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Editorial 

We have little data on the ancient history of our discipline, but we have clear indi-
cations on the use of copper, zinc, gold, and silver ores in Mesopotamia and the 
Levante, several millennia BC, as well as on targeted search for numerous precious 
stones and their use (malachite, turquoise, lapis lazuli, opal, and agate). These pecu-
liarities suggest the existence of knowledge aimed at recognizing and classifying the 
different species, if only to optimize access to these precious resources. This concern 
has always been critical, since in 1801 Déodat Gratet de Dolomieu was still defending 
the need to establish fixed bases in mineralogy to determine species. An important 
step was taken at that time thanks to the work of Abbé René Just Haüy (1743–1822; 
Fig. 1a) who demonstrated a primary shape of all minerals, and showed how the 
secondary shapes were derived from this one by simple laws of decay (Fig. 1b). In 
doing so, he gave a rigorous definition of the mineral species “the mineralogical 
species is a collection of bodies whose integral molecules are similar in form, and 
composed of the same principles assembled in the same ratio”. He thus introduced 
the atomistic way of thinking into the mineralogical sciences and contributed to lay 
the foundations of modern crystallography. 

In 1850, after the pioneering work of René Just Haüy, Auguste Bravais introduced 
the idea that the atoms in crystals are structurally arranged which was later demon-
strated by X-ray studies of Max von Laue and colleagues (Fig. 1c). William Henry 
Bragg and his son William Lawrence showed that crystals contain planes of atoms, 
and thus Bragg’s law of X-ray diffraction was born. 

Finally, a gradual development of new analytical techniques occurred, leading 
to higher and higher resolution. Early crystallographic studies started with 
the goniometer measurements established by Wollaston 1809. Polarized light 
microscopy that was introduced into science at about 1830 even today plays a decisive 
role in mineralogical sciences; it was later augmented by reflected light and spindle 
stage applications. The next step was to find a way to transcend the optical resolution 
limit, which resulted in the development of the electron microprobe in the 30s of 
the last century. We of course cannot go into detail on the wealth of new techniques 
which have emerged since then to study minerals in detail. Besides different novel 
developments in microscopy, we are today using spectroscopic methods and we are
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(a) (b) (c) (d) 

Fig. 1 Progress in the knowledge of mineralogy 

utilizing laser beams or even synchrotron radiation. Some older colleagues will still 
remember the pre-1980s, when several milligrams of zircon were needed for U/Pb 
multigrain age-dating studies. Today we are able to “dissect” one single 200 µm 
crystal of zircon in situ, in order to differentiate the different ages of various zircon 
domains (Fig. 1d). As if that were not enough, we can even outline trace element and 
REE patterns of these particular zircon domains. 

The year 2022 was the bicentennial of the death of René Just Haüy, and 1822 
is also the year when Haüy’s Traité de cristallographie and the second edition of 
his Traité de mineralogy were published. To celebrate this milestone, the Interna-
tional Mineralogical Association (IMA) declared 2022 the Year of Mineralogy. This 
initiative was approved by UNESCO and launched in Lyon, France, where the IMA 
held its 23rd general meeting. Mineralogy 2022 is taking place under the patronage 
of the International Year of Basic Science for Sustainable Development, which has 
been proclaimed by the UN. Mineralogy 2022 consists of coordinated activities on 
regional, national, and international levels. In recent times, mineralogy has built many 
bridges to other disciplines such as physics, chemistry, metallurgy, archaeology, and 
even biology. 

Thus, mineralogy is not just steeped in tradition but is also advancing at a 
rapid pace—mineralogy is a living science. This book edited by Luca Bindi and 
Giuseppe Cruciani shows that very clearly. The content of the book spans the range 
from novel crystallographic issues focusing on fullerenes and quasicrystals (Bindi) 
and new structural developments (Krivovichev) via questions related to mineral 
evolution, mineral informatics, and new minerals (Hazen, Morrison and Prabhu; 
Prabhu, Morrison and Hazen; Pekov and Pushcharovsky) to high-pressure and high-
temperature phases (Caracas, Mohn and Li; Tschauner and Ma; Nestola, Pamato 
and Novella). Articles related to the role of hydrogen-containing minerals (Welch; 
Hawthorne), minerals on planets and asteroids (Zurkowski and Fei; Tachibana), and 
on mineral discoveries which changed our everyday life (Cruciani and Gualtieri) 
complete the contents of the present book. Reflecting on traditional mineralog-
ical issues and the different topics covered in the current contribution, it becomes 
immediately evident how mineralogy is also connected with the basic themes of
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UN sustainable development goals. Affordable and clean energy; economic growth; 
innovations in industry and infrastructure; responsible consumption and produc-
tion; sustainability with respect to climate, water; the building of modern cities and 
communities; and, last but not least, a peaceful cooperation between scientists of all 
our nations on Earth are significant targets that are also promoted by mineralogical 
sciences and the International Mineralogical Association. 

We recommend that you take the book, lie back in peace, discover the new avenues 
in mineralogical sciences, enjoy reading, and have fun. 

Hans-Peter Schertl 
IMA President 

Patrick Cordier 
Former IMA President



Contents 

1 Discovery of Fullerenes and Quasicrystals in Nature . . . . . . . . . . . . . . 1 
Luca Bindi 

2 The Evolution of Mineral Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
Robert M. Hazen, Shaunna M. Morrison, and Anirudh Prabhu 

3 Mineral Informatics: Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
Anirudh Prabhu, Shaunna M. Morrison, and Robert M. Hazen 

4 The Discovery of New Minerals in Modern Mineralogy: 
Experience, Implications and Perspectives . . . . . . . . . . . . . . . . . . . . . . . 69 
Igor V. Pekov and Dmitry Yu. Pushcharovsky 

5 Structural and Chemical Complexity of Minerals: The 
Information-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 
Sergey V. Krivovichev 

6 Predicting HP-HT Earth and Planetary Materials . . . . . . . . . . . . . . . . 131 
Razvan Caracas, Chris Mohn, and Zhi Li 

7 Structural Mechanisms Stabilizing Hydrous Silicates 
at Deep-Earth Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 
Mark D. Welch 

8 Discovering High-Pressure and High-Temperature Minerals . . . . . . 169 
Oliver Tschauner and Chi Ma 

9 Mineralogy of Planetary Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 
C. C. Zurkowski and Y. Fei 

10 Going Inside a Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 
Fabrizio Nestola, Martha G. Pamato, and Davide Novella 

11 Mineralogy of Returned Sample from C-Type Near-Earth 
Asteroid (162173) Ryugu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 
Shogo Tachibana

ix



x Contents

12 Mineral Discoveries that Changed Everyday Life . . . . . . . . . . . . . . . . . 287 
Giuseppe Cruciani and Alessandro F. Gualtieri 

13 Hydrogen, the Principal Agent of Structural and Chemical 
Diversity in Minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 
Frank C. Hawthorne



Chapter 1 
Discovery of Fullerenes 
and Quasicrystals in Nature 

Luca Bindi 

Abstract By their very nature, discoveries are often unexpected and thus unpre-
dicted. To a considerable extent, discoveries in the geological realm are disconnected 
from those in the laboratory sciences. In unusual situations, spectacular advances in 
cognate sciences result in geological or mineralogical discoveries. Such is the case 
with fullerenes and quasicrystals, whose histories will be briefly explored in the 
following pages. 

Keywords Fullerenes · Quasicrystals · Discovery · Icosahedrite · Solar system 

1.1 Introduction 

The idea of exploring space and discovering the wonders of our planet has always 
aroused human curiosity, inspired a thirst for knowledge, and awakened an ancestral 
interest related to the origins of the world, humanity and matter. Space and Earth 
are intertwined and actually have no clear-cut boundaries. The discovery of natural 
fullerenes and quasicrystals stems from this understanding and unveils a fragment of 
basic science that turns its gaze on two crucial breakthroughs that open up incredible 
scenarios for man and science. 

These discoveries are structurally infinitesimal in size yet are extraordinary 
because they have shattered dogma and certainty and overturned and redefined 
scientific “truths” established over hundreds of years. 

As Paul Steinhardt, Albert Einstein professor of Physics at Princeton Univer-
sity, has well explained in his recent book (Steinhardt 2019), the discoveries of 
natural fullerenes and quasicrystals illustrate precisely examples of the second kind 
of impossible. As humans and as scientists, in fact, one can easily understand what 
is impossible for everyone. It is the first kind of impossible (e.g., man cannot run 
faster than light). The second kind of impossible, on the other hand, is what the
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2 L. Bindi

whole community considers and firmly believes to be impossible, but then, through 
coincidences, events, studies and research, is proved in actuality to be possible. 

The discoveries of natural fullerenes and quasicrystals are set in the world of 
mineralogy. The actors are scientists moving on a vast stage, weaving together distant 
countries. The plot develops around the objects of research: fullerenes and quasicrys-
tals, exactly those elements of contact and collision between Earth and space, which 
reveal their boundaries by showing themself. 

Discoveries such as these are steeped in curiosity, tenacity, intuition and perse-
verance, full of unknowns, fascination, difficulties and twists and turns. These are 
stories where the protagonists find themselves entangled between the precision of the 
laboratory, with their eyes fixed on microscopic observations, and the sometimes-
unpredictable action in the field, with their hands immersed in clay or frozen rivers. 
These are stories in which the strength not only of the individual emerges, but also 
of the research group and the international scientific community, both in terms of 
confrontation, sharing and collaboration, as well as in terms of healthy skepticism 
and apparent contradiction. 

In fact, these are scientific adventures imbued with the typical characteristics of the 
human soul, because even the boundaries between man and scientist are blurred and 
share extraordinary elements, as the desire and curiosity to always know and discover 
new things, to go beyond their own beliefs and limitations. Both are distinguished 
by the ability to experience the emotions that accompany and often drive actions, 
with their own difficulties and weaknesses, but also with the passion and strength to 
pursue, achieve and build something fascinating and new. 

That is why these are stories of everyone and for everyone, not only for scientists, 
because they speak of human ingenuity and because in fact every discovery, whether 
natural, scientific, technological or inner, is one more small piece of man and belongs 
to his daily life. 

1.2 Background 

This paper focuses on the discoveries of fullerenes and quasicrystals in nature. 
These events happened within the research groups of Peter Buseck and Luca Bindi. 
Therefore, the focus is on work done within their groups, respectively. 

1.2.1 Fullerenes 

Considerable work on carbonaceous material occurred within the Buseck group 
prior to their fullerene discovery (e.g., McKee and Buseck 1977; Smith and Buseck 
1981, 1982) and set the stage for that discovery. In a search for possible traces 
of pre-Cambrian life, they used high-resolution transmission electron microscopy
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Fig. 1.1 Glassy, carbon-rich 
shungite. Photo by John A. 
Jaszczak 

(HRTEM) to examine ancient kerogens, carbon-rich solid organic matter in sedi-
mentary rocks (Buseck et al. 1988). Most samples in that study were provided by 
Bill Schopf from his comprehensive study of Earth’s early biosphere (Schopf 1983). 

Among those samples was shungite, a peculiar, glassy, black carbon-rich material 
(Fig. 1.1) abundant in the Shunga area, ~200 km north of Petrozavodsk in Russia, 
but samples were hard to obtain elsewhere. 

Although unsuccessful with identifying evidence of pre-Cambrian life, new infor-
mation was obtained about poorly crystalline ancient carbons (Buseck et al. 1988) 
and comparisons to the structures of metamorphic and synthetically annealed carbons 
(Buseck and Huang 1985; Buseck et al. 1987). 

In the midst of this work came the stunning report of the discovery of C60, a new  
carbon allotrope. It has a closed structure with 60 vertices and 32 faces, similar to a 
soccer ball (Fig. 1.2).

The identification of C60 was based on distinctive mass spectra that were deter-
mined to be from a heretofore unknown spherical molecule of carbon (Kroto et al. 
1985). The reverberations were immediate and led, in fairly short order, to the award 
of the 1996 Nobel Prize in Chemistry to Harry Kroto, Robert Curl, and Richard 
Smalley. 

Although the spectral evidence was compelling, there was a lack of visual support 
for the theoretical model. With their interest in carbon and experience with electron 
microscopy, it seemed as if looking at a sample by members of the Buseck research 
group might be productive. Jim Heath, a co-author of the original fullerene paper, 
and Buseck had a phone conversation in May 1986 about the possibility of looking 
at a sample. Shortly thereafter Heath brought the special carbonaceous material 
produced at Rice University to Buseck at Arizona State University for HRTEM 
examination. Isolated spheres of the appropriate size were observed within a mass of
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Fig. 1.2 The fullerene C60 
structure

amorphous and very poorly crystallized carbon. It seemed likely that these were the 
first observations of individual C60 spherical molecules. In hindsight, it is unfortunate 
that the consensus of the Rice and Buseck groups was overly cautious so that they 
decided against publishing these images. 

Solid C60 became available following the seminal work of Krätschmer et al. 
(1990). Buseck-group postdoctoral research associate Wang Su used HRTEM to 
examine the material and produced the first direct images of condensed fullerenes 
(Wang and Buseck 1991). 

1.2.2 Quasicrystals 

In 1974, cosmologist and mathematician Roger Penrose (Penrose 1974), who won the 
Nobel Prize in Physics in 2020, devised a mosaic built from two types of pieces that 
violated crystallographic rules because it possessed five-fold pentagonal symmetry 
(Fig. 1.3).

A few years later it was shown that such a mosaic was actually quasiperiodic, that 
is, the two types of pieces repeated with a frequency corresponding to an irrational 
number: the golden ratio. 

Penrose’s mosaic had perfect pentagonal symmetry, and over the years it has had 
many elaborations. After Penrose, theoretical research (tessellations filling space but 
allowing multiple types of tiles) showed that any symmetry is possible, whether in 
two or three dimensions.
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Fig. 1.3 An example of 
Penrose tiling

Although these mathematical models were fascinating and attracted a lot of 
interest in the scientific community, many people thought that they would remain 
simply beautiful geometrical tilings/patterns/constructs. Experimental observations 
of their relevance were lacking. 

In 1984 Levine and Steinhardt (1984) hypothesized the existence of a novel type 
of material, a middle ground between the crystalline and glassy states; a material with 
theoretically impossible characteristics, and which they initially dubbed impossible 
crystal and later quasicrystal, short for “quasiperiodic crystal”. 

These materials had a quasiperiodic atomic arrangement, meaning that two or 
more atomic groups had to repeat at different intervals and that the ratio between 
these periods of translation had to be irrational, that is, not expressible as a ratio of 
integers. In other words, they had to exhibit a kind of dissonance in space. 

Because they are quasiperiodic instead of periodic, the symmetry of quasicrystals 
is not constrained like it is in ordinary (periodic) crystals and thus they could have 
rotational symmetries forbidden in crystals, including pentagonal symmetry in a 
plane (five-fold axes) or icosahedral symmetry (the symmetry of a soccer ball) in 
three dimensions. A classic example is Penrose’s own “tessellation” with pentagonal 
symmetry. 

Validation came almost immediately with the discovery of the first experimental 
evidence of a quasicrystal by Shechtman (1984) at the U.S. National Bureau of Stan-
dards. Using transmission electron microscopy, Shechtman noticed that the atoms 
in supercooled Al–Mn-alloys were distributed as hypothesized by Levine and Stein-
hardt, thereby discovering quasicrystals. The discovery of quasicrystals earned him 
the 2011 Nobel Prize in Chemistry. 

Today, quasicrystals are accepted by the scientific community, and more than 
a hundred of them with different chemical composition and symmetry have been 
synthesized. However, there is still no consensus on their status as fundamental states 
of matter. There are two schools of thought. Some researchers think that quasicrystals, 
being synthesized under highly controlled conditions, are very delicate, metastable 
materials too complicated to be stable phases of matter (Henley 1991). Others believe
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that quasicrystals are robust and energetically stable phases like ordinary crystals 
(Levine and Steinhardt 1984). Who is right? Answering this question would mean 
finding the solution to a fundamental puzzle in solid-state physics. Can nature come 
to the rescue? If the first school of thought was true, it would seem not. But if the 
second were true, one might think that these materials would also form in nature, 
like the other ordinary crystalline materials, awaiting to be discovered. 

1.3 The Discovery in Nature 

1.3.1 Natural Fullerenes 

Simon Tsipursky, a former scientist with the Russian Academy of Sciences in 
Moscow, joined the Buseck research group as a postdoctoral research associate in 
1991. He was studying a variety of problems when he suggested that it might be 
interesting to examine several sample of shungite that Svetlana Firsova, a colleague 
of his from the USSR, had provided to him. She had developed a mineralogical clas-
sification of different shungite samples from Karelia based on physical and chemical 
data (Firsova et al. 1986; Firsova and Shatskij 1988) but lacked TEM information, 
which is why she was interested in the work of Tsipursky. We are indebted to Dr. 
Firsova for that sample. 

Although rare in the US at the time, this seemingly obscure material was abundant 
in and around Shunga. One sample had been examined (Buseck et al. 1988) prior  
to the arrival of Tsipursky, so it was intriguing when he independently suggested 
looking at different samples of the same material, but from another perspective and 
at higher resolution. 

In late 1991, Tsipursky showed Buseck a HRTEM image of honeycomb shapes, 
obtained from a small area of one of the shungite samples, that looked strikingly 
similar to the HRTEM images of the synthetic fullerite being studied by Wang Su. 
Tsipursky and Buseck decided the image might be of fullerene C60, but independent 
verification was needed. Its identity was confirmed at Oak Ridge National Labora-
tory by Robert Hettich using high-performance mass spectrometry, who found the 
sample contained co-existing C60 and C70. Within a year, a paper about the discovery 
appeared in Science (Buseck et al. 1992). Both the paper on imaging synthetic 
fullerenes (Wang and Buseck 1991) and on the occurrence of natural fullerenes 
(Buseck et al. 1992) attracted enough attention to justify independent Research News 
articles about them in Science (Amato 1991, 1992).
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1.3.2 Natural Quasicrystals 

At the beginning of 2000s, Lu et al. (2001) searched for natural quasicrystals using 
the inventory of the International Center for Powder Diffraction Data, which includes 
thousands of powder X-ray diffraction patterns (PXRD) collected on synthetic and 
natural compounds. By means of defining a quantitative figures-of-merit for the 
PXRDs, they identified possible promising quasicrystal candidates by ranking them 
and revealed several minerals as promising candidates as well. However, after a 
complete XRD and TEM study, no candidates turned out to be anything remarkable. 
After this approach, the author had the idea of testing minerals that were not enumer-
ated in the catalogue but that had chemical compositions equivalent to that of certified 
synthetic quasicrystals. This led to the investigation of a sample of the Natural History 
Museum of the University of Florence, which was labelled “khatyrkite” (catalogue 
number 46407/G; Fig. 1.4) and reported to come from the Khatyrka region of the 
Koryak mountains in the Chukotka autonomous okrug on the north-eastern part of 
the Kamchatka peninsula (Bindi et al. 2009, 2011, 2012).

Khatyrkite, nominally (Cu, Zn)Al2, is a mineral found together with cupalite, 
nominally (Cu, Zn)Al. In this rock sample, khatyrkite was found to be intergrown 
with forsterite, diopside, spinel and stishovite and very rare grains of a new alloy 
(Al63Cu24Fe13), which was found to have a perfect icosahedral quasicrystalline 
structure (Fig. 1.5).

The experiments had damaged most of the museum sample except for a few frag-
ments. With those fragments we were able to measure the oxygen isotope (18O/16O 
and 17O/16O) compositions, which ultimately gave a clear indication of the sample’s 
origin: they were residues of an asteroid dating to the birth of the solar system (Bindi 
et al. 2012). To have more information about the origin of the sample and find addi-
tional samples suddenly became our scientific endeavor. The possibility of finding 
additional samples resulted in an expedition to the remote area where the original 
was found. In July 2011 we did it (Bindi and Steinhardt 2018; Bindi 2020) and found 
ten new samples with mineralogical and petrographic features nearly identical to 
the original museum sample. The newly confirmed meteorite find has been named 
Khatyrka (MacPherson et al. 2013) for the Khatyrka river, and was approved by the 
Meteoritical Society. 

1.4 Aftermath 

1.4.1 Natural Fullerenes 

It was known at the time of the discovery of the natural fullerenes that a large family 
of related, closed-cage molecules can occur, all of which contain twelve pentagon 
rings within the overall collection of hexagons typical of sp2-hybridized carbon.
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Fig. 1.4 Different views of the original museum sample belonging to the Natural History Museum 
of the University of Florence, Italy (catalogue number 46407/G). The lighter-coloured material 
on the exterior contains a mixture of spinel, clinopyroxene and olivine. The dark material mostly 
consists of khatyrkite (CuAl2) and cupalite (CuAl), but also includes granules of icosahedrite with 
composition Al63Cu24Fe13

Higher- and lower-order synthetic, closed-cage carbon molecules were also known, 
e.g., C28, C36, C70, C76, C84, C90, C94, etc.  

It was interesting to find C60 in a geological sample. However, what made the 
discovery exciting was the possibility that a range of natural fullerenes might occur, 
and that each might have formed under distinctive geological conditions and thus 
provide information about past events or environments. That possibility remains, but 
so far there is no evidence to support that hypothesis, although there are abundant 
reports of the occurrence of natural fullerenes both terrestrially and in meteorites. 
They currently seem to be mainly geological oddities. 

There have been other consequences of the original report. Kroto and Buseck 
became friends and had numerous discussions about fullerenes and carbynes over the 
years. Shortly before Kroto’s death, those discussions flowered into a new research
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Fig. 1.5 The signature of an icosahedral quasicrystal consists of patterns of sharp peaks with 
five-fold (a), two-fold (c) and three-fold (d) symmetry observed in the Al63Cu24Fe13 phase in 
the sample shown in Fig. 1.4. Panel (b) reports a single-crystal X-ray diffraction reconstructed 
precession photograph down one of the five-fold symmetry axes of the icosahedron

direction with the discovery of a class of compounds that have sp-hybridized carbon 
as their major constituents. Because they have many characteristics in common with 
carbyne, they called them pseudocarbynes (Tarakeshwar et al. 2016). That paper also 
received considerable attention (Davenport 2016) and resulted in subsequent papers 
(Kim et al. 2020, 2022). Work on pseudocarbynes is ongoing. Although they are 
likely in space (Tarakeshwar et al. 2019), there have been no reports of geological 
pseudocarbynes to date, but perhaps they will be found in the future.
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1.4.2 Natural Quasicrystals 

As documented by Hollister et al. (2014) and Lin et al. (2017), Khatyrka fragments 
exhibit clear evidence of high pressure (at least 10 GPa) and high temperature (around 
1200 °C), suggesting that the meteorite underwent an impact shock. Later, a second 
natural quasicrystal was found (Bindi et al. 2015a, b) with composition Al71Ni24Fe5 
and decagonal symmetry. As is the case for the natural icosahedral quasicrystal, the 
decagonal quasicrystal shows a high degree of structural perfection, particularly the 
lack of significant defects called phason strains, indicating that either the minerals 
formed without phason strain in the first place, or subsequent annealing was sufficient 
for phason strains to relax away. Furthermore, and perhaps the most spectacular, 
Bindi et al. (2016) documented the occurrence of a possible third natural quasicrystal 
from the Khatyrka meteorite. It coexists with icosahedrite, Al63Cu24Fe13, and has 
a composition Al62Cu31Fe7, which is outside the stability field at room pressure 
reported for quasicrystalline phases in the Al-Cu-Fe system (Zhang and Lück 2003). 
This is the first case of a composition discovered in nature prior to being discovered 
in the laboratory. 

Given the success of these findings and the conditions at which they form, we did 
a series of laboratory impact shock experiments (Asimow et al. 2016; Oppenheim 
et al. 2017a, b; Hu et al.  2020) that recreated the composition and structure of natural 
quasicrystals. We then realized that shock synthesis may be useful in producing 
quasicrystals and our attention moved to the study of red trinitite produced in the 
Trinity nuclear test in Alamogordo, New Mexico, in 1945. This led to the discovery 
of a previously unknown composition of icosahedral quasicrystal, Si61Cu30Ca7Fe2 
(Bindi et al. 2021). Finally, we decided to explore materials generated by another 
mechanism: lightning strike. This led to the discovery of a quasicrystal with 12-
fold symmetry (Mn72.3Si15.6Cr9.7Al1.8Ni0.6) in a fulgurite from Nebraska consisting 
predominantly of fused and melted sand along with traces of melted conductor metal 
from a nearby downed powerline (Bindi et al. 2022). 

1.5 Conclusions and Outlook 

Nature has shown us that it can form both fullerenes and quasicrystals. It has also 
shown that these materials are actually capable of surviving for billions of years. 
The search for these exotic materials in nature has been driven by many stimu-
lating factors across many disciplines, particularly mineralogy and crystallography, 
materials science, chemistry, geochemistry and condensed matter physics. 

The repercussions and echoes of these discoveries have been incredible, in science 
and in daily life. Research on fullerenes and quasicrystals has determined new scien-
tific truths, refined and redefined previous ones, and opened incredible scenarios for 
future development.
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Both discoveries tell a story of scientific research and science in general and 
demonstrate how mineralogy can continue to make important contributions to 
science. Many new minerals with hitherto unknown compositions and crystal struc-
tures are day-by-day discovered, and perhaps in the future it will be likely to discover 
other materials with compositions or forbidden symmetries not yet observed in the 
laboratory. Or perhaps it will also be likely to discover new phases of matter that 
have not yet even been thought of. 
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Chapter 2 
The Evolution of Mineral Evolution 

Robert M. Hazen , Shaunna M. Morrison , and Anirudh Prabhu 

What seest thou else/In the dark backward and abysm of time? 
William Shakespeare, The Tempest, Act I, Scene 2 

Abstract The diversity and distribution of Earth’s minerals have evolved through 
almost 4.57 billion years as a consequence of changing physical, chemical, and ulti-
mately biological processes. “Mineral evolution,” the study of planetary mineralogy 
through deep time, has undergone its own evolution, from a qualitative narrative of 
successive stages of change, to a more quantitative exploration of mineral occur-
rences as a function of age, and ultimately as catalyst for the newly emerging field 
of mineral informatics. A key feature of this evolution is the recognition that every 
mineral specimen is an information-rich “time capsule,” waiting to be opened. Each 
sample reveals its history through hundreds of attributes: trace and minor elements, 
stable and radioactive isotopes, solid and fluid inclusions, and myriad non-ideal 
structural, optical, magnetic, electrical, elastic, and other properties. Increasing real-
ization of the data-rich character of minerals has pointed the way to an “evolutionary 
system of mineralogy,” which complements the official IMA classification scheme 
based on the Dana system. 
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2.1 Introduction: Pre-2008 Progress Towards Mineral 
Evolution 

The concept of evolution of speciation is the antithesis of that of “simultaneous” creation 
of all mineral species, now existing on the Earth. Neither concept has yet been critically 
analyzed, although it can no longer be deferred. 

Zhabin (1979), “Is there evolution of mineral speciation on Earth?” 

Mineral evolution attempts to answer a seemingly straightforward question: Has 
Earth’s mineralogy always been as we find it today, or have there been changes over 
the 4.567-billion-year history of our planet? The answer, that Earth’s mineralogy has 
changed and continues to change in dramatic ways, has long been evident to any 
keen observer of the natural world. Yet prior to 2008 that question was not addressed 
in a sustained and systematic way. 

More than a century ago, the earliest radiometric measurements of rocks demon-
strated the extreme antiquity of some geological samples (Boltwood 1907; Strutt  
1910)—a key to any exploration of mineralogy through time. In parallel, by 1915, 
Norman L. Bowen had outlined his hypothesis regarding “The evolution of igneous 
rocks” (Bowen 1915a, 1915b) as part of a series of papers (Bowen 1912, 1913, 
1922, 1927) that culminated in his influential book, The Evolution of the Igneous 
Rocks (Bowen 1928). In spite of his provocative use of the word “evolution,” Bowen 
claimed that his title meant little more than a time-sequence of rock and mineral-
forming events: primary igneous minerals appear in a predictable order dictated 
by cooling and fractional crystallization. Nevertheless, Bowen’s work detailed a 
specific example of a widespread trend: Minerals increase in diversity and evolve in 
their distributions as a consequence of sequential physical, chemical, and (on Earth) 
biological processes. 

A remarkable and seldom cited early contribution is the slender book La Vie 
Créatrice les Roches by the French microbiologist Georges Deflandre, first published 
in 1947 (Deflandre 1961). Deflandre was decades ahead of his time by approaching 
petrogenesis from a biologist’s perspective and recognizing the “grandiose action of 
life in the genesis of rocks.” In his volume he reviewed the formation of a wide range 
of biologically-mediated lithologies, including chalk, limestone, chert, jasper, coal, 
and bitumen—work that presaged the rise of biogeology and astrobiology in the late 
twentieth century [e.g., Lunine (2005) and references therein]. 

By the second half of the twentieth century, a growing number of rock and mineral 
age determinations led to new insights. Gastil (1960; his Fig. 1) was a pioneer in 
his presentation of striking evidence for episodicity in the formation of igneous 
and metamorphic rocks (Fig. 2.1). His remarkable graph of mineral occurrences in 
10-million-year bins, spanning the past three billion years and arranged into five 
continent-scale subgroups as well as the cumulative worldwide trend, was the first to 
clearly reveal enhanced mineralization during intervals that have since been equated 
to times of the assembly of five supercontinents (e.g., Nance et al. 2014). Subsequent 
compilations over the next quarter century, notably by ecomonic geologists (Laznicka
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Fig. 2.1 Gastil (1960), who tabulated ages of igneous and metamorphic rocks and minerals, 
presented some of the earliest compelling evidence for episodicity in Earth’s mineral and rock 
record [From Gastil (1960), his Fig. 1]
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1973; Meyer 1985, 1988; Stowe  1994), underscored and amplified the non-uniform 
distribution of mineralization events over the past several billion years.

Of all papers published prior to 2008, the one that came closest to articulating 
the concept of mineral evolution was a 3-page extended abstract in 1979, “Is there 
evolution of mineral species on Earth” by Zhabin (1979)—a work soon thereafter 
translated into English (Zhabin 1981) and further ellaborated by Yushkin (1982); see 
also Krivovichev (2010). Zhabin clearly stated that Earth’s minerals arose in three 
successive stages, including (1) meteorites with 40–50 minerals, (2) initial “con-
solidation of planets” with 60–70 minerals, and (3) “differentiation of the planet” 
and crustal evolution with 250–300 minerals. Zhabin also recognized a subsequent 
“strong wave of hydrous and oxidized minerals” from the near-surface environ-
ment—a compelling hint regarding biologically-mediated mineralization, though he 
did not explicitly mention any role of the biosphere in Earth’s mineral diversifica-
tion. Of special note in this regard was the exhaustive work of Nash et al. (1981), 
who recognized four temporal phases in the formation of Earth’s uranium mineral 
deposits. Nash and colleagues emphasized the important roles of global oxygenation 
(phase 3) and the rise of land plants (phase 4) in the dramatically changing landscape 
of uranium mineralization, especially those of economic import. 

The plate tectonics revolution led to new insights related to Earth’s changing 
mineralogy. In particular, newly emerging ideas about tectonic cycles offered 
convincing explanations for some aspects of episodic mineralization. Barley and 
Groves (1992) recognized that periods of supercontinent assembly were character-
ized by enhanced formation and preservation of mineralized zones—work that was 
echoed and amplified by many subsequent studies (Goldfarb et al. 2001; Kerrich 
et al. 2005; Groves et al. 2005, 2010; see Bradley 2011, Nance et al. 2014, and refer-
ences therein). Among a number of other influential studies examining formation 
age and rock/mineral characteristics, the epic work of Ronov and colleagues on the 
variable ratios of clay minerals in sediments from the Russian platform during the 
Neoproterozoic Era and Phanerozoic Eon stands out (Ronov et al. 1969, 1990; see  
Hazen et al. 2013a, b, and analyses therein). 

Taken together, the pre-2008 literature on Earth’s evolving mineralogy provided 
a convincing answer to the question of whether Earth’s mineralogy has been static or 
dynamic. A range of studies unequivocally pointed to dramatic temporal changes in 
mineral diversity and distribution. However, these many compelling contributions to 
the as-yet unnamed field of mineral evolution were widely scattered among multiple 
scientific domains and subfields, published in diverse journals and books, and written 
in at least three different languages. Little wonder, then, that an overview was lacking.
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2.2 Mineral Evolution: 2008–2009 

The mineralogy of terrestrial planets evolves as a consequence of a range of physical, 
chemical, and biological processes. 

Hazen et al. (2008), “Mineral evolution” 

The qualitative concept of mineral evolution was developed over a two-year 
interval, beginning on 6 December 2006. Theoretical biologist Harold Morowitz, 
who had long been speculating about origins-of-life scenarios (Morowitz 2002, 
2004) asked Robert Hazen about the liklihood that clay minerals were present on 
Earth during the Hadean Eon—the presumed time of life’s origins. The question 
related to several origin-of-life models that invoked clay minerals as templates and 
catalysts (Lahav et al. 1978; Cairns-Smith and Hartman 1986; Ferris and Ertem 1992, 
1993; Ertem and Ferris 1997). This “naïve” mineralogical question from a biologist 
startled Hazen and caused him to pose Zhabin’s (1979) question anew, this time 
with access to far more relevant data and a rich and growing literature on deep-time 
Earth processes. As research proceded, experts on complementary aspects of miner-
alogy and Earth history were added to a growing collaborative team—meteoritics 
(Tim McCoy), tectonics (Wouter Bleeker), early-Earth mineralogy and petrology 
(Dominic Papineau), metamorphic petrology (John Ferry), geochemistry (Dimitri 
Sverjensky), mineral data (Robert Downs), and biomineralogy (Hexiong Yang). The 
resulting paper, “Mineral evolution” (Hazen et al. 2008), proposed a 10-stage frame-
work for imagining a history of dramatic changes to Earth’s near-surface miner-
alogy that resulted from a succession of physical, chemical, and ultimately biological 
processes [Fig. 2.2; Hazen and Ferry (2010), their Fig. 1].

Hazen et al. (2008) posited that Earth’s mineralogy began with a modest number 
of pre-nebular “ur-minerals,” which formed in the expanding, cooling atmospheres 
of aged stars. This “stardust,” mixed with condensed volatiles in so-called “dense 
molecular clouds,” became the raw materials from which new generations of stars and 
planets were formed. Stages 1 and 2 of Earth’s mineral evolution involved nebular 
processes that are preserved in chondrite and achondrite meteorites, respectively. 
Stage 3 was the time (>4.4 Ga) of Earth’s accretion and differentiation, with forma-
tion of a crust dominated by mafic and ultramafic lithologies. Stages 4 and 5 saw 
increasing mineral diversity as a consequence of partial melting and fluid-rock inter-
actions in the crust and upper mantle, with associated element fractionation. These 
first five stages were driven exclusively by physical and chemical processes. 

The role of biology in Earth’s mineral evolution began ~4 billion years ago 
with Stage 6, as single-celled microorganisms exploited the chemical potential 
energy of minerals in disequilibrium with their near-surface environments. These 
“chemolithoautotrophs” did not significantly increase Earth’s mineral diversity, but 
they created new modes of formation (and morphologically distinct lithologies, such 
as stromatolites, phosphorites, and some iron-rich red beds) for mineral species that 
were already present.



20 R. M. Hazen et al.

Fig. 2.2 A qualitative 10-stage narrative frames the field of mineral evolution (from Elements; 
Hazen and Ferry 2010, their Fig. 1)
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The Great Oxidation Event of Stage 7 (~2.4 Ga) saw the largest pulse of mineral 
diversification in Earth’s history, as oxygenic photosynthesis created a reactive atmo-
sphere that altered numerous near-surface minerals. Stage 7 resulted in an inventory 
of more than 2000 new minerals, most of which are unlikely to form elsewhere in 
our solar system (Hazen 2015; Hazen and Morrison 2022). 

Stage 8 spans a billion-year interval (~1.8–0.8 Ga) when the oceans gradually 
became oxygenated from the surface to the deepest regions. This transition was a crit-
ical step in the evolution of Earth’s near-surface environment, but few new mineral-
forming processes are thought to have come into play during this time. The end of 
the Neoproterozoic Era (c. 850–540 Ma) was marked by a series of climate extremes, 
from global glaciation or “Snowball Earth” episodes during which ice temporarily 
become the most abundant near-surface mineral, to “Hothouse Earth” intervals when 
ice may have temporarily become “extinct.” The 10th stage of Earth’s mineral evolu-
tion (<540 Ma) marked the rise of life on land and the time of widespread biomin-
eralization, most notably of shells, teeth, and bones, but also a marked increase in 
clay-rich soils, taphonomic minerals, and hundreds of other bio-mediated species. 

This model of Earth’s increasing mineralogical complexification (Hazen et al. 
2008; Hazen and Ferry 2010) was followed by several other qualitative studies. 
Hazen et al. (2009) considered the special case of uranium mineral evolution, which 
underscored the importance of biology in the diversification of minerals of redox-
sensitive elements. Several papers considered the implications of mineral evolution 
for origins-of-life studies (Grew et al. 2011; Hazen and Papineau 2012; Hazen 2013; 
Morrison et al. 2018). In particular, the changing landscape of clay minerals over 4.5 
billion years provided the focus for “Clay mineral evolution” (Hazen et al. 2013a), 
which also contrasted deep-time changes in clay minerals on Earth with those of Mars. 
Commenting on the intriguing work of Maynard-Casely et al. (2018), Hazen (2018) 
speculated on the very different mineral evolution of Saturn’s frigid moon, Titan, with 
a mineralogy dominated by solid hydrocarbons, water ice, and possibly a variety 
of clathrates and “co-crystals” unknown on Earth. And, in response to numerous 
questions about a plausible “Stage 11” associated with human activities, Hazen et al 
(2017a, b) contributed “On the mineralogy of the ‘Anthropocene Epoch’,” which 
enumerated hundreds of minerals and mineral-like compounds that have formed as a 
consequence of agricultural, mining, industrial, and other anthropogenic processes. 

The above-cited works are largely qualitative examinations of mineral evolution. 
Few reliable numbers of species were associated with deep-time events, and lists 
of minerals versus age were often speculative. Recognizing these deficiencies, a 
group of 13 collaborators, including most of the original “Mineral evolution” authors, 
described “Needs and opportunities in mineral evolution research” (Hazen et al. 
2011). Foremost among their conclusions: “The principal impediment to advancing 
studies of mineral evolution is the lack of a comprehensive database that links … 
mineral species and locality information with ages and geologic context. Much of 
the necessary geochronological data exist in the literature, but in widely scattered 
primary sources.” Therefore, a major effort during the decade from 2010 to 2019 
was the development of the “Mineral Evolution Database” (MED)—a resource that 
enabled the quantitative study of mineral evolution.
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2.3 Quantitative Mineral Evolution: 2010–2019 

One of the most energizing ideas is a plan for a Mineral Evolution Database, tied to www. 
mindat.org and designed to serve the entire geology community. 

Bradley (2015), “Mineral evolution and Earth history” 

Data on the ages and localities of minerals are key to a more quantitative approach 
to mineral evolution. Accordingly, an effort to build a Mineral Evolution Database 
(MED) commenced in 2010. Linked to the https://rruff.info/ima platform at the 
University of Arizona (Downs 2006; Lafuente et al. 2015), the MED was spearheaded 
by graduate student Joshua Golden, with programming collaboration by Alex Pires 
and contributions from dozens of University of Arizona undergraduates, notably in 
conjunction with Downs’ mineralogy class. The resulting MED resource incorporates 
more than 200,000 mineral/locality/age data. Each record includes extensive meta-
data, including the nature of the mineral or rock sample, dating methods employed, 
tecdtonic setting, and citations (Golden et al. 2019; Golden 2019). 

The MED allowed for the first time a detailed deep-time examination of the occur-
rences of many mineral species or related group of minerals. Several early studies 
on the minerals of Hg (Hazen et al. 2012), C (Hazen et al. 2013b), and Be (Grew and 
Hazen 2013, 2014), as well as molybdenite (MoS2; Golden et al. 2013), underscored 
the striking episodicity in mineralization associated with the supercontinent cycle 
(Hazen et al. 2014), as well as an increase in the average oxidation state associated 
with atmospheric oxygenation (Hazen 2015; Hummer et al. 2021; Fig.  2.3).

Equally important to these studies, the development of the MED underscored the 
essential role that statistical analysis of mineral data might play in mineralogical 
discovery. In 2014, Hazen chanced upon an article on lexical statistics that described 
the distinctive distribution of words in a book: a few words such as “a”, “and”, and 
“the” are used numerous times, whereas most words appear only once or twice. 
Furthermore, the details of this pattern of abundance, known as a “Large Number 
of Rare Events” or LNRE distribution, allow the prediction of an author’s total 
vocabulary from a single sample of writing. Hazen approached University of Arizona 
statistician Grethe Hystad and asked if a similar LNRE model might apply to mineral 
distributions. In a subsequent series of papers (Hystad et al. 2015a, b; Hazen et al. 
2015a, b), they introduced the field of “mineral ecology,” which applied LNRE 
models, coupled with the ecological concept of “island biogeography” (MacArthur 
and Wilson 1967), to estimate numbers of as yet undiscovered minerals on Earth. 
These powerful statisical methods also enabled estimates of the differential rates 
of discovery of different subgroups of minerals. For example, Hazen et al. (2015b) 
found that more than 80% of the colorful and economically important minerals 
of copper have likely been described, whereas only 65% of typically bland and 
economically uninteresting sodium-bearing minerals have been characterized. In 
subsequent refinements of these methods, Hystad et al. (2017, 2019a, b) predicted 
that Earth’s total mineral diversity is between 9,000 and 10,000 species—values that 
suggest more than 3000 mineral species remain to be discovered and described, most 
of which are rare (Hazen and Ausubel 2016).

http://www.mindat.org
http://www.mindat.org
https://rruff.info/ima
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Fig. 2.3 This histogram of the number of Mn mineral-locality pairs as a function of geologic time 
employs data in 50 million-year bins. Colors indicate Mn oxidation state: Mn2+ = red. Mn3+ = 
green, and Mn4+ = purple. The vertical blue bands represent intervals of supercontinent assembly 
[From Hummer et al. (2021), their Fig. 1]

A number of mineral ecology studies focused on the missing minerals of specific 
chemical elements, including carbon (Hazen et al. 2016), cobalt (Hazen et al. 2017a, 
b), boron (Grew et al. 2017), chromium (Liu et al. 2017), vanadium (Liu et al. 
2018), and lithium (Grew et al. 2019). These contributions predicted numbers, 
as well as some specific examples, of minerals yet to be discovered—predictions 
that have been confirmed in some instances (Ibáñez-Insa et al. 2017; Hazen et al. 
2019a, b; Morrison et al.  2020). 

A recurrent theme in mineralogical studies has been the role of minerals in the 
origins of life (e.g., Schoonen et al. 2004; Hazen 2006; Cleaves et al. 2012, and 
references therein). One response to these investigations has been to speculate on 
the mineralogy of the Hadean Eon—a time when life is thought to have emerged 
but few minerals survive (Hazen 2013; Morrison et al.  2018). Originally, this work 
suggested severe limits on the number of species that could realistically be invoked 
in creative chemical scenarios of life’s origins, for example those of Steven Benner 
and colleagues (Ricardo et al. 2004; Kim et al. 2016; Ziegler et al. 2018). Only subse-
quently did Hazen and Morrison (2021a) realize that common rock-forming minerals 
contain abundant potentially reactive surface sites with critical minor elements such 
as B, Co, Mo, Ni, and P.
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Several other contributions based on data in the Mineral Evolution Database have 
focused on chemical changes of Earth’s oceans and atmosphere, which affected the 
diversity and distribution of minerals (Hazen 2015; Hao et al. 2017a, b; Walton 
et al. 2021). Of note, Hummer et al. (2021) demonstrated a significant change in 
the average oxidation state of manganese minerals over the past 4 billion years 
(Fig. 2.3)—changes that can be correlated with known periods of increased atrmo-
spheric oxygenation. Liu et al. (2016) and Large et al. (2022) observed similar trends 
based on a range of redox-sensitive minerals and their minor elements. 

The Mineral Evolution Database, coupled with the pioneering studies of mineral 
chemical and structural complexity by Sergey Krivovichev (Krivovichev 2012, 2013, 
2014, 2015, 2016), have enabled quantitative estimates of the changing average 
complexity of minerals through deep time. Significant temporal increases in both 
chemical and structural complexity have been demonstrated for all IMA-approved 
mineral species (Krivovichev et al. 2018, 2022; Bermanec et al. 2023; Fig.  2.4), as 
well as for the subset of minerals in which boron is an essential element (Grew et al. 
2016). In addition, Hong et al. (2022) documented a significant correlation between 
the earliest known occurrence of mineral species and their melting temperature, with 
the oldest minerals having the highest average melting tempratures. 

Fig. 2.4 Krivovichev and colleagues demonstrated systematic increases in the numbers of mineral 
species (blue line), stuctural complexity (orange line), and chemical complexity (green line), as 
plotted against the 10 stages of mineral evolution outlined by Hazen et al. (2008) [From Krivovichev 
et al. (2022), their Fig. 13]
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As useful as the Mineral Evolution Database has been in placing minerals in their 
quantitative historical context, the determination of mineral occurrences versus ages 
does not exploit the full potential of information-rich mineral samples. The inevitable 
next step in the evolution of mineral evolution, therefore, was to exploit the analytical 
and visualization potential of mineral informatics (Prabhu et al. 2022;Morrison et al.  
this volume). 

2.4 An Evolutionary System of Mineralogy: 2019+ 

When considering mineral kinds in the historical context of planetary evolution, a different, 
time-dependent classification scheme is warranted. We propose an ’evolutionary’ system of 
mineral classification based on the recognition of the role played by minerals in the origin 
and development of planetary systems. 

