. According to our 

knowledge based on the literature review, there is no study available that considers the sliding 

windows approach for traffic sign recognition. 

Automatic TSR systems embed Machine Learning (ML), and especially DNN classifiers 

which process image images captured by visual cameras installed on the vehicle. Those TSR 

systems are known to accurately classify traffic signs, even reaching perfect classification 

performance under nominal operating conditions [3], [29], [87]. Unfortunately, the adverse 
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environmental conditions, or the malfunctions of the visual camera, may produce low-quality 

images that may negatively impact the performance of classifiers. Autonomous vehicles 

contain visual cameras that observe the environment and capture sequences of images. Several 

studies in the literature utilize a visual camera for autonomous driving tasks, such as obstacle 

detection, pedestrian detection and lane detection, and obviously traffic sign recognition [60], 

[86], [115], [98]. If the visual camera has a malfunction, the quality of the captured images is 

degraded, and this may result in a critical situation and possible serious consequences. The 

possible occurrence of visual camera failures must be considered to guarantee the safe 

operation of autonomous vehicles [88]. These failures may occur in any component of the 

visual camera, and especially they may be malfunctions of the lens, the image sensor, or the 

ISP (Image Signal Processor): all these components cooperate to create every image produced 

by the visual camera. Only few works focused specifically on the effect that visual camera 

failures may have on the produced images. In [89], the authors adopted a CNN to deal with 

different harsh conditions such as out-of-focus, illumination, and missing information applied 

on the GTSRB dataset. Authors apply an attention mechanism to build a convolutional pooling 

for performance improvement. In [88], authors systematically define different failure modes of 

a vehicular visual camera, and they discuss the visible effects on the captured images. Also, 

they propose a Python library to inject failures into images. Lastly, Morozov et al. [120], while 

not strictly considering the image acquisition, simulate hardware failures: they used three 

CNNs for classification and a Bayesian Network for the analysis of the trustworthiness of 

results. There is a need to consider failures that happens due to visual camera that will result in 

a degraded quality image and to observe the performance of the classifier on the degraded 

images and ways to improve the robustness of classifiers. To such extent, in this thesis, we use 

the failure categorization of [88] as reference, because we believe it is the most complete 

representation of visual camera failures available in the state of the art, and it is supported by 

a software library that allows reproducing the failure effects on target images. 

2.4 Background on Visual Camera Failures 

Misbehavior(s) of the visual camera may generate altered images that are delivered to the 

image classifier. To explain visual camera failures, we present the different components of a 

visual camera [137], also represented in Figure 3. The lens senses the scene from the 

environment, in the form of light. This light is processed by the Image Sensor, whose 

photodiodes transform light in its electrical encoding producing a raw file [138]. The Bayer 

Filter, which acts on top of the Image Sensor, colors of the color-blind photodiodes into the 
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red-green-blue (RGB) pattern. The Image Signal Processor (ISP) processes the raw file to 

produce the digital image; its functions are multiple, to name the most famous: demosaicing, 

noise reduction, image sharpness correction, lens distortion correction, no chromatic aberration 

correction, image compression, and JPEG encoding [137].  

While many works like [139] elaborate on the effect of modified images on the 

classification process, only a few studies in the literature focus on the effects that failures of 

the visual camera may have on the produced image and consequently on the image 

classification. Even if the risk of accidental alterations of the output image of the visual camera 

is acknowledged as realistic [140], this consideration is usually ancillary to the main 

contribution of the work. Examples are [89], where the authors focus on environmental 

conditions and build a DNN that implements an attention mechanism for performance 

improvement, or [141], where driving situations analyze how sensors respond when used in 

real circumstances as well as to confirm the impacts of environmental conditions.  

2.5 Related Works on Robust Image Classifiers 

We define the robustness of a DNN image classifier as sustaining the performance of the 

model under various image corruptions or alterations [142].  In our study, image corruptions 

and alterations are due to visual camera failures and lead to the effects discussed in Section 2.4 

and Section 5.2.4. We now review robustness approaches, organized in architectural solutions 

for building robust DNNs, out-of-distribution detection, and data augmentation strategies for 

robustness and adversarial defense, and we present differences with respect to our work. 

 

Figure 3: A visual camera and its components: the Lens, and the camera body composed of 

Bayer Filter, Image Sensor, and Image Signal Processor [88]. 
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2.5.1 Architectural Solutions for Robust DNNs  

There have been several recent proposals of robust architectures for DNN image classifiers. 

In [116], the authors analyzed the classification performance of several DNNs against images 

degraded by Gaussian noise, blur, and compression. They end up proposing a two-step (master-

slave) process in which the master classifies the quality of the degraded input image, which is 

then used to select the most suitable slave DNN for classification. In [116], the authors provide 

a review of methods that combine two or more images and pre-process them to delete specific 

regions of the images that may make the DNN lean towards misclassifications. Experimental 

results show that this method builds image classifiers that are more robust and have better 

classification performance even when dealing with altered images. In [144], the authors 

estimated the confidence of the DNN in the response to unexpected execution contexts. 

2.5.2 Out-of-Distribution Detection 

Many works like [145], and [146] set the goal of detecting out-of-distribution samples, 

which can be detected without knowledge at training time of the kind of image alteration. 

Especially, [145] trains four different DNNs with three different supervisors at various stages 

of training, to detect at what point during training the performance of the supervisors starts to 

decline. In our thesis, the failures that degrade the acquired image quality such as Rain, Ice and 

dirt etc., are the examples of out-of-distribution samples.  

2.5.3 Data Augmentation for Robustness  

Another group of works is composed of studies that aim for DNN robustness through data 

augmentation strategies [147]. Authors of [117] use data augmentation to improve the 

generalization capability of DNNs using smoothness regularization against perturbations to 

improve the classification performance. In another study [118], authors employ a Pixel Mask 

to diminish the sensitivity of DNNs against the corruption of images. Moreover, the study [119] 

proposes a data augmentation pipeline to accelerate MRI reconstruction. Instead, our study is 

focused on cyber-physical systems that have a visual camera: to the best of our knowledge, 

there is no study that applies data augmentation to tolerate failures of the visual camera. To 

address this issue, we consider a complete set of failures that may happen due to malfunctions 

of the visual camera. 

2.5.4 Data Augmentation for Adversarial Defense 

 Many recent works on data augmentation set the goal of adversarial defenses, i.e., 

defending from images explicitly designed by an attacker to fool a classifier. Briefly, these 
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works propose adversarial training i.e., they increase the robustness of the target classifier, 

which is trained using genuine and adversarial images [148]. Even if the approach is 

conceptually similar to ours, our study does not consider the adversarial activity as one of the 

potential sources of altered images, therefore those are only marginally related works and are 

interesting to our study only regarding the approach they follow.
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3.  COMPARATIVE ANALYSIS OF NON-DEEP AND DEEP 

NEURAL NETWORK CLASSIFIERS FOR TRAFFIC SIGN 

RECOGNITION SYSTEM  

This chapter of the thesis provides a comparison of Machine Learning (ML) and Deep 

Neural Networks (DNNs) for Traffic Sign Recognition (TSR) systems. Many studies have tried 

to tackle the problem of TSR [21], [22], [98], by using different features and ML algorithms. 

However, they mostly exercise a few classifiers or a single feature set on a specific dataset. 

This does not provide sufficient means to compare different approaches. To such an extent, in 

this chapter of the thesis, we consider 3 datasets and a pool of eight non-deep ML algorithms 

for the recognition of traffic signs. These algorithms are exercised independently by feeding 

them 14 different feature sets and 12 combinations of different feature descriptors: this allows 

also debating on the efficacy and information content of such feature sets. To complete the 

pool of algorithms, we employ also 3 DNNs – namely InceptionV3 [40], MobileNet-V2 [41], 

and AlexNet [34] - that do not need feature sets as they automatically extract features using 

convolutional layers while training.  Altogether, these experiments build a quantitative 

comparison of different ML algorithms to benchmark different approaches by using 

heterogeneous datasets that provides a baseline for practitioners and researchers who are 

willing to set up a TSR component to be embedded in autonomous vehicles. Results allow 

elaborating on the performance of non-deep classifiers trained on different feature sets, a fusion 

of different feature descriptors, and DNNs that are trained using transfer learning.  

3.1 Motivation behind Comparative Analysis 

Indeed, only a few comparative studies have been proposed in the literature. For example, 

Jo, K. [15] trained different non-deep classifiers on Histogram of Oriented Gradients (HOG) 

features extracted from the German Traffic Sign Recognition Benchmark (GTSRB) dataset. 

Similarly, Schuszter, C. [70] reported on experiments with the BelgiumTSC dataset [32], where 

HOG features were extracted from images and then used to train Support Vector Machine 

(SVM) and deep Convolutional Neural networks, obtaining a maximum of 95.83% accuracy. 

Yang et al., [19] provide a comparison of different classifiers like K-Nearest Neighbors (KNN), 

SVM, Random Forest, and AdaBoost trained by using combinations of features. This study 

reported the highest average accuracy of 97.39 % achieved using Random Forest with the 
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combination of Local Binary Patterns (LBP) and HOG features considering GTSRB and 

Swedish Traffic Signs Dataset.     

Consequently, it was not possible to find a comprehensive comparison of different 

approaches, as different authors followed heterogeneous experimental methodologies. To fill 

this gap, in this thesis we (i) identify 3 public datasets reporting on images of traffic signs, (ii) 

define a pool of 14 combinations of keypoint detectors and feature descriptors and 12 

combinations of different feature descriptors, (iii) select 8 non-deep and 3 DNNs, (iv) adopt 

the most used scoring metrics to evaluate the quality of classifiers, and finally (v) present and 

discuss our results. In summarizing, we strongly believe that the comparative analysis of this 

thesis will provide researchers and practitioners with concrete means to set up their TSR 

systems through a fair comparison of existing techniques by means of state-of-the-art metrics. 

3.2 A Fair Comparison of TSR Systems 

To prepare our experimental comparison, we started looking for datasets (Section 3.1), 

then we gathered implementations for 14 couples of keypoint detectors and feature descriptors 

and a combination of 12 feature descriptors to be used in conjunction with non-deep classifiers 

(Section 3.2.2 and Section 3.2.3). DNNs in Section 3.2.4, instead, embed representation 

learning and therefore do not need to be fed with features. Finally, Section 3.3 describes the 

experimental setup.  

3.2.1 TSR Datasets and Traffic Sign Categories 

We conducted extensive research to identify commonly used labelled datasets reporting on 

traffic signs with overlapping categories, e.g., danger signs are red circular for all datasets. 

Datasets used in this chapter of thesis include i) the GTSRB dataset [31], ii) the BelgiumTSC 

dataset [32], and iii) the Dataset of Italian Traffic Signs (DITS) [33] that are described in 

Section 2.2.7. To be able to compare the result of different datasets, we consider only the three 

categories of traffic signs that appear in all datasets, namely red circular, blue circular, and red 

triangular. 

3.2.2 Keypoint Detectors and Feature Descriptors 

To identify key points and describe features to be extracted from images we considered the 

seven key point detectors KAZE, SURF, MSER, BRISK, FAST, Harris, and Minimum 

Eigenvalue algorithm described in Section 0, and four key point descriptors LBP, HOG, SURF, 

and KAZE (Section 2.2.1.2). A group of connected pixels in an image that have some common 

properties such as brightness, colour etc., are called blobs, and the goal of blob detector is to 
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detect and mark those regions, whereas corner detector aims to detect the corner features that 

are described by feature descriptors. Table 3 highlights the 14 combinations of key point 

detectors and descriptors used in this study. In addition, to complete this analysis, we created 

combinations of either 2 or 3 feature descriptors that are fed simultaneously to classifiers, 

namely HOG + KAZE, HOG + LBP, HOG + LPB + SURF, HOG + MSER, HOG + SURF, 

LBP + KAZE, LBP + MSER, LBP + SURF + MSER, MSER + KAZE, SURF + KAZE, SURF 

+ LBP, and SURF + MSER.  

3.2.3 Non-deep Classifiers and their Parameters 

Our analysis includes all the non-deep classifiers we listed in Section 2.2.3, namely KNN, 

SVM, Decision Tree, Boosting (ADABoostM2), Random Forests, Linear Discriminant 

Analysis, Feed Forward, and Cascaded Neural Network. Each algorithm requires its own 

parameter setup: therefore, we repeatedly executed each of them with slightly different values 

of parameters to find the most beneficial parameter setup through grid search processes. To 

such an extent, we employed the following parameter setups. 

• KNN with different values of k, i.e., different odd values of k from 1 to 15, namely k ϵ 

{1, 3, 5, 7, 9, 11, 13, 15}. 

Table 3: Combination of key point detectors and descriptors 

Keypoint Detector Detector Category Feature  

Descriptor 

FAST Corner based HOG 

FAST Corner based FREAK 

Harris Corner based HOG 

Harris Corner based FREAK 

Minimum Eigenvalue Corner based HOG 

Minimum Eigenvalue  Corner based FREAK 

Brisk multi-scale corner features HOG 

Brisk multi-scale corner features FREAK 

KAZE Blob based SURF-like 

KAZE Blob based HOG 

SURF Blob based SURF 

MSER regions Blob based SURF 

Full image - LBP 

Full image - HOG 
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• SVM: three different kernels Linear, Radial Basis Function (RBF), and Polynomial 

(quadratic) was used to perform linear and nonlinear classification. 

• Decision Tree: we used the default configuration of MATLAB with n - 1 for 

MaxNumSplits, where n is the training sample size. 

• Boosting: AdaBoostM2 algorithm with 100 trees.  

• Random Forest with 100 trees.  

• Linear Discriminant Analysis (LDA): we used pseudo linear discriminant type. 

• Feedforward Neural Networks (FFNN) and Cascaded Neural Networks (CNN) were 

set with either one or two hidden layers each with 10 neurons. Moreover, we employed 

9 different neural network training functions traingd, traingdm, trainrp, traincgp, 

trainbfg, trainlm, trainscg, traincgf. 

3.2.4 Deep Neural Networks for TSR 

Three DNNs of Section 3.2.4, i.e., InceptionV3, MobileNet-V2 and AlexNet are trained 

using transfer learning. Fully connected layers are trained on 3 categories of traffic signs with 

different learning rates (LR) to fine-tune the models which are already trained on ImageNet 

database of 1000 categories. We varied learning rate as follows: {0.05, 0.01, 0.005, 0.001, 

0.0005, 0.0001} for InceptionV3 / MobileNet-V2, and {0.00009, 0.00005, 0.00001, 0.000009, 

0.000005, 0.000001} for AlexNet. Instead, we always used 10 as the minimum batch size, with 

10 train epochs for all the experiments on each dataset to fine-tune the models for TSR. The 

process of transfer learning relied on data augmentation to avoid overfitting; this was conducted 

through X and Y translation with a random value between [-30 30] and a scale range within a 

range [0.9 1.1].    

3.3 Experimental Setup  

We orchestrate the inputs above as follows. Images go through a pre-processing phase to 

enhance the contrast between background and foreground through histogram equalization. 

Then, each pre-processed image is analyzed to extract 14 feature sets (Table 3) plus additional 

12 combinations to be used with non-deep classifiers, while DNNs are directly fed with pre-

processed images. All classifiers, both non-deep and DNNs are trained independently with their 

own parameter setup. Starting from the left of  Figure 4, these three building blocks interact 

with each other sequentially. Each image in the dataset is pre-processed and then analysed to 

identify key points to allow feature extraction. These features are then fed to the classifier, 

either for training or for testing (right of  Figure 4), if the training model was already learned. 
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An alternative is shown in the lower part of Figure 4, DNNs, which, unlike non-deep classifiers, 

combine steps ii) and iii). Briefly, DNNs are consisting of multiple convolutional layers that 

allows to learn representations of data. Although DNNs are very resource and time-consuming, 

they show promising classification capabilities and are being currently used in TSR.  

Classification performance is scored through a confusion matrix (True Positives TP, True 

Negatives TN, False Positives FP, False Negatives FN) and through metrics [99] that build on 

them, such as Accuracy, Precision, and Recall defined in Section 2.2.8. It is worth mentioning 

that these performance metrics are designed for binary classification, while we deal with 3 

categories of traffic signs. We adapt our categories to the confusion matrix by considering that 

the traffic signs that identify an “immediate danger” are the red circular ones, we consider the 

following 

• TP if the traffic sign was red circular and was classified as such 

• TN if the traffic sign was red triangular and was classified as such or if it was blue 

circular and classified as such. 

• FN if the traffic sign was red circular and was misclassified 

• FP if the traffic sign was either red triangular or blue circular and was misclassified. 

The experiments were conducted on an Intel(R) Core (TM) i5-8350U CPU@1.7GHz 1.9 

GHz running MATLAB. MATLAB implementations of DNNs also use our NVIDIA Quadro 

RTX 5000 GPU. All experiments required approximately 6 weeks of execution.  

3.4 Experimental Results  

This section of the thesis provides the detailed experimental results achieved using non-

deep machine learning and DNNs. 

 

Figure 4: Block Diagram of Traffic Sign Recognition System 
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3.4.1 Results of Non-deep Classifiers 

This section reports and discusses the results of our experimental campaign that explicitly 

focus on non-deep classifiers. We also expand on the impact of kernels for SVMs and training 

functions for Neural networks, which are known to be heavily impacted by them. 

3.4.1.1 On intrinsic difficulty of datasets 

Before analysing the metric scores of individual classifiers, we try to understand the 

intrinsic difficulty of our datasets, as traffic signs contained in one or more datasets could be 

easier to classify than others. To such an extent, we calculated the average (and standard 

deviation) values that all classifiers achieve on each individual dataset by using optimal 

parameters setup. Accuracy, Specificity (True Negative Rate), and Recall values in Table 4 are 

on average higher for the GTSRB dataset, which can be therefore considered the easiest to 

classify out of the three. More in detail, KNN, Random Forest, and SVM achieve 100% 

accuracy on the GTRSB dataset, while other classifiers show accuracy above 98.88%. These 

perfect scores may be due to the size of the training set, which is the largest out of the three for 

GTSRB; in addition, the quality of the images is better with respect to DITS and BelgiumTSC. 

On the other hand, metric values are on average lower when dealing with DITS. We explain 

this result as DITS contains a variety of images taken at different lighting conditions (i.e., day 

and night time, even with foggy weather), which heavily affect the capabilities of classifiers 

that end up being error-prone. 

3.4.1.2 Highest accuracy for each dataset 

Figure 5 depicts a chart with bars reporting the highest accuracy achieved by classifiers in 

each of the 3 datasets. It is clear from the blue solid bars in the figure that almost all classifiers 

give better performance on the GTSRB dataset compared to the other 2 datasets, which matches 

the average results we obtained in the previous Section 3.4.1.1. While as we said above KNN, 

SVM, and Random Forest give 100% accuracy on GTRSB, in the BelgiumTSC dataset the 

highest accuracies are provided by KNN and AdaBoostM2 (97.58%). Instead, AdaBoostM2 

 
Table 4: Average ± standard deviation of accuracy, specificity and recall of 8 non-deep classifiers 

on 3 datasets. 

Datasets Accuracy Specificity Recall 

BelgiumTSC 93.53 ± 2.97 91.10 ± 2.67 97.42 ± 3.77 

DITS 89.74 ± 3.13 88.90 ± 2.79 90.96 ± 4.31 

GTSRB 99.49 ± 0.45 99.40 ± 0.51 99.58 ± 0.40 
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provides the highest accuracy of 95.70% in DITS, with KNN and SVM that come close at 

95.50%. Depending on those results, we observe how KNN almost always achieves the highest 

accuracy in all the three datasets, while SVM and Boosting are still good – albeit non-optimal 

– choices overall. 

