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Introduction 

 

 

The progressive increase of the world population in correspondence with the growing 

consumer needs for better quality food and standardised products is a paramount necessity 

for all actors involved in the supply chain concerning food production, distribution, and 

sale [1-5]. Simultaneously, improving the detection and monitoring of ecosystem 

conditions is necessary when global biodiversity loss is accelerating at an unprecedented 

rate due to industrial production, agricultural process development and the massive 

diffusion of highly productive crops [6-8]. The global environmental impact of 

agricultural production and connected processes is being addressed by all governments 

worldwide and national and international institutions, as highlighted in the 2030 Agenda, 

a document subscribed to 193 countries members of the United Nations (UN) [9], and in 

several reports produced by the Food and Agriculture United Nations Organization 

(FAO) [10]. The main actions recommended for developing more sustainable agriculture 

include digitising the monitoring processes by developing and applying non-invasive 

technologies [11-13]. Therefore, recent advances in optical technologies and precision 

agriculture have permitted the progressive development and affirmation of spectral 

sensors (SSs) [14,15]. The SSs are total non-invasive technologies capable of collecting 

the electromagnetic signal in the visible, near-infrared, and short wave infra-red spectrum 

(VIS–NIR–SWIR) [16], representing a valuable tool to monitor growth and health status 

in agricultural productions [17,18]. The spectral reflectance of vegetation is mainly a 

function of optical tissue properties, canopy biophysical properties, soil reflectance, 

viewing geometry and illumination circumstances [19,20]. Several vegetation indices 

(VIs), derived from spectral vegetation reflectance such as the Normalized Difference 

Vegetation Index (NDVI) and red-edge position (REP), can quantify crop health, water, 

and nutrient content [21,22]. Advances in reflectance spectroscopic techniques also 

provided the opportunity of using hyperspectral imaging spectrometers for detecting VIs 

[23]. Specifically, Hyperspectral Imaging (HSI) has become an important technique for 

analysing a wide spectrum of light and is capable of measuring hundreds of spectral bands 

from different devices such as aircraft, satellite platforms or directly on the field 

[13,16,17,24,25]. Recent hyperspectral sensors technologies encouraged the development 
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of a new generation of low-cost SSs, improving their interest and potential application 

for industrial processes in agriculture [26-28]. Therefore, the development and 

application of low-cost monitoring and analysis methods based on hyperspectral 

technologies represent a safe and non-invasive way to increase the performance of several 

agriculture industrial processes, such as developing novel phenotyping techniques to 

select and test new plant varieties and developing innovative quality control methods for 

the post-harvest phase. [29-32]. 

This PhD belongs to a doctorate program jointly promoted by the National Research 

Council of Italy (CNR) and the Italian industrial association (Confindustria), aimed at 

strengthening the connection between doctoral scientists and industrial research. Within 

this program, CNR and private companies are founding selected PhD fellowships in 

cooperation with national universities. Therefore, this thesis is based on the project 

initially proposed by the private company FOS S.p.A and jointly agreed upon by the 

Institute of BioEconomy (CNR IBE) and the University of Florence – DAGRI. 

This PhD thesis explores and offers new ways for the profitable application of low-cost 

spectral technologies in an industrial research context. The aim of this PhD is to develop 

innovative low-cost hyperspectral applications to retrieve bio-physical indicators of 

plants and fruit status in phenotyping processes and post-harvest phases through 

controlled experiments.  In this work, I present the methodologies and the results of my 

research obtained by the application of the hyperspectral technologies at different spatial 

scales, each focusing on an aspect of agriculture production processes: 

i) Plant scale: at the sub-metric spatial resolution, as achieved by a low-cost 

hyperspectral camera first time integrated into a high throughput phenotyping 

platform during a tomato phenotyping drought stress experiment. 

ii) Fruit scale: at centimetric and sub-centimetric spatial scale, as achieved in a novel 

Lab setup using a portable spectrometer to assess and quantify through 

unprecedented efficiency and precision the presence of internal damage by biotic 

agents in apple fruits. 

For each spatial scale, specific experiments have been designed and conducted. The 

experimental activity and data collection were performed in the years 2020 and 2021 

during the 1st and 2nd years of this PhD, leaving the 3rd year for the completion of data 

analysis and the scientific publication. 
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This PhD thesis is composed of four chapters. Chapters one, two, and three are written as 

journal papers with the aim of publication in international scientific journals. Chapter 

three is already published in an international journal. At the beginning of each chapter, 

the link to the journal identified for submission or the link to find the published article is 

given. After chapter four, other research activities and products conducted during the PhD 

period were synthetically reported. 

The general contents of each chapter are listed below: 

- Chapter one: The hyperspectral instruments used in the experimental activities of this 

PhD thesis were presented and explained. The critical issues derived from using the 

hyperspectral devices were discussed. A novel correction method to optimise the 

hyperspectral output of a low-cost portable hyperspectral camera was proposed and 

tested. The results obtained in this chapter allowed us to realise the experiment 

reported in the following chapter. 

- Chapter two: A low-cost hyperspectral camera was first time integrated into a high-

throughput phenotyping platform during a tomato drought stress experiment, 

conducted using four untested tomato genotypes with high industrial interest. A Novel 

acquisition set-up and segmentation method for the hyperspectral images were 

developed. The genotype responses to the water stress obtained by the image analysis 

of the phenotyping platform outputs were compared to a novel hyperspectral index 

for the water stress detection obtained by processing the hyperspectral images. 

- Chapter three: An innovative low-cost system based on hyperspectral spectroscopy in 

the near-infrared spectral region is proposed to obtain the non-invasive detection of 

internal damage by biotic agents in apple fruits. The novel system is based on a light 

collection by an integrating sphere. The system was tested on 70 apples cultivar 

Golden Delicious infected by Alternaria alternata, one of the main pathogens 

responsible for the apple's internal damage. The spectral features linked to the internal 

damages were identified, and two binary classification models based on Artificial 

Neural Network Pattern Recognition and Bagging Classifier with decision trees were 

developed and tested. 

- Chapter four: The overall conclusions and the possible industrial implications of this 

PhD were reported and discussed. 
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Chapter one 

 
 

A novel methodology to improve the performance of a low-

cost hyperspectral portable camera 

 

Premise 
This chapter will be submitted as a journal paper to the peer-reviewed journal “JSI—

Journal of Spectral Imaging”. The journal homepage is available here: 

https://www.impopen.com/jsi  

 

1.1 – Introduction 

Improving the detection and monitoring of the ecosystem conditions is a critical issue 

when Earth’s biodiversity loss due to human activities is accelerating at an unprecedented 

rate [1,2]. Recent advantages in data processing and data mining, simultaneously with the 

development of spectral sensors (SSs) capable of retrieving spectral information from the 

earth’s surface using the electromagnetic radiation reflected by a terrestrial target, have 

permitted to opening new ways in environmental monitoring. Several ecological 

parameters have been successfully measured from SSs installed on satellite or airborne 

platforms, e.g. the variation of the CO2 emissions from forest ecosystems and the 

greenhouse gas emissions from human activities and the health status of marine 

ecosystems [3-5]. Advances in precision agriculture techniques have demonstrated how 

analysing the spectral information in the electromagnetic spectrum can be a valuable tool 

to monitor the growth and health status of crops and agricultural products [6]. The SSs 

have been applied in agricultural production to improve the efficiency of processes during 

all supply chain operations, such as monitoring the leaves’ water content during the crop 

growth in the field and the quality control process during the post-harvest phases [7,8]. 

The application of spectral technologies (STs) in agriculture field have permitted to 

improve several agricultural practices, e.g. crop breeding and phenotyping applications 

in high-throughput phenotyping application [9], agricultural land use monitoring and 

crops classification from satellite or airborne platform [10,11], cereals yield forecasting 

[12], and ecosystem services about soil and water resources or losses in biodiversity [13]. 

The STs are classified as multispectral (MS) and hyperspectral (HIS) concerning the 

number of the spectral bands obtainable in the same data acquisition; the spectral range 

https://www.impopen.com/jsi
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suitable for MS and HIS instruments is usually classified into several spectral regions, 

respectively: visible light spectrum (VIS) characterised by a spectral range from 350 to 

700 nm, Near-infrared (NIR) light spectrum ranging from 700 to 1100 nm, and infrared-

shortwave (SWIR) highlighted by a light spectrum from 1200 to 2500 nm [14]. 

Multispectral technology (MT) is an optical technology able to acquire up to fourteen 

spectral bands simultaneously, and a hyperspectral technology (HIT) can acquire more 

than fourteen spectral bands [1,14]. SSs are divided in spectrometers (Ss) and imaging 

spectrometers (ISs). Ss is generally composed of an optical fibre cable to collect 

electromagnetic radiation from a defined area, returning a single spectral signature. HITs 

are based on push broom and snapshot sensors; a push broom sensor is a line-scan able 

to obtain an image with a travel of the sensor (e.g. airborne, or industrial conveyor belts) 

and a snapshot sensors, more recent than push broom sensors, are able to obtain an image 

of n x n pixel size, and the resolution of the sensor is expressed in megapixel (MP) [15]. 

HITs based on snapshot sensor are managed by an imaging detector that collects an image 

composed of a specific number of pixels and a defined number of spectral bands. Indeed, 

the light is focused on an optical sensor to form an image consisting of multiple spectral 

bands [15,16]. A hyperspectral image (HI) is the result of the acquisition using an HIT, 

and each pixel is composed of the spectral information for each band selected; the spectral 

information is expressed in digital counts (DC), also called counts, as a digital unit or in 

radiance (mW/nm*sr*m²) as a measure of the intensity of the electromagnetic radiation 

for a defined area [17]. The data obtained are structured in a 3-Dimensional hyperspectral 

data cube, also described as a hypercube (HC), where the image size is the optical 

resolution of the HI expressed in MP [18], and the spectral resolution is the sampling rate 

and bandwidth in which the sensor collects the information about the target [19]. HIS 

application in agricultural activities consisting of the elaboration of Vegetation indices 

(VIs) obtained by spectral vegetation reflectance, as for the widely used Normalized 

Difference Vegetation Index (NDVI) based on a spectral ratio between red and near-

infrared spectral bands [17]. In the last few years, several VIs were developed and tested 

to retrieve multiple biochemical parameters, e.g. chlorophyll content, anthocyanins, 

pigments, and carotenoids, and to monitor the biotic and abiotic stress during the crop’s 

life cycle [20,21]. Therefore, the HIS application has progressively become a very 

interesting tool to acquire data from a broad spatial scale within short intervals of time; 

especially in the remote sensing application with research aims and for rare industrial 

applications, e.g. the production of intelligent farming apps for the farmers aimed to 
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provide support for the use of fertilizers and the volume of the irrigation supply [22-24]. 

Nevertheless, the large-scale uses of application of the HIS remain not very widespread 

due to the cost of this kind of technology and the technical difficulties in hyperspectral 

data processing [25].  

Since the early 2000s, a new generation of low-cost portable hyperspectral cameras 

(PHCs) has been progressively developed, increasing the possibilities of hyperspectral 

applications during research activities because of their minor cost, higher versatility and 

easiness of application than the HST installed on satellite or airborne platforms, and their 

ability to acquire data with a super-high-spatial resolution (e.g., centimetric or sub-

centimetric level) [25-27]. Indeed, PHCs can be installed on a ground-based platform or 

on an Unmanned Aerial Vehicle (UAV) permitting to acquire hyperspectral data on 

narrow temporal acquisition intervals on a defined area [27,28]. Overall, the low-cost 

devices reported the following characteristics: PHCs are composed of a frame detector to 

acquire spectral images into a specific field of view (FOV) expressed in degrees, which 

defines the spatial resolution of the instrument [26,29]; the spectral resolution is 

calculated by the Full Width at Half Maximum (FWHM) of the spectral sensor, where 

FWHM is defined as the width of a spectral band below which the signal would overlap 

[30]. PHC generally use a snapshot technology, .Imaging chip technology commonly 

found in the PHCs are Charged Coupled Devices (CCD) and Complementary Metal 

Oxide Semiconductors (CMOS). Both sensor types allow the acquisition of a million 

pixels in a single image with high spectral and spatial resolution. Nevertheless, CMOS 

sensors show higher sensitivity, low power consumption and low cost than CCD but also 

higher background noise and dark current presence [31]. Despite the technological 

developments of the low-cost PHCs, critical aspects are reported during acquisition and 

data processing, such as the long instrumental warm-up time, the presence of spectral 

discontinuities in correspondence of the spectral border region of different CMOS 

sensors, signal jumps, and high level of background noise [32-35]. 

In this work, the low-cost PHC Senop HSC-2 (HSC-2) and the Ocean Optics USB 2000 

spectrometer (USB 2000, Ocean Insight, Rochester, NY, USA) with a VIS/NIR spectral 

range were used to collect hyperspectral data on a white reference and a vegetation target 

during multiple acquisitions conducted under controlled conditions during a phenotyping 

experiment. The spectral results obtained using the PHC and the spectrometer were 

compared and discussed. Subsequently, the PHC critical issues, such as signal jump and 

falls, background noise presence, and measurement limits due to the loss of sensitivity by 
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the CMOS sensors, were analysed and discussed. Based on the results, a novel 

hyperspectral correction methodology (HCM) suitable for all PHC and application fields 

was developed and tested to reduce the CMOS sensors' spectral jumps, background noise, 

and measurement limits. 

 

.  

 

1.2 - Materials and methods 

1.2.1 Experimental activities 

The work activities were conducted during the years 2020 and 2021 at CNR (National 

Research Council of Italy) in the facilities of Florence and Follonica (Italy), and in ALSIA 

(Agenzia Lucana di Sviluppo ed Innovazione in Agricoltura, S.S. Jonica Km 448,2, 

75012 Metaponto MT) a node of the European Plant Phenotyping Network (EPPN) 

(https://emphasis.plant-phenotyping.eu/). The experimental activities, consisting of the 

simultaneous hyperspectral acquisitions on a reference and vegetation target, was 

conducted using the HSC-2 and the USB 2000 spectrometer.  

 

1.2.2 Hyperspectral devices 

The hyperspectral instruments used during this work were the USB 2000 spectrometer 

and the HSC-2. The description of the instruments is explained below: 

 

Ocean Optics USB2000 spectrometer 

The USB 2000 is a portable spectrometer able to collect continuous spectral information 

from a surface (figure 1). The USB 2000 is characterized by a spectral sampling interval 

ranging from 350 to 1000 nm with 0.2 nm of spectral resolution. The spectrometer is 

based on a Sony ILX511 linear silicon CCD array. 

https://emphasis.plant-phenotyping.eu/
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Figure 1. USB 2000 at working. The electromagnetic radiations are collected by an 

optical fiber (1) connected to the body of the spectrometer (2). The hyperspectral data can 

be visualized online using the Ocean View software (3) (Ocean Insight, Rochester, NY, 

USA). Further information can be found at the link of the instrument web page: 

https://www.oceaninsight.com/globalassets/catalog-blocks-and-images/manuals--

instruction-ocean-optics/spectrometer/usb2000-operating-instructions1.pdf  

 

Hyperspectral camera Senop HSC-2 

The HSC-2 (figure 2) is a hyperspectral device with a VIS/NIR spectral range already 

used in research activities, e.g. the acquisition of high-resolution hyperspectral images 

acquired in flight by a UAV platform [28,35], to monitoring the plant health status 

through the detection of potassium concentration on leaves [36] and in biomedical 

applications, as the realisation on a pathological tissues database [37,38].   

