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Abstract

In this paper machine learning and artificial neural network models are proposed for the classification
of external noise sources affecting a given quantum dynamics. For this purpose, we train and then
validate support vector machine, multi-layer perceptron and recurrent neural network models with
different complexity and accuracy, to solve supervised binary classification problems. As a result, we
demonstrate the high efficacy of such tools in classifying noisy quantum dynamics using simulated
data sets from different realizations of the quantum system dynamics. In addition, we show that for a
successful classification one just needs to measure, in a sequence of discrete time instants, the
probabilities that the analysed quantum system is in one of the allowed positions or energy
configurations. Albeit the training of machine learning models is here performed on synthetic data,
our approach is expected to find application in experimental schemes, as e.g. for the noise
benchmarking of noisy intermediate-scale quantum devices.

1. Introduction

Noise sensing aims at discriminating, and possibly reconstructing, noise profiles that affect static parameters and
dynamical variables governing the evolution of classical and quantum systems [1-4]. In the quantum regime,
which constitute the main object of our discussion, noise partially destroys the coherent evolution of the
investigated open quantum system, interacting with an external environment or simpler with other systems

[5, 6]. In such scenario, noise can be generally modelled as a stochastic process, distributed according to an
unknown probability distribution [7, 8]. As concrete examples, one may consider the following cases that have
recently studied experimentally: (i) Resonant microwave fields with random amplitude and phase for the driving
of atomic transitions [9]; (ii) solid-state spin qubits in negatively charged nitrogen-vacancy (NV) centers that are
naturally affected by a carbon nuclear spin environment [ 10]; (iii) single photons undergoing random
polarisation fluctuations [11, 12]. In all these experiments, noise stochastic fields sampled from an unknown
probability distribution have to be included in the microscopic derivation of the system dynamics under
investigation, in order to properly carry out noise sensing and discrimination.

Several techniques, at both the theoretical and experimental side, have been developed for the inference of
the unknown noise distribution and to detect, if present, non-zero time-correlations among adjacent samples
(over time) of the noise process [9, 10, 13—22]. However, most of them suffer of the need to control the quantum
system, by generating multiple control sequences (e.g., dynamical decoupling ones [23-25]), each of them being
sensitive to a different component of the noise spectrum [26, 27]. In this regard, in Ref. [28] a diagnostic protocol
for the detection of correlations among arbitrary sets of qubits have been tested on a 14-qubit superconducting
quantum architecture, by discovering the persistent presence of long-range two-qubit correlations. Moreover,
Machine Learning (ML)-models have been also adopted to study non-Markovian open quantum dynamics
[29-31]. In particular, in [29] a method is developed to learn the effective Markovian embedding of a non-
Markovian process. The embedding is learned by maximising the likelihood function built over successively
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observed measurements of the quantum dynamics. The assumption in [29] is that the underlying time-
evolution of the system is non-Markovian and the focus of the work is the training of the Markovian embedding.
Thus, itis not directly addressed the issue of discriminating the presence of noise sources affecting the dynamics,
nor if the noise samples over time are time-correlated. Instead, in [30] a Support Vector Machine (SVM) model
is trained to predict the degree of non-Markovianity in open quantum systems. An open quantum system
approach is thus employed, but without providing emphasis on quantum dynamics perturbed by a stochastic
process of noise, nor on the use of more complex ML-models as neural networks and Recurrent Neural Network
(RNN). In Ref. [31] a deep neural network approach is adopted to perform (at the theoretical level) noise
regression of qubits immersed in their environment that entails different stationary, Gaussian noise spectra. In
[31], deep neural networks are trained with time-dependent coherence decay (echo) curves used as input data.

In this paper, differently to all the aforementioned references, we exploit ML techniques [32, 33] to
efficiently carry out high accuracy classification of noise affecting quantum dynamics. The proposed methods
are designed to distinguish between Independent and Identically Distributed (i.i.d.) noise sequences and noise
samples originated by a non-trivial memory kernel, thus characterised by specific time-correlation parameters.
Itis worth reminding that, in the latter case, the dynamics of the stochastic quantum system (stochastic due to
the presence of fluctuating parameters, e.g. in the Hamiltonian of the analyzed system as in [9]) turns out of
being non-Markovian [34, 35], in the sense that samples of its state in different time instants are correlated [36].
This entails that the propagation of the system in subsequent time intervals is highly influenced by its previous
states, even occurring in the early stages of the dynamics [37—-39]. This effect corresponds to a two-fold exchange
of information between the system and the external sources, which has thus applications for quantum
sensing [40, 41].

To present our novel approach and demonstrate its efficacy in discriminating Markovian and non-
Markovian noise sources, we focus on the dynamics of a quantum particle randomly moving on a graph G
[42—44], as generated by a stochastic Schrédinger equation. Depending on the way the particle is affected by the
external noise, the noise-dependent component of its movements within the graph may be time-correlated. In
this general context, we are going to propose ML-based solutions for the classification of characteristic noise
features. Specifically, by training a properly-designed Machine Learning model via the probabilities that the
particle is in each node of the graph G at discrete time instants (thus, no coherence decay curves need to be
measured as in [31]), we will show that it is possible to discriminate accurately between different noise sources
and identify the possible presence of time-correlations from observation of the quantum system dynamics.

To perform noise classification, SVMs, Multi-Layer Perceptrons (MLPs) and RNNs [45—-48] are successfully
trained on six data sets (each of them composed of 20 000 realisations) that have been properly generated to
carry out binary classification of noisy quantum dynamics. Once trained, the proposed ML-models are able to
reach a classification accuracy (defined by the number of correctly classified realisations over their total number)
up to 97%. A pictorial representation of the proposed ML procedure is depicted in figure 1. We share the source
codes used to generate the data and to train the ML-models for our results [Q2].

As other existing sensing techniques, the training of our ML-models can be performed preliminary on
synthetic data. Specifically, synthetic data are generated by solving a stochastic Schrédinger equation—modeling
the noisy quantum dynamics we are analyzing—that exhibits at least one random parameter to be randomly
sampled. As a result, we have observed that both i.i.d. and correlated noise sources can be accurately
discriminated by means of one single ML architecture. Moreover, our ML-based approach allows for non-
Markovian noise classification by processing only measurements of the diagonal elements (even called
‘populations’) of the density operator p, associated with the quantum system under investigation. Thus, no
measurements of the off-diagonal elements of p;, stemming from quantum coherence terms in a given basis of
interest, might be required. For example, for the quantum particle case, this means that we just need to record, in
discrete time instants, the probabilities (denoted as ‘occupation probabilities’) that the particle is in the positions
(even part of them) identified by the nodes of the graph G. These advantages can find application in
experimental setups affected by stochastic noise sources as the ones in [9, 10, 12], and even in the available or
coming quantum devices where a noise certification could be crucial before performing any task [ 14, 49] (see
also the subsection 4.3 below).