3.4.1.3 Impact of keypoint detectors and feature descriptors 

The results discussed in the previous Section 3.4.1.2 are strongly linked to the features that 

are fed to algorithms. To carefully expand on this aspect, Table 5 highlights the highest 

Accuracy achieved by classifiers on each dataset by using a given keypoint detector and feature 

descriptor to extract features. Corner detection with FREAK features (see rows 2, 4, 6, 8 in 

Table 5) outputs lower classification accuracy with respect to corner detectors with HOG 

features (as in rows 1, 3, 5, 7), which allow achieving the highest accuracies albeit they are 

costly to compute. LBP, HOG, and MSER with SURF descriptor reach 100% accuracy (see 

rows 12, 13, 14 of the table) on GTSRB data, while the accuracy of LBP and MSER with SURF 

descriptor degrades on DITS. Instead, HOG features extracted from the full image allow 

reaching high accuracy scores also on BelgiumTSC and DITS, being the best choice of a single 

feature descriptor in all the three datasets. To complete the discussion about the relevance of 

feature descriptors, we focus on the grayed rows in Table 5 which repeat the analysis above 

using more than one feature descriptor at a time. Overall, we observe how providing more 

features to classifiers through combinations of feature descriptors allows improving maximum 

accuracy in DITS (from 93.61 to 95.71) and BelgiumTSC (from 96.52 to 97.58). More in detail, 

combinations such as HOG + LBP and HOG + LPB + SURF achieve the highest accuracy in 

the BelgiumTSC dataset and top-notch values in DITS and GTRSB.  

 

Figure 5: Highest Accuracy achieved by Non-deep Classifiers 
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3.4.1.4 NN: contribution of training functions 

Feedforward and cascaded neural network performance strongly depends on the training 

function that is used to learn the model. Throughout our study, we used 9 different training 

functions, which were applied independently on each dataset for the training of FFNN and 

CNN. Figure 6 highlights the average (and standard deviation) scores of Accuracy, Specificity 

and Recall that we obtained by averaging metrics achieved by the best algorithm using a given 

train function across the 3 datasets. Train functions are sorted from left to right according to a 

decreasing average accuracy score: trainlm on the left achieved the highest, while traingdx 

Table 5:Highest Accuracy achieved using different keypoint detectors and feature extractors on 
each dataset. Grayed lines in the bottom of the table highlight combinations of items above. 

Keypoint Detector  

(Feature Descriptor) 

Highest Accuracy (%) 

GTSRB DITS BelgiumTSC 

 FAST(HOG) 93.93 73.95 79.85 

FAST(FREAK) 61.71 67.16 59.52 

 Harris (HOG) 97.10 69.46 77.84 

 Harris (FREAK) 66.32 77.64 67.38 

 MinEig. (HOG) 97.55 69.86 75.51 

 MinEig. (FREAK) 67.74 79.04 67.01 

Brisk (HOG) 95.99 82.23 87.57 

Brisk (FREAK) 65.95 69.36 60.8 

KAZE(SURF) 99.98 80.93 93.19 

KAZE(HOG) 98.32 82.23 90.36 

SURF (SURF) 79.62 91.61 89.21 

MSER Regions (SURF) 100.00 84.93 91.95 

LBP 100.00 83.63 93.51 

HOG 100.00 93.61 96.52 

HOG + KAZE (SURF) 100.00 95.61 96.53 

HOG + LBP  100.00 95.51 97.58 

HOG + LPB + SURF (SURF) 99.99 95.71 97.58 

HOG + MSER (SURF) 100.00 95.31 96.98 

HOG + SURF (SURF) 100.00 95.41 96.53 

LBP + KAZE (SURF) 99.92 84.43 95.25 

LBP + MSER (SURF) 99.86 87.62 93.56 

LBP + SURF (SURF) + MSER (SURF) 99.92 90.62 94.75 

MSER (SURF) + KAZE (SURF) 100.00 86.53 94.75 

SURF (SURF) + KAZE (SURF) 100.00 89.72 94.15 

SURF (SURF) + LBP 99.82 90.22 94.20 

SURF (SURF) + MSER (SURF) 100.00 90.52 93.56 
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proved to be the least effective in our experiments. Average accuracy scores of other train 

functions do not highlight relevant fluctuations. However, while Recall – which depends on 

false negatives – is almost constant, it seems that the usage of trainlm allows lowering false 

positives, consequently raising Specificity (see orange-striped bars in Figure 6).  

3.4.1.5 SVM: The impact of kernels  

A similar sensitivity analysis was conducted also for SVM kernels. Figure 7 shows the 

Accuracy, Specificity, and Recall obtained by SVMs on our 3 datasets using Linear, RBF, and 

polynomial (2nd degree) kernels. RBF kernel enables SVM to provide perfect accuracy 

(100.0%) on the GTSRB dataset, almost on par with the linear kernel (99.7%). Nevertheless, 

the linear kernel is the preferred choice for DITS and BelgiumTSC datasets as it is shown by 

higher triples of bars in Figure 7. We explain this result as follows: RBF is usually preferable 

 

Figure 7: Impact of SVM’s Kernels on maximum accuracy reached on each dataset. Plot also 

reports on Specificity and Recall. 

 

    

 

 

Figure 6: Impact of training function for FFNN and CNN. Bar chart shows average and 

standard deviation of top accuracy configurations for each of the three datasets. 
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when data is not linearly separable, while linear kernel should be the preferred choice when we 

assume linear separability of the hyperplane. As a result, we can conjecture that data is linearly 

separable in BelgiumTSC and DITS datasets, leading Linear kernel to be more effective than 

others in performing classification.  

3.4.2 Results of Deep Neural Networks  

After discussing the results of non-deep classifiers, we explore here the results of DNNs, 

i.e., InceptionV3, MobileNet-V2, and AlexNet. Table 6 indicates accuracy scores achieved by 

DNNs by varying learning rates as described in Section 3.2.4, highlighting higher scores with 

bold-font numbers with grayed background. Results indicate that MobileNet-V2 and 

InceptionV3 provide 100% accuracy in GTRSB dataset with a learning rate of 0.01 and 0.005 

respectively. The highest accuracy for BelgiumTSC was achieved by the InceptionV3 network 

Table 6: Accuracy achieved on three deep learning models for each of three datasets varying 
learning rates. 

 

 InceptionV3 MobileNet-V2 AlexNet 

G
T

S
R

B
 

LR Accuracy LR Accuracy LR Accuracy 

0.01 100.00 0.01 99.97 0.00009 99.99 
 

0.05 99.10 0.00005 99.99 

0.005 100.00 0.00001 99.97 

  0.000009 99.97 

 
0.000005 99.95 

0.000001 99.63 

B
el

g
iu

m
 T

S
C

 

0.05 87.43 0.05 91.50 0.00009 98.81 

0.01 98.21 0.01 97.16 0.00005 98.62 

0.005 99.22 0.005 98.26 0.00001 98.30 

0.001 99.17 0.001 98.17 0.000009 98.35 

0.0005 99.31 0.0005 98.08 0.000005 98.40 

0.0001 98.67 0.0001 98.26 0.000001 98.30 

D
IT

S
 

0.05 97.30 0.05 45.40 0.00009 99.10 

0.01 94.41 0.01 97.90 0.00005 96.90 

0.005 97.30 0.005 99.70 0.00001 97.00 

0.001 99.10 0.001 99.70 0.000009 97.20 

0.0005 98.90 0.0005 99.80 0.000005 97.10 

0.0001 99.50 0.0001 98.40 0.000001 96.90 
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with LR of 0.0005, while the same learning rate allowed MobileNet-V2 to reach top accuracy 

of 99.80% in DITS. Instead, AlexNet results indicate that the results of this network, albeit still 

high, are not as high as the ones achieved by its competitors. To the best of our knowledge, this 

difference may be due to the number of hidden layers DNNs employ: while InceptionV3 and 

MobileNet-V2 respectively rely on 48 and 53 hidden layers, only 8 hidden layers are used in 

AlexNet. This lower number of convolutional layers may have negatively been impacting 

transfer learning procedures, making AlexNet unable to provide excellent results as the other 

two DNNs do. As a last remark, Table 6 shows how a learning rate of 0.0009 is always 

beneficial for AlexNet with respect to the other learning rates we used in our experiments.  

3.5 Lessons Learned 

Independent analyses and discussions of results in Section 3.4.1 and Section 3.4.2 provided 

interesting findings concerning both non-deep classifiers and DNNs. To complete and wrap up 

our analysis, we proceed here to compare the results of these two approaches to finding 

conclusive lessons and takeovers of this part of the thesis. It is worth mentioning that the 

GTRSB dataset turned out to contain images of traffic signs that were classified perfectly by 

both non-deep classifiers (e.g., KNN, SVM) and DNNs (e.g., MobileNet-V2, InceptionV3). 

The discussion on the other two datasets requires additional thinking we carry out with the aid 

of Figure 8, which reports on the Accuracy, Specificity and Recall scores for KNN, SVM, 

Boosting, InceptionV3, MobileNet-V2, which showed overall good metric scores with respect 

to their competitors. The plot in Figure 8a expands on BelgiumTSC dataset. It is 

straightforward to notice how InceptionV3 outperforms other algorithms, with particularly 

good specificity scores. Such a DNN has a very low number of false positives, or rather it 

hardly misclassifies either a red triangular or blue circular traffic sign for a red circular one. 

Such scores are very close to the optimum (accuracy is 99.31%), as only 0.7% of the traffic 

signs are being misclassified in BelgiumTSC by InceptionV3.  

Instead, Figure 8b details the performance of classifiers on the DITS dataset. Differently 

from Figure 8a, it is evident that DNNs remarkably outperform non-deep classifiers. In fact, 

while the best non-deep classifiers (KNN and Boosting) hover around a 4.2% of 

misclassification rate, the accuracy of MobileNet-V2 reaches 99.80% with perfect Recall. This 

means that only 0.2% of the images are being misclassified by MobileNet-V2 on DITS, and 

that all misclassifications are false positives, or rather either blue circular or red triangular 

traffic signs that were classified as red circular “danger” signals. This is a very good result if 

we consider that the DITS dataset is very challenging due to traffic signs that appear with non-
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optimal lighting conditions and with blurred areas of several images. Moreover, MobileNet-

V2 never misclassifies red circular signals (no false negatives at all), which may directly harm 

the driver or other objects in the environment. We can suppose that misclassifying a blue 

circular “informative” traffic sign for a “danger” signal may trigger a false alarm to the driver 

or even let the car to automatically slow down, but it is nowhere nearly dangerous as missing 

a stop or pedestrian crossing sign and entering the street with potentially catastrophic 

consequences.  

Overall, results showed that KNN, SVM, Random Forest, and Neural Networks are the 

most adequate non-deep classifiers, and that HOG features provided actionable information to 

be processed by those algorithms. We also verified how employing more than one feature set 

extracted from heterogeneous descriptors can increase the recognition accuracy. Overall, non-

deep classifiers achieved the highest accuracy of 100% on GTSRB, 97.58% on BelgiumTSC, 

and 95.71% on DITS with a combination of HOG, LBP, and SURF features. Furthermore, we 

compared those results with DNNs AlexNet, MobileNet-V2, and InceptionV3, which were 

adapted to TSR through transfer learning and achieved higher accuracy than classifiers on 

DITS and BelgiumTSC i.e., 99.80% and 99.31% respectively. 

Wrapping up this chapter of the thesis, our results suggest that DNNs have the potential to 

reduce misclassifications for TSR with respect to non-deep classifiers, albeit transfer learning 

to tailor those networks to a specific domain must be conducted and planned carefully. 

 

 

 

 

Figure 8 a and b. Specificity, Accuracy and Recall achieved by most performing non-deep classifiers 

(Boosting, KNN, SVM) and deep learners (InceptionV3, MobileNet-V2) on BelgiumTSC (left, Figure 

8a) and on DITS (right, Figure 8b) datasets. 
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4.  ENHANCING TRAFFIC SIGN RECOGNITION THROUGH 

SLIDING WINDOWS 

Traffic Sign Recognition (TSR) techniques that use Machine Learning (ML) algorithms 

have been proposed, but no agreement on a preferred ML algorithm nor perfect classification 

capabilities were always achieved by any existing solutions. Regardless of the outcomes of 

comparison studies, most of the existing solutions for TSR process a single image and output 

a classification result. Instead, vehicles gradually approach traffic signs during their road trips, 

generating sequences of images: the closer the vehicle is to the traffic sign, the better the quality 

of the image, even under slightly different environmental conditions. Therefore, the problem 

of TSR naturally scales to knowledge extraction from a set or sequence of images that 

potentially contain traffic signs. Consequently, the classification process should not depend 

only on a single image to make a decision; instead, it should build on the knowledge acquired 

as the vehicle moves forward, i.e., the sequence of images.  

This chapter of the thesis considers a sliding window of images to commit classification 

rather than classifying images individually. First, we process each image with the most 

effective single image classifier for TSR: then, we combine classification scores assigned to 

images in the sliding window to provide a unified and improved classification result. Such a 

combination is performed by appropriate Meta-Learners [30], which suit model combination, 

and therefore, show potential to be applied in such a context. We conduct an experimental 

evaluation by processing three public datasets, namely, (i) German Traffic Sign Recognition 

Benchmark (GTSRB) [31] (ii) BelgiumTSC [32], and (iii) the Dataset of Italian Traffic Signs 

(DITS) [33], which report on sequences or unordered sets of images of traffic signs. From each 

image, we extracted 12 different feature sets, which use handcrafted features (Histogram of 

Oriented Gradients (HOG) [17], Local Binary Pattern (LBP) [16]), deep features (from 

AlexNet [34], ResNet18 [35]), and their combinations, to debate their impact in TSR. Those 

features were fed to non-deep classifiers as Decision Trees [36], Random Forests [37], k-th 

Nearest Neighbour (KNN, [13]), Linear Discriminant Analysis Classifier (LDA) [38], Support 

Vector Machines (SVMs) [14], and AdaBoost [39]. We also exercised single-image classifiers 

that do not rely on feature descriptors as Deep Neural Networks (DNNs), namely InceptionV3 

[40], MobileNet-V2 [41] and AlexNet [34]. We used the classifiers above both as single-image 

classifiers and as base-level learners of a Stacking meta-learner, which aggregates individual 
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classification scores into sliding windows. The meta-level classifier for Stacking was 

experimentally chosen out of non-deep classifiers, the Majority Voting [42] and Discrete 

Hidden Markov Model (DHMM, [43]). Additionally, we compare the classification 

performance of those meta-learners with Long Short-Term Memory (LSTM) networks, which 

naturally deal with sequences of data coming at different time instants. We trained those LSTM 

networks on the same sliding windows of images processed through Stacking.  

4.1 Sliding Windows to Improve TSR  

TSR naturally fits the analysis of sequences of images being collected as the vehicle 

approaches the traffic sign. Therefore, we organize a complex classifier that processes sliding 

windows of images as shown in Figure 9, a sliding window of size s contains (i) the most recent 

image sampled by the sensors on the vehicle plus (ii) the s-1 most recent images. The figure 

represents how sliding windows of size s = 2 and s = 3 evolve as time passes by as the vehicle 

approaches a speed limit sign. Intuitively, the closer the vehicle gets to the traffic sign, the more 

visible and clearer the traffic sign gets. On the other hand, the sooner the TSR correctly 

classifies a traffic sign, the better it is for the Advance Driving Assistance System (ADAS), 

e.g., it may provide more time for emergency braking, whenever needed.  

4.1.1 Sliding Windows and Meta-Learning  

Adopting sliding windows of s images calls for a rework of the TSR system. In particular, 

classification should be carried out using s subsequent classifications, which contribute to the 

final decision on the traffic sign. Those single-image classifications for subsequent images have 

to be combined by utilizing an independent strategy that delivers the result of this ensemble of 

 

Figure 9:Example of Sliding Windows. Dotted, dashed and solid boxes show 

sliding windows, respectively, at t5, t4, t3. 
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single-image classifiers. Such a combination is usually orchestrated through meta-learning 

[30], [71], which uses knowledge acquired during base-learning episodes, i.e., meta-

knowledge, to improve classification capabilities. More specifically [72], a base-learning 

process starts feeding images into one or more base classifiers to create meta-data at the first 

stage. Results of those base learners, i.e., meta-data are provided alongside other features to 

the meta-level classifier as input features, which in turn provides the classification result of the 

whole meta-learner. The paradigm of meta-learning can be adapted to TSR as shown in Figure 

10. Let k be the number of different categories of traffic signs (i.e., classes), and let s be the 

size of the sliding window. Starting from the left of the figure, images are processed by means 

of single-image base-level classifiers, which provide k probabilities PTSi = {ptsi1, . . . ptsik} to 

classify each image. Depending on the current time tj , we create a sliding window of at most 

s×k items, namely swsj = {PTSj , PTSj-1, . . . PTSj-s-1}, which builds the meta-data to be provided 

to the meta-level classifier. On the right side of Figure 10, the meta-level classifier processes 

such meta-data and provides the k probabilities PTSfinal, which will constitute the classification 

result of the whole sequence within the sliding window. As time moves on, we will have newly 

captured images and the sliding window will process the most recent s × k items. Note, that the 

sliding window swsj may contain less than s × k items when j < s (e.g., the window of size 3 at 

time t2 in Figure 9). In those cases, the TSR system will decide based on a single-image 

classification of the most recent image.  

4.2 A Stacking Meta-Learner  

The structure of the meta-learner we described previously is traditionally referred to as 

Stacking. Stacking [73] builds a base-level of different classifiers as base learners. Base-

learners can be trained with the exact same training set or with different training sets, 

mimicking Bagging [74]. Each of the n base-learners generates meta-features (PTSi , 1 ≤ i ≤ n 

in Figure 10) that are fed to another independent classifier, the meta-level classifier, which 

calculates and delivers the final output (PTSfinal in Figure 10). In our instantiation of the 

Stacker, we use the same base-level classifier, which can either be a DNN or a non-deep 
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classifier but feed each base-learner with a different image. The meta-level classifier is 

necessarily a non-deep classifier as it has to process numeric features contained in swsj rather 

than images.  

4.3 Methodology, Inputs, and Experimental Setup  

This section describes the methodology, inputs, and experimental setup to compare single-

image classifiers and approaches built upon sliding windows, such as Stacking and LSTM 

networks.  

4.3.1 Methodology for a Fair Comparison of TSR Systems  

We orchestrate our experimental methodology as follows:  

• Datasets and Pre-processing. Images go through a pre-processing phase to resize them 

to the same scale and enhance the contrast between background and foreground 

through histogram equalization.  

• Feature Extraction (Section 4.3.3) Then, each pre-processed image is analyzed to 

extract features: these will be used with non-deep classifiers, while DNNs will be 

directly fed with pre-processed images.  

 

Figure 10: Diagram representing TSR which uses sliding windows. Blue solid boxes represent 

single-image classifier in Figure 4. 
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• Classification Metrics (Section 4.3.4). Before exercising classifiers, we select metrics 

to measure the classification capabilities of ML algorithms which apply both to single-

image classifiers and to others based on sliding windows.  

• Single-Image Classification. Both non-deep (Section 4.3.5.1) classifiers and DNNs 

(Section 4.3.5.2) will be trained and tested independently, executing grid searches to 

identify proper values for hyper-parameters.  

• Sliding Windows with Stacking Meta-Learners (Section 4.3.5.3). Results of single-

image classifiers will then be used to build Stacking learners as described in Section 

4.2 and by adopting different meta-level classifiers.  