 

https://www.oceaninsight.com/globalassets/catalog-blocks-and-images/manuals--instruction-ocean-optics/spectrometer/usb2000-operating-instructions1.pdf
https://www.oceaninsight.com/globalassets/catalog-blocks-and-images/manuals--instruction-ocean-optics/spectrometer/usb2000-operating-instructions1.pdf
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Figure 2. Hyperspectral camera HSC-2. Further information can be found at the link of 

the instrument web page https://senop.fi/product/hsc-2-hyperspectral-camera-450-

800nm/. 

 

The HSC-2 is a Frame Based Digital Hyperspectral camera equipped with a true global 

snapshot sensor (1) able to collect the entire 3-dimensional (3-D) data cube in a single 

integration period [46]. The snapshot sensor is composed of two separate CMOS sensors 

in the VIS and NIR spectral range from 400 to 1000 nm. The operator can set several 

acquisition parameters, such as spectral range and resolution. The hyperspectral device 

has a total weight of 990 grams, and it can be installed on a tripod (2) or an UAV DJI 

Matrice 600 drone & Ronin-MX gimbal [39]. The hyperspectral data, combined in a HC, 

were stored in an internal memory of one terabyte size. The instrument can transfer the 

hyperspectral data only using an ethernet cable (3). The hyperspectral data can be 

explored using the software Senop HIS-2 provided by the developers of HSC-2. The 

hyperspectral data can be visualised in radiance (mW/nm*sr*m²) by using the Senop HIS-

2 software. At the end of every acquisition, the HC derived was stored in a specific 

directory. The directory is composed of the HC and a header file consisting of all the 

metadata needed to use the spectral information contained in the HC, such as gain value 

to convert HC saved in DCs in the radiometric units, the FWHM for each band, the 

wavelengths, and the number of measurement bands. 

 

https://senop.fi/product/hsc-2-hyperspectral-camera-450-800nm/
https://senop.fi/product/hsc-2-hyperspectral-camera-450-800nm/
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The general specification for optics, image size and spectral capability of the instrument 

were reported in table 1. 

 

Optics Imaging capability Spectral capability 

FOV 36,8 degrees. 

Focus distance: 30cm to 

∞, limited FOV with less 

than 30cm distances. 

Image frame size: 1024 x 

1024 pixels. 

 

Wavelength area: from 

400 to 100nm. 

 

Table 1. Specification of the HSC-2.  

 

 

1.2.3 The HCM 

The HCM was based on a correction function (CF) specially designed and made to correct 

the radiance signal obtained using the HSC-2. The CF, called importsenop, was 

developed using MatlabR2021a (MahtWorks,USA). The workflow of the CF was 

reported in figure 3. 

 

Figure 3. The architecture of the CF. The complete Matlab code of the CF is reported in 

section 1.5 of this chapter. 
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The function workflow was divided in three phases (figure 3): 1) the acquisition of the 

input data (input); 2) the data processing (process); 3) the generation of the output 

(output). The whole hyperspectral data organisation, elaboration and processing 

described in this work was completed using MatlabR2021a (MathWorks, USA). 

 

Inputs 

The function requires three inputs: 

1- The dark current obtained by HSC-2. The dark current data were obtained with a 

hyperspectral acquisition in complete darkness condition. Therefore, the HSC-2 optic was 

covered entirely to obtain a total darkness. The resulting HC contains the background 

noise generated by the HSC-2 warming. 

 2- The radiance obtained by the reference target using the USB 2000. The hyperspectral 

data collected represent the true data of the radiance derived by the reference target.  

3- The target’s radiance obtained by the hyperspectral camera HSC-2. 

 

Process 

The HC derived by the HSC-2 acquisition is collected in DC units. Therefore, the 

conversion of HC in radiance units is needed to obtain a radiance output, and it was 

obtained in the following way: 

 

                                              R = DCvalues × Ks                                                                          (1)     

 

Where DC values are the DC value for each spectral band, and Ks are the gain value for 

each spectral band derived from the HSC-2 header file. Subsequently, the radiance of the 

HSC-2 was corrected and recalibrated using the new gain values generated by the novel 

CF developed here. The first operation is an automatic subtraction of the dark current 

values for each pixel to the corresponding pixel of the target; this operation is conducted 

for each spectral band (the spectral bands in the dark current HC must match with the 

spectral bands of the target HC). Subsequently, the function calculates the interpolated 

values between the radiance derived by the USB 2000 and the radiance obtained by the 

HSC-2 at the wavelengths reported in the HSC-2 header file using a linear interpolation. 

This operation is based on the Matlab function interp1. Subsequently, a 3-D signal filter 

was applied using a medfilt3 Matlab function. The result is a new USB 2000 radiance at 

the HSC-2 wavelengths. 



16 
 

Outputs 

The CF returns the Ks for each spectral band. The Ks is generated based on the radiance 

obtained by the truth data collected by the USB 2000. The new Ks is a numeric vector of 

1 x n size, where n is the length of the original gain vector derived by the HSC-2 header 

file. The new Ks are automatically multiplicated according to the formula (1). 

The result is a new HC composed of the corrected radiance value for each spectral band. 

In addition, the function can be set to convert automatically the radiance obtained in 

reflectance as follows: 

 

Ref = Rad/ RT (1) 

 

Where Rad is the radiance obtained by the target and RT is the radiance obtained by the 

white reference target. 

 

1.2.4 Test of the novel HCM 

Acquisition setup 

The efficiency of the correction methodology developed here was computed during an 

acquisition test. The acquisition setup used during the test was composed of an acquisition 

chamber (figure 4) based on the LemnaTec Scanalzer 3D system (LemnaTec GmbH, 

Germany) [40]. A white Lambertian reference target with a 75% reflectance was posed 

in the acquisition chamber in a nadiral position compared to the light source. The light 

source comprised 120 Osram GmbH halogen lamps with a maximum level variation of 

2%. Every lamp produced a net power of 35 Watts. The USB 2000 was posed a few 

inches from the reference with an angle of 45° to the reference target. During the 

acquisition process, the HSC-2 was installed at 1.50 meters from the white reference 

target, in a nadiral position compared to the target and light source. The exposure was set 

to 80 milliseconds for every spectral band. The HSC-2 underwent a warm-up time of 20 

minutes to reduce the noisy effects. 



17 
 

 

 

Figure 4. The acquisition chamber was used in the experiment. In the image are visible 

the light source, the HSC-2 and a vegetation target in the background. 

 

Dark current computation and analysis 

The HSC-2 instrumental background noise trend, also called dark current, was computed 

through multiple acquisitions. One acquisition was conducted every 10 minutes for a total 

amount of 130 minutes, posing the optic of the hyperspectral camera in complete darkness 

condition. After every dark current acquisition, the white reference target was 

immediately acquired. The dark current and reference trends were processed as the mean 

value of the HSC-2 full spectrum, expressed in DC units. Finally, the dark current and 

reference trends were compared to deduce the inference of the dark current to the resulting 

reference radiance. 

 

Test on a white reference target 

The HCM was tested on a white reference target yet described. The reference target was 

acquired using the HSC-2 and the USB 2000. The HSC-2 was set with a spectral range 

from 450 to 950 nm for 203 spectral bands. Subsequently, the trend of the radiance 
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obtained using the USB 2000 was compared to the HSC-2 radiance trend computed using 

the original gain values reported in the header file. The two trend results were compared 

to the trend of the HSC-2 radiance obtained using the correction methodology developed 

here. 

 

Test on a vegetation target 

The HCM was also tested on a vegetation target. A maize plant was posed in the 

acquisition chamber organised with the acquisition setup yet described, and a 

hyperspectral acquisition was conducted using the HSC-2. The hyperspectral camera was 

set to its maximum spectral range, from 400 to 1000 nm, for a total amount of 203 spectral 

bands. 

The hyperspectral data obtained at the end of the acquisition process was processed to 

obtain three outputs: 

i) The HC computed in DC units. 

ii) The HC computed in radiance units, obtained using the original gain values reported 

in the HSC-2 header file. 

iii) The HC computed in radiance units obtained using the novel CF. 

Finally, the results obtained by the three different processes ways were compared and 

discussed. 

 

1.3 - Results and discussions 

1.3.1 Signal noise computation and characterization 

The dark current values were obtained and results are shown in figure 5. 
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Figure 5. Mean of the dark current values expressed in DC (counts) units for a region of 

interest (ROI) with a size of 100 x 100 pixels, for a total of 203 spectral bands from 400 

to 1000 nm.  The values were obtained during a time range from 20 to 130’. The first 20’ 

were dedicated to the instrument warm-up, and the data were not reported. The standard 

deviation was reported. 

 

The dark current value constantly increases for the first 90’ of the acquisition, showing 

an increase of up to double the initial dark current value. Indeed, at the start of the 

experiment a dark value near 3000 counts was registered, while at the end of the 

experiment was registered a dark value near 7000 counts highlighting a long warm-up 

time. The warm-up time appears variable between hyperspectral cameras; e.g. Zhu et al. 

[33] have reported 30’ as sufficient warm-up time by the “GaiaSorter” HSI system 

produced by Zolix Co., Ltd. (Beijing, China). The HSC-2 has shown a warm-up time of 

over 90 minutes. The dark current appears stable from 90 minutes to the start to the end 

of the experiment. 
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The spectral signature of the dark current was computed, and the result was reported in 

Figure 6.

 

 

Figure 6. Example of the dark current spectral signature obtained at 20 and 130 minutes. 

The spectral signature (reported in DC) was obtained by processing the signal for each 

spectral band, and the result was obtained by the mean of an HI with 1024 x 1024 pixel 

size (HSC-2 full spatial resolution). The standard deviation was reported. 

 

The spectral signature show three spectral regions (from 400 to 513 nm, from 513 to 650 

nm, and from 650 to 1000 nm, respectively) divided by two spectral jumps at 513 and 

650 nm. The spectral region from 400 to 513 nm shows a mean of 2000 counts at 20’ and 

a standard deviation of 250 counts, while it shows a mean of 6900 counts and a standard 

deviation near 500 counts at 130’.  The spectral region from 513 to 650 nm shows a mean 

of 3100 counts at 20’ with a standard deviation of 250 counts. The spectral region from 

650 to 1000 nm shows a mean of 2000 counts, reporting standard deviation values of 250 

counts. The spectral signature reported spectral jumps at 513 and 650 nm and a lower 

spectral jump at 930 nm. Overall, the maximum dark current values were reported in the 

spectral regions from 513 to 650 nm on the VIS edge. The HI obtained from the three 

spectral regions was reported in figure 7. 
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                                              (a)                                        (b)                                      (c) 

Figure 7. HIs obtained by a dark current acquisition collected after 20’ from the start of 

the experiment. The HIs were acquired from the three spectral regions at 470 (a), 600 (b), 

and 800 nm (c). The HIs were obtained with 1024 x 1024 pixel size (HSC-2 full spatial 

resolution), and each pixel shows a DC level evidenced by the colour bar. 

 

Results show differences between HIs regarding sharpness, uniformity and background 

noise level. Subfigure b shows higher DC values and lower uniformity of the pixel's DC 

values than subfigures a and c in with results obtained in figure 6.  Figure b shows higher 

levels of background noise than figures a and c reporting image discontinuities highlited 

by vertical stripes. The HIs obtained at 470 and 80 nm (Figures 7, a and c) show higher 

image sharpness and uniformity compared to the HI at 600 nm. The HI at 470 nm (figure 

7, a) shows a decrease in the DC level from the left to the right side of the image (from 

light blue to dark blue). Generally, the HI at 800 nm appears more uniform than the HIs 

at 470 and 600 nm. The lower image uniformity in the edge spectral regions and the 

spectral jumps at 513 and 650 nm evidenced a loss of sensitivity by the two CMOS 

sensors, compromising the acquisition of sharpnesses HIs in the edge spectral regions 

[31]. 

 A white reference target was acquired simultaneously with the dark current acquisitions, 

and results are shown in figure 8. 
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Figure 8. Mean of the white reference target expressed in DC (counts) units for a ROI of 

100 x 100 pixels pixel size, for a total of 203 spectral bands from 400 to 1000 nm. The 

ROI was overlapped with the ROI analysed in figure 5. The standard deviation was 

reported. 

 

The DC values obtained by a white reference target constantly increased for the first 90 

minutes of the acquisition, according to the results obtained in Figure 5. Indeed, from 20 

to 90 minutes, a progressive increment of the magnitude of the DC values was reported. 

The similar trend between Figure 5 and Figure 8 is due to the effect of the backgroung 

noise ti the signal magnitude; therefore, considering the dark current trend and its direct 

proportionality to the warm-up time is essential to obtain a clean spectral signal [32,33]. 

Based on the results, the dark current changes its value for each pixel and wavelength and 

must be overlapped to the target and subtracted pixel by pixel and wavelength by 

wavelength. Therefore, a dark current subtraction from the target image is recommended 

for warm-up times under 90', considering the rapid changes in the dark current values and 

background noise level.  

 

1.3.2 HCM test results 

The spectral datasets were collected from the white reference and vegetation target by the 

USB 2000 and the HSC-2. Subsequently, the CF was applied on the two hyperspectral 

datasets. 
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Application of the HCM on a white reference target 

The light reflected by the white reference target was acquired using the HSC-2 and the 

USB 2000. The respective radiances were computed using the original gain values and 

new the gain values obtained using the CF. Results are shown in figure 9. 

 

(a)                                                                   (b) 

Figure 9. The figure shows the USB 2000 and HSC-2 radiances (mW/nm*sr*m²). Plot a 

show of the two radiances before applying the CF on the HSC-2 spectral signature. Plot 

b shows the two radiances after using the CF on the HSC-2 spectral signature. 

 

The USB 2000 and the HSC-2 radiances before the application of the CF showed 

differences in trend and magnitude. The light spectrum obtained using the USB 2000 

appears linear and homogeneous, reproducing a halogen lamp's characteristic light 

spectrum which shows a steady increase from VIS to NIR [41]. Instead, the radiance 

obtained using the HSC-2 shows several magnitudes jumps and falls compared to the 

USB 2000 radiance. In the spectral region from 450 to 515 nm, the HSC-2 radiance equals 

zero as in the spectral region from 920 to 950 nm (plot a, blue radiance). This result is 

due to the gain values automatically generated by HSC-2, which are equal to zero in the 

same spectral regions. Two radiance jumps are shown around 650 nm and 830 nm. In 

addition, the spectral region from 650 to 830 appears noisy and characterised by 

fluctuations compared to the radiance obtained using the USB 2000.  
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After applying the correction methodology, the HSC-2 radiance appears similar to the 

USB 2000 radiance, as shown in plot (b). Results show the CF’s ability to overcome the 

DC to radiance conversion limits due to the gain value generated in the HSC-2 header 

file. 

 

Application of the HCM on a vegetation target 

The correction methodology was tested on a vegetation target. The spectral signatures 

were computed in DC and radiance (mW/nm*sr*m²). Radiance results were obtained by 

applying the gain values derived by the hyperspectral camera header file and using the 

gain values obtained by the CF here developed. 

Results are shown in Figure 10. 