Cleland et al. (2021), “Historical natural kinds and mineralogy” 

Minerals are data-rich objects that are particularly well-suited to methods that 
exploit multi-dimensional explorations of the natural world. Most mineralogical 
research conforms to the traditional scientific strategies of induction and deduc-
tion, by which discoveries are made in a framework of established principles or 
testable hypotheses. An alternative “abductive” approach relies on the assumption 
that hidden patterns exist in nature (Hey et al. 2009; Hazen 2014). The inherent 
complexities of systems such as rocks and minerals, with their numerous interde-
pendent chemical and physical attributes, warrant the search for high-dimensional 
correlations that preserve historic information but that are not readily apparent via 
inductive or deductive methods. Accordingly, geoscientists are increasingly turning 
to the powerful analytical and visualization opportunities provided by data science 
and informatics (Morrison et al. 2017; Wang et al. 2021; Prabhu et al. 2022). 

Mineral informatics rests, first and foremost, on the availability of comprehen-
sive and reliable open-access mineralogy and petrology data resources that conform 
to FAIR practices (Bolukbasi et al. 2013; Wilkinson et al. 2016). Key exam-
ples of these critical open-access platforms include https://www.mindat.org (Jolyon 
Ralph, personal communication, 12 December 2022); https://rruff.info/ima (Downs 
2006; Lafuente et al. 2015); https://earthchem.org (Lehnert et al. 2000, 2007); and 
the Global Earth Mineral Inventory (GEMI; Prabhu et al 2021). These and other 
databases are amplified by multi-volume references, including Handbook of Miner-
alogy (Anthony et al. 1990–2003) and Rock-Forming Minerals (Deer et al. 1982– 
2013), as well as tens of thousands of primary publications. In addition, numerous 
efforts to build targeted mineral databases are in progress, including those devoted to 
pyrite (Gregory et al. 2019); stellar moissanite (https://presolar.physics.wustl.edu/ 
presolar-grain-database/; Stephan et al. 2020); garnet (Chiama et al. 2022); and 
tourmaline (Bermanec et al. 2022).

https://www.mindat.org
https://rruff.info/ima
https://earthchem.org
https://presolar.physics.wustl.edu/presolar-grain-database/
https://presolar.physics.wustl.edu/presolar-grain-database/
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Collectively, these resources provide an opportunity to exploit information-rich 
aspects of minerals to develop a new system of mineralogy based on their modes 
and ages of formation (Hazen 2019; Cleland et al. 2021; Hazen and Morrison 2022; 
Hazen et al. 2022). The resulting “evolutionary system of mineralogy” is an effort to 
place the more than 5900 mineral species approved by the International Mineralog-
ical Association’s Commission on New Minerals, Nomenclature, and Classification 
(IMA-CNMNC; https://rruff.info/ima, accessed 15 March 2023) into their historical 
and paragenetic contexts. 

An important aspiration of the evolutionary system of mineralogy has been to 
enumerate “historical natural kinds,” which ideally represent “genuine divisions 
of nature” that arose through well-defined historical processes (Boyd 1991, 1999; 
Hawley and Bird 2011; Magnus 2012; Khalidi 2013; Ereshevsky 2014; Godman 
2019; Cleland et al. 2021). In most instances, we attempt to classify mineral 
natural kinds on the basis of the distinctive combinations of chemical and physical 
attributes of natural specimens—properties that arose as a consequence of numerous 
different paragenetic modes (Hazen and Morrison 2022). Thus, for example, the trace 
elements, isotopes, fluid and solid inclusions, morphologies, petrologic contexts, 
and other attributes of pyrite (FeS2) from hydrothermal vein deposits are strikingly 
different from pyrite formed by authigenesis or biogenic processes (Gregory et al. 
2019). Such characteristics point to more than 20 natural kinds of pyrite (Hazen and 
Morrison 2022). The evolutionary system is based on those diagnostic, information-
rich aspects of mineral specimens, thus complementing standard protocols of the 
IMA-CNMNC, which defines each mineral “species” on the basis of its unique 
combination of major element chemical composition and idealized atomic structure 
(e.g., Burke 2006; Mills et al. 2009; Schertl et al. 2018; Hatert et al. 2021; Hazen 
2021; Hawthorne et al. 2021). 

Because the evolutionary system focuses on the changing diversity and distribu-
tion of minerals through space and time, it considers any condensed solid phases that 
likely occurred during the formation and evolution of Earth’s near-surface environ-
ment. While many of the most ancient minerals are preserved in meteorites, others, 
including nebular ices and the earliest phases that formed the terrestrial crust, are 
not. The evolutionary system thus embraces a range of condensed solids that are not 
yet considered by the IMA-CNMNC, while it splits some IMA species into multiple 
natural kinds and lumps other closely-associated IMA species into a single natural 
kind (Hazen et al. 2022).

https://rruff.info/ima


2 The Evolution of Mineral Evolution 27

A significant challenge remains in the quantitative lumping and splitting of IMA 
species into natural kinds. In some instances, large and growing databases of mineral 
analyses facilitate progress. For example, the Presolar Grain Database with more than 
17,000 isotopic analyses of stellar moissanite (https://presolar.physics.wustl.edu/pre 
solar-grain-database/; Stephan et al. 2020) enabled Boujibar et al. (2021) and Hystad 
et al. (2021) to apply a variety of clustering techniques to identify discrete groups 
of SiC grains that formed in different stellar environments. Similarly, Gregory et al. 
(2019) employed decision trees to distinguish different populations of pyrite based 
on their distinct distributions of 12 trace and minor elements. 

Most importantly, the evolutionary system recognizes that the varied modes of 
formation, or “paragenetic modes,” of minerals produce different natural kinds of 
minerals, even if the formal IMA species is the same. Thus, under the evolutionary 
system stellar diamond, mantle diamond, and impact diamond are different natural 
kinds of the IMA species diamond. Similarly, meteorite hydroxylapatite is a different 
natural kind than the hydroxlyapatite in your teeth and bones. Hazen and Morrison 
(2022) attempted to catalog every known paragenetic mode for all 5657 IMA-
approved species (as of 23 November 2020)—an exercise that identified 10,556 
unique combinations of a mineral species and its mode of formation. This effort led 
to several conclusions: 

1. The great majority (>>80%) of Earth’s minerals formed as a consequence of 
interactions with aqueous fluids; 

2. More than half of all mineral species can form directly or indirectly from 
biological activities; more than a third of species form exclusively via life; 

3. Forty-one rare elements that collectively represent only 0.01 atom percent of 
Earth’s crust are essential in the compositions of more than 40% of mineral 
species; and 

4. Most minerals form via only one (59%) or two (24%) paragenetic modes. 
However, a few common minerals form by more than a dozen processes. 

The comprehensive study of the paragenetic modes of minerals enabled Hazen et al 
(2023b) to document a number of systematic mineralogical trends. For example, the 
average hardness of older minerals (>2.5 Ga) is significantly greater than of minerals 
formed more recently (<0.5 Ga); minerals from paragenetic modes formed at lower 
temperatures display greater average structural complexity than those formed at 
high temperature; and minerals from paragenetic modes that display greater average 
chemical complexity are systematically less dense than those from modes with lesser 
average chemical complexity. Furthermore, minerals formed in anhydrous environ-
ments and/or by abiotic processes are, on average, significantly denser and harder 
than those formed in hydrous environments and/or by biotic processes. This work 
has also led to a network visualization of all mineralogy (Fig. 2.5), which displays 
5679 mineral species linked to 57 different modes of formation. This application of 
network analysis (Morrison et al. 2017) complements “tree-like” visualizations of 
mineral evolution (Heaney 2016).

Sections of the evolutionary system have been appearing sequentially, with a 
dozen publications anticipated (Table 2.1). Parts I through V of the system detailed

https://presolar.physics.wustl.edu/presolar-grain-database/
https://presolar.physics.wustl.edu/presolar-grain-database/
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Fig. 2.5 A bipartite network representation of 5657 mineral species (represented by blue circles) 
linked to their modes of formation (green circles)

almost 300 species that occur as primary and secondary phases in meteorites (Hazen 
and Morrison 2020, 2021a; Morrison and Hazen 2020, 2021; Hazen et al. 2021). 
Thanks to decades of intensive mineralogical investigations (Rubin and Ma 2021, and 
references therein), these earliest stages of mineral evolution are well documented.

Part VI shifts focus to those hypothetical first solid phases formed at or near Earth’s 
surface after its initial accretion and differentiation (> ~4.56 Ga), as well as the earliest 
minerals to condense following the postulated catastrophic Moon-forming event at 
>4.4 Ga and its dynamic aftermath (Morrison et al. 2022). No known terrestrial 
minerals survive from Earth’s first 190 million years; the oldest reported sample is 
a detrital zircon grain from 4.374 ± 0.006 Ga (Valley et al. 2014). Consequently, 
Part VI is more speculative than other stages of Earth’s mineral evolution. Even so, 
Morrison et al. (2022) postulate that the Part VI catalog of 442 mineral kinds likely 
to have been present on Earth prior to the Moon-forming event also represents a 
plausible near-surface mineralogy on Mars today.
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Table 2.1 Parts of an evolutionary system of mineralogy 

Part Subject Status/References 

I Stellar mineralogy Hazen and Morrison (2020) 

II Interstellar and solar nebula primary condensation Morrison and Hazen (2020) 

III Primary chondrule mineralogy Hazen et al. (2021) 

IV Planetesimal differentiation and impact mineralization Morrison and Hazen (2021) 

V Aqueous and thermal alteration of planetesimals Hazen and Morrison (2021b) 

VI Earth’s earliest Hadean crust Morrison et al. (2022) 

VII Evolution of the igneous minerals Hazen et al. (2023a) 

VIII Evolution of the metamorphic minerals In preparation 

IX Near-surface aqueous alteration In preparation 

X Earth’s Archean biosphere In preparation 

XI The Great Oxidation Event In preparation 

XII Phanerozoic biomineralization In preparation

Primary igneous minerals provide the focus for Part VII of the evolutionary 
system, subtitled “On the evolution of the igneous minerals” in reference to Bowen’s 
(1928) classic treatise, On the Evolution of the Igneous Rocks. In Part VII, Hazen 
et al. (2023a) surveyed the mineral modes of 1850 varied igneous rocks from 
around the world and identified 115 minerals that are frequent major and/or acces-
sory phases. Patterns of coexistence among these minerals, revealed by network, 
Louvain community detection, and agglomerative hierarchical clustering analyses, 
point to four major communities of igneous primary phases, corresponding in large 
part to different compositional regimes: silica-rich granites; mafic/ultramafic rock 
series; silica-undersaturated alkaline rocks; and carbonatites (Fig. 2.6). Igneous rocks 
displayed significant increases in mineral diversity and chemical complexity over 
the first two billion years of Earth history. However, no new igneous lithologies 
have appeared in the past 2.5 billion years. Network representations and heatmaps 
of primary igneous minerals illustrate Bowen’s reaction series of igneous mineral 
evolution, as well as his concepts of mineral associations and antipathies.

Several more installments of the evolutionary system of mineralogy are now in 
progress (Table 2.1)—work that we anticipate will require several more years for 
completion. However, that task is only the first step in identifying the ages and char-
acteristics of mineral natural kinds. Ahead lie decades of mineral data resource devel-
opment, coupled with advanced analytical and visualization methods—rewarding 
labors that must inevitably lead to a deeper understanding of Earth’s magnificent 
evolving mineral kingdom.
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Fig. 2.6 A unipartite network of 115 common primary igneous minerals (colored circles), with links 
between pairs of coexisting minerals. Node and lettering sizes indicate the relative abundances of 
minerals, while colors indicate four large communities of igneous minerals that were determined 
using Louvain community detection. Each of these four communities corresponds to the mineralogy 
of a major rock group [From Hazen et al. (2023a); their Fig. 1]
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Chapter 3 
Mineral Informatics: Origins 

Anirudh Prabhu , Shaunna M. Morrison , and Robert M. Hazen 

Abstract As the most robust, information rich artifacts available for analysis and 
exploration, minerals provide us insights about planetary origins and evolutions. The 
volume, variety, and velocity of mineral data, and development to extract patterns 
from this data have increased in past decades. We are at the precipice of a paradigm 
shift and “Mineral Informatics” efforts provide a roadmap to synthesize and coor-
dinate data driven research in mineralogy and in multidisciplinary studies that use 
mineral data. Mineral informatics includes the study of mineral data at every step of 
the information cycle, starting with best practices and strategies for optimal creation, 
collection and compilation of data resources, the development of algorithms, models, 
pipelines, and visualizations to present and extract key patterns from mineral data, 
and accurate interpretation of the results from these algorithms and models to make 
interdisciplinary scientific discoveries. In this chapter, we describe the history of data 
driven research in mineralogy, and the key events that led to the development and 
adoption of mineral informatics in the scientific community. 

Keywords Mineral informatics · Data driven research ·Mineral evolution ·
Mineral ecology · Klee diagrams ·Mineral network analysis · Planetary origin 

3.1 Introduction 

Mineralogy has been the subject of scientific research and curiosity for millennia 
(Agricola et al. 1955; Needham et al. 2005; Prabhu et al. 2022). Minerals form as 
a result of unique chemical and physical conditions and thus become time capsules 
of vast information regarding the conditions of their formation and subsequent alter-
ation. This information is key to understanding the evolution of our planet and other 
planetary bodies in our solar system (Prabhu et al. 2021b). 

Collecting mineral data has long been common practice, though this data was 
not always accessible in the early days of scientific research because most data and
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metadata associated with minerals were privately held and at times inaccessible by 
other researchers until the mid-to-late 1800s (Dana 1837; Hintze 1897). In 1882, 
at the request of the 47th Congress of the United States, the US government began 
the collection and publication of mineral and material commodities in the US.1 The 
1900s saw the increasing compilation of mineral data resources published in books 
and journals (Hintze 1897; Goldschmidt 1913; Louis 1920) and, with the advent of 
computers, data resources began being stored in computers and used for data analysis 
(Chayes 1985). 

3.2 History of Data-Driven Research in Mineralogy (Early 
to 2014) 

Data driven research in and/or employing mineralogy has been conducted for several 
decades, but from the 1950s to the early 1990s these works were few and served 
as punctuated efforts made by select scientists to understand the crystallization of 
minerals, the formation of rocks, and the evolution of our planet (Ayler 1963; Chayes 
and Kruskal 1966; Chayes 1975, 1977a, 1983; Ewing  1976). 

Chayes’ well-known work in statistical petrology represents one of the first data-
driven efforts to better understand the origin, structure, and composition of rocks on 
Earth. Later in his career, Chayes developed IBADAT: A world database for igneous 
petrology (Li and Chayes 1983; Chayes 1985). Chayes was involved in developing 
statistical and numerical approaches to predict proportions in petrographic mixing 
equations (Bryan et al. 1969), statistical tests for correlations (Chayes 1960, 1977b; 
Chayes and Kruskal 1966), and information systems for various petrological datasets 
(Chayes 1975, 1977a, 1983). 

In addition to Chayes’ work, which helped shape the fields of statistical petrology 
and mathematical geoscience,2 there were small ad-hoc efforts to use data driven 
research in mineralogy and broader geosciences (Ayler 1963; Imbrie and Van Andel 
1964; Till 1974; Miesch  1976; Ewing  1976; Williams 1986; Eake  1989). Imbrie 
and Andel (1964) applied factor analysis to sedimentary petrology data in order 
to resolve vectors of raw data and process them into a format that can be studied 
statistically. Ewing (1976) classified rare-earth AB2O6-type Nb-Ta-Ti Oxides into 
groups by applying discriminant analysis to a dataset containing 91 cases. Williams 
(1986) presents a set of statistical methods now commonly used in Earth sciences, 
including single and multi-factor analysis, analysis of variance, regression analysis, 
and multiple statistical tests and correlations metrics.

1 https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-
and-material-commodities. 
2 https://iamg.org/awards-and-honours/felix-chayes-prize-for-excellence-in-research-in-mathem 
atical-petrology/. 
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The 1990s saw more concentrated and coordinated efforts to create mineral data 
resources by the USGS (Mason and Arndt 1996; McFaul et al. 2000), and a reinvigo-
ration of neural networks and machine learning methods in the field of AI (Hopfield 
1982; Rumelhart et al. 1986; Langley 2011; Prabhu 2021). A DOS/Windows appli-
cation called “Mindat” was created in 1993 and would go on to become mindat.org,3 

currently the largest open mineral locality data resource in the world (Prabhu 
et al. 2022). 2003 saw the creation of the American Mineralogist Crystal Struc-
ture Database (AMCSD), which gave open access to all mineral crystal structures 
published in American Mineralogist; today it hosts all published crystal structure of 
any International Mineralogical Association (IMA) approved mineral species from 
any peer-reviewed literature source (Downs and Hall-Wallace 2003)4 The RRUFF 
Project began in 2005 as the first, most extensive, and still one of the most widely 
used mineral libraries and databases in the world (Mooney et al. 2005; Downs  2006; 
Laetsch and Downs 2006; Lafuente et al. 2016).5 The RRUFF Project houses nearly 
10,000 samples of 3755 mineral species (December 2022),6 each of which has been 
analyzed in the laboratories of the University of Arizona to include Raman spectra, X-
ray diffraction (XRD) patterns, chemical composition, photos, sample provenance, 
and references collected in the RRUFF Project lab at the University of Arizona. 
A partnership between the RRUFF Project and the IMA created an interactive and 
searchable list of the IMA-approved mineral species, which today lists informa-
tion for 5861 mineral species (December 2022).7 The IMA list links the original 
RRUFF Project Database to many other mineralogical data resources, including the 
AMCSD, Mindat,8 the Handbook of Mineralogy (Anthony et al. 2003), and the 
Mineral Evolution Database (MED; see below).9 The RRUFF Project was one of 
the first systematized online mineral resources, enabling search-match for sample 
identification, calibration for instrumentation, quality control, and the exploration 
and export of large amounts of mineralogical data for study, including many plane-
tary missions (Sobron et al. 2008; Lowry et al. 2009; Bersani and Lottici 2010; Rull  
et al. 2011; Hazen et al. 2011, 2015a, 2016; Blake et al. 2012, 2013, 2021a; Europa 
Study Team 2012; Bish et al. 2013, 2014; Rodriguez et al. 2014; Rodriguez et al. 
2014; Lopez-Reyes et al. 2014; Wei et al. 2015; Cochrane and Blacksberg 2015; 
Hystad et al. 2015b, 2019a; Lafuente et al. 2016; Hand et al. 2017; Liu et al. 2017, 
2018; Morrison et al. 2017b, 2018b, c, d, 2020a; Beaty et al. 2019; Ostroverkhova 
and Prabhu 2019; Grew et al.  2019; Prabhu et al. 2019a, b; Drozdovskiy et al. 2020; 
Lalla et al. 2020; Muñoz-Iglesias et al. 2022; Large et al. 2022; Alsemgeest et al. 
2022).

3 Https://www.mindat.org/a/history. 
4 Http://rruff.geo.arizona.edu/ams/amcsd.php. 
5 Https://rruff.info/. 
6 Https://rruff.info/about/about_general.php. 
7 Http://rruff.info/ima. 
8 Https://mindat.org. 
9 Http://rruff.info/evolution. 
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The next big paradigm in mineralogy was the introduction of the field of Mineral 
Evolution, a 10-stage framework for categorizing the history of dramatic changes 
to Earth’s near-surface mineralogy due to the succession of physical, chemical, and 
biological processes that occurred in our solar system through deep time (Hazen 
et al. 2008). Early mineral evolution studies were qualitative in nature, but acted 
as a catalyst for projects and explorations that developed the MED and many of 
the subsequent data-driven, quantitative studies described in the following section 
(Hazen et al. 2009, 2012, Hazen et al. 2013a, b, c; Golden et al. 2013a; Hazen et al. 
2014a, b; Grew and Hazen 2014; Hazen 2015; Grew et al.  2016; Krivovichev et al. 
2017; Ostroverkhova and Prabhu 2019; Hazen 2019; Grew et al.  2019; Hazen and 
Morrison 2020a; Morrison and Hazen 2020a; Spielman and Moore 2020; Hazen and 
Morrison 2020b; Morrison and Hazen 2020b; Morrison et al. 2020a; Srivastava et al. 
2021; Hazen et al. 2021;Moore et al.  2022a, b, c; Hazen and Morrison 2022; Hummer 
et al. 2022). The MED is a mineral database, hosted and linked to the RRUFF Project 
databases, containing mineral occurrence and age information, extracted primarily 
from scientific literature and directly linked to the related Mindat localities (Golden 
et al. 2016; Golden 2019). Mineral evolution and the MED has provided a framework 
and data for many quantitative studies of minerals through deep time, including 
studies on Hg, C, Be, Mn, and Molybdenite which showcased the episodicity of 
mineralization associated with supercontinent cycles and increase in the average 
oxidation state association with atmospheric oxygenation (Hazen et al. 2012; Golden 
et al. 2013b; Hazen et al. 2014a; Hazen 2015; Hummer et al. 2022), as well as studies 
that demonstrated the rise of the terrestrial biosphere resulted in increased mineral 
species diversity (Hazen et al. 2013c, 2014b; Moore et al. 2022a, Moore et al. 2022b). 
For more details on Mineral Evolution, see Hazen et al. (2023) herein. 

3.3 Increased Application of Data-Driven Discovery 
in Mineralogy (2014 to Present) 

Along with the increase in mineralogical data availability, the advancement in data 
science methods and accessibility, and the resurgence of interest in the evolutionary 
and planetary context of minerals, Earth and planetary science has seen a punctu-
ated rise in data-driven mineralogical science (Hazen 2014; Wang et al. 2021). The 
realization of the exploratory and analytical power of harnessing multidimensional 
mineralogical data via advanced analytics and visualization has changed the land-
scape of the natural sciences and has spurred many new data collection and analysis 
efforts. Below we outline several noteworthy methods, ideas, and opportunities for 
the new realm of mineral informatics.

. Mineral Ecology 

In 2015, Hystad and Hazen et al. introduced Mineral Ecology in a series of papers 
that estimated the number of undiscovered minerals on Earth (Hazen et al. 2015a,
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b; Hystad et al.  2015a, b). Mineral ecology studies utilized data from MED and 
Mindat to explore and characterize the diversity and distribution of mineral species 
on planetary bodies (Hazen et al. 2015a, 2016, 2017; Liu et al. 2017, 2018; Grew  
et al. 2017, 2019; Hystad et al. 2019b; Morrison et al.  2020a). Mineral species in 
this case are those recognized by the IMA Commission on New Minerals, Nomen-
clature and Classification (CNMNC), which often does not account for subtle varia-
tions in chemistry or formational processes (see section “Natural Kind Clustering”) 
(Morrison et al. 2020a). Studies have found that minerals on Earth’s surface follow 
a “Large Number of Rare Events” (LNRE) frequency distribution, a distinct trend in 
which a majority of mineral species are rare, occurring at fewer than five geologic 
localities, and very few species occur very commonly. This trend allows for the 
generation of accumulation curves which allow for the calculation of the number of 
mineral species probable to occur on Earth’s surface, enabling researchers to predict 
the number of currently undiscovered mineral species waiting to be found on Earth. 

A clear finding of this work was the bias shown towards sampling and character-
izing economically important, scientifically interesting, or colorful and aesthetically 
pleasing minerals (Hazen et al. 2015b). These models also identified the outsized 
influence of technological advancement with huge leaps in mineral species discovery 
associated with the widespread use of XRD, electron microprobe analysis (EMPA), 
and, more recently, transmission electron microscopy (TEM), each of which allowed 
for successively finer levels of analysis and distinction of species (Grew et al. 
2017). This technological sampling bias means that mineral ecology studies produce 
models and predictions that are the lowest estimates of missing mineral species, not 
accounting for future technological advancements. In the next innovation of mineral 
ecology methods, Hystad et al. (2019a, b) developed a new Bayesian technique to 
better model the relatively small mineralogical data—this increased model accuracy 
produced an estimate of 9308 undiscovered mineral species with a 95% posterior 
interval (8650, 10070), an increase of 2914 species from the original mineral ecology 
models (Hystad et al. 2019a).

. Klee Diagrams 

Klee diagrams are a method to visually represent relationships among pairs of objects 
(e.g., minerals, chemical elements), enabling researchers to visually analyze and 
identify patterns in the cooccurrences of elements, minerals, or other objects. In 
2016, Ma et al. developed a 3D Klee diagram to understand the co-existing elements 
in idealized minerals (Ma et al. 2016, 2017; Hazen et al. 2019). An interactive online 
version and the code for this 3D Klee diagram can be found at: http://tickmap.nkn. 
uidaho.edu/D3Cube and https://github.com/xgmachina/3dcube. This interactive 3D 
Klee diagram presents a 72 × 72 × 72 matrix of co-existing chemical elements in 
minerals. 

Analyzing the patterns seen in the 3D Klee diagram, researchers found a strong 
set of correlations and anti-correlation on the O-H plane of the cube. For x-axis 
= oxygen and y-axis = hydrogen, every other element showed strong positive or

http://tickmap.nkn.uidaho.edu/D3Cube
http://tickmap.nkn.uidaho.edu/D3Cube
https://github.com/xgmachina/3dcube
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negative correlations. It is hypothesized by researchers that this trend could show the 
affinity of elements towards hydrous and anhydrous minerals (Hummer 2022).

. Mineral Network Analysis 

Network science is an academic field within graph theory that studies complex 
networks considering distinct elements or actors represented by nodes (or vertices) 
and the connections between the elements or actors as links (or edges) (Kolaczyk 
2009; Newman 2010). Network graphs can help view and analyze complex geolog-
ical and biological information systems from a purely mathematical perspective, and 
to do so in a way that is comprehensible by the human brain, which allows researchers 
to infer new relationships or new information about existing relationships (Prabhu 
et al. 2017). 

Mineral network analysis has recently emerged as a method for visualizing and 
statistically characterizing the very multidimensional and multivariate mineralogical 
systems of Earth and other planetary bodies (Morrison et al. 2017b, 2020a, 2021a, 
2022b, c; Perry et al. 2018; Liu et al. 2018; Ostroverkhova and Prabhu 2019; Hazen 
et al. 2020, 2021; Spielman and Moore 2020; Moore et al. 2021; Srivastava et al. 
2021). Mineral networks offer the ability to visualize, explore, and statistically char-
acterize the complexity trends and relationships amongst minerals, their properties, 
their co-occurrence, their changes through time and space, and their relationships 
to other coevolving systems, including that of the biosphere (Morrison et al. 2017a, 
2020a; Buongiorno et al. 2019; Fullerton et al. 2019). Recent work has demonstrated 
many trends in mineralization related to the evolution of geochemistry (e.g., f O2 and 
f S2), structural complexity, and species diversity and distribution across mineral 
systems of Earth through deep time, including a visual representation of planetary 
scale mineralogical biosignatures (Morrison et al. 2017b, 2020a; Krivovichev et al. 
2017). Mineral networks likewise demonstrate the huge influence of water, biology, 
and rare elements on the diversity of mineral species in our solar system (Morrison 
et al. 2021b; Hazen and Morrison 2022). Mineral chemistry networks revealed the 
geochemical factors that resulted in the substitution of the normally biologically toxic 
cadmium for zinc in marine diatoms (Srivastava et al. 2021), the evolution of chemical 
complexity of Earth’s crust was driven by orogenic activity, the evolution of mantle 
redox, atmospheric oxygenation, and climatic transitions through deep time (Moore 
et al. 2022a), and the role of oxygen and electronegativity on iron mineral chemistry 
throughout Earth history (Moore et al. 2021, 2022b). Mineral network analysis has 
only just begun to demonstrate its multidimensional exploratory power and, in the 
near future, will further our understanding of complex, co-evolving systems in our 
solar system.

. The Evolutionary System of Mineralogy and Natural Kind Clustering 

Minerals form in direct interaction with their surroundings—influencing and being 
influenced by the chemical, physical, and biological conditions of their environ-
ment. The marks left by the formational conditions can be seen in the complex
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attributes of each mineral specimen and mineral informatics offers the multidimen-
sional approaches needed to unravel the stories recorded about the formation of 
the mineral. Placing minerals within their evolutionary context provides a greater 
understanding of planetary evolution through deep time, the types of mineralizing 
environments on our planet and other planetary bodies, and offers a framework 
for predictive analytics, specifically the prediction of formational environments of 
mineral samples of unknown origin and biosignature detection (Boujibar et al. 2019; 
Zhang et al. 2019; Hazen 2019; Chiama et al. 2020; Hazen et al. 2020; Hazen and 
Morrison 2020a; Morrison and Hazen 2020a; Hazen and Morrison 2020b; Morrison 
and Hazen 2020b; Cleland et al. 2021; Hazen et al. 2021; George Mason University 
et al. 2022; Morrison et al. 2022c; Hazen et al. 2022; Hazen and Morrison 2022; 
Bermanec et al. 2021). See chapter on mineral evolution for more details (Hazen 
et al. 2023).

. Mineral Association Analysis 

Association analysis is an unsupervised method for uncovering meaningful patterns 
hidden in the data by first using data mining and then association rule learning. The 
mineral co-occurrence information stored in MED and Mindat provide the means 
to make predictions on the most likely locations to find certain mineral species, 
geologic settings, deposits, and/or planetary environments, as well as a probabilistic 
list of minerals likely to occur at any given locality (Prabhu et al. 2019b; Morrison  
et al. 2020a). Using mineral association analysis, we have predicted (A) previously 
unknown locations of a mineral species, including those of critical minerals, (B) 
previously unknown locations of mineral assemblages, including those that repre-
sent analog environments for study, and (C) the mineral inventory at a locality of 
scientific interest (Prabhu et al. 2019b, 2022; Morrison et al. 2022a, b). With this 
approach, we have been able to predict the mineral inventory of the Mars analogue 
site of Tecopa Basin, the location of new deposits of uranium minerals key to 
understanding the oxidation-hydration history of uraninite, and several localities of 
strategic lithium- and rare earth element-bearing mineral phases critical to green tech-
nology in high speed rails, hydro, solar, and wind energy, and much more (Morrison 
et al. 2022a). Additionally we have analyzed how mineralization and mineral asso-
ciations have changed over deep time, as well as developed new evaluation methods 
for characterizing the uncertainties associated with these predictions (Prabhu et al. 
2021a).

. Solar System Exploration and Spacecraft Instrumentation 

Mineral informatics has revolutionized spacecraft instrumentation, mission payloads, 
and planetary exploration. Mineral chemistry and structural defects record informa-
tion about its formational conditions and subsequent alteration, including parent 
body composition, temperature and pressure of crystallization, shock, f O2, and 
hydrothermal fluid characteristics. The CheMin X-ray diffractometer for the NASA 
Mars Science Laboratory (MSL) mission payload is the first flight instrument capable 
of definitive mineral identification (Blake et al. 2012, 2013; Bish et al. 2013). The
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CheMin instrument and its next-generation models are also capable of X-ray fluo-
rescence (XRF) analysis, mineral phase abundance quantification, amorphous mate-
rial abundance estimation via FullPat, unit-cell parameter refinement via Rietveld 
refinement, and, due to informatics efforts in crystal chemistry, estimate the chem-
ical composition of each major mineral phase and provide ranges of composition of 
the bulk amorphous material (Chipera and Bish 2013; Blake et al. 2013; Vaniman 
et al. 2014; Achilles et al. 2017; Morrison et al. 2018b, c; Rampe et al. 2020). Recent 
advances in crystal chemistry with machine learning have enabled the prediction 
of complex compositions and elements of low concentration (i.e., 0.01–0.05 wt.%), 
resulting in analytical precision similar to that of an electron microprobe, which is 
the laboratory standard for major and minor element abundance in minerals but is 
much too large and complex for current spaceflight technology (Geng 2016; Morrison 
et al. 2018a, 2018d; Pan et al. 2018; Blake et al. 2019, 2020a, b, 2021a, b, c). Several 
spectrometers, including Raman, LIBS (laser-induced breakdown spectroscopy), and 
XRF, are flown on planetary missions; ongoing machine learning studies to extract 
additional geochemical, mineralogical, and petrological information from these data 
are underway (Misra et al. 2021; Sun et al. 2021; Berlanga et al. 2021; Siebach 
et al. 2021, 2022; Alix et al. 2022). These technologies will also provide advanced 
payloads for future planetary missions and the continued development of space-
craft instrumentation and analytical methods via machine learning will increase the 
efficiency, efficacy, and reach of space exploration and discovery.

. Planetary Petrology 

Petrological data on Earth is multidimensional in nature, offering myriad opportuni-
ties to capture the complexity of these systems with advanced analytical techniques, 
and this is no less true on other planetary bodies. Several pioneering studies employ 
machine learning on mineralogical, petrological, and geochemical data to gain a 
greater understanding of the evolution of our solar system and the bodies within 
it (Petrelli and Perugini 2016; Bhatt et al.  2019; Agarwal et al. 2020; Alpert et al. 
2021; Thomson et al. 2021; Valetich et al. 2021; Schönig et al. 2021; Jorgenson 
et al. 2022). Cone et al. compiled a comprehensive dataset, ApolloBasaltDB, on the 
characteristics of returned Apollo lunar samples (e.g., major element geochemistry, 
modal mineralogy, age, textural descriptors) for exploration with various statistical 
and machine learning methods. This study found that the standard basalt classifica-
tions for Earth rocks, including total alkali-silica and feldspar-plagioclase-feldspar-
feldspathoid schemes, are not suitable for characterizing the basaltic rocks formed 
on the moon, likely due to the stark differences in the igneous and tectonic evolution 
of these two bodies, specifically the lunar magma ocean and the lack of Earth-style 
plate tectonics (Cone et al. 2020a, b). These lunar geochemical data can also be 
combined with remote sensing spectral data (see section below for more details) to 
train a machine learning model for predicting the source location of lunar meteorites 
(Madera and Gross 2021, 2022). Likewise, such methods can also be applied to other 
planetary bodies, including Mars, on which a recent study predicted the ejection site 
location of the oldest known martian meteorite, Black Beauty (Lagain et al. 2022).
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Additional work in data-driven studies of meteorites include that of Ostroverkhova 
et al., who have compiled an exhaustive dataset on chondritic meteorite mineralogy 
and geochemistry and explored the multivariate nature of these materials via machine 
learning to gain a better understanding of the origins and relationships amongst chon-
drites, particularly focusing on the enigmatic ungrouped chondrites, and their various 
inclusions (Ostroverkhova et al. 2021, 2022a, b; Clark et al. 2022).

. Image Processing and Remote Sensing 

Image processing has long been a focus of artificial intelligence methods and studies 
(Kovasznay and Joseph 1955; Huang et al. 1971; Russ  2006; Acharya and Ray 
2010). Historically and often still today, many mineralogists and petrologists rely 
on human visual interpretation of rocks and minerals to recognize and classify 
features of interest, including mineralogy, rock type, porosity, grain size, and features 
related to geologic processes including alteration, weathering, and metamorphism. 
This type of visual exploration presents an excellent opportunity for applications of 
image processing. Several researchers have begun this work, including characterizing 
mineralogy and porosity in petrographic thin sections (Rubo et al. 2019), drill core 
mapping (Acosta et al. 2019), mineral grain recognition in optical microscopy, elec-
tron microscopy, and X-ray microcomputed tomography (Einsle et al. 2016, 2018; 
Ball et al. 2019; Maitre et al. 2019; Jooshaki et al. 2021; Ezad et al. 2022). 

Image processing methods have also been used in conjunction with Geograph-
ical Information Systems (GIS) and remote sensing multi- and hyper-spectral data to 
infer mineralogical information over a geographic area or specific geologic feature(s) 
of interest (Rajesh 2004; Pieters et al. 2009; Richards 2013; Sadeghi and Khala-
jmasoumi 2015; Karageorgiou et al. 2017; Shawky et al. 2019; Chakouri et al. 
2020; Jooshaki et al. 2021; Marghany 2021). These applications include, producing 
GIS mineralogical maps (Karageorgiou et al. 2017), combining Landsat images 
with higher resolution images from Système Probatoire d’Observation de la Terra 
(SPOT) or IRS panchromatic data to better discriminate lithological units (Rajesh 
2004), applying digital image processing to geophysical airborne gamma-ray spec-
trometry data and ASTER (Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer) sensor image data to produce a radioactivity map for the urani-
ferous granite of Egypt (Shawky et al. 2019). Likewise, there are many satellites 
collecting spectral data for other bodies in our solar system, providing information 
on the mineralogical makeup and geological character of our neighboring planets. 
Several planetary researchers have embraced the complexity of these spectral data 
by employing advanced analytical techniques to better elucidate trends, including 
the mineral distribution and geology of Mars (Kerner 2019; Hipperson et al. 2020), 
the modal mineralogy of nearby asteroids (Breitenfeld et al. 2021), and the source 
regions of lunar meteorites (Madera and Gross 2021, 2022) and martian meteorites 
(Lagain et al. 2022). Data-driven studies of image and other spectral data are revo-
lutionizing laboratories, scientific processes, and our understanding of Earth and the 
solar system.
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. Mineral Resource Prospectivity and Processing 

Mineral resources have provided the framework for societies for millennia (Agricola 
et al. 1955; Needham 1986). Today, they continue to be both the backbone and 
catalyst of technological advancement, particularly critical for green technologies 
(Langkau and Erdmann 2021; Fortier et al. 2022). Therefore, there is a societal 
drive to locate, assess, extract, and process these materials all while considering 
the economic and environmental implications of each step of the mineral resources 
pipeline. Mineral informatics is emerging as the single most important advancement 
in ore geology and provides a tremendous opportunity to save not only economic costs 
but, more importantly, environmental costs associated with mining, ore processing, 
and manufacturing. This research is advancing on several fronts, including fractal 
models for ore body characterization (Sadeghi et al. 2012, 2015; Nazarpour et al. 
2015; Cheng and Agterberg 2020; Cheng 2021; Sadeghi 2021; Sadeghi and Cohen 
2021), relating bulk rock chemistry to mineral properties (Kalashnikov et al. 2021), 
geologic deposit type classification (Zhang et al. 2019, 2022; Gregory et al. 2019), 
mapping geographic areas of interest (Sadeghi and Khalajmasoumi 2015; Rodriguez-
Galiano et al. 2015; Chakouri et al. 2020; Fu et al.  2021; Wu et al.  2021), drill core 
mineralogy mapping (Acosta et al. 2019), gaining a greater understanding of the 
underlying geology (Lui et al. 2022; Zhou et al. 2022; Wang et al. 2023), predicting 
new locations of mineral deposits (Prabhu et al. 2019a; Morrison et al.  2022a), and 
many other applications of machine learning to various aspects related to mineral 
resources (Rodriguez-Galiano et al. 2015; McCoy and Auret 2019; Acosta et al. 
2019; Zhenjie et al. 2021; Jooshaki et al. 2021; Liu et al. 2022; Mustafa et al. 2022). 
Mineral informatics is revolutionizing every aspect of mineral resource management. 

3.4 The Era of Mineral Informatics (2022 Onwards) 

As seen in the previous section, the use of data science and data analytics methods 
have increased in recent years. We are still in early stages of development and 
adoption of these data-driven methodologies and research styles and the current 
state reflects several disjointed efforts to use existing data science and analytics 
methods to answer scientific questions with small, individually collected/compiled 
data resources. While this has been a scientifically fruitful initial stage of research, for 
the mineralogical community to leverage the power of data science and informatics, 
there needs to be a change in the culture around data resource creation, sharing, 
and algorithm development. Therefore, in order to elevate this nascent effort to its 
full potential, it is time to formalize the roadmap and usher in the era of mineral 
informatics, guided in a deliberate and systematic manner with the underpinnings 
of information theory and data science, as exemplified by more developed efforts in 
other fields, including biology, medicine, chemistry, and astronomy (Prabhu et al. 
2022).



3 Mineral Informatics: Origins 49

Data-driven research in many domains has focused on the value of informatics 
methods to answer scientific questions. However, for sustainable advancement, inno-
vation must be made on all three of the foundational pillars of data-driven research: 
(1) Data science methods, models, and algorithms, (2) data resource and infras-
tructure development, and (3) answering big, multidisciplinary, integrated, and/or 
complex questions in the physical and biological sciences. It is also important to 
note that informatics innovations are usually driven by diverse datasets available in 
various domains and the needs of the use-cases utilizing those datasets (Prabhu et al. 
2022). Thus, mineral informatics, and data-driven research as a whole, represents a 
symbiotic ecosystem where domain scientists and data scientists thrive together and 
innovate in their respective fields while increasing the rate of scientific discoveries. 

What does the future hold?

. Future of Mineral Data resources 

– Data Publication and Citation 
Incentivizing the sharing of data is critical to gaining benefits from analyzing 
large data resources. Mainstream scientific journals are likely the most effec-
tive agents to rectify problems in data reporting and advance a culture change 
toward Open and FAIR data (Wilkinson et al. 2016; Stall et al. 2019; Ma et al.  
2022). Such a process can start with key mineralogical journals mandating data 
sharing and sharing of persistent identifiers from data repositories (e.g., Mindat, 
Earthchem, ODR) resulting in proper attribution and credit to the researchers 
and scientists for their data contributions to the scientific community. There 
have been efforts in the mineralogical and geological community such as the 
Editors Roundtable that identified requirements for the reporting of geochem-
ical data (Goldstein et al. 2014), and the Coalition for Publishing Data in the 
Earth and Space Sciences COPDESS (Hanson et al. 2015) that facilitates the 
ongoing dialog between research repositories, scholarly publishers, and other 
stakeholders regarding the development, implementation, and promotion of 
leading practices around the preservation and citation of data, software, and 
physical samples in the Earth, space, and environmental sciences. Making such 
changes is a step in the right direction toward making data a first class citizen in 
the scientific community and increases FAIR and open datasets thus increasing 
the efficiency and frequency of making scientific discoveries10 (Silvello 2018; 
Prabhu et al. 2021b). 

Leaders of the One geochemistry initiative, Astromat, and Earthchem are 
using COPDESS as a platform to develop and promote guidelines for the 
reporting and documentation of mineral data in scholarly publications that are 
based in the Mineral Information Model (Kerstin Lehnert, Shaunna Morrison, 
Lucia Profeta, Personal communication 2022). COPDESS holds regular meet-
ings at major conferences such as the AGU Fall Meeting. Ensuring that require-
ments for the reporting of mineral data in scholarly publications will be on the

10 https://www.ands.org.au/working-with-data/citation-and-identifiers/data-citation. 

https://www.ands.org.au/working-with-data/citation-and-identifiers/data-citation
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agenda of one or more COPDESS meetings can generate awareness and grow 
adoption of leading practices for mineral data in relevant journals. 

Formal data citation emerged more than a decade ago as a method to incen-
tivize data publishing and sharing by giving credit to contributors. However, 
this has not provided a strong push to share data and as a result much of the 
data lies hidden in the unindexed deep web (Parsons and Fox 2013, 2014). Data 
citation has been a constantly evolving but very important scientific practice 
to aid scientific reproducibility and much needed credit for scientific effort. 

One of the goals of the informatics community is that a dataset should be 
cited as a first-class scientific object much like an article or book (Prabhu et al. 
2021b). Citing data is now recognized as one of the key practices leading to 
recognition of data as a primary research output.11 The (Data Citation Synthesis 
Group 2014) lists key data citation principles described by FORCE11. The 
FORCE11 principles cover the purpose, function and attributes of citation by 
recognizing the dual necessity of making citation practices that are human 
understandable and machine actionable (Data Citation Synthesis Group 2014; 
Prabhu et al. 2021b). Citing a dataset can involve many of the components that 
can be commonly seen in citing traditional literature, for example Authors (or 
contributors), Title, year of publication, archive location or publisher, version 
and persistent identifier (Prabhu et al. 2021b). Giving credit for data contri-
butions increases not only the cohesiveness of scientific data resources in a 
community but also the rate of scientific outputs. 

– A comprehensive mineral information model 
Information modeling is a method to specify the data requirements that are 
needed within an application domain (Lee 1999) and to accurately represent 
the important concepts and relationships between the concepts in that domain. 
There are 3 levels of encoding for information models: conceptual, logical, 
and physical (Steel 1975). More detail is needed in the information model in 
order to proceed from conceptual to logical and finally to the physical model. 
Effective information modeling in real-world practice is to follow or adapt 
existing community agreements or standards and domain knowledge. In the 
case of a mineral information model, the focus would be on the physical, 
chemical, and biological characteristics of minerals (Prabhu et al. 2021b). 

With the increasing attention on mineral data resources and their use in data-
driven approaches in recent times (Bradley 2011; Voice et al. 2011; Nance 
et al. 2014; Hazen 2014; Morrison et al. 2017b, 2018d, 2020a; Zhao et al. 
2020; Boujibar et al. 2021; Liu et al. 2021; Hystad et al. 2021; Large et al. 
2022; Hazen and Morrison 2022; Hummer et al. 2022), there have been some 
efforts to model certain aspects of mineral data. However, as with many nascent 
fields, these efforts have been use-case-driven and somewhat ad-hoc (e.g., 
(Prabhu et al. 2021b)’s preliminary information model to describe minerals, 
localities, and their properties; (Brodaric and Richard 2020)’s effort using 
semantic technologies to build knowledge graphs for mineral species and their

11 https://www.ands.org.au/working-with-data/citation-and-identifiers/data-citation. 
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classification systems; (Zhou et al. 2021)’s efforts to make a general geoscience 
knowledge graph). In addition, we are reaching a critical mass of researchers 
collecting or compiling datasets for their own scientific explorations in an 
independent, non-standardized manner. Hence it is both important and timely 
to pursue the creation of a comprehensive mineral information model. 

A comprehensive mineral information model is key to advancing FAIR data 
practices in the mineralogical community. An information model created by 
and agreed upon by various parts of the mineralogical and broader geoscience 
community would be instrumental in presenting a synthesized and standardized 
view of the mineral data landscape; a view that would elevate the ability to 
ask complex, integrated questions in mineralogy while also increasing the rate 
of scientific discovery related to minerals and mineral systems. Additionally, 
by increasing the acceptance and adoption of this information model in major 
data resources such as EarthChem and mindat.org, retrieval (Findability and 
Accessibility), and integration (Interoperability) of data for analysis becomes 
more seamless, while simultaneously incentivizing less siloed approaches to 
data collection and compilation (Reusability). 