2. Stochastic quantum dynamics

Let us introduce the general physical framework to which our ML methods will be applied. For this purpose, we
consider a quantum particle that randomly moves on a complex graph G by following the quantum mechanics
postulates. The complex graph is described by the pair (N, £), where A is the set of nodes or vertices while £ is
the set of links, denoted as s <> #, coupling pairs of nodes, with s,# = 1, ... ,dand d being the total number of
nodes. Each node is associated with a different particle position, while the links correspond to the possibility that
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Figure 1. Pictorial representation of the proposed machine learning procedure for noise classification. For a fixed set of nodes A
(coloured circles) we take into account the stochastic evolution of a quantum particle in a network affected by different types of noise
sources. Such noisy quantum dynamics are evaluated at M consecutive steps (small green plate). To make the synthetic generated data
closer to a possible real setting, the topology £ (edges linking the coloured circles) of the network and the initial state distribution 7,
(black pawn on the green right circle) are chosen randomly for a predefined number of different configurations (yellow background).
After the dynamics, all the distributions P in correspondence ofthe M + 1 time instants t;, with k=0, ... ,M, are collected and
recorded along with the noise type label. Then, a data set of N different realisations is used to train a ML-model (a neural network in
the figure) for the classification of noise sources.

the particles jumps from a node to another. In particular, the links in £ can be summarised in the adjacency
matrix A; (time-dependent operator in the more general case), whose elements are given by

4G — g ifs=rcé 0
! 0 if s« £&ZE.

In this way, we are implicitly assuming that all the links are equally coupled with the same weight equal to g, that
is taken as a time-dependent parameter.

Here, the coupling g, is modelled as a stochastic process defined by the collection of random variables
g= (gto, 8 )T, with (-)T being the transposition operation, in correspondence of the discrete time instants
tk=0, ..., M — 1. Ateach t, g;is sampled from a specific probability distribution Prob(g) and is assumed to
remain constant at the extracted value for the entire time interval [#;, fx, 1]. For simplicity, also the value

A=ty 1 — tristaken constant forany k =0, ... , M — 1, and the stochastic process g; is considered to take D
different values g, ... , g™ with probabilities p s -+ P - Inthis way,
D ..
Prob(g) = > pé(g — g7 )
j=1

is provided by a discrete probability distribution with D values, with §( - ) denoting the Kronecker delta.

If gis provided by a collection of i.i.d. random variables sampled from the probability distribution Prob(g),
then the noise sequence that affects the link strength gis uncorrelated over time, and it is denoted as Markovian.
Conversely, in case the occurrence of the random value g( D, j=1, ... ,D, at the discrete time instants t;, k = 0,

..»M — 1, depends on the sampling of g at previous time instants, the noise sequence is time-correlated and the
noise is denoted as non-Markovian or as a coloured noise process. In this regard, notice that the value of the
parameters, which define the correlation among different samples of noise in single time-sequences, uniquely
set the colour of the noise. Also observe that, known the multi-times distribution Prob(g) defined over the
discrete time instants #;, one can compute the noise auto-correlation function, whose Fourier transform is by
definition the power spectral density of the noise process. In other terms, there is a one-to-one mapping between
the representations of the noise in the time and frequency domains respectively. This entails that noise sensing
can be performed in one of the two domain at best convenience. Moreover, this also motivates the generality of
the stochastic quantum model we are here introducing that, indeed, can be applied to all those problems
concerning the transport of single particles within a network [50-52], but also to quantum system dynamics
influenced by the external environment as those in [2, 4, 18].
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In our model we adopt as correlation model the well-known formalism of time-homogeneous discrete
Markov chains [53]. The latter can be graphically interpreted as state-machines that assign the conditional
probability of ‘hopping’ from each possible value of g to an adjacent one at consecutive time instants. Each
conditional probability is defined, at any time t, by a transition matrix T that is a left or right stochastic operator.
Let us remind that discrete Markov chains differ by a parameter m named the order of the chain. In a Markov
chain of order m, future realisations of the sampled random variable (e.g., our g;) depend on the past m
realisations in previous time instants. Here, we will consider (m = 1)-order discrete Markov chains, namely
correlated noise sequence characterised by a single (1-step) transition matrix 7 that we aim to discriminate by
means of properly-developed ML techniques. This choice is simply dictated by our desire to effectively illustrate
the obtained results, and not by intrinsic limitations of the methods we are going to propose. As an example, let
usassume m = 1 and D = 2. In this specific case, by taking the conditional probabilities p(g, Ig, )with g, equal
to ¢ or ¢® for any k, it holds that p (g,l8,, ) is equal to one of the elements within the following transition
matrix:

- r@, =&V, =8¢ pi, =2V, =89 )
@, =g%lg, =& prE,=g%g,  =g?

Thus, the stochastic realisations of gin different time instants are not correlated only if all the elements of T
are equal to 1/2. In addition, we assume that all the nodes of the graph G have the same energy. Without loss of
generality, one is allowed to set such energy to zero, with the result that the Hamiltonian H, of the quantum
particle is identically equal to the adjacency matrix A, i.e., H=A, for any time instant t. Moreover, we consider
that the state of the particle, moving on a graph with d nodes, is provided by the density operator p, that, by
definition, is an Hermitian, positive semi-definite, idempotent operator matrix with trace 1. By using the
vectorisation operation vec[ - ], we convert p, into the column vector

As = vec[p,]

(1) (d1)

= ('Ot 3 eee )pt (12)

a2 dd 2
s Py ,...,pg ),...,p(t N e ¢

where pﬁs’f) denotes the (s #)-element of p,. The state A, is a vector of d° elements belonging to the space of
complex numbers. Since a quantum particle can live in a superposition of positions, whereby also quantum
coherence plays an active role, d elements of A, corresponds to the probabilities of measuring the particle in each
of the allowed positions, while the other elements are quantum coherence terms that identify interference
patterns between the nodes of the graph. Thanks to the vectorisation of p;, the ordinary differential equation,
governing the dynamics of the particle, is recast in a linear differential equation for A, i.e.,

0

_At - Lt At@At - e['lAO
ot

L, = —é(ﬂd ®A — Al ® 1)

with ®Kronecker product and  reduced Planck constant. By construction, £, is a skew-Hermitian operator for
any time instant t, i.e., L]+ £, = 0 V.

3. Problem formulation

Our aim is to identify the presence of noise sources acting on the coupling g, of the adjacency matrix A,, and then
discriminate among different noise probability distributions Prob(g) and correlation parameters in the samples
of the time-sequences g. Moreover, we also aim to evaluate if such tasks can be carried out by only measuring the
population terms of the particle at the discrete time instants f;, even by taking into account few runs of the
quantum system dynamics.

The population values are collected in the vectors 7, € R that have as many elements as the nodes of the
graph. After each stochastic evolution of the quantum particle, 7, takes different values depending on the
specific realisation of g.