 

 

(a)                                        (b)                                       (c) 

Figure 10. Three spectral signatures obtained by the same ROI (11 x 11 pixels, for a total 

of 121 pixels) chosen from a leaf in a nadiral position compared to the light source and 

the optic of the HSC-2. The spectral signatures were reported as following: 1) as DC (plot 

a) automatically generated by HSC-2. 2) As radiance (mW/nm*sr*m²) obtained using the 

gain values in the HSC-2 header file (plot b). 3) As radiance (mW/nm*sr*m²) obtained 

applying the novel CF (plot c). The spectral data were acquired from 400 to 1000 nm, 

using the full spectral range of the HSC-2. The standard deviation was reported. 
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The spectral results in DC units (plot a) showed signal stability in the spectral range from 

400 to 513 nm, where DC values near 2 x 104 were reported. The signal magnitude 

decreased at 1 x 104 DC in the spectral region from 513 to 650 nm, showing a plateau of 

the spectral signal. The DC results (plot a) showed a signal fall at 513 nm. The shape of 

the spectral signal showed an increment in slope in the spectral region from 650 to 820 

nm, in accordance with Chen et al. and Cordon et al., which evidenced a slope increment 

in the red-edge spectral region on a vegetation target due to photochemical processes 

[3,42]. A constant DC values decrement is reported in the spectral region from 820 to 930 

nm. The DC results showed an anomaly in the signal trend at 930 nm, where the DC 

values jump from 1.5 x 104 to 2.1 x 104. Subsequently, a signal flattening was observed 

from 620 to 1000 nm in the right margin of the spectral signature. Signal falls and jumps 

are shown at 513, 650 and 930 nm due to the management of the two CMOS sensors in 

the VIS and NIR spectral range, highlighting one of the main limits of the low-cost PHC 

based on the CMOS technology [31,32,43].  

The radiance results obtained using the gain value provided by the HSC-2 header file are 

shown in plot b. The radiance values are equal to zero from 400 to 513 nm, and this result 

is due to the gain values automatically generated by HSC-2, which are equal to zero from 

400 to 513 nm and from 920 to 1000 nm, according to the results described in the previous 

paragraph. The motivation behind the automatic generation of a gain value equal to zero 

in the spectral regions mentioned remains to be determined, and the HSC-2 producer still 

needs to explain this. However, the poor sensitivity of the two CMOS sensors in the 

margins sides of the VIS and NIR spectral regions, highlighted by the DC results from 

400 to 513 nm and from 920 to 1000, represents a plausible hypothesis of this choice 

adopted by the HSC-2 developers. The radiance results show a plateau in the spectral 

range from 513 to 650 nm (plot b) before the slope increment in the red-edge spectral 

region, as described in plot a. Generally, the spectral discontinuities highlighted in plot a 

are not reduced by radiance conversion obtained using the gain values automatic 

generated in the header file. 

The spectral results obtained by applying the novel CF are shown in plot c. The first result 

obtained by application of the CF was the production of nonzero radiance values in the 

two spectral ranges from 400 to 513 and 920 to 1000 nm. The radiance trend obtained by 

the application of the CF, compared to plot b, showed a peak near 500 nm in 

correspondence with the pigment’s absorption spectral regions, in accordance with the 

spectral leaf pigments analysis results (e.g. chlorophylls, carotenoids and anthocyanins) 
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reported in the literature [44-46]. Nevertheless, the peak highlighted appears weak and 

not very sharp, probably showing a measurement limit due to the CMOS VIS sensor 

previously hidden by the gain value in the HSC-2 header file (imposed equal to zero). 

The application of the CF has permitted us to obtain a clearer spectral signal due to a 

noise reduction compared to the results shown in plot b. Indeed, the spectral signal has 

reported lower fluctuations and more stability than the results obtained using the gain 

value generated by the header file. Generally, the standard deviation in plot c is lower 

than plots a and plot b, and the application of the CF has reported a reduction of the noise 

effects in the spectral signature compared to the results obtained using the gain values 

automatic generated in the header file. Finally, the CF here developed has significatively 

reduced the radiance falls and jumps due to the operation limits of the two CMOS sensors 

near 650 nm and 820 nm, improving the precision and reliability of the low-cost PHC 

here tested.  

 

1.4 – Conclusions 

This work presents a novel methodology to improve the performance of a low-cost PHC. 

The performance of the PHC HSC-2 were explored and tested through  hyperspectral 

acquisitions conducted on a white reference and a vegetation target under controlled 

conditions of light and acquisition set. The spectral results obtained by the HSC-2 were 

compared with the spectral results obtained by the USB 2000. Subsequently, a novel 

HCM was successfully developed and tested. Therefore, the conclusions of this study are:  

i) A low-cost PHC can be a powerful tool in hyperspectral applications. However, the 

poor sensitivity of the two CMOS sensors in the margin’s sides of the VIS/NIR spectral 

regions, from 400 to 513 and from 920 to 1000 nm, contributed to reducing the 

performance of the PHC. In addition, several signal gaps as falls and jumps were 

identified across the spectral signatures near 513, 650, and 930 nm. 

ii) The background noise increases over time. Therefore, the instrument's warm-up time 

must be considered and applying an image correction based on the background noise trend 

is strongly recommended to obtain a clean spectral signal. 

iii) The HCM developed in this work significantly improves the qualities of the spectral 

output obtained using the PHC HSC-2. Indeed, the radiance fall and jumps, and the signal 

noise were reduced, especially in the spectral region from 650 to 830 nm. Finally, the 

methodology developed here opens new ways for the other research communities which 
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use low-cost hyperspectral technologies, e.g. soil composition retrieval, for the study of 

materials properties, for medical application developments and ecosystem monitoring. 

Finally, the hyperspectral low-cost camera Senop HSC-2 was applied to a phenotyping 

experiment, as described in the next chapter. 

 

1.5 Attachments 

 

The novel CF “importsenop” (Matlab code). 

Import and correction using new gain value of the Senop HSC-2 hypercube 

% "Import Senop" - A.Genangeli 

%M = counts hypercube 

% D = counts dark 

% R = radiance reference(spectroradiometer) 

% ROIy = roy reference in y axes 

% ROIy = roy reference in x axes 

% you must have 1 hdr file in your folder 

function [reflectance,radiance,dat,dark] = importsenop(M,D,x,ROIy,ROIx) 

h = dir('*.hdr'); 

myfilename = [h.name]; 

HDR = importdata(myfilename); 

wl_senop = HDR(13,:); 

wl_senop = regexp(wl_senop,'\d+[\.]?\d*','match'); 

wl_senop = wl_senop{1, 1}; 

wl_senop = wl_senop'; 

wl_senop = str2double(wl_senop); 

bands = HDR(11,:); 

bands = regexp(bands,'\d+[\.]?\d*','match','once'); 

bands = str2double(bands); 

gain = HDR(15,:); 

gain = regexp(gain,'\d+[\.]?\d*','match'); 

gain = gain{1, 1}; 

gain = gain'; 

gain = str2double(gain); 
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dat = multibandread(sprintf(M),[1024 1024 bands ],'uint16',0,'bsq','ieee-be'); 

dark = multibandread((D),[1024 1024 bands ],'uint16',0,'bsq','ieee-be'); 

x = load(x); 

x = struct2array(x); 

F = (dat(:,:,:))- (dark(:,:,:)); 

Froi = F(ROIy,ROIx,:); 

Fraction = reshape(Froi,[],bands); 

FROI = mean(Fraction,1)'; 

wl_ocean = x(:,1); 

radocean = x(:,2); 

 newradocean = interp1(wl_ocean,radocean,wl_senop); 

 newgain = ( newradocean./FROI)*100; 

 refroi = FROI.*newgain; 

for i = 1 : bands 

 radiance(:,:,i) =   newgain(i,1)*F(:,:,i); 

end 

radiance = medfilt3(radiance); 

for i = 1 : bands 

  reflectance(:,:,i) =   radiance(:,:,i)./refroi(i,1); 

end  

end 
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Chapter two 

 

Low-cost hyperspectral imaging to detect drought stress in 

high-throughput phenotyping 

 

Premise 

The contents of this chapter was submitted as a journal paper to the journal “Plants” 

(Manuscript ID- 2331860) in special issue "From Genome to Phenome: A Bridge to 

Accelerate Adaptation of Crops to Abiotic Stress". The journal homepage and the 

special issue identified for the submission are available here: 

https://www.mdpi.com/journal/plants/special_issues/genome_phenome_crops  

 

2.1 – Introduction 

Global population is projected to reach 9.8 billion in the year 2050, generating a growing 

demand in food production [1,2]. The global agricultural sector is facing growing risks 

associated to more frequent extreme meteorological events [3,4], able to undermine the 

classic cultivars commonly used in food production. The direct consequence of this 

phenomenon is a loss in terms of quantity and quality of productions and a loss of security 

[5-7]. Indeed, from 2008-2018, the loss of production at regional scale caused by 

precipitation events, above-average temperature and other anomalous weather events, 

was estimated at around 8% of the yearly total for an overall value of 116.7 billion dollars 

[8-12]. The need for a greater amount of food production comes with an increasing need 

for adaptation by global agriculture to global climate changes, with the final objective of 

producing high-quality food while lowering environmental impacts and greenhouse gas 

emissions. All those challenges are crucial for all stakeholders employed in the 

agricultural and food production chains [13-15]. Achieving these objectives is 

furthermore essential for global and local institutions as indicated in various international 

treaties, such as the 2030 Agenda subscribed by the 193 countries members of the United 

Nations (UN) [16], and in several documents and reports produced by the Food and 

Agriculture United Nations Organization (FAO) [17]. 

To improve the food quality and to reduce the environmental impact of crops cultivation, 

the producers can consider different ways, such as optimizing the water used during the 

https://www.mdpi.com/journal/plants/special_issues/genome_phenome_crops
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irrigation process, optimizing the amount of fertilization used during the cultivation cycle 

[18] and choosing genotypes resistant to water, salt and thermal stresses [19]. More 

importantly, the management of food security requires the production of accurate data 

about crop production in every geographic area and their environmental adaptability in 

all growth stages [20,21].  The selection of new genotypes capable of withstanding 

stressful situations due, for example, to unpredictable climatic evolutions is one of the 

seed industries' main challenges. Nevertheless, genetic selection is unable to predict the 

interaction through the environment and genotype [22]. The result of the interaction 

through genotype and environment is called phenotype and considering the phenotyping 

expressions is basic to obtaining a satisfactory breeding result. Environmental factors can 

affect the development of the plants, and measuring their effect on genotype represents a 

primary method to discriminate the better genotypes destinated for each cultivation area 

[21,23]. To solve those issues, applying non-invasive and low-cost technologies to 

monitor crops’ development and health status has become essential in plant breeding 

techniques [24]. 

High-throughput plant phenotyping (HTP) can be considered a rapid, efficient and low-

cost tool to test the interaction between G and E across a large number of genotypes. The 

use of High-throughput plant phenotyping platforms (HTPPs) is a powerful method to 

provide information on the plant growth process [25] through the measurement of 

biophysical traits, such as biomass, dry and wet weight, Leaf Area Index (LAI) [26,27] 

and Transpiration (Tr) [28]. Classical biometrical measures can be integrated with Optical 

indices (OIs) based on colour variation to retrieve information about the plant life cycle. 

Normally, the acquisition process consists of multiple RGB acquisitions combined with 

the collection of biometrical parameters over time [22].  

Since 2000, Hyperspectral Imaging (HI) has been used in scientific research, e.g. in 

environmental monitoring, vegetation analysis, atmospheric characterization, and bio-

logical and chemical detection. HI is a non-invasive technique based on the proprieties of 

light reflectance in the VIS/NIR/SWIR spectral range, and the application of HI 

techniques is widely used by scientists to retrieve information about the biochemical 

parameters and the biophysical properties of crops [29,30]. In the past twenty years, 

Hyperspectral sensors have been successfully applied in several different spatial scales of 

investigation; e.g. at the satellite scale, to obtain the ecosystem properties over large areas 

(at 10-30 meters grid spatial resolution), during research activities conducted by the 

European Space Agency (ESA) and Italian Space Agency (ASI) [31,32]; at the land-scape 
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scale trough aerial surveys,  to retrieve field level spectral data at 0,5-5 meters grid spatial 

resolution), such as in a field drought stress experiment conducted on Zea Mais plants by 

Damn et al. [33]; to investigate the vineyard health status using an Unmanned Aerial 

Vehicle (UAV) [30]; and at the proximal scale collecting information from the inner 

structure in fruits (at sub-centimetric spatial resolution), as in the case of the early 

detection with a non-invasive method to detect the moldy core infection in apple fruits 

[34]. 

New approaches in the HTP field also include the use of HI. Therefore, the capability of 

HI to classify plants’ stress status by using a non-invasive method is attractive for HTP 

applications [35]. Researchers have used several applications of HI in HTP and HTPP 

during phenotyping biotic and stress experiments, e.g. to retrieve spectral vegetation 

indices (VIs), to estimate plant biophysical and biochemical traits [36] through the ratio 

of VIS/NIR/SWIR spectral bands, or for the early detection of plant diseases; e.g., 

Thomas et al. have successfully introduced a new HI phenotyping system in a greenhouse 

experiment which creates a field-like situation to obtain the early detection of powdery 

mildew. Aniway, the use of HI on a full-scale application in phenotyping remains a distant 

goal due to the cost of the instruments, the significant time of data processing, the large 

memory occupied by hyperspectral data and the problematic applicability of rapid and 

efficient image segmentation processes [29,36-39]. In the last few years, a new generation 

of portable and low-cost HI cameras and sensors with a VIS/NIR spectral range have been 

developed. Such devices are relatively straight for-ward in producing an image composed 

of multiple spectral bands, increasing the possibility of using new VIs in plant 

phenotyping applications [29]. Low-cost HI cameras are rarely used in phenotyping. 

Indeed, their integration into an HTPP was the complicated cause of their need for ample 

data storage space, difficulties in the image segmentations process and a long time of data 

processing [38,39]. According to this, studies concerning the application and test of low-

cost HI technologies in a HTPP are urgently required to develop new fast and 

straightforward segmentation methods, new hyperspectral indices to the status of crops, 

and to test new phenotyping ways alternative to OIs commonly adopt-ed in phenotyping 

[40,41]. 

The current work is based on the integration of the Senop HSC-2 low-cost hyperspectral 

camera (HSC-2) [42] in the HTPP based on Lemna Tec Scanalzer3D system (LemnaTec 

GmbH, Germany) during a tomato drought stress experiment. The agronomic and 

physiologic responses of four untested tomato genotypes (770P, 990P, Red Setter and 
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Torremaggiore) characterized by a high level of industrial interest, were tested under two 

cycles of well-watered and deficit irrigation. Several Optical indices (OIs) derived by 

HTPP imaging analysis, such as Projected Shoot Area (PSA) [43], Hue Index (HUEI) 

[44], and Colour Senescence Index (SI) [45], obtained during the image acquisition 

process were analysed and discussed. Subsequently, the OIs obtained were compared 

with the HI results derived by the hyperspectral acquisition with the HSC-2. Therefore, 

the objectives of this work were: 

i) To assess the tolerance or sensitivity of four untested tomato genotypes during a 

greenhouse water stress experiment comparing OIs, e.g. PSA, HUE and SI obtained by 

HTPP image analysis, to hyperspectral data derived by HI. 

ii) To determine the most important spectral region linked to the tomato water stress in 

the sampled spectral range.  

iii) To develop an innovative, fast, and simple HI segmentation method suitable in the 

HTP context.  

iv) To evaluate the potential application and integration of the HSC-2 in a Lemna Tec 

Scanalzer3D system. 