Mineral informatics researchers including the authors of (Prabhu et al. 2022) 
and the participants of the IMA Mineral Informatics working group are working 
on designing such a comprehensive mineral information model in conjunction 
with leaders of mindat.org, ODR, RRUFF, Astromat, EarthChem, GEOROC, 
and the One Geochemistry initiative (Lehnert et al. 2000, 2019, 2021; Lafuente 
et al. 2015; Mays et al. 2020, 2022; Profeta et al. 2021; Prabhu et al. 2021b; 
Wyborn et al. 2021). 

– APIs and data pipelines 
As mineral data resources mature, a key consideration beyond designing a 
community level mineral information model and providing appropriate credit 
for data contributions includes optimizing the use of this data for analysis 
and data-driven inquiry to answer important scientific questions. By devel-
oping a data pipeline to connect mineral data resources to data visualization 
and analytics packages, we can reduce the efforts made by researchers in 
data cleaning, formatting, coding and jump straight to the analysis and scien-
tific interpretation of the results. Reducing this data processing time will save 
researchers a lot of time and will accelerate the analysis and interpretation of 
results from using data science and informatics methods. 

While building data pipelines is an essential part of data driven research, we 
must keep in mind that tools, packages, apps, and other such cyber infrastruc-
tures must be built based on the need and readiness of the scientific community, 
the maturity of the algorithms and methods applied, and sustainability of the 
built cyber infrastructure. Until such maturity of data-driven methods or need 
from the scientific community does not emerge, it is recommended to build 
frameworks, or workflows which are more modular, flexible, and interoper-
able. Decisions made during the design of such scientific workflows ensure 
the reproducibility and replicability of scientific experiments and analyses. 
It is recommended that design decisions for workflows and frameworks are
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based on the non-functional requirements of scientific exploration, i.e. based 
on “how” to design an efficient scientific workflow to answer a given research 
question (Prabhu and Fox 2021). 

One way to reduce data processing time and variability is to standardize the 
output that emerges from important mineral data repositories. For example, 
many of the key mineral data resources do not have open APIs (Application 
Programme Interfaces) running so that scientists can programmatically extract 
the data they need for their analyses right into the data pipeline. For example, 
all the data on the Mindat website are free for users to browse through well-
organized GUI (Graphical User Interface), but the machine interface for data 
access and download has never been fully established until very recently. The 
recently started and currently ongoing OpenMindat initiative aims to create a 
RESTful API access point for Mindat that will output mineral data in standard 
data formats like JSON, and also Python and R-packages to enable users to 
query and input mineral data into their code and workflows (Ma et al. 2022). 
We urge other mineral data repositories to follow suit on building such APIs 
that can reduce the time spent on data cleaning and processing tasks, so that 
the focus can be on analyzing this data to answer big science questions.

. Future of Collaborations in Mineral Informatics 

Conducting and applying informatics research is very much a socio-technical system 
(Fischer and Herrmann 2011). It is as much about the researchers, their interactions, 
the hypotheses generated, and interpreting results from visualizations or models as it 
is about the data, the algorithms, and the models. We would like to reiterate the symbi-
otic nature of data driven research and emphasize that mineral informatics requires 
mineralogists (and other domain scientists like planetary scientists, petrologists, biol-
ogists) to work with data scientists as equal collaborators. Just as mineralogy provides 
data scientists with new use cases and challenges to solve data problems of the scien-
tific community, mineralogical researchers and data driven geoscience researchers in 
general consistently need the innovations made by data scientists to be able to analyze 
their data and answer their core research questions. Sustained data driven research in 
mineralogy relies on 3 pillars, i.e., advances in mineral data resources, advances in 
data science methods and algorithms, and advances the mineralogical community’s 
understanding of minerals, their occurrence and the information contained in them. 

Collaborations in informatics include many iterations between data and domains 
scientists starting from data explorations and the problem formulation to interpreting 
the results and documenting the scientific insights learnt from the data (Prabhu 
et al. 2022). Prabhu et al. (2022) provides a roadmap for informatics collaborations, 
including how to plan and conduct datathons.

. Future of Data Science and Informatics 

The last 20 years has seen widespread acceptance and increasing adoption of Data 
Science and informatics methods in scientific research. With such increased adop-
tion of data science and informatics comes increased development of core infor-
matics approaches and data science algorithms, pipelines, and methodologies. With
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some fundamental problems in data science being solved and many technologies 
reaching maturity in their expansion and usage, newer previously unknown prob-
lems begin to emerge. For example, researchers have previously focused on the 
big data and scalability problem in data science and many approaches, algorithms 
and frameworks have been developed to handle large quantities of data (Lohr 2012; 
Fairfield and Shtein 2014; Yu  2016; Wang 2017; Wachter 2019). The same may be 
said for research addressing sampling bias problems, problems in data mining and 
warehousing (Widom 1995; Mannila 1997; Yang and Wu 2006; Panzeri et al. 2007). 

As older problems in a field begin to get solved or receive a lot of attention newer 
challenges emerge in their place, signaling a new generation for the field. This is 
precisely what is happening in the field of data science and informatics currently, 
and hence showcases and timeliness for the mineral informatics and data-driven 
mineralogy community to contribute to advances in the data science and informatics 
community while reaping the benefits of algorithms, methods and pipelines specially 
designed to work on mineral, geochemical, geophysical, and petrological data. 

3.5 Importance of Minerals and Mineral Informatics 

Due to their chemically and physically robust nature, minerals are the oldest mate-
rials in our solar system. Therefore, minerals offer a glimpse of a planet’s complex 
geological past. Mineral informatics provides a series of frameworks and methods 
for pursuing a greater understanding of the natural world, including planetary forma-
tion and evolution, and Earth’s co-evolution with life. Some of these big, outstanding 
science questions include (Prabhu et al. 2022):

. Can complex chemical and physical attributes of mineral specimens predict their 
formational environments?

. Can we predict mineral occurrence on other planets given limited planetary data?

. Can mineral networks serve as a proxy for the extent of planetary evolution?

. Did the emergence and evolution of life play a role in the increase of mineral 
structural complexity on Earth through deep time?

. What role did minerals play in the origin of life, and do they influence the metabolic 
landscape of microorganisms?

. Is the diversity and distribution of minerals a planetary scale biosignature?

. Can mineral networks of environmental, biological, biochemical, and geochem-
ical attributes distinguish living worlds from non-living ones? 

Outside scientific research, minerals hold important commercial, economic, and 
industrial uses. The commercial and societal value of minerals has been understood 
since the development of the first societies and has been written about for hundreds 
of years (Dana 1837; Barringer 1897; Needham 1986). As our understanding of 
minerals and advances in technologies to find and use minerals have increased, 
we have found more optimal and environmentally friendly ways to use mineral 
resources. The unique properties of non-fuel minerals, mineral products, metals and
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alloys now contribute to the provision of food, shelter, infrastructure, transportation, 
communications, health and defense (National Research Council (U.S.) et al. 2008). 
For example, Tin is used in steel containers and electrical circuits, nickel is used for 
plating, copper is used in electrical applications, phosphorus and potassium are key 
ingredients in soil fertilizers, and rare earth elements (REEs) are the backbone of 
the telecom industries and renewable energy industry (Coulomb et al. 2015). The 
old adage, “Gold is where you find it,” has applied to most natural resources, but 
data-driven discovery is now changing that mantra (Hazen et al. 2019). By applying 
informatics methods to mineral data, we can predict the occurrences, characteristics, 
and behavior of minerals. This allows researchers to go into the field and discover 
more minerals and mineral deposits, thereby improving mineral data resources and 
allowing for better characterization of minerals using data-driven, experimental, and 
analytical techniques. 

When minerals play such an important role in so many aspects of human life 
and knowledge, it is important for us to understand these information-filled precious 
relics of history. Mineral informatics offers a path to not only characterize and under-
stand minerals, but also allows us to predict occurrence, attributes, and their role in 
planetary and biologic evolution. It is our view that the following decades will show 
the importance of mineral informatics and the role it will play in shaping the future 
of mineralogy and geosciences. 
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Chapter 4 
The Discovery of New Minerals 
in Modern Mineralogy: Experience, 
Implications and Perspectives 

Igor V. Pekov and Dmitry Yu. Pushcharovsky 

Abstract The paper is devoted to different aspects of new minerals studies and the 
significance of new minerals in modern science. The most prolific type localities of 
minerals are briefly overviewed and the role of modern approaches and analytical 
methods in the studies of new minerals is highlighted. Different implications of recent 
discoveries are demonstrated on the examples of new mineral species described from 
peralkaline rocks, volcanic fumaroles, supergene environments, and high-pressure 
mineral-forming systems in deep geospheres. 

Keywords New mineral · Mineral diversity · Mineralogical crystallography ·
Peralkaline rock · Volcanic fumarole · Oxidation zone of ore deposit · Deep 
geospheres · Tolbachik volcano 

4.1 Introduction 

The period from the beginning of the twentieth century is characterized by great 
progress in the development of scientific concepts in mineralogy and large increase 
of the number of mineral species. It is not a mere chance that the former Vice-
president of the International Mineralogical Association, the Russian Academician 
Nickolay P. Yushkin (1936–2012) emphasized that “the most informative indicator 
of the development of mineralogy is the number of mineral species known at a certain 
historical moment”. 

Before 1800, there were less than one hundred known minerals. After this 
historical milestone, the rate of discovery of new minerals has been continuously 
increasing. For example, 87 mineral species were discovered in the period from 
1800 to 1819. Then, in the period from 1820 to 1919, 185 minerals on average were 
discovered each twenty years. From 1920 to 1939, 256 new minerals were described, 
and 342 minerals were added in the period from 1940 to 1959 (Mandarino 1977). 
In 1958 the Commission on New Minerals and Mineral Names of the International
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Mineralogical Association was established (IMA CNMMN re-organized in 2006 to 
the IMA Commission on New Minerals, Nomenclature and Classification—IMA 
CMNNC) and since that time it introduced specific rules in the procedure of the defi-
nition and validation of each new mineral. In 1960s—early 2000s, 40–60 (with some 
surges) new mineral species were discovered annually (Grew et al. 2017, Fig.  4.1). 
In the end of 2000s, the number of new minerals abruptly increased and raised 
the values 90–140 per year. We can explain this jump by several causes. Probably 
the increase in 1990s–2000s is related to the “explosive” progress of the analytical 
techniques, primarily of the local methods of quantitative chemical analysis and of 
the diffraction methods for crystal structures determinations (Pushcharovsky 1999, 
2021; Krivovichev et al. 2022). The second cause is due to the better understanding 
of the important role of new minerals as indicators of many events in the geological 
history of Earth, of the terrestrial planets and of the Universe in general. Indirectly, 
this statement can be confirmed by the increase of the number of mineralogists 
and crystallographers who work in this research field. Finally, the chemistry and 
crystal structures of new minerals often stimulate the scientists for the synthesis of 
technologically important new materials. 

The tendency observed in the right part of the diagram shown in Fig. 4.1 could 
give a reason to suggest further increase of the number of new minerals after 2015; 
however, it did not happen. In the last dozen years, the number of new minerals 
discovered each year was stabilized. The numbers of new mineral species approved 
by the IMA CNMNC for the period 2017–2021 are as follows: 2017—106, 2018— 
129, 2019—122, 2020—114, and 2021—114. During eleven months of 2022 (data 
from already published IMA CNMNC Newsletters) 114 new minerals were approved. 
Thus, this number continues to be in between 110 and 130 per year and there is not 
any sign that it could be distinctly increased in the nearest future. In November 2022, 
the “official” IMA list included 5863 valid mineral species (Updated list… 2022). 
Thus, every year the Mineral Kingdom diversity increases for ca. 2%.

Fig. 4.1 The increase in the  
number of new minerals in 
1960–2015 submitted to the 
IMA Commission on New 
Minerals, Nomenclature and 
Classification (Grew et al. 
2017) 
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Mineral formation involves 70 chemical elements as mineral-defining 
constituents. According to the data by Krivovichev and Charykova (2016), the 
following elements are leaders in the number of mineral species in which they are 
species-defining: oxygen (4041 minerals), hydrogen (2755), silicon (1448), calcium 
(1139), sulfur (1025), aluminum (960), iron (917), sodium (914), copper (616), 
phosphorus (580), arsenic (575), and magnesium (550). 

4.2 Significance of New Minerals 

Six thousand mineral species: is it a lot or a little? It depends on what to compare. For 
example, the diversity of biological species described for 2011 exceeded 1.7 million, 
of which only mammals, one of the smallest classes, make up about 5.5 thousand 
species (IUCN… 2012). Concerning the number of known synthetic compounds 
we did not find exact data: different sources give the numbers between 10 and 20 
million and their increase is evaluated as several hundred new compounds per day. 
In any case, the current number of mineral species looks more than modest against 
this background and thus the discovery of each new mineral, even the rarest and 
microscopic one, is considered by the scientific community as a significant event 
and as a fundamental discovery in the field of natural sciences, which enriches not 
only mineralogy and geology but also solid-state physics and chemistry. 

It should be highlighted that about a half of recently discovered minerals has no 
synthetic analogues (despite huge amount of synthetic chemicals) and not a small 
amount of new minerals exhibit essentially novel structure types. Thus, new minerals 
are an obvious source of new knowledge about crystalline substance in general. The 
significance of new minerals for the development of modern crystal chemistry is at 
least in (1) the discovery of novel structure types and even new structure families; 
(2) the extension of knowledge about the variability of characteristics of known 
structure types; (3) the determination of the affinity of crystal structures for different 
chemical elements; (4) the establishing of earlier unknown relations between different 
structures. 

For material sciences, new minerals are interesting as new potential carriers of 
technologically important properties. They are considered as prototypes of novel 
materials: molecular sieves, ion exchangers, sorbents, catalysts, piezo- and pyro-
electrics, magnetic and optical materials, ionic conductors, bioactive agents, etc. 
Unlike synthetic compounds, often obtained only in the form of thin and sometimes 
phase-inhomogeneous powders, many minerals form large and perfect crystals suit-
able for single-crystal X-ray studies: Nature, unlike a human, has geological time as 
a “laboratory tool”… 

Another side of the significance of new minerals spreads in Earth and space 
science. For geochemistry, new minerals exhibit the new forms of concentration of 
chemical elements in nature, that are especially significant for rare and scattered 
elements. New minerals discoveries serve to develop (and sometimes revise) the 
knowledge about behavior of elements in geological processes. Some new minerals
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are sensitive geological, petrological and geochemical indicators which can give the 
unique information on genesis of rocks, ores, meteorites and other geological and 
extra-terrestrial objects. Any mineral, even tiny and rarest ones, is not a casual object 
in nature. Its birth is a result of specific physical and chemical features of a mineral-
forming medium. If a mineral is unusual in chemistry or structure then it can be 
the indicator of specific chemical or physical characteristics, general or local, of the 
parent medium etc. In many cases just exotic phases, even found as single micro-
grains, unlike associations of ordinary rock-forming minerals with wide stability 
fields, are the only indicators of the fine features of the mineral-forming system. 
Here we cite Biagioni et al. (2022) who clearly expressed this idea: “To understand 
and get a first plausible picture of most of the geological phenomena occurring on 
our planet, a dozen minerals might be considered sufficient. However, the rare phases 
can help to provide a more exhaustive scenario of the Earth dynamics. In other words, 
with the well-known rock-forming minerals, we can get an unquestionably correct 
picture but still incomplete. Rare phases, and the stories they tell us, can shed light on 
unusual geological processes and provide hints to refine and progressively improve 
the scenario itself ”. 

4.3 Where New Minerals Can Be Discovered Today 
and Tomorrow? 

The probability to find a previously unknown mineral is present at any locality: 
many examples can be recalled when a new mineral was discovered in quite ordi-
nary geological environments. However, this probability is objectively higher in the 
occurrences where many new mineral species have been discovered so far or can 
be discovered in a close future. There we observe a set of specific geological and 
geochemical settings and accordingly a set of localities—the “world record-holders” 
in terms of the number of the first discovered minerals. We listed the most prolific 
for today type localities in Table 4.1, with brief data about genetic types of miner-
alization which produce new minerals. Here are 17 famous mineralogical objects 
of various scales—from separate relatively small, compact deposits/mines (“spot 
on a map”: e.g., Tsumeb, Lengenbach, Shinkolobwe) to relatively large intrusive 
complexes (Khibiny, Lovozero, Ilímaussaq) or areas where several localities of the 
same/similar genetic type are situated (e.g., Filipstad, Franklin, East Eifel). Table 4.1 
also contains some information on the dynamics of the discoveries for the last three 
dozen years. It, as we consider, can reflect the present-day interest (in dynamics) 
of mineralogists to study one or another object or mineral-forming system. The 
“world record-holders” listed in Table 4.1 can be subdivided by the number of the 
first discovered minerals into three groups with distinct gaps between them: I—four 
“top” objects (Tolbachik volcano, Khibiny and Lovozero alkaline complexes, and 
Filipstad area): >110 new minerals each; II—compact in terms of this number group 
of four objects (Tsumeb mine, Mont Saint-Hilaire alkaline massif, Franklin mining
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district, and Somma-Vesuvius volcanic complex): 67–72; III—other nine objects: 
37–52. 

Table 4.1 The most prolific type localities of minerals 

Locality or compact 
cluster of genetically 
similar localities 
Region, country 

Numbers of IMA-approved new mineral species Main genetic types 
of mineralization 
which produce 
new minerals 

Totally, 
December 
2022 

Twenty-first 
century: 
2001–2022 

Before 
2001 

1991–2000 

Tolbachik volcano 
Kamchatka, Russia 

143* 120 = 84% 23 13 Active volcanic 
fumaroles of the 
oxidizing type 

Khibiny alkaline 
complex 
Kola peninsula, Russia 

127** 57 = 45% 70 26 Peralkaline rocks, 
especially 
peralkaline 
pegmatites 

Lovozero alkaline 
complex 
Kola peninsula, Russia 

116** 39 = 34% 77 24 Peralkaline rocks, 
especially 
peralkaline 
pegmatites 

Filipstad mining 
district (Långban, 
Nordmark, 
Jakobsberg, Pajsberg, 
etc.) 
Värmland, Sweden 

111*** 14 = 13% 97 7 Specific ores of 
metamorphic / 
metasomatic 
origin formed 
under oxidizing 
conditions 

Tsumeb mine 
Oshikoto, Namibia 

72 15 = 21% 57 12 Oxidation zone of 
sulfide ores; Ge-
and Ga-enriched 
sulfide ores 

Mont Saint-Hilaire 
alkaline massif 
Québec, Canada 

71 30 = 42% 41 27 Peralkaline rocks, 
especially 
peralkaline 
pegmatites 

Franklin mining 
district (Franklin and 
Sterling Hill) 
New Jersey, USA 

70**** 5 = 4% 65 5 Specific ores of 
metamorphic / 
metasomatic 
origin formed 
under oxidizing 
conditions 

Somma-Vesuvius 
volcanic complex 
Campania, Italy 

67 7 = 10% 60 2 Alkaline effusive 
rocks; contact 
zones of alkaline 
lavas with marble; 
active volcanic 
fumaroles

(continued)



74 I. V. Pekov and D. Yu. Pushcharovsky

Table 4.1 (continued)

Locality or compact
cluster of genetically
similar localities
Region, country

Numbers of IMA-approved new mineral species Main genetic types
of mineralization
which produce
new minerals

Totally,
December
2022

Twenty-first
century:
2001–2022

Before
2001

1991–2000

Jáchymov ore district 
Karlovy Vary, Czech 
Republic 

52 28 = 54% 24 4 Complex 
(five-elements: 
Ag-Co–Ni-Bi-U) 
hydrothermal ores; 
oxidation zone of 
these ores 

Lengenbach quarry 
Valais, Switzerland 

47 22 = 47% 25 7 Low-temperature 
hydrothermal 
sulfide-sulfosalt 
mineralization 

Hatrurim Basin 
Southern District, 
Israel 

45 40 = 89% 5 0 Pyrometamorphic 
rocks of different 
types 

Darai-Pioz alkaline 
complex 
Alay Range, Tajikistan 

40 29 = 73% 11 5 Silica-saturated 
peralkaline rocks 

Shinkolobwe mine 
Haut-Katanga, DR 
Congo 

40 10 = 25% 30 1 Oxidation zone of 
uranium ores 

Norilsk ore district 
Krasnoyarsk Krai, 
Russia 

39 10 = 26% 30 2 Copper-nickel 
sulfide ores with 
rich Pt–Pd 
mineralization 

Ilímaussaq alkaline 
complex 
Kujalleg, Greenland 

38 13 = 34% 25 1 Peralkaline rocks, 
especially 
peralkaline 
pegmatites 

Vulcano island 
Sicily, Italy 

37 31 = 84% 6 2 Active volcanic 
fumaroles 

East Eifel 
paleovolcanic district 
Rhineland-Palatinate, 
Germany 

37 25 = 68% 12 6 Alkaline effusive 
rocks and products 
of their reactions 
with xenoliths of 
different, mainly 
metasedimentary 
rocks 

Note * including 124 new minerals first discovered at the Main fumarole field of the Second scoria 
cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption; ** some authors 
integrate the neighbored Khibiny and Lovozero in the united Khibiny-Lovozero alkaline complex 
in which 224 minerals were first discovered (108 only from Khibiny, 97 only from Lovozero, and 
19 minerals have co-type localities in both Khibiny and Lovozero), including 88 new species (39%) 
described in 2001–2022 and 48 new species in 1991–2000; *** including 76 new minerals first 
discovered at the Långban mine; **** including 49 new minerals first discovered at the Franklin 
mine
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Surely, the general pattern, involving hundreds other type localities of numerous 
recently discovered minerals non-included into the “champion circle”, is more 
complicated, however, even Table 4.1 well demonstrates the main regularities. The 
major formations prolific for new minerals are as follows (taking into account the 
data on other type localities reported in IMA CNMNC Newsletters 2017–2022): 

• alkaline intrusive (especially) and effusive complexes in which the majority 
of new minerals originates from post-magmatic (pegmatitic, metasomatic and 
hydrothermal) peralkaline mineral assemblages (in Table 4.1: Khibiny, Lovozero, 
Mont Saint-Hilaire, Darai-Pioz, and Ilímaussaq intrusive complexes and Somma-
Vesuvius and East Eifel effusive complexes: >400 new minerals, in active studies 
today); 

• oxidation zone of ore deposits of different types: products of supergene alter-
ation of chalcogenides, primary uranium minerals, etc. (in Table 4.1: Tsumeb, 
Jáchymov, and Shinkolobwe deposits: >140 new minerals, in active studies); 

• fumaroles at active volcanoes and close in physical (P–T) conditions of mineral 
formation different near-surface systems in which pyrometamorphism occurs (in 
Table 4.1: active fumaroles at Tolbachik and Vulcano volcanoes, different objects 
in Somma-Vesuvius and East Eifel volcanic complexes and pyrometamorphic 
rocks of Hatrurim Formation: >240 new minerals, in very active studies); 

• ore deposits of different types with rich and diverse sulfide / sulfosalt mineraliza-
tion (in Table 4.1: Lengenbach, Norilsk, Tsumeb, and Jáchymov deposits: >100 
new minerals, in moderately active studies); 

• specific ores of metamorphic/metasomatic (skarn-like) origin formed under 
oxidizing conditions and enriched by Mn, Zn, Pb, As, etc. (in Table 4.1: deposits of 
Filipstad and Franklin mining districts: >180 new minerals, not in active studies, 
probably due to the absence of mining activity now). 

These and other significantly prolific for new minerals terrestrial (xenoliths 
of high-pressure deep rocks, PGE deposits in ultramafic intrusions, rare-element 
granitic pegmatites, boron-rich evaporite and skarn deposits, etc.) and extra-
terrrestrial (meteorites of exotic types) objects look negligible in general geolog-
ical scale. The majority of them is unusual in—mineralogy and can be considered 
as geochemical anomalies. However, among them there are very rich and valu-
able mineral deposits, including huge and famous ones, such as Khibiny (apatite), 
Lovozero (Nb, Ta, REE), Tsumeb (Cu, Pb, Zn, Cd, Ge, Ag), Franklin (Zn), Norilsk 
(Ni, Cu, Pd, Pt), Jáchymov (Ag, U), Shinkolobwe (U), etc. In the context of this paper 
especially important is the fact that they represent a unique source of geological, 
geochemical, crystal chemical and other information “written” in diverse minerals 
including numerous species first discovered here.
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4.4 New Minerals Discoveries in 21st Century: Our 
Experience and Some Implications 

Here we try to demonstrate some examples of different implications of new mineral 
discoveries, mainly based on the results of our own studies during the last two 
decades. 

4.4.1 Minerals from Peralkaline Rocks 

One of the most important aims of our works is the mineralogy of peralkaline (agpaitic 
and hyperagpaitic) rocks. We were lucky to study many minerals from Khibiny and 
Lovozero alkaline complexes at Kola peninsula, Ilímaussaq complex in Greenland 
and Mont Saint-Hilaire intrusion in Québec. Some new minerals discovered during 
these works turned out real surprises. 

A new family of amazing hybrid, modular hydroxide-sulfides structurally related 
to valleriite consists of ekplexite (Nb, Mo, W)S2·(Mg1 − xAlx)(OH)2 + x, kask-
asite (Mo, Nb, W)S2·(Mg1 − xAlx)(OH)2 + x and manganokaskasite (Mo, Nb, 
W)S2·(Mn1 − xAlx)(OH)2 + x. They were found in late paragenesis in a very unusual 
fenitized xenolith at Khibiny. These minerals contain Nb, Mo and W together in the 
sulfide module. This combination of elements and such isomorphism is so unusual 
for natural compounds that the first member of this family was named ekplexite (from 
the Greek šκπληξη—surprise). Significant isomorphism between Nb, Mo and W 
is known in synthetic disulfides with the molybdenite structure but was not known 
in minerals; also note, hybrid hydroxide-sulfides with these metals are unknown 
among synthetic compounds (Pekov et al. 2014b). This apoxenolithic fenite, which 
contains diverse and specific sulfide mineralization, is geochemically unique among 
terrestrial mineral-forming systems: during its formation, the oxygen fugacity was 
extremely low while S2− activity was very high. Similar conditions earlier were 
known only for meteorites. The discovery of the new mineral edgarite FeNb3S6 and 
Ti-bearing varieties of pyrrhotite, pyrite and marcasite in this xenolith first showed 
that such conditions can occur in terrestrial objects (Barkov et al. 2000) and the 
discovery of ekplexite, kaskasite and manganokaskasite, the hydroxide-sulfides with 
Nb in the sulfide module, demonstrated that these anomalous conditions persisted 
until low-temperature hydrothermal stages. 

A very unusual sulfide is pautovite CsFe2S3 described by us in Lovozero. It clearly 
demonstrates the chalcophile behavior of cesium at the late stages of the evolution 
of hyperagpaitic pegmatites and a very high affinity of the rasvumite structure type 
for Cs. It is remarkable that not only a sulfide turned out to be second in Cs content 
among natural compounds (after pollucite) but also that the phase so rich in cesium 
(36 wt.% Cs and 1.3 wt.% Rb) was found in the generally Cs-poor Lovozero complex 
(Pekov et al. 2005). Pautovite brightly demonstrates how effectively the mechanisms 
of crystallization differentiation and successive fractionation of elements work in
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highly alkaline natural systems. Why did cesium and rubidium enter into sulfide at 
all? It seems that this is due to both hyperagpaitic conditions (practically all minerals 
in such a system contain Na or K in high concentrations), and the well-known in 
chemistry phenomenon that the formation of compounds of large cations with large 
anions is energetically favorable, that is, simply speaking, sodium and potassium, 
being in excess in the hyperagpaitic system, form oxygen compounds and “force” 
rubidium and especially cesium to enter into sulfides. 

The discovery of shirokshinite K(NaMg2)(Si4O10)F2, an unusual mica from 
Khibiny, for the first time convincingly showed that sodium in micas can occupy 
not only interlayer positions but also enter the octahedral layer, separating from 
other cations: a Na, Mg-ordered layer appears (Pekov et al. 2003). The existence 
of shirokshinite demonstrates the possibility of complete separation of K and Na in 
micas between structure positions with quite different characteristics. 

An amazing mineral was found in low-temperature hydrothermal hyperagpaitic 
veins in Lovozero. This is chesnokovite Na2[SiO2(OH)2]·8H2O, the first natural 
orthosilicate with only alkaline cations and the only mineral in which two vertices of 
the Si tetrahedron are represented by OH groups. This highly hydrated (55 wt.% H2O) 
mineral gave us a lot of trouble during studies because of its instability under room 
conditions: it decomposes in a few days. The crystal structure of chesnokovite is held 
only by a system of weak hydrogen bonds formed by water molecules (Fig. 4.2), 
clarifying why this mineral is so unstable. Both dry air and atmospheric carbon 
dioxide “kill” it: Na2[SiO2(OH)2]·8H2O + CO2 → thermonatrite Na2CO3·H2O + 
opal SiO2·nH2O + (8 − n)H2O↑. Chesnokovite turned out to be a good geother-
mometer and a sensitive indicator of extremely low CO2 activity. Its presence indi-
cates that hydrothermal mineral formation in the hyperagpaitic systems in Lovozero 
continues down to the lowest temperatures, below 70–80 °C, and at a very low 
carbonic acid activity (Pekov et al. 2007a).

Some surprises were presented to us by the rock-forming minerals of Lovozero. 
Kyanoxalite Na7(Al6-5Si6-7O24)(C2O4)0.5–1·5H2O, a cancrinite-group member with 
oxalate group (C2O4)2− as a species-defining extra-framework anion, is perhaps the 
most unusual. It is not only the first natural silicate with an organic additional anion 
but also an important rock-forming component (up to 25 vol.% in the rock) of a 
specific feldspathoid syenite (Fig. 4.3) associated with the loparite-richest parts of 
the layered foyaite-urtite-luyavrite complex in Lovozero intrusion (Chukanov et al. 
2010). Kyanoxalite is the latest of the rock-forming minerals of these peralkaline 
rocks and its existence clearly indicates the reducing conditions of mineral forma-
tion due to the presence of oxalate instead of carbonate anion in typical cancri-
nite. However, at earlier stages of formation of this rock the conditions were also 
reducing. This is indicated by sapozhnikovite Na8(Al6Si6O12)(HS)2, another new 
rock-forming (up to 15 vol.% in the rock) feldspathoid discovered by us in the 
amazing rock with kyanoxalite (Fig. 4.3). Sapozhnikovite is a sodalite-group member 
with an exotic for minerals hydrosulfide anion HS−, which substituted Cl− in the 
cage of sodalite framework (Chukanov et al. 2022).
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Fig. 4.2 Chesnokovite: a 
nests of chesnokovite (Ch) 
and natrophosphate (Nph) in 
ussingite (Us) vein: photo 
in  situ, FOV  width 23 cm  
(Mt. Kedykverpakhk 
Lovozero alkaline complex, 
Kola peninsula, Russia); b 
crystal structure (SiO4 
tetrahedra are dark gray, Na 
atoms are light gray circles, 
O atoms in water molecules 
are larger black circles, O 
atoms in apices of Si 
tetrahedra are smaller black 
circles, H atoms are white 
circles; the unit cell is 
outlined) (Pekov et al. 
2007a)

(a) 

(b) 

Fig. 4.3 The specific 
feldspathoid syenite mainly 
consisting of nepheline (pale 
greenish-gray), kyanoxalite 
(pale blue), sapozhnikovite 
(white to grayish, indicated 
with arrows), and aegirine 
(black). Mt. Karnasurt, 
Lovozero alkaline complex, 
Kola peninsula, Russia 
(Chukanov et al. 2022)
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Vigrishinite Zn2Ti4 − xSi4O14(OH, H2O, ▢)8 (x < 1), the first natural zinc-
bearing heterophyllosilicate and the first in this large family mineral without species-
defining alkaline or alkaline earth cations, was discovered in Lovozero, in peral-
kaline pegmatites altered by low-temperature solutions. Visually, this mineral is 
indistinguishable from its structural relative murmanite. We found that vigrishi-
nite occurs only near the cavities after dissolved sphalerite whereas, if there is 
no leached sphalerite nearby, then we observe a common murmanite (Pekov et al. 
2013). This immediately led us to the idea of ion exchange on murmanite in nature. 
Later on a detailed study of the crystal chemistry and the properties of vygrishinite 
as well as the finding in the same pegmatites its zinc-niobium relative zvyaginite 
NaZnNb2Ti[Si2O7]2O(OH, F)3(H2O)4+x (x < 1) which turned out to be a naturally 
Zn-exchanged analogue of epistolite (Pekov et al. 2014a), promoted—the discovery 
of a novel family of effective and highly selective ion exchangers—Ti- and Nb-
silicates with lomonosovite-/epistolite-related structures (Lykova et al. 2015). 

It is worthy to mention another very unusual mineral, with also strongly occurred 
zeolitic properties. It was discovered by us in peralkaline pegmatites of the Mont 
Saint-Hilaire massif. It is niveolanite NaBe (CO3)(OH)·1-2H2O, the only known 
natural beryllium carbonate (Fig. 4a), a representative of the unique structure type. 
It has wide zeolitic channels, where very weakly bound water molecules are located 
(Fig. 4b) (Pekov et al. 2008). A slight heating in dry air leads to their removal, but 
by even simply holding the mineral over the steam from the tea kettle, we can return 
to them. 

The only calcium member of the belovite group in the apatite supergroup 
carlgieseckeite-(Nd) NaNdCa3(PO4)3F, discovered in Ilímaussaq, is an extremely 
rare mineral, in contrast to the closely related mineral belovite-(Ce) NaCeSr3(PO4)3F 
which is widespread in the peralkaline pegmatites of Lovozero and Khibiny. Prob-
ably, the reason for such a rarity of carlgieseckeite-(Nd) is that the main cation in it is

(a) (b) 

Fig. 4.4 Niveolanite: a wool-like aggregate on albite (Mont Saint-Hilaire, Québec, Canada); b 
crystal structure (Na polyhedra are green, Be tetrahedra are yellow, C atoms are black circles; H2O 
molecules involved in Na polyhedra are marked as blue circles, possible positions of H2O molecules 
in the channels are white circles, H-atoms of OH group are small black circles) (Pekov et al. 2008) 
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Fig. 4.5 Epitaxy of 
carlgieseckeite-(Nd) (white) 
on Sr-bearing fluorapatite 
(dark grey). Kuannersuit 
(Kvanefjeld) Plateau, 
Ilímaussaq, Greenland. 
Polished section, BSE image 
(Pekov et al. 2012) 

Ca, which is noticeably smaller in size than Sr and its incorporation destabilizes the 
structure. As a consequence, carlgieseckeite-(Nd) can be nucleated only “with the 
support of the relatives”: it is found only epitactically overgrowing on fluorapatite 
(Fig. 4.5) (Pekov et al. 2012). 

4.4.2 Minerals from Volcanic Fumaroles 

In the last decade, we actively study strongly mineralized oxidizing-type fumaroles 
with “ore” specialization generated by the active Tolbachik volcano in Kamchatka. 
This locality recently became the world record-holder in the number of minerals 
discovered in one geological object: 143 new mineral species, of which 124 minerals 
were discovered at the Main fumarole field (about 50 m× 100 m in area) of the Second 
scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption 
(Table 4.1). The Arsenatnaya fumarole, first discovered by us in 2012, is located 
here, in which 66 new minerals were discovered in an area of ca. 60 m2 for this short 
time: this is an absolute world record both in the number of new minerals per unit 
area and in the dynamics of discoveries over time. All new minerals in Tolbachik 
fumaroles are oxygen compounds or halides and many of them are quite unusual. 

First, note arsmirandite Na18Cu12Fe3+O8(AsO4)8Cl5 and lehmannite 
Na18Cu12TiO8(AsO4)8FCl5. In their structures nanoscale (ca. 1.5 nm across) 
polyoxocuprate clusters {[MCu12O8] (AsO4)8} (M = Fe3+ in arsmirandite and 
Ti4+ in lehmannite) of the new type were discovered. In the center of the cluster, 
Fe3+ or Ti4+ in a very unusual for them cubic coordination occurs. This MO8 cube 
is surrounded by twelve flat squares Cu2+O4 linked with eight AsO4 tetrahedra 
(Fig. 4.6) (Britvin et al. 2020; Pekov et al. 2020a). Noteworthy that polyoxometalate
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Fig. 4.6 The structure of the polyoxocuprate nanodcale clusters in arsmirandite and lehmannite 
shown in ellipsoidal and polyhedral representations (exemplified by arsmirandite, M = Fe3+): a 
cubic coordination of M site; b, c 13-nuclear metal-oxide core; d, e the whole clusters. Displacement 
ellipsoids are shown at the 50% probability level (Pekov et al. 2020a) 

clusters in minerals are, in general, a novelty in the mineralogical crystal chem-
istry discovered in twenty-first century. Before the discovery of arsmirandite and 
lehmannite in high-temperature exhalations of the Arsenatnaya fumarole, it was 
believed that these complex motifs can occur only in the structures of compounds 
that crystallize at relatively low temperatures (Krivovichev 2020). 

In general, copper mineralization in the oxidizing-type volcanic fumaroles turned 
out to be extremely diverse and its study significantly helped to develop the genetic 
crystal chemistry of copper. The analysis of the structural principles for 96 copper-
bearing minerals—oxysalts, chlorides, and oxides (including 68 species for which 
Tolbachik is the type locality) formed in volcanic fumaroles showed that the crystal 
chemical features of the minerals crystallized in hot zones of fumaroles (>200 °C) and 
at moderate temperatures (50–150 °C) are essentially different. All high-temperature 
minerals do not contain hydrogen atoms, and Cu2+ cations are mainly in the fourfold 
or fivefold coordination in them. In contrast, the second-group minerals typically 
contain OH anions and/or water molecules, and Cu2+ cations are prone to octahedral 
coordination in them (Pekov et al. 2018c). 

In the oxidizing-type fumaroles with a combination of high temperature (400– 
700 °C), atmospheric pressure and gas transport of many components, very unusual 
copper mineralization arises: Cu2+ can enter in large amount in those minerals in 
which in other natural systems copper is absent. The most striking examples are
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Fig. 4.7 Radiating cluster of 
cavernous prismatic crystals 
of ferrisanidine on cassiterite 
(bright phase). Arsenatnaya 
fumarole, Tolbachik volcano, 
Kamchatka, Russia. SEM 
(BSE mode) image 
(Shchipalkina et al. 2019) 

spinels and pyroxenes: in Tolbachik fumaroles we first reliably reported naturally 
occurring cuprospinel CuFe2O4 and discovered the new spinel-group mineral ther-
maerogenite CuAl2O4 (Pekov et al. 2018a) and the first natural copper pyroxene 
ryabchikovite CuMgSi2O6 (Shchipalkina et al. 2023). 

However, such conditions give rise to unusual in chemical composition repre-
sentatives of the usual structural types, not only with copper. Here feldspars of 
unusual composition were discovered, namely aluminoarsenate member of this 
group filatovite K[(Al, Zn)2(As, Si)2O8] (Vergasova et al.  2004) and ferrisani-
dine K[Fe3+Si3O8], the first natural feldspar with species-defining iron (Fig. 4.7) 
(Shchipalkina et al. 2019). The second, after vanadinite, natural vanadate of the 
apatite supergroup was discovered in Tolbachik fumaroles, pliniusite Ca5(VO4)3F 
which forms a ternary isomorphous system with svabite Ca5(AsO4)3F and fluorap-
atite Ca5(PO4)3F (Fig. 4.8). Earlier (VO4)3− anion was not reported in distinct amount 
in natural calcium apatites. Pliniusite was also found in pyrometamorphic rocks of 
the Hatrurim Formation in Israel, where it crystallized under similar conditions, at 
high temperature and low pressure (Pekov et al. 2022a).

In Tolbachik fumaroles we discovered the first natural tin arsenate and four arse-
nates with species-defining Ti. In addition to the above mentioned lehmannite, they 
are arsenatrotitanite NaTiO(AsO4), the mineral with titanite-type structure (Pekov 
et al. 2019), and katiarsite KTiO(AsO4), the first natural representative of a well-
known for numerous synthetic oxysalts the KTP structure type. Katiarsite is a natural 
analogue of a very important nonlinear optical material KTA (Pekov et al. 2016). 
Yurgensonite K2SnTiO2(AsO4)2, forming the isomorphous series with katiarsite, 
also adopts the KTP-type structure and shows significant ordering of Ti4+ and Sn4+ 

between different structure positions (Fig. 4.9) which found for the first time in 
minerals (Pekov et al. 2021).

Very unusual for minerals isomorphism was revealed in fluoroborates of the 
rhabdoborite group—rhabdoborite-(V) Mg12(V5+, M6+

1 
3 
M6+ 

1/3)O6{(BO3)5(PO4)F} 

(with M 6+ = Mo, W), rhabdoborite-(Mo) Mg12 Mo6+ 
1 1 3 
O6(BO3)6F2, and
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Fig. 4.8 Ternary isomorphous system pliniusite Ca5(VO4)3F—svabite Ca5(AsO4)3F—fluorap-
atite Ca5(PO4)3F: ratios of major tetrahedrally coordinated constituents. Legend: 1—Arsenatnaya 
fumarole, Tolbachik volcano; 2—Mountain 1004, Tolbachik volcano; 3—Nahal Morag, Hatrurim 
Basin; 4—holotype pliniusite (Mountain 1004); 5—cotype pliniusite (Nahal Morag) (Pekov et al. 
2022a)

(a) (b) 

Fig. 4.9 Minerals of the KTP structure type from Arsenatnaya fumarole, Tolbachik volcano: a 
bush-like clusters of beige acicular crystals of Sn-rich katiarsite on white sanidine crust; b crystal 
structure of yurgensonite: M(1) = Ti, M(2) = Sn, the unit cell is outlined (Pekov et al. 2021)

rhabdoborite-(W) Mg12W 6+ 
1 1 3 

O6(BO3)6F2 discovered in Tolbachik fumarole exha-

lations. They form large crystals and are abundant minerals (Fig. 10a) in some 
high-temperature (>500 °C) parageneses being the main concentrators of tungsten 
and important concentrators of molybdenum. The concentration of W, Mo and V 
in borates is a really new aspect of their geochemistry. Rhabdoborites represent a 
novel, unique structural type (Fig. 10b) in which V5+, Mo6+ and W6+ do not center 
the oxygen tetrahedra but are located in the distorted oxygen octahedra (Pekov et al. 
2020b). Note also that the discovery of rich borate mineralization [rhabdoborites, 
ludwigite-group members, chubarovite KZn2(BO3)Cl2 (Pekov et al. 2015b), etc.]
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(a) (b) 

Fig. 4.10 Rhabdoborite-group minerals from Arsenatnaya fumarole, Tolbachik volcano: a light-
yellow acicular crystals of rhabdoborite-(Mo) with colourless to white anhydrite needles and 
sprinklings, beige berzeliite kidneys and blue aggregates of calciojohillerite; b crystal structure 
of rhabdoborite: M = V5+, Mo6+ and W6+, the unit cell is outlined (Pekov et al. 2020b) 

in high-temperature Tolbachik fumaroles made it possible to revise the views on the 
volatility of boron in volcanic gases: as it turned out, unlike carbon and hydrogen, 
in an oxidizing environment, boron can be already fixed at temperatures of about 
600–700 °C to form borates with isolated triangular BO3 anions. 

In Tolbachik fumaroles we discovered two new minerals with trivalent thallium 
extremely rare in nature. They are K-Tl-ordered hydrous chlorides, chrysothallite 
K6Cu6Tl3+Cl17(OH)4·H2O with a unique structure (Fig. 4.11) (Pekov et al. 2015a) 
and kalithallite K3Tl3+Cl6·2H2O (Pekov et al. 2023a). They crystallize at tempera-
tures below 200 °C. Trivalent thallium in them is the brightest indicator of the fact that 
strongly oxidizing conditions in the fumarolic system persist until the later stages.

4.4.3 Supergene Minerals 

Among the supergene minerals discovered by us, note calamaite 
Na2TiO(SO4)2·2H2O, the first natural sulfate with unique structure (Fig. 4.12) 
in which titanium almost completely occupy its structural position. We found it 
in the oxidation zone of Alcaparrosa deposit in Atacama desert, Northern Chile 
(Pekov et al. 2018b). The climate here is extremely dry and in the zone of supergene 
alteration of rich pyrite ores, natural sulfuric acid reaches so high concentration that 
it dissolves the Ti-bearing minerals of the rocks hosting the ore bodies, and further 
titanium is fixed in the sulfate form. Calamaite is a clear indicator of this process.

An unexpected carbonate was discovered by us in the products of terrestrial 
weathering of the Dronino iron meteorite (Ryazan Oblast, Russia). It is chukanovite 
Fe2+ 2(CO3)(OH)2, an iron analogue of malachite (Pekov et al. 2007b). Malachite is 
very common in nature whereas its analogue with Fe instead of Cu is extremely rare. 
Why? Chukanovite is an indicator of very specific formation conditions: it appears
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(a) (b) 

Fig. 4.11 Chrysothallite from Glavnaya Tenoritovaya fumarole, Tolbachik volcano: a spherical 
aggregate of equant tetragonal crystals; b crystal structure: Cu polyhedra are turquoise-coloured, 
Cl atoms are green circles, O atoms of OH-groups are red circles, H atoms of OH groups are black 
circles, positions of O atoms belonging to H2O molecules are dark blue circles, the unit cell is 
outlined (Pekov et al. 2015a)

(a) (b) 

Fig. 4.12 Calamaite from Alcaparrosa, Calama, Antofagasta, Chile: a white radial spherulitic 
cluster consisting of acicular to hair-like crystals on red-brown römerite crystal crust with 
mustard-yellow metavoltine crystals; b crystal structure (Pekov et al. 2018b)
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as a result of a low-temperature alteration in a CO2-saturated aqueous medium of 
native (in this case, meteoritic) iron, which serves not only as a reagent but also as a 
reducing agent. If atmospheric oxygen enters the system buffered by metallic iron, 
the Fe2+ in this hydroxyl carbonate is easily oxidized to Fe3+, and chukanovite disap-
pears. It is a real peculiarity of such conditions that determines the rarity in nature 
of this mineral, which is a representative of a common structure type and contains 
only widespread chemical elements. 