At the experimental level, the population distributions 7, can be obtained in multiple runs, by stopping the
stochastic evolution of the system at each time ;. (with k=1, ... ,M), then collecting the measurement records
and restarting from the beginning the experimental routine. This means that one does not need to
experimentally implement sequential measurements routines, requiring to take into account also the quantum
measurement back-action on the state of the system. The measurement outcomes can be just recorded at the end
of the quantum system evolution; however, this can be realized at the price of performing multiple runs of the
stochastic quantum dynamics under scrutiny.
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3.1. Data set generation

For the generation of the data used to train the ML-models, we consider two variants of three different
classification problems. Each sample of the data sets is created by first generating a random set of links £
(random topology) for the graph G, and then initialising the particle in a randomly chosen node of the graph. We
set M = 15 as the number of evaluations (measurements) of the quantum particle dynamics, and d = 40 as the
number of nodes of the graph G. This means that 7, is a Kronecker delta centered in one of the 40 nodes, and the
stochastic quantum dynamics is evolved for 15 steps for each simulated noise source of the generated data set.
Here, it is worth noting that the choice of M = 15 is dictated by the fact that in recent experiments as for instance
in [9, 54, 55], the number of intermediate quantum measurements does not exceed 10, and thus M = 151is
sufficiently large to represent actual physical setups. Instead, regarding taking d = 40, such a value is just able to
generate a complex landscape for the particle dynamics and small enough to be numerically manageable. The
total considered dynamical time #,,is taken equal to f; = 1 or £, = 0.1 in dimensionless units, each of them
corresponding to a specific variant. Notice, indeed, that the values of #), are expressed consistently with the
energy scale of the couplings g, whose random values g'  belong to the set { 1,2, 3,4, 5} in the data set
generation, such that /i can be reliably set to 1 as usual. All the probability distributions 7, fork=0, ..., 15are
stored together with the attached label that indicates the associated type of noise.

For each of the two variants of our classification problems, we generate three different balanced data sets of
20 000 samples. The first data set, which we call IID, is suitable for a supervised binary classification task that
discriminates between two different i.i.d. noisy quantum dynamics, where the noise sources have the same
support but different probability distribution Prob(g).

The second data set, named as NM, concerns the classification of two different coloured noisy quantum
dynamics with the noise sources again having the same support but different Prob(g) (the same ones as in the
data set IID) and a transition matrix 7.

Finally, the third data set, called VS, is created for the classification between stochastic quantum dynamics
affected respectively by ani.i.d. and a coloured noise with same support and Prob(g).

Note that choosing graphs with random links allows to increase the statistical variability of the input data,
with the result that the ML algorithms learn to classify noise sources independently of the graph topology. The
aim, indeed, is to prevent that the ML-models rely only on features specific to a small class of topologies.
Moreover, taking random initial distributions 7, allows to increase the robustness of the ML methods, making
them less likely to overfit on the synthetic data set.

As it will be explained in the following, some ML-models that we are going to introduce will use as input only
the last distribution 7, while other ML-models will take all the 7, for any #. Moreover, each data set is
balanced split in a training set of 12 000 samples, a validation set of 4 000 samples, and a test set of 4 000 samples.

In tables 1 and 2 we plot the occupation probabilities 7, (just for the IID case for the sake of an easier
presentation), being here interested in looking for the difference between choosing t;5 = 0.1 or 1, which identify
the two different variants of the generated data set. In this regard, it is worth noting that the duration ;5 = 0.1 (in
dimensionless units) of the quantum system dynamics, as in the example in table 1, is the minimal one to observe
the diffusion of the system’s population outside the node on which has been initialised. However, as it will be
verified by our experiments and explained later, with this choice one has that, by taking ¢,5 = 0.1, the
classification problem results quite straightforward. Indeed, just basic ML-models that are only trained on 7,
(thus, only on the final distribution P) are able to correctly classify between two noisy quantum dynamics.
Therefore, it was more interesting to increase the value of ;5 up to t;5 = 1 (in dimensionless units). As in the
example of table 2, it leads to more complex data sets, and only deep learning models, designed to read all the 2,,
can classify the generated noisy quantum dynamics.

As final remark, note that the current synthetic data set is build assuming perfect measurement statistics, as it
was obtained from a large enough number of repetitions of the noisy quantum dynamics. Hence, to better adapt
the synthetic data set to real data, one should simulate experimental case in which the measurement statistics are
estimated from a finite number of dynamics realizations (i.e., measurement shots).

3.2. Classification tasks
We here present the binary supervised classification tasks that we are going to address, by taking 7, as input:

Two different probability distributions Prob(g)—specifically, pg“), e ,pg(s) = (0.0124, 0.04236, 0.0820,
0.2398, 0.6234) and =(0.1782, 0.1865,0.2,0.2107, 0.2245)—Dboth associated with i.i.d. noise sources.

Two different Prob(g) (the same as (i)) and different values of the correlation parameters—identified by
transition matrices T as explained in section 2—for coloured (thus, non-Markovian) noise processes.
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Table 1. Example of a part of B, for all the discrete time instants #; for a noisy quantum dynamics affected byi.i.d. noise sourcesand t;5 = 0.1
(in dimensionless units). In the table, 7752) denotes the s-th element of the vector B, forany t, k =0, ..., 15.

35 36 37 38 39 40
I S S

k k k

to
ty
to
t3
ta
ts
125
7
tg
tg
t10

t12
t13
t14

Table 2. Example of a part of B, for all the discrete time instants #; for a noisy quantum dynamics affected byi.i.d. noise sourcesand t;5 = 1
(in dimensionless units). Again, Pﬁi) denotes the s-th element of the vector T, forany #, k = 0, ..., 15. The topology and the initial state, for
this example, are the same of those in table 1.

PG5 pB6)  pBN  pBS)  p39)  pd0)

t th th tk th tr
to
tq
to
t3
12}
ts5
tg
124
123
tg
t10

t12
t13
t1a

t1s

Ani.i.d. and a coloured noise process with the same support gand distribution
p;), ,p;5> = (0.0124 , 0.04236, 0.0820, 0.2398, 0.6234) that thus differ for the presence of non-zero

correlation parameters.