• Sliding Windows with LSTM (Section 4.3.6). Furthermore, sliding windows will be 

used to exercise LSTM networks as described in Section 2.2.6.  

4.3.2 TSR Datasets and Traffic Sign Categories 

 We conducted extensive research to identify commonly used labelled datasets, namely: (i) 

the BelgiumTSC dataset [32], (ii) the GTSRB dataset [31], and (iii) the DITS [33] described in 

Section 2.2.7, that are reporting on sequences of traffic signs with overlapping categories.  

4.3.3 Feature Descriptors 

We extract features from images by means of handcrafted, i.e., HOG, LBP 

and deep, i.e., AlexNet and ResNet, feature descriptors, as described in Section 2.2.1.2 and 

2.2.2 respectively. In addition, we combine hand-crafted and deep feature descriptors that are 

consequently fed simultaneously to classifiers: couples as {HOG U LBP}, {AFeat U HOG}, 

{AFeat U LBP}, {RFeat U HOG}, {RFeat U LBP}, {AFeat U RFeat}, and triples of 

{AFeat U HOG U LBP} and {RFeat U HOG U LBP}. 

4.3.4 Classification Metrics 

The performance of classifiers different strategies for TSR are evaluated using a 

performance metric accuracy that is described in detail in Section 2.2.8. 

4.3.5 Non-deep Classifiers and Deep Neural Network Hyper-Parameters 

This Section provide the detailed of the hyperparameters that we used to train non-deep 

classifiers and DNNs. 

4.3.5.1 Hyper-parameters of non-deep classifiers 

Each non-deep algorithm has its own set of hyper-parameters. To such an extent, we 

identified the following parameter values to exercise grid searches. 
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• KNN with different values of k, i.e., different odd values of k from 1 to 25. Additionally, 

we observe that DITS contains nine categories of traffic signs: therefore, we disregard 

the usage of k = 9 to further avoid ties.  

• SVM: we used three different kernels: Linear, RBF and Polynomial (quadratic), leaving 

other parameters (e.g., nu) as default.  

• Decision Tree: we used the default configuration of MATLAB which assigns 

MaxNumSplits = training sample size 1, with no depth limits on decision trees.  

• Boosting: we created boosting ensembles with AdaBoostM2 by building 25, 50, 75, and 

100 trees (decision stumps) independently.  

• Random Forest: we build forests of 25, 50, 75, or 100 decision trees. 

• LDA: we Trained LDA using different discriminants, namely: pseudo-linear, diag-

linear, diag-quadratic, and pseudo-quadratic. 

4.3.5.2 Hyper-parameters of deep neural networks 

DNNs may be either built from scratch or more likely—by adapting existing models to a 

given problem through transfer learning (i.e., knowledge transfer). Through transfer learning, 

we fine-tune the fully connected layers of the DNN, letting all convolutional layers remain 

unchanged. Those DNNs can be tailored to TSR through transfer learning. Fully connected 

layers are trained on defined categories of traffic signs with different learning rates (LR) to 

fine-tune the models which are already trained on the ImageNet database of 1000 categories. 

Additionally, we employ data augmentation to avoid model overfitting; this was conducted 

through X and Y translation with a random value between [−30, 30] and scale range within a 

range [0.7, 1]. The hyper-parameter learning rate controls how fast weights are updated in 

response to the estimated errors, and therefore, controls both the time and the resources needed 

to train a neural network. Choosing the optimal learning rate is usually a tricky and time-

consuming task: learning rates that are too big may result in fast but unstable training, while 

small learning rates usually trigger a heavier training phase which may even get stuck without 

completing correctly. In our experiments, we varied learning rate as follows: {0.05, 0.01, 0.005, 

0.001, 0.0005, 0.0001} for InceptionV3 and MobileNet-V2, and {0.0001, 0.0005, 0.00001, 

0.00005, 0.000005, 0.000001} for AlexNet, which resulted in very low accuracy when using 

the same learning rates of the InceptionV3 and MobileNet-V2. Noticeably, training a DNN 

with the highest learning rate in the interval reduce the training time with respect to using the 

smallest value in the interval (e.g., training InceptionV3 with a learning rate of 0.05 instead of 

using 0.0001). We set a minimum batch size of 32, with 10 train epochs and stochastic gradient 
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descent with momentum (sgdm) optimizer for all the experiments on each dataset to fine-tune 

the models for TSR. Furthermore, we used the loss function ‘crossentropyex’ at the 

classification layer and the fully connected weights and biases were updated with a learning 

factor (different from learning rate) of 10. We had the weights vector size associated with the 

last fully connected layers [Num_cat × 4096], [Num_cat × 1280], and [Num_cat × 2048] for 

AlexNet, MobileNet-V2 and InceptionV3 models, respectively, where Num_cat represented 

the number of traffic sign categories in each dataset. 

4.3.5.3 Hyper-parameters of stacking meta-level learners 

The parameters we used to execute grid searches and train meta-level learners above are 

as follows.  

• Majority Voting: no parameter is needed. 

• Each DHMM model was trained with 500 iterations.  

• Non-deep Classifiers: we used the same parameter values we already presented in 

Section 4.3.5.1. 

4.3.6 Long-Short Term Memory (LSTM) Networks  

LSTM networks are artificial recurrent neural networks, which efficiently process 

sequences of images, and therefore, suit the classification of sequences of traffic signs. LSTM 

networks are trained on all 12 feature sets in Section 4.3.3 independently considering three 

different training functions or optimizers, i.e., Adaptive Moment Estimation (adam) [133], 

Stochastic Gradient Descent with Momentum (sgdm) [134], and Root Mean Square 

Propagation (rmsprop) [135] with a learning rate of 0.001. 

4.4 Experimental Results  

This section reports and discusses the results of our experimental campaign. We split the 

results into two sub-sections: First Section 4.4.1 describes the experimental results of single-

image classifiers, while the Section 4.4.2 reports on the results achieved by classifiers that 

consider sliding windows of images. 

4.4.1 TSR Based on Single Image  

First, we elaborate on the classification performance of TSR systems that process images 

individually. The results described in this section are similar to Section 3.4 but with different 

number of traffic sign classes. Initially, in Section 3.4 we described the result of non-deep and 
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deep classifiers considering three broad categories of traffic signs i.e., red circular, blue circular 

and red triangular, while in this sections we increased the complexity of the dataset and instead 

of 3, we use 9 categories of traffic signs as shown previously in Table 2. 

4.4.1.1 Highest accuracy for each dataset  

Figure 11 depicts a bar chart diagram reporting the highest accuracy achieved by classifiers 

in each of the three datasets. It is clear from the blue solid bars in Figure 11 that almost all 

classifiers give better performance on the GTSRB dataset compared to the other two datasets, 

i.e., BelgiumTSC and DITS. All classifiers in the figure but Decision Tree and LDA achieve 

perfect accuracy on the GTSRB dataset. The reason behind the high accuracy may be the higher 

number of training samples and better image quality of the GTSRB dataset compared to the 

other two datasets. Instead, SVM provides the highest accuracy of 95.94% in DITS, with LDA 

that comes close at 95.85%. Consequently, the highest accuracy in each dataset is not always 

achieved by the same algorithm, despite KNN, SVM, and LDA performing better overall 

compared to other non-deep classifiers.  

4.4.1.2 Impact of feature descriptors  

Table 7 further elaborates on the impact of features on accuracy scores achieved by non-

deep classifiers on each dataset. Non-deep classifiers achieve perfect accuracy with all feature 

descriptors on GTSRB. Instead, the combination of AFeat and RFeat builds a feature descriptor 

that allows algorithms to achieve the highest accuracy of 95.94% for DITS and 99.12% for 

BelgiumTSC. Additionally, AFeat and RFeat descriptors provide features that allow algorithms 

 
Figure 11: Highest accuracy achieved by non-deep classifiers on each dataset. 
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to reach higher accuracy. By using just a single feature descriptor AFeat always achieves the 

highest accuracy on all three datasets, while the second highest accuracy is achieved by RFeat. 

Instead, using only LBP, HOG or their combination generates accuracy scores that are lower 

than potential alternatives. Moreover, it is worth noticing how combining  feature descriptors 

provides features that increase the classification performance of non-deep classifiers, such as: 

from 95.51% to 95.94% in DITS, and from 98.84% to 99.12% in BelgiumTSC.  

4.4.1.3 Results of deep neural networks  

We explore the results of the DNNs considered in this study with the aid of Table 8, which 

shows accuracy scores achieved by those classifiers for different learning rates. MobileNet-V2 

achieves the highest accuracy out of the three DNNs for the GTSRB dataset with a learning 

rate of 0.001, whereas a learning rate of 0.00005 maximizes the accuracy scores of AlexNet on 

the BelgiumTSC dataset. Instead, the learning rate of 0.0001 allows InceptionV3 to reach the 

maximum accuracy of 96.03% for the DITS dataset, outperforming MobileNet-V2 and 

AlexNet, which instead achieves the highest accuracy in the BelgiumTSC dataset with a 

learning rate of 0.0005. Interestingly, whereas accuracy scores for GTSRB do not vary a lot 

when using different learning rates, the choice of the learning rate becomes of paramount 

importance when classifying DITS and BelgiumTSC datasets. Particularly, the bottom of Table 

8, the third column, shows a 14.97% accuracy on the BelgiumTSC dataset using learning rates 

of 0.05 and 0.005, which is a very poor achievement. For these learning rates, the training 

process was unstable, with weights that were updated too fast and ended up with a classifier 

that has semi-random classification performance. Unfortunately, we could not identify a single 

DNN that outperforms others in all three datasets.  

Table 7: Highest accuracy achieved using different feature descriptors on each dataset (bold 
high-lighted values represent the highest achieved accuracy across each dataset). 

Feature Descriptor (s) GTSRB DITS BelgiumTSC 

AFeat 100.00 95.51 98.84 

RFeat 100.00 94.13 97.76 

LBP 100.00 79.98 93.49 

HOG 100.00 87.92 96.24 

HOG ∪ LBP 100.00 88.26 96.56 

AFeat ∪ RFeat 100.00 95.94 99.12 

AFeat ∪ HOG 100.00 95.68 98.96 

AFeat ∪ LBP 100.00 95.85 98.96 

RFeat ∪ HOG 100.00 95.51 98.72 

RFeat ∪ LBP 100.00 95.85 98.80 

AFeat ∪ HOG ∪ LBP 100.00 95.42 98.88 

RFeat ∪ HOG ∪ LBP 100.00 95.34 98.84 
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4.4.2 TSR Based on Sliding Windows  

This section elaborates on the classification performance of TSR systems that process a 

sliding window of multiple images.  

4.4.2.1 Meta learning with non-deep base classifiers  

Table 9 reports scores achieved by stacking meta-learners built using (i) the three non-deep 

classifiers that performed better in Section 4.4.1.1 as base learners, and (ii) different meta-level 

learners, such as KNN, SVM, LDA, Decision Tree, Majority Voting, Boosting, Random Forest 

and DHMM. The GTSRB dataset does not appear in Table 9 since single-image non-deep 

classifiers alone already achieved perfect classification. The table reports the highest accuracy 

scores achieved by each stacking meta-level classifier by using different combinations of base-

learners (KNN, SVM, LDA) and window sizes of two and three items. 

Overall, LDA as a base-level classifier with a KNN meta-level classifier is the preferred 

choice (bolded values in Table 9) on DITS and on BelgiumTSC with a sliding window of three 

items. Instead, using ensembles of Decision Trees as AdaBoost and Random Forests sparingly 

gives very low accuracy scores (see italicized numbers in the 10th and 11th columns of Table 

9), showing that those two classifiers do not always adequately play the role of a meta-level 

classifier for a stacker. Results for DITS in Table 9 show that using a sliding window of three 

Table 8: Accuracy achieved by deep learners for each of the three datasets with varying learning 
rates (bold highlighted values represent the highest achieved accuracy across each dataset by deep 

classifiers). 

 InceptionV3 MobileNet-V2 AlexNet 

LR Acc LR Acc LR Acc 

G
T

S
R

B
 

0.01 96.62 0.01 96.11 0.0001 95.98 

0.05 93.56 0.05 93.38 0.0005 94.92 

0.001 96.95 0.001 99.35 0.00001 94.86 

0.005 97.06 0.005 96.42 0.00005 95.64 

0.0001 96.81 0.0001 96.83 0.000001 95.83 

0.0005 98.03 0.0005 96.65 0.000005 96.07 

D
IT

S
 

0.01 80.06 0.01 93.52 0.0001 87.40 

0.05 80.67 0.05 85.93 0.0005 86.45 

0.001 88.17 0.001 94.99 0.00001 95.51 

0.005 84.98 0.005 88.78 0.00005 92.06 

0.0001 96.03 0.0001 95.77 0.000001 92.23 

0.0005 91.88 0.0005 95.94 0.000005 95.16 

B
el

g
iu

m
T

S
C

 0.01 89.58 0.01 97.16 0.0001 99.24 

0.05 14.97 0.05 94.49 0.0005 92.57 

0.001 98.12 0.001 98.72 0.00001 99.52 

0.005 14.97 0.005 94.73 0.00005 99.72 

0.0001 99.64 0.0001 99.24 0.000001 97.92 

0.0005 99.68 0.0005 98.96 0.000005 99.24 
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items generally improves accuracy with respect to using a sliding window of only two items. 

A sliding window of three items allowed stacking meta-learners, which used KNN or LDA as 

meta-level classifiers to reach perfect accuracy (100%) on the DITS dataset using either LDA 

or SVM as base-learners. This result was largely expected: the more information is available 

(i.e., wider sliding window), the fewer misclassifications we expect from a given classifier. 

Instead, we obtained maximum accuracy for the BelgiumTSC by using a sliding window of 

two items, whereas using three items often degrades classification performance. At a first 

glance, this result is counter-intuitive with respect to previous discussions. However, the reader 

should note that the BelgiumTSC dataset reports on a set of images of the same traffic signs 

which are captured with multiple input visual cameras without any temporal order. 

Consequently, the sliding window for the BelgiumTSC contains images of the traffic sign 

which are taken from different angles and may lead the meta-learner to lean towards 

misclassifications rather than improving accuracy. In fact, for this dataset, there is no direct 

relation between the size of the window and accuracy values, which instead turned out to be 

evident for the other datasets.  

Table 9: Results achieved using different meta-learners considering non-deep classifiers as base 
classifiers varying window size (WS). We bolded the highest achieved accuracy using different 
combinations across each dataset and low accuracy achieved through AdaBoostM2 and Random 

Forest italicized numbers in the 10th and 11th columns. 

Dataset 
Base-Level 

Classifier 

Single Image 

Accuracy 
WS 

Stacking Meta-Level Classifier 

Majority 

Voting 
KNN SVM LDA 

Decision 

Tree 

AdaBoostM

2 

Random 

Forest 
DHMM 

B
el

g
iu

m
T

S
C

 

KNN 98.44 

2 

99.40 99.04 98.8 98.80 98.68 98.80 51.86 98.56 

SVM 98.88 99.52 99.64 99.76 98.68 99.64 99.28 98.80 99.04 

LDA 99.12 99.64 99.40 99.28 99.28 98.32 98.92 97.84 99.40 

KNN 98.44 

3 

99.40 99.40 99.04 98.92 98.44 98.32 63.47 98.20 

SVM 98.88 99.52 99.52 99.64 99.40 98.56 14.97 99.28 98.80 

LDA 99.12 99.64 99.64 99.40 98.2 99.28 97.96 98.32 98.80 

D
IT

S
 

KNN 95.25 

2 

97.56 97.56 97.56 96.75 97.56 97.56 82.93 96.75 

SVM 95.94 96.75 97.56 98.37 97.56 95.12 31.71 95.12 95.93 

LDA 95.85 98.37 98.37 97.56 97.56 98.37 95.93 96.75 96.75 

KNN 95.25 

3 

99.00 99.00 99.00 99.00 99.00 99.00 85.00 98.00 

SVM 95.94 99.00 100 99.00 99.00 97.00 36.00 97.00 96.00 

LDA 95.85 99.00 100 98.00 100 99.00 98.00 99.00 98.00 
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4.4.2.2 Meta learning with base-level deep neural network classifiers  

Table 10 has a structure similar to Table 9 but employs base-level DNNs to build the 

stacking meta-learner, and also reports on all datasets as DNNs based on a single image but did 

not achieve perfect accuracy on any of the three datasets.  Base-level DNNs in conjunction 

with KNN as a meta-level classifier achieved perfect classification on all three datasets, as 

shown by bold values in Table 10. GTSRB turns out to be the dataset that provides the higher 

average accuracy by using a different base and meta-level classifiers. The highest achieved 

accuracies are highlighted in Table 10 with bold typeset. It is very interesting to discuss that 

all three DNNs (base-level classifiers) with meta-level classifiers KNN, LDA, Boosting and 

Random Forest give 100% accuracy, while MobileNet-V2 achieves 100% accuracy with all 

meta-level classifiers for a sliding window of size 2 or 3 on the GTSRB dataset. InceptionV3 

and MobileNet-V2 with meta-level classifiers (KNN, AdaboostM2) achieve 100% accuracy on 

the DITS dataset for sliding windows of size 2 and 3, respectively, While AlexNet base-level 

Table 10: Results achieved using different meta learners with DNNs as base classifiers with varying 
window size (WS). We bolded the perfect classification (100% accuracy). 

Dataset. 
Base-Level 

Classifier 

Single Image 

Accuracy 
WS 

Majority 

Voting 
KNN SVM LDA 

Decision 

Tree 

Ada- 

BoostM2 

Random 

Forest 
DHMM 

B
el

g
iu

m
T

S
C

 

AlexNet 99.72 

2 

99.88 100.00 99.64 99.88 99.88 99.40 99.16 99.76 

InceptionV3 99.68 99.88 99.88 99.64 99.88 99.52 99.88 99.64 99.64 

MobileNet-V2 99.24 99.52 99.88 99.64 99.04 99.64 99.52 98.68 99.64 

AlexNet 99.72 

3 

100.00 100.00 99.28 99.88 99.88 99.76 99.76 99.28 

InceptionV3 99.68 99.88 99.88 99.40 99.52 99.40 14.97 99.76 99.52 

MobileNet-V2 99.24 99.88 99.88 98.80 99.16 99.40 14.97 99.76 99.52 

D
IT

S
 

AlexNet 95.51 

2 

96.75 97.56 97.56 97.56 96.74 96.74 96.74 98.37 

InceptionV3 96.03 98.37 100.00 97.56 98.37 98.37 96.74 95.93 99.19 

MobileNet-V2 95.94 97.56 99.18 99.18 99.18 99.18 100.00 98.37 99.19 

AlexNet 95.51 

3 

97.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 

InceptionV3 96.03 98.00 100.00 99.00 98.00 99.00 100.00 99.00 98.00 

MobileNet-V2 95.94 98.00 100.00 99.00 100.00 99.00 100.00 100.00 100.00 

G
T

S
R

B
 

AlexNet 96.07 

2 

97.37 100.00 99.76 100.00 98.09 100.00 100.00 98.09 

InceptionV3 98.03 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.76 

MobileNet-V2 99.35 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

AlexNet 96.07 
3 

0.9737 100.00 99.76 100.00 98.09 100.00 100.00 98.09 

InceptionV3 98.03 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.76 

 MobileNet-V2 99.35  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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classifier with Majority voting and KNN as the meta-level classifier achieves 100% accuracy 

for both sliding windows of size 2 & 3 on BelgiumTSC dataset.  