4.5 Minerals and X-Rays 

X-ray diffraction became one of the main analytical methods in the studies of new 
minerals. Shortly after the discovery of X-ray diffraction it proved its undoubted 
advantage in the express and exact identification of the crystalline matter over long-
known analytical methods of the study of solids such as chemical analysis and optical 
microscopy. In Russia, the development of X-ray analysis and its use in the study 
of minerals is related to Academician Nickolay V. Belov (1891–1982). One of the 
authors (D.Yu.P.) was lucky to study at the Department of Crystallography at Moscow 
State University headed by this outstanding scientist. He told us, young post-graduate 
students: “The scientist should live under the pressure of paradoxes. This means that 
one cannot fully believe himself and not fully trust the results of colleagues; in other 
words, to be a devil’s disciple” (following G.B. Shaw). We think that this statement 
is extremely useful for current researchers in all branches of science. 

The discovery of new minerals is closely related to the perfection of analyt-
ical methods, among which the X-ray diffraction and electron microprobe anal-
ysis recently became the most popular (Fig. 4.13). However, approximately 20% 
of minerals remain structurally unstudied because of their small sizes or unsuitable 
crystals.

4.6 Characterization of New Minerals with the Use of Big 
Data 

The researchers who are involved in the discoveries of new minerals remember the 
words by the mathematical biologist Prof. D’Arcy W. Thompson (1860–1948) that 
“things are interesting only in so far as they relate themselves to other things”. In other 
words, we should determine the position of a new mineral within the classification 
based on chemical and structural criterions. Nowadays, when in August 2022 the 
ICDD data base contained 1,143,236 entries (480 300 XRD diagrams of inorganic 
crystals and 50,900 of minerals and their analogues), it is rather complicate problem.



4 The Discovery of New Minerals in Modern Mineralogy: Experience, … 87

Fig. 4.13 The characteristics of methods applied in the description of new minerals (Barton 2019)

The study of nishanbaevite, ideally KAl2O(AsO4)(SO4), a mineral recently 
discovered in fumarole exhalations of the Tolbachik volcano, can be used as an illus-
tration of the modern approach for the treatment of such big data aimed the search 
of the similar compounds. The structure of nishanbaevite (Fig. 4.14) is unique. It 
is based on the complex heteropolyhedral sheets formed by zig-zag chains of Al-
centred polyhedra (alternating trigonal bipyramids AlO5 and octahedra AlO6 sharing 
edges) and isolated tetrahedra AsO4 and SO4. Adjacent chains of Al polyhedra are 
connected via AsO4 tetrahedra to form a heteropolyhedral double-layer (Pekov et al. 
2023b). 

Fig. 4.14 The crystal 
structure of nishanbaevite: 
A—(K, Na), the unit cell is 
outlined (Pekov et al. 2023b)
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Fig. 4.15 Environment of AlO6 octahedra a, AlO5 trigonal bipyramids b and AsO4 tetrahedra c 
in nishanbaevite (Pekov et al. 2023b) 

The topological analysis aimed with the search of the related compounds was 
performed with the program package ToposPro (Blatov et al. 2014) allowed repro-
ducing the structure of nishanbaevite consisted of centers of AlO6, AlO5, AsO4 and 
SO4 groups. The simplified double periodic layer is represented by a 6,6-coordinated 
net with AlO6, AlO5, AsO4 groups as nodes and bridging SO4 groups as links. 
The term “6,6-coordinated” means that the net contains two types of topologically 
different nodes with the number of contacts (coordination) equal to six. One type of 
nodes is represented by the AlO6 groups, while AlO5 and AsO4 groups are topolog-
ically equivalent, i.e. they are equally connected to other groups, and they represent 
another type of nodes (Fig. 4.15). 

The net has the unique topology, which has never occurred in crystal structures. 
The search in the databases of the TopCryst system (Shevchenko et al. 2022) revealed 
eight compounds. Among them, isotypic orthorhombic minerals cupromolybdite 
Cu3O(MoO4)2 and vergasovaite Cu3O(MoO4)(SO4) and synthetic solid solution 
series [Cu(1−x)Znx]3O(MoO4)2 and Zn3O(MoO4)2. Further, there are isotypic mono-
clinic compounds Zn3O(MoO4)2 and Zn3O(SO4)2 [the unit cell of the latter can 
be transformed to one close to that chosen for monoclinic Zn3O(MoO4)2 using the 
matrix—1 0–1/0–1 0/0 0 1)] and the mineral glikinite (Zn,Cu)3O(SO4)2, a natural 
Cu-bearing analogue of synthetic Zn3O(SO4)2 (Nazarchuk et al. 2020). All these 
sulfates and molybdates, like nishanbaevite, contain the 6,6-coordinated layers as 
parts of the 3D framework structure. Notably, all these minerals originate from 
Tolbachik fumaroles. 

4.7 Implications to Classification of Minerals 

The discoveries of new minerals often contribute the improving of their classifica-
tion. As an example, we shall refer a new mineral paratobermorite with the ideal 
crystal chemical formula Ca4(Al0.5Si0.5)2Si4O16(OH)·2H2O·(Ca·3H2O) (Pekov et al.
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2022b), a member of the tobermorite group within the tobermorite supergroup. Until 
its discovery, this supergroup included five mineral species also known with the 
joint name “tobermorites”: tobermorite, kenotobermorite (forming the tobermorite 
group), clinotobermorite, plombiérite, and riversideite (Biagioni et al. 2015). 

Historically, among “tobermorites” three types of minerals, so-called tobermorites 
14, 11, and 9 Å were distinguished in correspondence with the strongest basal d-
spacing in a powder Xray diffractogram. In terms of species names, they correspond 
to plombiérite, tobermorite, and riversideite, respectively. Paratobermorite, a new 
representative of the tobermorite group, differs from other tobermorite-supergroup 
members not only in chemical composition, symmetry, and unit cell metrics but 
also in the topology of the crystal structure, which is the most significant individual 
feature of the new mineral. 

The crystal structure of paratobermorite (Fig. 4.16), like structures of other “tober-
morites 11 Å” (Merlino et al. 2001), is based on the complex module built of sheet 
of Ca-centered polyhedra, parallel to (001), connected with chains of T tetrahedra. 
Paratobermorite possesses the “complex module of type A” (Fig. 4.17a). There are 
three main T sites. According to interatomic distances, T1 and T2 are fully occupied 
by Si atoms, while the T3 site, as well as the additional T4 site (these sites could be 
only alternatively occupied due to a short T3–T4 distance), are filled by Al and Si in 
the ratio 1:1 with partial occupancies. The “complex module of type B” (Fig. 4.17b) 
is known in tobermorite and kenotobermorite whereas the “complex module of type 
A” was known in clinotobermorite. Now it is found in paratobermorite. 

Paratobermorite is refered to “tobermorites 11 Å,” as well as tobermorite, keno-
tobermorite, and clinotobermorite. The belonging of paratobermorite to the tober-
morite group is justified by the same type of tetrahedral motif in the structure 
(Fig. 4.18a, b) (Pekov et al. 2022b), whereas clinotobermorite (Fig. 4.18c) and other

Fig. 4.16 The crystal 
structure of paratobermorite
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(a) 

(b) 

Fig. 4.17 Two topological types of the complex Ca-T-O module, a fundamental building unit 
in the crystal structures of tobermorite-supergroup minerals: a “complex module of type A” in 
paratobermorite; b “complex module of type B” in tobermorite (drawn after Merlino et al. 2001)

tobermorite-supergroup members differ from them in this aspect (Biagioni et al. 
2015).

4.8 Use of Synchrotron Radiation in Studies of New 
Minerals 

During the Bragg era 110 years ago, the first structural analyses of halite and diamond 
used crystals of 1 cm to several millimeters. Then in 1920–1930 (the era of William 
Taylor and Linus Pauling), researchers began to study crystals of less than 1 mm, 
which became possible due to the invention of tubes with a hot cathode. Beginning in 
1960, progress in the development of software combined with more powerful X-ray 
diffractometers allowed reduction of the size of studied crystals to hundredths of 
a millimeter. Since 1970, expansion of the possibilities of X-ray diffraction exper-
iments has occurred that is related to the use of powerful synchrotron radiation, 
which allows researchers to study micrometer-sized crystals with a volume of less 
than 0.5 μm3. The current analytical methods, including high-resolution transmitted 
electron microscopy and electron diffraction tomography, expanded the possibilities
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Fig. 4.18 Tetrahedral motifs in the structures of 2 M polytypes of “tobermorites 11 Å”: parato-
bermorite (a), tobermorite (b), and clinotobermorite (c), the unit cells are outlined (Pekov et al. 
2022b)

of the study of nanocrystals with sizes up to 5 nm. Obviously, this opens a new era 
in physics and crystal chemistry of minerals (Pluth et al. 1997). 

We selected the structure of tillmannsite (Ag3Hg)(V,As)O4 as an example of 
the use of this technique two decades ago. Tillmannsite was discovered in Roua 
mines in the French Alps. Its structure (Fig. 4.19) was solved on a tiny crystal 
(4 × 2 × 1 μm) using the diffraction data set obtained in Daresbury synchrotron 
center. It expanded the ideas on interatomic interactions. It is rather simple, with 
only two types, (V, As)O4 tetrahedra and a (Ag3Hg)3+ cluster, which was found 
for the first time in minerals (Sarp et al. 2003). The unusual clusters (Ag3Hg)3+ 

and (Ag2Hg2)4+ with ~2.72 A metallic bonds between Ag and Hg atoms were 
later identified in the synthetic compounds (Ag3Hg)VO4, (Ag2Hg2)3(VO4)4 and 
(Ag2Hg2)2(HgO2)(AsO4)2 (Weil et al.  2005).

The topological relationships between tillmannsite and two other minerals with 
metallic clusters formed by Hg and Ag, namely kuznetsovite (Hg3)(AsO4)Cl and 
rudabányaite (Ag2Hg2)(AsO4)Cl were recently described by Effenberger et al. 
(2019). 

4.9 New High-Pressure Minerals 

Ultrahigh pressures in the Earth’s deep interior, and their influence on the extrater-
restrial meteorites induce formation of many minerals with unusual compositions 
or structures. Modern concepts about the mineral composition of the Earth’s mantle
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Fig. 4.19 Tetrahedral cation 
[Ag3Hg]3+ in tillmannsite: 
projection of the structure 
along [001]. Metal atoms 
(M) are given as blue spheres 
and [VO4] tetrahedra (red 
color) are given in the 
polyhedral representation 
(Sarp et al. 2003)

allowed to conclude that its diversity is much larger than it was anticipated even a 
few decades ago (Table 4.2) (Pushcharovsky and Pushcharovsky 2012). The detailed 
review of these minerals formed under the pressure above ~1 GPa and discovered as 
inclusions in diamonds, in meteorites and in the rocks near terrestrial impact craters 
shows that their inventory nowadays comprises 44 species (Miyahara et al. 2021). 

Coesite, a silica polymorph, was the first discovered mineral of this type (Chao 
et al. 1960). It facilitated the interpretation of high-pressure (HP) metamorphism 
and specific features of the petrology of surrounding rocks (Chopin 1984). During 
the next over 60 years the number of HP minerals was significantly increased. The 
corresponding breakthrough observed in twenty-first century can be related with the 
wider use of a new technique, namely, transmission electron microscope equipped 
with an X-ray energy-dispersive spectrometer (TEM-EDS), focused ion beam (FIB), 
synchrotron X-ray diffraction (sXRD), electron backscattered diffraction (EBSD) 
and other modern instruments.

Table 4.2 Minerals of deep geospheres, after (Pushcharovsky 2022); s.t.—structure type 

Upper 
mantle 

olivine (Mg, Fe)2SiO4; orthorhombic (Pbca) and monoclinic (P2/c) 
pyroxenes (Mg,Fe)2Si2O6; garnet (pyrope (Mg, Fe, Ca)3(Al,Cr)2Si3O12; 
KAlSi3O8—hollandite s.t 

Transition zone wadsleyite β-(Mg,Fe)2SiO4—asimowite Fe2SiO4 (wadsleyite s.t.); 
ringwoodite γ-(Mg,Fe)2SiO4—ahrensite Fe2SiO4—spinel s.t.; akimotoite 
MgSiO3 (ilmenite s.t.)—hemleyite FeSiO3; majorite garnet 
Mg3(Fe2+Si)(SiO4)3; (Ca0.5Mg0.5)Al2Si2O8—hollandite s.t.; stishovite 
SiO2—rutile TiO2 s.t 

Lower 
mantle 

Bridgmanite MgSiO3—hiroseite FeSiO3; periclase-wüstite (Mg, Fe)O; 
davemaoite CaSiO3—orthorhombic perovskite s.t.; MgAl2SiO4, carnegieite 
NaAlSiO4—CaFe2O4 s.t.; poststishovite SiO2—CaCl2 s.t.; seifertite 
SiO2—α-PbO2 s.t.; boundary with zone D''—postperovskite 
MgSiO3—CaIrO3 s.t 
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Since 1950 the results of the studies of olivine, which is one of the major 
constituents of the upper mantle and meteorites, attract a special attention. With 
increasing pressure olivine (forsterite, α-Mg2SiO4) first transforms to wadsleyite β-
Mg2SiO4 which further transforms to a spinel-type phase (ringwoodite γ-Mg2SiO4) 
(Akaogi 2022). 

A hypothetical “ε-phase” of Mg2SiO4 was predicted by Madon and Poirier (1983) 
as an intermediate phase in the transition process from olivine-type (α) to spinel-type 
(γ) phase. Recently, a natural Mg2SiO4-rich ε-phase was found in shocked meteorites, 
and it has been named poirierite (Tomioka et al. 2021). The intergrowths of poirierite 
with wadsleyite/ringwoodite in shocked chondrites support the idea proposed by 
Madon and Poirier (1983) where “ε-phase” (now poirierite) is a waypoint in the shear 
transformations between olivine and wadsleyite/ringwoodite (e.g., olivine becomes 
ringwoodite via poirierite) (Miyahara et al. 2021). 

It is also worthy to note that poirierite with its idealized formula ε-Mg2SiO4 

exhibits the new type of silicate chain [SiO3]. Currently, even taking into consider-
ation only the composition of (Si, O) tetrahedral complexes and their most relevant 
geometric characteristics (e.g., chain period, number of tetrahedra in rings, type of 
net forming rings, etc.), the number of different silicon–oxygen anions is more than 
120 (Pushcharovsky et al. 2016). Thus, the structure of poirierite shown in Fig. 4.20 
is really unique as it contains the silicate chains with only one tetrahedron in their 
period. 

Previously this kind of tetrahedral chains was known only in the structure of 
synthetic CuGeO3 (Völlenkle et al. 1967; Green et al. 1994). The contact of two 
poirierite chains geometrically produces the tetrahedral bands (Si, Al)2O5 in silli-
manite Al2SiO5. Consequently the structural formula of poirierite is Mg2[SiO3]O.

(a) (b) 

Fig. 4.20 The crystal structure of poirierite: projections along [001] (a) and along [010] (b); drawn 
using atomic coordinates from (Tomioka et al. 2021) 
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4.10 Epilogue. Unsuccessful Attempt to Discover a New 
Mineral, or a Practical Advice to Collectors 

The title of this paper assumes the review of the experience which accompanies the 
discoveries of minerals. The consequences of these researches sometimes lead to 
completely unpredictable results. One of such episodes is reported here. 

Time ago the mineralogical collection of the Geneva Museum of Natural History 
was supplemented by a sample which contained essentially azurite associated with 
another mineral, dark blue in color. All attempts to identify this mineral using optical 
and XRD studies failed and did not reveal any similarities with any natural or synthetic 
compounds known so far. The qualitative chemical analysis proved the presence of 
copper and carbon as the main elements. These results led to the conclusion that 
these crystals can be considered as an unknown copper carbonate hydrate. 

However, the structure determination revealed that the crystals are in fact a 
hydrated copper salt of succinic acid, Cu(C4H4O4)·H2O (Rastsvetaeva et al. 1996). 
The crystals are characterized by a layered structure, which consists of Cu2+-
centred square pyramids, connected by bridges formed by four C atoms (Fig. 4.21). 
It is closely related with the earlier known monoclinic copper maleate hydrate, 
Cu(C4H2O4)·H2O. 

The crystallization of copper succinate, untypical of the world of minerals, is 
due to the fact that Mrs. Casanova from Toulon, France who collected the sample, 
had previously cleaned it with detergent W5 produced by the LIDL company in 
Strasbourg. We were informed by this company that the chemical composition of 
W5 detergent is confidential, however we suppose that it contains succinic acid 
H2[OOCCH2CH2COO] which determined the final composition of the studied 
copper salt. This assumption can be attributed to the fact that organic acids, as 
constituents of many detergents, reinforce their hydrotropy. Use of succinic acid 
in detergent production seems reasonable as it is easily soluble in contrast with 
other acids, which contain more carbon atoms. Moreover, it is relatively cheap and

Fig. 4.21 Layer formed by 
Cu-centred square pyramids 
and by carbon chains in the 
structure of Cu(II) succinate 
hydrate Cu(C4H4O4)·H2O. 
The circles represent C 
atoms (Rastsvetaeva et al. 
1996) 
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its single bond between two methylene groups CH2 makes it less aggressive than 
other organic acids. Thus, a practical piece of advice to museum curators and mineral 
collectors resulting from this study can be formulated as never wash copper minerals 
with detergents… 

4.11 Look to the Future 

Several aspects of the work on search and characterization of new minerals were 
considered in this chapter. It is one of the most actual aims of modern mineralogy. 
Obviously, the results obtained significantly enrich it and have many important impli-
cations in the wide spectrum of scientific branches. It is evident that in the future the 
discoveries of elegant and mysterious new minerals will give the non-standard ideas 
which will develop the knowledge on composition, structure and evolution of Earth, 
other planets and the Universe in general. 
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Chapter 5 
Structural and Chemical Complexity 
of Minerals: The Information-Based 
Approach 

Sergey V. Krivovichev 

Abstract A general overview of the theory of complexity of minerals is given based 
on the approximation of minerals as mostly ideal crystals with idealized chemical 
compositions (but taking into account chemical substitutions). The procedures for 
the calculation of chemical and structural complexities from information-theoretic 
arguments are given, and their relations are analyzed. The concept of information 
landscapes is introduced that are complementary to energy landscapes. The rela-
tions between complexity and symmetry, complexity and entropy, complexity and 
thermodynamic parameters, complexity and metastable crystallization are reviewed. 
The complexity of minerals is increasing in the course of geological history, both in 
structural and chemical terms. Historically, more and more complex minerals come 
to the attention of mineralogists, which is demonstrated by the analysis of temporal 
dynamics of mineralogical discoveries. The analysis of relative complexity of living 
organisms and minerals from the information-theoretic viewpoint reveal their drastic 
difference, even not considering functional complexity of living beings. 

Keywords Complexity · Mineralogy · Crystal structure · Chemical composition ·
Entropy · Symmetry · Metastability · Information · Mineral evolution · History of 
mineralogy 

5.1 Introduction 

Each natural object composed from identical or different parts and existing in time 
and space has its own level of complexity. This complexity is an intrinsic property 
of the object, which magnitude can be understood from its comparison with related 
objects. The Universe itself is an extremely complex structure, consisting of colossal
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(though not infinite) number of parts arranged in a huge number of hierarchical 
levels and connected through a complex network of interactions of different kinds 
and strengths. At the same time, the Universe contains particular regions, where 
complexity reaches its maxima, due to the specific thermodynamic and stable-over-
time conditions, when extremely complex structures may develop and sustain their 
own existence. Our planet Earth is the one of such islands of complexity (and the only 
one we are aware of) that provides home for living and thinking creatures, among 
which human brain is thought to possess the most complex structure in the visible 
Universe (Kaku Kaku, 2014). 

Natural sciences are separated into different disciplines according to the objects 
and processes at the core of their endeavor into mathematics, physics, chemistry, 
biology, geology, etc. Each science has its own focuses of attention that can be 
arranged in the order of their complexity. The feeling of complexity is inherent 
to the human mind, but, since ‘the great book of Nature is written in mathemat-
ical language’ (Galileo), the quantitative measures of complexity are necessary to 
transform that feeling into numbers that can be assigned to a specific structure as 
a numerical characteristics of its complexity. The number of parts that constitute a 
structure seems to be the most natural measure of its complexity. However, the parts 
can be different and, for a spatial structure, arranged in different ways, that intro-
duces additional difficulties when measuring complexity. Soon after the invention 
of the theory of information (Shannon and Weaver Shannon and Weaver, 1949), it 
was applied by Rashevsky (1955) to graphs that model a variety of complex systems 
and, in particular, molecules. Indeed, the Shannon formula (see below) that provides 
the quantitative measure of information per message consisting of a finite number of 
symbols, appears to be the most effective way to quantify complexity for a structure 
that can be split into finite number of parts that belong to the final number of kinds. 
A very abstract structure of the kind is a graph consisting of vertices of different 
classes of equivalence. Since graphs can be used as models for a range of systems, 
information-based science of complexity has been very effective for the investiga-
tion of various types of chemical, biological, ecological, economic, etc., phenomena 
(Bonchev and Rouvray 2005; Sabirov and Shepelevich 2021). 

The use of information as a measure of complexity becomes even more natural in 
the context of the scientific philosophy views, which state that information consti-
tutes the core of any existing phenomena. Without mentioning philosophers such 
as Richard Stonier (Stonier 1990), these views have been propagated by many ‘real 
scientists’ such as John Archibald Wheeler, who pointed out that ‘…every item 
of the physical world has at bottom—a very deep bottom, in most instances—an 
immaterial source and explanation; that which we call reality arises in the last anal-
ysis from the posing of yes–no questions … in short, that all things physical are 
information-theoretic in origin…’ (Wheeler, 1998). 

In this chapter, we provide a brief overview on the use of information-based 
complexity measures in mineralogy, which are now at the very first and preliminary 
stage of their development, dealing mostly with the complexity of chemical compo-
sition and crystal structure. Nevertheless, we believe that the use of information
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theory in mineralogy may have interesting perspectives, due to the relations existing 
between informational complexity and entropy. 

5.2 Minerals as Information Reservoirs: Basic Principles 

Since minerals by definition are crystalline chemical compounds of geo- or cosmo-
chemical origin, their two basic characteristics are chemical composition and crystal 
structure. Thus, chemical and structural complexities are the most important (and 
inter-related) features of mineral complexity. The first and obvious approach to the 
latter is to consider ‘ideal’ minerals that possess ideal chemical formulae (or end-
member formulae) that are used for the definition of mineral species (Pasero 2022), 
and ideal crystal structures of ideal crystals that possess no point defects, discloca-
tions, mosaicity, inclusions, etc. Such a complexity theory of ‘ideal minerals’ is the 
first approximation that was developed within recent 10 years (Krivovichev 2012, 
2013a, b, 2014, 2016, 2017a, 2018, 2020a, b, 2021, 2022a, b; Grew et al.  2016; 
Krivovichev and Krivovichev 2020; Krivovichev et al. 2016, 2017, 2018a, 2022; 
Banaru et al. 2021). 

According to this approach, for a crystal structure having v atoms per reduced 
unit cell splitted into k crystallographic orbits with multiplicities (m1, m2, ….,  mk), 
the amounts of structural Shannon information per atom (strIG) and per unit cell 
(strIG,total) are calculated according to the following equations: 

str IG = −  
kΣ

i=1 

pi log2 pi (bit/atom), (5.1) 

str IG,total = v ·str IG = −v · 
kΣ

i=1 

pi log2 pi (bit/cell), (5.2) 

where pi is the random choice probability for an atom from the ith crystallographic 
orbit, that is: 

pi = mi /v. (5.3) 

For the estimation of chemical complexity of a mineral, its end-member formula 
extracted from the International Mineralogical Association List of Minerals (Pasero 
2022) can be used as a first approximation (i.e., not accounting for isomorphic 
substitutions and vacancies). Thus, for the mineral with the end-member formula 
E(1) 

c1E(2) 
c2…E(k) 

ck , where E(i) is an ith chemical element in the formula and ci is its 
integer coefficient, the chemical information per atom (chemIG) and per formula unit, 
f.u. (chemIG,total) can be calculated as follows (Krivovichev et al. 2018a):
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chem IG = −  
kΣ

i=1 

pi log2 pi (bit/atom), (5.4) 

chem IG,total = e ·chem IG = −e · 
kΣ

i=1 

pi log2 pi (bit/f.u.), (5.5) 

where k is the number of different elements in the formula and pi is defined as follows: 

pi = ci /e. (5.6) 

Here e is the total number of atoms in the chemical formula: 

e = 
kΣ

i=1 

ci . (5.7) 

The relations between structural and chemical complexities of mineral species 
were investigated by Krivovichev et al. (2018a, b), who demonstrated that there 
is a positive correlation between these quantities, which means that the complex 
chemistry statistically corresponds to a complex crystal structure. Indeed, among the 
minerals known so far (Krivovichev et al. 2022), three most structurally complex, 
ewingite, morrisonite and ilmajokite, have extremely complex chemical formulae: 
Mg4Ca4(UO2)12(CO3)15O2(OH)6·69H2O, Ca11(As3+V4+ 

2V5+ 
10As5+ 6O51)2·78H2O, 

and Na11KBaCe2Ti12Si37.5O94(OH)31 .29H2O, respectively. 
The average chemical and structural complexities for minerals are given in Table 

5.1. Obviously, the structural information amounts are always higher than the respec-
tive chemical information amounts, since a unit cell usually contains more than one 
formula unit and atoms of the same element, in general, occupy more than one 
crystallographic orbit. 

Strictly speaking, the equation strIG = chemIG holds true only if the following 
condition is satisfied:

Table 5.1 Average chemical and structural complexities for minerals (modified after (Krivovichev 
et al. 2022)) 

Parameter* Units n X σ σX 

chemIG Bit/atom 5455 1.627 0.339 0.005 
strIG Bit/atom 4443 3.538 1.391 0.021 

e Atoms 5455 36.514 49.663 0.676 

v Atoms 4443 70.430 100.50 1.510 
chemIG,total Bit/f.u 5455 63.080 88.092 1.120 
strIG,total Bit/cell 4443 320.140 654.040 9.810 

*n—number of minerals taken into account; X = arithmetic mean; σ = standard deviation; σX = 
standard error of mean 
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ci = n × mi 

for any ith element, and n is one and the same for all chemical elements in the 
formula, that is, 

v = n × e. 

For the equation strIG,total = chemIG,total, the condition n = 1 must be satisfied, which 
leads to v = e, which is very rarely achieved for minerals (this is the case, e.g., for 
the crystal structure of halite, NaCl). 

Hornfeck (2020, 2022) suggested extensions to the structural complexity measures 
defined by Eq. (5.1–5.5) that allow to discriminate between the crystal structures that 
otherwise have the same structural information amounts. For detailed account of these 
interesting and useful additions see (Hornfeck 2020, 2022; Krivovichev et al. 2022). 

The relations between the amounts of chemical and structural information are 
described by the following equations (Fig. 5.1):

Fig. 5.1 Dependencies 
between structural and 
chemical complexities for 
different mineral systems: 
Shannon information per 
atom (a) and per unit cell or 
formula unit (b). Each point 
corresponds to a particular 
number N of different 
essential elements in a 
chemical formula. The 
dash-and-dot lines are fitted 
curves corresponding to 
Eqs. (5.8) and  (5.9). After 
(Krivovichev et al. 2018a) 
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str IG = −0.97 + 2.3 × [
exp

(
chem IG − 0.646

)
/1.63

)] (
R2 = 0.988

)
(5.8) 

str IG,total = 30.2 × [
chem IG,total

]0.544 (
R2 = 0.957

)
. (5.9) 

5.3 Mineralogical Configuration Spaces, Energy 
and Information Landscapes 

The concept of a formal space or a phase space is of great use in many areas of 
sciences, dealing with different forms and structures, their relations and evolution. In 
particular, morphological space or morphospace is a useful construction to investigate 
phenotypes of biological organisms, their relation and evolution (Mitteroecker and 
Huttegger 2009). In the morphospace, each point corresponds to a particular organ-
ismal configuration, e.g., the form of a shell of a mollusk. The distance between 
the points reflects the relations between the two configurations. Thus, the evolu-
tionary transformation can be viewed as a travel through morphospace, which is 
characterized by certain morphological observables expressed numerically. 

For a given atomic arrangement consisting of N atoms, the construction of configu-
ration space, which is an analogue of morphospace in biology, proceeds as following 
(Schön and Jansen 2001a, b). The position of the ith atom can be characterized 
by a vector −→ri specified by three spatial coordinates (xi yi zi). Thus, each atomic 
arrangement corresponds to a point in 3N-dimensional space with the radius-vector
→R:

→R = (−→r1 , −→r2 , . . . ,  −→rN
)
. (5.14) 

Each atomic arrangement has its specific potential energy, the values of which 
define a hypersurface in a (3N + 1)-dimensional space. Such a hypersurface is called 
the energy landscape of the system. 

By analogy, for each finite atomic arrangement, whether periodic or not, the 
amount of structural information per atom, strIG, can be calculated from Eq. (5.1). 
The values of strIG shall also define a hypersurface in the (3N + 1)-dimensional 
space, which can be called the information landscape of the system. The higher the 
level of periodicity in the system, the lower the strIG value. Also, the symmetrization 
of the system (i.e. the increase of its symmetry) would result in the decrease of its 
information content. 

Since the strIG parameter correlates with configurational entropy (see below), the 
information landscape reflects the configurational entropy landscapes. The relations 
between energy and information landscapes is an interesting question. Oganov and 
Valle (2009) analysed large numbers of theoretically possible structures for some 
simple chemical compositions such as MgO, Au8Pd4 and MgNH and demonstrated 
that the lowest-energy ground-state configurations are usually the simplest possible
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ones for the given composition. This conclusion is, however, too general and contra-
dicts many empirical observations that agree with the Goldsmith’s principle, which 
states that high-energy metastable structures in Ostwald cascades are simpler than 
their thermodynamically stable polymorphs (see below). 

It is obvious that the configuration space for minerals is just a small part of the 
configuration space for all possible inorganic compounds, due to the limitations 
imposed by geochemical combination of elements and the restricted range of ther-
modynamic and chemical environments in nature. However, it is a remarkable fact 
that the portion of the configuration space already exploited by synthetic chemistry 
does not include a whole portion of the same space exploited by nature. In other 
words, there are many minerals that have never been synthesized under laboratory 
conditions. The importance of mineralogy for material science is that it provides clues 
for the synthesis of new mineralogically inspired chemical compounds with impor-
tant functional properties. In this way mineralogy helps humankind in the discovery 
and exploration of new portions of configuration space (see, for instance, the recent 
efforts on the synthesis of artificial analogs of ewingite, the most complex mineral 
known so far (Olds et al. 2017; Tyumentseva et al. 2022)). 

5.4 Complexity and Symmetry 

Symmetry is an important property of minerals, which has attracted attention during 
all the history of the humankind. As it has already been mentioned, the increase 
of symmetry results in the decrease of information, and vice versa, the decrease of 
symmetry or symmetry breaking results in the increase of information. 

In general, the appearance of symmetry in natural objects can be explained by the 
tendency of nature to minimize information, i.e., the principle of symmetry can be 
viewed as a variational principle with respect to the conservation of information. 

Among the two structural complexity measures, strIG and strIG,total, the first is 
the one that is sensitive to symmetry, whereas the second one depends not only on 
symmetry, but also on the size of the system, i.e. the number of atoms per reduced 
unit cell. 

Table 5.2 provides average strIG and chemIG values for minerals with different 
symmetries arranged according to different crystal systems. It can be clearly seen 
that minerals of the low category (triclinic, monoclinic, orthorhombic) are more 
chemically and structurally complex than minerals of the middle category (trig-
onal, hexagonal, tetragonal), which are in turn more complex than minerals of the 
high category (cubic). It is remarkable that tetragonal minerals are (on average) less 
complex than trigonal. It should be kept in mind that the numbers given in Table 5.2 
are statistical (average) values, since there are very complex cubic minerals (such as 
paulingite, Ca5(Al10Si32O84)·34H2O) and rather simple triclinic minerals (such as 
orthoclase, CaAl2Si2O8).

Fedorov (1913, 1914) and Groth (1921) suggested that there is a general corre-
lation between the chemical complexity and the degree of symmetry: chemically
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Table 5.2 Distribution of mineral species among different crystal systems and their average atomic 
complexities (modified after (Krivovichev et al. 2022)) 

System n* % <chemIG>, bit/atom <strIG>, bit/atom 

Triclinic 577 10.57 1.721 4.713 

Monoclinic 1914 35.05 1.701 4.036 

Orthorhombic 1085 19.86 1.604 3.406 

Trigonal 629 11.52 1.643 3.130 

Hexagonal 400 7.33 1.526 2.760 

Tetragonal 384 7.03 1.541 2.545 

Cubic 472 8.64 1.361 1.780 

Total 5461 100 

*n—number of minerals taken into account

simple structures have higher symmetries. This observation known in Russian liter-
ature as a Fedorov-Groth law (Boldyrev 1931; Shafranovskii 1983) was reconsid-
ered by Krivovichev and Krivovichev (2020) by means of the quantitative measures 
of chemical complexity defined by Eqs. (5.4, 5.5). As a measure of the degree of 
symmetry, the order |PG | of the point group PG of the space group G was taken; the 
values possible for crystalline compounds are 1, 2, 3, 4, 6, 8, 12, 16, 24, and 48. As a 
measure of chemical complexity, the chemIG values were used. The results of the anal-
ysis are shown in Table 5.3. It can be seen that the chemIG value decreases smoothly 
with the decrease of the degree of symmetry, which proves the statistical validity of 
the Fedorov-Groth law. The dependence is best described by the exponential function 
(R2 = 0.979; in bit/atom): 

chem IG = 1.122 + 0.634 × exp
[−|PG |/30.956]. (5.11)

5.5 Complexity and Entropy 

It is generally accepted that there is a direct relation between complexity and entropy: 
highly complex structures have low entropies. Minerals as crystalline compounds 
possess two major contributions to their thermodynamic entropy (defined as a first 
derivative of heat capacity on temperature): configurational entropy, Scfg, and vibra-
tional entropy, Svib (in particular cases, other contributions can be important as well 
such as magnetic order, chirality, etc.). In mineralogical and geochemical textbooks 
(see, for example: Putnis 1992; Ottonello 2000), configurational entropy is usually 
treated as exclusively entropy of mixing that originates from chemical disorder asso-
ciated with chemical substitutions at the same structural site. The entropy of mixing 
also becomes a very popular topic in material sciences, due to the developments 
and investigations of high-entropy alloys and high-entropy oxides (McCormack and
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Table 5.3 Information-based 
mean chemical (chemIG) 
complexities of minerals 
separated according to the 
orders of their point groups, 
|PG | (modified after 
(Krivovichev and 
Krivovichev 2020))a 

|PG | n chemIG (bits/atom) 

M SEM 

1 65 1.78 0.03 

2 742 1.71 0.01 

3 52 1.70 0.04 

4 1956 1.69 0.01 

6 377 1.69 0.02 

8 910 1.59 0.01 

12 465 1.60 0.02 

16 200 1.50 0.03 

24 315 1.41 0.03 

48 267 1.26 0.07 

an = number of minerals taken into account; M = arithmetic mean; 
SEM = standard error of mean

Navrotsky 2021). We argue that, in addition to the entropy of mixing, Scfg,mix, there is 
a configurational entropy sensu stricto, Scfg,ss, that is associated with the complexity 
of atomic arrangement writ large. In order to account for this kind of entropy, the 
following suggestions have been proposed (Krivovichev 2016; Krivovichev et al. 
2022). 

According to statistical physics, the entropy is defined as 

S = kB ln W, (5.12) 

where kB is the Boltzmann constant (~1.38064·1023 J·K−1) and W is the number of 
microstates that realize the given macrostate. For the crystal structure consisting of 
one crystallographic orbit, the Scfg,ss is maximal with its atomic entropy equal to 

Smax 
cfg,ss = kB ln(N − 1), (5.13) 

where N is the number of atoms that may exchange their positions locally at a given 
temperature (it was assumed by Krivovichev (2016) that this value is specific for 
a particular compound; the exchange of positions implies realization of different 
microstates and the difference of atoms of the same element occupying the same 
crystallographic orbit). For the molar entropy, the Eq. (5.13) transforms into 

Smax 
cfg,ss = R ln(N − 1), (5.14) 

where R is the gas constant. In the case of symmetry breaking, the single crystallo-
graphic orbit splits into k crystallographic orbits, the crystal structure becomes more 
complex and its configurational entropy sensu stricto should decrease. Krivovichev 
(2016) demonstrated that the amount by which the maximal value Scfg,ss max is
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decreased, △Scfg,ss, can be calculated as:

△Scfg,ss/N = kB str IG ln 2. (5.15) 

Then the configuration entropy sensu stricto of the resulting low-symmetry 
structure, Scfg,ss, can be calculated as 

Scfg,ss = Smax 
cfg,ss − △Scfg ,sS = R

[
ln(N − 1) −str IG ln 2

]
. (5.16) 

On the other hand, the entropy of mixing can be calculated as (the equation is 
the one from (Miracle and Senkov 2017; Dippo and Vecchio 2021) and modified in 
(Krivovichev et al. 2022)): 

Scfg,mix = −R 

⎛ 

⎝ 
kΣ

i=1 

pi 

nΣ

j=1 

f j ln f j 

⎞ 

⎠, (5.17) 

where f j is the concentration of the jth element in the ith site (note that vacancy 
can also be considered as an entropic species) so that, for a given site containing n 
different entropic species, 

nΣ

j=1 

f j = 1. (5.18) 

The problem can be reversed and the question might be asked about the influence 
of chemical substitution upon structural complexity. In order to answer this question, 
Krivovichev et al. (2022) suggested the following measure of structural complexity: 

str IG,mix = −  
kΣ

i=1 

pi 

⎛ 

⎝log2 pi − 
nΣ

j=1 

f j log2 f j 

⎞ 

⎠ =str IG − Imix, (5.19) 

where 

Imix = −  
kΣ

i=1 

pi 

nΣ

j=1 

f j log2 f j = Scfg,mix/(R ln 2). (5.20) 

The strIG,mix is a new measure of structural complexity or, better formulated, of the 
degree of atomic order) that takes into account not only structural architecture, but 
also its chemical nature. From this perspective, the strIG,mix parameter is a measure of 
crystal chemical complexity that might be useful for mineralogical and geochemical 
implications. It is obvious that, since strIG ≥ 0 and Imix ≥ 0, the case is possible when 
strIG < Imix and strIG,mix < 0. This means that, in contrast to the measure of structural 
complexity strIG, the  strIG,mix parameter may adapt negative and thus provide positive
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contribution to the total configurational entropy of a crystalline solid. It is important to 
note that the new approach to the configurational entropy developed by Krivovichev 
et al. (2022) and outlined here does not cancel the traditional approach (Putnis 1992; 
Ottonello 2000), but rather provides its extension necessary, for instance, to account 
for the appearance of new structure types due to a chemical ordering. 

The relation between configurational and vibrational entropies of crystalline solids 
is an open question. There is general understanding that such a relation exists, but no 
general equation can be proposed (Fultz 2020). In order-disorder phase transitions, 
vibrational entropy usually increases with the increase in disorder. For instance, for 
the Ni3Al alloy, the phase transition from disordered face-centered cubic lattice (Fm 
3 m) to the ordered L12 structure type (Pm 3 m; with Al and Ni atoms at the corners 
and the centers of faces of the unit-cell, respectively) is associated with the decrease 
of Svib by 0.3kB per atom as measured from extended electron energy-loss fine struc-
ture spectrometry (EXELFS) (Anthony et al. 1993). From the structure complexity 
calculations, the strIG value is 0.811 bit, which results, by applying Eq. (5.19), in 
the △Scfg value of 0.56kB (this value can also be obtained from the entropy-mixing 
calculations). Ordered structures usually have lower entropies, which can also be 
seen from their lower densities (Hazen and Navrotsky 1984). As we have pointed 
out elsewhere (Krivovichev 2022a), both configurational and vibrational entropies 
are the functions of independent positional and vibrational parameters of a crystal. 
In general, the low the number of atomic sites and the high their site symmetry, 
the higher the number of degenerate levels of energy of lattice vibrations and the 
higher the entropy (Strens Strens, 1967; Fultz 2020). Thus, in a very general case, 
there should be a positive correlation between the configurational and vibrational 
entropies: Svib increases with the increase of Scfg. Taking into accout the dependence 
between configurational entropy and structural complexity, less complex structures 
should in general have higher vibrational entropies. This general tendency is in 
agreement with the general decrease in structural complexity with the increase of 
temperature (see below). 

5.6 Complexity and Mineral Diversity 

The calculation of complexity indices for all the minerals that are structurally char-
acterized up to date allows to classify them into five major categories according to 
the strIG,total values (in bit per reduced unit cell): very simple (<20), simple (20– 
100), intermediate (100–500), complex (500–1000), and very complex (>1000). The 
examples of the minerals that belong to different groups are given in Table 5.4. 
Majority of rock-forming minerals are very simple or simple; the only exception 
are vesuvianite-group minerals that are very complex. The higher complexity of the 
latter is the result of their modular crystal structures (see below).

Krivovichev et al. (2022) analyzed distribution of minerals according to their 
atomic and total structural and chemical information amounts. Whereas the atomic 
complexities obey the normal distribution, the distribution of total information
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Table 5.4 Classification of minerals according to their structural complexity (after (Krivovichev 
2013a, b)) 

Category Total information content 
(bit/u.c.) 

Approximate number of 
mineral species 

Examples 

Very simple 0–20 600 Diamond, copper, halite, 
galena, uraninite, 
fluorite, quartz, 
corundum, ringwoodite, 
calcite, dolomite, zircon, 
goethite, lepidocrocite 

Simple 20–100 1100 Alunite, jarosite, 
nepheline, kieserite, 
szomolnokite, kaolinite, 
olivine-group minerals, 
diopside, orthoclase, 
albite, biotite 1M 

Intermediate 100–500 1800 Enstatite, epidote, biotite 
2M1, leucite, apatite, 
natrolite, talc 2M, 
pyrope, grossular, beryl, 
muscovite 2M1, 
staurolite, actinolite, 
holmquistite, coesite, 
tourmaline, analcime, 
boracite 

Complex 500–1000 300 Eudialyte, steenstrupine, 
coquimbite, sapphirine, 
alum, cymrite, aluminite 

Very complex >1000 100 Vesuvianite, paulingite, 
bouazzerite, 
ashcroftine-(Y), 
bementite, antigorite

amounts (per formula and per unit cell) are better described using lognormal distri-
bution, which also characterizes the distribution of numbers of atoms per formula 
and per unit cell. 

A possible explanation for the lognormal distribution of the number of atoms 
per formula or per cell is the balance between the need to accommodate different 
elements in the same cell (most minerals contain from 4 to 5 different chemical 
elements (Krivovichev et al. 2018b)) and the tendency of the crystal structures to be 
as simple as possible.
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5.7 Complexity, Modularity and Hierarchy 

The modular principle of structural organization in mineralogy has long been recog-
nized. This principle is universal in nature and is manifested in many natural systems, 
especially those with functional capacities, e.g., in organisms. Minerals perform no 
function in non-living objects and their modular construction is the consequence of 
a limited number of atomic arrangements stable under conditions of the Earth’s crust 
and mantle. 

5.7.1 Complexity-Generating Mechanisms in Minerals 

Analysis of the most complex minerals reveal that the basic complexity-generating 
mechanisms in minerals are as follows. 

(i) The presence in the crystal structure of large polyatomic clusters (sometimes 
of the nanoscale size) that are thought to exist in natural environments prior 
to their self-assembly and crystallization of respective minerals. The modes 
of their self-assembly can be different so that, in the resulting structure, they 
can be isolated from each other (as in ewingite, morrisonite, bouazzerite, and 
about fifty mineral species that can be assigned to the class of polyoxometalates 
(Krivovichev 2020b). In other structures, the finite clusters (or modules) are 
linked into three-dimensional frameworks as in ilmajokite, paddlewheelite, and 
zeolites and zeolite-related structures. 

(ii) High hydration state in crystal structures of minerals with complex heteropoly-
hedral units (examples are alfredstelznerite and voltaite-group minerals). The 
crystallization of high hydrates as minerals occurs under the conditions of 
the Earth’s surface, indicating their very limited stability and the existence 
in the very narrow range of thermodynamic and chemical environments of 
‘complexity islands’ in the Universe. 

(iii) Formation of superstructures of otherwise simple structure types. Superstruc-
tures form as a result of multiplication of the unit cell of the initial structure 
type due to symmetry breaking, formation of vacancies and/or ordered atomic 
substitutions. The example is manitobaite, Na16Mn25Al8(PO4)30 (Tait et al. 
2011), that has a tenfold (with respect to the reduced unit cells) superstructure 
relative to alluaudite, NaCaFe2Mn(PO4)3. 

(iv) Multi-modular structures formed as a combination of modules 
extracted from different archetype structures also usually have high 
total information amounts. The excellent example is rogermitchellite, 
Na6Sr12Ba2Zr13Si39B4O123(OH)6·20H2O (McDonald and Chao 2010), based 
upon combination of one-dimensional modules excised from the simple crystal 
structures of benitoite, BaTi(Si3O9), and wadeite, K2Zr(Si3O9) (Krivovichev 
2013a, b).
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5.7.2 Contributions to Structural Complexity: Quantitative 
Evaluation 

The contributions of different factors to the total structural complexity of a mineral 
can be evaluated quantitatively. In his analysis of the crystal chemistry of batagayite, 
CaZn2(Zn, Cu)6(PO4)4(PO3OH)3·12H2O (Yakovenchuk et al. 2018), and related 
minerals and inorganic compounds, Krivovichev (2018) suggested to use special 
diagrams that illustrate contributions of various structural phenomena to the total 
structural information content. The crystal structure of batagayite (Fig. 5.2a) is based 
upon triple layers with the central (core) A layer formed by zigzag chains of edge-
sharing MO6 octahedra (M = Zn, Cu) that are further linked by sharing corners and 
(PO4) tetrahedra into layers shown in Fig. 5.2b. Layer of this type have a general 
stoichiometry [M(TO4)ϕ] (M  = Fe, Mg, Mn, Ni, Zn, Co; T = P, As; ϕ = OH, 
H2O) and have been observed in a number of natural and synthetic phosphates and 
arsenates listed in Table 5.5. 