The values of both Prob(g) and the transition matrices T, used in our numerical simulations, are chosen
randomly.
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Table 3. Percent accuracy +y (calculated on the test set) of the ML-models trained in the tasks of binary classification of noisy quantum
dynamics with: (i) Two different i.i.d. noise sources (IID); (ii) two different coloured noise processes (NM) leading to non-Markovian
dynamics; and (iii) one i.i.d. vs one coloured noise sources (VS). In this regard, let us recall that the coloured noise processes addressed in this
paper are such that the probability distributions 7, depend both on Prob(g) and 1-step transition matrix T In the first three columns of the
table, the total duration of the dynamics is equal to t;5 = 0.1, while in the last three is #;5 = 1. The first two rows of the table report the results
of the ML-models that use as input only 7, ;, while the models of the other rows take as input all the probability distributions 7, for k = 0,
..., 15. The highest values of the accuracy have been underlined, and a color gradient (from blue to bright red) highlights the difference in
their values.

t15 = 0.1 tis =1
IID NM VS |IID NM VS
m-SVM-single 97.0 823 96.5 | 50.3 51.2 49.5

Pt m-MLP-single 96.9 80.7 96.6 | 49.5 50.7 50.2

m-SVM 964 80.1 963|736 61.9 75.0

m-MLP 96.7 80.7 96.3 | 740 61.4 70.7

m-GRU 96.5 91.5 96.7 | 90.5 73.3 88.2

P m-LSTM 96.8 904 964 | 88.6 70.3 86.3

to m-biGRU 96.6 922 96.6 | 9.0 746 90.6

. m-biLSTM 96.7 89.7 96.5| 90.8 70.6 87.2
t1s

m-biGRU-att 97.0 91.6 96.1 | 90.9 73.4 879
m-biLSTM-att 96.9 879 96.3 | 89.0 71.6 874
m-biGRU-max 96.6 92.6 96.6 | 91.8 76.1 90.4

m-biLSTM-max 96.6 91.4 96.3 | 91.4 749 89.0

To solve the classification tasks above, we have employed in this paper both a more standardized ML-model
thatis Support Vector Machine (SVM) [33] and more recent Artificial Neural Networks (ANNs) [47, 56—58]
models in the form of MLPs and RNNS. For an exhaustive explanation of such a ML-models refer to the
appendix.

4, Results

In our work, we consider two SVM models as baseline. The first one is denoted m-SVM-single and uses as input
only the final probability distribution 7, (the prefix m- stands for ‘model’, to avoid confusion with the
algorithm name; the suffix -single means that it is based only on 7,,). Instead, the second one, which we call as m-
SVM, uses the set of all the 77, with k=0, ..., 15. For both of them, we try the following kernels to increase the
dimension of the feature-space that makes linearly separable the data-set: linear, polynomial with degree 2, 3 and
4, and Radial Basis Function (RBF).

Then, we denote with m-MLP-single a MLP (also refer to equation (7) in the appendix), with x = P, and
y = (0, 1) or (1, 0) to identify the two noisy quantum dynamics that we aim to classify. Differently, m-MLP takes
asinput the set ofall 73,.

Moreover, m-GRU and m-LSTM are unidirectional RNNs that employ the final hidden representation (see
equations (19) and (20) in appendix for more details). They are implemented by exploiting the Gated Recurrent
Unit (GRU) and Long Short Term Memory (LSTM) methods, respectively. The input to the models is
X;+1 = P, withi=0, ..., 15, while the outputy = (0, 1) or (1, 0) as before. Besides, m-biGRU and m-biLSTM
are the bidirectional versions of m-GRU and m-LSTM, while m-biGRU-att and m-biGRU-max are as m-
biGRU but in addition, respectively, with an attention mechanism and a max pooling (respectively,
equations (24) and (25) in appendix) as forms of aggregation of the RNN hidden representations . Similarly, m-
biLSTM-att and m-biLSTM-max are the attentive and max pooling equivalents of m-biLSTM, respectively.

In table 3, for each model we report the best classification accuracy that is computed on the predictions
performed over the test set. More formally, we define the prediction set

L= {(yp 9 >V 7))

wherey, ...,y taken from the data set, denote the true noise sources affecting the quantum system dynamics,
and ¥, ... .y, the corresponding predictions of the ML-model. Hence, the (percent) accuracy -, function of I', is
provided by

n
y@) = @Z 1{arg max§'/ = arg maxy\/', (4)
n o= =12 j=1,2
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where

1, if cistrue
Ky =4 ’ 5
te} {0, otherwise. ©)

is the so-called indicator function. The accuracy -y defines the correctness of the model and can be used as a metric
to identify which solution is better. In detail, for binary classification problems, as in our case, if ¥ >~ 50 the
classification is equivalent to perform a random guess, thus the model does not work. Instead, when v~ 100 the
model perfectly classifies all the elements of the test set, thus it is a nearly ideal classifier.

From the table, one can first observe that, by dealing with a total duration of the dynamics (in dimensionless
units, by rescaling as the inverse of the couplings g,) equal to f;5 = 0.1, we can reach the 97% and 96.6% of
accuracy for the classification tasks IID and VS via an SVM using as input only the distribution 7,.. Instead, the
task NM is more difficult: 82.3% of accuracy is achieved by SVMs applied just on .. MLP does not provide
better results. In this case (NM tasks), to obtain an accuracy over 90%, one can resort to RNN taking as inputs all
the B, fork=0, ..., 15.

Conversely, for alonger dynamics, i.e., with t;5 = 1, we notice that using only 7, all the three classification
tasks are not solved neither with SVM nor MLP. Indeed, the accuracy yis always around 50% and the models
basically perform random guesses. The accuracy is increased by means of an SVM or an MLP based on all B,
withk =0, ..., 15asinput. However, to get over 90% of accuracy on the tasks IID and VS, we need to employ
RNNs. The task NM with ;5 = 1 is the most difficult among the analysed ones, and just 76.1% of accuracy is
obtained using RNNss. It is worth noticing that, for the tasks with #;5 = 1, we have empirically observed that the
models adopting GRU perform better with respect to the ones that employ LSTM. Moreover, setting the
bidirectionality in the RNNs allows slight improved accuracy, as well as the use of max pooling in aggregation.
Instead, the attention mechanism does not seem to be beneficial for those tasks.

Among the proposed solutions, the more-performing is m-biGRU-max that is realised by a bidirectional
RNN with GRU and max pooling aggregation. However, from our numerical simulations, we have observed
that, independently on the employed ML-model, the value of the total dynamical time as well as M and A (see
also paragraph 4.1) emerge to be crucial for quantum noise classification. Specifically, by taking a quantum
dynamics with a short enough duration, also SVMs are able to classify quantum noise sources with very high
accuracy. With short enough dynamics we mean short with respect to the time needed to the particle in escaping
from the initial node of the graph, which in our case is around ;5 = 0.1. Instead, with t;5 around 1 only RNNs
provide better results, and for #;5 > 1 none of the proposed ML-techniques solves quantum noise classification
problems (these results have not been reported in table 3 for the sake of better presentation). It is also worth
stressing that, if the duration of the quantum dynamics is ;5 = 0.1, ML-models efficiently classify quantum
noise sources by only processing the last measured distribution 7,.. These findings can be relevant for effective
implementation (also at the experimental level), since the training and tuning of SVM is orders of magnitude
faster with respect to ANNs (e.g., around minutes vs hours or even days depending on the model and provided
thata GPU is used). The reason to that has to be found in the more complex structure of the ANNs than SVMs.

4.1. Scaling of the classification accuracy.

Let us now investigate the scaling of the classification accuracy v, as a function of both the interval A between
two consecutive transitions for g and the number M of discrete time instants. Notice that A and M are related to
the total dynamical time t, since )y = MA.