Similarly, to Table 9, we observe that AdaboostM2 does not show up as a reliable meta-

level classifier as it provides very low accuracy for the BelgiumTSC with a sliding window of 

three images. All meta-level classifiers with base-level classifier Mobilenet-V2 achieve 100% 

accuracy on the GTSRB dataset, whose sequences contain 30 images of the same traffic sign, 

and therefore, provide much information for the stacking classifier to classify traffic signs as 

the window slides.  

4.4.2.3 Results of LSTM networks  

Table 11 reports accuracy scores of LSTM networks on the BelgiumTSC and DITS 

datasets with a sliding window of size 2 or 3. Similarly to Section 4.4.2.1, we omit the GTSRB 

dataset since it is perfectly classified by single-image non-deep classifiers. We independently 

trained the LSTM by using each of the 12 feature sets in Section 4.3.3, with different window 

sizes (WS) and by using three different optimizers: adam, sgdm and rmsprop. Table 11 reports 

the highest accuracy achieved by LSTM by using a given WS and optimizer function. It is 

evident how the adam optimizer always allows achieving the highest accuracy scores in both 

datasets and with different WS. Additionally, accuracy is always higher when using a window 

of size 3 with respect to a window containing only two items: this was expected for DITS, 

whose images are time-ordered, but it is also verified for the BelgiumTSC, which does not have 

such ordering. Overall, the results of the LSTM are slightly lower than stacking meta-learners 

using non-deep base-level classifiers and clearly worse than stacking using base-level DNNs, 

which achieves perfect accuracy on all datasets.  

4.4.3 Comparing Sliding Windows and Single-Image Classifiers  

Independent analyses and discussions of results in Sections 4.4.1 and 4.4.2 provided 

interesting findings concerning both non-deep classifiers and base-level DNNs and the usage 

of sliding windows to improve the classification performance through meta-learning.  

Table 11: Accuracy of LSTM with window sizes 2 and 3. 

Dataset WS 
Optimizer 

adam Sgdm rmsprop 

DITS 2 97.56 97.56 96.74 

DITS 3 99.00 99.00 98.00 

BelgiumTSC 2 99.40 99.16 99.16 

BelgiumTSC 3 99.64 99.28 99.40 
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Non-deep classifiers, such as KNN, SVM, AdaboostM2, and Random Forests achieved a 

perfect classification of each image contained in the GTRSB dataset. Moreover, we observed 

how combining deep features descriptor {AFeat ∪ RFeat} allowed non-deep classifiers to reach 

the highest accuracy in any of the three datasets, achieving 100%, 95.94%, 99.12% on the 

GTSRB, DITS and BelgiumTSC datasets, respectively. On the other hand, DNNs outperform 

non-deep classifiers on the DITS and BelgiumTSC datasets but still cannot reach a perfect 

classification accuracy.  

Noticeably, stacking meta-learners that take advantage of sliding windows achieve perfect 

classification accuracy on all three datasets when using base-level DNNs and KNN as meta-

level classifiers. These results show that orchestrating sliding windows critically increases the 

classification performance compared to single image classifiers. Differently, LSTM networks 

achieve 97.56% and 99% of accuracy on the DITS dataset for a sliding window of size 2 or 3, 

respectively, which is better than single image classifier performance, but still inferior with 

respect to stacking meta-learners.  

Figure 12 compares the accuracy achieved by stacking meta-learners and LSTM networks 

by means of a bar chart. Base-level non-deep classifiers with meta learners achieved 98.37% 

and 100% accuracy on the DITS dataset considering a sliding window of two and three inputs, 

respectively, which is slightly higher than the LSTM scores. A similar trend can be observed 

 

Figure 12: Highest accuracy achieved by LSTM, stacker with non-deep base-level, and 

stacker with deep base-level on BelgiumTSC and DITS. 
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for the BelgiumTSC, while the GTSRB scores are not reported in the chart as it does not require 

sliding windows to achieve perfect accuracy. 

4.5 In-Depth View of BelgiumTSC  

Similarly, to the GTSRB and DITS, we observed perfect classification by using a stacker 

with base-level DNNs also with the BelgiumTSC dataset, which contains unordered sets of 

images rather than sequences. Consequently, our meta-learning strategy proves to be beneficial 

even if images in the sliding window are not time-ordered.  

However, Figure 13 showed that a sliding window of three items performs poorly with 

respect to using only two items, which may seem counterintuitive. Figure 13 shows one of 

those cases in which using a window of two items is beneficial with respect to using three 

items. Figure 13 represents the process adopted for the classification of a Diamond traffic sign 

(Category 7) when using a window of three images. All the three images taken from different 

viewpoints are individually classified by the base-level classifier AlexNet, which returns the 

probabilities PTS of belonging to all classes (see Base-Classifier output in the figure). These 

three probability vectors (which match the PTSi in Section 4.1.1) are fed to the meta-level 

classifier to commit the final decision. We observe that PTS1 and PTS2 give almost a certain 

probability of belonging to class 7 (0.999), while PTS3 gives a higher probability for class 1 

(i.e., stop traffic sign). With those results, the SVM meta-learner decides that the traffic sign is 

 

Figure 13: Instantiation of the stacking-meta learner with AlexNet base-learner and SVM meta-

level learner, managing a sliding window of size 3 for BelgiumTSC. The three images we use as 

input  DNNsscribe a Diamond sign (Category 7) which is misclassified using all three images. 
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a stop sign, ending up with a misclassification. Clearly, the third image is taken from a different 

angle, has some blurring and makes the meta-learner lean towards a misclassification rather 

than helping. Similarly, to the GTSRB and DITS, we observed perfect classification by using 

a stacker with base-level DNNs also with the BelgiumTSC dataset, which contains unordered 

sets of images rather than sequences. Consequently, our meta-learning strategy proves to be 

beneficial even if images in the sliding window are not time-ordered. However, Figure 13 

showed that a sliding window of three items performs poorly with respect to using only two 

items, which may seem counterintuitive. Figure 13 shows one of those cases in which using a 

window of two items is beneficial with respect to using three items. Figure 13 represents the 

process adopted for the classification of a Diamond traffic sign (Category 7) when using a 

window of three images. All the three images taken from different viewpoints are individually 

classified by the base-level classifier AlexNet, which returns the probabilities PTS of belonging 

to all classes (see BaseClassifier output in the figure). These three probability vectors (which 

match the PTSi in Section 4.1.1) are fed to the meta-level classifier to commit the final decision. 

We observe that PTS1 and PTS2 give almost a certain probability of belonging to class 7 

(0.999), while PTS3 gives a higher probability for class 1 (i.e., stop traffic sign). With those 

results, the SVM meta-learner decides that the traffic sign is a stop sign, ending up with a 

misclassification. Clearly, the third image is taken from a different angle, has some blurring, 

and makes the meta-learner lean towards a misclassification rather than helping.  

 

Figure 14: Instantiation of the Stacking-Meta learner with AlexNet Base-learner and SVM 

meta-level learner, managing a sliding window of size 2 for the BelgiumTSC. The three 

images we use as input describe a Diamond sign (Category 7) which is misclassified using all 

three images (Figure 13) but may be classified correctly by using a shorter window. 
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Instead, Figure 14 shows the process to classify the same inputs using a window of two 

items. When {PTS1, PTS2} are provided as meta-features to a meta-level classifier, the final 

output shows a high likelihood of being a category 7 which is indeed a correct classification. 

Meanwhile, providing {PTS2, PTS3} or {PTS1, PTS3} as meta-features lead the stacker to 

misclassify the set of images as a stop sign (category 1): the predicted final output is class 6 

which is a wrong prediction. This enforces the conjecture that in this case using the third image 

constitutes noise that causes misclassification. 

4.6 Timing Analysis  

This section expands on the time required for classification using the different setups in 

this chapter. Table 12 reports the average and standard deviation of time required for (i) feature 

extraction, (ii) single-image classification, and (iii) stacking meta-learning across test images 

of three datasets. 

Starting from feature extraction on the left of the table, it turns out that the extraction of 

handcrafted features takes slightly less time compared to deep features. However, even 

extracting deep features through ResNet-18 from a single image does not require on average 

more than 0.04 s (roughly 40 ms). Instead, the time required for exercising single-image TSR 

classifiers varies a lot: non-deep classifiers need at most 200 ms to classify a given input set, 

whereas DNNs need more than half a second to classify an image with our hardware setup, 

Table 12: Time required for (left) feature extraction, (middle) exercising individual classifiers, and 
(right) different TSR strategies, either sequential or parallel execution. 

Feature 

Extractor 

Time in 

Seconds 

avg ± st.dev 

Individual 

Classifier  

Time in 

Seconds 

avg ± st.dev 

TSR Strategy 

Average Time in Seconds 

(Sequential) (Parallel) 

HOG 
0.0204 ± 

0.0024 
 

SVM 
0.1344 ± 

0.0364 

Single-image 

(AFeat ∪ RFeat + SVM) 
0.1974 0.1756 

LBP 
0.0196 ± 

0.0023 
 

KNN 
0.1205 ± 

0.0302 

Single-image 

(InceptionV3) 
1.4205 1.4205 

AFeat 
0.0218 ± 

0.0023 
 

LDA 
0.1034 ± 

0.0256 
Stacking with WS = 2 

(AFeat ∪ RFeat + SVM + 

KNN) 

0.4036 0.3636 

RFeat 
0.0412 

±0.0034 
InceptionV3 

1.4205 ± 

0.6613 

  MobileNet-V2 
0.6391 ± 

0.2180 

Stacking with WS = 2 

(AlexNet + KNN) 
0.5621 0.5621 

  AlexNet 
0.3749 ± 

0.1407 

Stacking with WS = 2 

(InceptionV3 + KNN) 
1.6085 1.6085 
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depending on the number of layers of DNNs. Indeed, the reader should note that whereas DNNs 

embed feature extraction through convolutional layers, non-deep classifiers have the 

prerequisite of feature extraction. In fact, on the right of Table 12, we show that a TSR system 

that relies on AFeat ∪ RFeat features (i.e., most useful ones according to Table 7) provided to 

an SVM classifier takes on average 0.1974 s to classify an image: this includes feature 

extraction and classification itself. A perfect parallelization of the feature extractors cuts down 

this timing to 0.1756 and will be easily achievable on basic multi-core systems.  

Table 12 also shows the time needed to perform other TSR strategies we discussed in this 

chapter. Particularly, the third to sixth line on the right of the table show the time needed to 

classify an image using a sliding window of two or three items with different base-levels and 

meta-level learners. The time required for base-level learning equals single-image 

classification: only the most recent image in the window is processed, whereas probabilities 

assigned by classifiers to older images are stored, and therefore, do not need to be re-computed 

again. The table reports on different base-learners but always uses KNN as the meta-level 

learner, as this was the classifier that allowed reaching high scores in Section 4.4.2. KNN takes 

on average 0.188 to classify a sliding window of two items, (i.e., two PTS vectors of 8/9 

numbers each), and only slightly more time to process a sliding window of three items. 

Overall, we can observe how most TSR systems that embed sliding windows are able to 

classify a new image in less than a second, whereas heavier DNNs make classification time 

lean towards two seconds. We believe that such timing performance albeit slower than using 

single-image classifiers is still efficient enough to be installed on a vehicle, which only rarely 

samples more than an image per second for TSR tasks. Nevertheless, using more efficient 

hardware, especially GPUs, could help in reducing, even more, the time required for 

classification.  

4.7 Comparison to the State of the Art TSR 

Ultimately, we recap the accuracy scores achieved by studies we already referred to as 

related works in Section 2.3, to compare their scores with ours. Therefore, Table 13 

summarizes those studies, the datasets they used, and the accuracy they achieved. At a first 

glance, those studies conclude that their single-image classifiers are often far from perfect 

classification. In fact, even in this study, we observed that single-image TSR in the 

BelgiumTSC and DITS datasets cannot reach perfect accuracy (i.e., second-last row in the 

table). Unfortunately, promising studies [64], [65], which describe multi-image classifiers, do 
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not rely on our datasets, and therefore, we cannot directly compare them. To summarize, our 

experiment ended up achieving perfect classification on all datasets thanks to sliding windows 

(see last row of Table 13), dramatically improving existing studies on those datasets, for which 

perfect accuracy was hardly achieved by existing studies.  

4.8 Lessons Learned  

This section highlights the main findings and lessons learned from this chapter of the thesis. 

We observed that classifying images in the DITS dataset is harder than classifying the 

BelgiumTSC and GTSRB datasets as both base-level non-deep classifiers and DNNs 

performances are low comparatively. This is mostly due to the amount of training images and 

their quality, which is higher in the GTSRB compared to the other two datasets. Furthermore, 

combining feature descriptors allows for improving classification performance. Particularly, 

we found that the {AFeat ∪ RFeat} descriptor allows non-deep classifiers to maximize 

accuracy.  Single-image non-deep classifiers achieved perfect classification on the GTSRB 

dataset, while on the BelgiumTSC and DITS they show a non-zero amount of 

misclassifications. To the best of our knowledge, this result is due to the number of training 

samples, which is higher in the GTSRB with respect to the BelgiumTSC and DITS, and image 

quality, which again is better for the GTSRB.  

On the other hand, we achieved 100% accuracy by adopting a sliding window based TSR 

strategy on all three considered datasets. There is no clear benefit in adopting DNNs over non-

deep classifiers for single-image classification as they show similar accuracy scores. 

Table 13: Comparison with state of the art approaches. Gray area in the table shows our result 
approach using single frame and sliding windows result for 3 and 9 traffic sign categories. 

Studies 
Sequences of 

images 

Achieved Accuracy (%) 

GTSRB BelgiumTSC DITS 

Stallkamp et al. [31] No 98.98   

Agrawal et al. [45] No *77.43   

Youssef et al. [33] No 95.00  98.20 

Mathias et al. [1] No  97.83  

Huang et al. [44] No *95.56   

Lin et al. [51] No  *99.18  

Li et al. [28] No 97.40 98.10  

Li and Wang [3] No 99.66   

Zeng et al. [83] No  95.40  

Single frame (3 categories) No 100.00 99.80 99.31 

Single frame (9 categories) No 100.00 99.72 96.03 

Sliding Windows (9 categories) Yes 100.00 100.00 100.00 
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Additionally, both are outperformed, when using sliding windows for TSR. LSTM networks 

often, but not always, outperform single-image classifiers but show lower accuracy than 

stacking meta-learners in orchestrating sliding windows. A stacking meta-learner with base-

level DNNs and KNN as meta-level classifier can perfectly classify traffic signs on all three 

datasets with any window size WS ≥ 2.  For datasets that contain sequences (time-series) of 

images, enlarging the sliding window never decreases accuracy and, in most cases, raises the 

number of correct classifications. DNNs require more time compared to non-deep classifiers, 

especially because there are many layers, e.g., InceptionV3. Sliding windows-based 

classification takes more time compared to single-image classifiers but has remarkably higher 

classification performance across all three datasets. Overall, adopting classifiers that use a 

sliding window rather than a single-image classifier allows for reducing misclassifications, 

consequently raising accuracy. To wrap up this chapter, our experimental campaign showed 

how the adoption of a stacking meta-learner in conjunction with sliding windows allows for 

achieving perfect classification on the public GTSRB, BelgiumTSC, and DITS datasets. 
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5.  ROBUST TRAFFIC SIGN RECOGNITION AGAINST 

VISUAL CAMERA FAILURES  

Due to distraction, fatigue, or adverse operating conditions, human drivers can miss or 

misinterpret an important traffic sign [11], [86] potentially leading to dangerous situations. 

Unfortunately, the adverse environmental conditions, or the malfunctions of the visual camera, 

may produce low-quality images that may negatively impact the performance of classifiers. 

Examples include, but are not limited to: occlusions, shadows, defects of the visual camera 

lens, changes in environmental light, raindrops on the visual camera lens, out-of-focus, flare 

[88], [89]. Therefore, to guarantee safety of the driving task, it is necessary to study the 

robustness of TSR systems against the aforementioned threats, and develop solutions to tolerate 

them [90], [91]. This chapter accomplishes this task, first reviewing the challenges and the state 

of the art, and then proposing and evaluating alternative solutions. 

The chapter develops as follow. In our study we corrupt images by applying visual camera 

failures that are successively fed to single-image classifiers and sliding windows classifiers 

described in detail in Chapter 4. Images are taken from three publicly available benchmark 

datasets described in Section 2.2.7. These datasets include sequences of images and 

consequently allow applying both classification strategies. We simulated 13 visual camera 

failures, each one actionable with different parameters, obtaining a total of 103 failures 

configuration to be individually injected into each image of the three datasets. 

The produced data allows examining the robustness of three DNNs: AlexNet [34], 

InceptionV3 [40], and MobileNet-V2 [41]. We apply them independently to perform 

classification, and we also run them in parallel; in this second case, classification is performed 

by a stacking meta-learner which is fed with the outputs of the classifiers. Further, we apply 

two different classification strategies: single image classification and sliding window 

classification. Our results indicate that the occurrence of visual camera failures degrades 

classification performance, especially for single-image classifiers. Instead, approaches based 

on the sliding window are significantly more robust. 

Further, we dig into the results using LIME [92], a toolbox for explainable Artificial 

Intelligence (AI). Explainable AI allows understanding how a classifier uses the input image 

to derive its output: we use LIME to explain why the injection of the visual camera failures 
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alters the behaviour of the classifiers, and why certain classifiers are more robust than others 

against visual camera failures. 

5.1 TSR Strategies Under Consideration 

This section explains in detail the TSR classification strategies we consider: single-image 

classification and sliding windows classification. 

5.1.1 Single-image Classification 

A single image is usually classified using one classifier. In addition, it is possible to 

combine multiple classifiers in a two-step process, relying on a stacking meta-learner to decide 

on the class [71] (Figure 15). In stacking, first, the image is fed to multiple base-level 

classifiers, then the individual predictions from the classifiers are processed by a classifier at a 

meta-level; in other words, the predictions of parallel classifiers are input meta-features to a 

meta-level classifier that provides the final prediction. 

Figure 15 exemplifies this process considering as input an image of a STOP traffic sign 

and three base-level classifiers: AlexNet, InceptionV3, and MobileNet-V2. Each of the three 

classifiers outputs an array of probabilities PTSk = {ptsik, 1 ≤ i ≤ n} where n is the number of 

possible classes, and k is the k-th base-level classifier (in Figure 15, we use 1 ≤ k ≤ 3). Each 

ptsik describes the probability that the input image contains a traffic sign of the i-th class, 

according to the k-th base-level classifier. All ptsik ϵ PTSk sum up to 1. The three classifiers 

process the input image independently and provide their own probabilities PTS1, PTS2, and 

PTS3 for that input. These probabilities are then aggregated into a unique meta-feature set of 

3n features and delivered as input to the meta-level classifier, which provides its own PTSfinal 

 

Figure 15: A TSR system that uses multiple (three) single-image classifiers with stacking. 
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probabilities that are used for TSR. Noticeably, the meta-level classifier plays the role of an 

adjudicator rather than working as a classifier itself. 

In this chapter, we consider the following three classification strategies:  

• Single-image classifier on a single image (1SFC, One Single Image Classifier). In this 

case, we are using just one classifier to perform classification. 

• Two single-image classifiers on a single image (2SFC, Two Single Image Classifiers). 

This approach relies on stacking the predictions of the two base-level classifiers, 

relying on a stacking meta-level classifier. 

• Three single-image classifiers on a single image (3SFC, Three Single Image 

Classifiers). This approach corresponds to Figure 15. It relies on stacking the 

predictions of the three base-level classifiers, using the stacking meta-level classifier. 

5.1.2 Classification with a Sliding Window 

In addition, we build classifiers that can process multiple images in a sliding window [87]. 