For the minerals and synthetic compounds listed in Table 5.5, the following factors 
of structural complexity can be identified: topological information of the [M(TO4)ϕ] 
layers defined as the information of the ideal layer with maximal possible symmetry 
(TI); structural information of the layer that corresponds to the real layer embedded 
into the real structure (SI) (this information is non-zero in the case when symmetry 
of the real layer is lower than the symmetry of the ideal layer); information resulting 
from the layer stacking (if the number of layers per unit cell is larger than one) (LS); 
information due to the interlayer ions except for hydrogen (IS); information due to 
the presence of hydrogen involved in a hydrogen bonding system (HB).

Fig. 5.2 The crystal structure of batagayite projected along the a axis (a) and projection of the A 
octahedral-tetrahedral layer along the [001] direction (b). Legend: MO6 octahedra (M = Zn, Cu) = 
dark blue; ZnO4 tetrahedra = light blue; (Zn/Cu)O6 octahedra = green; PO4 tetrahedra = orange; 
Ca and O atoms are shown as grey and red spheres, respectively
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Table 5.5 Minerals and inorganic compounds based upon the [M(TO4)ϕ] layers (M = Fe, Mg, 
Mn, Ni, Zn, Co; T = P, As; ϕ = OH, H2O) 

Mineral Code Chemical formula Space group 

Angarfite Ang NaFe3+ 5(PO4)4(OH)4·4H2O C2221 

Bakhchisaraitsevite Bkh Na2Mg5(PO4)4·7H2O P21/c 

Batagayite Btg CaZn2(Zn,Cu)6(PO4)4(PO3OH)3·12H2O P21 

Castellaroite Cst Mn2+ 3(AsO4)2·4.5H2O P21/n 

Mejillonesite Mjl NaMg2(PO3OH)(PO4)(OH)·H5O2 Pbca 

Metaswitzerite Msw Mn3(PO4)2·4H2O P21/c 

Rimkorolgite Rkg BaMg5(PO4)4·8H2O P21/c 

Switzerite Swz Mn3(PO4)2·7H2O P21/a 

(Synthetic) NaNiP Na(H3O)2Ni4(PO4)3(PO2(OH)2)(OH)4 P21 

(Synthetic) HCoP (H3O)Co2(PO3OH)(PO2(OH)2)(OH)2 Pcab

Figure 5.3 shows two diagrams that illustrate contribution of different factors 
mentioned above to the total structural complexities of respective minerals in bits per 
unit cell and in percents. It can be seen that only in angarfite topological complexity 
contributes strongly (close to 50%), whereas the most serious contribution is due to 
the system of hydrogen atoms involved in intricate hydrogen bonding systems. 

Fig. 5.3 Information diagrams for the crystal structures of minerals and compounds listed in Table 
5.5 showing contributions from different sources in bits per unit cell (right) and in percents (left). 
After (Krivovichev 2018)
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5.7.3 Complexity Behavior in Modular Series 

As it could be expected, structural information increases with the increase in the 
complexity of modular combinations. Krivovichev (2013a, b) provided complexity 
analysis of sodalite and cancrinite-group minerals or ABC structures that form a 
modular series based upon the stacking of layers formed by six-membered alumi-
nosilicate rings (Bonaccorsi and Merlino 2005). By analogy with the spheres in 
sphere close-packings, the rings in adjacent layers may have three different posi-
tions, A, B and C, so that the layer sequence is expressed as the symbolic sequence 
consisting of three letters (two identical adjacent letters are forbidden). As for close 
packings, most simple sequences are two- and three-letter, AB and ABC, and these 
sequences correspond to the crystal structures of sodalite and cancrinite, respectively, 
the simplest and minerals in the series. These two minerals are also the most common 
minerals of the group. 

Figure 5.4 shows the dependence of the total structural information of the ABC 
structures from the number of translationally independent layers (or the number of 
letters in a symbolic sequence). It is clear that the strIG,total value increases almost 
linearly with the increase of the number of the layers. However, frameworks with the 
same number of layers may have different complexities, due to the different symme-
tries and different values of strIG (for instance, TOL, MAR and krh* frameworks 
have eleven layers per reduced unit cell). 

Fig. 5.4 Total topological information content versus number of layers for aluminosilicate frame-
works of the cancrinite-sodalite supergroup (kircherite and fantappieite are rhombohedral; krh* and 
krh** = kircherite framework considered as consisting of 36 and 12 layers, respectively; fnt* and 
fnt** = fantappieite framework considered as consisting of 33 and 11 layers, respectively). Three-
letter codes correspond to the codes assigned to the respective frameworks by the International 
Zeolite Association. Modified after (Krivovichev 2013a, b)
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5.7.4 Information and Abundance in Modular Series 

It is obvious that the number of theoretical configurations in modular series is infi-
nite, which means that its configuration space may have infinite dimensions. One 
can imagine crystals with improbable unit-cell dimensions; yet the latter are rather 
restricted and, in inorganic compounds and minerals rarely exceed 100 Å. Situation 
is different for proteins and other macromolecular crystals, but, in their case, unit-cell 
dimensions are enormous due to the enormous size of biological macromolecules. 
In turn, the latter is a consequence of functional complexity of biological organisms, 
which is absent in minerals and inorganic structures. Therefore, there are natural 
restrictions on the structural complexity of minerals and inorganic compounds that 
are entropic in their origin and correspond to the idea that highly complex inorganic 
structures have lower entropies and, as a rule, lower abundances. This idea can be 
demonstrated by the complexity analysis of modular series, which consists of several 
stages: (i) selection of structures belonging to the same modular series; (ii) deriva-
tion of structure-building principles for the series; (iii) derivation of all possible 
members of the series (usually, this task is impossible, since the number of the 
members might be infinite as in the case of the ABC structures considered above); (iv) 
information-based complexity analysis; (v) analysis of structure abundance versus 
structural complexity. 

Krivovichev (2021) applied this methodology to various groups of minerals 
and inorganic compounds, including biopyriboles (pyroxenes, amphiboles, etc.), 
lovozerite-group minerals, spinelloids, and kurchatovite series, and demonstrated 
the validity of the general principle of maximal simplicity for modular inorganic 
structures formulated as following: 

In modular series of inorganic crystal structures, most common and abundant in nature and 
experiment are those arrangements that possess maximal simplicity and minimal structural 
information. 

This empirical principle imposes restrictions upon the complexity of structures in 
modular series, which are entropic in their essence: though highly complex members 
of the series are possible, the probability of their formation is very low. For instance, 
the principle explains why, in biopyriboles, single and double chain structures are 
common and correspond to pyroxenes and amphiboles, two important groups of 
rock-forming minerals, triple chains are rarities (chesterite, clinojimthompsonite and 
jimthompsonite), whereas chains with the multiplicities higher than three have not 
been observed in minerals. 

In his Principia, Isaac Newton noted that ‘…Nature does nothing in vain, and more 
is in vain when less will serve; for Nature is pleased with simplicity, and affects not 
the pomp of superfluous causes’ (1687). Indeed, the mineral kingdom in its mass is 
dominated by rather simple minerals, while complex minerals occur rarely and under 
very specific conditions, which, however, may have some interesting and important 
implications for geologists and geochemists.
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5.7.5 Information and Hierarchy 

It is understood intuitively that hierarchically deep structures usually have higher 
complexity than hierarchically shallow ones. The two measures of structural hier-
archy are hierarchical depth (the number of levels of structural organization) and 
hierarchical span (the number of elements within the same level).1 

Makovicky (1997) and Ferraris et al. (2004) discussed hierarchical description 
of crystal structures of minerals in terms of the following configurational levels 
(it is implied that the zero-level is the level of atoms): (i) primary configurations: 
coordination polyhedra; (ii) secondary configurations: groups built up from coordi-
nation polyhedra by sharing common ligands (finite clusters, chains, layers, etc.); 
(iii) tertiary configurations: dimensionally higher units obtained by the linkage of 
secondary configurations via bonds that are weaker than those involved at the previous 
level (e.g., linkage of chains via weak secondary bonds (for instance, hydrogen bonds) 
into layers); (iv) quaternary configurations emerge when tertiary configurations are 
combined with coordination polyhedra of other elements; according to Ferraris et al. 
(2004), this is the level of modules as used in a modular description (see below); 
(v) quinary configurations is the packing of quaternary or ternary configurations in 
a large-scale structural pattern; this is the level of crystal structures. 

Construction of structural hierarchy schemes is especially informative for the 
understanding of relations between hierarchy and complexity (Krivovichev 2017b). 
The crystal structure of quartz is very simple (8.265 bit/cell), contains three hier-
archical levels (atoms—coordination polyhedral—tetrahedral framework = crystal 
structure) and only two atom sites per cell. The crystal structure of albite is simple 
(96.211 bit/cell); its hierarchical depth is four (atoms—coordination polyhedral— 
framework—crystal structure) and hierarchical span at the atom level (the number of 
independent atom sites) is thirteen. The structural hierarchy schemes for quartz and 
albite are rather simple (Fig. 5.5). In contrast, the crystal structure of charoite is very 
complex (2119.685 bit/cell), has five hierarchy levels and seventy-nine atom sites, 
not counting hydrogen atoms. The charoite structural hierarchy scheme is extremely 
complex and consists of a high number of interlevel interactions (Fig. 5.6).

5.8 Complexity and Thermodynamics 

Temperature and pressure have an opposite influence upon the entropy of crystalline 
compounds: entropy is increasing with increasing temperature and decreasing with 
increasing pressure. Thus, there is a tendency of decreasing structural complexity

1 Here we consider compositional structural hierarchy, also known as a scale or inclusion hierarchy, 
in contrast to specification structural hierarchy, which is understood as ‘a general scheme which, 
through the appropriate algorithms, ties together a collection of arrangements’ (Moore 1970). The 
latter kind of structural hierarchy is closely related to structural classification and is considered in 
detail by Hawthorne (2014). 
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Fig. 5.5 Structural hierarchy schemes for quartz (left) and albite (right) 

Fig. 5.6 Structural hierarchy scheme for charoite. After Krivovichev (2017a)

with increasing temperature. This is an obvious case for order–disorder as well as 
for displacive phase transitions. It has already been mentioned that one of the impor-
tant sides of complexity is symmetry, and the relations between temperature and 
symmetry have been known for quite a long time. In their classical course on theo-
retical physics, Landau and Lifshitz (1980) mentioned: ‘In the great majority of 
the known instances of phase transitions of the second kind, the more symmetrical 
phase corresponds to higher temperatures and the less symmetrical one to lower
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temperatures. In particular, a transition of the second kind from an ordered to a 
disordered state always occurs with increasing temperature. This not a law of ther-
modynamics, however, and exceptions are therefore possible’. As an example of the 
exception, Landau and Lifshitz (1980) cited a Rochelle salt, KNa(C4H4O6).4H2O, 
which is orthorhombic (P21212) in its paraelectric low-temperature form, and mono-
clinic (P21) in its ferroelectric high-temperature form. The tendency of increasing 
symmetry with the increasing temperature was also emphasized by Filatov (2011). 

The information-based structural complexity measures provide more rigorous 
measure of structural complexity that includes symmetry as one of its components, 
another one being the content of a unit cell. For instance, from the viewpoint of 
symmetry alone, high-temperature transition P 1 → I 1 in anorthite is a triclinic-
triclinic phase transition that does not include any symmetry changes viewed, for 
example, as the point-group order. However, the volume of a reduced unit cell in 
high-temperature form is twice as smaller compared to the low-temperature form. 
At the transition point, the total structural information changes from 592.846 to 
244.423 bit per cell. 

For reconstructive phase transitions or polymorphs with different structures that 
require structural reconstruction, the general tendency of high-temperature phases to 
have lower complexities remains the same. Here, again, information-based measures 
provide more precise measure of symmetry and complexity than simple point-
group considerations. For instance, for the Cu2(OH)3Cl polymorphs, orthorhombic 
atacamite is more complex (98.100 bit/cell) than monoclinic botallackite (49.050 
bit/cell), though the former has higher symmetry than the latter (Krivovichev et al. 
2017). 

The relations between complexity and pressure are far from being straightforward. 
Hazen and Navrotsky (1996) analyzed the influence of pressure upon order–disorder 
reactions and showed that, in the majority of cases, increasing pressure is associated 
with decreasing positional disorder, though there are exceptions to this rule (Deng 
et al. 2020). The increasing pressure increases the degree of order that may trigger 
the increase of structural complexity. Whereas this is probably the dominant kind of 
behavior for order–disorder phase transitions, in other cases it is far from being linear. 
Bykova et al. (2018) investigated the high-pressure behavior of coesite and reported 
the existence of five polymorphs, numbered from I to V in the order of increasing 
pressure. The coesite-I → coesite-II → coesite-III phase transitions are displacive 
and do not modify the topology of the coesite framework; Si atoms are in tetrahedral 
coordination. Along the pathway, the symmetry is decreasing (C2/c → P21/n → 
P 1), which corresponds to the increasing number of symmetrically independent 
sites and the increasing structural information per atom (2.752 → 4.585 → 5.198 
bit/cell). However, the total structural information does not behave similarly (66 
→ 440 → 374 bit/cell). The high-pressure coesite-IV and V polymorphs contain 
tetra-, penta- and hexa-coordinated Si and have the same complexity, 4.585 bit/atom 
and 220 bit/cell. The changes in coordination numbers may modify the complexity 
behavior unpredictably. Stishovite, a high-pressure polymorph of silica with all Si 
in octahedral coordination, has a rather simple tetragonal rutile structure. The most 
probable reason for the non-linear behavior of structural information with increasing
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pressure is that the latter is accompanied by the decrease of vibrational entropy, 
which is not a direct function of configurational entropy. It is rather probable that 
the use of other information-based measures of complexity that include complexity 
of bonding network may provide more adequate description of complexity-pressure 
relations. 

5.9 Complexity Versus Time: Mineral Evolution 

Due to the extensive and innovative works by Hazen and co-authors (Hazen et al. 
2008, 2021; Hazen and Morrison 2020, 2021, 2022, etc.), mineral evolution has 
recently emerged as a separate subdiscipline of mineralogy that deals with the studies 
of changes in the composition of the mineral kingdom in the course of cosmological 
and geological time. The essential part of mineral evolution is mineral philogeny, i.e. 
the origin of mineral species. Since complexity is an important quantitative charac-
teristics of chemical composition and crystal structure of minerals, it is quite natural 
to investigate how complexity of minerals evolves through time. Using the list of 
minerals that existed within specific periods of the Earth’s history (provided by 
Hazen et al. (2008), Hazen (2013) and Hazen and Morrison (2022)), Krivovichev 
et al. (2018a, b, 2022) demonstrated that both chemical and structural complexities 
increase with the passage of geological time (Fig. 5.7). The most important events 
that triggered a rise in complexity and diversity of mineral kingdom are associated 
with the formation of Earth’s continental crust, the initiation of plate tectonics, and 
the Great Oxidation event. All these events contributed greatly to the chemical differ-
entiation of geological systems and creation of various geochemical environments 
resulting in a number of unique paragenetic associations (Hazen and Morrison 2022).

Since symmetry is the important part of complexity, one would expect that, in the 
course of mineral evolution, symmetry is changing in the reverse order with respect to 
the evolution of complexity, i.e. it should decrease with the decreasing age of partic-
ular minerals and mineral association. Using machine learning, Hong et al. (2022) 
demonstrated that, indeed, symmetry decreased through geological time with the 
most old minerals possessing high symmetry and high melting temperatures. Hong 
et al. (2022) also showed that, on average, for the 412 known rare earth minerals, 
the value of strIG decreases with the increase of their geological age. There is also a 
strong negative correlation between predicted melting temperature and atomic struc-
tural complexity. The important observation is also that ‘low symmetry minerals 
with complex composition typically do not melt congruently, but instead decom-
pose, often to phases with higher symmetry’ (Hong et al. 2022). Independently from 
Hong et al. (2022), Hazen et al. (2023) reported that minerals from paragenetic 
modes formed at lower temperatures (notably <500 K) display greater average struc-
tural complexity than those formed at high temperature (especially >1000 K). In 
addition, minerals from paragenetic modes that display greater average chemical 
complexity are systematically less dense than those from modes with lesser average 
chemical complexity. The dependence between hardness and melting temperature,
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Fig. 5.7 The evolution of 
mineral diversity (blue), total 
structural (yellow) and total 
chemical (green) 
complexities at different 
stages of mineral evolution. 
After Krivovichev et al. 
(2022)

on one hand, and chemical and structural complexity, on the other, also points out to 
the ‘survival’ of high-symmetry, high-dense and thermally stable in mineral evolu-
tion. These observations contribute to the discussion on ‘mineral extinction’, which 
certainly has a serious impact on mineral evolution as a whole (Mills and Christy 
2019). The gradual decline in symmetry of minerals from the formation of Solar 
system to the present day was also demonstrated by Bermanec et al. (2022) by means 
of symmetry indices proposed by Urusov (2002), Dolivo-Dobrovolskii (1988), and 
Yushkin (1982). 

5.10 Complexity and Crystallization 

The relations between atomic disorder and the speed of crystallization has long 
been known in mineralogy as well as in metallurgy and material sciences (Turn-
bull 1981). As complexity can be considered as a degree of order of a crystalline 
compound (see Sect. 5.5 above), high velocities of crystallization usually result in 
the formation of less ordered (~less complex) structures that may persist metastably 
over long geological times. The empirical relations between structural complexity 
and metastable crystallization were established by Goldsmith (1953) as a principle 
of simplexity. Here the term ‘simplexity’ is the combination of ‘simplicity’ and 
‘complexity’. The principle states that metastable structures that are kinetically stabi-
lized are structurally simpler than their thermodynamically stable polymorphs. Using 
information-based structural complexity measures, Krivovichev (2013a, b) demon-
strated that the number of observations that agree with the principle of simplexity is 
very large and growing (Krivovichev et al. 2017; Krivovichev 2017a, 2020a; Plášil
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et al. 2017; Plášil  2018; Cempírek et al. 2016; Majzlan et al. 2018; Colmenero et al. 
2019; Huskić et al.  2019; Majzlan 2020; Kolitsch et al. 2020; Krivovichev 2022a, 
b, etc.). However, by analogy with the Landau and Lifshits’s note on the relation 
between symmetry and temperature (see Sect. 5.8 above), the Goldsmith’s principle 
is not a law of nature, but rather an empirical generalization that has exceptions. 

5.11 Complexity, Symmetry and History of Mineralogy 

As of every other natural science, the progress of mineralogy is directly associated 
with the progress in experimental techniques that becomes more and more intricate 
and effective through the history of science. The instrumental revolutions such as 
the invention of electron microprobe analysis and the use of X-area detectors in 
modern crystallography triggered a number of mineralogical discoveries of complex 
and very complex mineral species that have been unavailable for study before. Thus, 
it is natural to suggest that the overall complexity of known minerals in the history 
of mineralogy increases. Figure 5.8 shows that it is indeed the case. Figure 5.8a 
shows the temporal dynamics of mineralogical discoveries since 1875 with steps of 
25 years, whereas Fig. 5.8b, c show the increasing chemical and structural complexity 
of human knowledge of the mineral kingdom in the history of mineralogy. With time, 
more and more chemically and structurally complex minerals have been discovered, 
which is exemplified by the family of natural polyoxometalates that belong to the 
most complex mineral species known so far (Krivovichev 2020b).

5.12 Complexity of Minerals and Complexity of Life 

As it has been noted previously, the most complex minerals are associated with surfi-
cial or near-surface environments, where liquid water is an essential component of 
every natural system. These are also the conditions for the existence of life, so the 
important question is that how complexity of minerals compares with the complexity 
of living systems. The use of Shannon information measures for such a study implies 
a serious oversimplification, since, in contrast to minerals, living structures are func-
tional and oriented towards survival of an organism (Hazen et al. 2007). Nothing of 
the kind exists in a mineral kingdom, since minerals do not struggle for the own exis-
tence and their ‘natural selection’ has nothing to do with the will to live manifested 
by even the simplest living cell. Minerals have no material carrier of genetic informa-
tion. In terms of the number of atoms, biological cells are approximately one hunder 
of billions (1011) times more complex than minerals. The number of molecules in a 
living cell is about 28 million, which means that the average cell contains about 1014 

atoms (Ho et al. 2018). The reduced unit cell of ewingite, the most complex mineral 
known so far, contains ~3000 atoms, which brings the difference in complexity in 
eleven orders of magnitude. In terms of information the difference is even higher and
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Fig. 5.8 Temporal dynamics of complexity in mineralogical research: average chemical and 
structural complexity parameters for the total lists of mineral species in different times

can be estimated as at least twelve orders of magnitude (assuming a minimal atomic 
information of 10 bit/atom, which is, again, an enormous simplification). 

Living systems are highly modular and homological, but nothing similar to the 
principle of maximal simplicity in modular series (Sect. 5.7.4) is valid for life. Each 
module of an organism serves a certain purpose, whereas no purpose exists for 
modules in minerals. 

The important and well-recognized feature of life is its existence in the far-from-
equilibrium state that requires much higher level of complexity than homeostatic 
existence with no dynamic activity. The efficiency of thermodynamics in predicting 
mineral equilibria and paragenetic analysis has no analogues in biology, since living 
systems are dynamic and purpose-oriented. 

The important distinctions between minerals (non-living) and living systems 
mentioned above point out that no direct methods for the comparative study of
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their complexities can be applied, but, even in terms of Shannon information, the 
difference is enormously large. Each scenario of the origin of life from a non-living 
matter should take this difference into account. 

5.13 Conclusions 

The theory of informational complexity of crystals proposed in (Krivovichev 2012) 
and applied to minerals in a number of works, provides many useful insights into the 
origin and constitution of mineral species, as we tried to demonstrate in this chapter. 
One of the important directions for further studies is the incorporation of information-
based complexity measures into the framework of thermodynamics through the inves-
tigation of their relation with different kinds of entropies of crystalline solids. The 
empirical observations indicate that such a relation exists in many particular cases, 
but certainly, there is no single equation or universal law that can describe it. 

As it has been mentioned above, the current state of the theory is concerned 
with minerals as idealized objects, having more or less ideal crystal structures and 
more or less fixed chemical formulas. The reality is obviously more complex, and 
possible efforts may be directed towards the development of quantitative methods 
of evaluation of complexity of mineral grains, including mosaicity, point defects, 
dislocations, chemical zonality, inclusions, etc., and relating this complexity to the 
complexity of geological and geochemical processes. 

The important step further would be to develop information-based complexity 
measures of mineral aggregates, including mineral parageneses and rocks. Putting 
these measures into micro- and macroevolutionary perspectives might reveal some 
interesting regularities in the development of geological structures and the Earth as 
a whole. For instance, the evolution of igneous rocks in petrology may be analyzed 
from the viewpoint of complexity of their mineralogical composition. 

Finally, further elaboration of the theory may be based upon using other proper-
ties of crystal structures, including complexity of bonding systems and symmetrical 
restrictions upon the atom sites that lead to the degeneracy of atomic vibrations. 
Linking informational complexity with physically measurable parameters would be 
the task of a paramount importance. 
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Huskić I,NovendraN,Lim  DW,Topić F,Titi  HM,Pekov  IV,Krivovichev  SV,Navrotsky  A,  Kitagawa  

H, Friščić T (2019) Functionality in metal-organic framework minerals: proton conductivity, 
stability and potential for polymorphism. Chem Sci 10:4923–4929 

Kaku M (2014) The future of the mind. The Scientific Quest to Understand, Enhance and Empower 
the Mind. Doubleday New York 

Kolitsch U, Weil M, Kovrugin VM, Krivovichev SV (2020) Crystal chemistry of the variscite 
and metavariscite groups: Crystal structures of synthetic CrAsO4·2H2O, TlPO4·2H2O, 
MnSeO4·2H2O, CdSeO4·2H2O and natural bonacinaite, ScAsO4·2H2O. Miner Mag 84:568– 
583 

Krivovichev SV (2012) Topological complexity of crystal structures: quantitative approach. Acta 
Crystallogr A 68:393–398 

Krivovichev SV (2013a) Structural complexity of minerals: information storage and processing in 
the mineral world. Miner Mag 77:275–326 

Krivovichev SV (2013b) Structural and topological complexity of zeolites: an information-based 
approach. Micropor Mesopor Mater 171:223–229 

Krivovichev SV (2014) Which inorganic structures are the most complex? Angew Chem Int Ed 
53:654–661 

Krivovichev SV (2016) Structural complexity and configurational entropy of crystalline solids. Acta 
Crystallogr B 72:274–276 

Krivovichev SV (2017a) Hydrogen bonding and structural complexity of the Cu3(AsO4)(OH)3 
polymorphs (clinoclase, gilmarite): a theoretical study. J Geosci 62:79–85 

Krivovichev SV (2017b) Structure description, interpretation and classification in mineralogical 
crystallography. Crystallogr Rev 23:2–71 

Krivovichev SV (2018) Ladders of information: what contributes to the structural complexity in 
inorganic crystals. Z Kristallogr 233:155–161 

Krivovichev SV (2020a) Feldspar polymorphs: diversity, complexity, stability. Zap Ross Mineral 
Obshc 149(4):16–66 

Krivovichev SV (2020b) Polyoxometalate clusters in minerals: review and complexity analysis. 
Acta Crystallogr B 76:618–629 

Krivovichev SV (2021) The principle of maximal simplicity for modular inorganic crystal structures. 
Curr Comput-Aided Drug Des 11:1472 

Krivovichev SV (2022a) Metastable crystallization and structural complexity of minerals. Dokl 
Earth Sci 507:1040–1043 

Krivovichev SV (2022b) Hydrogen bonding in parascorodite and comparative stability of 
Fe(AsO4).2H2O polymorphs. Zap Ross Mineral Obshc 151(5):102–111 (in Russian)



128 S. V. Krivovichev

Krivovichev SV, Krivovichev VG (2020) The Fedorov-Groth law revisited: complexity analysis 
using mineralogical data. Acta Crystallogr A 76:429–431 

Krivovichev SV, Zolotarev AA, Popova VI (2016) Hydrogen bonding and structural complexity 
in the Cu5(PO4)2(OH)4 polymorphs (pseudomalachite, ludjibaite, reichenbachite): combined 
experimental and theoretical study. Struct Chem 27:1715–1723 

Krivovichev SV, Hawthorne FC, Williams PA (2017) Structural complexity and crystallization: the 
Ostwald sequence of phases in the Cu2(OH)3Cl system (botallackite–atacamite–clinoatacamite). 
Struct Chem 28:153–159 

Krivovichev SV, Krivovichev VG, Hazen RM (2018a) Structural and chemical complexity of 
minerals: correlations and time evolution. Eur J Miner 30:231–236 

Krivovichev VG, Charykova MV, Krivovichev SV (2018b) The concept of mineral systems and its 
application to the study of mineral diversity and evolution. Eur J Miner 30:219–230 

Krivovichev SV, Krivovichev VG, Hazen RM, Aksenov SM, Avdontceva MS, Banaru AM, Gorelova 
LA, Ismagilova RM, Kornyakov IV, Kuporev IV, Morrison SM, Panikorovskii TL, Starova GL 
(2022) Structural and chemical complexity of minerals: an update. Miner Mag 86:183–204 

Landau LD, Lifshitz EM (1980) Statistical physics. Course of Theoretical Physics, vol 5 part 1. 
Pergamon Press, Oxford, p 440 

Majzlan J (2020) Processes of metastable-mineral formation in oxidation zones and mine waste. 
Miner Mag 84:367–375 

Majzlan J, Dachs E, Benisek A, Plášil J, Sejkora J (2018) Thermodynamics, crystal chemistry 
and structural complexity of the Fe(SO4)(OH)(H2O)x phases: Fe(SO4)(OH), metahohmannite, 
butlerite, parabutlerite, amarantite, hohmannite, and fibroferrite. Eur J Miner 30:259–275 

Makovicky E (1997): Modularity—different types and approaches. In: Merlino S (ed) Modular 
aspects of minerals. European Mineralogical Union Notes in Mineralogy, vol 1. Eötvös 
University Press, Budapest pp 315–343 

McCormack SJ, Navrotsky A (2021) Thermodynamics of high entropy oxides. Acta Mater 202:1–21 
McDonald AM, Chao GY (2010) Rogermitchellite, Na12(Sr, Na)24Ba4Zr26Si78(B, 

Si)12O246(OH) 
24.18(H2O), a new mineral species from Mont Saint-Hilaire, Quebec: descrip-

tion, structure determination and relationship with HFSE-bearing cyclosilicates. Can Miner 
48:267–278 

Mills S, Christy A (2019) Mineral extinction. Miner Mag 83:621–625 
Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta 

Mater 122:448–511 
Mitteroecker P, Huttegger SM (2009) The concept of morphospaces in evolutionary and develop-

mental biology: mathematics and metaphors. Biol Theor 4:54–67 
Moore PB (1970) Structural hierarchies among minerals containing octahedrally coordinating 

oxygen. I. Stereoisomerism among corner-sharing octahedral and tetrahedral chains. N Jb Miner 
Mh 1970:163–173 

Oganov AR, Valle M (2009) How to quantify energy landscapes of solids. J Chem Phys 130:104504 
Olds TA, Plášil J, Kampf AR, Simonetti A, Sadergaski LR, Chen YS, Burns PC (2017) Ewingite: 

Earth’s most complex mineral. Geology 45:1007–1010 
Ottonello G (2000) Principles of geochemistry. Columbia University Press, New York 
Pasero M (2022) The new IMA list of minerals. http://pubsites.uws.edu.au/ima-cnmnc/ 
Plášil J (2018) Structural complexity of uranophane and uranophane-β: implications for their 

formation and occurrence. Eur J Miner 30:253–257 
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Chapter 6 
Predicting HP-HT Earth and Planetary 
Materials 

Razvan Caracas , Chris Mohn, and Zhi Li 

Abstract This chapter highlights the power and usefulness of atomistic computer 
simulations in the field of mineralogy, with particular emphasis on their applications 
to extreme conditions in planetary interiors. The ability of density functional theory 
simulations to accurately predict the physical and chemical properties of minerals 
and melts, together with the increasing availability of large datasets from ab initio 
simulations, has enabled researchers to make advances in understanding the evolution 
of the Earth, other terrestrial planets and protoplanetary disks. Additionally, machine 
learning algorithms have been used to develop accurate interatomic potentials and to 
accelerate the discovery of new materials. Overall, this chapter provides an overview 
of the recent advances in the field of computational mineralogy and their applications 
to the study of planetary interiors. 

Keywords Atomistic simulations · Density functional theory · Post-perovskite ·
Melting curves ·Machine learning · Raman spectroscopy · Interatomic potentials ·
Planetary interiors 

6.1 Introduction 

The exponential increase in computing power and the continuous development of 
efficient algorithms prompted a revolution in exact sciences, which mineralogy 
embraced. Computational mineralogy became an essential part driving the progress 
of geosciences.
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With calculations, we do not replace experiments, but we complement exper-
iments. Ab initio methods based on density-functional theory offer a unique oppor-
tunity to overcome the lack of experimental information or to add to the existing 
experimental information. Over the last decades, ab initio methods have proved to 
be very accurate and predictive tools for studying a wide range of properties of real 
materials. Combined with adiabatic perturbation theory, it allows a priori  the compu-
tation of derivatives of the energy and related thermodynamic potentials up to any 
order. At the second order, this approach has been applied to compute linear response 
functions such as phonon frequencies or dynamical atomic charges with an accuracy 
of a few per cent. 

But all of these would not have been possible without access to computers that 
can perform tens and hundreds of quadrillions of operations. This technological 
revolution fueled the new revolution in computational sciences. If the beginning was 
slow and dominated by crude empirical interatomic potentials, the last decade saw an 
explosion in the quantity and quality of numerical studies based on first-principles 
methods. Today we see a few signs of a new revolution: the advent of artificial 
intelligence. 

This chapter is not a review of advances in computational mineralogy. Books with 
many volumes would be needed to extensively cover this topic. Rather, the following 
pages try to explain what numerical mineralogy is and offer a few examples. And 
then speculate about what the next years might hold in store for us. The help of 
artificial intelligence, in the form of the chatGPT bot (Brown et al. 2020), to write 
this chapter is proof the future is here. 

6.2 The World of Supercomputers 

It is difficult to determine when the first supercomputer was made, as the term “super-
computer” has evolved over time and can be somewhat subjective. Already in the 60’s, 
several machines like the UNIVAC1100/2200 series or the CDC6000 were specifi-
cally built for intensive scientific and engineering calculations. Over time their power 
evolved to become orders of magnitude faster than any personal computer, to take 
huge physical spaces, on the order of entire buildings, and to reach costs that are 
several orders of magnitude more than personal computers. 

In 1993, Jack Dongarra, Erich Strohmaier, and Hans Meuer started the top 500 list, 
which measures the progress of supercomputing technology. The Top500 list [https:// 
www.top500.org/] ranks the world’s most powerful supercomputers based on their 
performance on the LINPACK benchmark (Petite et al. 2016), which measures their 
velocity at solving large linear algebra problems. The benchmark involves solving a 
large system of linear equations, and the performance of a supercomputer is measured 
in terms of the number of floating-point operations per second (FLOPS) that it can 
perform. The top-ranked system on the list is the one that can perform the most 
FLOPS. The list is compiled twice a year, in June and November.

https://www.top500.org/
https://www.top500.org/
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Fig. 6.1 The list 500 statistics shows the incredible evolution of supercomputing power over the 
last decades

Over time, computer power in the Top500 list has grown tremendously, reflecting 
the rapid pace of innovation in high-performance computing and the increasing 
demand for more powerful and efficient computing systems (Figs. 6.1 and 6.2). 

For example, in 1993, the top-ranked system on the Top500 list was the Intel 
Paragon, capable of performing about 160 gigaFLOPS (billion floating-point oper-
ations per second). In comparison, in 2022, the top-ranked system on the list was 
Frontier, a HPE Cray supercomputer with AMD processors, with a theoretical peak 
speed of 1,685.65 petaFLOPS (quadrillion floating-point operations per second). 
This represents a more than 6,000-fold increase in performance over the past 28 
years. 

This increase in performance has been driven by advances in hardware, software, 
and programming technologies, as well as the increasing use of parallel processing 
and specialized hardware, such as graphics processing units (GPUs). 

6.3 Interatomic Potentials, and Why They Faded 

The first simulations in mineralogy were realized in the 50s and the 60s. By 1980’s 
molecular dynamics started to be established as a valid method in mineralogy (Pawley 
and Dove, 1983).
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Fig. 6.2 The melting curve of hcp iron in the pressure range of 100–1500 GPa obtained from 
theoretical calculations. The extrapolated phase transition boundary is represented by the dotted 
lines

For several decades, these calculations were based on interatomic potentials, 
which are mathematical functions that describe the interactions between atoms in a 
specific material or group of materials. The empirical potentials are based on experi-
mental data, and the first-principles potentials are derived from fundamental physical 
laws and are typically fit on ab initio results. All these potentials are based on the 
idea that the interaction energy between two atoms can be described by the sum of 
several different terms: a repulsive term, which describes the repulsion between the 
atoms as they approach each other; an attractive term, which describes the attraction 
between the atoms as they come together; and a short-range term, which describes 
the interactions between the atoms at short distances. Several many-body terms could 
be added, but they considerably increase the computational time and make fitting a 
more tedious process. 

Some of the most popular interatomic potentials include: 

• Lennard-Jones is a simple, two-parameter potential (Jones 1924) that describes the 
interactions between atoms using a combination of repulsive and attractive forces. 
It is also known as the 12−6 potential. It was developed in 1924 by John Lennard-
Jones and has since become a widely used model in the field of computational 
chemistry. The potential is given by the equation: 

V(r) = 4ε[(σ/r)12-(σ/r)6]
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where V(r) is the potential energy of the interaction, r is the distance between the 
atoms or molecules, ε is the depth of the potential well, and σ is a measure of the 
size of the atoms or molecules. 

The Lennard-Jones potential has several key features that make it a useful model 
for describing atomic and molecular interactions. First, it is a long-range attractive 
potential, meaning that it describes the attractive forces between atoms or molecules 
at large distances. Second, it has a well-defined minimum, or potential well, which 
represents the most stable configuration of the atoms or molecules. It has been used 
to study a wide range of systems, including gases, liquids, solids, and biomolecules. 

• Stillinger-Weber is a three-parameter potential (Stillinger and Weber 1984), often 
used to model the interactions between atoms in covalently bonded materials, 
such as silicon and germanium. 

• The embedded atom model (EAM) is a two-parameter potential used to describe 
the interactions between atoms in metallic materials. 

• Tersoff is a three-parameter potential adapted for covalently bonded materials 
(Tersoff 1988). It includes terms to describe the interactions between bonded 
atoms as well as the interactions between non-bonded atoms. 

• ReaxFF (reactive force field) is a flexible, many-parameter potential that is often 
used to describe the interactions between atoms in a wide range of materials. It 
includes terms to describe the interactions between bonded atoms as well as the 
interactions between non-bonded atoms. 

• Buckingham is a potential commonly used to model oxides and silicates (Buck-
ingham 1938). It was largely employed to study the structural, vibrational, and 
thermal properties of many minerals, as well as their mechanical properties, such 
as their strength and ductility. It is a long-range attractive potential that is given 
by the equation: 

V(r) = Aexp(-r/r0) - B/r6 

where V(r) is the potential energy of the interaction, r is the distance between the 
atoms, r0 is the equilibrium distance, and A and B are constants that depend on the 
type of atoms being modeled. 

Because the potentials are simple mathematical functions, they can be easily 
evaluated using standard numerical methods. This allows them to be used in large-
scale simulations, such as molecular dynamics or Monte Carlo simulations, without 
requiring excessive computational resources. 

However, there are several limitations and potential flaws that should be 
considered when using interatomic potentials: 

• Limited accuracy: Interatomic potentials are usually based on a limited number 
of experimental data points and are therefore only approximate representations of 
the true interactions between atoms. As a result, they may not accurately predict 
the properties of a material over a wide range of conditions. 

• Limited transferability: Interatomic potentials are typically developed for a 
specific material or group of materials, and they may not be accurate when applied 
to other materials. This can be a particular problem when attempting to predict the
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properties of materials with complex electronic structures, such as semiconduc-
tors and metals. Some potentials of silica can predict either the fourfold structures, 
like quartz, or the sixfold structures, like stishovite, but hardly both. 

• Limited physical realism: Interatomic potentials are often based on simplified 
models of the interactions between atoms, which may not capture all of the 
physical phenomena that are present in real materials. For example, some poten-
tials do not include terms to describe electronic interactions or various quantum 
mechanical interactions, which can be important for certain materials. 

All things considered, over time, the use of interatomic potentials decreased in 
importance and was increasingly replaced by ab initio calculations. 

6.3.1 Ab Initio Simulations 

Ab initio simulations model molecular and mineral systems using quantum 
mechanics, without relying on empirical data or parameters. The term “ab initio” is  
Latin for “from the beginning,” indicating that the calculations start from basic prin-
ciples, while “first principles” highlights the idea that the simulations are based on 
the first (i.e., most fundamental) principles of physics. The calculations are used 
to predict properties such as molecular structures, energy levels, reactivity, and 
thermodynamics. 

6.3.2 Density Functional Theory 

Most of the published ab initio calculations use the Density Functional Theory (DFT) 
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965) in one form or another. The DFT 
is based on the Kohn-Sham equations, which state that the ground state properties 
(such as the total energy) of an electronic system can be calculated from the charge 
density alone. Unfortunately, the exact density functional is unknown, so in practice, 
exact results are not obtainable. The exchange-correlation functional accounts for the 
many-body interactions among the electrons. Most calculations for crystals are based 
on the local density approximation (LDA) or one of the various generalized gradient 
approximations (GGA), which assume that the exchange and correlation interactions 
between electrons can be approximated by their interactions in an electron gas. 
Recently more accurate functionals have become routine, which allows for a much 
more accurate prediction of mineral properties. 

The most common technique used for crystals to solve the Kohn-Sham equa-
tions that arise in implementing DFT calculations is the planewave–pseudopotential 
one (Payne et al. 1992). According to this method, the electronic wavefunction is 
expanded in plane-waves, with a periodic representation of the system under peri-
odic boundary conditions. This representation is especially suitable for crystal studies
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where the periodicity is ensured by the primitive unit cell. Within the pseudopotential 
approximation, the core electrons are not treated explicitly, their effect on the valence 
states being reproduced using various functions. The pseudopotential approximation 
decreases considerably the required CPU time, as during the calculations, only the 
behavior of the valence electrons is explicitly computed. 

The different approximations that make DFT work result in a series of inaccura-
cies when comparing computational results to experimental data. Typically accepted 
differences for interatomic bond distances are underestimations of up to 2% in LDA 
and overestimations of up to 2 % in GGA. Errors on the interatomic angles are on the 
order of 1 degree, on the heat of formation and vibrational frequencies up to about 
10% compared to accurate experimental data. 

6.3.3 Density Functional Perturbation Theory 

With respect to the periodic arrangement of nuclei, corresponding to the perfect 
classical crystal at zero temperature, small displacements around the equilibrium 
positions occur, which, from a classical point of view, evolve as a function of time. 
Such nuclear displacements induce changes in the energy that can be expressed by 
a Taylor expansion. The truncation to the second order yields the quasi-harmonic 
approximation, which is at the base of the computation of a long series of physical 
properties, most notably those arising from phonons (vibrational properties). 

Density-functional perturbation theory (DFPT) focuses on the computation of 
the derivative of the DFT electronic energy with respect to different perturbations 
(Baroni et al. 2001; Gonze et al. 2005). The perturbations treated in DFPT might be 
external applied fields, as well as changes of potentials induced by nuclear displace-
ments, or any type of perturbation of the equations that define the reference system. 
This theory can deal with perturbations characterized by a non-zero, commensurate 
or incommensurate wavevector, with a workload like the one needed to deal with 
a periodic perturbation (Caracas and Gonze, 2005). Hence, it is particularly effi-
cient for dealing with phonons (i.e. atomic vibrations), elastic constants, dielectric 
tensors, etc (Baroni et al. 1987; Baroni et al. 2001; Hamman et al. 2005; Perger et al. 
2009; Martin et al. 2019, etc.). 

6.3.4 First-Principles Molecular Dynamics 

First-principles (or ab initio) molecular dynamics combines the principles of quantum 
mechanics with the techniques of molecular dynamics (MD) to simulate the motion 
of atoms and molecules over time (Tuckermann 2002). 

Molecular dynamics has been used for decades to explore the configurational 
atomic space and to investigate the dynamical properties of molecules, solids, and 
liquids. It involves solving the equations of motion for the atoms in a system using
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Newtonian mechanics, which then predicts their trajectories. The atoms move under 
the action of the interatomic forces. In the conventional (or classical) molecular 
dynamics approach, the interatomic interactions are evaluated using empirical poten-
tials. In ab initio molecular dynamics, the forces are computed directly from the elec-
tronic structure of the system, which usually is obtained by solving the Kohn-Sham 
equations, forming the base of the DFT. This feature is important for simulations 
involving the formation and breaking of chemical bonds. 

6.3.5 Why DFT Conquered the Computational World 

Some of the main advantages of using DFT instead of empirical interatomic potentials 
include: 

Greater accuracy: DFT is based on the fundamental principles of quantum 
mechanics, which provides a more accurate description of the electronic structure of 
a material than empirical interatomic potentials. This can be particularly important 
when predicting the properties of materials with complex electronic structures, such 
as semiconductors and metals. 

Greater transferability: DFT is a universal approach that can be applied to a wide 
range of materials and thermodynamic conditions, whereas empirical interatomic 
potentials are typically developed for a specific material or group of materials and 
may not be accurate when applied to other materials. 

Greater physical realism: DFT includes terms to describe electronic interactions 
and other quantum mechanical effects not captured by classical potentials and which 
can be important for certain materials. In contrast, empirical interatomic potentials 
are often based on simplified models of the interactions between atoms and may not 
capture all the physical phenomena that are present in real materials. 

Greater flexibility: DFT allows for the calculation of a wide range of material prop-
erties, including structural, electronic, and thermodynamic properties. In contrast, 
empirical interatomic potentials are typically designed to describe a limited range of 
properties and may not be suitable for predicting all properties of a material. 

6.4 The DFT Revolution in Mineralogy 

Mineral physics adopted atomistic simulations already from the eighties. Simulations 
of vibrational spectra, melting curves, structural or spin transitions, etc. (Cohen and 
Burnham 1985; Cohen 1987; Catlow 1988; Price and Parker 1988; etc.) started to 
appear in the literature. The development of computing power and the existence of 
several DFT software packages were harbingers for a revolution in the making in 
mineralogy. But the real breakthrough came in the middle of the years 2000’s with 
the discovery of the post-perovskite (Murakami et al. 2004; Tsuchiya et al. 2004a, 
b; Oganov and Ono 2004). The discovery of the last mantle phase transition brought
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the attention of the entire mineralogical community to the power and usefulness held 
by atomistic computer simulations. 

Within the subsequent years, studies started to abound about mineralogy at 
extreme thermodynamical and thermochemical conditions with direct applications 
to the study of deep planetary interiors. The DFT success is such that nowadays, all 
major geoscience conferences have sessions dedicated to computational work, while 
theoretical mineralogical papers are a common sight in all geoscientific journals. 

6.5 Iron Up to Super-Earth Conditions 

As a primary component of the metallic core in the terrestrial planets and super-
Earths, iron received considerable attention from various research fields in the last 
years (Hirose et al. 2013; 2021). Many experimental and theoretical efforts have been 
made to understand its phase diagram and properties at extreme conditions. Theory 
greatly contributed with predictions of the melting curve, elasticity, and electrical 
conductivity. The presently accepted picture is that iron atoms are arranged into 
the body-centred-cubic (bcc) structure at ambient conditions (1 bar and 300 K). 
Compression at ambient temperature induces a structural phase transition into the 
hexagonal close-packed (hcp) phase at around 13 GPa (Mao et al. 1967), which is 
stable up to at least 7000 GPa (Pickard and Needs 2009; Caracas 2016). 