A possible explanation of the differences observed between the three previously-analysed scenarios, i.e.,
t15=0.1,1;5 = 1 and t;5 > 1 (in dimensionless units), could be that the information on both the noise source
and the initial quantum state is lost during the evolution of the system. For such aspect, not only the total
dynamical time 5 could play arole, but also the time interval A =, — ty = --- =ty — tpr . Infact, itis
reasonable to conjecture that a ML-model, able to correctly classify our noisy quantum dynamics with t;5 = 1
(thus M = 15), can also work with ;7 > 1for M’ > 15and A’ = Awhere A' =4 — ty = .=ty — ty—1.
In this way, the sequence P, ... ,F, is contained in P, ... , P, . In other terms, we conjecture that the
classification problem can be solved even for longer noisy quantum dynamics, but provided that A remains
small.

To gain evidence on this conjecture, we have performed two additional experiments. Starting from the task
IID with #;5 = 1 and m-biGRU-max as baseline (accuracy 91.8%), the same model (optimised in the same
hyperparameters space) is trained on two new data sets. In both data sets, ), = 2 with M equal to 15 for the first
data set and 30 for the second one. Thus, in the former A’ > A with A time interval of the original data set,
whilein the latter A’ = A. The first experiment (A’ > A) provides a classification accuracy of 81.1%,
contrarily to the results from the second experiment (A’ = A), where a better accuracy of 96.3% is achieved.
We thus observe that, by taking A’ = A and the same ML-model, the classification problem can be solved with
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Figure 2. Percent classification accuracy vy versus M. It refers to the test set associated with the model m-biGRU-max for the task NM,

where the value of the total evolution time is fixed to f5; = 1. Itis worth noting that the first point of the figure corresponds to the value
in table 3 obtained for t;5 = 1.

an higher accuracy, but at the price of alonger training time. Indeed, in this case, the length of each sample of the
data set is twice the original one.

In another experiment, whose results are shown in figure 2, we vary M by keeping the total evolution time
equal to £, = 1. Such tests use as baseline the model m-biGRU-max applied on the most difficult task of table 3,
i.e., NMwith t;5 = 1. As aresult, the achieved classification accuracy is directly proportional to M and, thus,
inversely proportional to the value of the time interval A. Indeed, by taking #,, fixed and reducing A, the
classification accuracy of the same model can be enhanced. Specifically, it is possible to obtain more than 90% of
accuracy also for the task NM with a total dynamical time equal to 1, at the price of alonger training time as the
length of the sequences increases.

4.2. Quantum advantages
Here, we address the following question: Could the proposed ML techniques be applied for the inference of
noise sources affecting the dynamics of classical systems, e.g., Langevin equations [59]? Probably yes, but we
expect that their application to quantum systems, maybe surprisingly, can be more effective than on classical
systems. Both classical (non-periodic) dissipative dynamics [59] and stochastic quantum dynamics (stochastic
due to the presence of an external environment, or noise sources as in our case) can asymptotically tend to a
fixed-point, whereby the information on the initial state is lost. This means that the states of the system used for
this noise classification tend to become indistinguishable as time increases. Classically, this can happen due to
energy dissipation introduced by damping terms Instead, quantum-mechanically, a dynamical fixed point can
be reached due to decoherence that makes vanishing, at least on average, all quantum coherence terms [5]. Thus,
once the transient of the evolution is elapsed, the evaluation of the final state of the system does not bring
information neither on the initial state nor on the initial dynamics bringing the system to the asymptotic fixed-
point. In our case, we have observed that, by using only P, with long total dynamical time, the accuracy of all the
classification tasks is always around 50% both for SVM and MLP. Consequently, if one aims to infer/reconstruct
the value of parameters, signals or operators that influence the system dynamics by measuring its evolution, the
most appropriate time window is during the transient. In this regard, a quantum dynamic, until it is nearly close
of being unitary, is able to explore different configurations thanks to linearity and the quantum superposition
principle. Conversely, classical dynamics, not being able to propagate superpositions of their trajectories, cannot
provide per time unit the same amount of information on the quantity to be inferred.

In conclusion, the application of the proposed methods should be more accurate if applied to quantum
systems than classical ones, but during the transient of its dynamical evolution when quantum effects are still
predominant and the distance among the state and the fixed point is not negligible.

4.3. Proposal for application to quantum computers
Our techniques are expected to be adopted to witness the (non-)Markovianity of the noise sources in
commercial quantum devices, as for example the Q-IBM® [49] or Rigetti®. In fact, such quantum devices, as

9



I0OP Publishing Phys. Scr. 98 (2023) 035104 S Martina et al

> <&

X1 X2 o o o X,

Figure 3. Diagram of a bidirectional multi-layer RNN where the nonlinear function ris defined in equations (17) and (18), a can be
defined either with equations (24) or (25), fis provided by equation (20), and @denotes concatenation. The input sequence x,, with
t=1, ..., T,is processed sequentially in both directions by the function r that is parametrised by the shared sets of weights 6,[1] and
0:[1] for the forward and backward directions, respectively. The hidden representations h,[1] and h,[1],in turn, are processed by the
subsequent layers, parametrised by a different sets of weights, so as to obtain the final hidden representations h,[L] and h,[L]. Finally, a
performs the aggregation of the last hidden representations adopting the attention mechanism (24) or the max pooling in

equation (25). The classification is performed by the function fthat is parametrised by 6 The simpler form of aggregation in

equation (19) is not depicted in the figure.

other Noisy Intermediate-Scale Quantum prototypes [60], are unavoidably affected by the external environment
that entails random errors. Recently, in [61, 62], it has been shown that it is possible to discriminate different
quantum computers by looking at the (unknown) noise fingerprints that characterize each device. Thus, what
the ML techniques—presented here—could provide as an added value is to witness whether such noise
fingerprints are time-correlated, and possibly how much the time-correlation is non-Markovian. For such
experimental noise benchmarking, as in [61], it could be convenient to fix the connections among quantum
gates (i.e., the underlying topology), and then consider more realizations of the implemented quantum
dynamics affected by noise, so as to avoid the monitoring of the dynamics (cf. section 3). Notice that to make a
successful classification amongi.i.d. and (non-)Markovian noise samples, one should be able to previously label
them as Markovian or not Markovian, and more in general to understand the main features of the noise acting
on the machines. However, such task is usually very hard to be carried out. Thus, as a more plausible strategy, we
propose to compare the experimental data to the theoretical prediction at the level of multi-time measurement
statistics, according to the following two steps:

(1) Discriminate if and how much the measurement statistics (provided by the distributions P, with k=1, ... ,M,
which have been measured on the real quantum devices on multiple runs) differ from the corresponding
theoretical predictions. Such a difference, here on denoted as ®, between theoretical and experimental data
returns an effective prediction of the presence of noise on the machines.

(2) Conditionally to step 1), evaluate with ML-models the presence or the absence of functional relations F that
link the difference distributions ®,, in correspondence of the time instants ;. If two consecutive instances of
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© at times ;1 and #; are no functionally related, then the noise is originated from a i.i.d. stochastic process.
If, instead, there exist a functional %, ., = f (®;,_,, ©;,) thatlinks together ©,,_ and D, inanon-trivial
way, then the noise would come from a Markovian process. Finally, the noise process would be non-
Markovian for functional relations 7, ., defined over multi times withn > 1.