Finally, further applications of low-cost hyperspectral technologies in a phenotyping 

industrial context are discussed. 

 

2.2 Materials and methods 

2.2.1- Experimental design 

The experiment was conducted in ALSIA (Agenzia Lucana di Sviluppo ed Innovazione 

in Agricoltura, S.S. Jonica Km 448,2, 75012 Metaponto MT) from the beginning of May 

until the end of June 2021. The HTPP in ALSIA is included in the Italian Plant 

Phenotyping Network Phen-Italy (Phen-Italy). Phen-Italy is the Italian node of 

EMPHASIS, the European infrastructure (ESFRI) on plant phenotyping 

(https://emphasis.plant-phenotyping.eu/). 

Four genotypes of tomatoes, respectively 770P, 990P, Red Setter and Portici (table 1), 

were tested in a drought stress experiment under two cycles of well-watered and deficit 

irrigation. For each genotype, one stressed, and one control thesis (six replicates per 

thesis, for a total amount of 48 tomato plants) were analysed in the HTPP based on a 

LemnaTec Scanalzer 3D system. The HTPP was integrated with the HSC-2. The 

experiment timetable is reported in table 2.  

 

https://emphasis.plant-phenotyping.eu/
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Genotype Origin 

770P Portici (Naples, Italy) 

990P Portici (Naples, Italy) 

Red Setter Portici (Naples, Italy) 

Torremaggiore ISI Sementi (Fidenza, Italy) 

 

Table 1. Genotypes tested during drought stress experiment. 

 

Operation Day 

Transplant in ALSIA 07/05/2021 

Start 1st stress 27/05/2021 

Hyperspectral acquisition-Image 

acquisition 

27/05/2021 

Hyperspectral acquisition- Image 

acquisition 

02/06/2021 

Start Recovery 02/06/2021 

Hyperspectral acquisition- Image 

acquisition 

08/06/2021 

Start 2nd stress 08/06/2021 

Hyperspectral acquisition- Image 

acquisition 

15/06/2021 

Start Recovery 15/06/2021 

Hyperspectral acquisition- Image 

acquisition 

22/06/2021 

 

Table 2. Drought stress experiment timetable. 

 

2.2.2 – Phenotyping Platform and RGB acquisition process 

HTPP is based on a LemnaTec Scanalzer 3D system (figure 1) and consists of an 

automated belt conveyor system with a tracking system based on bar code and RFID for 

identifying single plants. Four sequential cameras are installed in the HTPP to take 3D 

images of plants in visible (RGB) spectral range. An automated watering system with a 
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weighting station is installed in the HTPP. The platform allows the quantitative, non-

destructive analysis of different crops or model plants under high-throughput conditions. 

Each plant is imaged sequentially in multiple scanalyzer3D camera units, employing 

different wavelengths far beyond human vision. A result is a wide number of reproducible 

and significant data points on any aspect of plant development. Tomato plants were 

automatically conveyed to the imaging chamber equipped with RGB KAI 2093 image 

sensor with a 1920×1084-pixel (2 megapixels) resolution. Three images were acquired 

per plant: one from above the plant in the top view (TV) and two from the side view (SV) 

at 0° and 90°. The plants were illuminated by standard fluorescence light tubes (35 W/865 

cool daylight) and recorded with a Scout camera (Basler Scout). Spectral acquisitions 

were carried out simultaneously with RGB acquisitions.  

 

 

Figure 1. Plants located on the conveyor belt (1) were moved to Visible camera (2) during 

the acquisition process. Subsequently, plants were moved to hyperspectral camera (3) and 

automatic irrigation system (4). Plants were left on the conveyor belt during the time 

between acquisition processes. HTPP is based on a LemnaTec Scanalzer 3D system. 

 

2.2.3 – Environmental monitoring 

Environmental conditions were measured every 15 minutes from the start to the end of 

the experiment by two relative humidity (HR) and temperature (T) sensors placed on the 

conveyor belt at the height of 1 meter. Vapour pressure deficit (VPD) is the difference 

1 

2 3 4 
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between the amount of moisture in the air (es) and how much water the air can hold when 

it is saturated (ea) [46], and it was obtained using RH and T data as follows:  

 

VPD = es – ea (1) 

 

Where es is the saturation vapour pressure or vapour pressure measured in kilopascal 

(kPa) at air temperature, and ea is the actual vapour pressure or vapour pressure measured 

in kPa at dewpoint temperature. Ea and es are obtained as follows: 

 

𝑒𝑠 = 0.6108 exp (
12.27𝑇

𝑇 + 237.3
)                     

and 

 

 

𝑒𝑎 = 𝑒𝑠 
𝑅𝐻 

100
                    

 

When the temperature of the atmosphere increases, the es increases, and when the 

temperature decreases, the ea decreases. Because it increases or decreases non-linearly, 

the mean ea at the mean daily maximum and minimum air temperatures is used for a 

given period. The actual amount of water vapor held at the current temperature is called 

the active vapor pressure (ea). When the temperature of the atmosphere increases, the ea 

increases, and when the temperature decreases, the ea decreases. 

 

2.2.4 – Stress induction and evapotranspiration 

Plants were grown in 3.2-litre pots containing 1.8 kg sand-peat mixture from the 

transplant to the end of the experiment. Water volume in the two theses, well-irrigated 

and stressed respectively, was maintained at the field capacity (FC) [47] before the first 

stress induction. Drought stress stages were applied through a 70% reduction of irrigation 

water in stressed plants (S), maintaining 100% of the irrigation water in the control (C) 

thesis. The exact water volume provided to the plant was assessed by a balance and 

irrigation control system (BIS) installed on the conveyor belt. The water weight loss from 

pots by pot was used to compute ET, that is defined as the water transpired daily by plants 

summed to water evaporated daily from pots [48], and computed as: 
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ET = TW(x) – TW(y) (2) 

 

 

Where TW(x) is the target weight on a day, and TW(y) is the target weight at the same day. 

The weight difference, expressed in grams (g), is the water evapotranspired by the plant. 

 

 

 

2.2.5- RGB images segmentation and OIs 

The segmentation process and OIs retrieving were performed using the Python 3.8 with 

the PlantCV package v3.9 (https://plantcv.danforthcenter.org/). The first step consisted 

of image resizing and discarding all pixels not corresponding to the plant area. 

Subsequently, pixel values were computed to obtain a few OIs, respectively: 

 

PSA 

PSA is the sum of the number of pixels inside the plant region in each of the three 

orthogonal views [43], and it was computed in the following way: 

 

PSA = TA(x) + TA(y)+ TA(z) (3) 

 

Where TA(x) is the target top area, TW(y) is the target side area and TW(z) is the target side 

area rotated 90 degrees, the result is the sum of the three areas expressed in cm2. 

 

HUE 

HUE is a single number corresponding to an angular position, from 0° to 360°, around a 

central point or axis on a colour wheel [44], where an angle of 0° corresponds to red, an 

angle of 90° corresponds to green, and an angle of 180° corresponds to the blue. Usually, 

leaf colour is included in a HUE range from 120° (dark green) to 60° (yellow). HUE is 

obtained by the mean of HUE pixel values inside the plant region, and it was computed 

as follows: 

 

HUE =  
∑ 𝑃𝐻𝑉𝑛

1

𝑛
 

                              

(4) 

 

https://plantcv.danforthcenter.org/
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Where PHV is a single HUE pixel value and n is the pixel number inside the plant region. 

 

SI 

SI is an optical index used to define a senescence status in plants [45]. SI was computed 

by the ratio of the HUE values of an image captured in the side view. SI was computed 

as follows: 

SI =  
(GAS –  GerAS)

GAS
 

   

(5) 

 

Where GAS is a green area in the side view, and the corresponding value is the sum of 

pixel values in the HUE angular region from 60° to 180°. GerAS is a greener area in the 

side view obtained by the sum of pixel values in the HUE angular region from 80° to 

180°. 

To differentiate control and stressed theses using the PSA, HUE and SI comparisons be-

tween theses and genotypes were performed using the analysis of variance (ANOVA) at 

every experimental phase. The ANOVA was performed using the anova1 function by 

MatlabR2021a (MahtWorks,USA). 

 

2.2.6- Hyperspectral data acquisition and processing 

Hyperspectral data were collected using the HSC-2. The instrument presents a spectral 

range available from 650 to 820 nm (see chapter 1) with an image frame size of 1024 x 

1024 pixels (1 megapixel). The spectral resolution was settled around 2 nm. A single 

hyperspectral image was saved as a 3D cube, also called hypercube (HC), formed by 69 

spectral bands overlapping on a single object for a virtual memory of 400 megabytes per 

image. The exposure time was settled at 80 milliseconds per band, and the distance from 

the hyperspectral camera to the target was established at 1.5 meters (figure 2). A white 

Lambertian reference target at 75% of reflectance, capable of reflecting light uniformly 

[49], was placed target area below. 
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Figure 2. Hyperspectral acquisition process on tomato plant. The white Lambertian 

surface reference target at 75% of reflectance is the white panel on the plant’s left. 

 

The spectral data were acquired in digital number units, and their conversion in radiance 

(mW / nm*sr*m²) was obtained through the multiplication of the digital units by a 

calibration coefficient (see chapter 1). The radiance HC was converted in reflectance as 

follows: 

 

Ref = Rad/ RT (6) 

 

Where Rad is the radiance obtained by the target and RT is the radiance obtained by the 

white reference target. 

The whole hyperspectral data organization, elaboration and processing described in this 

work was completed using MatlabR2021a (MahtWorks,USA). 

 

2.2.7- Automatic segmentation of HIS 

The application of an automatic segmentation method is needed to obtain a rapid plant 

pixels separation from the background. To facilitate this, the background was covered 
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with a matt black cover to delete reflection effects due to photons scattering (figure 2). 

Segmentation’s first step was excluding the white target reference from the image. This 

operation was automated by maintaining the reference position and target distance from 

the hyperspectral device during acquisition. According to this, the HIS dimension was 

reduced to exclude the reference panel. Segmentation’s second step was the application 

of a binary mask. The HC was composed of 69 images (one image per spectral band), and 

the segmentation process was based on segmentation in an image at one single spectral 

band; through visive and manual selection of the band capable of separating the target 

from the background. The reflectance value capable of separating the target from the 

background was chosen through a selection method based on defined reflectance values, 

selected through a percentile value selection. The segmentation percentile value was 

determined based on the complete image background elimination and the removal of 

geometric light reflection effects. Indeed, only plant regions in a perpendicular position 

to the hyperspectral camera optics should be selected. Subsequently, were applied a 

segmentation mask on images composed of 0 and 1 values, where 0 corresponded to the 

values less than the chosen percentile and 1 corresponded to the values greater or equal. 

The segmentation mask derived by one-band percentile segmentation was applied in all 

bands. 

 

2.2.8 – Hyperspectral data analysis 

After calibration and segmentation of the HI, the HC was processed to extract the average 

signature by each pixel from each genotype at all acquisition times. The spectral 

signatures were processed to obtain the hyperspectral index (H-index) capable of 

discriminating the stress status in genotypes during the experimental phases. The H-index 

was obtained computing the maximum value of the approximate derivative point by point 

for of each spectral signature. The result represents the maximum slope point in the full 

acquired spectral range. The approximate derivative was performed using the diff 

function by MatlabR2021 (MahtWorks,USA). To differentiate control and stressed theses 

using the novel H-index, a few comparisons between theses and genotypes for a total of 

twenty comparisons (one per genotype per five acquisition times) were performed using 

the analysis of variance (ANOVA) at every stress and recovery phase. The ANOVA was 

performed using the anova1 function by MatlabR2021a (MahtWorks,USA). 

Finally, the performance of the H-index and the OIs to the water stress detection on 770P, 

990P, Red Setter and Torremaggiore tomato genotypes were compared and discussed. 
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2.3- Results  

2.3.1- Environmental variations and ET 

RH, T and VPD were computed by processing the humidity and temperature data 

collected from the beginning to the end of the experiment (figure 3).  

 

Figure 3. RH (a) expressed as percentage, T (b) reported in °C and VPD (c) reported as 

Kilopascal (kPa) trends from the beginning to the end of the experiment, where the red 

and blue areas represent the stress and full-irrigation experimental phases. The standard 

deviation was reported in RH and T plots. T data were not recorded on day 31/05/2021. 

 

Air temperature showed a general increase over time. The daily maximum tempera-ture 

(TMax) was collected on day 20/06/2021, and the daily minimum temperature (TMin) 

was collected on day 22/05/2021. The daily maximum RH (RH max) was registered on 

25/05, and the daily minimum RH (RHmin) was registered on 14/05/2021. RH and T 

show opposite trends during the initial stages of the experiment (until 04/06/2021). 

Subsequently, T and RH trends appear similar from 05/06/2021 to 11/06/2021. Trends 

returned opposite from 12/06/2021 to the end of the experiment. VPD values spanned 

from 1 kPa to 2.3 kPa and follow a general increment reflecting the temperature rise 

during the experiment.  

The evapotranspiration (ET) was computed for all four genotypes and for all water 

treatments by daily weight differences of pots (figure 4). 
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 Figure 4. ET trend by 770P, 990P, Red Setter and Torremaggiore genotypes from the 

beginning to the end of the experiment. The red line represents the stress thesis, and the 

blue line represents the control thesis. The red and blue areas in the plots represent the 

stress and full-irrigation experimental phases. The standard deviation was reported. The 

choice of colours in plots (lines and experimental phases, respectively) was applied in 

subsequent graphs in the same way as the figure just described, and the description of the 

plot colour style will not be repeated in similar graphs.  

 

The first stress phase exhibits differences in ET between genotypes in stressed and control 

theses, where 770P and 990P show higher differences in ET than Torremaggiore and Red 

Setter between control and stressed theses. ET is growing during the 1st stress phase in 

the watered thesis, likely reflecting the plant growth process. ET values are higher for the 

well-watered theses due to water availability in the soil. ET values tend to converge for 

all theses on 08/06/2021, concomitantly to the end of the first recovery period, and this 

result shows an efficient recovery by stressed theses in all genotypes. The second stress 

show the maximum levels of ET, where the total amount of water lost reached peaks of 

900 grams per days in 770P and 990P genotypes, showing a higher ET level than 

Torremaggiore and Red Setter. Generally, the thesis that received full irrigation during 

all experimental phases shows a greater value of ET than the stressed over time. Indeed, 

the experimental phases with differential irrigation show a clear separation in terms of 

ET between theses showing remarkable differences, especially in 770P and 990P 

genotypes, which appear more susceptible to water stress than Red Setter and 

Torremaggiore. 
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2.3.2- HTPP results 

Optical and biometrical data obtained by the HTPP were successfully computed and 

processed. Results have permitted to obtain the assessment of three different phenotyping 

parameters. 

 

PSA 

PSA was computed over the experimental phases; the results are shown in figure 5. 

 

Figure 5. PSA trend for all four genotypes from the beginning to the end of the 

experiment. The standard deviation was reported. 

 

The analysis of variance (ANOVA) was performed on PSA results to assess significant 

differences between theses. The results are shown in Table 3. 

 

Genotypes  Start 1st Stress 1st Recovery 2nd Stress 2nd Recovery 

770P NS S S S S 

990P NS S S S S 

Red Setter NS S S NS NS 

Torremaggiore NS S S S S 

Table 3. ANOVA results. The ANOVA was performed between theses on PSA results 

for all genotypes. For P-value ≤ 0.01, the result was considered as significative (S), while 

for P-value > 0.01, the result was considered as non-significative (NS). The subsequent 
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ANOVA results were report-ed using the same parameters (abbreviations and P-value) 

adopted here. 