The structure of this classifier is described in Figure 16. Sliding windows contain multiple 

images captured at different time instants or from multiple visual cameras at the same time. 

Therefore, we need to slightly adapt the classifier from Section 5.1.1 to process multiple images 

in parallel.  

For example, Figure 16 shows a TSR system that uses a sliding window of three images 

and that is composed of two single-image classifiers. First, each of the two single-image 

 

Figure 16: A TSR which uses sliding windows of three images (on the left) with two base-

classifiers (AlexNet, InceptionV3) and a meta-level classifier that produces the final 

classification result PTSfinal.  
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classifiers processes each of the three images individually, building six PTSk arrays of 

probabilities 1 ≤ k ≤ 6. These arrays constitute the meta-feature set that is provided to the 

stacking classifier. Finally, the stacking classifier produces the classification result PTSfinal, 

which is the output of the TSR system.  

In this chapter, we consider the following classification strategies based on a sliding 

window: 

• Sliding window is applied using only one classifier (W1C, Sliding Window with One 

Classifier). 

• Sliding window is applied using two classifiers (W2C, Sliding Window with Two 

Classifiers). This corresponds to Figure 16. In this case, all images in the sliding 

window are individually classified by two base-level classifiers; the predictions of each 

image are input meta-features to the meta-level classifier. 

• Sliding window is applied using three classifiers (W3C, Sliding Window with Three 

Classifiers). All images in the sliding window are individually classified by three base-

level classifiers; the predictions of each image are input meta-features to the meta-level 

classifier. 

5.2 Approach to Robustness Evaluation 

We detail the methodology we used to evaluate the robustness of the TSR strategies 

previously described, when visual camera failures occur. We describe the datasets of traffic 

signs, the failure injection strategies, and the single-image and sliding-window classifiers that 

perform TSR on clean and injected images. 

5.2.1 Methodology 

First, all classifiers described in Section 5.2.2, organized in groups 1SFC, 2SFC, 3SFC, 

W1C, W2C, W3C, are trained using the traffic sign datasets BelgiumTSC, GTSRB, and DITS 

described in Section 2.2.7. Then, the stacking meta-learners of Section 5.2.3 are trained as well. 

This creates all the classification strategies 1SFC, 2SFC, 3SFC, W1C, W2C, W3C trained on 

the traffic sign datasets. 

In the next phase, the visual camera failures described in Section 5.2.4 are injected into 

each dataset individually, to create datasets of altered images. We will call these datasets as 

injected datasets, opposed to the clean datasets, and the altered images as injected images, 

opposed to the clean images. This creates a set of injected datasets, each with different failures. 

Noteworthy, some failures have multiple possible configuration (e.g., the amount of blur that 
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is applied on the images): we create injected datasets of GTSRB, BelgiumTSC and DITS for 

each configuration. This leads to a total of 103 configurations, each one repeated on the three 

datasets. These datasets are provided as test inputs to the 1SFC, 2SFC, 3SFC, W1C, W2C, 

W3C. Finally, we measure the robustness of different TSR approaches against each visual 

camera failure. The robustness is described using the metrics discussed in Section 5.2.5. 

5.2.2 Base-level Classifiers 

This study utilizes three DNN classifiers of Section 2.2.4. We adapt them for TSR using 

transfer learning from models trained on ImageNet such as MobileNet-V2 (MN2) [41], 

AlexNet (AN) [34], and InceptionV3 (IC3) [40]. Combination of classifiers (2SFC, 3SFC, 

W2C, W3C) includes all the possible pairs and triples from the three classifiers above. 

5.2.3 Meta-level Classifiers 

This section presents six non-deep classifiers of Section 2.2.3 that suit the role of meta-

level classifiers for stacking such as kth-Nearest Neighbours (KNN) [13], Support Vector 

Machines (SVM) [14], Decision Tree (DT) [93], Linear Discriminant Analysis (LDA), 

AdaBoostM2 (ABM2) [39], and Random Forests (RF) [37].  

5.2.4 Strategies to Inject Visual Camera Failures 

This section provides a brief overview of the potential failures of a visual camera installed 

on vehicles. We considered a total of 13 failures, described in what follows. Failures may have 

multiple configurations; each failure and its configurations are applied on the three datasets. In 

total, this leads to 103 copies of each dataset, where all images are modified according to the 

specified configuration. The source code to reproduce the injection of failures is based on the 

library available at [94], which was customized where needed. 

Banding. An image with banding has many horizontal and/or vertical lines in the background. 

Figure 17a shows the clean image, while Figure 17b shows the effect of applying banding 

failures on the image. 

Blurred. Blurred occurs when the captured image is not properly focused by the visual camera 

lens (see Figure 17c). Overall, we used 11 different configurations to produce blurred images 

with different amounts of blurriness. 

Brightness. This failure alters the brightness of the produced image (Figure 17d), ranging from 

no brightness (black image) to full brightness (white image) depending on malfunctions of the 

lens shutter, diaphragm, or iris. The same visual effect on the output image can happen when 



81 
 

the light enters the visual camera with a narrow angle (e.g., in case the sun is in front). We 

simulated 8 levels of brightness from a very dark image to an almost white one.  

No Chromatic Aberration Correction (NCAC). This type of failure occurs when the ISP fails: 

halos appear on the edges and corners of the image. The resulting image (Figure 17e) shows 

the blurred effect on the outer edges. 

Condensation (COND). Condensation on the lens happens when humidity levels are high, or 

because of rapid temperature changes. To inject a condensation failure, we overlapped 

condensation images of [95] to each of the images in all datasets, as in Figure 17f. We utilized 

3 different overlaying images to produce three different effects of condensation failures. 

No Bayer Filter (NOBF). Should the Bayer filter [96] do not work properly, the acquired image 

will result in a colorless image as in Figure 17g. In our experiments, we replicated this effect 

by changing the RGB (Red, Green, Blue) channels to convert an image to grayscale. 

Dirt. This visual camera failure occurs when there is dirt on the internal or external lens. Figure 

17h shows a dirty image generated after overlapping the dirt images of [95] to a traffic sign 

image. This study uses 36 different dirt images. 

Ice. This type of failure occurs when the temperature of the environment drops below freezing, 

affecting image quality.  Figure 17i shows the ice effect on an acquired image by using one out 

of the four different ice images of [95] that we overlapped to traffic sign images. 

No Demosaicing (NODEMOS). The raw image may be not processed by ISP for demosaicing: 

this creates the output images by interpolating the mosaic of RGB colours produced by the 

image sensors. As a result, the image remains pixelated (i.e., each pixel contains either red, 

green, or blue color channel values) as shown in Figure 17j. 

No Noise Reduction (NNR). When images are captured by a visual camera, the ISP is 

responsible for removing noise. However, this process may fail: to simulate this event, we used 

10 different configurations of speckle noise: an example is shown in Figure 17k. 

Rain. During rainy weather, the external lens of the visual camera may have small drops of 

water that degrade the quality of the acquired image. We simulate this event by overlapping 5 

different rain images from [95] to traffic sign images; an example is in Figure 17l. 

Dead Pixels. Certain failures of the image sensor may produce an output image with dark spots; 

visually, the effect is analogous to visualizing dead pixels. In this study we simulate different 

configurations, namely i) an array of vertical pixels is set to black, ii) horizontal and vertical 
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arrays are set to black, or iii) sets of [50, 200, 500, 1000] pixels, randomly selected, are turned 

black. Figure 17m shows different failure effects when they are applied on the clean image.  

Broken Lens. This failure occurs when one or more lenses of the visual camera break because 

of many reasons e.g., debris that crashes against the lens. This may make scratches visible in 

the produced image. We simulated a broken lens with 15 different overlaying images from 

[95]. An example is in Figure 17n. 

5.2.5 Performance Metrics 

To evaluate results, we rely on the performance metric accuracy [77], [78] as described in 

Section 2.2.8, which consider each misclassification as equally harmful. Further, we elaborate 

on accuracy by defining a metrics that measures the accuracy reduction. We define accuracy 

drop the difference between the accuracy obtained on the injected datasets and on the clean 

datasets. The accuracy drop is computed for each failure. Some of the failures have multiple 

configurations: in this case, for such failures we compute the minimum accuracy drop and the 

maximum accuracy drop. 

5.3 Experimental Results 

We organize results as follows. Section 5.3.1 discusses the results achieved using the clean 

datasets GTSRB, BelgiumTSC, and DITS for single image classifiers (1SFC, 2SFC, and 3SFC) 

and sliding window classifiers (W1C, W2C, and W3C). The successive sections instead 

 

Figure 17: Injection of 13 different visual camera failures to a sample traffic sign. (best viewed in 

color) 
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consider the injected datasets: Section 5.3.2 describes the results of 1SFC, Section 5.3.3 of 

2SFC and 3SFC, Section 5.3.4 of W1C, and Section 5.3.5 of W2C and W3C. 

5.3.1 Results on the Clean Datasets 

Figure 18 highlights the accuracy achieved on three clean datasets, using the different 

classification strategies. With 1SFC, we reach 99.35%, 99.72%, and 96.03% accuracy on 

GTSRB, BelgiumTSC, and DITS, respectively. The usage of 2SFC improved the classification 

accuracy to 100%, 99.88%, and 99.48% on GTSRB, BelgiumTSC, and DITS, respectively. 

Classification of traffic signs based on sliding windows approach achieves an accuracy of 

100% across GTSRB and DITS for W1C, W2C, and W3C, while 100% accuracy is achieved 

on BelgiumTSC using W1C and W2C. 

W1C, W2C, or W3C achieves 100% accuracy on the GTSRB dataset. On DITS, strategies 

W1C, W2C and W3C achieves 100% accuracy, with the exception of W1C with AN. On 

BelgiumTSC, we get 100% classification accuracy using AN (W1C) and AN+MN2 classifiers 

(W2C). Figure 18 shows that 2SFC and 3SFC significantly reduce the misclassification across 

all datasets with respect to 1SFC, while W1C, W2C, or W3C achieves 100% classification 

accuracy across all three datasets. This proves and quantifies the efficacy of the sliding window 

approach for classification in nominal operating conditions (clean images). 

 

Figure 18: Highest accuracy achieved on the clean datasets GTSRB, BelgiumTSC, DITS. 
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5.3.2 1SFC on the Injected Datasets 

We analyse the accuracy drop obtained by 1SFC on the clean datasets and the injected 

datasets (Table 14). The 1SFC that obtains the best accuracy is reported: for such classifier, we 

report the maximum and minimum difference in accuracy (accuracy drop) with respect to the 

case on the clean datasets. 

Experimental results show that there is a significant rise in misclassifications. For example, 

with banding, under different configurations the maximum and minimum accuracy drop on 

GTSRB is [-3.09, -4.69], where AN performs better than MN2 and IC3. Experimental results 

indicate that 1SFC MN2 on GTSRB, and IC3 on DITS and BelgiumTSC, are overall robust 

against NCAC failure; all the other failures have a more relevant impact on the accuracy of 

1SFC. The accuracy drop is more relevant for some failures, which are highlighted in bold in 

Table 14; these are broken lens, ice, brightness, and NNR. In particular, there are specific cases 

of brightness failure that lead to a significant accuracy drop. For example, when brightness is 

very low (images are very dark) or very high (images are almost white), even humans may not 

recognize traffic signs. Another important observation is that for brightness, broken lens, ice, 

Table 14: Minimum and maximum accuracy drop of 1SFC when it is exercised on the injected datasets 
and the clean datasets. 

 GTSRB DITS BelgiumTSC 

Original Dataset 

(Max Achieved Acc.) 
99.35% 96.03% 99.72% 

Fault Type Config. 
Accuracy 

drop 

Base 

Classifier 
Accuracy drop 

Base 

Classifier 
Accuracy drop 

Base 

Classifier 

Banding  3 [-3.09, -4.69] AN [-0.86, -5.87] IC3 [-0.12, -0.60] AN 

Blurred  11 [-1.00, -4.76] MN2 [-12.34, -18.03] IC3 [-2.75, -13.49] AN 

Brightness  8 [-3.41, -40.15] AN [-1.90, -60.14] AN [-0.16, -67.30] AN 

Broken Lens 15 [-15.72, -52.48] AN [-10.78, -35.37] AN [-1.60, -53.17] AN 

NCAC 1 -0.02 MN2 -1.12 IC3 -0.08 IC3 

COND  3 [-0.06, -1.91] MN2 [-0.52, -2.85] IC3 [-0.20, -0.92] AN 

Dead Pixels  6 [-0.01, -11.82] MN2 [-0.78, -11.13] MN2 [-0.20, -6.03] AN 

Dirt  36 [0.05, -2.31] MN2 [-0.09, -11.56] IC3 [0.00, -1.92] IC3 

NOBF  1 -13.22 MN2 -14.84 IC3 -39.92 MN2 

Ice  4 [-3.32, -26.45] AN [-2.24, -59.88] AN [-0.88, -39.40] AN 

NDEMOS  1 -3.08 AN -18.64 IC3 -2.67 IC3 

NNR  9 [-3.42, -57.40] AN [-5.69, -64.36] AN [-0.20, -76.97] AN 

Rain  5 [-3.53, 12.98] AN [-2.16, -17.00] AN [-0.56, -13.33] AN 
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NNR, or rain failures, AN always achieves the best accuracy. IC3 performs worse compared 

to the other 1SFC i.e., AN and MN2 on GTSRB. Overall, MN2 and AN perform better on 

GTSRB, while AN and IC3 performance are better on the other two datasets (but still, the 

performance of 1SFC is far from perfect). 

5.3.3 2SFC and 3SFC on the Injected Datasets 

Table 15 discusses the accuracy drop achieved by 2SFC and 3SFC on the clean dataset and 

the injected datasets. Experimental results show that 2SFC and 3SFC reduce misclassifications 

against each failure except few cases, where accuracy is less than in the 1SFC cases. These last 

ones are in bold in Table 15, and they are brightness, broken lens, NNR, and ice failures. 

With respect to 1SFC and 2SFC, on GTSRB and DITS, 3SFC achieved better accuracy on 

the majority of failures. Instead, on BelgiumTSC, the 2SFC AN+IC3 is the most robust against 

the majority of failures. Overall, utilizing 2SFC and 3SFC improves the accuracy. The meta-

level classifier KNN performs better on all three datasets. However, the effect of failures is still 

not fully mitigated with the 2SFC and 3SFC: there is no case that achieves 100% accuracy 

against any failure, and in some cases the combination of classifiers is worse than using just a 

single classifier. 
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Table 15:  Minimum and maximum accuracy drop of 2SFC and 3SFC on the injected datasets with respect to the clean datasets. 

 Original Dataset 

(Max Achieved Acc.) 

GTSRB DITS BelgiumTSC 

100% 100% 100% 

Fault Type (Config.) Accuracy drop Base Classifiers Meta Classifier Accuracy drop Base Classifiers 
Meta 

Classifier 
Accuracy drop 

Base 

Classifiers 

Meta 

Classifier 

Banding (3) [-0.23, -2.85] AN+MN2 KNN, DT [-1.29, -4.31] AN+IC3+MN2 KNN [-0.04, -0.56] AN+IC3 KNN 

Blurred (11) [-1.52, -5.92] AN+IC3+MN2 LDA [-7.76,-28.47] MN2+IC3 RF [-1.60, -14.57] AN+IC3 KNN 

Brightness (8) [-0.10,-35.69] AN+MN2 ABM2, RF [-1.64,-63.33] AN+IC3+MN2 KNN [-0.28,-66.67] 
AN+IC3+

MN2 

RF, KNN,  

ABM2 

Broken Lens (15) [-2.20,-46.17] AN+IC3+MN2 RF, KNN [-4.31,-28.04 AN+IC3+MN2 KNN [-2.24,-51.34] AN+IC3 KNN, RF 

NCAC (1) -0.08 AN+IC3+MN2 ABM2 -0.69 AN+IC3+MN2 KNN -0.08 AN+IC3 KNN 

COND (3) [-0.10, -0.36] AN+IC3+MN2 ABM2 [-0.86, -3.10] AN+IC3+MN2 KNN [-0.12, -1.44] AN+IC3 KNN 

Dead Pixels (6) [-0.07, -1.99] AN+MN2 ABM2, RF [-2.41,-10.52] AN+MN2 RF, KNN [-0.36, -5.91] AN+MN2 
ABM2, 

KNN 

Dirt (36) [-0.02, -0.73] AN+IC3+MN2 ABM2, RF [-1.46, -9.75] AN+IC3 KNN [-0.04, -2.43] AN+IC3 KNN, RF 

NOBF (1) -7.34 AN+IC3+MN2 RF -11.13 MN2+IC3 KNN -38.76 AN+MN2 KNN 

Ice (4) [-0.21,-22.43] AN+MN2 ABM2, KNN [-0.69,-59.88] AN+IC3+MN2 KNN [-0.68,-44.55] AN+IC3 KNN 

NDEMOS (1) -1.01 AN+IC3+MN2 KNN -18.03 MN2+IC3 KNN -1.36 MN2+IC3 KNN 

NNR (9) [-0.96,-52.30] AN+IC3+MN2 RF, DT [-7.33,-67.64] AN+IC3 KNN, RF [-0.60, -75.45] AN+MN2 KNN 

Rain (5) [-0.10, -4.80] AN+MN2 ABM2, RF [-0.43,-15.10] AN+IC3+MN2 KNN [-0.20,-20.96] AN+IC3 KNN 
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5.3.4 W1C on the Injected Datasets 

Table 16 reports the accuracy drop achieved by W1C on the clean datasets versus the 

injected datasets. Classification performed on subsequent images within a sliding window of 

size 3 improves the classification performance with respect to 1SFC. For example, W1C 

achieved 100% accuracy for all three datasets under the NCAC failure, where the accuracy 

difference is zero; this is marked in bold in Table 16. Furthermore, on the GTSRB dataset we 

achieved 100% accuracy against blurred, NCAC, COND, dead pixels, dirt and NDEMOS. 

Another important observation is that, for the majority of failures, W1C (with AN as base 

classifier and KNN meta-level classifier) achieves the highest accuracy. W1C improves 

accuracy with respect to 1SFC, 2SFC, and 3SFC, with few exceptions, such as broken lens 

failure on DITS and NDEMOS failure on BelgiumTSC. The reason behind the inferior 

performance of W1C in this case is most likely due to an image which is misclassified by the 

single classifier: 2SFC and 3SFC may classify the image correctly, because there is more than 

one base classifier executing in parallel. Similarly, to the previous cases, there is no significant 

improvement against some failures such as broken lens, brightness, ice, and NNR failures. 

5.3.5 W2C and W3C on the Injected Datasets 

Table 17 highlights the degradation intervals of accuracy achieved by W2C and W3C on 

the clean dataset versus the injected datasets. Accuracy against failures blurred, NCAC, 

COND, dead pixels, dirt, and NDEMOS is 100% as already achieved for W1C, and it is not 

further reported in Table 17. The bold values in Table 17 represent the failures where the 

performance of W2C and W3C improves with respect to W1C. For the remaining failures, 

W1C performs better. The possible reason is that an image is classified correctly by a base 

classifier, but when the same image is classified by multiple base classifiers, there are chances 

that some misclassify the image. This way, when the various meta-features for W2C and W3C 

are provided to meta-level classifiers, this may result in a misclassification.  

Overall, few failures such as ice, broken lens, brightness, and NNR are still very hard to 

be classified accurately. Overall, the meta-level classifier KNN is the one that performs better 

in the majority of cases.
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Table 16: Minimum and maximum accuracy drop of W1C on the injected datasets with respect to the original datasets. 