The empirical characterization of F, as well as the witness of non-Markovianity in the noise samples, can
be obtained through the use of generative models. We can train three different models: (i) one model that
generates ®,, by processing ©;, , ... 9y, ,; (ii) another generative model that returns ©, by taking ®,, , as
input; (iil) a model that directly generates D, . If these three models have the same accuracy, then the noise
process is likely i.i.d.. While, if the generative model (ii) has higher accuracy with respect to (iii) and the same
accuracy than (i), then the noise process would be Markovian. Finally, if (i) has higher accuracy with respect
to the models (ii) and (iii), then the noise process is non-Markovian.

To conclude, according to our proposal that will be tested in a forthcoming paper, time-correlations in the
noisy samples of the distributions P, with k=1, ... ,M, can be determined by classifying functional relations F
linking the difference distributions ®, obtained by comparing the theoretical and measured values of P for a set
of time instants. This is equivalent to discriminate coloured noise processes originated by different discrete
Markov chain with non-zero transition matrices 7. As a remark, it is still worth noting that also the experimental
realization of the proposed procedure can be performed on multiple runs without the need to implement
sequential measurements routines. Hence, each time a projective measurement is performed and the resulting
measurement outcome recorded, the implemented (noisy) quantum circuit shall be executed from the
beginning.

5. Conclusions

In this paper, we have addressed non-Markovian noise classification problems by means of deep learning
techniques. In particular, the use of RNN—developed for sequence processing—is motivated by the fact that we
deal with time-ordered sequences of data. Even without resorting to external driving that may hinder detection
tasks, we managed to classify with high accuracy stochastic quantum dynamics characterized by random
parameters sampled from different probability distributions, associated with i.i.d. (Markovian) and coloured
(non-Markovian) noise processes. For such a purpose, several ML-models have been tested; in this regard, refer
to table 3 for a summary of the results in term of the classification accuracy.

Among the proposed solutions, the more-performing is m-biGRU-max that is realised by a bidirectional
RNN with GRU and max pooling aggregation. In fact, recurrent neural networks are particularly suitable to
accomplish temporal machine-learning tasks thanks to their capability to generate internal temporal dynamics
based on feedback connections. However, independently on the employed ML-model, different accuracy values
are achieved depending on the values of M, A and the total dynamical time. The way our ML techniques rely on
the parameters of the model has been addressed in the paragraph 4.1.

Overall, all our numerical results have shown that it is easier to classify between two different noisy quantum
dynamics both affected by i.i.d. noise sources or by i.i.d. and coloured noise processes than between two noisy
quantum dynamics subjected to coloured noise. Again it confirms the relevant role played by time-correlations
and how the latter highly influence the value of the classification accuracy. Furthermore, we also expect that the
same ML-techniques that we have exploited in this work could be successfully applied to classify among
coloured noise with g-step transition matrices T,_, with g > 1.

5.1. Outlooks

As outlook, we plan to test the ML-models employed in this paper on reconfigurable experimental platforms as
the ones in [63, 64], even affected by multiple noise sources. Moreover, we also aim to adapt our ML methods
(and especially ANNSs) to reconstruct noise processes with time-correlation as key feature in the context of
regression task instead of classification. Indeed, our proposal is to provide accurate estimates of both the
probability distribution Prob(g) and the transition matrix T, and the analysis would be extended for the
prediction of spatially-correlated noise sources. In this way, ML approaches would represent a very promising,
and possibly more accurate, alternatives to other noise-sensing techniques, e.g., those recently discussed

in [65, 66].

A well-known problem in ML is the generalization to data shift. A model that is trained on a data set sampled
from a specific data distribution will work correctly only with data sampled from the same distribution. In this
paper, we used only synthetic data to evaluate the correctness of the training process and the ML techniques.
Thus, in order to validate this approach to real data, we should first collect them. This is out of the scope of the
current work, but, as a remark, we can delineate three possible ways to build a real experimental data set. The
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first strategy is to acquire information a-priori on noise sources affecting the quantum system of interest in some
experimental contexts by means of standard spectroscopy techniques, so that we can train the proposed ML-
models to discriminate between unseen classes of noise. In this way, the initial effort in building a training data
set that also contains experimental data is counterbalanced by the possibility to predict noise features by means
of faster classification tasks. The second strategy, which has been employed in [61], is to collect experimental
data that comes from different noisy measurement statistics whose noise processes are not necessarily known.
The ML-models, then, are trained to classify (unknown) noise sources in distinct unseen sets of measurements.
Finally, the third strategy, which is aimed to reduce the effort in building an informative experimental data set, is
to train the ML-models first on synthetic data and then to fine tune the training on a smaller further data set with
only experimental data. In such a case, it is beneficial to adopt a synthetic data set that closely adapts to the real
experimental setup. For instance, a simulated extra error can be added to the measurement statistics (in our
paper provided by the distributions 7., k = 1, ... ,M) to take into account the finite number of measurement
shots used for their computation.
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Appendix. Details on the employed ML models

In this section, aiming at addressing also an audience not necessarily expert in ML, we describe more in detail the
ML-models used in our tasks.

A generic binary data set in input to ML-models is usually represented by a set of # points x, € R?, with
q=1, ... ,n,each of them living in the p-dimension space of the features. A feature is a distinctive attribute of
each element of the data set. Each point x, is associated with one of two different classes with binary labels
yq €1 — 1,1}, withqg =1, ... ,n, depending on the specific classification problem that we are solving.

A.1. Support vector machine

Support Vector Machine (SVM) [33] is one of the first ML-model originally used to carry out classification tasks.
The SVM training consists in finding the hyperplane that separates the elements x,, in two groups: one with the
label y, = 1 and the other with y, = —1. The final hyperplane, solution of the classification, is the one having the
maximum geometrical distance from the two parallel hyperplanes that are defined by the subsets of x, called the
support sets. When the data is not linearly separable, the kernel trick allows to increase the dimension of the
features space in a way that the data becomes linearly separable in the new space.

Historically, SVM is a generalisation of the Support Vector Classifier (SVC) that, in turn, is an improved
version of the Maximal Margin Classifier (MMC) [33]. MMCs aim at finding the hyperplane separating the two
aforementioned classes of points, such that the distance between the hyperplane and the nearest points of the
classes (commonly denoted as margin) is maximised. If the points of the data set are not linearly separable, then
the value of the margin is negative. In such a case, the MMCs cannot be adopted. SVCs increase the performance
of MMC:s, by allowing some points of the data set, called slack variables, to be in the opposite part of the
hyperplane with respect to the others of the belonging class. If the data set exhibits a non-linear bound between
the two classes of points, SVCs are not able to correctly separate them, albeit the method returns a solution.
Finally, SVMs extend the capabilities of SVCs by increasing the number of dimensions of the feature-space, such
that in the new space the data set becomes linearly separable.