Considerable effort has been put into studying iron regime at extreme pressures 
(> 100 GPa), where substantial uncertainties are present. The early work focused 
on the equation of state and the elasticity of the hcp phase (Stixrude and Cohen 
1995; Söderlind et al. 1996; Steinle-Neumann et al. 2001; Mao et al. 2001; Vocadlo 
2007) and later on the physical properties of the liquid iron (Vocadlo et al. 1997; 
Alfe et al. 2000; Marques et al. 2015; Korrell et al. 2019). The implementation of 
the thermodynamic integration allowed the direct computation of free energies for 
both solid and liquid iron, and of the melting curve of hcp iron up 350 GPa (Alfe 
et al. 1999). This placed the melting point of pure iron at the inner-core boundary 
conditions at 6700 +/– 600 K, which provided a crucial anchor point for inferring 
the temperature in the Earth’s interior. The applications to super Earths developed in 
recent years with the extension of both the equation of state and the melting curve 
up to Terrapascal pressures (Laio et al. 2000; Bouchet et al. 2013) (Fig. 6.3).

Although considerable theoretical progress has been made in the last decades, 
it remains difficult to reach a coherent picture of the melting curve of iron at 
extreme conditions. A few theoretical calculations show the possible stability of 
a bcc (Belonoshko et al. 2003) or fcc (Vocadlo et al. 2003) phase, but nowadays if it 
is widely accepted that hcp iron is the only phase before melting after 100 GPa. 

Around 2010, several more or less simultaneous computational studies made a new 
breakthrough and showed not only the power but also the usefulness of ab initio calcu-
lation. The theoretical determinations of the electrical conductivity of iron (Pozzo 
et al. 2012; de Koker et al. 2012; Gomi et al.  2013) at core conditions could be used 
to estimate the age of the inner core and to constrain the thermal history of our planet.
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Fig. 6.3 Phase relations in the systems MgSiO3-FeSiO3, MgSiO3-FeAlO3, MgSiO3-Al2O3 at 
3000 K and the 20−150 GPa range from Trønnes and Mohn [in prep.]. The first two diagrams are 
based on DFT-determinations of the bm-ppv phase loops in the 0-50 mol% ranges of the FeSiO3 
and FeAlO3 components and the right diagram on more preliminary data in the 0−5 mol% range of 
Al2O3 [Mohn and Trønnes, in prep.]. Because the Gibbs free energy of the MgAl2O4 + SiO2 phase 
assemblage is very much lower than that of the coexisting bridgmanite, the Al2O3 solubility in bm 
decreases markedly in the 72−138 GPa range, from more than 40 to less than or about 5 mol%. 
The other parts of the three phase diagrams are mainly based on [Stixrude and Lithgow-Bertelloni 
2011; Caracas 2010]. The Raman spectra were reported in a DFTP study (Caracas and Cohen 2006)

Recent computational studies (Li et al. 2020; Li and Caracas 2021) placed the 
critical point of pure iron at 4−7 kbars and 900−9350K. These works mark a new 
milestone in the development path of ab initio simulations. 

6.6 Phase Relations of the Earth’s Lower Mantle 

Another example of the power of the DFT simulations to crystal structural prediction 
is illustrated by the discovery of the post-perovskite (ppv) phase. The search for a 
new lower mantle phase was strongly motivated by prediction from ab initio DFT 
simulations which indicated that such a phase should be stable at the base of the 
mantle (Tshuchiya et al. 2004a, 2004b; Oganov and Ono 2004). Indeed, the discovery 
of the post-perovskite phase in the lowermost mantle explained many of the enigmatic 
seismic signals of heterogeneities from the lowermost mantle (the D” layer, the 
LLSVPs, the ULVZs), such as the sharp reflectors in the 2600−2700 km depth 
range (Lay and Helmberger 1983) and the anti-correlation between the shear- and 
bulk-sound velocities (Su and Dziewonski 1997). They are all consistent with the 
transition to a post-perovskite phase (Murakami et al. 2004; Tsuchiya et al. 2004a, 
b; Oganov and Ono 2004). ppv seismic and mechanical properties were also able to
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explain the observed seismic anisotropy with the horizontal component of the shear 
waves larger than the vertical one (Panning and Romanowicz 2004; Dobson et al. 
2019) associated with a viscosity reduction of several orders of magnitude, promoting 
efficient lateral flow and heat transfer within the lowermost mantle (Amman et al. 
2010; Dobson et al. 2019). These early studies of the ppv transition were encouraging 
(Tsuchiya et al. 2004a, b; Caracas and Cohen 2005; Oganov et al. 2005; Wookey 
et al. 2005; Wentzcovitch et al. 2006; Stackhouse and Brodholt 2008), but new 
challenges emerged as computational and experimental studies tried to describe the 
phase diagram in more realistic mantle lithologies (peridotite). In abyssal peridotite-
representative of lower mantle mineralogy–bridgmanite and ppv contain a substantial 
amount of iron and aluminium dissolved in the crystal structure. These components 
could affect the seismic and mechanical properties of the PPv as well as its stability 
range compared to the pure “iron-free” MgSiO3. Experiments carried out on such 
iron and aluminium-bearing phases provided to be very difficult, with some studies 
suggesting that iron stabilises ppv to shallower depths. In contrast, other studies 
suggested that PPv with iron in solid solution was not stable at all in the lower 
mantle. Again, computational DFT works were more consistent with one another, 
suggesting that ferrous iron clearly stabilizes ppv to shallower depths (Caracas and 
Cohen 2007, 2008; Mohn and Trønnes 2023), lending strong support to the view 
that ppv is the main phase in the lowermost mantle. Another challenge with most 
experimental work was that the phase loops in the iron-and aluminium-bearing phases 
were very wide and therefore not consistent with the sharp reflectors at the top of D”. 
Again, theory helped to solve this apparent conflict. Whereas both ferrous and ferric 
iron stabilises ppv to shallower depths, ferric iron seems to play a key role (Wang at 
al 2019) as the MgSiO3-Fe3+AlO3 phase loop is very thin (Fig. 6.3) and, therefore, 
consistent with the sharp reflectors at the top of the D” and the transition depth to 
the PPv phase. 

Very recent DFT studies have also been able to quantify much better the phase 
transition in the pure MgSiO3 using more accurate exchange-correlation functionals 
than the local density approximation (LDA) and the GGA in the PBE formulation 
(Perdew et al. 1996). Whereas transition pressures calculated using LDA and GGA 
differed by as much as 10 GPa, recent, more accurate DFT methods, such as hybrid 
functionals, and quantum Monte Carlo showed a remarkable agreement suggesting 
that the GGA value is slightly too low, while the LDA value is far too low. These 
new functionals bring predictions of mineral properties to high (chemical) accuracy. 
They are becoming more and more routine, although they are still expensive and are 
therefore limited to systems with modest size (100 atoms). The increasing availability 
of computer power will make them more applicable to studying much larger systems 
for the accurate prediction of material properties. 

Table 6.1 exemplifies the power of DFT with a comparison of various computed 
and experimental values for the lattice parameters and the equation of state of bridg-
manite and ppv. The HSE06 values stand out with an excellent agreement to exper-
imental diffraction (Vanpeteghem et al. 2006) and Brillouin (Sinogeikin et al. 2004) 
data. At high pressures they deviate less than 1% compared to experiment (Tshuchiya 
et al. 2004a, b; Murakami et al. 2004; Oganov and Ono 2004). The K’ value obtained
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with HSE06 (Heyd and Scuseria 2006) is in better agreement with the experimental 
values (Ono et al. 2006) compared LDA (Sakai et al. 2016; Tsuchiya et al 2004a, b). 
While LDA results are not bad, this might be the result of error cancellation in the 
exchange and correlation terms. The AMO5 formulation of the GGA performs better 
than PBE, which is not surprising since the AMO5 exchange-correlation function is 
optimised for solids (Armiento and Mattsson 2005; Mattsson et al. 2008).

6.7 Magma Ocean of the Early Earth 

The heat generated by the decay of radioactive elements, like 26Al, 60Fe, and 80Kr 
were the main energy sources that led to the melting of planets or planetesimals in 
the very early stages of accretion. The collisions occurring during accretion and the 
core differentiation contributed in a subsequent stage to the melting of large bodies. 
Furthermore, in the case of our planet, the giant impact that generated the protolunar 
disk reset the chemistry and isotope distribution and led to the condensation of 
both the Earth and the Moon in a hot molten state (Canup 2004; Cuk and Stewart 
2012). This magma ocean crystallized during the Hadean and possibly parts of the 
Archaen, to form the mantle, which evolved to its present state. The physical and 
chemical properties of molten silicates are critical pieces of information needed for 
understanding the evolution of the magma ocean. And the positions of the melting 
curves put strong constraints on the evolution of our planet. 

But melts are notoriously hard to analyze experimentally. The experimental deter-
mination of the density of a melt at high pressure is one of the most difficult exper-
iments to perform, and it is prone to huge technical errors. Instead, obtaining the 
density of a melt in an ab initio MD simulation is rather straightforward. Moreover, 
with proper analysis tools (Caracas et al. 2021), structural, transport, and dynamical 
properties of liquids are relatively easy to obtain from the MD simulations, provided 
these simulations are sufficiently long (Harvey and Asimow 2017). 

The melting curve of MgO was one of the first to be determined computationally 
(Cohen and Gong 1994). MgSiO3 followed afterwards (Belonoshko et al. 2005; 
Stixrude and Karki 2005) and provided a huge missing piece of information to the 
puzzle of the early Earth. Further studies (Karki 2010) explored a variety of single-
or double-component melts, like Mg2SiO4 (de Koker et al. 2008) or CaMgSi2O8 

(Sun et al. 2011). 
Realistic compositions have been addressed only recently when the available 

computing power became sufficient. The most relevant are, without a doubt, the 
molten bulk silicate Earth–pyrolite (McDonough and Sun 1995). MD simulations 
explored the structural changes inside the magma ocean (Solomatova and Caracas 
2019), confirmed that the evolution of the global magma ocean passed by the sepa-
ration of a basal magma ocean and a shallow magma ocean (Caracas et al. 2019) 
and that the presence of volatiles increased buoyancy differences between different 
regions of the ocean (Solomatova and Caracas 2021). The presence of iron in the 
hot molten silicate increased the potential of generating a magnetic field by vigorous
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Table 6.2 Parameters of the 3rd and 4th order Birch-Murnagham equations of states (BM3 and 
BM4, respectively) of molten pyrolite along the 4000K isotherm. The simulations were realized 
with cells containing two formula units (306 total atoms) of NaCa2Al3Fe4Mg30Si24O89, using the 
VASP package (Kresse and Hafner 1993) in the NVT ensemble 

P0 (g/cm3) K0 (GPa) K’ K” 

BM3 1.949 12.381 2.302 − 
BM4 1.958 7.005 7.231 −2.73 

convection in deep magma oceans on planets (Stixrude et al. 2020). Updated large-
scale MD simulations on pyrolite composition, provide the most reliable equation of 
state of the magma ocean along the 4000K isotherm with parameters listed in Table 
6.2. 

More recently, MD simulations in mineralogy extended to the low-density high-
temperature regime of protoplanetary and protolunar disks, with determinations of 
critical points and liquid-vapor equilibrium (Xiao and Stixrude 2018; Kobsch and 
Caracas 2020; Townsend et al 2020; Bögels and Caracas 2022). Such simulations 
showed that giant impacts between rocky planets lead to the formation of hot super-
critical protolunar disks (Caracas and Stewart 2023). Their condensation led to the 
formation of moon(s) with similar compositions to their parent planets. 

6.8 Mineral Spectroscopy 

Raman spectroscopy uses the scattering of the incoming light on the atomic vibra-
tions of the lattice. When comparing measured spectra with a reference, Raman spec-
troscopy can be used to identify minerals in a variety of forms, including powders, 
crystals, and even in a rock matrix. In addition, Raman spectroscopy can be used to 
identify minerals at different stages of weathering or alteration, or when present in 
small amounts. 

There are hundreds of mineralogy labs today that use Raman spectrometry on a 
day-to-day basis. In recent years, Raman spectroscopy has been used to study the 
mineralogy of Mars, providing valuable insights into the planet’s geologic history 
and potential for past or present life. The Mars Science Laboratory (MSL) rover, also 
known as Curiosity, is equipped with a Raman spectrometer that has been used to 
study the mineralogy of Martian rocks and soils. For example, the rover has identified 
the mineral gypsum in Martian rocks, which suggests that water was present on Mars 
in the past. 

In parallel to the experimental efforts, there has been a large effort into devel-
oping a series of repositories of Raman spectra. The WURM project (Caracas and 
Bobocioiu 2011) is such a repository, which stems entirely from ab initio simulations. 
WURM is a freely available database for teaching and research purposes that contains 
computed Raman and infrared spectra, crystal structures, and other physical proper-
ties of minerals. The calculations are carried out using DFT and DFPT (Veithen et al.
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Fig. 6.4 Computed [blue point and vertical bars, WURM project, Caracas and Bobocioiu, 2011] 
and measured [continuous line, RRUFF propject, Lafuente et al. 2016] Raman spectra of spinel, 
MgAl2O4. The differences in peak position originate mainly from differences in density. Allowing 
for Mg-Al disorder on both sites in the structure of spinel improves the agreement between the two 
spectra (Caracas and Banigan 2009) 

2005; Gonze et al. 2009). The database includes information such as crystal structure, 
dielectric properties, Raman spectra with peak positions and intensities, and infrared 
spectra with peak positions. Additionally, the atomic displacement patterns for all 
zone-centre vibrational modes and their associated Raman tensors are also provided. 
The website has been designed with a strong emphasis on education, and it includes 
various visualization tools to aid in the observation of crystal structures, vibrational 
patterns, and spectra. Figure 6.4 is an example of theoretical spectra compared to 
experiments. 

6.9 Machine Learning Potentials—A Part of the Future 

In recent years, machine learning (ML) has emerged as a powerful tool for obtaining 
interatomic potentials. One of the main advantages is that ML can handle large 
amounts of data, which are produced from ab initio simulations. Additionally, ML 
can identify patterns in the data that may not be immediately apparent to a human 
analyst, leading to more accurate interatomic potentials. In this respect, they are 
superior to the standard interatomic potentials whose formalism was restrictive. 

There are several different approaches to using ML for developing accurate inter-
atomic potentials. One common approach is to use a neural network, which is a type 
of ML algorithm that is inspired by the way the human brain works. Neural networks
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can be trained on large datasets of atomic configurations and their corresponding 
energies, allowing them to learn how atoms interact. 

Another approach to using ML for interatomic potentials is to use a support vector 
machine (SVM). This is a type of algorithm that can be used to classify data points 
based on their characteristics. In the context of interatomic potentials, an SVM could 
be used to classify different atomic configurations based on their energy. 

There are also several other approaches to using ML for interatomic poten-
tials, including kernel methods, decision trees, and random forests. Each of these 
approaches has its own strengths and weaknesses, and the choice of which method 
to use will depend on the specific problem being addressed. 

The SOAP (Smooth Overlap of Atomic Positions) interatomic potentials (Bartok 
et al. 2013) work by first calculating the radial distribution function (RDF) for a set 
of atomic configurations in a material. The RDF measures the probability of finding 
an atom at a certain distance from a reference atom. 

Next, the RDFs are expanded using a set of basis functions, such as polynomials 
or Gaussian functions. The coefficients of the expansion are then used as the input 
features for a machine learning model, such as a neural network or a support vector 
machine. 

With the increasing availability of large amounts of ab initio data, ML has become 
an important method for developing accurate and efficient interatomic potentials. In 
the future, we can expect to see continued development and refinement of ML models 
for interatomic potentials, as well as increased use of these models in combination 
with other computational methods. 

A key challenge in the field of “modern interatomic potentials” is developing 
models that can handle more complex systems and materials. Many current models 
are limited to simple systems, such as single-phase materials. They may not be 
able to accurately predict the properties of more complex systems, such as those 
with multiple phases or phase transitions. In the future, we can expect to see more 
research aimed at developing ML models that can handle these complex systems 
and can allow for longer simulations with even more atoms. This research could 
include the use of more advanced neural network architectures, such as recurrent 
neural networks or transformer networks, which have been shown to be effective at 
handling sequential data. 

Finally, it is likely that ML will be increasingly used to accelerate the discovery of 
new materials with desired properties. While DFT on it own is a powerful method for 
calculating the electronic properties of minerals, it will remain computationally very 
expensive. ML, on the other hand, can be used to predict specific mineral properties 
with much less computational cost. By using ML and accurate DFT methods together, 
it is possible to make predictions about properties of complex natural systems, like 
minerals and rocks, melts, and fluids, that are not easily accessible by conventional 
DFT alone. Additionally, ML models can be used to identify patterns in DFT data 
that are not immediately obvious, which can be useful for guiding future calculations 
and experiments.
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(2019) Anisotropic diffusion creep in post-perovskite provides a new model for deformation at 
the core−mantle boundary. Proc Nat Acad Sci 116:26389–26393 

Fiquet G, Dewaele G, Charpin T, Kunz M, Bihan ML (2000) Thermoelastic properties and crystal 
structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys 
Res Lett 27:21–24 

Gomi H, Ohta K, Hirose K, Labrosse S, Caracas R, Verstraete MJ, Hernlund JW (2013) The 
high conductivity of iron and thermal evolution of the Earth’s core. Phys Earth Planet Inter 
224:88–103 

Gonze X, Rignanese GM, Caracas R (2005) First-principle studies of the lattice dynamics of crystals, 
and related properties. Z Fur Krist-Cryst Mater 220:458–472 

Gonze X, Amadon B, Anglade PM, Beuken JM, Bottin F, Boulanger P, Bruneval F, Caliste D, 
Caracas R, Côté M et al (2009) ABINIT: First-principles approach to material and nanosystem 
properties. Comput Phys Commun 180:2582–2615 

Green ECR, Artacho E, Connolly JAD (2018) Bulk properties and near-critical behaviour of SiO2 
fluid. Earth Planet Sci Lett 491:11–20 

Guignot N, Andrault D, Morard G, Bolfan-Casanova N, Mezouar M (2007) Thermoelastic properties 
of post-perovskite phase MgSiO3 determined experimentally at core–mantle boundary P-T 
conditions. Earth Planet Sci Lett 256: 162−168 

Harvey JP, Asimow PD (2013) Current limitations of molecular dynamic simulations as probes of 
thermo-physical behavior of silicate melts. Amer Mineral 100:1866–1882 

Hamann DR, Wu X, Rabe KM, Vanderbilt D (2005) Metric tensor formulation of strain in density-
functional perturbation theory. Phys Rev 71(3). https://doi.org/10.1103/PhysRevB.71.035117 

Heyd J, Scuseria GE (2006) Erratum: “Hybrid functionals based on a screened Coulomb potential” 
[J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124, 219906 

Hirose K, Labrosse S, Hernlund J (2013) Composition and state of the core. Annual Rev Earth 
Planet Sci 41:657–691

https://doi.org/10.1524/zkri.220.5.511.65064
https://doi.org/10.1524/zkri.220.5.511.65064
https://doi.org/10.1103/PhysRevB.71.035117


6 Predicting HP-HT Earth and Planetary Materials 149
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Chapter 7 
Structural Mechanisms Stabilizing 
Hydrous Silicates at Deep-Earth 
Conditions 

Mark D. Welch 

Abstract Over the past thirty years considerable progress has been made in under-
standing the hydrous mineralogy of the mantle, particularly in relation to subduction 
zones. These advances have been made primarily in the laboratory and involve the 
synthesis and characterization of hydrous crystalline phases using a wide range of 
techniques. This chapter describes examples of high-P hydrous silicates that illus-
trate novel mechanisms by which crystal structures can adapt to the constraints of 
very high pressure and thereby extend their stability to deep-Earth conditions. One 
of the most important of these mechanisms is the formation of cation-site vacancies 
coupled with protonation of associated oxygen atoms to form hydroxyl groups, e.g. 
VIMg2+ → VIvacancy + 2H+ and IVSi4+ → IVvacancy + 4H+. By such means it is 
possible to protonate and densify. This vacancy-forming mechanism suggests that 
high pressure favours protonation. Other protonation mechanisms involving coupled 
substitutions without vacancy formation, such as VIAl3+ → VIMg2+ + H+ and VISi4+ 

→ 2H+ + VIMg2+ are also important in high-P hydrous silicates. In several high-P 
phases these substitutions involve short-range ordering of cations, vacancies and OH 
as a key feature of their structures. 

Keywords Hydrous mineralogy · Subduction zones · High-P hydrous silicates ·
Cation-site vacancies · Mantle transition zone · Polysomatic decomposition ·
Dense hydrous magnesian silicates 

7.1 Introduction 

Much of our understanding of the mineralogy of the mantle Transition Zone and the 
Lower Mantle comes from laboratory studies at high P and T. These regions of the 
mantle are seldom sampled by geological processes, e.g. super-deep kimberlites are 
rare. Our knowledge is, therefore, often inferred. The identification of the mineralog-
ical origins of the 410 and 660 km seismic discontinuities (olivine → wadsleyite;
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ringwoodite → bridgmanite + magnesiowüstite) is one of the finest examples of 
how carefully designed experiments coupled with crystallographic knowledge can 
provide fundamental insights into mantle structure and processes despite the absence 
of direct mineralogical evidence at the time. 

This chapter focusses on bona fide hydrous phases, i.e. those for which water, as 
OH and/or H2O, is an essential component of their crystal structure. The “nominally-
anhydrous minerals” (NAMs) in which OH occurs as structural defects, usually below 
the parts per thousand level, are not considered here. 

The sheet silicate antigorite, Mg3Si2O5(OH)4, has been studied extensively due 
to its probable role in triggering earthquakes in subduction zones. It is likely the 
most abundant hydrous mineral in oceanic lithosphere to depths of 200 km and 
temperatures up to 700 °C (Ferrand 2019). Its high-P stability extends to 6 GPa at 
700 °C (Wunder and Schreyer 1997), and its two-stage dehydration behaviour is now 
known to involve rapid loss of interlayer OH at around 800 °C followed by loss of the 
“internal” (non-interlayer) OH at temperatures up to 1050 °C. The fast-release phase 
of dehydration may “pull the trigger” (Ferrand, 2019). Antigorite exemplifies the 
potential geological significance of different OH environments in a crystal structure: 
knowledge of the nano informs the macro. 

The literature on so-called Dense Hydrous Magnesian Silicates (DHMS) is vast 
and includes many studies of their crystallographic, spectroscopic, elastic and elec-
trical properties. Frost (1999) gives a thorough review of the stabilities of DHMS. 
He assessed the likely importance of these various phases for mantle petrology based 
upon their experimentally determined P-T stabilities. “Cold subduction”, with core 
slab geothermal gradients as low as 2°−3°/km (e.g. Tonga, Kermadec; Syracuse et al. 
2010), is likely a rich environment for DHMS and other high-P hydrous phases. 

Given the constraints of space available here, rather than attempt to review the 
literature on DHMS, this chapter focuses on the crystal-chemical properties of some 
fascinating hydrous silicates of potential geological significance that illustrate how 
their crystal structures adapt to high-P conditions (> 5 GPa) via a range of novel 
mechanisms. 

7.2 Polysomatic Decomposition Reactions and Their 
Significance for Amphibole Stability in the Mantle 

Amphiboles are a major group of compositionally diverse rock-forming minerals 
occurring in a wide range of geological environments from near-surface geothermal 
systems to the deep upper mantle. As is discussed below, some amphiboles have 
P-T stability fields extending to conditions of the Transition Zone. The amphibole 
structure (Fig. 7.1) comprises pairs of double-chains of tetrahedrally coordinated 
Si (with or without Al) that sandwich ribbons of octahedrally-coordinated metal 
cations (Mg, Al, transition elements) in a chequerboard motif with channels that can 
be occupied by cations (usually Na, K) or vacant. Larger sites at the edges of the
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Fig. 7.1 Left: View of the amphibole structure parallel to the c-axis and showing the chequerboard 
arrangement of double-chain units and channels. Channel sites can be occupied by Na, K and, 
exceptionally, Ca and Pb. The structure can be factored into pyroxene-like (P) and mica-like (M) 
modules alternating along the b-axis. Right: A bright-field TEM photograph of a natural amphibole 
viewed parallel to the b-c plane and showing a disordered arrangement of double-, triple-, quadruple-
and single-chain polysomes. Photograph courtesy of Dr Giles Droop, Manchester University, UK 

octahedral ribbons are occupied by monovalent and/or divalent cations, e.g. Na, K, 
Ca, Mg,  Mn, Fe2+. 

The crystal chemistry of amphiboles is now very well understood. There are, 
however, surprises of potential significance for mantle processes, some of which I 
now discuss in relation to their polysomatic behaviour and high-P stabilities. 

The maximum sub-solidus baric stability limits of most amphiboles are highly 
P-sensitive and involve decomposition to pyroxene and mica/talc assemblages, exem-
plified by end-member reactions such as: tremolite→ 2 diopside + talc; glaucophane 
→ 2 jadeite + talc; anthophyllite → 2 enstatite + talc; edenite → 2 diopside + 
sodium phlogopite. Most amphiboles are complex multicomponent solid solutions, 
and so the end-member amphibole → pyroxene+ mica/talc reactions are multivariant 
and smeared out over a range of P and T. 

The few exceptions to these types of reaction are instructive as they 
highlight the importance of polysomatism in controlling the high-P stabil-
ities of amphiboles relevant to mantle petrology. I now consider the 
examples of richterite [A(K,Na)M(4)(K,Na,Ca)Mg5Si8O22(OH)2], eckermannite, 
[ANaM(4)Na2Mg5Si8O22(OH)2] and a high-P mixed-chain pyribole. 

7.2.1 Richteritic Amphiboles 

K-richterite K(NaCa)Mg5Si8O22(OH)2 is known to occur in the Upper Mantle, with 
frequent reports of its presence in mantle xenoliths. Hariya and Terada (1973) 
found a richterite50-tremolite50 amphibole in xenoliths from kimberlite at Buell 
Park, Arizona, indicating that significant solid solution occurs in these amphi-
boles that may significantly affect their high P-T stability. K-richterite replaces 
phlogopite as the main hydrous potassic phase in hydrous alkali peridotites at
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P > 10 GPa. Above −15 GPa, K-richterite is replaced by the sheet structure Phase 
X (see Sect. 2.1 below) as the primary hydrous K-silicate. An amphibole synthe-
sized by Luth (1997) at 11 GPa, 1300 °C in a model alkali peridotite in the system 
K2O-CaO-MgO-Al2O3-SiO2-H2O had 1.43(8) K apfu and a M(4) site composition 
of Ca0.61K0.39. As discussed below, amphiboles with significant amounts of K at the 
M(4) site (up to 50%) are characteristic of ultra-high-P (UHP) conditions. 

Richteritic amphiboles are unusual in that polysomatic decomposition of their 
structure would result in electrically charged “pyroxene” and “mica” components, i.e. 
in this case polysomatic decomposition is thermodynamically unstable. For example, 
the structural formula of K-richterite can be decomposed, thus: 

K (NaCa)Mg5Si8 O22(OH  )2 = CaMgSi2 O6(diopside) + [NaMgSi2 O6]
−(pyroxene) 

+ [
KMg3Si4 O10(OH  )2

]+
(mica) 

Hence, the maximum upper baric stability of richteritic amphiboles is not deter-
mined by polysomatic decomposition to pyroxene and mica/talc. This “inability” 
to decompose polysomatically, as most amphiboles would at 2−4 GPa, extends 
amphibole stability to much higher pressures. 

7.2.2 Eckermannite as the Post-Glaucophane Sodium 
Amphibole in Subduction Zones 

Eckermannite, Na3Mg4AlSi8O22(OH)2, is a rare amphibole. Nothing is known about 
its phase relations or P-T stability. Like richterite, its structural formula cannot be 
decomposed into electrically neutral pyroxene and mica components:-

Na3Mg4AlSi8O22(OH)2 = 2[NaMgSi2O6]− + [NaMg2AlSi4O10(OH)2]+ 

Corona et al. (2013) located the reaction glaucophane = 2 jadeite + talc using 
synthetic mixtures of the three phases (Fig. 7.2). The reaction occurs multivariantly 
over a small range of pressure (ΔP = 0.26 GPa) and was located at 2.6 GPa (600 
°C) and 3.1 GPa (700 °C).

In a study of sodium amphibole in the model system NMASH, Pawley (1992) 
found that glaucophanic amphiboles became progressively enriched in eckermannite 
component with increasing P, but the possible significance of and reason for the 
stabilization of eckermannitic compositions was not recognized. A study by Howe 
et al. (2018) in the NMASH system aimed at synthesizing aluminous 10Å-phase 
at 6 GPa, 600 °C unexpectedly produced eckermannite-rich amphibole plus pyrope 
and coesite. They proposed the following “post-glaucophane” reaction producing 
eckermannite: 

9 jadeite + 7 talc → 3 eckermannite + 3 pyrope + 13 coesite + 4H2O
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Fig. 7.2 Left: The location of the reaction glaucophane = 2 jadeite + talc defining the high-
pressure stability limit of glaucophane determined by Corona et al. (2013). The P-T conditions at 
which eckermannite-rich amphibole was synthesized by Howe et al. (2018) are shown in red. Figure 
modified after Corona et al. (2013). Right: Bright-field TEM image of synthetic eckermannite-rich 
amphibole synthesized at 6 GPa, 600 °C and showing a fully ordered double-chain (amphibole) 
structure lacking other polysomes Reproduced from Howe et al. (2018) with permission of the 
Mineralogical Society of America.

Howe et al. (2018) rationalized the occurrence of eckermannite at high-P condi-
tions by analogy with richterite, i.e. usual polysomatic decomposition is not possible 
due to formation of electrically charged “pyroxene” and “mica” modules. The 
high-P phase relations and maximum baric stability of eckermannite remain to be 
determined. 

7.2.3 KK-Richterite and Mixed-Chain K-Rich Pyriboles 
at UHP 

Yang et al. (1999) determined the structure of a novel hyperpotassic richterite “KK-
richterite” K(KCa)Mg5Si8O22(OH)2 synthesized at 15 GPa, 1400 °C. This unusual 
amphibole has 50% of its M(4) site occupied by potassium. Yang et al. (2001) 
reported the crystal structure of a polysomatically ordered mixed-chain pyribole 
synthesized at 10 GPa, 1250 °C. This pyribole, closely approaching a simplified 
formula K(Na2Ca2)(Mg6Al)Si12O34(OH)2, has a structure that comprises alternating 
double-and single-chain modules, denoted “<21>”. The single-chain component has 
an empirical formula close to that of omphacite (diopside55jadeite45). It is conceivable 
that the stability of double-chain polysomes can be extended to above 10 GPa by the 
formation of ordered mixed-chain structures, e.g. <21>, <221>. 

Konzett and Japel (2003) determined the approximate P-T stability of this pyribole 
in KNCMASH as being 6–17 GPa and up to −1450 °C (Fig. 7.3). The occurrence
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Fig. 7.3 Left: Phase relations and approximate stability fields of K-richterite and <21> K-pyribole 
determined by Konzett and Japel (2003). Aenig = aenigmatite. Na-pX = sodium Phase X, ga = 
garnet. Upper right: Experimental product synthesized at 10 GPa, 1250 °C containing abundant 
crystals of K-richterite and a large crystal of <21> mixed-chain pyribole. Lower right: The structure 
of <21> mixed-chain pyribole viewed parallel to the channels and showing alternating amphibole-
like and pyroxene-like modules. Photo reproduced from Konzett and Japel (2003) with permission 
of the Mineralogical Society of America 

of an ordered mixed-chain pyribole with a large P-T stability implies that polysoma-
tism could have a significant role in stabilizing double-chain pyriboles to very high 
pressures. 

7.3 Protonation Reactions and Vacancy Formation 
as Stabilizing Mechanisms at UHP 

There is a growing realization that familiar mineral topologies, such as those of sheet 
silicates, can adapt to the profound constraints of high pressure by novel mechanisms, 
some of which involve the formation of structural vacancies coupled with protona-
tion. In this way hydrous minerals can become more hydrated with increasing pres-
sure. I now describe some examples that illustrate structural mechanisms involving 
protonation, by which increase the baric stability of hydrous silicates.
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7.3.1 Vacancy Pairing and Protonation in the UHP Sheet 
Structure K1.5MgSi2O7H0.5 

The sheet structure known as “Phase X” of composition KMgSi2O7H was encoun-
tered in high-P experiments aimed at studying the stability of phlogopite in the alkali 
peridotite (Konzett and Fei, 2000). Experiments show that it replaces K-amphibole 
as the main hydrous potassic phase in alkali peridotite compositions at pressures 
above 14 GPa and is stable at 9−17 GPa and up to 1150−1400 °C. Its structure 
comprises Si2O7 tetrahedral dimers connecting layers of edge-sharing MgO6 octa-
hedra in a dioctahedral motif; a layer of K atoms arranged in a hexagonal motif lies 
in the channels formed by the dimers (Fig. 7.4). The anhydrous equivalent of Phase 
X, “Anhydrous Phase X” of composition K2MgSi2O7, has also been synthesized at 
high P and T. There is no evidence of a continuous solid solution between these two 
compositional endmembers.

Welch et al. (2012, 2016) reported the crystal structure of a 1:1 intermediate 
K1.5MgSi2O7H0.5 synthesized at 16 GPa, 1300 °C (23 h). In addition to the intense 
sub-lattice reflections present, X-ray diffraction patterns had many weaker superlat-
tice reflections, indicative of the presence of a large superstructure (Fig. 7.4). The 
Raman spectrum of this phase comprises four different peaks, whereas the P63m 
substructure should have only one. A second X-ray data collection using much longer 
counting times to increase the absolute intensities of superlattice reflections was 
made, and it proved possible to determine the full superstructure of K1.5MgSi2O7H0.5. 
This large superstructure is defined by pairs of vacant K sites (Fig. 7.4), and it is this 
feature that seems to be the mechanism by which this phase is stabilized at very 
high P. Vacancy pairing with protonation may, therefore, be a viable mechanism for 
stabilizing sheet structures with interlayer cations to very high pressures. 

7.3.2 Talc → 10Å-Phase → MgSi(OH)6 

The so-called “10Å-phase”, referring to a diagnostic basal spacing in X-ray diffrac-
tion patterns, was first encountered in experiments in the system MgO-SiO2-H2O. 
Its sheet-silicate character was inferred by Bauer and Sclar (1981) and its stability 
field determined as lying between 5−10 GPa and T <700 °C (Pawley and Wood, 
1995; Rashchenko et al. 2016). Chinnery et al. (1999) observed that talc starts to 
react to 10Å-phase after only twenty minutes at 6 GPa and 500 °C. Consequently, 
there appears to be no significant kinetic barrier to this reaction, i.e. talc is expected 
to transform to 10Å-phase with increasing P.
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Fig. 7.4 Upper row: Views of the structure of KMgSi2O7H showing layers of MgO6 octahedra 
(green) connected via Si2O7 dimers (yellow tetrahedra). K atoms are shown as spheres lying in 
a sheet between MgO6 layers. The K site is triply split. Upper right: The local configuration of 
the K1.5MgSi2O7H0.5 superstructure within the K sheet showing the pair of vacant K sites and 
associated OH. Red spheres are the central oxygen atom of the Si2O7 dimer. Middle and lower 
left: X-ray diffraction patterns viewed normal to the structural layering of K1.5MgSi2O7H0.5. In  
addition to a hexagonal array of strong sublattice reflections (some labelled with hkl) there are many 
much weaker superlattice reflections associated with triplets. Middle right: the K-O interlayer sheet 
motif with pairs of K-site vacancies indicated by arrows. The a-b plane of two unit cells of the 
superstructure is marked. Lower right: Interpretation of the X-ray diffraction patterns showing the 
superstructure triplets of K1.5MgSi2O7H0.5. Modified after Welch et al. (2016)
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It had been assumed that 10Å-phase was simply a hydrated talc structure with 
interlayer H2O molecules hydrogen-bonded to the silicate layers. Comodi et al. 
(1996) determined the structure and found that the interlayer contained a single 
H2O per formula unit, i.e. Mg3Si4O10(OH)2.H2O. Fumagalli and Stixrude (2007) 
modelled the structure as hydrated talc using First Principles methods and found that 
the most energetically favourable structure had two interlayer H2O molecules per 
formula. There is, however, a problem with the simple “hydrated-talc” model for 
10Å-phase: the silicate layer of talc is hydrophobic. How then is interlayer hydration 
possible? 

This conundrum was resolved using 29Si MAS NMR spectroscopy (Welch et al. 
2006) which showed the presence of a small but significant proportion (5%) of 
vacant tetrahedra in the silicate layer (Q2 peak in Fig. 7.5). The formation of these 
vacancies is coupled with protonation of all four oxygen atoms of the tetrahedron, 
SiO4 →⊗ (OH)4 (⊗= tetrahedral vacancy), thereby providing hydrophilic sites 
(silanol groups) to which interlayer H2O molecules could form strong hydrogen 
bonds.

Hence, 10Å-phase is not simply hydrated talc, but has a distinctive crystal chem-
istry of its own that underlies its high-P stability. Not only did the discovery of the 
vacancy/protonation mechanism explain how interlayer hydration could occur, but 
it also explained why 10Å-phase is a higher-P phase than talc: the creation of a 
small proportion of vacancies increases compressibility relative to talc (Pawley et al. 
2010). Thus, it is possible to have protonation (“hydration”) with densification. 

The proportion of tetrahedral vacancies in 10Å-phase may be highly variable. 
Increasing P may lead to progressive vacancy formation and protonation of the 
silicate layer and, thereby, greater compressibility and increased baric stability. 

Rashchenko et al. (2016) determined the stability of 10Å-phase in the MSH system 
and found that its high-P limit of 10 GPa was defined by a P-sensitive reaction 
producing a hydroxide perovskite MgSi(OH)6. This phase was first synthesized by 
Sclar et al. (1965), who referred to it as the “3.65Å-phase”, referring to a diagnostic 
reflection in its X-ray diffraction pattern. The structure comprises a framework of 
corner-linked alternating MgO6 and SiO6 octahedra with all oxygen atoms forming 
hydroxyl groups (Fig. 7.6) and there is extensive hydrogen bonding. The A-site 
cavity, occupied in normal perovskites, is empty in MgSi(OH)6, thereby making it a 
highly compressible phase [KT0 = 90(1) GPa, K ' = 4.1(0.2)]. 

The potential geological significance of the 10Å-phase is that it is a bridge for the 
transfer of water into the deep mantle from the highly hydrated crustal components 
of a subducting slab to Transition-Zone depths where MgSi(OH)6 is stable, i.e. talc 
→ 10Å-phase →MgSi (OH)6. For example, consider 10Å-phase of composition 
Mg3Si3.75O9(OH)3·H2O (® 6%  IV⊗). Two different reactions can occur depending 
upon whether free H2O is a reactant or not: 

12 Mg3Si3.75 O9(OH  )3 · H2 O = 10 MgSi  (OH  )6 + 26 MgSi  O3(high − P clinoenstati te) 
+ 9 Si O2(stishovi te) 

4 Mg3Si3.75 O9(OH  )3 · H2 O + 26 H2 O = 12 MgSi  (OH  )6 + 3 Si O2(stishovi te)
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Fig. 7.5 Left: 29Si MAS NMR spectra of 10Å-phase synthesized at 6 GPa/600 °C/400 h (top 
spectrum), synthetic talc (bottom spectrum), and synthetic talc partially transformed to 10Å-phase 
after 13 h at 6 GPa/650 °C (middle spectrum HM-338). The Q3 peak relates to a Si tetrahedron with 
three SiO4 nearest neighbours as occurs in talc. The Q2 peak is due to a Si tetrahedron with two 
SiO4 nearest neighbours and is characteristic of 10Å-phase. The two small sharp peaks (*) are from 
clinoenstatite MgSiO3 and the broad subtle Q4 feature above –100 ppm (arrowed) in the HM-338 
spectrum may be a non-crystalline phase of SiO2 quenched from high P and T. Its presence may 
reflect the loss of Si from the 10Å-phase due to vacancy formation. From Welch et al. (2006) with 
permission from the Mineralogical Society of America
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Fig. 7.6 Left: Phase relations of 10Å-phase and MgSi(OH)6 hydroxide perovskite determined by 
Rashchenko et al. (2016). Note that “3.65Å” refers to MgSi(OH)6. Talc transforms to 10Å-phase 
at 4–5 GPa which reacts to MgSi(OH)6 at 10 GPa. The hydroxide perovskite occurs at the highest 
pressure studied 14 GPa. Right: The polyhedral structure of MgSi(OH)6 showing the framework 
of alternating corner-linked MgO6 (yellow) and SiO6 (blue) octahedra. Hydrogen atoms are shown 
as spheres. All oxygen atoms form hydroxyl groups. Dashed curves are nominal slab geotherms: 
Tonga, Kermadec, New Zealand, Antilles

7.3.3 Phase D: Nominally “MgSi2O6H2” 

The DHMS known as “Phase D” with nominal formula MgSi2O6H2 is stable at 
15−44 GPa and up to 1600 °C (Shieh et al. 1998). The structure is shown in Fig. 7.7 
and comprises a sheet of six-membered rings of edge-sharing SiO6 octahedra alter-
nating with single MgO6 octahedron lying below each vacant octahedron of the Si 
sheet and corner-linked to twelve adjacent SiO6 octahedra. One third of the oxygen 
atoms form OH groups.

Frost (1999) obtained provisional compositional evidence for the operation of 
vacancy-forming protonation reactions in Phase D, as shown in Fig. 7.6. Three 
distinct protonation reactions were considered, each of which results in the creation 
of vacant octahedral sites: (a) VISi4+ → 4H+ + VI ⊗, (b)  VIMg2+ → 2H+ + VI ⊗, (c)  
VISi4+ → 2H+ + VIMg2+. Figure 7.6, based on Frost (1999), implies that the primary 
protonation reaction is VISi4+ → 2H+ + VIMg2+. Shieh et al. (2009) observed six 
OH peaks in the infrared spectrum of Phase D, suggesting that multiple protonation 
mechanisms likely occur.
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Fig. 7.7 Left: Polyhedral representation of the ideal structure of Phase D showing alternating 
layers of isolated MgO6 octahedra (green) and layers of six-membered rings of edge-sharing SiO6 
octahedra (blue). H atoms are shown as grey spheres bonded to the layers and are 1/3-occupied in the 
ideal structure which has no Mg or Si vacancies Right: Compositional range (shaded green ellipse) 
of Phase D determined by Frost (1999) shown with the three proposed substitutional mechanisms 
involving protonation and vacancy formation. This plot suggests that the main mechanism is the 
replacement of Si by Mg with associated local protonation. Diagram based on Frost (1999)

7.3.4 Phase E: A Non-stoichiometric Protonated Structure 

Kudoh et al. (1993) first reported the structure of this extraordinary phase synthesized 
at 13 GPa and 1000 °C. Reading their paper is a voyage of discovery, as it reveals 
the process by which the authors reach the conclusion that “The structure model 
presented above [in their paper] is quite impossible!”. They then go on to present an 
argument for considering the true structure to be based upon SRO involving vacant 
Mg sites and associated protonation. They give empirical formulae for their two 
crystals as: Mg2.08Si1.16O6H3.20 and Mg2.17Si1.01O6H3.62, for which charge balance 
was achieved by assuming all charge deficit was due to unanalyzed H. It might be 
tempting to simplify the formula to an end-member Mg2SiO6H4, but this would 
misrepresent the true nature of the phase, which may not converge upon any single 
“ideal” composition. 

It appears that little progress has been made in quantifying the details of SRO in 
Phase D or Phase E. 29Si MAS NMR spectroscopy showed that all Si in Phase E 
is tetrahedrally coordinated (Kanzaki et al. 1992), as also proposed by Kudoh et al. 
(1993). Shieh et al. (2009) found that the infrared spectrum of Phase E had four 
OH peaks, which is consistent with a SRO-based structure hinted at by Kudoh et al. 
(1993).
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7.3.5 Phase H MgSiO4H2, Phase Egg AlSiO3(OH) and Its 
Mg-Analogue 

7.3.5.1 Phase H MgSiO4H2 

The highest-pressure DHMS encountered so far is “Phase H”, which was synthe-
sized at 45 GPa, 1000 °C. Phase D reacts to Phase H at 44−48 GPa. The structure 
determined by XRD (Bindi et al. 2014) has a CaCl2 topology in which Mg and Si 
are disordered over a single octahedral site. As in Phase E, SRO is a key feature of 
Phase H. There is no evidence so far that the H content of Phase H can vary. 

7.3.5.2 Phase Egg AlSiO3(OH) and Its Mg Analogue 

The dense hydrous aluminosilicate “Phase Egg” AlSiO3(OH) is stable to 22 GPa and 
1500 °C (Fukuyama et al. 2017). Recently, an Mg-enriched analogue of Phase-Egg 
with 35% replacement of VIAl by VIMg has been synthesized at 24 GPa, 1400 °C 
and its structure determined (Bindi et al. 2020) (Fig. 7.8). The new phase is related 
compositionally to Phase Egg by the protonation substitution VIAl3+ →VIMg2+ +H+, 
implying a formula (Al0.65Mg0.35)SiO2.65(OH)1.35. As with Phase D, the determined 
structure is an average and there must be considerable local SRO of Mg and an 
associated proton. Full protonation implies an endmember formula for Mg-Phase 
Egg of MgSiO4H2, corresponding to a polymorph of Phase H. 