 

At the start of the experiment plants show similar PSA values, about 800-900 cm2, and 

significant differences between theses were not reported. Generally, PSA appeared well 

differenced during the first stress phase due to the application of the two irrigation levels, 

as confirmed by ANOVA results. The most significant gap in terms of PSA between well-

irrigated and stressed theses was measured in 770P and P970 genotypes at the end of the 

first stress, due to lower biomass production in stressed plants, concomitantly with a 

higher ET difference between control and stressed theses compared to Red Setter and 

Torremaggiore genotypes. Indeed, Red Setter and Torremaggiore show a minor gap 

between theses compared to the other two genotypes in terms of water evapotranspired 

during the first stress phase. The significatively of the PSA differences were confirmed 

by ANOVA results. During the first recovery, an increasing of growth rate in all stressed 

theses was reported, where 770P and 990P have shown a marked increment in biomass 

production compared to Red Setter and Torremaggiore genotypes. The second stress 

phase, from 08/06 to 15/06, shows a growth rate decrement in 770P and 990P stressed 

theses, while the growth rate in Red Setter and Torremaggiore remains constant compared 

to the precedent recovery phase. Red Setter control thesis show a growth rate decrement 

strongly reducing PSA differences compared to the stressed. The second recovery phase 

show a similar trend compared to the first recovery phase, showing a growth rate 

increment in 770P and 990P genotypes reducing differences between theses. Significant 

differences between theses are shown in 770P, 990P and Torremaggiore genotypes at the 

end of the second recovery phase. 

 

HUE  

HUE were computed during the experimental phases and results are shown in figure 6. 
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Figure 5. HUE results. HUE is expressed in degrees. The standard deviation was 

reported. 

 

The ANOVA was performed on HUE, and results are shown in Table 4. 

 

Genotypes  Start 1st Stress 1st Recovery 2nd Stress 2nd Recovery 

770P NS NS NS NS NS 

990P NS NS S S NS 

Red Setter NS NS NS NS NS 

Torremaggiore NS NS NS NS NS 

 

Table 4. ANOVA results. The ANOVA was performed between theses on HUE results 

for all genotypes. 

 

Results show a similar start regarding the HUE range for all genotypes and theses to a 

HUE average of 84° corresponding to light green. Significant differences between gen-

otypes were not reported as showed by ANOVA results. At the end of the first stress 

phase, HUE does not show significant differences between genotypes and theses. After 

the subsequent recovery phase, HUE shows significant differences in Genotype 990P and 

a mild separation between stressed and control theses in the 770P genotype, where the 

control theses have started to show a colour change from green to yellow. Differences in 

HUE level on 990P theses appears substantial, where the control thesis shows a level of 
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75-77 degrees, and stressed thesis reported an HUE around 80 degrees. Dur-ing the 2nd 

stress, results confirmed differences in HUE trends in control and stress theses for 990P 

genotype, showing an increase of HUE differences between theses. A mild separation 

without significant differences in terms of HUE was reported in Red Setter, 

Torremaggiore and 770P genotypes as highlighted by ANOVA results and HUE trends. 

At the end of the last recovery phase, the HUE results aren’t show significant differences 

between theses in all genotypes, and the mild HUE gaps showed during the second stress 

were reduced. 

 

Senescence Index (SI)  

SI is an optical index used to define a senescence status in plants. SI was computed during 

the experimental phases and results are shown in figure 6. 

 

 

Figure 6. SI results. SI is expressed as percentage. The standard deviation was reported. 

 

The ANOVA was performed on SI, and results are shown in Table 5. 

 

Genotypes  Start 1st Stress 1st Recovery 2nd Stress 2nd Recovery 

770P NS NS NS NS NS 

990P NS NS S S NS 

Red Setter NS NS NS S NS 

Torremaggiore S NS NS S S 
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Table 5. SI ANOVA P-value results for all genotypes and theses. 

 

At the start of the experiment, all genotypes and theses start with a SI range from 20 to 

30%. 770P, 990P, and Red Setter don't evidence substantial differences between theses, 

whereas Torremaggiore genotype shows significant differences between theses at 27/05, 

disagreeing with PSA, HUE and ET results. ANOVA results don’t show significant 

differences between genotypes at the end of the first stress. The first recovery underlines 

significant differences only for 990P genotype, which has confirmed this result even in 

subsequent stress phases. At the end of the second stress, significant differences between 

theses highlighted by ANOVA results were also reported in Torremaggiore and Red 

Setter. After the last recovery phase, results have shown a decrement of SI in 990P and 

Red Setter genotypes which don’t evidence significant differences be-tween theses. In 

contrast, Torremaggiore has maintained significant differences be-tween the two 

differential irrigation regimes. Overall, the SI trend in control theses show a major shape 

than stressed during the experimental phases. 

 

2.3.3- Hyperspectral analysis  

Segmentation process  

A segmentation process based on the 96° percentile was adopted to obtain a clear 

separation between plants and background (figure 7) for all hyperspectral images. 
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(a)                                                                 (b)                                   

Figure 7. Example of segmentation results. In this example, the segmentation process 

based on the 96° percentile was applied on a Red Setter genotype control thesis acquired 

on 08/06/2021.  

 

Before the segmentation process (a), the image was composed of background and plant; 

after the segmentation process (b), the image was composed of only plant re-gions with 

a reflectance value larger than 96° percentile, for a total amount of 11408 pixels belonging 

to the plant region. Results show a clear separation between plants and background 

combined with eliminating the canopy reflection effects. The spectral band selected to 

extrapolate the plant region from the background was identified at 750 nm, in the spectral 

region corresponding to the end of the red edge curve (figure 8). The magnitude of the 

reflectance values resulted higher in comparison to the previous spectral bands. 

 



54 
 

 

 Figure 8. The spectral signature derived by the segmented plant (figure 7). The red 

dashed line shows the spectral band (691 nm) with the maximum value of the approximate 

derivate used to obtain the H-index. The standard deviation was reported. 

 

The spectral signature comprised 11408 signatures derived from the same number of 

pixels. The figure clearly shows differences in reflectance magnitude from the red edge 

curve spectral region (from 650 to 720 nm) on the left and the rest of the curve on the 

right. During the experiment, over 250 HI images were collected for a total amount of 

120.6 Gigabytes occupied; the storage of the HI is an expensive process in terms of 

memory and using an efficient segmentation method can reduce the memory occupied. 

After the segmentation, the hyperspectral data were reduced to a total storage space of 

18.7 Gigabytes, reporting a complex data reduction of 85.5%. 

 

Hyperspectral index 

The hyperspectral data obtained by the segmentation process were processed to obtain 

the H-index capable to differentiate stress and control theses over stress and recovery 

phases. The H-index is based on the maximum value of the approximate derivative and it 

is linked to the red-edge spectral region slope. The H-Index was tested on all experimental 

phases and results were reported in figure 9. 
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Figure 9. H-index (HI) trends for all four genotypes from the beginning to the end of the 

experiment. The standard deviation was reported. 

The ANOVA was computed for all genotypes to evidence the H-index differences 

between the two theses over the experiment. Results are shown in table 6. 

 

 

Genotypes  Start 1st Stress 1st Recovery 2nd Stress 2nd Recovery 

770P NS        S NS NS NS 

990P NS S NS NS NS 

Red Setter NS S NS NS NS 

Torremaggiore NS S NS NS NS 

 

Table 6. H-index ANOVA results for all genotypes and theses. 

 

All genotypes and theses started the first stress phase without significant differences. At 

the end of the first stress, there are substantial variations in all theses, as shown by 

ANOVA results. All theses show a net separation between control and stressed theses. 

770P and 990P well-irrigated theses show a significant separation in the H-index com-

pared to the stressed. Red Setter and Torremaggiore offer a lower break between theses 

than 990P and 770P, demonstrating a higher level of stress resistance. At the end of the 

first recovery, the H-index show similar results in all theses and genotypes. Stressed 

theses show a net recovery reporting a major increment in terms of H-index compared to 
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the well-irrigated theses confirming the irrigation regime trend and the ET results. 

Significant differences in H-index are not reported, as demonstrated by ANOVA results. 

The slope of the control theses in the 990P and Setter genotypes de-creases between the 

end of the first stress and recovery, reporting an increment of the standard deviation at 

the end of the first recovery phase. Overall, the first recovery phase shows a substantial 

recovery in stressed theses which show a similar spectral response than the well-irrigated 

theses in accordance with the full irrigation regime and ET results reported at the first 

recovery. After the second stress, the ANOVA results don't show significant differences 

in H-index between theses. However, 770P and Tor-re Maggiore genotypes have reported 

differences in the slope of the two theses, high-lighting a lower slope in the stressed than 

the control. At the end of the second recovery, there are no differences in H-index between 

theses, as shown by ANOVA results. 

 

2.4- Discussions 

RH and T results reflect the seasonal course registered in the geographic area where the 

experiment was conducted [50]. RH and T changes are related to VPD trend and ET 

demand. Indeed, when the water availability is reduced and VPD increases as in water 

stress conditions, the plant responds by closing her stomata with a consequent reduction 

of the ET, as described by Sadok et al. [52]. The closure of the stomata and the consequent 

reduction in transpiration is the first response to the water stress condition. The second 

stress phase was significantly more intense than the first phase, showing a maximum level 

of ET, and this result is due to the high-temperature values registered during the second 

stress. The consequent of the temperature rise was an increment of VPD during the second 

stress phase causing a greater ET demand compared to the first stress phase, in agreement 

with the results obtained by Noh et al. and Sadok et al. [46,52] which have demonstrated 

the link between VPD and ET. ET differences between stressed and control theses appear 

more contained compared to trends reported during the first stress. There are not several 

studies in the literature about the drought adaptability of genotypes used in this 

experiment; depside this, results obtained can be explained by a physiological adaptation 

to the water stress condition in partially irrigated plants, in accordance with Jureková et 

al. [53] and Rhodes et al. [54] which have measured metabolic and physiological changes 

associated with adaptation of plant cells to water stress. Overall, the four genotypes show 

different responses in terms of ET between the two theses due to the stress phases. 

Genotypes 770P and 990P show greater values of ET in control theses showing a lower 
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water stress resistance than Red Setter and Torremaggiore genotypes. Generally, ET 

differences between tomato genotypes can be due to their water stress resistance, 

explicable in different morphological traits, such as leaf rolling, leaf orientation, leaf size 

and plant habit [55]. The biomass production and growth rate in tomato plants were 

influenced by the water availability, and differences in PSA between control and stressed 

theses can be due to the different irrigation levels, in accordance with results obtained by 

Rhodes et al. and Patanè et al. [55,56], which have demonstrated the direct proportionality 

between available water and biomass production. Red Setter and Torremaggiore show 

minor differences between stressed and well-irrigated theses in terms of PSA compared 

to 770P and 990P genotypes. In addition, Red Setter has registered lower PSA differences 

between thesis over stress and recovery phases showing greater tolerance to the water 

stress condition. HUE results show a physiological colour change from green to light 

yellow in all genotypes and theses over the experimental phases. The colour change in 

leaves is a natural physiological effect due to the tomato plant’s senescence and consists 

of a chlorophyll breakdown from the leaf margin to the interior of the leaf blade as 

reported by Quirino et al. [57]. The stress condition causes a decrease in the water content 

in stressed plant leaves, as measured by Khan et al. [58], and the result of this process is 

a slowdown in the chlorophyll breakdown. Therefore, a slowdown in a colour change can 

be attributed to the stress status, in accordance with results obtained by Janni et al. [59] 

which has conducted a tomato drought stress experiment using the LemnaTec Scanalzer 

3D system. The HUE results do not efficiently describe the ET trend excepted for the 

990P genotype, which have reported significant differences between theses at the second 

stress and second recovery phases. 

The most significant variations in SI between control and stressed theses were reported 

in the 990P genotype as confirmed by ANOVA results at the end of the first stress and 

second recovery; at the same time, Torremaggiore showed limited variations of SI in all 

experimental phases excepted at the second stress where the theses are statistically 

diffracted. SI, as HUE, are colorimetric index based on the analysis of RGB images. 

Therefore, SI better describes than HUE the ET trend, highlighting more differences 

between theses during the experimental phases. Higher SI values correspond to a light 

green /yellow plant colour and high SI values in controls are due to their minor ratio 

between chlorophyll and water compared to stressed theses, where the minor water 

content increases the chlorophyll and water ratio showing a green colour more intense 

than control theses [60]. The inconsistencies between HUE, SI and PSA results can be 
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attributed to a differential response over time to the water stress condition between 

biometric and RGB parameters. Indeed, the growth rate slowing is immediately registered 

in the presence of limited water availability, while colour variation appears with a delay 

and a less homogeneous distribution between plants. 

The segmentation technique developed has permitted the minimization of the geometric 

light scattering effects in combination with removing of the background pixels and 

shadow effects caused by the complex and unpredictable canopy structure. The light 

reflection effects due to the overlapped leaves represent a critical issue in obtaining a 

clean spectral signal. Therefore, an approach based on the automatic selection of the 

leaves in a nadiral position compared to the camera's optics simplifies the use of 3D 

radiative transfer models by focusing only on leaf sub regions [29,35]. Using a 

homogeneous background in the acquisition process characterised by low reflectance 

values compared to the target represents a fundamental element to obtain a rapid and 

efficient segmentation, solving the needs of storage space and speed in the hyperspectral 

data processing [38,39]. Indeed, the application of HI for plant phenotyping in an 

industrial context needs to be economical in terms of memory occupied and image 

segmentation efficiency because the application of complex and expensive processes 

represents a cost for the industries. 

The trend of the spectral signatures collected during the experiment respects the spectral 

signatures derived by a vegetation target with an increase in slope from 650 to 720 nm, 

as reported in the literature [29,32]. The H-index is based on the maximum value of the 

approximate derivative point by point for each spectral signature. The result represents 

the maximum slope point in the full acquired spectral range. Therefore, higher H-index 

values correspond to a greater slope in the red-edge position, from 650 to 730 nm. The 

link between the slope of the red edge spectral region and water stress condition was 

already investigated by Schlemmer et al. and Boochs et al. [60,61], which have 

demonstrated the link between a lower slope in the red edge spectral region and the water 

stress presence. Differences between theses are linked to the different plant’s spectral 

responses in full and partial irrigation regimes. Indeed, the higher H-index value indicates 

a significant difference in the reflectance slope of the red-edge spectral region. Compared 

to the HUE and SI results, H-index better describe the differential irrigation regimes 

conducted during the first stress phase. HUE and SI don’t show clearly differences 

between theses compared to the ET results, while H-index clearly describes differences 

between the two theses in all genotypes. This result highlights HI’s potential for the early 
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detection of water stress than the RGB methods. The optical response in the visible 

spectral region turns out to be less rapid than the NIR response for the leaf water content, 

as already demonstrated by Steidleer et al. [61]. There are no studies on the red edge 

spectral response and susceptibility or tolerance to the water stress condition for the 

tomato genotypes tested in this study. Still, the behaviors of the stressed theses obtained 

in the second stress, where ANOVA results highlighted no differences between theses, 

can be due to the water stress adaptability of stressed plants [53,54]. Major values of 

standard deviation in 990P and Red Setter genotypes at the end of the first recovery than 

the first stress can be attributed to the different growth rate between samples. 