A.2. Multi-layer perceptron

There are several classification problems (as for example the ImageNet Large Scale Visual Recognition Challenge
[56] employing millions of images with hundreds of categories) that are solved through SVM but with a quite
high residual classification error. For this reason, in order to improve the performance in solving classification
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problems, ANNs have been recently (re-)introduced as more-performing tools, and since 2012 have been
extensively used [47, 56-58].

AMLP is composed of a variable number of fully connected layers, each of them with a variable number of
artificial neurons. A single artificial neuron with I inputs (x) calculates the output as

y=ocwl-x+b)

that is the weighted sum of the inputs x € R with weights w € R!, plusabiasterm b € R, followed bya
nonlinear activation function o: R — R. The most common activation functions o( - ) are: The sigmoid
o(x) = (1 + e *)~L; the hyperbolic tangent o (x) = tanh(x); and the rectifier o (x) = max(0, x) [67,68]. A
single MLP-layer, composed of O neurons with I inputs, calculates

¥y =o(W' - x +b),

where § € RO is the output vector, W € RI*© isa matrix that collects all the weight vectors of the single
neurons,and b € RO is the vector of the biases. Finally, an MLP with L layers calculates

h[l] = oW - h[l — 1] + b[I]) (6)

with/=1, ...,L (index over the layers) and h[0] = x. Thus, ¥ = h[L]is the output of the MLP, where W[/] and
b[/] are, respectively, the weights and the biases of the I-th layer. Also the activation function may change
depending on the specific layer. More concisely, the MLP can be denoted by the function

y=/&0,8 )

of the inputs x. The function fis parametrised by the set § = { W[1], b[1], ..., W[L], b[L]} and by the fixed
hyperparameters € defining the number, the dimension, and the activation functions of the MLP layers.

A.3. Supervised training

Let us now introduce the supervised learning process. For the sake of clarity, we just refer to the training of the

MLP; however, the same notions can be applied in general to the supervised learning of vast majority of ANNG.
Equation (7) behaves like a generic function approximator [69]. Ideally, in the training process we would like

to find the parameters

0* = arg min Lp (6, &) (8)
9

that minimise the theoretical risk function
LD(9> 5) = E(X,y)N'D[f(f(XQ 0> 5)) y)]: (9)

i.e., the expected value of £ for (x, y) sampled from the distribution D that generates the data set [32]. In
equation (9), Z: RO*0 — R* denotes the loss function (usually taken as a differentiable function, apart
removable discontinuities) that measures the distance between the prediction ¥ and the desired outputy. In
general, the distribution D is unknown; thus, the minimisation problem in equation (8) cannot be neither
calculated nor solved. Indeed, one can dispose of a finite set S = {(x, y)1, ... (X, y),,} of samples, to train,
validate and test the ML-model. By considering the partition {S;,, S,,, Si} of S, the theoretical risk function is
approximated by the empirical risk function

Ls, (6, &) = —

Y, C(f(x 0,8,y (10)

ISt epes,

thatis the arithmetic mean of the loss function Zevaluated on all the samples of the training set S,, [32]. By
minimising the empirical risk function Lg, (6, £) with respect to §, the MLP is trained and §* obtained. Then, the
validation set S, is used to compute the empirical risk Ls, (8%, &) that takes as input the optimal parameters
attained by the minimisation of Lg, (training stage). This procedure allows to check if the ML-model works also
for unseen data. Notice that the minimisation of the training risk function Lg, (6, &) with respect to 8 is
performed step-by-step over time. After each step (also called epoch), the validation risk Ls, (6%, &) is evaluated,
and the minimisation procedure is stopped when the time-derivative of Lg, (6%, &) becomes positive for several
epochs, thus showing overfitting [70]. In case such time-derivative remains negative or constant over time, the
procedure is ended after a predefined number of epochs. The validation set S,,, can be also used to explore other
configurations £ of the ML-model: this process is called hyperparameters optimization. In particular, after
completing the training procedure using two different set of hyperparameters £ and &', we obtain two minima 6*
and 0"*, and then compare L, (0%, &) with L, (0"*, £’) to also choose the best hyperparameter. Finally, we use
the test set S, to calculate a significant metric (in our case, the classification accuracy) and report the results.
Regarding the hyperparameters optimization, it can be performed in different ways. The most basic
technique is called grid search whereby the training and validation are carried out on a specific set of
hyperparameters configurations. The random grid search considers configurations where each hyperparameter is
randomly chosen within an a-priori fixed range of values. It has been proved to be more efficient than standard
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grid search [71]. A more sophisticated class of optimization methods is the Bayesian optimization [72] that
updates, after the training of each hyperparameters configuration, a Bayesian model of the validation error. The
best hyperparameters configuration is thus chosen as the one allowing for the lower guess validation error.

A.4.Minimisation algorithms

The most used optimisation algorithm to minimise equation (10) is the Stochastic Gradient Descent (SGD)
[73-75] and its adaptive variants, such as Adaptive Moment Estimation (ADAM) [76], that changes the value of
the learning rate 7 (i.e., the descent step) at each iteration. After having calculated the predictions ¥, the loss
function Z (¥, y) is propagated backwards (backpropagation) in the ANN and its gradient in the weight space is
calculated. Overall, the optimisation process consists in iteratively updating the value of the weights # according
to the relation

0; = 0;_1 — nVpLs, (81, &),

where iis the index for the descent step and S, C S, denotes the b-th set of samples, taken from the training set
and used for the computation of the gradient. If S, = Sy, the algorithm is called batch SGD; if S;, contains only
one element is called on-line SGD; finally, the most common approach (we use it here) is mini-batch SGD that
consider |S,| = Bwith Ba fixed dimension [75]. Hence, the update of § follows the descent direction of the
gradient, with a magnitude determined by the learning rate 7.

Now, let us introduce the specific loss function Zconsidered in this paper. For classification problems with
two or more classes, a common choice for £is the categorical cross entropy, which is defined as

0
2@, y) = - yPlogpV. (11)

j=1

This function measures the dissimilarity between two or more probability distributions. Thus, to properly use
the categorical cross entropy, it is convenient to choose the desired outputs y as Kronecker delta functions
centered around the indices associated with each class to be classified. The model output ¥, instead, is
normalised so that it represents a discrete probability distribution, i.e., a vector of positive elements summing to
1. This operation is obtained by using softmax [46] as the activation function of the last layer:

e2?

o )
ijlez

where o(z) is the vector having as elements 0Y(z), withi = 1...,0, and z denotes the output of the last layer
before the activation function.