Original Dataset 

(Max Achieved Acc.) 

GTSRB DITS BelgiumTSC 

100% 100% 100% 

Fault Type (Config.) Accuracy drop 
Base 

Classifier 
Meta Classifier Accuracy drop 

Base 

Classifier 
Meta Classifier Accuracy drop 

Base 

Classifier 

Meta 

Classifier 

Banding (3) [-0.24, -0.72] AN KNN, RF -1.00 IC3 
KNN, SVM, RF, 

DT, ABM2 
[0.00, -0.36] AN KNN 

Blurred (11) 0.00 MN2 
KNN, LDA, SVM, 

ABM2 
[-8.00,-21.00] AN KNN, DT, LDA [-1.56,-12.10] AN KNN 

Brightness (8) [0.00, -6.93] AN 
KNN, DT, ABM2, 

RF 
[-1.00,-51.00] AN SVM, LDA [0.00, -62.04] AN KNN 

Broken Lens (15) [-1.20,-11.22] AN DT, LDA [-8.00,-21.96] AN 
SVM, LDA, 

ABM2 
[-0.72,-46.95] AN KNN 

NCAC (1) 0.00 AN 
KNN, DT, ABM2, 

RF 
0.00 IC3 KNN 0.00 AN RF 

COND (3) 0.00 AN 
KNN, DT ABM2, 

RF 
[0.00, -2.00] IC3 KNN, ABM2 [-0.12, -0.60] AN KNN 

Dead Pixels (6) 0.00 AN 
KNN, DT, ABM2, 

RF 
[0.00, -7.00] MN2 KNN [0.00, -3.24] AN KNN 

Dirt (36) 0.00 AN 
KNN, DT,  ABM2, 

RF 
[0.00, -5.00] IC3 

KNN, SVM, 

ABM2 
[0.00, -0.96] IC3 KNN, RF 

NOBF (1) -0.72 MN2 KNN, ABM2, DT -3.00 IC3 KNN -35.33 MN2 RF 

Ice (4) [0.00, -2.39] AN 
KNN, DT, ABM2, 

RF 
[-1.00,-40.66] AN 

KNN, SVM, RF, 

DT, ABM2, 
[-0.36,-37.49] AN KNN 

NDEMOS (1) 0.00 AN LDA -3.00 IC3 KNN -1.80 IC3 KNN 

NNR (9) [0.00, -37.71] AN 
KNN,ABM2, RF, 

DT 
[-4.00,-60.00] AN KNN, SVM, DT [-0.12,-77.25] AN KNN 

Rain (5) [0.00, -0.24] AN 
KNN,ABM2, RF, 

DT 
[-1.00,-12.00] AN SVM, ABM2 [-0.24,-11.38] AN KNN 

 



89 
 

 

Table 17: Minimum and maximum accuracy drop of W2C and W3C on the injected datasets with respect to the clean datasets. 

Original Dataset  

(Max Achieved Acc.) 

GTSRB DITS BelgiumTSC 

100% 100% 100% 

Fault Type (Config.) Accuracy drop 
Base 

Classifiers 
Meta Classifier Accuracy drop 

Base 

Classifier 
Meta Classifier Accuracy drop 

Base 

Classifier 

Meta 

Classifier 

Banding (3) [0.00, -0.72] AN+IC3 KNN, RF, DT [0.00, -2.00] 
AN+IC3+M

N2 

KNN, SVM, 

ABM2 
[-0.48, -0.44] AN+MN2 DT 

Blurred (11)  [-8.14, 20.00] 
AN+IC3+M

N2 
KNN, DT [-0.72,-11.02] AN+IC3 KNN 

Brightness (8) [0.00, -6.45] AN+MN2 
KNN, LDA, 

SVM 
[0.00, -50.00] AN+MN2 RF, KNN [0.00, -65.15] AN+IC3 KNN 

Broken Lens (15) [0.00, -14.32] 
AN+IC3+MN

2 
LDA, KNN [-4.00,-21.00] AN+IC3 KNN, ABM2 [-0.84,-49.47] AN+IC3 KNN, RF 

NCAC (1) 

 

COND (3) 0.00 MN2+IC3 KNN, ABM2 [0.00, -0.36] AN+IC3 KNN 

Dead Pixels (6) [-1.00, -7.00] AN+MN2 
KNN, LDA,  

ABM2 
[-0.24, -3.72] AN+MN2 KNN 

Dirt (36) [-1.00, -4.00] AN+IC3 KNN [0.00, -1.80] 
AN+IC3+MN

2 
KNN, SVM 

NOBF (1) -0.48 
AN+IC3+MN

2 
ABM2 -4.00 MN+IC3 KNN -33.78 

AN+IC3+MN

2 
ABM2 

Ice (4) [0.00, -2.15] AN+IC3 
KNN, SVM, DT, 

RF ABM2  
[0.00,-37.00] AN+MN2 KNN [-0.12,-40.96] AN+IC3 KNN 

NDEMOS (1)  -2.00 AN+IC3 KNN -0.72 MN2+IC3 KNN 

NNR (9) [0.00, -27.21] AN+IC3 
KNN, SVM, 

ABM2, DT 
[-3.00, -57.00] AN+IC3 KNN, SVM [-0.36,-74.02] AN+MN2 KNN, DT 

Rain (5) [0.00, -0.72] 
AN+IC3+MN

2 

KNN, SVM, DT, 

RF, ABM2 
[0.00, -12.00] AN+MN2 KNN, ABM2 [-0.12,-13.18] AN+MN2 KNN, DT 
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5.4 Explanation Of DNNS Robustness 

The LIME [92] tool aims to explain the predictions of a DNN. It shows how different 

models select the image’s influential features that contribute the most to the final classification. 

We explore some images with the LIME toolbox to investigate the reason behind the prediction 

of the models, especially to understand the difference identified in our experiments between 

AN, IC3, and MN2. 

Figure 19 shows the LIME output for various images that are classified by the three DNNs. 

Coloring shows which areas of the image contribute the most to the classification. The LIME 

output shows that AN selects stronger features compared to the other classifiers: this is 

particularly evident in the second and fourth rows. The LIME output of IC3 shows that its 

 

Figure 19: Explanation of AN, IC3, and MN2 models through LIME, highlighting the 

influential features of selected traffic sign images. (best viewed in color) 
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strongest features are mostly congested in an area. Instead, AN decides using features that are 

scattered through the image. This is most likely the reason IC3 is the less robust in our 

experiments: when a failure is injected in an image, as for example a scratch of the broken lens 

failure, it may overlap the areas that are relevant for feature classification. As shown in Figure 

19, for the blue circular traffic sign, AN highlight many features, and the strongest features are 

located in various parts of the traffic sign; on the other hand, IC3 and MN2 have very few 

strong features and mostly in adjacent positions. 

Summarizing, the main hurdle for classifiers robustness against different visual camera 

failures may depend on the DNNs: if the image alteration due to failure is on the image portion 

which plays the key role in classification, that failure will misguide the TSR to output an 

incorrect label for the traffic sign.  

5.5 Lessons Learned  

This chapter considers different strategies for TSR i.e., single-image and sliding window, 

to understand their robustness against visual camera failures. As reference, we use the datasets 

GTSRB, DITS, and BelgiumTSC, where no single-image classifier achieves 100% accuracy. 

Instead, stacking meta-level classifiers that work on sliding windows (W1C, W2C, W3C) 

significantly improve the accuracy of TSR: they achieve 100% accuracy on all three datasets. 

Concerning instead the presence of visual camera failures, we observed that the 

implemented failures generally lead to a drop in accuracy. For example, Figure 20 highlights 

the highest accuracy achieved against each visual camera failure on the three datasets 

separately, i.e., GTSRB, DITS, and BelgiumTSC, considering the failures configurations 

which has the highest accuracy drop. 

However, we also noticed that some TSR strategies are significantly more robust than 

others and can tolerate the majority of failures. While there is no individual TSR strategy that 

performs better than the other either against each failure or on all three datasets, the takeaway 

message of this chapter is that meta-level classifiers in conjunction with sliding windows of 

subsequent images improve the TSR performance and robustness. More concretely, we report 

the following considerations on robustness: The 1SFC strategy proved insufficiently robust 

against visual camera failures, with a severe degradation of accuracy with respect to the clean 

datasets. Instead, 2SFC and 3SFC strategies are more robust, and present a lower performance 

degradation; the most critical cases are highlighted in bold in Table 15. One important 

observation is that IC3 never achieves the highest accuracy on GTSRB in presence of visual 
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camera failures. This is motivated through Explainable AI in Section 5.4. Sliding windows 

strategies W1C, W2C, and W3C improve the robustness of TSR with respect to 1SFC, 2SFC, 

and 3SFC as shown in Table 16. Especially, we achieve 100% accuracy against 6 failures on 

the GTSRB dataset, while for DITS and BelgiumTSC 100% accuracy is achieved for NCAC 

failure only. DITS achieved 100% accuracy for COND failure using W2C (MN2+IC3).  

Further, some failures such as NNR, ice, brightness, broken lens, and NOBF have a bad 

impact on the robustness of the TSR. Our experimental results indicate that visual camera 

failures degrade the TSR performance. Despite the different classification strategies, we are 

unable to minimize the drop in accuracy under all conditions and datasets, exceptions made for 

NCAC. This brings the necessity of possible strategies to overcome the effect of visual camera 

failures on the performance of a TSR classifier.  

1. We can use data augmentation [97] in which the failed images are added to the 

training dataset to make the classifier more robust.  

2. A detector can analyse each image to understand if the image is of acceptable 

quality or is degraded. If the image contains defects, an alarm can be raised, and 

the accuracy of the prediction can be suspected at system level. The detector can 

be created by training non-deep classifiers on the injected datasets. 

 

Figure 20: Accuracy achieved for each failure on the three datasets, when we consider the 

failure configurations which lead to the highest accuracy drop. 
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The objective of this chapter was to analyse the effect of visual camera failures on the 

robustness of different TSR strategies. In this chapter we performed extensive experiments on 

three traffic sign datasets that are perturbated with 13 visual camera failures. Different 

classifiers are proposed, that are composed either to process a single image or a sliding window 

of images. We observe that approaches based on sliding windows perform better compared to 

approaches based on single images, both on the clean datasets, and when failures are 

considered. Furthermore, some failures impacted the TSR performance severely so that several 

misclassifications are measured. To wrap up this chapter, overall, there is no TSR strategy that 

is more robust than the others on all datasets and visual camera failures.
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6. IMPROVING ROBUSTNESS OF DEEP IMAGE 

CLASSIFIERS AGAINST VISUAL CAMERA FAILURES  

The excellent performance of image classifiers based on Deep Neural Networks (DNNs) 

heavily depends on the training phase, through which the classifier learns how to classify 

images [36]. DNNs are trained iteratively on a training dataset [100], which contains images 

and the associated labels describing the class of each image. When the model learned from the 

DNN is not general, even small perturbations may cause classifiers with high accuracy to 

produce misclassifications of images [101]. It comes with no surprise that the amount of 

training data [102] and quantity of noise [103], contained in training data heavily affect the 

model generalization and consequently the classification task. A small training data set may 

result in underfitting [105] the model, which relies on poor knowledge and will not be accurate 

nor general. Overfitting [105], on the other hand, happens when a classifier learns a model that 

corresponds too closely or exactly to a particular set of data, and may therefore fail to generalize 

to a different, albeit similar, input set of images. Throughout years, DNNs were made more 

and more robust to overfitting through techniques such as early stopping [106], batch 

normalization [107], dropout regularization [108], conjugate gradient [109], and weight decay 

[110]. In addition, specific DNNs can adequately deal with uncertainty due to noisy labels 

[111] or in the train images themselves [112]. Altogether, those techniques allow for building 

DNN models which usually have satisfying generalization capabilities and perform well as 

image classifiers.  

However, when DNNs are deployed into a cyber-physical system or an ICT system in 

general, the model they learned may not be general enough to face unexpected or anomalous 

operational conditions. Unexpected operational conditions may be due to a multitude of 

reasons, to name a few: i) weather may affect the sampling of images that are then fed into the 

DNN model, ii) physical devices that sense the environment (i.e., visual cameras) may not 

work properly, iii) adversaries may deliver adversarial images [113], [114] to the DNN through 

the visual camera, iv) the environment in which the system operates is evolving through time, 

making the DNN model outdated and thus not general anymore. Noticeably, most of those 

unexpected operational conditions are due to a problem in the image acquisition process [88], 

[115], which is usually delegated to one or more visual cameras that sense the environment and 

produce the image(s).  Therefore, this study focuses on how to build image classifiers that are 

robust against visual camera failures, which generate altered images that are delivered to the 

image classifier. Examples include, but are not limited to: icing/raindrops on the visual camera 

lens, broken visual camera lens, sudden change of brightness, and blurring [88], [89]. 
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After a careful review of the literature, we found that there are no studies that show how 

to build image classifiers that are robust against a wide range of visual camera failures. To this 

end, in this chapter, we discuss strategies that may help to deal with visual camera failures. 

Then, we consider a complete set of visual camera failures [88], and the associated library to 

inject their effects into images. This provides the data baseline upon which we will build robust 

image classifiers using datasets of traffic signs and renowned DNNs. Then, we show a practical 

methodology to build image classifiers whose classification performances do not (excessively) 

degrade when processing altered images. Our results have great applicability as they embrace 

most of the visual camera failures discovered to date. Research-wise, this chapter describes 

how to build classifiers that are robust to visual camera failures and the impact they have on 

image classification. From a practical standpoint, this chapter shows how to build more robust 

image classifiers to be deployed in autonomous vehicles, surveillance visual cameras, medical 

imaging, and other domains.  

6.1 Robust TSR System Against Visual Camera Failures  

This section presents two strategies to build robust DNN image classifiers. We start by 

defining building blocks that are relevant for all strategies. Then, we present the two strategies 

(Figure 21d and Figure 21b) and discuss the advantages and disadvantages of adopting each of 

them.  

6.1.1 Main Building Blocks 

An image classifier, represented in Figure 21a, outputs a set Pα of n probabilities, where 

each Pαi represents the probability of the input image belonging to class i, 0 ≤ i < n. The 

graphical example in Figure 21a sketches a 4-class classification problem (thus n = 4), where 

the image classifier processes the input, and it outputs an array of 4 probabilities, the highest 

of which represents the animal predicted by the classifier. Figure 21c depicts the Camera 

Failure Detector (CFD), which is itself a binary classifier that processes the input image and 

decides if the image is clean or altered. In the figure, there are 4 different types of visual camera 

failures, and the CFD solves a binary classification problem (i.e., is the image clean, or is it 

altered with any of the 4 failures?), which outputs the array Pφ of two probabilities. 

6.1.2 Strategies for Building Robust DNNs 

Two strategies can be used for building robust image classifiers as we discuss below. 

• Data Augmentation / Injection (Figure 21b). Alternatively [117], [118], [119], it is 

possible to avoid the usage of the CFD  and instead put all the efforts into improving 

the training phase of the DNN, aiming at a more generalized model. In such a scenario, 

the training set is enriched with perturbations of the clean images of the training set, 
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providing a broader set of images to the DNN. For visual camera failures, perturbations 

are obtained by altering clean images through injection of the effects of visual camera 

failures.  

 

 
a) General structure of a DNN image classifier. 

    
b) Data Augmentation / Injection strategy. 

 
c) Structure of a Camera Failure Detector (CFD) 

   
d) Strategy using a detector CFD and the DNN classifier. 

 

Figure 21: General structure of an image classifier that embeds a DNN, plus two strategies 

for robustness. 
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• Master-Slave strategy (Figure 21d). The CFD and the DNN operate in sequence [116]. 

Should the CFD predict that the input image is not altered (and thus p(clean) in the 

figure is the highest out of the two probabilities in Pφ), it will propagate it to the DNN 

that performs classification. Otherwise, the CFD will alert the user or trigger routines 

that handle altered images. With this strategy, the DNN executes only if the CFD 

classifies the input image as clean.  

6.1.3 Comparison of Strategies to Improve Robustness 

Each strategy holds its strengths and weaknesses and may be considered suitable for a 

given domain or system, and unfeasible to implement in a different system. To identify the 

pros and cons, in Table 18 we report different characteristics of the Master-Slave and Data 

Augmentation/Injection strategies. For each strategy, we analyze, from left to right in Table 

18, if: i) a CFD is required, and it is an additional component that needs to be trained and 

exercised alongside the DNN, ii) the DNN always provides a classification result, or may stop 

the process should it detect altered images as it happens with Master-Slave strategy, iii) make 

the training phase more arduous or iv) make the testing phase of the image classifier more 

complicated.  

Ideally, the process of building a robust classifier should have a minimal impact with 

respect to the training and testing phases of a regular image classifier. The strategy that requires 

a CFD has a noticeable impact on training due to the necessity of training the CFD alongside 

the DNN. Also, it adds overheads in testing as – again – it has to exercise both the CFD and 

the DNN. The Data Augmentation strategy has a huge impact on training but adds no overhead 

to the testing phase. Additionally, it does not open the problem of aborting the classification 

when altered images are detected. This happens with the Master-Slave approach, which will 

require setting up or triggering specific reaction strategies at the system-level. 

But still, in the following we will build and experimentally evaluate both strategies such 

as image classifiers that are robust to visual camera failures following the approach of data 

augmentation (injection of failures into clean images) and Master-Slave strategy. 

6.2 Experimental Campaign and Methodology 

We implement image classifiers with data augmentation through experiments that require 

the following items: In Section 2.2.7, we gather our data baseline for classification: those are 

Table 18: Comparison of different strategies to build robust Image Classifiers. 

Strategy 
Related 

Works 
Requires CFD 

Always 

Classifies 

Impacts 

Training 

Impacts 

Testing 

Master-Slave [116] ✔  ✔ ✔ 

Data Augmentation / 

Injection 

 [117], [118], 

[119]  
 ✔ ✔  
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images of Traffic Signs. Then, we describe how we altered the clean images contained in the 

datasets by injecting 13 different visual camera failures under different configurations. Section 

6.2.1 describes how we altered each image with a total of 103 different failure types and their 

configurations. Once data preparation is complete, Section 6.2.3 lists three DNNs that we will 

be using to perform image classification (in our case TSR). 

6.2.1 Injection of Visual Camera Failures 

Building on the papers [85], [88], we injected 13 different visual camera failures of Section 

5.2.4 on each image contained in each of the three datasets. We set up a Python script to inject 

each failure under different configurations. 

6.2.2 Building Train and Test Sets for Classifiers 

We collect three public dataset of Section 2.2.7 i.e., GTSRB, DITS, and BelgiumTSC 

datasets and then we process each image to inject the 103 failure configurations from Section 

6.2.1. This creates, for each GTSRB, DITS, and BelgiumTSC, 103 variants in addition to the 

original dataset, for a total of 104 datasets. Each of these 104 datasets is split into a train and 

test set; the split is identical for all datasets.  

We call train_clean/test_clean the sets containing the train/test split of the original dataset; 

both train_clean and test_clean contain only clean images. We call train_altered/test_altered 

the train/test set which contain train_clean/test_clean and the train/test splits of all the 103 

variants of the original dataset. For the sake of our analysis, we will also need to understand 

how each of the six classifiers deals with images corrupted with different configurations of the 

same visual camera failure. As such, we group the 103 variants depending on the 13 failures 

we used to generate them. This will allow creating 13 groups of test splits of variants as follows: 

• Failures as NOBF, NCAC, NDEMOS were used to create a single variant as they have 

only a single configuration of failure; 

• Failures as Banding and COND were used to create three variants; 

• Ice, Rain, Black Pixels, Brightness, NNR, Blurring, Broken Lens, Dirt failures are 

responsible for generating 4, 5, 6, 8, 9, 11, 15, 36 variants each. 