Nevertheless, the global trend of the H-index was not significantly influenced providing 

clear results in terms of trend. 

Overall, 770P and 990P theses show the most remarkable statistical differences over the 

experimental phases, also considering the ET results compared to Red Setter and 

Torremaggiore, as highlighted by PSA, H-index and less clearly by HUE, SI and effects. 

Therefore, this result indicates a minor capacity by 770P and 990P stressed theses to 

maintain a similar behavior to the controls. Consequently, 770P and 990P show a higher 

susceptibility to water stress than the Red Setter and Torremaggiore genotypes. 

 

2.5- Conclusions  

In this study, four untested tomato genotypes were successfully tested in an HTPP 

LemnaTec Scanalzer 3D system during a tomato drought stress experiment. The HTPP 

was integrated for the first time with the HSC-2, and over 120 Gigabytes of HIS were 

acquired and processed. The Genotypes were tested during two cycles of full and partial 

irrigation, and the principal phenotyping traits, such as PSA, HUE and SI were assessed. 

The RH and T parameters were collected, and VPD was obtained over the experiment. 

Therefore, the conclusions of this study are: 

i) The integration of the HSC-2 in the HTPP based on the LemnaTec Scanalzer 3D system 

has permitted to increase in the water stress detection capability by the HTPP; indeed, a 

hyperspectral camera with a NIR spectral range appears more efficient to detect the stress 

status during the first stress and recovery phases than the RGB technologies. In addition, 

a novel H-index based on the red-edge slope capable of detecting the water stress status 

in P970, 990P, Red Setter and Torremaggiore tomato genotypes was developed and 

tested. 
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ii) The PSA describe more efficiently than HUE and SI the differential irrigation regimes 

especially in the first stress phase, whereas SI and HUE don’t show a clear picture of the 

irrigation trend compared to the ET results. The H-index clearly describe the first stress 

and recovery phases compared to PSA, HUE and SI, showing a higher sensitivity and 

better describing the ET trend. In addition, the H-index more clearly represents the second 

stress phase than PSA, HUE and SI, which globally appears less visible, proba-bly due to 

an adaptation to the stress condition by stressed theses. Based on the results, a low-cost 

hyperspectral camera with a spectral range similar to the Senop HSC-2 can be integrated 

with the RGB technologies commonly used in phenotyping activities, in-creasing the 

performance of the phenotyping process. In addition, integrating low-cost hyperspectral 

technology in an HTPP could open new ways to develop innovative phenotyping 

techniques. 

iii) The segmentation method based on the percentile technique in a standardised 

acquisition set has efficiently reduced the hyperspectral dataset dimension, reporting a 

data reduction of the 85.5%; simultaneously, the time processing of the HIS has been 

reduced. These results are gaining in an industrial context, where storage space and time 

processing are primary issues.  

iv) The tolerance and susceptibility to the water stress of the four untested genotypes were 

successfully assessed. Overall, the OIs and H-index results show that genotypes 770P and 

990P were more susceptible to water stress than Red Setter and Torremaggiore genotypes. 

Finally, results obtained in this study open new ways for applying a low-cost 

hyperspectral camera in a phenotyping contest to detect other abiotic stress statuses, such 

as the nutrient deficit and metabolic alteration, and pathology caused by biotic stresses; 

therefore, further studies were recommended.  
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Chapter three 

 

A Novel Hyperspectral Method to Detect Moldy Core in 

Apple Fruits 

 

Premise 

This chapter is published as a journal paper in the journal “Sensors”. The link to the full 

article is https://www.mdpi.com/1424-8220/22/12/4479  

 

3.1 - Introduction 

The apple production and post-harvest industry is among the largest fruit markets at the 

global scale, given the large diffusion and consumptions of apple fruits [1]. Final 

consumers are showing increasing attention towards food quality and sustainability of 

food supply chains, aiming to consume products with low environmental impact and 

homogeneous organoleptic characteristics without internal or external alterations [2]. 

Satisfying these requirements represents one of the main objectives for farmers and food-

companies involved in the production and marketing of apples [3-5]. One of the most 

relevant causes of quality loss is represented by the internal browning in apple post-

harvest phases caused by Alternaria sp (Asp), a ubiquitous genus fungorum widely 

present in all apple-growing areas. 

 The pathology caused by Asp is called mould core, or simply moldy core (MC) and 

initiates and produces its damage effects in the interior part of the fruits [6,7]. Previous 

studies have shown that the principal MC susceptible apple’s cultivar (cv) are represented 

by Fuji, Red Delicious and Granny Smith, but other significant varieties, such as Golden 

Delicious, can still present relevant internal damages by MC [8]. Indeed, apple cv Golden 

Delicius plays a fundamental role in the world apple industry, especially in Italy, where 

it is the most widely cultivated apple cv, with a total production volume of 858423 tonnes 

[9,10]. The damage by MC is an internal injury, with dry-brown areas developed in the 

inner part of fruit. The fruit does not present any external sign of damage, making MC 

detection with classical non-invasive methods very challenging or practically impossible 

[11]. 

https://www.mdpi.com/1424-8220/22/12/4479
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Therefore, the development of non-invasive analytical methods to detect MC damages 

throughout the production process, especially in post-harvest phases deserves a great 

attention from producers. 

Novel non-invasive approaches deriving from different technological sectors have been 

successfully tested and applied in recent years to detect internal injury or internal 

browning in apples, such as time-frequency images of vibro-acoustic signals [12,13]; 

magnetic resonance techniques [14,15] and x-ray analysis [16,17]. Thereby, these 

techniques deliver a meaningful occasion to explore innovative analysis methods capable 

to detect qualitative parameters in apples, but at the same time they show limitations due 

to their cost, size of equipment and operating time. Another innovative and promising 

solution with non-invasive methods for quality control in apple production has derived 

from recent developments by spectroscopy application from field to post-harvest phases 

[18,19]. Especially, the exploitation of light properties around the near infrared (NIR) 

region of the electromagnetic spectrum has captured the interest of researchers and 

industry in recent years, since it provides a valid alternative compared to invasive analysis 

methods [20,21]. Near infrared spectroscopy (NIRS) technics are based on the collection 

of spectral information such as absorption (ABS), reflectance (REF) and transmittance 

(TR) of electromagnetic signals in the spectral region spanning from 700 to 1200 nm [22].  

REF based methods measure the reflected spectral signature under controlled illumination 

conditions and is typically used to retrieve parameters or compounds that are present on 

the fruit surface. REF was successfully used in several different applications, e.g., real-

time quantification of biophysical and biochemical parameters through non-destructive 

method in citrus [23] and detection of oil palm maturity in bunches of fruits [24]. 

Techniques based on light reflectance in VIS/NIR have been successfully applied in 

apples quality control to detect a wide number of biophysical and biochemical parameters, 

such as external decay in apples [25], degrees brix [26], postharvest storage periods [27] 

and chlorophyll content [28]. ABS/ TR techniques are based on generating a convenient 

light source at one side of the fruit, that propagates across the interior of the fruit, being 

finally collected at a convenient escape sensing surface. In recent years, the improvement 

of efficient machine learning techniques (MLT) was permitted to develop innovative 

analysis models in different application areas, e.g. engineering science, modeling in 

geology and data reduction [29-31]. Moreover, MLT associated with TR analysis was 

successfully used in developing calibration models to quantify brix and pol at various 

stages of an industrial sugar production process [32]; therefore, the application of these 
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methods is a relatively new field in the agricultural post-harvest science. TR and MLT 

were applied sporadically on apples and other commercial fruits. Nevertheless, such 

methods were applied sporadically on apples while they were already successfully tested 

in different commercial fruits, e.g., TR techniques and convolutional neural network 

(CNN) were successfully applied in blueberry internal damage detection with 

classification accuracy over 80% [33]. Also, TR techniques represent an important 

analysis tool in high-income fruits, e.g., the grade of ripeness in nectarine (Prunus Persica) 

was evaluated with accuracy of 88 % by TR analysis in combination with Partial Last 

Square Regression (PLS-R) [34]. 

In the last few years, interest for MC detection by NIRS has increased in research 

activities and some different NIRS applications have been proposed. The main studies 

concerning the assessment of the capability to detect MC presence by VIS/NIR 

transmittance spectra retrieval were conducted mainly in cv Fuji. Zhaoyong et al. [35] 

verified MC presence in cv Fuji through an acquisition method based on multiple 

measurements per fruit; results obtained through the application of classifications 

algorithms based on back propagation artificial neural network (BP-NN) and support 

vector machine (SVM) have shown a classification accuracy of infected and healthy 

apples larger than 83%. Similarly, Shenderey et al. [36] obtained a classification accuracy 

of healthy and infected apples larger than 90% by PLS-R in cv Fuji with a mouldy area 

larger than5%. Tian et al. [37] investigated the relationship between the orientation of 

fruit trough light source position achieving best results with fruit stem-calyx axis 

horizontal and perpendicular to transmission belt in apples. These studies highlighted the 

high complexity of transmittance based hyperspectral NIR measurements, that are 

strongly affected by fruit and illumination geometry and by cv specific traits and 

chromatic characters, that strongly affect the measured spectral signatures. Results 

obtained on a specific cv are therefore likely not transposable to different ones. 

The objective of this work was:  

i) to develop and validate an innovative and low-cost application of NIRS to detect and 

monitor MC presence and growth in cv Golden Delicious through a novel measurement 

system based on a light source – light transmission – light collection architecture. An 

integrating sphere (IS) having homogeneous light reflectance proprieties [38] is adopted 

to compensate the geometrical variability in each fruit and toward the illumination 

geometry, and a low-cost VIS-NIR commercial spectroradiometer is used to measure the 

transmitted radiance inside the integrating sphere. 
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ii) to develop spectral based algorithms capable of detecting the MC and classifying the 

fruits in a binary classification framework (e.g classifying a fruit as healthy or moldy), 

based on several state of the art machine learning techniques: pattern recognition neural 

networks (ANN-AP), Logistic Regression (LR), Linear Support Vector Classification 

(SVC), Random Forest (RF), Naive Bayes (NB), K-Nearest Neighbor (KNN) and 

Bagging Classifier based on Decision tree (BC). 

iii) to assess the temporal performance of the detection algorithms, i.e. to assess the 

amount of time after the inoculus at which it becomes detectable. 

 iv) to assess the sensitivity of the algorithms, i.e. the minimum amounts of infected 

tissues can be detected. 

v) to determine the most important spectral bands responsible for the MC detection, and 

the minimum number of bands that can be used to further develop low-cost-multispectral 

rather than hyperspectral detectors. 

Finally, the technological and industrial implications of the proposed sensing technology 

are discussed. 

 

3.2 Materials and Methods 

 3.2.1- Instrument setup 

The prototype measurement system to detected MC in apples presented here is called 

Apple Light Transmittance System (ALT-S) and is shown in Figure 1. It consists of a box 

(1) where on his top was inserted a polystyrene integrating sphere (2) with 160 mm 

diameter and 50 mm thickness. The sphere was externally covered with an aluminum foil 

to remove external light noise. The inner part of the sphere is made of polystyrene and 

was assumed to have white-body-like properties such as an integral spectral signature that 

is independent from the light geometry. The fruit (3) is placed on the base of the IS and 

it is detained by a neoprene gasket with 60 mm diameter (4) between the sphere and a 

vacuum chamber (5). The vacuum chamber is a negative pressure space that has the 

function of sucking the fruit to obtain a complete adherence to the gasket, thus avoiding 

the possibility of having photons that escape and reach the sphere and the detector without 

passing through the fruit core. The chamber is made of a connecting pipe (6) which 

connects the vacuum chamber to a vacuum pump (7), in turn connected to the outside of 

the box through a gasket (8). The fruit is illuminated by a NIR 40 W light source (9) 

placed at the base of the vacuum chamber. The NIR light source spectral range start from 

770 nm to 920 nm. Spectral data were collected by an Ocean Optics USB2000 
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spectrometer (Ocean Insight, Rochester, NY, USA) with a spectral sampling interval 

ranging from 350 to 1000 nm and around 0.3 nm of spectral resolution, and internally 

based on a Sony ILX511 linear silicon CCD array (11-12). The apparatus was controlled 

by an industrial PC and data have been collected by Ocean View software (Ocean Insight, 

Rochester, NY, USA) (13). Light source and all the devices were powered by a 12V power 

supply (10). At the beginning and at the end of every acquisition round, a white DelrinTM 

sphere, 80 mm diameter, was placed over the neoprene gasket in the same way as fruits, 

to collect reference transmittance spectra to be used to derive transmittances for all the 

measurements of that round. The use of such a reference sphere was necessary to obtain 

a reference spectra comparable with the magnitude of fruit spectra without changing the 

exposure interval of the spectroradiometer.  

 

 

 

(a) (b) 

 
Figure 1. ALT-System (Apple Light Transmittance System) operation diagram (a) and 

ALT-System at working (b). 

 

3.2.2- Experimental measurements 

The experiment was made at CNR (National Research Council of Italy) facility in 

Follonica (Italy) in April 2021. Seventy apples cv Golden Delicious at commercial 

maturity were collected from the mass retail channels and were stored in two plastic boxes 

having a size 50 x 40 cm, thirty-five apples per box. Apples were inoculated with 

Alternaria alternata spp., one of the most representative fungi responsible for MC disease 

in according to the replication and inoculation methodology already used by Ntasiu et al. 

[8]. The Alternaria was sampled by cv Golden Delicius in Valsugana (TN, Italy), and it 
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was characterized and preserved by Edmund Mach Foundation of San Michele All’Adige 

(TN, Italy). The culture of pathogens was flooded with 5 ml of sterile distilled water and 

the conidia were scraped off with a surgical blade. The resulting conidial suspension was 

filtered through two layers of cheesecloth to remove mycelial fragments. Prior to 

inoculation, apple fruit surface was disinfected for 5 min by drenching them in a 1% 

NaOCl solution. The fruit were artificially inoculated by aseptically injecting 100 ul of a 

conidial suspension through the calyx into the fruit core with a syringe. Then, boxes were 

stored in a climatic chamber at 26°C and 40 ml of water was added to each box that was 

covered to maintain relative humidity over 70%. Each sample was measured with the 

ALT-S every 3 days for 5 times for a total duration of the experiment (Table 1). 

 

Table 1. Experiment timetable. 

Days Round Operations 

02/04/ 2021 1 

Biometrical measurement, 

Inoculation, and spectral 

acquisition 

05/04/ 2021 2 Spectral acquisition 

08/04/2021 3 Spectral acquisition 

11/04/2021 4 Spectral acquisition 

14/04/2021 5 

Spectral acquisition, 

biometrical measurement, MC 

presence validation and RGB 

acquisition 

 

The operational analysis time (positioning of the fruit in the sphere and spectral 

acquisition) was approximately 90 seconds for each sample. Apples were sampled every 

time in two different positions, vertically (T1) and horizontally (T2) with respect to the 

NIR light source location. A total amount of 700 spectra signatures was collected in this 

way (70 samples x 5 times x 2 positions). After the final spectral acquisition, all fruits 

have been cut to check the growth of MC and the degree of its development. Fruits were 

positioned in an image acquisition platform to acquire RGB images to retrieve 

information about the amount of rotten versus healthy surface. The rotten area expressed 

as a percentage of the total cutted area was retrieved with a threshold-based segmentation 

method operated in MatlabR2021a (MahtWorks, USA) using Image Processing Toolbox. 