Fig. 7.8 The structure of 
Mg-rich Phase Egg showing 
the chequerboard motif of 
columns of edge-sharing 
(Al,Mg)O6 (orange) and 
SiO6 (blue) octahedra. A 
single O-(H)….O 
hydrogen-bonded bridge 
across a channel is 
highlighted
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7.4 Concluding Remarks 

Spectroscopic studies have shown that MgSiO3 perovskite, a major constituent of 
the Lower Mantle, does not contain OH groups as a hydrous “defect” as in NAMs. 
An interesting question therefore arises: What happens to the water released by the 
decomposition of UHP hydrous phases in subduction zones at Lower Mantle depths? 
This question would seem to be fundamental to evaluating the wider chemical and 
geophysical significance of dehydration reactions at subduction zones in the Lower 
Mantle. 

The micro-and nano-scale textures of UHP phases are worth investigating. Trans-
mission electron microscopy has the potential to provide new insights into nanotex-
tures associated with SRO, such as antiphase domains and antiphase boundaries, 
which may correlate with the extent of protonation. 

MAS NMR spectroscopy (1H, 2H, 17O, 29Si), using 29Si- and 17O-enriched starting 
materials to compensate for small sample size, could provide valuable new informa-
tion on SRO in Phase D, Phase E and Mg-substituted Phase Egg. Infrared and Raman 
spectroscopy will continue to provide fundamental complementary information on 
SRO and LRO schemes. 

There remain many opportunities for fundamental research to be carried out on 
the extraordinary high-P structures described in this chapter and elsewhere, some 
of which very likely play significant roles in the hosting, transfer and recycling of 
“mineralogical water” in the deep Earth. 
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Welch MD, Bindi L, Petříček V, Plášil J (2016) Vacancy pairing and superstructure in the high-
pressure silicate K1. 5Mg2Si2O7H0. 5: a new potential host for potassium in the deep Earth. Acta 
Crystallogr Sect B: Struct Sci, Cryst Eng Mater 72:822–827 

Wunder B, Schreyer W (1997) Antigorite: High-pressure stability in the system MgO-SiO2-H2O 
(MSH). Lithos 41:213–227 

Yang H, Konzett J, Prewitt CT, Fei Y (1999) Single-crystal structure refinement of synthetic M4 
K-substituted potassic richterite, K(KCa)Mg5Si8O22(OH)2. Am Mineral 84:681–684 

Yang H, Konzett J, Prewitt CT (2001) Crystal structure of a new (21)-clinopyribole synthesized at 
high temperature and pressure. Am Mineral 86:1261–1266



Chapter 8 
Discovering High-Pressure 
and High-Temperature Minerals 

Oliver Tschauner and Chi Ma 

Abstract Defining high-pressure (P) and high-temperature (T) minerals beyond 
vague conventions requires robust criteria. The conjunction of mineralogy and 
(mantle-)geochemistry suggests that pressure-dependent ionic radii provide such a 
criterion. A set of quantitative arguments is provided based on the pressure-dependent 
radii of several elements. Three categories and regimes of high-P minerals are defined. 
All approved high-pressure minerals are tabulated here. High-pressure minerals form 
under static and dynamic pressure. Under dynamic compression the short duration 
of the peak pressure state acts as a kinetic barrier for transformations. Only local 
high temperature (‘hotspots’) permits formation of high-pressure minerals. Very 
high temperature of extreme shock compression induces retrograde conversion of 
high-pressure minerals or melting during the passing of the rarefaction wave. Only 
few metastable high-pressure silicate minerals (and even synthetic phases) have been 
observed in shocked rocks and samples: Even along temperature gradients we find 
metastable formation of phases stable at lower static pressures but few minerals 
without stability field, despite the multitude of possible metastable structures. This 
suggests sterical hindrance of the Si[4] → [6] transition, besides the kinetic barrier. 
In the deep Earth high-pressure minerals in the deep Earth are hidden from direct 
observation. Hypothesized retrograde transformations in peridotites and of inclusions 
in diamonds remain to be confirmed. Few occurrences of high-pressure minerals as 
inclusions in diamonds have been reported. In conjunction with their hosting mineral, 
diamond, they appear to have formed in regions of mantle metasomatosis, and poten-
tially mark regions or horizons of extensive chemical mobility within the mantle. 
Consistent with the definition of high-P minerals we define a high P–T regime and 
we propose to define high-T minerals that form at low or ambient pressure through 
the T-induced changes in redox buffer systems. This approach encompasses the rich 
mineralogy of presolar and early solar minerals which cover a compositional range
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far beyond the occurrences in differentiated planetary bodies like Earth, Mars, and 
Moon. 

Keywords Minerals · Pressure · Earth mantle · Shock · Ionic radii · Early 
condensates · Meteorites 

8.1 The Concept and the Chemistry of High Pressure 
Minerals 

The distinction of high-pressure and high-temperature minerals from minerals that 
form under less extreme conditions requires criteria that define pressures and temper-
atures as either high or low. It is useful to examine the effect of the two parameters, 
pressure and temperature, initially as separate. We find that the range of energy that 
is compatible with the crystalline state of matter that involves changes only in pres-
sure exceeds by far the range of changes induced only by temperature, with regard 
to the crystalline state: The materials with the highest melting points melt between 
2000 and 3000 K at ambient pressure (Adachi and Imanaka 1998). These temper-
atures correspond to energies in the range of ¼−1/3 eV/at, if we simply multiply 
the temperatures with the Boltzmann constant. However, the change in energy that 
occurs upon compressing mantle peridotite from the shallow lithosphere to the core 
mantle boundary over an interval of about 136 GPa of pressures is in the range of 
1.6 eV/at: With an approximate bulk composition of Mg2SiO4, ¾ of the Earth’s 
mantle are oxygen as constituent chemical species and within this approximation 
the compression of the O2− anion dominates the increase of the electronic contribu-
tion to the inner energy of bulk silicate Earth over the entire range of compression 
by amount and size (Tschauner 2022a). Between 0 and 136 GPa (the pressure of the 
core mantle boundary) the contraction of the crystal radius of O2− is from about 1.26 
to 1.16·10−10 m (Tschauner 2022a) (Fig. 8.1a), hence: 4/3π·Δr3 · 1.36·1011 N/m2 = 
2.50·10–19 J/at = 1.56 eV/at (of O2−). Yet, throughout this range of pressure mantle 
rock remains in the solid state along the average geotherm. Thus, within the range 
of the solid state, pressure as a parameter allows for changes in energy several times 
larger than temperature, even within the limited range of conditions that occur inside 
Earth. Since the melting points of solids generally increase with pressure, a regime 
of high temperatures that corresponds to energy changes of ≥ 1 eV/at and that is 
compatible with the solid state occurs only at sufficiently high pressures.

High-pressure and high-temperature minerals involve constituent chemical 
species whose valence electron configuration is energeticaly favourable at the pres-
sures and temperatures of formation of these minerals but are unfavourable or 
unstable at low pressures and ambient conditions (Tschauner 2019). Radial valence 
electron distributions, that is: ionic radii and crystal radii, are sufficient to define these 
criteria. Ionic and crystal radii represent spherical spatial averages over a multitude 
of different bond states (Rahm et al. 2020; Tschauner 2022a, b). Although the radii 
neglect the actual bond states of the individual compounds and structures, they allow
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(a) (b) 

Fig. 8.1 Crystal radii of geochemically abundant elements as functions of pressure. a: Radii  of  
K,Mg,Ca, Al, Si and O2− in different bond coordination by O2−. Radii of O are corrected for 
coordination by the cations. b: Ionic volumes normalized by the Bohr radius rB. Reconstructive 
transitions to high-pressure minerals and phases are indicated by arrows. Data are from Tschauner 
(2022a) with additions based on data by Dewaele et al. (2012), Levien et al. (1980), Lazarz et al. 
(2019), Ko et al. (2022), Richet et al. (1988). The pressure dependencies are r(K[8]) = 1.62(2)– 
0.003(1)P; r(Ca[6]) = 1.143(3)–0.00239(8)P; r(Ca[7,8]) = 1.188(7)–0.00149(8)P; r(Ca[9,10]) = 
1.319(8)–0.0020(2)P; r(Mg[6]) = 0.856(7)–0.0015(1)P; r(Mg[12]) = 1.11(3)–0.0024(1); r(Al[6]) 
= 0.669(2)–0.00108(4)P; r(Si[4]) = 0.373(9) + 0.0020(3)P; r(Si[6]) = 0.567(3)–0.00095(9)P. P in 
GPa and radii in Å

for assessing types of structure that are assumed by solids of very different compo-
sition or stability fields. This point is well illustrated by the successful application of 
tolerance factors and similar criteria that correlate composition with crystal structure 
types (e.g. in Li et al. 2004) and their evolution with pressure (e.g. Manjon et al. 2007). 

Pressure shifts compounds into structure types which are generally assumed 
by compounds of chemical species with higher nuclear charge number at ambient 
pressure (Shannon and Prewitt 1969). For instance, bridgmanite, the high-pressure 
polymorph of MgSiO3 is isotypic with perovskite, CaTiO3, davemaoite, the high-
pressure polymorph of CaSiO3, is isotypic with tausonite, SrTiO3, stishovite SiO2 

is isotypic with rutile, TiO2, the high-pressure minerals lingunite, liebermannite, 
stöfflerite assume the structure of hollandite KMn3+Mn4+ 3O8 and so on (see Table 
8.1). This general trend has been interpreted as result of the stronger compression 
of the anions relative to the cations (Downs and Prewitt 1998), but it also indicates 
relative changes of cation ionic radii with pressure (see Fig. 8.1). A quantitative 
concept of these pressure effects allows for correlating mantle geochemistry with 
high-pressure mineralogy and petrology. The effect of pressure on the crystal radii 
is shown in Fig. 8.1a for  K+, Mg2+, Ca2+, Al3+, Si4+, and O2− in different bond 
coordination (henceforth, formal valences are not specified and bond coordination 
is given in angular brackets). The following observations are made: (a) The O-anion 
exhibits initially a marked non-linear compression converging towards weaker linear 
compression. (b) All cations exhibit linear contraction over the examined pressure 
intervals (Fig. 8.1a) within uncertainties. Only Si[4] expands with pressure. (c)
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Heavier cations like K and Ca are more compressible than lighter ones like Mg, 
Al, and Si. d) The higher the charge the lesser the pressure effect, see Fig. 8.1, 
caption). (e) A general trend for the pressure dependence of crystal radii with bond 
coordination is not seen for the available data. In part these basic pressure-induced 
trends have been noticed previously (Shannon and Prewitt 1969; Downs and Prewitt 
1998; Gibbs et al. 2012) but actual compressibilities were only recently reported 
for some bonded radii (Gibbs et al. 2012), some crystal radii (Tschauner 2022a), 
for non-bonding radii (Rahm et al. 2020) and, by means of corresponding states, 
for Wigner–Seitz radii of elemental metals (Tschauner 2022b). In the caption of 
Fig. 8.1 we give the compressibilities for Mg,Al,Si,K,Ca which are based on an 
augmented set of data and where the change of the O-anion radius with anion 
coordination (Shannon 1976) is taken into account in calculating the cation crystal 
radii. It is noteworthy that the fitted crystal radii at 1 bar match Shannon’s radii very 
well although 1 bar radii were not used as fix points (see caption Fig. 8.1). The only 
fitted 1 bar radius that deviates from Shannon’s radii is that of Si[6].

Figure 8.1a shows that with increasing pressure a regime controlled by strong 
nonlinear O2− contraction is followed by a regime of reduced, nearly linear contrac-
tion. In this regime contraction of larger cations K and Ca is more prominent than that 
of O (Fig. 8.1a). The border between the two regimes coincides with the Si[4] → [6] 
transition and, thus, delineates the boundary between low- and intermediate-pressure 
silicates (Tschauner 2019) on one side, and high-pressure silicates on the other side 
(Table 8.1). Here we define these two regimes as ‘high-pressure I’ and ‘high pressure 
II’ (Fig. 8.1). The radii of Ca[8] and [10] in CaO-B1 and in davemaoite interpolate to 
the 1 bar crystal radii of Ca[7] and [9], respectively (Fig. 8.1 caption). If one accepts 
the notion that radii represent spherical spatial averages of valence electron config-
urations (Rahm et al. 2020; Tschauner 2022a,b), this coordination change suggests 
a gradual change of the valence electron configuration for Ca over about ½ Mbar of 
linear compression. 

The compression of radii by 10–30% (Fig. 8.1a) is well within the range of differ-
ences between radii of different chemical species or different valences of the same 
species. In Fig. 8.1b ionic volumes rcryst 3 are normalized by the cube of the Bohr radius 
rB. The volumes of Si, Al, Mg, and Ca in six-fold coordination by O2− are approx-
imately one-,two, four- and ten-times rB 3 (lines in Fig. 8.1b). Sixfold Mg, Al, and 
Ca approach Si[6] between 170–180 GPa by extrapolation of their linear pressure-
depencencies, Ca[8-10] between 290–300 GPa. At those pressures, the contraction 
of the O anion is small, thus, volume reducing transitions either have to involve a 
change in cation coordination and valence electron structure or a change in valence 
of O (Zhu et al. 2013). Significant volume reduction may involve hybridization 
of inner shell electrons with the valence electron states. This tentative ‘ultra-high 
pressure regime’ is labeled as ‘high-pressure III’ in Fig. 8.1a. The bridgmanite-ppv 
transition (Murakami et al. 2004; Ono and Oganov 2004) may indicate the onset of 
this regime (although without hybridization of inner and valence shell electrons). 
Consequently, we classify high-pressure minerals based these three regimes as hPI, 
hPII, hpIII. However, the process is generally not as straightforward: reconstructive 
pressure-induced phase transitions appear to reset the electron density. In CaO the
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transition from the NaCl- to the CsCl-type around 40–60 GPa (Richet et al. 1988) 
resets the normalized volume of Ca[8] to that of Ca[6] at ambient pressure and so 
does the coordination change of Ca upon formation of davemaoite (Fig. 8.1b, red 
arrows). The transitions from Mg[6] to [12] and from Si[4] to [6] also increase the 
ionic volume (Fig. 8.1b, black and blue arrows). Hence, bulk volume contraction 
upon those transitions is result of the increased bond coordination of both, cation 
and anion, which generally allows for denser structural arrangements of the atoms 
(Downs and Prewitt 1998). The positive pressure-dependence of Si[4] and its volume 
smaller than r3 B indicate indirectly the extensive overlap of Si–O binding orbitals. 
The reset of high-pressure crystal radii to larger radii upon high-pressure phase tran-
sitions is indicative of the changes in valence electron configuration, if we allow 
the radii to represent spherically symmetric spatial averages of these configurations 
(Rahm et al. 2020; Tschauner 2022a,b). This case becomes interesting, when high-
pressure transitions induce radii that match those of other elements at low pressure: 
For instance, the crystal radius of Mg in CaIrO3-type MgSiO3 matches the crystal 
radius of Ca[6] extrapolated to the transition pressure of ~ 120 GPa (Fig. 8.1b). 
K[6] intersects Ca[9,10] between 32 and 40 GPa, Mg[12] intersects Ca[6] around 
20 GPa and Ca[8] between 60 and 80 GPa. There is no known mineral where Ca[6] 
would substitute for Mg[6] around 20 GPa but the substitution Ca + Fe for Mg + 
Al in bridgmanite has been proposed to occur above 60 GPa in experimental work 
(Ko et al. 2022). Type davemaoite, CaSiO3, contains a noticeable amount of K and 
Fe (Tschauner et al. 2021b, 2022a), consistent with a formation in the range of 
20–30 GPa (Fig. 8.1a,b). Coordination changes reset the crystal ionic volumes (see 
above, Fig. 8.1b) but this effect is only indirectly expressed in solid solutions through 
changes in crystal chemical compatibility. In consequence, some but not all inter-
sections of relative ionic volumes (rcryst/rB)3 match the formation of high-pressure 
minerals or pressure-induced chemical substitution. The underlying chemical selec-
tion rules are beyond the topic of this chapter. Even at high pressure entropic compo-
nents remain important and the phase diagrams do not simply reflect a sequence of 
pressure-induced transformations but include minerals and mineral assemblies that 
occur at combined elevated pressure and temperature (e.g. in Fig. 8.2). This is the 
case at least within the hPI and hPII regimes.

8.1.1 High Pressure Minerals–Their Occurrences 

Minerals from the high-pressure regime I (‘hpI’) are found in high-grade meta-
morphic rocks such as eclogites and in xenoliths of garnet peridotites from below 
60 km depth in the upper mantle. Several excellent reviews about these occurrences 
are available and it is not necessary to recapitulate this work here. Some of these 
intermediate pressure minerals are presented here along with the discussion of high-
pressure minerals hPII and -III (Table 8.1). The occurrence of high-pressure minerals 
in Earth in the deep Earth is beyond direct access to us. However, four sources of 
these minerals have been found: meteorites, whose parent bodies have experienced
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Fig. 8.2 Shock release path of melt pockets in the Tissint Shergottite. The pocket shown in Fig. 8.3a 
contains dense glass in the center and its main cooling occurred within the stability field of bridg-
manite (red dotted lines). Another pocket contains intergrowth of pigeonite and fayalite in its center 
indicating cooling at much lower pressure (red and yellow lines). Thermodynamic phase boundaries 
are indicated for Fe2SiO4 (green, dashed) and the simplified CMS system (black), adiabats of the 
shock-generated melt (yellow and red lines) and the bulk rock (green) bracket the cooling paths. 
Data are taken from Ma et al. (2016)

strong shock-metamorphism by asteroid collisions, (b) terrestrial rocks that have 
experienced shock metamorphism through asteroid impacts, (c) inclusions in terres-
trial diamonds. In addition (d) regimes of high pressures and temperatures occur in 
the ejecta of novae and supernovae part of whose debris is conserved as presolar 
grains in primitive meteorites, interplanetary and interstellar dust. 

8.1.1.1 High-Pressure Minerals that Form Under Dynamic 
Compression 

This section highlights some general aspects of high-pressure minerals that form 
under dynamic compression rather than the physics of shock and the processes that 
occur during shock-metamorphism. 

Presolar dust grains are subject to extensive research mostly focusing on isotopic 
anomalies that witness nucleonic processes inside large stars and during supernovae.
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These processes are beyond the stability of atomic matter and, therefore, beyond our 
topic. Nonetheless, the process of capturing matter in solid phases through subli-
mation in the cooling ejecta involves high temperatures (see Sect. 8.4) and may in 
part involve elevated pressures also. Because of the low density of the ejected gas 
the regime of high pressure at temperatures below the condensation point of solid 
phases is rather limited and may, for that reason, be restricted to diamond as the 
solid phase with the highest sublimation and melting point. Diamond is a common 
presolar mineral (Table 8.1). The occurrence of presolar diamonds with high density 
of stacking faults along [111] (Daulton et al. 1996) is consistent with formation at 
high dynamic stresses and stress-rates, (Armstrong et al. 2022). Periodic stacking 
faults along [111] lead to the formation of lonsdaleite, the 2H-polytype of diamond 
(Table 8.1). Metastable formation at low pressures provides an alternative explana-
tion of presolar diamond, for instance, nano-diamond forms during combustion of 
acetylene. So far, no presolar high-pressure mineral other than diamond has been 
found. 

Collision of small planetary bodies, so called ‘planetesimals’ were a process 
intrinsic to the early history of the solar system and have nurtured the formation the 
larger planets. Chondrules, that is: spherical aggregates of one or several minerals 
that are frequently found in many common meteorites (‘s.c chondrites’, Rubin and 
Ma 2017), have been suggested to be the quench products of shock-induced melting 
and spallation of these melt particles, but there are alternative explanations of chon-
drule formation (see Rubin and Ma 2017 for detailed discussion). Within the asteroid 
belt collisions continue to occur. For instance, one of the most common type of mete-
orites, L-chondrites, is debris from the disruption of a planetesimal during a collision 
that occurred in the asteroid belt in the Ordovicium (Greenwood et al. 2007). Prin-
cipally, all meteorites that we find on Earth have experienced modifications through 
dynamic compression during the events that destroyed their parent body in large 
events or ejected them from their surface in smaller events. The range of petrograph-
ically documented shock-metamorphic processes ranges from a few GPa to > 70 GPa 
(Stöffler et al. 2018). These changes have been categorized based on shock-induced 
deformation features that have been observed both in experiments and in nature on 
a scale that ranges from S1 (0–5 GPa) to S6 (>70 GPa) (Stöffler et al. 2018). High-
pressure minerals are observed in meteorites of the shock metamorphic categories S4 
and above. States of dynamic compression during asteroid collisions are generally 
assessed to less than 1 s. In fact, most estimates suggest durations of 10–100 ms 
(Tschauner et al. 2009; Hu and Sharp 2017; Ma et al.  2016; Tomioka and Miyahara 
2017), corresponding to small cratering events or collisions of small bodies (Melosh 
and Ivanov 2002). Within this time period pressures are beyond the stability range of 
most of the rock-forming minerals in those meteorites: forsterite, enstatite, feldspars. 
However, the kinetic barriers are high for transforming these minerals into the poly-
morphs or decomposition products that represent thermodynamic stability at those 
pressures. Thus, along the principal Hugoniot of these rocks most of these minerals 
only develop characteristic deformation features and high densities of defects (Stöf-
fler et al. 2018, for the specific terminology of shock compression: See for instance
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Ahrens 1987). Feldspars transform into a dense glass, ‘maskelynite’, whose struc-
ture and density deviate from feldspathic glass synthesized at ambient pressure even 
after full relaxation of the dynamic stress state. This shock-induced amorphization 
of feldspars occurs above 30 GPa depending on composition and shock duration 
(Stöffler et al. 2018). Maskelynite is therefore a ‘diaplectic glass’ because it has not 
formed through quenching of a shock-induced melt but through compression of a 
crystalline material beyond its mechanical stability. It had been suggested that maske-
lynite in highly shocked meteorites has formed from melt (Chen and El Goresy 2000). 
However, in many such meteorites the volume fraction of maskelynite is incompat-
ible with conservation of the bulk rock upon release from the shock-compression 
state if maskelynite had been molten. At very high degrees of dynamic compression 
the Hugoniot line of the bulk rock intersects the melt line under dynamic compression 
with subsequent bulk rock melting and disruption of the shocked rock upon release 
(Ahrens 1986; Stöffler et al. 2018). S7 level meteorites exhibit pervasive melt veins 
and may reflect sources close to the regions of complete melting (Fritz et al. 2017; 
Stöffler et al. 2018). Variations in shock levels within given meteorite classes may 
also reflect different distances to the impact location (Fritz et al. 2017). 

Whereas the bulk rock of shocked meteorites only exhibits shock-induced defects 
and deformation features, locally temperatures are high enough to overcome the 
kinetic barriers of formation of stable and metastable hP-I and -II minerals. These s.c. 
hot spots form from collapse of pore spaces and cracks, or represent shock-induced 
melts that penetrate into fracture zones of the shocked bed rock with velocities that 
scale with the particle velocity of the shock compression state, or they form through 
frictional heating along shear zones within the dynamically deforming rock, similar 
to pseudotachylites along fault surfaces during earthquakes. 

In laboratory-scale shock experiments high-pressure mineral formation has only 
been obtained through collapse of void space (Tschauner et al. 2009) whereas 
shock-induced friction experiments have not generated any high-pressure minerals 
(Kenkmann et al. 2000). However, the failure of the latter type of experiments may 
be owed to the comparatively short duration of ≤ 1 ms of the dynamic compression 
state in laboratory scale experiments. 

In nature we find high-P I and high-P II minerals at the rims or within transformed 
clasts of shock melt-veins and-pockets in meteorites (see Fig. 8.2 and Table 8.1). 
Generally, phase occurrence follows the temperature gradient. For instance, in the 
martian meteorite Tissint a sequence deformed forsterite (Fo80Fay20) → nano-rwd 
in deformed Fo → ahrensite (out of faylitic rims of the Fo grains) → bridgmanite + 
wuestite→ quenched melt is observed (Ma et al. 2016). (Fig. 8.2 and 8.3a; Table 8.1). 
In highly shocked chondrites, the highest pressure minerals observed, bridgmanite 
and akimotoite (Table 8.1), are found in small (≤ 50 μmø) clasts replacing enstatite, 
whereas larger clasts of enstatite are transformed into majorite (Table 8.1) or contain 
untransformed enstatite in their kernel. Similarly olivine at the border of the melt 
vein and in clasts within the vein is transformed to ringwoodite and wadsleyite (two 
references for many: Tomioka and Miyahara 2017, Hu and Sharp 2017). The melt 
vein matrix is composed of a jadeitic (Tomioka and Miyahara 2017; Hu and Sharp 
2017; Ghosh et al. 2021) or albitic clinopyroxene (Ma et al. 2022d. (Table 8.1),
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Fig. 8.3 High-pressure minerals ahrensite, bridgmanite, wüstite and tissintite in shock melt pockets 
from the Tissint Martian meteorite (Ma et al. 2015, 2016)

periclase (Per80-90Wst 10–20), iron, and troillite, and reflects crystallization upon 
cooling during rarefaction (Tschauner et al. 2014, see Fig. 8.2). In Acfer 040 the 
shock melt vein matrix contains the high-pressure mineral akimotoite (Sharp et al. 
1997, Table 8.1). The release of the dynamic compression state in the shock melt 
veins is controlled (a) by the release of the shock state in the meteorite parent body 
(spall or disruption occurs late in the release process, when the stress state drops 
below the Hugoniot plastic limit of the bedrock) and (b) by temperature release that 
is controlled by the temperature gradient between the melt and the much cooler 
bedrock: During dynamic compression the pressure, temperature, and latent heat 
of shocked melts are correlated, a marked T-gradient implies spatial differences in 
shock impedance which cause turbulent mixing on the time scale of the particle 
velocity of the shock compression state (order of few to several km/s) and this 
turbulent mixing controls the cooling process at high particle velocity (Fig. 8.2). 
The observation of bridgmanite as mineral in shock-transformed clasts in such veins 
defines a fiducial point of pressure and temperature and it also constrains the cooling 
path (Tschauner et al. 2014; Ma et al.  2016) because bridgmanite vitrifies at low 
pressure at very modest temperatures on fast time scales (Nishi et al. 2022). In sum, 
the shock release path is divided in three regimes (Fig. 8.2): (a) An initial isentropic 
release path, (b) a regime of rapid cooling at high pressure controlled by turbulent 
mixing and T-homogenization of the melt, (c) a modest to low pressure regime at 
temperatures below 1000 K to nearly ambient. In chondrites the bulk rock Hugoniot 
pressure appears generally higher than the pressures indicated by the shock melt vein 
minerals and it has been proposed that the latter form during rarefaction (Fritz et al. 
2017; Hu and Sharp 2017). However, it should be noted that the dynamic pressure 
in a solid and in coexisting melt is generally not equal because part of the shock-
induced change in energy is dissipated through the motion and mixing of the melt. 
Stress equilibration depends on shock-duration and may not be achieved on the time 
scale of the chondrite-shock metamorpism. In terrestrial impactites this appears to 
be different (see next section). 
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In the Martian meteorite class of the shergottites shock-induced melt pockets are 
much more common than melt veins, indicating either a much shorter duration of the 
shock-state or formation within the isobaric core of impacts of much smaller scale 
than the L-chondrite parent body disruption. Models of the probability of escape 
of ejecta from the gravitation of Mars indicate that the shergottites formed at the 
outer region of the impact (Head et al. 2002) and indirectly support the former 
hypothesis. The high-pressure minerals tissintite (hpI), donwilhelmsite (hpII) and 
stishovite (hpII) (Table 8.1) have been reported from lunar meteorites which are all 
highly shocked. 

8.1.1.2 Terrestrial Impactites 

The thick atmosphere of Earth decelerates asteroids that are captured by Earth’s 
gravitation. Only objects of more than 60–100 tons, but depending on impact angle, 
initial velocity relative to Earth, and density, retain sufficient velocity to generate 
shock compression in the ground and subsequent crater formation. Many asteroids 
burst in the higher atmosphere. Hence, the number of terrestrial impacts is compar-
atively much less than that observed on the Moon or on Mars, even when taking 
into account that on Earth many craters have been eliminated through later tectonic 
processes. 

Shock states in terrestrial impact craters are assessed through a shock-
metamorphic scale that is primarily based on planar deformation features in quartz 
and feldspars, the transformation of quartz to diaplectic glass (see Stöffler et al. 
2018), formation of maskelynite (see above) and high-pressure minerals (Table 8.1). 
In addition a scale between crater and impactor size allows for estimating dynamic 
compression states through hydrodynamic modeling. Shock duration in impacts on 
the scale of the Nördlinger Ries (ø24km), Manicouagan (ø85km), and the Chixculub 
impact (ø170km) is on the scale of minutes. 

High pressure minerals have been found in shocked bedrock (Agarwal et al. 2016) 
or in xenoliths of bedrock that was trapped in impact breccias (Stähle et al. 2011, 
2022) and exhibit a similar fabric as shock meteorites: heavily deformed bed rock, 
eventually with diaplectic silica and feldspar, and shock melt veins which contain 
high-pressure minerals and intermediate pressure minerals at their rims. Thus, the 
overall appearance of shock-metamorphic features in terrestrial impactites is similar 
to that of highly shocked meteorites. Differences are the result of (a) the different 
composition of terrestrial continental crust, compared to Martian and lunar crust and 
to primitive meteorites, and (b) the much longer duration of the dynamic compression 
state in many terrestrial impactites. In consequence of the longer shock duration the 
melt vein matrix can contain high-pressure minerals like majoritic garnet (Stähle et al 
2011; Ma et al.  2022b) or stöffleritez and albitic clinopyroxene (Ma et al. 2022c). 
Because of the composition and mineralogy of terrestrial continental crust, partially 
different, alkaline- and alkline-earth rich high-pressure minerals like zagamiite and 
accessory high-pressure minerals like high-pressure polymorphs of ilmenite, rutile 
and zircon are observed in terrestrial impactites but have not been found in meteorites
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(El Goresy et al. 2010; Stähle et al. 2011; Tschauner et al. 2020a,b, see Table 8.1). 
Recently, water-bearing intermediate pressure minerals were reported from shock 
metamorphized berdrock xenoliths from the Ries (Stähle et al. 2022). Tektites are 
quenched melted impact ejecta (Stöffler et al. 2018). Their composition is quite 
similar and more controlled by ion vapor pressure than the bedrock composition 
(Magna et al. 2011), thus, they are carriers of high-temperature rather than high-
pressure minerals. Similarly, and despite their extremely high peak shock pressures, 
impact melt rocks from the former isobaric core of the impact site and pyroclastic 
impact melt breccia (‘suevite’) show generally the imprint of their formation at 
high temperatures which upon release of the shock state remains high for longer 
time than the stress state. Thus, these impact-related rocks contain mostly high-
temperature minerals although diamond has been found in suevite (El Goresy et al. 
2001a, b) and xenoliths of shocked bedrock that are entrapped in suevite contain 
high-pressure minerals (see above, Table 8.1). Neither in terrestrial nor meteoritic 
shock-metamorphic mineralogy many minerals without stability field are observed: 
Lingunite, stöfflerite, and poirierite are the three undisputed cases (Table 8.1). This 
observation contrasts with the large number of more or less metastable structures 
that have been computed. The discrepancy is not entirely result of kinetics because 
of both, terrestrial and meteoritic shock-events lack these occurrences, whereas sub-
ms shock experiments have yielded transitory metastable phases of silica (Luo et al. 
2001). Rather, the absence of a larger number of transitory silicate phases indicates 
sterical hindrance of the Si[4] → [6] transformation. 

8.1.1.3 High-Pressure Minerals from the Earth’s deep mantle 

Terrestrial high-pressure minerals from below 410 km depth are essential constituents 
of Earth but beyond our access. Only diamond and a few inclusions in diamond 
have been identified as pristine minerals from the deep Earth. Besides diamond the 
following high-pressure and intermediate-pressure minerals have been identified, that 
is: both their structure and composition have been described (see Table 8.1): breyite, 
davemaoite, deltanitrogen, ice-VII, ringwoodite, the 10 Å-phase, further garnets with 
high majorite component have been reported. In addition, minerals with stability 
fields that range from ambient to elevated or high pressure such as iron, periclase, 
jeffbenite, and larnite have been found (e.g. in Stachel et al. 2000). Deltanitrogen 
is a product of exsolution of N from diamond (Navon et al. 2017). It is remarkable 
that the remaining four minerals are hydrous (ice-VII) (Tschauner et al. 2018a), ring-
woodite., (Gu et al. 2022), and the 10 Å-phase (Huang et al. 2020) or have been found 
in diamond which contain ice-VII (davemaoite, Tschauner et al. (2021b)). Garnet 
coexisting with the 10 Å-phase indicates a formation pressure of 14–15 GPa (Huang 
et al. 2020) based on the independent barometric scales by Collerson et al. (2010) and 
Tao and Fei (2021). Trace elements of this inclusion gave similar patterns as expected 
for HiMU-source region (and it is noted that Pb isotopes could not be measured along 
with trace elements). Because of the high yield strength of diamond, inclusions may 
retain elevated pressures and high-pressure crystal structures. The remnant pressure
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of inclusions at 300 K is the end point of a P–T path whose initial point represents the 
conditions of entrapment of the inclusion in the growing diamond. Reconstruction of 
these paths based on isochores (Schrauder and Navon 1993), isomekes (path of stress 
equilibrium between host and guest phase, e.g. in Anzolini et al. 2016), and paths 
that account for viscoelastic deformation of the hosting diamond (Wang et al. 2021) 
have been proposed. Chap. 7 of this book describes diamonds and their inclusions in 
more detail. The present discussion is constrained to intermediate-and high-pressure 
minerals (hPI and hPII minerals) that actually have been reported as inclusions in 
diamonds. Hypothetical retrograde transformation products are not discussed here. 
The few observations of high-pressure minerals suggest that the Earth’s water- and 
carbon cycle extends into the lower mantle. This point follows from the observa-
tion of hydrous minerals, ice-VII (Tschauner et al. 2018a), and ringwoodite (Gu 
et al. 2022), the fact that these minerals were entrapped in growing diamond, and 
the tentative assessment of the depth of entrapment. Furthermore, three global hori-
zons of extensive metasomatism may exist in the Earth’s mantle are potential hosts 
of a rich intermediate and high-pressure mineralogy that witnesses mobilization of 
less common elements and are probed by diamonds. These metasomatic horizons 
may provide incompatible elements to the upper mantle through active and passive 
upwellings and are replenished through subduction. The mineralogy of the deep Earth 
has been thought as void of the rich variety of mineral species that occur at the Earth’s 
surface. Variety of species represents enrichment of less common elements. The three 
zones of potentially rich mineralogy in the mantle are marked by presence of fluids 
and melts that allow for mobility of these elements, which then may be enriched 
in accessory phases: (a) The lithosphere-asthenospheric boundary, (b) possibly the 
UM-TZ boundary, (c) the TZ-LM boundary and the shallow lower mantle. The miner-
alogy of the metasomatized lithosphere and the lithosphere-asthenospheric boundary 
is not discussed in this chapter that is dedicated to high-pressure minerals. It shall 
only be mentioned that minerals like the silicates Ti-and hydroxyl-clinohumite,the 
titanates carmichealite, priderite, and minerals of the mathiasite-haggeryite series 
mark a regime of high fluid mobility and enrichment of incompatible elements in the 
upper mantle (Haggerty 1991; Wang et al. 1999) and are related to the formation of 
K-rich volcanism that, in part, carries diamonds to the surface. Diamonds which form 
in the lithospheric mantle contain ocassionaly minerals whose constituent species 
are minor or trace elements in the average mante such as goldschmidtite (Meyer 
et al. 2019) and perovskite. A second global layer of fluid or melt or o horizon 
that contains regions of fluid and melt enriched in elements that are incompatible in 
the upper mantle has been proposed to exist at the boundary between the transition 
zone and the upper mantle (Bercovici and Karato 2003). This hypothesis is consis-
tent the observation of diamond inclusions from that depth that give trace element 
patterns consistent with at least some types of OIB volcanites (Huang et al. 2020). The 
partially very alkaline-rich inclusions reported by Stachel et al. (2000) from localities 
in Southamerica have been hypothesized to originate in the lower mantle (Stachel 
et al. 2000) but experiments (Litasov et al. 2014; Bulatov et al. 2019; Fedoraeva et al. 
2019), geobarometry (Anzolini et al. 2016), and the mineralogy of these inclusions
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(Brenker et al. 2021) indicate formation in the deep upper mantle or shallow transi-
tion zone, and rather support the hypothesis of an enriched, mobile boundary layer 
between transition zone and upper mantle than processes in the lower mantle. The 
observation of ice-VII inclusions (Tschauner et al. 2018a), hydrous ringwoodite (Gu 
et al. 2022), and K-rich davemaoite (Tschauner et al. 2021b, 2022d) from the deep 
transition zone or lower mantle suggest a third region of extensive regional mantle 
metasomatism between 600-860 km depth–given that the assessment of entrapment 
conditions is correct (Wang et al. 2021; Tschauner et al. 2021b; Gu et al.  2022). 
However, it is not known if these occurrences represent local, regional or global 
phenomena in the deep mantle. 

8.2 High Temperature Minerals–Definition 

The concept of induced changes in valence electron configuration works well for 
defining high-pressure minerals. Hence, it may be applied to high-temperature 
minerals as well. The regime of temperatures that induce changes in valence electron 
configuration is achieved for the solid state at pressures where the melting curves are 
sufficiently high. However, this regime is barely explored by observation in nature 
or by experiment. Ringwoodite-Q and ahrensite-Q are silicate spinels with partial 
inversion and involve a spinel endmember component Si[]SiO4 that makes up to 
30 mol% in these minerals. They form as solidus phases in shock-melt pockets of 
picritic to komatiitic bulk composition (Table 8.1) and may be labeled a intermediate-
pressure/temperature phases. In nearly all environments minerals form in paragen-
esis with other minerals or phases of different composition. Under conditions of 
very high temperature, redox reactions with gases or coexisting minerals and melts 
can stabilize redox states that do not occur at temperatures in the common range 
of igneous or metamorphic processes in the Earth’s crust. The temperature-induced 
intersections of redox reactions at the given O2-fugacity (Essene and Fisher 1986) 
provide a criterion for high-temperature minerals that is conceptionally related to the 
criterion for high-pressure minerals (Sect. 8.1) and describes well the occurrences of 
minerals in early solar condensates, tektites, fulgurites, and impact melts. It is noted 
that many of these minerals, carbides, silicides, alloys like cohenite and khamrabae-
vite (Table 8.2), are not bound to high temperatures-they occur under sufficiently 
reducing conditions at much lower temperatures or at high pressures as well. Some 
genuine high-temperature minerals like cristobalite owe their formation to large 
entropic components. However, the decrease of the vibrational relative to ground 
state energy with decreasing temperature commonly induces distortive phase tran-
sitions or order–disorder transitions such as for cristobalite, tridymite, isocubanite 
which convert to lower symmetric, partially ordered phases, which are observed as 
minerals. Many minerals that occur in former high-T environments are likely products 
of such transitions such as panguite and kangite (Fig. 8.4; Table 8.2). As in the case 
of high pressures, there are also minerals that have natural stability fields at both, low 
and high temperatures such as corundum, zircon, baddeleyite, thorite, thortveitite.
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In advance of a more rigorous classification we focus here on minerals that form 
at very high temperature where the relevant redox buffer reactions have stabilized 
valences that are not stable under typical conditions of igneous and metamorpic 
processes on Earth. This regime of mineral formation includes presolar minerals, 
minerals that formed by sublimation in the solar nebula as first or early condensates, 
minerals in fulgurites, tektites, and former impact melts. The use of modern micro-
analysis techniques has greatly extended our knowledge about these minerals which 
are recognized as carriers of information about processes in the early solar nebula 
through their isotopic record, trace elements and formation conditions (Rubin and Ma 
2017). Presolar minerals can be carriers of isotope anomalies that are result of nucle-
onic processes during novae or supernovae. Other high temperature minerals occur

Table 8.2 Recently-identified primary high-temperature minerals in refractory inclusions from the 
solar nebula that have formed by sublimation (‘condensates’) 

Name Composition Structure type Reference 

Elements and alloys 

Hexamolybdenum (Mo,Ru,Fe) hcp Ma et al. 
(2014) 

Carbide and nitride 

Khmrabaevite TiC Halite Ma and 
Rossman 
(2009a) 

Osbornite TiN Halite Ma and 
Beckett 
(2020) 

Oxides 

Addibischoffite Ca2Al6Al6O20 Rhönite Ma et al. 
(2017a) 

Allendeite Sc4Zr3O12 Allendeite Ma et al. 
(2014) 

Beckettite Ca2V6Al6O20 Rhönite Ma et al. 
(2021b) 

Calzirtite Ca2Zr5Ti2O16 Calzirtite Ma (2020), 
Xiong et al. 
(2020) 

Kaitianite Ti3+ 2Ti4+O5 Oxyvanite Ma and 
Beckett 
(2021) 

Kangite (Sc,Ti,Al,Zr,Mg,Ca,▢)2O3 Bixbyite Ma et al. 
(2013b) 

Krotite CaAl2O4 NaBePO4 Ma et al. 
(2011b) 

Lakargiite CaZrO3 Perovskite Ma (2011)

(continued)
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Table 8.2 (continued)

Name Composition Structure type Reference

Louisfuchsite Ca2(Mg4Ti2)(Al4Si2)O20 Rhönite Ma and Krot 
(2022) 

Machiite Al2Ti3O9 Schreyerite Krot et al. 
(2020) 

Panguite (Ti,Al2,Sc,Mg,Zr,Ca)1.8O3 Related to bixbyite-type Ma et al. 
(2012) 

Sassite (Ti4+,Ti3+,Mg,Sc,Al)3O5 Pseudobrookite Zhang et al. 
(2015) 

Tazheranite (Zr,Ti,Ca,Y)O1.75 Cubic zirconia Ma and 
Rossman 
(2008) 

Tistarite Ti2O3 Corundum Ma and 
Rossman 
(2009a) 

Warkite Ca2Sc6Al6O20 Rhönite Ma et al. 
(2020) 

Silicates 

Baghdadite Ca3(Zr,Ti)Si2O9 Baghdadite Ma (2018) 

Burnettite CaV3+AlSiO6 Diopside Ma et al. 
(2022a) 

Davisite CaScAlSiO6 Diopside Ma and 
Rossman 
(2009b) 

Dmisteinbergite CaAl2Si2O8 Dmisteinbergite Ma et al. 
(2013a) 

Eringaite Ca3Sc2Si3O12 Garnet Ma (2012) 

Grossmanite CaTi3+AlsiO6 Diopside Ma and 
Rossman 
(2009c) 

Kushiroite CaAlAlSiO6 Diopside Kimura et al. 
(2009), Ma 
et al. (2009) 

Mullite Al6Si2O13 Mullite Ma and 
Rossman 
(2009a) 

Paqueite Ca3TiSi2(Al,Ti2Si)3O14 Ca3(Ga2Ge)Ge3O14 Ma et al. 
(2022a) 

Thortveitite Sc2Si2O7 Thortveitite Ma et al. 
(2011a) 

Rubinite Ca3Ti2Si3O12 Garnet Ma et al. 
(2017c)
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Fig. 8.4 Ultrarefractory minerals panguite and davisite from the Allende CV3 meteorite (Ma et al. 
2012), kangite, warkite and davisite from the DOM 08,004 CO3 meteorite (Ma et al. 2020) 

in volcanic, i.p. phreatomagmatic, environments and in pyrometamorphic rocks such 
as the Hatrurim formation in the Near East.
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Chapter 9 
Mineralogy of Planetary Cores 

C. C. Zurkowski and Y. Fei 

Abstract Within our solar system and beyond, rocky planets exhibit a wide range 
of chemical and physical features that imply a diversity of mantle and core struc-
tures. The extreme pressures and temperatures of a planet’s core make it one of the 
most inaccessible regions of its interior, but core chemistry and dynamics present 
key information on a planet’s evolution. Relating the observable and deep interior 
properties of planets therefore requires experimental and theoretical investigation of 
relevant mineralogy under extreme pressures and temperatures (P–T ). This chapter 
begins by reviewing the core compositions and structures of Mercury, Venus, Earth, 
and Mars as they are currently understood. We summarize the phase relations in the 
iron-dominant core systems at high P–T and discuss the role of light elements during 
core evolution. The high P–T mineralogy of Fe–(Si, O, S, C, H) alloys is then high-
lighted using the terrestrial planets as a framework and expanding into exoplanetary 
scenarios. 

Keywords Iron-alloys · Planetary cores · High pressure · High temperature ·
Diamond anvil cell · Phase relationships · Core crystallization 

9.1 The Chemistry and Formation of Planetary Cores 

Rocky planetary interiors are composed of silicate mantles and dense iron-rich cores. 
The mineralogy of a planet’s core contains key chemical information related to the 
formation and evolution of the planet, and the core crystallization dynamics influence 
the habitability of a planet. As we know for the Earth, the current crystallization 
of the denser inner core promotes convection of the metallic liquid in the outer 
core that drives our geodynamo (e.g., Stevenson 1981). For other planets, such as 
Mars, however, the core does not sustain a long living geodynamo and seismic
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signatures from the core indicate that it is in a fully molten state (e.g., Stahler et al. 
2021). In these contrasting scenarios, the presence or absence of an inner core is 
dependent on the thermal evolution of the planet, percent of light elements that 
partitioned into the core under the pressure–temperature-oxygen fugacity conditions 
during accretion and differentiation, and the crystallization thermodynamics of that 
Fe-alloy system. Throughout this chapter, we will review planetary core mineralogy 
and its relation to these key characteristics based on our current understanding of 
the core chemistry of the terrestrial planets and rocky exoplanets. 