Each of the 13 groups above contain all the variants generated using each of the 13 visual 

camera failures; different groups differ in the number of variants – and images - they contain, 

which depends on the number of failure configurations. Noticeably, testing a classifier on each 

group will provide a set of classification metric scores, one for each test split of a variant in the 

group. For example, testing a classifier with variants in the Ice group will output 4 metric 

scores, whereas testing a classifier with variants in the Banding group will generate only 3 

metric scores, since our study considers 3 configurations of the Banding failure. 
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6.2.3 DNNs for Traffic Sign Recognition 

We adapted three pre-trained image classifiers described in Section 2.2.4 such as AlexNet 

(AN, [34]), InceptionV3 (IC3, [40]), and MobileNet-V2 (MN2, [41]) to our TSR case study 

using transfer learning with a batch size of 32 and 10 epochs, utilizing the stochastic gradient 

descent with momentum (sgdm, [134]) optimizer and cross-entropy loss at the Softmax layer 

on each of the GTSRB, DITS, and BelgiumTSC datasets. We re-trained each DNN (AN, IC3, 

MN2) twice on each of the three datasets as follows:  

• regular classifier: we exercised transfer learning using the train_clean set of each of 

the three datasets; we employed classical techniques as image scaling and translation 

to limit overfitting. 

• augmented classifier: created using the 50% of train_altered set as data baseline for 

transfer learning, without image scaling nor translation. 

This process creates a total of 18 classifiers: for each of the 3 datasets, we create a regular 

and augmented classifier for AN, MN2, and IC3 DNNs. We will then use the test_clean and 

test_altered sets for testing each classifier and quantifying their classification performance. 

Single augmented classifier (e.g., AN, MN2, and IC3) are trained for each of three datasets 

independently and that are dealing with the entire failure set. 

6.2.4 Building Train and Test Sets for Binary Failure Detector 

To train and test Camera Failure Detector (CFD) of Section 6.2.6, we utilized the test_clean 

and test_altered datasets of Section 6.2.2. First all test_clean and test_altered images are 

provided as input to the augmented classifier that may result in either correct classification or 

misclassification and based on the output of augmented classifiers, we assigned binary labels 

to each sample of test_clean and test_altered images as shown in Figure 22. As shown in Figure 

 

Figure 22: Process to assign binary labels to each  test_clean and test_altered image of three 

datasets classified independently by each augmented classifier. 

Correctly Classified 

Test Images
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22, we have three different datasets (GTSRB, DITS and BelgiumTSC), and three independent 

augmented classifiers (AlexNet, InceptionV3 and MobileNet-V2) that result in 9 different 

datasets with binary labels i.e., correctly classified or misclassified and we call it Failure 

Detector (FD) dataset. Each FD dataset is divided into two parts i.e., 60% for training and 40% 

for testing of CFD.    

6.2.5 Input Features for Binary Failure Detectors Training and Testing 

We extract features from images by means of deep convolutional neural networks i.e., 

AlexNet and ResNet feature descriptors, as described in Section 2.2.2. We provide each feature 

vector independently for the training and testing of CFD. In addition, we also provide the 

combination of feature descriptors i.e., {AlexNet U ResNet}. 

6.2.6 Classifiers Parameters for Binary Failure Detectors  

Each non-deep classifier of Section 2.2.3 is trained as CFD with each input feature vector 

of Section 6.2.5. Each non-deep classifier has its own set of hyper-parameters. To such an 

extent, we identified the following parameter values to exercise grid searches. 

• KNN with different values of k, i.e., different odd values of k from 1 to 25.  

• SVM: we used Linear SVM, and SVM with RBF kernal leaving other parameters (e.g., 

nu) as default.  

• Decision Tree: we used the default configuration of MATLAB which assigns 

MaxNumSplits = training sample size 1, with no depth limits on decision trees.  

• Boosting: we created boosting ensembles with AdaBoostM1, GentleBoost, and 

LogitBoost by building 25, 50, 75, and 100 trees (decision stumps) independently.  

• Random Forest: we build forests of 25, 50, 75, or 100 decision trees. Furthermore, we 

also exercised TreeBagger with the same number of decision trees.  

• LDA: we Trained LDA using different discriminants, namely: linear, quadratic, 

pseudo-linear, diag-linear, diag-quadratic, and pseudo-quadratic. 

6.2.7 Performance Metrics 

To evaluate the performance of regular and augmented classifiers, we use accuracy as 

performance metric, while for CFD performance is evaluated by accuracy, precision, and 

recall. Finally, to evaluate the performance of the TSR system with CFD, we use F-AA that is 

inspired by the formulation of F1-measure.  All performance metrics are defined in Section 

2.2.8. 
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6.3 Experimental Results of Augmented Classifiers  

This section presents the results of our experimental campaign. Section 6.3.1 compares 

accuracy scores that regular and augmented classifiers achieve on the 14 test sets. Section 6.3.2 

expands on brightness and NNR failures, which have a major impact on augmented classifiers. 

Section 6.3.3 investigates the contribution of visual camera failures in building robust 

augmented classifiers. Section 6.3.4 shows how augmented classifiers can correctly classify 

even clean images that are being misclassified by regular classifiers and have better overall 

classification performance.  

6.3.1 Are we building Robust Image Classifiers?  

First, we evaluate if augmented classifiers are robust to visual camera failures. We compare 

the classification performance of regular classifiers against augmented classifiers in Figure 23. 

The figure is composed of two series of box plots: on the left (Figure 23a) we have accuracy 

of regular classifiers. On the right side (Figure 23b) we have accuracy of augmented classifiers. 

Both figures are built using accuracy scores achieved by the three DNNs AN, MN2, and IC3 

on the three datasets GTSRB, BelgiumTSC, and DITS when testing on clean images and on 

images altered using all the 103 possible configurations of visual camera failures. Each figure 

contains 14 box plots, one for each test set from Section 6.2.1: from left to right, we see results 

of the test_banding, test_blurring, test_brightness, test_brokenlens, test_NCAC, test_COND, 

test deadpixels, test_dirt, test_grayimages, test_ice, test_NDEMOS, test_NNR, test_rain, and 

test_clean. On the vertical axis we have the accuracy: the higher the accuracy, the better the 

classification performance.  

The two plots in Figure 23 look very different from each other: boxes in Figure 23a clearly 

span across a wider range of accuracy scores with respect to Figure 23b. This means that regular 

  

                       a) Accuracy with regular classifiers                   b) Accuracy with augmented classifiers 

Figure 23: Box Plots showing accuracy of the three regular classifiers (Figure 23a) and the three 

augmented classifiers (Figure 23b) on the three datasets, for the test_clean and the 13 

test_<failure>.  
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classifiers have more variability in their classification performance than augmented classifiers. 

Most importantly, augmented classifiers have almost maximum accuracy, which is desirable 

for any classification task.  

There are two additional remarks we can extract from Figure 23. First, the accuracy 

improvement of the augmented against the regular classifiers is not constant across the different 

test sets (and visual camera failures). The accuracy is almost perfect (~1) when using 

augmented classifiers for the test_banding, test_blackpixels, test_NDEMOS, and test_rain, 

where instead regular classifiers struggle. Overall, boxes of Figure 23b are narrow and close to 

the top of the plot, which is clearly valuable. For most of the other test sets, there is still a clear 

improvement when using the augmented classifiers, whose accuracy gets close to 1.0.  Second, 

the accuracy changes also when classifying the test_clean set, with no visual camera failures. 

The last box of Figure 23a (test_clean) is wider than the corresponding one in Figure 23b. All 

augmented classifiers are very good on clean images; instead, the accuracy scores of regular 

classifiers have more variance than augmented classifiers. We will detail this behavior in 

Section 6.3.4, which takes advantage of a tool for explainable AI.  

We further explore the accuracy scores in Table 19 and Table 20. The table reports a row 

for each test set, and three groups of columns, one for each of the datasets. For each dataset, 

we report the highest accuracy achieved by DNNs. Accuracy scores in the table often report 

ranges: those happen when a test set embeds multiple configurations of visual camera failures, 

which may impact accuracy differently. Instead, test_clean contains no failures, and  

Table 19: Accuracy achieved using regular classifiers on the three datasets. 

Test Set or  

Group of Variants  

(# Config.) 

GTSRB DITS BelgiumTSC 

Accuracy Best DNN Accuracy Best DNN Accuracy Best DNN 

Clean 0.994 MN2 0.96 IC3 0.997 AN 

Banding (3) [0.947, 0.963] AN [0.902, 0.952] IC3 [0.991, 0.996] AN 

Black Pixels (6) [0.875, 0.993] MN2 [0.849, 0.956] MN2 [0.940, 0.995] AN 

Blurring (11) [0.946, 0.983] MN2 [0.780, 0.837] IC3 [0.862, 0.970] AN 

Brightness (8) [0.592, 0.959] AN [0.359, 0.941] AN [0.324, 0.996] AN 

Broken Lens (15) [0.469, 0.836] AN [0.607, 0.852] AN [0.465, 0.981] AN 

COND (3) [0.974, 0.993] MN2 [0.932, 0.955] IC3 [0.988, 0.995] AN 

Dirt (36) [0.970, 0.994] MN2 [0.845, 0.959] IC3 [0.978, 0.997] IC3 

Ice (4) [0.729, 0.960] AN [0.362, 0.938] AN [0.603, 0.988] AN 

NOBF (1) 0.861 MN2 0.812 IC3 0.598 MN2 

NCAC (1) 0.993 MN2 0.949 IC3 0.996 IC3 

NDEMOS (1) 0.963 AN 0.774 IC3 0.97 IC3 

NNR (9) [0.419, 0.959] AN [0.317, 0.903] AN [0.228, 0.995] AN 

Rain (5) [0.864, 0.958] AN [0.790, 0.939] AN [0.864, 0.992] AN 
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test_NCAC,  test_NOBF, and test_NDEMOS contain a single configuration for a failure: they 

have a single accuracy value in Table 19 and Table 20.  

The table confirms that regular classifiers always have inferior accuracy than augmented 

classifiers. Looking at the GTSRB columns, we see that in many cases, even in presence of 

visual camera failures, the classification accuracy is perfect (1.0). However, this trend does not 

repeat over the other two datasets, which are harder to classify: neither regular nor augmented 

classifiers reach 100% accuracy on test_clean (first row of Table 19 and Table 20). As such, 

we cannot expect perfect accuracy on test sets with altered images. 

Also, there are test sets that result in low accuracy regardless of the training dataset and the 

DNN. This is the case of test_brightness test_NNR, test_ice, and, to a lesser extent, 

test_brokenlens. The range of accuracy of test_ice on DITS and BelgiumTSC datasets is quite 

wide, even when adopting augmented classifiers. For some configurations of the ice visual 

camera failure, accuracy in DITS drops as low as 0.894 even when using the augmented 

classifiers. This is due to the way the ice image overlays with the image of the traffic sign 

image: in some cases, it covers significant parts of the image, whereas sometimes it does not. 

On BelgiumTSC accuracy goes down to 0.976, which is decent accuracy in general terms, but 

still lower than the one achieved in the other test sets, exception made for test_brightness and 

test_NNR. 

 
Table 20:Accuracy achieved using augmented classifiers on the three datasets. 

Test Set or  

Group of Variants (# 

Config.) 

GTSRB DITS BelgiumTSC 

Accuracy 
Best 

DNN 
Accuracy 

Best 

DNN 
Accuracy 

Best 

DNN 

Clean 1.000 MN2 0.992 MN2 0.999 AN 

Banding (3) [0.999, 0.999] IC3 [0.991, 0.993] MN2 [0.998, 0.999] IC3 

Black Pixels (6) 1.000 MN2 [0.987, 0.994] MN2 [0.997, 0.999] IC3 

Blurring (11) [0.996,0.999] IC3 [0.975, 0.983] MN2 [0.997, 0.999] IC3 

Brightness (8) [0.990, 1.000] MN2 [0.458, 0.992] MN2 [0.668, 0.999] IC3 

Broken Lens (15) [0.902, 0.997] IC3 [0.948, 0.991] MN2 [0.996, 0.998] IC3 

COND (3) 1.000 MN2 [0.988, 0.994] MN2 [0.998, 0.999] IC3 

Dirt (36) 1.000 MN2 [0.972, 0.995] MN2 [0.997, 0.999] IC3 

Ice (4) 1.000 MN2 [0.894, 0.993] MN2 [0.976, 0.999] IC3 

NOBF (1) 1.000 MN2 0.982 MN2 0.986 MN2 

NCAC (1) 1.000 MN2 0.992 MN2 0.998 IC3 

NDEMOS (1) 1.000 MN2 0.983 MN2 0.998 AN 

NNR (9) [0.999, 1.000] MN2 [0.649, 0.993] MN2 [0.859, 0.998] AN 

Rain (5) 1.000 MN2 [0.988, 0.993] MN2 [0.997, 0.998] IC3 
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In addition, Table 19 and Table 20 shows which DNN produces the highest accuracy value 

on each test set. There is no clear winner for regular classifiers: sometimes AlexNet (AN) 

performs better than MobileNet-V2 (MN2) and InceptionV3 (IC3), while in other cases it is 

the opposite. Considering the different DNNs, the most performing is typically MN2: MN2 is 

the preferred DNN for all test sets in the DITS dataset and 11 out of 14 test sets of GTSRB. 

For BelgiumTSC, instead, it looks more beneficial to adopt IC3. It is worth mentioning that 

AN gets better classification performance than MN2 and IC3 regular classifiers: for this DNN, 

the training with train_altered was not helpful as with MN2 and IC3 in raising their accuracy 

scores even in presence of failures.  

 Overall, we conclude that the augmented classifiers have significantly better classification 

performance than regular classifiers both when processing clean and altered images. 

Particularly, their accuracy remains high when dealing with images containing visual camera 

failures, making them robust to those altered images. 

6.3.2 Effect of Brightness and Noise on Image Classifiers  

We complement the general analysis in the previous section by exploring the impact of 

brightness and noise visual camera failures. Those are interesting cases for discussion because 

they have a major effect on the classification performance of both regular and augmented 

classifiers.  

6.3.2.1 Brightness analysis  

Figure 24 plots accuracy achieved by regular (Figure 24a) and augmented (Figure 24b) 

classifiers when varying brightness level in the range [0.1; 15], where 0.1 is an image almost 

entirely black, 1 is the clean image, and 15 is an image that is almost entirely white. Figure 24a 

shows how brightness levels in the range [0.3; 1.5] do not have a major impact on the accuracy 

 

   
       a) accuracy of regular classifiers     b) accuracy of augmented classifiers  

Figure 24: Accuracy achieved on test_brightness by regular classifiers (left) and augmented 

classifiers (right) using the 3 DNNs AN, MN2, IC3 on the 3 datasets DITS, BelgiumTSC, GTSRB 

and brightness levels in the range [0.1 to 15]. 
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of regular classifiers, whereas brightness levels lower than 0.3 and greater than 1.5 dramatically 

reduce accuracy. In Figure 24b we can observe that augmented classifiers are more robust to 

brightness failures: their accuracy does not drop much with low brightness, and suffers serious 

degradation only with brightness level greater than 1.5 and only in DITS (dotted lines in the 

plot) and BelgiumTSC (dashed lines in the plot). Even in those cases, the degradation of 

accuracy is graceful whereas regular classifiers show a sudden drop of accuracy.   

6.3.2.2 Noise analysis 

Figure 25 depicts a plot similar to Figure 24 but considering the test_NNR test set. The 

clean image has noise level 0; the higher the noise level, the more the image is degraded. Figure 

25a shows that regular classifiers struggle to classify noisy images. Specifically, with 

InceptionV3 (IC3) on GTSRB, accuracy drops below random guessing (accuracy of 12.5% for 

an 8-class classification problem) when the noise level reaches or exceeds 0.6. This is visible 

in the figure by looking at the brown solid line, which immediately falls at the bottom of the 

plot. On the opposite, Figure 25b shows that augmented classifiers are to some extent robust to 

NNR: when noise level is below 1, the accuracy still exceeds 90%. Then, it drops when noise 

is further incremented. Similarly, to the brightness failure, with the GTSRB dataset we observe 

only a very slight performance degradation: we can hypothesize that this is due to a high 

number of images in the training data and the high resolution of images. 

In Figure 26, we show a traffic sign to which we apply brightness and noise values, for a 

visual reference of the different level of noise and brightness. 

 
 

  

            a) regular classifiers    b) augmented classifiers 

Figure 25: Accuracy achieved on test_NNR by regular classifiers (Figure 25a, on the left) and 

augmented classifiers (Figure 25b, on the right) using different DNNs on different datasets with 

different levels of noise (0 to 5). 
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6.3.3 On the Impact of Individual Failures on Training  

 We provided evidence that data augmentation with altered images improves classification 

accuracy under all the considered scenarios. We now investigate which visual camera failure 

contributes the most to this improvement. For this purpose, we train a DNN on 13 train variants, 

each composed of the train_clean set plus images altered with a single visual camera failure. 

This creates 13 ‘intermediate’ classifiers in between the regular and the augmented.  For 

brevity, we explore the behavior of MN2 on DITS only. We deem it more interesting to explore 

the DITS dataset instead of GTSRB and BelgiumTSC as classification on DITS has the lowest 

accuracy scores: thus, we believe it is the most challenging. Also, we choose MN2 because 

(from Table 20) it is the DNN that always achieves the highest accuracy on DITS.  

Table 21 contains a row for each test set. On the columns, we have 15 classifiers: the 

regular, the 13 obtained using the train variants above, and the augmented. The second column 

of the table reports the minimum accuracy achieved by the regular MN2 classifier on any 

Table 21: Difference between the minimum Accuracy of a regular classifier and the minimum accuracy obtained 
by  MN2 on 14 test sets of DITS. MN2 is trained using train_clean plus data of a single visual camera failure. 
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Accuracy Difference from accuracy of regular classifier  

Clean  0.96 0.019 0.02 0.027 0.024 0.032 0.022 0.03 0.016 0.018 0.019 0.024 0.002 0.023 0.033 

Banding 0.719 0.254 0.145  0.064 0.13   0.018   0.018 0.222 0.139 0.273 

Black 

Pixels 
0.849  0.118   0.067        0.009 0.135 

Blurring 0.747   0.211  0.014          0.228 

Brightness 0.294  0.046 0.046 0.16 0.049 0.067  0.04 0.06 0.037 0.01 0.027 0.055 0.164 

Broken 

Lens 
0.569     0.356   0.019       0.38 

COND 0.883  0.047   0.074 0.072 0.039 0.066    0.038 0.06 0.105 

Dirt 0.74 0.009 0.055 0.104 0.07 0.121 0.037 0.22 0.021   0.05  0.06 0.232 

Ice 0.304  0.028 0.027 0.082   0.027 0.541    0.107 0.124 0.59 

NOBF 0.79 0.091 0.091 0.017 0.047 0.079 0.089 0.063  0.181 0.093 0.072 0.086   0.192 

NCAC 0.947  0.015 0.009 0.022 0.016 0.018 0.027 0.009 0.011 0.028 0.02 0.009 0.016 0.046 

NDEMOS 0.728 0.062 0.148 0.111 0.065 0.059 0.1 0.167 0.053 0.126 0.084 0.229 0.12 0.106 0.255 

NNR  0.318            0.355   0.332 

Rain 0.763   0.108     0.078             0.076 0.187 0.225 

 

                 

                    a) Brightness levels 0.3, 1, 1.5, 6.   b) Noise levels 0, 0.6, 1.5, 3 

Figure 26:  Different brightness and noise levels applied to the same traffic sign. 
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configuration of a specific failure to be used as a reference. The quantities shown in the rest of 

the table are the difference between the minimum accuracy achieved with the 13 new classifiers 

and the one achieved by the regular classifier. Only positive differences are reported; these are 

the cases in which training with a specific train variant creates a better classifier than the regular 

one. The biggest accuracy gains for each test set (each row in the table) are underlined: this 

shows the train variant which improves classification the most, with respect to training on 

train_clean. Finally, the last column of the table reports the accuracy difference between the 

augmented MN2 and the regular MN2: as expected, all differences are positive and always 

outperform any accuracy improvement we obtained with any train variant except for test_NNR, 

where we achieve highest accuracy by train_clean and train_NNR dataset.  