Biometrical data such as weight, volume, height, maximum and minimum diameter at the 

beginning and end of the experiment were collected. The MC data consisted of 70 values 

determined at the end of the experiment. 
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3.2.3 Transmittance retrieval 

The entire spectral dataset was composed of 700 spectral signatures of 2048 wavelengths 

(WL) ranging from 350 to 1000 nm. Only the spectral wavelengths within the range of 

the NIR light source were selected for the analysis, resulting in 750 bands from 770 nm 

to 920 nm. The set of 70 fruits was sampled in T1 and T2 positions for 5 measurement 

rounds. The spectral data were collected in absolute irradiance (uW/nm/cm2) and the 

spectral transmittance (TR) computed as the ratio: 

 

TR = FRad / RRad (1) 

Where FRad is the radiance obtained by the photons transmitted through the fruit and 

RRad the radiance obtained by the photons transmitted through the Delrin sphere 

reference target. 

 

3.2.4 Band ratios and average transmittance 

A preliminary analysis was made to explore the acquired spectral dataset and verify the 

existence of a significant relation between MC measured at the end of the experiment and 

the spectral data measured at the 5-time steps along the experiment duration. The presence 

of such relation can be considered as a prerequisite for the application of more complex 

machine learning classification methods, and may serve as an indirect estimate of the 

timing of the MC development by exploring different time steps. A simple band ratio 

index was computed for all possible combinations of couples of spectral bands 

transmittance ranging between 800 and 880 nm, separately for each fruit, each position, 

and each time step. Then the correlation coefficient between MC data (70 samples) and 

the multiple band ratios for the 70 fruits was computed for each measurement round and 

position, obtaining a correlation map for each round.  

Furthermore, the average transmittance was computed for all the fruits belonging to the 

two classification categories (healthy and moldy), for each round, to derive additional 

qualitative indicators of the presence of spectral features associated to moldy state. 

 

3.2.5 Binary Classification 

The overall objective of this study was to develop and test different binary classification 

models. The label-encoding was adopted assigning label 1 to moldy samples in 

relationship with the MC presence and label 0 to healthy samples The spectral dataset 

was divided in one training dataset and four test datasets, where round 5 was used to train 
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the model and rounds 1,2,3 and 4 were used as test. In all the classification models 

developed here, each WL represented an independent variable (IV) while the MC state 

represented the target variable to be predicted. Different binary classifiers were evaluated 

by computing performance metrics on accuracy, precision and recall commonly used in 

machine learning models [39]. The performance metric was estimated by computing the 

confusion matrix on the training dataset [40]. By the definition of the confusion matrix, 

C is such that Ci,j is equal to the number of observations known to be in group i and 

predicted to be in group j. Thus, in binary classification the count of true negatives is 

C0,0, false negatives is C1,0, true positives is C1,1 and false positives is C0,1. Therefore, 

the performance metrics were obtained to evaluate the best classifiers and to compare 

them. 

 

Supervised classification models 

Multiple supervised classification models (MSCM) based on the scikit-learn python 

library [41] were evaluated in this study; respectively: LR, SVC, RF, NB, KNN and BC 

[42,43]. The model parameters of the RF, NB, KNN and BC were optimized by cross-

validated grid-search over a parameter grid [44]. The best performing model was selected, 

and then further improved by a dimensionality reduction aimed at reducing the number 

of independent variables. In fact, the presence of redundant information in the spectral 

data can distort classification results [45]. In classification problems some statistical 

techniques can be used to minimize redundant data [46]. Here, we applied a univariate 

feature selection, as univariate statistical test to select k features that have the strongest 

relationship with the output variable. To select a specific k number of features, the 

ANOVA F-value method [47] via the Sklearn f_classif() function was used, while a grid 

search was implemented for the tuning of k [48].  

 

Pattern Recognition Neural Network 

A binary classification model based on ANN-AP was developed using MatlabR2021a 

Pattern Recognition Toolbox (MathWorks, USA). Backpropagation with Momentum 

Algorithm (BMA) represents a powerful tool to resolve non-linear problems and it was 

selected to train the network [49,50]. BMA is a particular class of backpropagation 

algorithms where the input units are propagated forward to the output layer through the 

connecting weights. An accurate description of BMA can be found in the work of 

Phansalkar et al. [51]. The network’s architecture was developed in accordance with 
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backpropagation rules and it was formed by 252 input, one layer with 252 hidden layers, 

one layer with two hidden layers and two output labels. The train function ‘traingdm’ 

based on Fletcher-Powell Conjugate Gradient was used. The limit of training periods was 

set at 600 epochs. Other settings have been set at their default values. 

 

3.3 Results and discussion 

3.3.1 Infection rate 

The infection rate was computed at the end of round 5 by destructive samplings and image 

segmentation. Results showed an infection rate of 54.2% (38 fruits over 70) against 45.8% 

of samples remained healthy (33fruits over 70). Based on the segmentation results, all the 

70 samples were classified by the infection rate (Figure 2). 

 

 

 

 

 

Figure 2. Example of segmentation results in a sample with a 3.0% infection rate. 
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RGB image (a) was isolated from background, the results obtained (b) was furthermore 

processed to obtain necrotic area (yellow) separated from healthy area (light blue). 

Infection results grouped into classes based on infection levels (c). 

 

A relevant fraction of the infected samples (44%) had an infection level between 1% to 

2% (Fig. 2c). This condition made it possible to select an infection threshold of 0.51% to 

balance the number of samples labelled as healthy and moldy (respectively 35 moldy and 

35 healthy samples) in the binary classification training dataset. The choice of the 

infection threshold represents a critical issue in MC early detection [52] and has economic 

and industrial implications. The selection of a relatively large threshold on the one hand 

would facilitate the development of good classification algorithms, but on the other hand 

would carry the risk to classify fruits with infection rates lower than the threshold as 

healthy, which has relevant negative industrial impact [53]. The threshold selected here 

is remarkably low, improving over ten-times the minimum infection level used in similar 

previous study [35]. Keeping the minimum detectable infection at a low value represents 

a primary challenge for the performance assessment of the machine learning based 

methods presented here. 
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3.3.2 -Spectral correlations 

The maps of correlation between transmittance band ratios and MC across all possible 

permutations of couples of bands was computed in T1 and T2 fruit positions and for each 

time step (Figure 3). 

Figure 3. Maps of the correlation coefficient between MC measured at the end of the 

experiment (round 5), and transmittance ratios Tx/Ty based on two individual bands, 

computed on all combinations of x and y ranging over the sampled spectral interval [800-

880 nm] or each round (1 to 5). Panels (a) and (b) refer to T1 and T2 positions 

respectively. 

 

These maps show the absence of any significant correlation at round 1 and 2 in both T1 

and T2 positions, with values contained within -0.2 to 0.2 not associated with any 

consistent pattern. This result is likely related to the absence of infection at these early 

stages of the experiment. At round 3, correlations are still very low for T1 position, while 

they reach values of 0.43 in T2 position, likely indicating that spectral proxyes of the 

infection progress started to be detectable at this stage. The presence of a distinctive 

higher correlation region was then observed at round 4 and then round 5, with maximum 

correlation values in T1 position of 0.67 and 0.82 and 0.74 and 0.51 in T2 position. This 

evidence supports the hypothesis that MC is developing within the fruits between round 

1 and round 3, it is partially developed and detectable at round 4 and fully developed at 

round 5, when the destructive sampling and MC determination were made. The spectral 
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bands whose ratio was associated with the maximum correlation are very similar in round 

4 and 5, at 850 nm and 805 nm in round 4, and 849 nm and 802 nm in round 5. 

Correlations between band ratios and MC in T1 position (vertical) are remarkably higher 

than in T2 position (horizontal), revealing that the measurement position influences the 

MC detection capability by affecting the spectral geometry. The explanation for this 

difference is likely related to the geometric symmetry of apple fruits along the vertical 

axis, that reflects in anisotropic conditions and photons homogeneously passing through 

the internal of the fruit. On the other hand, the fruit placed in horizontal position is not 

symmetrical along the vertical axis aligned with the light source, likely generating fruit 

specific geometric conditions affecting the light penetration and the spectral sampling. 

Given this difference in the performance, only the spectra retrieved in T1 position were 

selected for the subsequent analysis and machine learning classification. 

 

3.3.3 - Transmittance temporal pattern 

The average spectral transmittance pattern in T1 position was obtained for each round 

(Figure 4). 

 

Figure 4. Temporal pattern of mean transmittance for healthy and infected samples with 

a threshold infection level of 2% or more. Transmittance was first averaged across all 

wavelengths and then mean and standard deviation were computed. 
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In round 1 and 2, the TR curve does not show any significant difference between healthy 

and moldy samples. In round 3, the magnitude of TR from 860 nm to 880 nm increased 

in infected samples more than in healthy ones. In round 4 the difference in TR between 

healthy and moldy samples is further accentuated, especially from 800 to 820 nm and 

from 850 to 880 nm. In round 5 results show the maximum TR difference between healthy 

and moldy samples. The standard deviation of the infected population increases 

significantly compared to healthy samples. In addition, round 5 shows an increase of 

infected population’s transmittance from 825 to 880 nm. Similar studies were conducted 

on Fuji apples by Tian et al. and Zhaoyong et al. [36,34]. Tian et al. measured in moldy 

samples an increase of TR in the spectral region from 775 to 830 nm and decrease from 

830 to 880 nm; In contrast, Zhaoyong et al. showed a decrease of TR in moldy samples 

from 700 to 820 nm. Generally, the Transmittance temporal pattern obtained in our work 

shows a decrease of TR in moldy samples from 800 to 830 nm and an increase from 830 

to 880 nm, in contrast to Tian et al. results and in accord to Zhaoyong et al. result. The 

difference in results might be due to the different apple varieties used in previous 

spectroscopy analysis. Indeed, apple varieties present morphological differences such as 

their texture, skin color and chemical composition and the spectral response results 

inevitably influenced by these characteristics [54]. In addition, TR differences 

encountered in several studies might also depend on the large number of pathogens related 

to MC disease [7]; Therefore, a precise taxonomic classification of the detected pathogens 

would be recommended. 
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3.3.4- Binary classification and ANN-AP 

Based on ANOVA univariate results, F-value was computed in round 5 to select a specific 

k number of features to reduce the redundant information (Figure 5). 

 

 

Figure 5. ANOVA F-value results from 800 to 880 nm. F-value is a ratio between two 

variance and a higher F-value corresponds to a significant statistical mean separation 

between healthy and moldy groups. 

 

Results show a constantly increasing pattern of F-value from 830 nm to 866 nm, followed 

by a decrease and then a remarkable increase from 870 to 878 nm. Figure 5 shows two 

peaks in the spectral region from 860 to 878 nm caused by a larger variance in the spectral 

region from 860 to 880 nm. The F-value increases significantly from 860 to 878 nm in 

accordance with the increase of TR (Figure 4) obtained in Temporal pattern results to the 

same spectral range and round. Therefore, spectral bands characterized by larger F-value 

indicate the spectral features most influenced by MC presence. Results obtained by 

ANOVA analysis allowed the reduction of the spectral range in MSCM training from 

863.38 to 877.69 nm. 

Several MSCM and one ANN-AP were assessed in this study. Between MSCM, the BC 

reported the best training score in accuracy and precision; consequently, classification 

results obtained from BC and ANN-AP were compared. Training results are shown in 

Table 2. 
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Table 2. BC model and ANN-AP training results. The Binary classification models were 

trained on round 5 and the performance metrics (accuracy, precision and recall) were 

computed by confusion matrix. 

Model Accuracy 
Preci

sion 

Recal

l 

BC 0.95 0.85 0.88 

ANN-AP 0.72 0.89 0.62 

 

ANN-AP reported a higher level of precision (0.89) while BC model reported a higher 

level of accuracy (0.95) and recall (0.88). The accuracy measures the number of correct 

predictions made divided by the total number of predictions made. The precision is the 

number of true positives divided by the number of true positives and false positives. The 

recall is the ability to find all relevant instances (intuitively the ability of the classifier to 

find all the positive samples). The higher level of accuracy and recall reported by the BC 

model shows a better ability to classify correctly samples labeled (both positives and 

negatives) in comparison to the ANN-AP model. However, the higher level of precision 

reported by ANN-AP suggests a better ability to find positive instances. Indeed, a high 

score of precision reflects a high degree of discrimination between positive and false 

positive samples in training set. The precision score obtained in the training set confirms 

the higher capability to classify a low number of false positive by ANN-AP, as already 

reported in literature concerning the hyperspectral classification based on decision tree 

and neural network [55,56].The importance of high precision in the training set is 

accentuated in a quality control industrial context, where the identification of infected 

samples has the greatest impact compared to the elimination of healthy samples. 

Therefore, failures in correctly detecting infected samples leads to a direct damage for the 

end consumers which require healthy and standardized products. Differences in 

classification results by ANN-AP and BC models can be due to their different processing 

of the input variable. Indeed, ANN-AP is an algorithm inspired by biological neural 

networks instead BC is based on a top-down approach of looking at the data. In ANN-AP 

the value of the weights selected during the training process and the training goal is to 

minimize the error between values predicted by ANN-AP and true values [57]. The BC 

model uses a binary tree graph to assign for each data sample a target value and the target 
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values are presented in the tree leaves. To reach the leaf the sample is propagated through 

nodes [58]. 

The two models, calibrated in round 5, were then tested on the previous rounds to assess 

them on completely independent datasets, also characterized by a different (e.g lower) 

level of MC compared to the level used to train the models. Classification results on 

previous rounds are reported in figure 6. 

 

 

 

Figure 6. BC model (a) and ANN-AP (b) test results in round 1,2,3,4. The Binary 

classification results on unlabeled datasets show two classes, respectively infected 

(positive) and healthy (negative).  

 

The two models were trained on round 5 with a threshold infection rate of 0.51%; 

therefore, the number of positive samples and negative in training set resulted of 35 and 

35 (50% positive and 50% negative), respectively. 

Overall, results obtained from both the BC and ANN-AP models exhibit an increase over 

time of the amount of detected infected samples; this behavior is in agreement with an 

expected exponential development of the infection [59]. The lowest number of positive 

samples was detected in round 1, respectively 10% in BC model and 0% in ANN-AP. At 

(a) (b) 
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round 1 a condition of complete absence of the infection was likely present, given that 

the inoculus was just applied at the beginning of the experiment. This condition is only 

met with the ANN-AP model, while the BC model reported a relatively large number of 

false positives (7 samples classified as positive). In round 2 the BC and the ANN-AP 

models detected an amount of 35.72% and 2.85% of positive samples, respectively. The 

temporal proximity of round 2 from to the inoculation time (6 days) discourages the 

hypothesis that a high level of infection was reached. The correlation maps (Figure 3) and 

the average transmittance patterns (Figure 4) also support the hypothesis of a complete 

absence of infection at round 2. Therefore, BC model is likely reporting a large number 

of false positives while ANN-AP is performing properly. This difference can be attributed 

to ANN-AP learning skills, that better adapt to new data patterns and reveal a higher 

capacity to interpret non-linear problems, as reported in the literature from Rojas and 

Abiodun et al. [60,61]. In round 3 the percentage of detected positive samples resulted 

similarly in the two models, at 40 % and 44% for BC and ANN-AP, respectively.  