In the experiments, the activation functions for the hidden layers of the MLP have been chosen among the
sigmoid, hyperbolic tangent and rectifier functions accordingly to the hyperparameters optimization.

oi(z) = (12)

A.5.Recurrent Neural Networks
A Recurrent Neural Network (RNN) is an ANN specialised for sequence processing when the data set is
expressed as

S = {({Xla :XT]}’ y)la ,({Xl, ,XTH}, Y)n}> (13)

where 7, defines the number of elements of the r-th sequence. RNNs can be used in tasks regarding Natural

Language Processing (NLP) [48, 77-79], time series analysis [80] and, in general, all the tasks involving ordered

set of data [81]. Note that, in general, for sequence-to-sequence problems also y can be a sequence of elements, as

for example in machine translation where the inputs and outputs of the RNN are sentences in different languages

[82]. In this paper, sequence-to-sequence problems are not considered, and we thus consider 7, = ... = 7, = 7.
ARNN is defined by the recurrent relation

h; =r(x, hy_15 0, &) (14)

wheret € {1, ...,7}, h; € R?isad-dimensional vector with d being an hyperparameter belonging to £ and

h, = 0 (vector of zeros). The recurrent relation (14) defines 7 hidden representations h, (to be seen as a memory)
of the input sequence {x,, ... ,X;}; withqg =1, ... ,n. If the function ris implemented as an MLP (7) that takes as
input the concatenation x; @ h,_; (usually called ‘vanilla RNN), the model suffers the so-called vanishing
gradient problem [83, 84] such that the weights of the last layers of the RNN are updated only with respect to the
more recent input data. The vanishing gradient problem occurs when the backpropagation is performed on a
high number of layers, as it could happen in our case with a large value of 7 (thus meaning long input sequences).
In this regard, to mitigate the vanishing gradient problem, LSTM [85] and GRU [86] have been introduced.
These methods use learned gated mechanisms, based on current input data and previous hidden representations,
to control how to update the current hidden representation h,. Specifically, if LSTM is used, equation (14) needs
to be slightly modified as
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8 = V(X4 Se—1; 0y, &) (15)
h, = (x4, st, hy_15 65, &) (16)

where s, = 0 and v, rare, as usual, nonlinear functions. Both for GRU and LSTM, the nonlinearity of the
recurrent relations is due to the adoption of the hyperbolic tangent and sigmoid functions, where the latter are
employed only for the gating mechanism. It is worth noting that in equation (15) s, is a state vector that allows to
differently propagate over time specific elements of the hidden representations h, depending on the input data.
This means that, at any time ¢, the hidden representation h, depends not only on the input x, and the previous
hidden representation h,_, but also on the state vector s,. For further details, refer to [48, 85, 86].

RNNs are usually considered deep-learning models, due to the high number of layers, when they are
unfolded on the sequence dimension for t = 1, ..., 7. The key aspect of deep learning is the automatic extraction
of features by means of the composition of a large number of layers; an increasing (deep) number of layers is
typically used to extract features with increasing complexity [87].

Moreover, RNNs can be extended considering more layers [88] and processing the data bidirectionally [89].
Regarding the latter, one can define two sets of hidden representations: One for the forward and the other for the
backward direction, where the ¢-th hidden representation depends respectively on the (f — 1)-th or (t + 1)-th
one. More formally,

h (1] = r(h [l — 11, he_y[1]; 6,111, €) (17)
he[l] = r(h[l — 11, b [11; 60010, €) (18)
with =1, ... ,Land h,[0] = h,[0] = x,.

A.6. Classification with RNNs

Now, let us explain how to use the hidden representations to calculate the prediction ¥ in output from the ML-
model. The common approach to calculate the prediction in classification problems is to use the RNN as an
encoder of the sequence and to scale the dimension of the last hidden representation h.[L] & Hl [L] (in the more
general case of bidirectional models) to the one of the output vector. This scaling can be done through a fully
connected layer, or, more in general, by means of an MLP, i.e.,

a=h,[L] © hL] (19)
¥ =f(@; 0, §). (20)

Then, we can use SGD to minimise an empirical risk function similar to equation (10) of MLPs.

Itis possible to consider different forms of aggregation a for the hidden representations h,[L], witht =1, ...,
T, instead of using only the last hidden representation as in equation (19). In this regard, attention mechanisms
[90-92], also in hierarchical forms [93], perform a weighted average of the h,[L] where the weights are learned
together with the ML-model. In detail, equation (19) becomes:

u, = h[L] ® h[L] (21)
v, = tanh(W! - u, + b) (22)
e<vt>c>
oGy = — 23
f Z;:1e<vj’c> ( )
a= Z Qi ly, (24)
t=1

where (-, - ) denotes the dot product and cis alearned vector that is randomly initialised and jointly learned
during the training process as in [90-93]. Another form of aggregation a is the max pooling aggregation, whereby
each elementa'” of a just refers to a single value of . In this case, equation (19) equals to

al) = max u’, (25)
t

where the expression of u, is provided by equation (21). In this way, each element u{’ of the hidden

representations (for t = 1, ..., 7)learns to detect specific features of the input data within all the interval [1, 7].
Finally, another approach, which we do not use here, is to consider the RNN as a transducer that produces an
outputsequence ¥, for t = 1, ... ,7 (generally 7 = 7)in correspondence of the input sequence x, with t = 1,
.., T[48,82,94].

A.7.Implementation of the machine learning algorithms

All the ML-models are realized in PyTorch and have been trained on the six different data sets usinga DELL®
Precision Tower workstation with one NVIDIA® TITAN RTX® GPU with 10 Gb of memory, 88 cores Intel®
Xeon® CPU E5-2699 v4 at 2.20 GHz and 94 Gb of RAM.
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We train the ANN models in mini-batches of dimension 16 by means of the SGD using ADAM [76] and
learning rate ) = 10°. We optimize the hyperparameters £ with ASHA [95] as scheduler and Hyperopt [96, 97]
(Hyperopt belongs to the family of Bayesian optimization algorithms) as search algorithm in the framework Ray
Tune[98]. For the MLP models, the hyperparameters optimization defines: (i) the activation functions to be
used, (ii) the number of layers, and (iii) their dimension, within the following search space: ¢ € {relu, sigmoid,
tanh}, L € {2,3,4,5,6}and dim(h[1]) = ...=dim(h[L]) € {d € N|1 < d < 512}. Instead, for the RNN
models the search spaceis L € {1, 2, 3,4} for the number of recurrent layers (L € {1, 2, 3,4, 5,6} for the NM task
with f;5 = 0.1), and dim(h,[1]) = dim(h,[1]) = ..=dim(h,[L]) = dim(h,[L]) € {d € N|1 < d < 512} for
the layers dimension. Regarding the ML-models m-biGRU-att andm-biLSTM-att, the search space includes
also the dimension of the attention layer as in equations (22) and (23), i.e., dim(c) = dim(v)) = ..=dim(v,)€
{d € N|1 < d < 512}. Inthe hyperparameters optimization of all the MLP and the RNN models, we have also
used regularization methods as weight decay [99] and dropout [100]. They are able to mitigate overfitting; in
particular, the former adds a penalty (chosen among {0, 10~*,10°}) to the risk function Lg(6, £) with the aim to
discourage large weights. Instead, using dropout, the outputs of the artificial neurons during the training are
forced to zero with a probability among {0, 0.2, 0.5}.
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