For all test sets but test_clean and test_COND the biggest improvement in accuracy is 

obtained adding images altered with the corresponding failure in the train set. For example, 

training with clean images and those altered with the dirt failure increases accuracy for 

test_dirt. This provides the DNN with information about the effects of the specific visual 

camera failure, letting MN2 learn how to classify even in the presence of that specific failure.  

Interestingly, the biggest improvement in accuracy for test_clean and test_COND is when 

adding images altered with the Broken Lens failure to the train set. 

Another interesting observation regards the accuracy on clean images (first row of Table 

21). The augmented classifier scores 0.993 of accuracy with an increase of 0.033 with respect 

to the regular classifier, which scores 0.960. Further, training with broken lens failure allows a 

gain in accuracy of 0.032, and training with dirt failure provides an accuracy improvement of 

0.030: almost as good as those of the augmented classifier. This may suggest that adding 

scratches and dirt effects on train images could improve image classification in general, 

regardless of the purpose of protecting against visual camera failures.  

6.3.4 Explaining Performance of Regular and Augmented Classifiers on 

Clean Images 

While it is intuitive that the augmented classifiers have better classification accuracy than 

the regular ones on altered images, it is worth understanding why classification accuracy on 

clean images is also improved.  

Figure 27 shows several images from DITS that are misclassified by the regular MN2 

classifier (on the left of the figure) but are correctly classified by the augmented MN2 classifier 

(on the right of the figure). Some of the images in the figure, especially those in the third and 

fourth row, already have blurred effect This is not due to failure injection, but instead is a 

characteristic of the DITS dataset, which also contains images taken in non-ideal sampling 

conditions. Anyways, for the purpose of the study, those are considered clean images as they 

are contained in the input dataset. 
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Frameworks for eXplainable AI (XAI) such as LIME [92] allow for examining how a 

classifier builds its prediction and ultimately explains the process behind the outputs of image 

classifiers. Particularly, LIME provides a graphical interface that shows which areas of the 

input image have the most relevance when calculating the output prediction. Each image in 

Figure 27 was processed through LIME, which visualize a heatmap of the most relevant 

features used for the prediction. Red areas correspond to features that contribute the most to 

classification, while blue ones have negligible to no impact. 

Regular MN2 classifiers Augmented MN2 classifiers 

  

  

  

  
 

Figure 27: Explanation of predictions of regular (on the left) and augmented (on the 

right) classifiers using LIME. Figure reads better when viewed in colors. 
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The regular MN2 classifiers on the left of Figure 27 select relevant features from many 

areas of the image; whereas the augmented MN2 classifiers select only a few. Moreover, the 

color scales on the right of each image show a contribution of each feature in the order of 10-6 

or even 10-7 for regular classifiers, whereas features for the augmented classifier have bigger 

absolute weight, in the magnitude of 10-5. Those two observations pair well together: the 

augmented classifier selects a few strong features, whereas the regular classifier selects many 

weak features from different parts of the image. This difference in the models learned from 

regular and augmented classifiers turns out to improve image classification accuracy: relying 

on less features provides a clear advantage in our experiments. 

6.4 Experimental Results of Camera Failure Detector  

This section compares different binary CFDs trained on the dataset generated in Section 

6.2.4. We did not consider the GTSRB dataset for CFD classifier analysis as augmented 

classifier achieves better accuracy against failure datasets compare to other two datasets. 

Results of binary CFD classifiers is shown in Figure 28, where blue, orange and gray solid bars 

represent accuracy, precision and recall respectively. We applied different configurations for 

each CFD classifier that are independently trained using different feature sets, whereas Figure 

28 shows the records against each CFD classifier based on highest F1-measure.  On a first 

 

Figure 28: Performance of different binary CFD classifiers on two datasets i.e., BelgiumTSC and 

DITS by independently considering each Augmented Classifier 
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glance, we can observe that CFD classifiers achieves better accuracy on BelgiumTSC dataset 

compared to DITS, the main reason behind better performance is the quality and number of the 

images in the training dataset. Augmented classifier AN with CFD classifier KNN achieves the 

highest accuracy 0.9913, which is better compared to all other combinations of Augmented and 

CFD classifiers on BelgiumTSC dataset. Similarly, the highest accuracy (0.9738) on DITS 

dataset is achieved by MN2 with KNN classifier. We observed that, CFD classifier KNN 

perform better on DITS dataset, while on BelgiumTSC dataset Tree Bagger performance is 

better with all augmented classifiers, despite in one case AN and KNN achieves slightly better 

performance.  Figure 28 shows that on BelgiumTSC dataset IC3 with CFD classifier LDA 

achieves higher recall, which means that the combination of IC3 and LDA produces lower 

number of false negatives. On the other hand, higher specificity score is achieved by AN and 

random forest that shows that this combination results in lower number of false positives.  

Similarly, on DITS dataset AN and random forest achieves highest specificity score 

0.8359. The highest recall score (0.7223) is achieved by the combination of augmented 

classifier AN and CFD classifier KNN, while all other combinations of augmented and CFD 

classifiers achieves recall score less than 0.677. Results suggest that CFD classifier can 

recognize the samples that will mislead the classifier component of the TSR system. To such 

extent, Section 6.5 discuss the impact of embedding CFD component in TSR system. 

6.5 Experimental Results of  TSR System using CFD   

This section builds TSR systems by considering two different strategies: (i) augmented 

classifiers and (ii) augmented classifiers in conjunction with CFD component. Both TSR 

systems are tested independently on test data generated in Section 6.2.4.  

Table 22 shows the accuracy achieved by augmented classifiers on 40% test samples of 

Section 6.2.4 that contain the failure injected samples from all 103 different visual camera 

failure configurations. We observed that AN and MN2 achieves the same accuracy i.e., 0.9869 

Table 22: Accuracy achieved by augmented classifiers on 40% test set containing all failure samples 
with same proportion  

Classifiers/Dataset BelgiumTSC DITS 

AN 0.9869 0.9324 

IC3 0.9881 0.9504 

MN2 0.9869 0.9619 
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on BelgiumTSC dataset, while IC3 achieves the highest accuracy 0.9881 that is still far from 

perfect. While on the DITS dataset MN2 achieves the highest accuracy 0.9619 on DITS dataset.  

Experimental results in  Table 23 and Table 24 shows the highest performance of the TSR 

system that combines the augmented classifier and the CFD on BelgiumTSC and DITS dataset, 

where the records are selected based on highest F-AA that is defined in Section 2.2.8. F-AA is 

giving equal importance to the accuracy and availability of TSR system. We considered only 

BelgiumTSC and DITS dataset for the experiments of CFD as we already achieved perfect 

classification against majority of camera failures by exercising only augmented classifiers.  

datasetsTo ensure the safety, there is always a trade-off between the performance and 

availability of the system, and they are dependent on each other as in Table 23 and Table 24, 

where the highest values of availability and accuracies are highlighted with bold. Table 23 and 

Table 24 shows the performance of TSR system selected by highest F-AA values shown in 7th 

column, where 5th and 6th columns shows the accuracy and availability of the TSR system 

Table 23: Overall TSR system performance on BelgiumTSC dataset, for each augmented and CFD 
classifiers records are selected by highest F-AA calculated between accuracy and availability. 
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KNN 0.9908 763 0.9925 0.9927 0.9926 

SVM 0.9895 343 0.9898 0.9967 0.9933 

LDA 0.9885 1187 0.9933 0.9886 0.991 

Decision Tree 0.9854 1481 0.9932 0.9858 0.9895 

Boosting 0.9904 878 0.9928 0.9916 0.9922 

Random Forest 0.9907 588 0.9916 0.9944 0.9930 

Tree Bagger 0.9906 584 0.9915 0.9944 0.9930 

IC
3

 

KNN 0.9907 627 0.9924 0.994 0.9932 

SVM 0.9903 315 0.9907 0.997 0.9938 

LDA 0.9884 1289 0.9944 0.9876 0.9910 

Decision Tree 0.9863 1264 0.9932 0.9879 0.9905 

Boosting 0.9900 496 0.9914 0.9952 0.9933 

Random Forest 0.9908 453 0.9916 0.9957 0.9936 

Tree Bagger 0.9907 457 0.9916 0.9956 0.9936 

M
N

2
 

KNN 0.9901 669 0.9916 0.9936 0.9926 

SVM 0.9893 349 0.9897 0.9967 0.9932 

LDA 0.9873 1283 0.9932 0.9877 0.9904 

Decision Tree 0.9845 1475 0.9927 0.9858 0.9892 

Boosting 0.9893 670 0.9913 0.9936 0.9924 

Random Forest 0.9900 523 0.9909 0.9950 0.9929 

Tree Bagger 0.9901 541 0.9910 0.9948 0.9929 
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respectively and highest values are highlighted with bold fonts. The experimental results 

indicate that the higher availability of the system results in lower accuracy of TSR, and 

similarly when TSR accuracy is higher it ultimately lowers the availability of system.   

We observed that highest accuracy is always achieved by LDA classifier considering three 

different augmented classifiers as shown with bold fonts in 5th column of Table 23, while in  

6th column of Table 23, we highlighted with bold fonts the maximum availability of the TSR 

system that is always achieved by  SVM.  Combining the augmented classifier IC3 and CFD 

LDA provides the highest accuracy 0.9944, but it discards 1289 images, reducing the 

availability of the TSR system. Experimental results shows that augmented classifier IC3 

achieves 0.9881 accuracy on BelgiumTSC dataset as shown in the 2nd column of Table 22, 

while the addition of CFD component, always achieve higher accuracy for any combination of 

augmented and CFD classifier with reduction in the availability of the TSR system as shown 

in Table 23.  

 
Table 24: Overall TSR system performance on DITS dataset, for each augmented and CFD 

classifiers records are selected by highest F-AA calculated between accuracy and availability 
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KNN 0.9511 1763 0.9585 0.9634 0.961 

SVM 0.9383 584 0.9407 0.9879 0.9637 

LDA 0.9396 2488 0.9597 0.9484 0.954 

Decision Tree 0.9391 3459 0.9694 0.9283 0.9484 

Boosting 0.9487 1803 0.9577 0.9626 0.9601 

Random Forest 0.9523 1506 0.9566 0.9688 0.9626 

Tree Bagger 0.952 1520 0.9566 0.9685 0.9625 

IC
3

 

KNN 0.9564 1177 0.9648 0.9756 0.9701 

SVM 0.9564 578 0.9589 0.988 0.9733 

LDA 0.9519 2364 0.9744 0.951 0.9626 

Decision Tree 0.9475 2597 0.9745 0.9461 0.9601 

Boosting 0.9567 1291 0.9661 0.9732 0.9696 

Random Forest 0.9611 1128 0.9667 0.9766 0.9716 

Tree Bagger 0.9613 1152 0.967 0.9761 0.9715 

M
N

2
 

KNN 0.9658 638 0.9701 0.9868 0.9784 

SVM 0.9677 585 0.9705 0.9879 0.9791 

LDA 0.9663 1354 0.9776 0.9719 0.9747 

Decision Tree 0.9622 2013 0.9822 0.9582 0.9701 

Boosting 0.9682 1072 0.9756 0.9778 0.9767 

Random Forest 0.9711 895 0.9753 0.9814 0.9784 

Tree Bagger 0.971 899 0.9753 0.9814 0.9783 
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Similarly,  Table 24 shows the comparison of different CFD classifier in combination with 

each augmented classifier on DITS dataset. Experimental results shows that decision tree 

always Achieve highest accuracy for all three augmented classifiers. We achieved 0.9822 

highest accuracy by using augmented classifier MN2 and CFD classifier decision tree that is 

higher compared to only exercising augmented classifier, where we achieve highest accuracy 

0.9619 by MN2 as shown in Table 22. Interestingly, like BelgiumTSC dataset SVM always 

ensure maximum availability of the TSR system on DITS dataset. Decision tree discards 2013 

images of DITS dataset, where MN2 ensure the maximum accuracy 0.9822, on the other side 

it reduce the availability of the TSR system 0.9582 that is low. 

Experimental results show that for both BelgiumTSC and DITS dataset, exercising 

augmented classifier with CFD component increase the accuracy of the TSR system. Relying 

only on augmented classifiers ensures 100% availability, while in case of augmented classifier 

with CFD component the availability of the system is lower as shown in Table 23 and Table 

24 for BelgiumTSC and DITS dataset respectively. Furthermore, a TSR system that embeds a 

CFD component may be computationally expensive, as the CFD adds workload to the TSR 

system.   

Accuracy and availability are important that must be considered while implementing a TSR 

for a safety critical system [153]. Relying only on augmented classifiers (without failure 

detectors) for TSR is dangerous, a single misclassification may result in catastrophic situation. 

On the other hand, the addition of a failure detector increases the accuracy but reduces the 

availability of TSR. Depending on the requirements of system, one can choose among two 

strategies, if the availability of the system is more important one can implement TSR using 

only augmented classifiers that ensure 100% availability.  If the requirement of the system is 

to ensure lower number of misclassifications that ultimately increase the accuracy of the TSR 

they can implement augmented classifiers in conjunction with CFD component that discard the 

corrupted images that result in high accuracy of TSR and ultimately reduce the availability of 

system.    

6.6 Lessons Learned  

In this chapter, we investigated how to improve the robustness of TSR system against 

visual camera failures. We presented two strategies such as data augmentation and the adoption 

of a camera failure detector that are effective to tolerate most failures of the visual camera.  
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Data augmentation improves the robustness of DNNs against visual camera failures, and 

also improving classification accuracy: especially, including dirt or scratched lens effects in 

the training set is raising accuracy up to 0.03 i.e., from 0.96 to 0.99 and 0.992 respectively with 

respect to regular classifiers on DITS original dataset. We showed that images altered using 

specific failures contribute more than others to improving the accuracy and robustness of 

classifiers. We observed that few visual camera failures such as brightness, and no noise 

reduction have more negative impact even using augmented classifiers. Still, to ensure 

robustness with respect to the entire failure set, it has been necessary to perform data 

augmentation enriching the training set with altered images due to multiple visual camera 

failures.  

Furthermore, we exercised the second strategy i.e., master-slave strategy where CFD is to 

detect the images that are “too corrupted”, assuming that minor corrections are tolerated by the 

augmented classifier. In other words, we implemented an architectural approach where the 

images are either discarded by the CFD or are deemed of adequate quality for being processed 

by a robust classifier. Augmented classifiers in conjunction with CFD component improve the 

accuracy of TSR system compared to only relying on augmented classifier, but the higher the 

accuracy, the lower the availability of TSR system.  We found that CFD classifier SVM always 

ensure maximum availability of the TSR system on both datasets, while LDA and decision tree 

always achieves maximum accuracy on BelgiumTSC and DITS dataset respectively. 
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7.  CONCLUSIONS AND FUTURE DIRECTIONS 

To conclude the thesis, we summarize the conclusion of the thesis and ultimately discuss 

future works. 

7.1 Conclusions 

In this thesis, we worked on a safety critical traffic sign recognition system. There are two 

main parts of this thesis, where in the first part we performed quantitative comparison of the 

state-of-the-art approaches and proposed a sliding window based approach for perfect traffic 

sign recognition. While in the second phase, we studied the behaviour of different TSR 

approaches against visual camera failures and different approaches are adopted for robust TSR 

against visual camera failures.  

First, we conducted an extensive experimental comparison on available feature extractors 

and non-deep classifiers, accounting also for DNNs that can efficiently perform TSR through 

transfer learning. Results showed that K-NN, SVM and NN are the most adequate non-deep 

classifiers, and that HOG features provided actionable information to be processed by those 

algorithms. Overall, non-deep classifiers achieved the highest accuracy of 100% on GTSRB, 

96.52% on BelgiumTSC and 93.61% on DITS. While the combination of feature descriptors 

such as HOG+SURF+LBP achieves highest accuracy 97.58% on BelgiumTSC and 95.71% on 

DITS dataset.  We also compared those results with DNNs that were adapted to TSR through 

transfer learning and achieved higher accuracy than non-deep classifiers on DITS and 

BelgiumTSC i.e., 99.80% and 99.31% respectively.   Next, we adopted sliding window 

approach for classification based on sequences of traffic sign images. Our study showed how 

the adoption of a stacking meta-learner in conjunction with sliding windows allows achieving 

perfect classification (100% accuracy) on the public GTSRB, BelgiumTSC and DITS datasets. 

Those datasets contain images taken in different parts of the world and mostly taken in semi-

ideal lighting and environmental conditions. Therefore, they may not completely represent 

what a real TSR system installed on a vehicle will face during its life. 

In the next phase, we analysed the effect of visual camera failures on the robustness of 

different TSR strategies. This study performs extensive experiments on three traffic sign 

datasets that are perturbated with 13 visual camera failures. Different classifiers are proposed, 

that are composed either to process a single image or a sliding window of images. We observe 
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that approaches based on sliding windows perform better compared to approaches based on 

single images, both on the clean datasets, and when failures are considered. Despite many 

classification strategies that we adopted for TSR, there is no single classification strategy that 

is more robust against the different visual camera failures. To such extent, we adopted different 

approaches such as data augmentation and camera failure detector to increase the robustness 

of DNNs against visual camera failures. We investigated how to improve the robustness of 

image classifiers against visual camera failures. We show that data augmentation is effective 

to tolerate most failures of the visual camera. We show that the same data augmentation 

approach is not only improving robustness, but is also improving classification accuracy: 

especially, including dirt or scratched lens effects in the training set is raising accuracy up to 

0.03 i.e., from 0.96 to 0.99 and 0.992 respectively with respect to regular classifiers on DITS 

original dataset. We showed that images altered using specific failures contribute more than 

others to improving the accuracy and robustness of classifiers. Still, to ensure robustness with 

respect to the entire failure set, it has been necessary to perform data augmentation enriching 

the training set with altered images due to multiple visual camera failures. 

To further improve the robustness of TSR, we trained a binary camera failure detector to 

exclude the images that are corrupted beyond the extent that our augmented classifier can 

classify properly. Our experimental results indicate that the addition of camera failure detector 

component with augmented classifiers increase the robustness of TSR compared to augmented 

classifiers at the cost of availability of system. As camera failure detector exclude the images 

that are corrupted beyond the extent that our augmented classifier can classify properly increase 

the accuracy of augmented classifier for TSR but reduce the availability of the system.   

7.2 Future Works 

In our future work, we will study the robustness of DNNs against adversarial patches and 

different adversarial attacks. We will explore other strategies for robust classification such as 

feature aggregation or architectural changes in DNNs. We are using benchmarks datasets; in 

future we are looking for companies that are working on (semi-)autonomous vehicles, where 

we can deploy our TSR system in real time to observe the real time performance.  we will 

explore if our composite approaches that merges a failure detector and data augmentation is 

general enough to build safer image classifiers in safety critical domains other than Traffic Sign 

Recognition. 
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