Both models suggest the presence of the infection at round 3, a finding that is supported 

by the correlation maps (Figure 3) and transmittance patterns (Figure 4), which reveal the 

first signs of the MC presence at this stage. It is possible that the machine learning 

methods have a higher specificity compared to a simple band ratio or an average 

transmittance pattern and detect an actual starting of the infection more effectively. 

Nevertheless, the possibility of these methods reporting false positives at this stage cannot 

be ruled out, and further research is needed to verify the actual infection rate at an early 

stage by destructive samplings that could be done only at the end of the experiment. 

In round 4, 48.57% and 64.29% of samples were classified as positives in the BC and 

ANN-AP models, respectively; a large spread of infected samples at this stage is also 

confirmed by the correlation maps (Figure 3) and the average Transmittance patterns that 

are significantly different between infected and healthy samples (Figure 5). Based on MC 

presence in round 5, the ANN-AP shows an overestimation of positive classifications. 

Overall, the classification models trained in this study might exhibit a possible uncertainty 

due to the limited size of the dataset [62].  

This analysis gives insight on the model capability to detect MC at different development 

stages and it provides information about the model general applicability in real post-

harvest condition. As already discussed, in industrial context the economic damage for 

primary producers due to the inputs of the infected samples in large scale retail trade is 

greater than the damage associated to the healthy product discard.  
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The BC model, while having an overall good classification capacity on the training 

dataset (Table 2), reported a large fraction of false positives at previous time steps while 

used in testing mode. This characteristic prevents its application in industrial detection 

given that the amount of infection and the temporal stage of the infection process are 

generally unknown. The ANN-AP model, on the other hand, exhibited both a good 

precision on the training dataset, and a consistent reproduction of the infection rates and 

development on the testing datasets, therefore resulting to have a greater potential for 

industrial applicability. This potential should be further confirmed and assessed by means 

of further research deploying a significantly larger number of sampled and inoculated 

fruits, also encompassing infection variability across different cultivars. 

 

3.4 - Conclusions 

This study proposes a novel early detection system based on NIRS technologies to detect 

MC in cv Golden Delicious apples. The measurement device, called ALT-System, was 

successfully developed and tested on a set of infected samples. The ALT-System has 

demonstrated its capability to detect MC through one single measurement per fruit 

surpassing the previous measurement systems that were requiring repeated 

measurements. Therefore, the achievement of this goal represents an important starting 

point to develop an efficient industrial prototype. In this study, spectral features linked to 

the MC presence were identified in the spectral region from 863.38 to 877.69 nm, and the 

spectral differences in term of TR between healthy and infected samples were explained 

over five different measurement rounds during the development of the infection. Several 

binary classification methods based on decision trees and ANN methods were tested here. 

ANN-AP and BC models were the two best methods with a better score in terms of 

performance metrics as accuracy, precision and recall.  Moreover, their performance in 

training and validation datasets were assessed and discussed. By comparing training 

results between the two methods, the ANN-AP training results exhibited the best score in 

precision (0.89), a parameter whose optimization is mostly associated with the industrial 

needs of fruits post-harvest processing. Indeed, an efficient capability to distinguish 

healthy samples is a primary requirement to develop a functional industrial detection 

system. BC and ANN-AP models were tested on independent datasets obtained at 

previous stages of the infection development, and the ANN-AP showed a better 

classification result in relation to the infection growth rate. Indeed, ANN-AP showed a 

predictive accuracy of 100% at round 1 and 97.15% at round 2, demonstrating a better 
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capability compared to BC model to interpret unknown datasets. Classification errors 

reported here might be related to the small dataset size and a low infection threshold 

adopted. 

 

In industrial context, MC early detection through non-invasive methods remains a critical 

issue, and this work represents a starting point to develop an industrial-scale prototype 

based on NIRS. Further studies are recommended to develop a measurement system 

capable to overcome the limits of the ALT-System: i) inability to measure multiple fruits 

simultaneously ii) need to minimize the measurement time per fruit. In addition, further 

investigations are needed to integrate the ALT-System directly on a conveyor belt.  

Additional spectral tests on multiple apple varieties are also recommended to explore the 

link between skin color, texture, biochemical contents and spectral response. Finally, the 

technology and methods used and developed in this work might be applied in other apple 

diseases detection, e.g. biotic and abiotic internal browning or post-harvest CO2 damages, 

and show a high potential for application to other fruits. 
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Chapter four 

 

Conclusions 

 

This PhD thesis presented novel low-cost hyperspectral applications for high-

throughput phenotyping and post-harvest quality control in apple fruits, focusing on an 

industrial context application of the hyperspectral technologies. 

The Senop HSC-2 hyperspectral low-cost camera (HSC-2) was successfully optimised, 

developing a novel correction method to obtain an optimised radiance output. The 

presence of spectral jumps and falls in the HSC-2 spectrum and the background noise, 

due to the intrinsic characteristics and sensitivity of the hyperspectral camera optical 

sensors, were substantially reduced by using the novel correction method developed in 

this PhD thesis. In addition, the influence of the dark current signal on the hyperspectral 

output was computed, permitting the improvement of the spectral results. Based on the 

results, the HSC-2 low-cost hyperspectral camera can be considered a powerful tool in 

hyperspectral applications, such as crop monitoring and disease detection, especially in 

the near-infrared spectral range from 650 to 820 nm. The optimisation of the HSC-2 

hyperspectral outputs obtained by the radiance correction method developed has first 

permitted the use of the HSC-2 in a high-throughput phenotyping context. 

The HSC-2 was integrated into a high-throughput phenotyping platform during a tomato 

drought stress experiment conducted using four untested tomato genotypes (Red Setter, 

Torremaggiore, 770P and 990P) characterised by high industrial interest. The genotypes 

were tested during two cycles of full and partial irrigation for two months. The principal 

phenotyping traits were assessed by processing the images acquired by the phenotyping 

platform acquisition. The environmental parameters were processed and compared with 

the phenotyping results. A novel hyperspectral acquisition setup was made in the high-

throughput phenotyping platform, and an innovative segmentation method was 

developed and tested, reducing the hyperspectral dataset dimension by 85.5%. In 

addition, the time processing for the hyperspectral images was highly reduced. 

Achieving the optimisation of the storage space and the data processing time reduction 

are two relevant goals, representing a starting point for further developments and 

applications of low-cost hyperspectral technologies in a phenotyping industrial context.  
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An hyperspectral index (H-index) capable of detecting the water stress status was 

successfully developed tested. The genotype’s response to the water stress obtained 

using the phenotyping platform image analysis was compared to a novel H-index 

developed in this PhD thesis. The H-index has demonstrated better efficiency in water 

stress detection in the first stress stages, highlighting a higher sensitivity compared to 

the phenotyping traits obtained by the high-throughput phenotyping platform. Based on 

the H-index and OIs results, the genotype’s water stress resistance was assessed for all 

genotypes, and 770P and 990P were more susceptible to water stress than Red Setter 

and Torremaggiore genotypes. Therefore, the integration of a hyperspectral instrument 

in the high-throughput phenotyping platform in ALSIA is currently being evaluated. 

A novel low-cost hyperspectral technology was also developed to improve post-harvest 

quality control in the apple industry. Indeed, a low-cost hyperspectral system based on 

a light collection by an integrating sphere and the Ocean optics USB 2000 spectrometer, 

was successfully developed and tested during a laboratory-controlled experiment. 

Seventy apples of the Golden Delicious variety were infected by Alternaria alternata, 

one of the primary pathogens responsible for the moldy core disease. The apples were 

measured during five measurement rounds for 13 days. Based on correlation analysis 

results, the spectral features more linked to the moldy core presence were identified in 

the spectral region from 863.38 to 877.69 nm. Two binary classification models based 

on Artificial Neural Network Pattern Recognition and Bagging Classifier with decision 

trees were developed, revealing a better detection capability by Artificial Neural 

Network Pattern Recognition, especially in the early stage of infection. Indeed, the 

Artificial Neural Network’s predictive accuracy was 100% in round 1 and 97.15% in 

round 2. The proposed system surpassed previous moldy core detection methods 

needing only one measurement per fruit and improving over ten times the minimum 

infection level used in previous studies. Those results have a notable significance in an 

automated industrial context, where increased speed and measurement precision 

positively impacts the entire quality control process. 

 

Overall, the results obtained in this PhD open new ways to the application of low-cost 

hyperspectral technologies in an industrial-research context. Further models of low-cost 

hyperspectral cameras can be tested and optimised by applying the correction method 

developed in this PhD. Low-cost hyperspectral technologies can be further applied to 

detect abiotic and biotic stresses in a phenotyping context, with the aim of conducting 
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phenotyping experiments in the open field. The apparatus developed for moldy core 

detection can be tested on other fruits, apple varieties and diseases such as biotic and 

abiotic internal browning, and post-harvest CO2 damage. In addition, the link between 

skin color, texture, biochemical contents, and spectral response can be explored. 

Further development of the results obtained in this PhD thesis can be the optimization 

of the measurement time per fruit, with the final objective of the industrial application 

of the measurement system developed. 

Finally, spectral investigations based on the methods developed in this PhD can be 

extended using hyperspectral instruments with a more comprehensive spectral range, 

increasing the industrial interest toward developing and applying of low-cost 

hyperspectral technologies in agricultural processes. 
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Further activities carried out during the PhD period 

 

Peer-reviewed journal articles 

Genangeli Andrea, Giorgio Allasia, Marco Bindi, Claudio Cantini, Alice Cavaliere, 

Lorenzo Genesio, Giovanni Giannotta, Franco Miglietta, and Beniamino Gioli. ‘A Novel 

Hyperspectral Method to Detect Moldy Core in Apple Fruits’. Sensors 22, no. 12 (January 

2022): 4479. https://doi.org/10.3390/s22124479   

 

Damm, A., S. Cogliati, R. Colombo, L. Fritsche, A. Genangeli, L. Genesio, J. Hanus, et 

al. ‘Response Times of Remote Sensing Measured Sun-Induced Chlorophyll 

Fluorescence, Surface Temperature and Vegetation Indices to Evolving Soil Water 

Limitation in a Crop Canopy’. Remote Sensing of Environment 273 (1 May 2022): 

112957. https://doi.org/10.1016/j.rse.2022.112957   

 

Book chapters 

Di Cicco, Annalisa, Remika Gupana, Alexander Damm, Simone Colella, Federico 

Angelini, Luca Fiorani, Florinda Artuso, Brando, Vittorio Ernesto; Lai, Antonia; 

Genangeli Andrea; Miglietta, Franco ; Santoleri, Rosalia. “Flex 2018” Cruise: An 

Opportunity to Assess Phytoplankton Chlorophyll Fluorescence Retrieval at Different 

Observative Scales’. In Proceedings e Report, edited by Laura Bonora, Donatella 

Carboni, and Matteo De Vincenzi, 1st ed., 126:688–97. Florence: Firenze University 

Press, 2020. https://doi.org/10.36253/978-88-5518-147-1.68  

 

Oral communications 

Andrea Genangeli, Giorgio Allasia, Marco Bindi, Claudio Cantini, Alice Cavaliere, 

Lorenzo Genesio, Giovanni Giannotta, Franco Miglietta, Beniamino Gioli. ‘Metodologia 

non invasiva di detection iperspettrale del marciume del cuore della mela nella fase di 

post-raccolta’. 8° Convegno Nazionale GdL SOI Postraccolta, Pescia (PT), 29-30 

settembre 2022. 

 

Abraham Mejia Aguilar, Andrea Vianello, A. Genangeli, G Giannotta, Roberto 

Monsorno. ‘Low-Cost and Autonomous Hyperspectral Sensor Node for Precision 

Agriculture Methods’. SFScon South Tyrol Free Software Conference 2021 (Bolzano / 

https://doi.org/10.3390/s22124479
https://doi.org/10.1016/j.rse.2022.112957
https://doi.org/10.36253/978-88-5518-147-1.68
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Bozen, 11/11/2021 - 12/11/2021). 

https://bia.unibz.it/esploro/outputs/conferencePresentation/Low-cost-and-autonomous-

hyperspectral-sensor-node/991006249097701241?institution=39UBZ_INST  

 

Poster 

Antonia Corvino, Michela Palumbo, Ilde Ricci, Maria Cefola, Beniamino Gioli, Andrea 

Genangeli, Giovanni Giannotta, Bernardo Pace. ‘Impiego di tecniche iperspettrali per 

predire il contenuto in zuccheri in frutti di actinidia’. 8° Convegno Nazionale GdL SOI 

Postraccolta, Pescia (PT), 29-30 settembre 2022. 

 

Alessandra Ruggiero, Anna Tedeschi, Gaetano Guarino, Andrea Genangeli, Angelo 

Petrozza, Antonello Costa, Stephan Summerer, Giorgia Batelli, Stefania Grillo. “Digital 

phenotypes during recurrent drought stress: screening of a tomato collection”. LXV SIGA 

Annual Congress From genes to fork - On Mendel's footsteps, Piacenza, 6-9 September 

2022. 

 

Workshops 

 

ANNUAL MEETING PROGETTO E-crops (https://www.e-crops.it/ ) : 

“Trappole e sensori ottici” Giovanni Giannotta (FOS), Genangeli (UNIFI, IBE, FOS). 

(Oral communication). 

 

“Sviluppo di metodologie di inferenza su fenotipi digitali: integrazione di una tecnologia 

iperspettrale low-cost in una HTPP” Genangeli A. et al. (CNR, ALSIA, FOS). (Oral 

communication). 

 

“Stima di crop traits per attività di field phenotyping su frumento con dati multi e 

iperspettrali di proximal e aerial remote sensing: risultati preliminari della campagna 

E-CROPS 2022 ad Arborea (OR)” Boschetti M., Heidarian R., Candiani G., De Peppo 

M., Cesaraccio C., Mereu S., Duce. P., Serralutzu F., Cillis D., Cipriani A., Groli E., 

Ravaglia S., Arghittu P., Moresi F.V., Maesano M., Genangeli A., Carotenuto F., Gioli 

B. (CNR, BF, UNITUS, UNIFI). 

 

https://bia.unibz.it/esploro/outputs/conferencePresentation/Low-cost-and-autonomous-hyperspectral-sensor-node/991006249097701241?institution=39UBZ_INST
https://bia.unibz.it/esploro/outputs/conferencePresentation/Low-cost-and-autonomous-hyperspectral-sensor-node/991006249097701241?institution=39UBZ_INST
https://www.e-crops.it/
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“Tecniche non-distruttive per la predizione del grado di maturazione di fragole e kiwi”. 

Cefola, Pace, Corvino, Palumbo, Ricci, Sicuro, Gioli, Genangeli, Giannotta (CNR, FOS, 

UNIFI) 

 

“Digitalizzazione del fenotipo in piattaforma HTPP: l’esempio degli stress biotici su 

pomodoro” Cillo F., Stavolone L., Veronico P., Melillo M.T., Genenageli A., Bubici G., 

Prigigallo M.I., Sportelli G. (CNR, UNIFI) 

 

“Attività scientifica di CAL/VAL della missione PRISMA” Riunione 

Tecnica 5 

https://www.asi.it/scienze-della-terra/prisma/  

 

“Attività di rilevamento su sistemi agricoli condotta ad Arborea (OR)”; A. Genangeli, 

B. Gioli, S. Mereu (IBE, UNIFI), M. Pepe, M. Boschetti (IREA) (Oral communication). 
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