9.1.1 Earth’s Core Composition 

Earth’s metallic core accounts for half of its radius and about 1/3 of its mass (Figs. 9.1 
and 9.2). Geochemical evaluations of the bulk silicate Earth (BSE) compared to a 
chondritic bulk Earth composition, suggest that the core contains ~85 wt.% Fe, 5 
wt.% Ni, and 10 wt.% light elements such as Si, O, S, C, and H (e.g., McDonough 
and Sun 1995). The exact proportions of these light elements in the core remain 
unknown. Experimental approaches to estimate their abundances in Earth’s core have 
routinely consisted of comparing the metal-silicate partitioning behavior of these 
light elements to refractory elements whose concentrations are better constrained 
in the mantle, including Ni, Co, V, Cr, Mo, and W, and inputting their partitioning 
behavior into core formation models that match Earth’s oxygen fugacity and core-
mass fraction (e.g., McDonough and Sun 1995; Li and Agee 1996; Wood et al. 2006; 
Ricolleau et al. 2011; Rubie et al. 2011, 2015; Siebert et al. 2012, 2013; Fischer 
et al. 2015, 2017, 2020; Suer et al. 2017; Tagawa et al.  2021). Many unknowns still 
surround the phenomena of planetary differentiation, such as the evolution of the 
core-mantle boundary conditions; degree of equilibration between liquid metal and 
liquid and solid silicate; degree of volatilization; and chemical, temporal, and spatial 
details of merging impactors.

Given these uncertainties, geochemical investigations into Earth’s core chemistry 
have resulted in a range of possible core compositions summarized in Table 9.1. In all  
models, Si and O enter the core to some degree. Recent models suggest that Earth’s 
refractory chemistry and current oxidation state (~ΔIW−2.3) is best modeled with 
the accretion of predominantly reducing material and delivery of oxidizing material 
in the later stages of accretion (Rubie et al. 2011; Fischer et al. 2015, 2017). Averaging 
among these studies, approximately 6.5 wt% Si and 2 wt% O is expected in Earth’s 
core (Table 9.1 and references therein). Recent metal-silicate partitioning work at 
relevant high P–T conditions suggests that sulfur becomes less siderophile with 
pressure and temperature. Earth’s mantle sulfur content is best matched if sulfur 
is delivered by later, large impactors and in a late veneer, incorporating <2 wt% 
S in the core (Suer et al. 2017), in agreement with geochemical estimates from 
chondritic meteorite compositions (McDonough and Sun 1995; McDonough 2003). 
The partitioning behavior of carbon at differentiation conditions incorporated into 
multi-stage models of Earth’s core formation results in <0.2 wt% C in the core
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Fig. 9.1 Density and velocity profiles of Earth’s interior based on the Preliminary Reference Earth 
Model (PREM) best fit to the moment of inertia, body wave travel times, and normal mode signal 
from Earth’s interior (Dziewonski and Anderson 1981) (black solid lines). The recent seismic 
profile of the outer core optimized to best match the body wave travel times and normal mode 
frequencies are shown by the black dotted lines (Irving et al. 2018). The equations of state of liquid 
(Kuwayama et al. 2020) and solid (Dewaele et al. 2006) iron are provided with the black dashed 
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core-mantle boundary, and inner core boundary, respectively. With permission, this figure was taken 
from Zurkowski, PhD thesis, (2021)

(Fischer et al. 2020). Hydrogen partitioning is experimentally challenging to measure 
at core-forming conditions, but a recent study reports partitioning data and multi-
stage core formation modeling that results in 0.56 wt% H in the core (Tagawa et al. 
2021). Ab-initio investigations support that hydrogen becomes strongly siderophile 
with pressure and predict up to 1 wt% hydrogen in the core (Li et al. 2020; Yuan and 
Steinle-Neumann 2020).
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Fig. 9.2 Schematic of the core structures, core light element content, interior pressure and temper-
ature, and mantle oxygen fugacity of Mercury (Cartier and Wood 2019 and references therein), 
Venus (e.g., Aitta 2012; O’Niell 2021), Earth (e.g., Dziewonski and Anderson 1981; McDonough 
and Sun 1995; Masters and Gubbins 2003; Dewaele et al. 2006; Anzellini et al. 2013; Irving et al.  
2018; Kuwayama et al. 2020), and Mars (e.g., Yoshizaka and McDonough 2020; Duran et al. 2022 
and references therein) based on the discussion provided in Sect. 1.1–1.3

9.1.2 Earth’s Core State, Structure, and Crystallization 
Regime 

Using these geochemical constraints for the composition of Earth’s core, the thermo-
dynamics of these alloys must be determined to explain the geophysical properties 
of Earth’s deep interior. The reflection of shear waves and increase in compres-
sional wave velocities in the innermost portion of our planet reveals that Earth’s 
core is actively crystallizing a denser inner core as it cools (Fig. 9.1) (Gutenberg 
and Richter 1938; Bullen 1975; Dziewonski and Anderson 1981). Light-element-
rich liquid expelled upwards from the inner core boundary (ICB) as a result of the 
inner-core solidification drives convection of the metallic liquid in the outer core 
and sustains our geodynamo (e.g., Gubbins 1977; Loper 1978). At present, the inner 
core accounts for 35% of the Earth’s core radius (Fig. 9.1). Comparing the density 
of liquid and solid iron at core conditions (Dewaele et al. 2006; Kuwayama et al. 
2020) to the resolved density profile of the liquid and solid portions of the core 
(Dziewonski and Anderson 1981; Masters and Gubbins 2003; Irving et al. 2018), an 
approximate 7% and 3–5% light element component must be incorporated into outer 
core liquid and inner core solid, respectively (Figs. 9.1 and 9.2). 

The temperature profile of the core is not well known, as it depends directly on the 
core composition and the melting temperature of the core materials. Extrapolations of 
melting studies of pure iron bracket the upper temperature bound at the ICB to 6200 K 
(Anzellini et al. 2013), and inputting this value to approximate the core-side CMB 
temperature assuming an adiabatic liquid outer core results in temperatures that are 
far greater than the mantle geotherm and near silicate melting temperatures at these 
pressures (Fiquet et al. 2010; Andrault et al. 2011). Seismic signals from the mantle 
rule out the presence of extensive silicate melting such that the ICB temperature
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must be lower due to the presence of a multi-component (Fe, Ni)–(Si, O, S, C, H) 
liquid. Melting studies in binary Fe-alloy compositions indicate that light elements 
significantly lower the melting temperature of pure iron on the order of 500–1000 K 
at the ICB (e.g., Fischer et al. 2012, 2013; Morard et al. 2017; Mori et al.  2017; Oka  
et al. 2022a, b; Tagawa et al.  2022a, b), and the presence of multiple light elements at 
the ICB will further decrease the melting temperature compared to the binary alloys 
due to the increased entropy of mixing for multi-component systems. 

The presence of the inner core and proximity of its density to that of pure iron 
suggest that the inner core is crystallizing along the iron-saturated liquidus of the 
multi-component core alloy. The candidate Fe-alloy phase relationships must there-
fore be experimentally and theoretically determined at ICB conditions, including the 
light element-rich phases coexisting with iron, the solubility of the light elements 
into solid iron, the melting temperatures of the endmember phases, and their eutectic 
temperatures and compositions. 

9.1.3 Mercurian, Venutian, and Martian Core Composition 
and Structure 

Compared to Earth, we know much less about the interior chemistry, density, and 
thermal structure of other planets; however, space missions surveying Mercury, 
Venus, and Mars have provided and will continue to unveil helpful constraints on 
the interiors of our terrestrial neighbors. Mercury is ~5% the mass of the Earth 
and 1/3 of its radius (Fig. 9.2). Despite being the smallest terrestrial planet in 
our solar system, Mercury has a high density with a core-mass fraction of ~0.75. 
Mercury’s core pressures range from 5.7 GPa at the core-mantle boundary to 40 GPa 
at the center of the planet. Based on Mercury’s reduced surface chemistry probed in 
the MESSENGER mission, it is thought that Mercury’s core formed under highly 
reducing conditions with an oxygen fugacity that is ~5.4 log units below the iron-
wustite buffer (Fig. 9.2) (e.g., Burbine et al. 2002; Nittler et al. 2011; Malavergne et al. 
2014; Chabot et al. 2014; Namur et al. 2016; Cartier and Wood 2019). Considering 
the partitioning behavior of silicon, such reducing core-formation conditions would 
result in significant amounts of Si in the core and low O contents in the core. Sulfur 
and carbon, which are typically siderophile, are also likely to partition significantly 
into the silicate leaving minor amounts in the core under extremely reducing condi-
tions (Malavergne et al. 2010; Chabot et al. 2014; Cartier and Wood 2019). This is 
compatible with the high (a few wt%) sulfur contents measured from the Mercurian 
surface (Namur et al. 2016; Cartier and Wood 2019). Recent work examining the 
speciation of sulfur between silicate and metallic liquids related to Mercurian accre-
tion conditions suggests that at most 1.5 wt% S in the Mercurian core (Namur et al. 
2016). Experiments examining simultaneous S and Si partitioning between solid and 
liquid metal combining these geochemical considerations calculate 13.5–14.8 wt% 
Si required in the Mercurian core to support 1.5 wt% S content and constrain that
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the partitioning of Si between the inner and outer core will be approximately equal 
while S will partition almost entirely into the liquid outer core (Chabot et al. 2014; 
Tao and Fei 2021). 

Moment of inertia values and libation amplitudes of the Mercurian mantle deter-
mined from the geodetic data collected by the MESSENGER mission suggest that the 
core is partially molten (Margot et al. 2012; Genova et al. 2019). These geophysical 
evaluations and the identification of the weak Mercurian magnetic field confirm that 
Mercury is crystallizing a dense inner core and convecting a lower density, metallic 
liquid in the outer core. Ambiguity remains, however, in explaining the geodetic 
features of Mercury’s weak magnetic field and both bottom-up and top-down core 
crystallization mechanisms have been suggested from a dynamics standpoint (Stanley 
et al. 2005; Takahashi and Matsushima 2006; Christensen 2006; Christensen and 
Wicht 2008; Dumberry and Rivoldini 2015; Edgington et al. 2019). Experimentally, 
the density deficit at the Mercurian inner-core boundary will be dominated by its 
sulfur content, as Si will partition nearly equally between the inner and outer core, 
further challenging our understanding of how core convection is driven with a S-
poor Mercurian core. Additional layering in the outer core may be present due to the 
immiscibility of Si and S in liquid iron at the pressure conditions of Mercury’s core 
(Morard and Katsura 2010; Tao and Fei 2021). 

Little is known about the state and structure of Venus’ core, but it is reasonable 
to suggest that Venus may have an Earth-like bulk composition because of its simi-
larity in size to the Earth (Aitta 2012). Venus, however, has a distinctly different 
atmosphere and tectonic regime compared to that of the Earth, indicating that its 
interior thermal and convection structure is drastically different (e.g., O’Niell et al. 
2014). Venus also does not contain a magnetic field which has been tentatively linked 
to slow rotation, high mantle temperatures from the stagnant lid tectonics, a fully 
molten core, or a fully solid core (O’Niell 2021 and references therein). Recently, 
measurements of Venus’ moment of inertia (Margot et al. 2021) and mass (Aitta 
2012) were used in combination with the known metal and silicate thermodynamic 
properties of Earth-like compositions to solve for possible density and state structures 
of the Venutian interior (O’Niell 2021). Results from this study suggest that Venus 
consists of a fully molten core that is ~50% of the radius of the planet (Fig. 9.2) 
(O’Niell 2021). Alternatively, studies that use predicted Venutian interior models to 
match moment of inertia, Love number, and tidal constraints measured from Venus, 
demonstrate that a fully solid core cannot be ruled out (Dumoulin et al. 2017). Future 
space missions to improve the precision of these measurements and constraints on 
the oxidation state of Venus will greatly improve our understanding of the core size, 
state, and composition. 

Mars has a mass of about 10% of the Earth and is thought to have formed under 
relatively oxidizing conditions with an oxidation state of ~ΔIW + 1 (Yoshizaki 
and McDonough 2020) (Fig. 9.2). Recent Marsquake data collected via the InSight 
mission have been explained by a large, liquid Martian core that accounts for ~50% of 
the planet’s radius (~1840 km radius) (Fig. 9.2) (Stahler et al. 2021; Duran et al. 2022). 
Geodetic and seismic data support that the Martian core is fully molten, and high 
sulfur concentrations found in Martian meteorites suggest a high core sulfur content
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(Yoshizaki and McDonough 2020). Thermodynamic models of the Martian interior 
considering the compositions of Martian meteorites and the Martian oxidation state 
estimate a core with negligible Si, 7–19 wt% S, <1–5 wt% O, and up to 1 wt% H 
(Steenstra and van Westrenen 2018; Yoshizaki and McDonough 2020; Brennan et al. 
2020). Considering the large seismically inferred liquid Martian core, Stahler et al. 
(2021) suggests that the Martian core requires 30 wt% S for a purely (Fe, Ni)–S 
core, or 10–15 wt% S and 5 wt% O. These high concentrations of light elements in 
the core may be difficult to reconcile with the geochemical constraints and accretion 
models. Recent metal-silicate equilibration work investigating the effects of sulfur on 
the dissolution of oxygen at Martian core-forming conditions, support that 1.3–3.5 
wt% O can dissolve into liquid metal containing 14–19 wt% S during multi-stage 
Martian core formation (Gendre et al. 2022). These experimental and model results 
indicate that the Martian core is in a core crystallization regime that does not produce 
a gravitationally stable inner core, likely due to its high sulfur content. The paradox 
regarding these recent seismic and geochemical studies is that a large core contributes 
to a more reduced planet overall (e.g., higher Fe:FeO ratio in the planet) despite the 
high light element content required in the core to explain its molten state. Recent 
work suggests that lower mantle FeO contents of ~13.7 ± 0.4 wt% (Khan et al. 
2022) compared to 14.7 wt% (Yoshizaki and McDonough 2020) may amend these 
inconsistencies. Khan et al. (2022) concludes by proposing a lower light element 
content in the Martian core, with ∼9 wt%  S, ≥3 wt%  C, ≤2.5 wt% O, and ≤0.5 
wt% H. 

The differing core structures and oxidation states of the Earth, Venus, Mercury, and 
Mars present an interesting case to explore varying planetary crystallization regimes. 
Given the expanse of rocky exoplanets found in our universe so far, the mineralogy 
of Fe-alloys is likely to reveal additionally complex core thermodynamics beyond 
what we know for our own solar system. Throughout the remainder of this chapter, 
we will review the mineralogy of Fe–(Ni, S, Si, O, C, and H) alloys and their phase 
stability in varying P–T–X (X = composition) regimes to clarify the details of core 
crystallization in the terrestrial planets, and to discuss potential exoplanetary core 
crystallization scenarios. 

9.2 Phase Relations and Core Mineralogy in the Iron-Alloy 
Systems 

9.2.1 The Iron Phase Diagram 

Iron is the primary component of planetary cores as established by the presence of iron 
and stony iron meteorites thought to originate from the deep interiors of planetesimals 
(e.g., Scott and Wasson 1975), its depletion in Earth’s silicate mantle compared 
to its cosmochemical abundance (Anders and Ebihara 1982; McDonough and Sun 
1995), its similarity to the seismic properties measured from Earth’s core (Birch
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1964; Dziewonski and Anderson 1981), and the identification of a geomagnetic 
field on Earth produced by convecting metallic liquid in its interior (e.g., Stevenson 
1981). Iron is the primary core-forming element in rocky- to gas-giant-type planets 
and in small planetesimals to multi-Earth mass exoplanets, despite the differing 
proportions of metal, silicate, and volatiles in these types of planetary bodies. The 
phase diagram of iron over a wide range of pressures and temperatures is critical to 
characterizing these planetary cores. 

At ambient conditions and with room-temperature compression to around 10 
GPa, iron adopts the body-centered cubic (bcc) structure (Fig. 9.3). Above 10 GPa, 
bcc iron transitions to a hexagonally close packed (hcp) structure. Upon heating at 
ambient pressures, bcc Fe transitions to face-centered cubic (fcc) around 1000 K (e.g., 
Claussen 1960; Bundy 1965). The bcc–fcc high temperature transition has a negative 
phase boundary slope and the bcc–fcc--hcp triple point is located at around 8.3 GPa 
and 713 K (Akimoto et al. 1987). Between 10 and ~100 GPa, hcp Fe transitions at 
high temperatures to fcc-Fe with a positive phase boundary slope (Komabayashi et al. 
2009; Anzellini et al. 2013; Morard et al. 2018), and above these pressures, hcp-Fe 
is the stable high P–T phase to multi-megabar conditions encompassing Earth’s core 
conditions (Shen et al. 1998; Ma et al.  2004; Kuwayama et al. 2008; Tateno et al. 
2010). It is still debatable, however, whether there is a narrow stability field of bcc 
iron along the liquidus at Earth’s core conditions (e.g., Belonoshko et al. 2017). With 
increasing pressures, iron is predicted to stabilize in the hcp structure to ~ 6–7 TPa, 
above which it transitions again to the fcc structure (Stixrude 2012). Above 34–38 
TPa, fcc Fe transitions to bcc based on ab-initio calculations (Stixrude 2012).

9.2.2 Mineralogy of an Iron Core 

The current iron phase diagram reviewed here based on experimental and ab-initio 
investigations poses interesting core-crystallization regimes. For Mercury–Mars 
sized planets, the core would crystalize in the fcc-Fe stability field (Fig. 9.3). Venus’ 
core pressure range is less well known but estimated to span 114–274 GPa (Aitta 
2012). Under these conditions, if Venus has an iron-saturated core, iron will deposit in 
the hcp structure only. This is also true for Earth’s core pressure range, and it is exper-
imentally reported that hcp iron is currently crystallizing in the core (Tateno et al. 
2010). Planets with masses intermediate between Mars (~0.1 Earth masses (ME)) 
and Venus (~0.8 ME) would exhibit hcp-fcc iron layering in their metallic cores if 
solidified (Fig. 9.3a). Considering the wealth of recently observed exoplanets with 
fairly well constrained masses, exoplanet GJ 367b provides an example of such a 
planet, as it was recently identified orbiting a nearby M-dwarf star (Lam et al. 2021), 
with a mass = 0.55(8) ME, radius = 0.72(8) RE (RE = Earth radii), and core-radius 
fraction = 0.86(5). The core radius of this exoplanet distinguishes it as more of a 
super-Mercury rather than a sub-Earth planetary body. Following the modeling by 
Boujibar et al. (2020), a planet with approximately half the mass of Earth and a 
Mercury core-mass fraction would have a radius approximately compatible with GJ
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Fig. 9.3 a Phase diagram of iron, based on Stixrude 2012, including experimental studies up to ~ 
4 Mbar (Akimoto et al. 1987; Shen et al.  1998; Ma et al.  2004; Kuwayama et al. 2008; Tateno et al. 
2010; Morard et al. 2018; Anzellini et al. 2013) and ab initio studies up to 1000 Mbar (Stixrude 
2012). The core pressure ranges of Mercury, Mars, Venus, Earth, Saturn, and Jupiter are provided 
by the shaded vertical bars to highlight the different phases of iron in these planets. Planet images 
are from the public domain of www.NASA.gov. b An interior schematic of exoplanet GJ 367b 
based on its observed mass-radius-density properties (Lam et al. 2021), interior core pressure-depth 
models of Mercury type planets (Boujibar et al. 2020), and the phase diagram of iron. For the size 
and estimated core-mass fraction of GJ 367b, the metallic core is likely to span the hcp and fcc iron 
stability fields producing stratification of an inner hcp-Fe region and outer fcc region

367b and a core that spans ~40–250 GPa (Fig. 9.3b). Hcp iron would deposit in the 
inner 80% of the core and fcc iron would deposit in the outer 20% of the core along an 
assumed core temperature profile just below the melting curve. The fraction of metal 
in this exoplanet indicates that it is highly reduced, such that Si may be a predominant 
light alloying element, similar to Mercury. Silicon readily dissolves into the hcp and 
fcc phases of iron at these conditions and is not likely to perturb this core stratifica-
tion significantly (Fischer et al. 2013) (see further discussion in Sect. 2.2); however, 
the layering of hcp and fcc iron would certainly affect the partitioning properties of 
other light elements such as S, C, and H that may be present in the reduced core. 

Stratification of hcp and fcc iron may also be present in Saturn-sized planets, 
based on the predicted hcp-fcc transition around 40 MBar at liquidus temperatures 
(Fig. 9.3a) (Strixrude 2012). Interior modeling of Saturn suggests a core pressure 
range of ~13–60 MBar (Helled 2018). As little is known about the interior structure 
of the gas giants, this estimated central core size encompasses all elements heavier 
than H and He and the distinction of the compositional layering in their deep interior 
is not well known. The metal portion of the gas giant planets are likely to incorporate 
significant H into the core, and as the incorporation of hydrogen into the iron lattice 
is known to expand the stability field of the fcc over the hcp structure to megabar 
pressures, it is likely that hydrogen incorporation into iron critically affects the layer 
structure of iron in the gas-giant cores.

http://www.NASA.gov
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9.2.3 Phase Relations in the Fe–Si System 

The Fe–Si phase diagram is dominated by solid solution thermodynamics and 
complex subsolidus phase relationships. Silicon readily dissolves into iron sites at 
ambient conditions and with pressure and temperature up to terapascal conditions 
(Fig. 9.4a, b) (Kuwayama and Hirose 2004; Lin et al. 2009; Fischer et al. 2012, 
2013; Tateno et al. 2015; Ozawa et al. 2016; Cui and Jung 2017; Wicks et al. 2018; 
Edmund et al. 2022). At ambient pressures, several Fe–Si phases exist at varying 
temperatures and Si concentrations. At ambient temperatures, the most iron-rich 
phase adopts a bcc structure with up to ~2.5 wt% Si disordered in the iron lattice 
(Meco and Napolitano 2005; Cui and Jung 2017 and references therein). With 
moderate heating, fcc (Fe, Si) with up to 2.5 wt% Si in the structure is stable, coex-
isting with bcc (Fe, Si) with up to 11 wt% Si disordered in the lattice. Near melting 
temperatures, the bcc structure stabilizes over the fcc structure. With increasing Si 
concentration, Si orders into the body centered site of the bcc lattice to form an 
Fe-rich B2 Fe(Fe, Si) structure (CsCl-type, Pm-3 m, Z = 1) in the ~7–13 wt% Si 
range. With further incorporation of Si, in the ~8–18 wt% Si range, Si orders into 
the central atomic site in every other B2 unit cell forming a larger DO3 Fe3(Fe, Si) 
(F4-3 m, Z = 4). Fe5Si3 (Mn5Si3-type, P63mcm, Z = 2), Fe2-xSi1+x (B2-type), and 
FeSi (B20, P213, Z = 4) phases are also observed exhibiting compositions that are 
closer to stoichiometric.

At 25 GPa, the fcc (Fe, Si) stability field is observed to expand to incorporate up 
to ~7.5 wt% Si, a narrow region of bcc (Fe, Si) is observed with up to ~9 wt% Si, 
and a narrow B2 (Fe, Si) stability field is inferred with Si contents up to ~11 wt%, 
(Edmund et al. 2022) (Fig. 9.4). The DO3 Fe3-xSi1+x phase is observed in the 11–17 
wt% Si range, the Si-rich B2 Fe2-xSi1+x stability field expands to include ~17–28 
wt% Si, and the B20 FeSi phase remains stoichiometric, coexisting with B2 (Fe, 
Si)2Si (Edmund et al. 2022) (Fig. 9.4). Increasing in pressure, an hcp (Fe, Si) phase 
becomes stable and its transition pressure depends on the Si content. Hcp (Fe, Si) 
remains stable to higher temperatures with pressure and is the stable Fe-rich liquidus 
phase at 145 GPa (Fischer et al. 2013) (Fig. 9.4a). On the Si-rich side of the phase 
diagram, B2 Fe(Fe, Si) remains stable on the liquidus to these conditions (Fischer 
et al. 2013). With further compression to 400 GPa, the hcp (Fe, Si) and B2 Fe(Fe, Si) 
phases are still observed (Tateno et al. 2015), indicating that these are the relevant 
phases to consider at Earth’s inner core boundary. 

The experimental data at high pressure and temperature from various studies 
provides critical information to construct phase relations at different pressures 
(Fig. 9.4a). However, the evolution of the phase relations as a function of pressure 
may not be self-consistent as illustrated in Fig. 9.4a. It will be necessary to develop 
a thermodynamic model to construct self-consistent phase diagrams in a wide pres-
sure–temperature-composition range. Figure 9.4b illustrates the crystal structures of 
Fe–Si alloys identified so far. The stable phase in a crystalized core would largely 
depend on the Si content and the P–T conditions of solidification.
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Fig. 9.4 a Temperature-composition Fe–FeSi phase diagrams at 1 bar (Cui and Jung 2017), 25 
GPa (Edmund et al. 2022), 50, 80, and 145 GPa (Fischer et al. 2013). Planet photographs modified 
from the www.NASA.gov public domain. The grey vertical shaded regions in the phase diagrams 
represent the range of Si contents geochemically estimated in the cores of Mercury (Chabot et al. 
2014, 2016) and Earth (Wood et al. 2006; Ricolleau et al. 2011; Rubie et al. 2011, 2015; Siebert  
et al. 2012, 2013; Fischer et al. 2015, 2017, 2020). For Mercury, the light grey shaded region 
encompasses the possible range of Si contents reported, and the darker gray shaded region represents 
the estimated Si content in the presence of sulfur (Chabot et al. 2014; Namur et al. 2016; Tao and 
Fei 2021). b Crystal structures of the hcp (Fe, Si), fcc (Fe, Si), bcc (Fe, Si), DO3 Fe3(Fe, Si), B2 
Fe(Fe, Si), and B20 FeSi with iron atoms in blue and silicon atoms in green

9.2.4 Role of Si in Planetary Core Crystallization 

The trend of the Fe–FeSi phase relations reported up to 145 GPa (Kuwayama and 
Hirose 2004; Fischer et al. 2013; Ozawa et al. 2016; Edmund et al. 2022) indicates 
that the hcp-B2 eutectic composition at Earth’s outer core conditions is around 6 wt% 
Si. At Earth’s inner core, the eutectic is likely more Fe-rich. Geochemical estimates 
from metal-silicate partitioning range from 1 to 11 wt% Si in the core with the 
majority of the studies estimating around 6.5 wt% Si (McDonough and Sun 1995; 
McDonough 2003; Wood et al. 2006; Ricolleau et al. 2011; Rubie et al. 2011, 2015; 
Siebert et al. 2012, 2013; Fischer et al. 2015, 2017, 2020; Suer et al. 2017; Tagawa  
et al. 2021). Equation of state studies comparing the density of hcp (Fe, Si) compared 
to that of iron at Earth’s core conditions suggest that the density can be matched with 
~9–11 wt% Si and 3–8 wt% Si in Earth’s outer and inner core, respectively (Hirao 
et al. 2004; Fischer et al. 2012, 2014; Huang et al. 2019). In order to crystallize a 
Fe-rich, gravitationally stable inner core, less than 6 wt% Si is allowable in the liquid 
outer core, suggesting that the lower geochemical Si estimates are compatible with 
the thermodynamic properties of Fe–Si alloys. However, Si as a light element alone

http://www.NASA.gov
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cannot satisfy the observed density jump at the inner core boundary based on nearly 
equal Si partitioning between solid and liquid iron. Other light elements must be 
present in Earth’s core. Additionally, melting observations of Fe–Si alloys at Earth’s 
core conditions evidence that the incorporation of Si into iron does not significantly 
lower its melting temperature (Fischer et al. 2014), such that other light elements in 
the core must depress the liquidus temperature at the inner core boundary. 

Considering the reducing core-formation conditions of Mercury, Si is a predomi-
nant core light element. Previous studies have reported core silicon contents of up to 
25 wt % (Chabot et al. 2014), but metal-silicate partitioning behavior incorporating 
both Si and S estimate 1.5 wt% S and 13.5–14.8 wt% Si in the Mercurian core 
(Chabot et al. 2014; Namur et al. 2016; Tao and Fei 2021). Applying these compo-
sitional constraints at the conditions of Mercury’s core (5-40 GPa), the fcc, B2, and 
DO3 phases are the candidate precipitating solids, and crystallization of these phases 
would produce a denser core liquid (Fig. 4) (Fischer et al. 2013; Edmund et al. 2022). 
These features would not be consistent with the formation of an inner core. In this 
scenario, Mercury’s weak dynamo would then need to be generated via the upward 
migration of the buoyant solid (Edmund et al. 2022). The density difference between 
the coexisting solid and liquid metal in the Fe-rich Fe–Si system is small, however, 
as the partitioning behavior of Si is nearly unity between solid and liquid at these 
conditions (Kuwayama and Hirose 2004; Tao and Fei 2021; Edmund et al. 2022). 
It is unclear whether such a small density difference between buoyant solid and 
dense liquid could produce a dynamo. Alternatively, the presence of sulfur would 
more drastically affect the density difference between solid and liquid and aid in 
the formation of a denser inner core and convecting S-rich liquid outer core (Tao 
and Fei 2021). The evolution of the Fe-Si and Fe-Si-S phase relations, the S and Si 
content of Mercury’s core, and the existence of an inner core in Mercury must be 
further clarified to understand the details of Mercury’s dynamo and its crystallization 
regime. 

9.2.5 Phase Relations in the Fe–O System 

In the Fe–O system, phase transitions in the most Fe-rich iron oxide FeO1-x (x = 
0–0.12) have been extensively studied over a wide pressure–temperature range (e.g., 
Hazen and Jeanloz 1984; Knittle and Jeanloz 1986; Mao et al. 1991; Fei and Mao 
1994; Kondo et al. 2004; Ozawa et al. 2010; Fischer et al 2011a, b; Ozawa et al. 
2011a, b; Coppari et al. 2021). As FeO, with 22 wt% O, is more oxygen rich than 
the geochemical estimates of oxygen concentrations in the terrestrial planetary cores 
(e.g., Siebert et al. 2012, 2013; Fischer et al. 2015; Rubie et al. 2015; Gendre et al. 
2022), it is likely that FeO is the relevant oxide phase to the degree that oxygen is 
in the cores of Mercury, Venus, Earth, Mars, and rocky exoplanets. Although we do 
not observe this type of planet in our own solar system, highly oxidized planets, like 
those that are water-rich, could potentially have cores with >22 wt% O, leading to
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more complex core mineralogy. This scenario will be discussed briefly at the end of 
this section. 

At ambient conditions, wustite FeO1-x is the stable iron-rich oxide. The wustite 
structure can be generally described as the NaCl-type (B1, NaCl-type, Fm3m, Z 
= 4) composed of a face-centered cubic iron lattice with oxygen occupying all 
octahedral sites; however, in reality, wustite exhibits extraordinary crystallographic 
complexity. Below 10 GPa, FeO1-x is nonstoichiometric with x = 0.04–0.12, ferric 
iron can substitute into the structure and occupy both octahedral sites and tetrahedral 
interstices, and ordering of the Fe occupancies and vacancies disrupts the simple 
cubic symmetry (Hazen and Jeanloz 1984 and references therein). Thermodynamic 
modeling of wustite suggests that it assumes a stoichiometric composition coexisting 
with iron at 5 GPa and 900 K with a positive phase boundary slope (Stølen and 
Grønvold 1996), and with increasing pressure and temperature, stoichiometric FeO 
is assumed (e.g., Campbell et al. 2009; Fischer et al. 2011a, b). 

FeO adopts the ideal B1 structure to 240 GPa and high temperatures (Fischer et al. 
2011a; Ozawa et al. 2010, 2011a) (Fig. 9.5). Upon compression, wustite transitions 
around ~16 GPa to a rhombohedrally distorted B1 structure at room temperature 
under hydrostatic conditions (Fei and Mao 1994). With heating, a positive phase 
boundary slope is observed between the rB1 and B1 FeO structures (Fig. 9.5) (Fei 
and Mao 1994). The rB1 structure is thought to arise from elongation of the (111) 
body diagonal and contraction of the other body diagonals of the fcc B1 cell (Mao 
et al. 1996). With further compression and heating to <1000 K, the rB1 structure 
transitions to the B8 (NiAs-type, P63mmc, Z = 2) structure between 70 and 100 
GPa with a negative phase boundary slope (Fig. 9.5) (Fei and Mao 1994). The B8 
structure can be viewed as interpenetrating hcp and primitive hexagonal lattices. As 
wustite contains both ferric and ferrous iron, both the B1 and B8 structures have been 
observed to undergo metallization at high pressures and temperatures (Fischer et al. 
2011b; Ozawa et al. 2011b). On the basis of observed changes in sample emissivity 
and resistivity during heating, B1 FeO undergoes metallization between 30 and 90 
GPa and high temperatures with a negative temperature dependence (Fischer et al. 
2011b; Ohta et al.  2012) (Fig. 9.5). B1 FeO metal then undergoes a high-spin to 
low-spin transition with increasing pressure and temperature between 90 and 150 
GPa and up to 4500 K (Greenberg et al. 2020). B8 FeO is observed to undergo 
a sharp, temperature-independent metallization at 120 GPa coinciding with an Fe 
spin crossover, volume collapse, and change in structure from inverse to normal B8 
(Ozawa et al. 2010).

Above 240 GPa and up to 4000 K, X-ray diffraction studies in the diamond anvil 
cell indicate that FeO transitions to the B2, CsCl-type structure (Ozawa et al. 2011a) 
(Fig. 9.5). B2 FeO is expected to be metallic in the low-spin state (Greenberg et al. 
2020). Recent ramp-compression work further reveals that B2 FeO is stable up to ~7 
Mbar and high temperatures (Coppari et al. 2021). A recent ab initio study also reports 
that a tetragonal Fe2O becomes energetically favorable over Fe + FeO between 
270 and 400 GPa, but these calculations were conducted at room temperatures and 
the results have not been verified experimentally (Huang et al. 2018). Further static 
compression work at these ultrahigh pressures and temperatures is needed to confirm
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the equilibrium stability of B2 FeO coexisting with iron in Fe-rich planetary cores. 
In the FeO phase diagram in Fig. 9.5, we constructed phase boundaries that are 
compatible with the structural and electronic transitions discussed here. 

Studies of the evolution of the Fe–FeO binary system indicate that below 30 
GPa Fe (metal) and FeO (insulator) melt to immisible metallic and ionic liquids 
(Fig. 9.6) (Frost et al. 2010; Komabayashi 2014; Oka et al. 2019; Morard et al. 
2022). With increasing pressure, the Fe–FeO system is observed to become eutectic, 
and a drastic increase in oxygen content in the eutectic composition is reported up to 
80 GPa (Fig. 9.6) (Seagle et al. 2008; Komabayashi 2014; Morard et al. 2017; Oka  
et al. 2019). The pressure-dependence of this behavior coincides with the metalliza-
tion of B1 FeO, suggesting enhanced compatibility between liquid Fe and FeO across 
this electronic transition (Morard et al. 2017, 2022). The thermodynamic properties 
of the Fe–FeO system can only be modeled via a non-ideal solution at low pressures, 
and a reduction of the non-ideal liquid mixing behavior upon the metallization of B1 
FeO (Fig. 9.6) (Komabayashi 2021).
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http://www.NASA.gov
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9.2.6 Role of O in Planetary Core Crystallization 

At the conditions of the Martian core (~20–40 GPa), experimental and calculated 
oxygen concentrations in the eutectic liquid range from <1 wt% (Morard et al. 2017) 
to up to 10 wt% (Oka et al. 2019). For a Martian core with 3.5 wt% oxygen (Gendre 
et al. 2022), the experimental work by Morard et al. (2017) would support that the 
Martian core is not crystallizing a denser Fe-rich inner core, as its predicted oxygen 
contents are O-rich of the Fe–FeO eutectic (Morard et al. 2017). At temperature 
above the liquidus, it is likely that metallic Fe liquid and ionic FeO liquids are 
immiscible up to 29 GPa (Frost et al. 2010; Oka et al. 2019; Morard et al. 2022), 
such that Fe and FeO liquids are immiscible for a significant depth range of the 
outermost Martian core. To the degree that oxygen is in the Martian core, it is likely 
to compositionally segregate into an upper layer of ionic-liquid, unless the presence 
of sulfur significantly changes the behavior of the FeO liquid (Fig. 9.6). At the lower 
temperature conditions, B1 FeO (insulator) would crystallize coexisting with the Fe-
rich metallic liquid (Komabayshi 2014), and eventually Fe + FeO would crystallize 
(Fig. 9.6). Considering the layering of metallic and ionic liquids in an O-rich Martian 
core, a dynamo would only form in the metallic liquid inner region of the core. Further 
work is needed to assess the geodynamic effects of Fe-FeO liquid immiscibility in 
an Fe-S-O Martian core. 

In Earth’s core, the geochemically predicted oxygen content ranges up to 6 wt% 
O. This value is smaller than the reported Fe–FeO eutectic compositions of ~11 wt% 
O at 136 GPa (Morard et al. 2017; Oka et al. 2019) and ~15 wt% O at 330 GPa (Oka 
et al. 2019). Therefore, the geochemical approximations of oxygen sequestration into 
Earth’s core do not exceed the oxygen contents allowable for inner core formation 
(Fig. 9.6). At inner core boundary conditions, experimental extrapolations further 
indicate that oxygen does not significantly incorporate into solid hcp-Fe and will 
enter into the liquid outer core (Ozawa et al. 2011a) enhancing the density contrast 
at the ICB. With limited oxygen solubility in metallic iron, oxygen alone in the core 
cannot explain the density deficit in the solid inner core compared to pure iron. 

Melting studies in the Fe–FeO system suggest that the presence of oxygen, along 
with S, C, and H and in contrast to Si, significantly depresses the eutectic melting point 
compared to pure iron (e.g., by ~2450 K at 330 GPa) (Oka et al. 2019). It is predicted 
that an Fe–O core with 3–5 wt% O would sufficiently deplete the temperature of the 
outer core to be compatible with mantle solidus temperature (Morard et al. 2017). 
Therefore, oxygen in combination with S, C, and H could account for the lower core 
temperature compared to pure Fe and Fe–Si (Morard et al. 2017). 

In an Earth-like scenario, core crystallization would proceed with the deposi-
tion of an Fe-rich inner core, and once the liquid outer core becomes sufficiently 
oxygen saturated, FeO would then crystallize. For Earth- and Venus-sized planets, 
B2 metallic FeO would initially crystallize, followed by B1 metallic FeO to the core-
mantle boundary (Ozawa et al. 2011a). It should also be pointed out that the B2 
structure is observed in FeO, FeS, and FeSi concurrently above ~250 GPa and to 
high temperatures (Ozawa et al. 2011a, b; 2013; Tateno et al. 2015). While B2 FeS is
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not expected to be the Fe-saturated sulfide phase at inner core boundary conditions 
(Tateno et al. 2019), the solid solution thermodynamics of O and S on the hcp Fe–B2 
Fe–Si phase relations at inner core boundary conditions should be assessed. 

Under planetary core formation conditions that are highly oxidizing, such as that 
expected for water-rich exoplanets, it is currently up for debate whether water–rock 
differentiation would occur (e.g., Kovačević et al.  2022; Vazan et al. 2022), and 
little is known about metal-silicate differentiation under these conditions. If oxygen 
contents in the metal are higher than that of FeO in the oxidized planet, a complex 
array of Fe-oxides would crystallize that are extremely sensitive to oxygen fugacity 
conditions. These oxides include: Fe5O6 (45.5 at % Fe), Fe4O5 (44.4 at % Fe), Fe7O9 

(43.8 at % Fe), Fe25O32 (43.9 at % Fe) Fe16O21 (43.2 at % Fe), Fe3O4 (42.9 at % 
Fe), Fe5O7 (41.7 at % Fe), and Fe2O3 (40 at % Fe) (e.g., Lavina et al. 2011; Lavina  
and Meng 2015; Sinmyo et al. 2016; Bykova et al.  2016; Zurkowski et al. 2022a; 
Khandarkhaeva et al. 2021). Additionally, hydrogen is known to readily incorporate 
into Fe-oxide phases such as FeOOH (Hu et al. 2016; Zhang et al. 2018; Koemets et al. 
2021), such that an oxidized core containing the Fe-oxides ranging from FeO–FeO2 

are likely to be hydrogenated (Koemets et al. 2021). These phases may be denser than 
the dominant mantle silicates, including MgSiO3, MgO, and SiO2, but these phases 
would be much less dense than the Fe-saturated alloy phases known in terrestrial 
cores. A smaller density contrast would be expected between the silicate minerals 
and Fe-oxide minerals, and further accretion modeling is necessary to understand 
the plausibility of core differentiation in this case. Additionally, the sensitivity of Fe-
oxide stability to oxygen fugacity and lack of significant density contrast between 
coexisting oxides between FeO and FeO2 would challenge the likelihood of density-
driven core crystallization. These highly oxidized cores would remain liquid or form 
a neutrally buoyant core slush, thus not driving a geodynamo. 

9.2.7 Phase Relations in the Fe–S System 

In the core-relevant iron-sulfide system, many compounds have been identified, 
including FeS, Fe3S2, Fe12S7, Fe2S, Fe5S2, and Fe3S (e.g., Evans 1970; Fei et al. 
1995, 1997, 2000; Tateno et al. 2019; Zurkowski et al. 2022b, c, d, e; Oka et al. 
2022a, b). Complex mineralogical possibilities in S-rich planetary cores may arise 
because of the similarity in iron content among these compounds and the sensitivity 
to P–T-X conditions (e.g., Fei et al. 2000; Chen et al. 2008; Zurkowski et al. 2022d). 

In the iron saturated system, iron forms a binary eutectic with FeS up to 14 GPa. 
FeS exhibits seven polytypes up to 250 GPa with structures all related to the B8 
structure (Fig. 9.7) (NiAs-type, P63mmc, Z = 2) (Fei et al. 1995, 1998; Ono and 
Kikegawa 2006; Sata et al. 2008). A description of the structures of FeS I–IV can 
be found in the review by Fei et al. (1998), but at the high temperature conditions 
of planetary cores, FeS-V, VI, and VII are the relevant phases that will be discussed 
here. At high temperatures up to ~50 GPa, FeS-V is stable in the ideal B8 structure. 
Between ~50 and 150 GPa and on the liquidus FeS-VI is stable in a nonmagnetic
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Fig. 9.7 FeS phase diagram and crystal structures including the troilite FeS-I (Evans 1970), anti-
ferromagnetic MnP-type FeS-II (Fei et al. 1995), the monoclinic FeS-III (Fei et al. 1995), doubled 
a-axial B8-type FeS-IV (Fei et al. 1995), B8-type FeS-V (Fei et al. 1995), non-magnetic MnP-
type FeS-VI (Ono and Kikegawa 2006), and the B2 FeS-VII (Sata et al. 2008). Liquid boundary 
approximated after Ono and Kikegawa (2006) 

MnP-type structure (Pnma, Z = 4), which is a minor distortion of the B8 structure 
with B8-relative cell parameters: a, c, 

√
(3) c (Fei et al. 1995; Ono and Kikegawa 

2006; 2008; Ohfuji et al. 2007). With increasing pressure above ~200 GPa at high 
temperatures, FeS adopts the B2 structure (Pm3m, Z = 1) (Sata et al. 2008; Ozawa  
et al. 2013). 

While FeS is a common phase in iron meteorites, it is not likely to be a stable 
phase in planetary cores larger than that of Mercury, because numerous sulfides, 
intermediate between Fe and FeS become stable. Above 14 GPa, Fe3S2 becomes 
stable coexisting with iron (Fig. 9.8) (Fei et al. 1997). The structure has not been 
fully resolved, but at these conditions Ni3S2 is stable in an orthorhombic structure 
(Cmcm, Z = 4) that can accommodate up to 50% Fe (Urakawa et al. 2014). On 
the Fe-rich side of the Fe–Fe3S2 eutectic, the Fe liquidus curve exhibits significant 
non-ideality between 14 and 20 GPa (Chen et al. 2008), and on the Fe3S2-side of the 
eutectic, Fe + Fe3S2 melts peritectically to FeS + liquid (Fig. 9.8) (Fei et al. 1997). 
With increasing pressure, Fe3S becomes the stable Fe-rich sulfide above 21 GPa and 
is stable over a limited high temperature range coexisting with Fe-rich liquid before 
melting peritectically to Fe3S2 + liquid, then FeS + liquid (Fig. 9.8) (Fei et al. 2000). 
At subsolidus temperatures, Fe2S is also observed (Fei et al. 2000).

With increasing pressure, under Fe-saturated conditions, the stability field of Fe3S 
expands to 120 GPa on the liquidus (Fig. 9.9) (Seagle et al. 2006; Ozawa et al. 2013; 
Thompson et al. 2020). Fe3S is only observed to adopt the Fe3P structure (I-4, Z =
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Fig. 9.8 Fe–FeS phase relationships determined from experimental studies up to 330 GPa (Fei 
et al. 2000; Chen et al.  2008; Ozawa et al. 2013; Mori et al.  2017; Tateno et al. 2019; Zurkowski 
et al. 2022b–e). Dashed lines indicate approximated liquidus curves considering the subsolidus 
phase relations of coexisting sulfides

8) (Rundqvist et al. 1979). Fe2S also remains a stable subsolidus phase and becomes 
increasingly stable with temperature to become the liquidus phase above 290 GPa 
(Fig. 9.9) (Tateno et al. 2019; Zurkowski et al. 2022b, c, e). From 22 to 120 GPa and 
at high temperatures, Fe2S adopts the Fe2P-type structure (P-62 m, Z = 3) (Koch-
Muller et al. 2002; Zurkowski et al. 2022d). At lower temperatures, between ~25 
and 140 GPa, Fe2S adopts the Co2P-type (cottunite-type) structure (Pearson symbol 
C23, Pnma, Z = 4) (Oka et al. 2022a, b; Zurkowski et al. 2022b) but exhibits a 
highly compressible a axis and gradually transforms between 120 and 150 GPa into 
the closely related Co2Si structure (Pearson symbol C37, Pnma, Z = 4) (Fig. 9.8) 
(Zurkowski et al. 2022c). The C37 Fe2S phase is stable coexisting with iron to 
solidus temperatures up to 304 GPa (Tateno et al. 2019). Above 120 GPa and at high 
temperatures, tetragonal Fe3S breaks down into Fe + Ni5As2-type Fe5S2 (P63cm, Z 
= 6) (Fig. 9.9) (Zurkowski et al.  2022e). Fe5S2 is observed co-crystallizing with iron 
to at least 200 GPa (Zurkowski et al. 2022e) (Fig. 9.8). FeS-VII (B2) is also observed 
coexisting with iron above 250 GPa, but only at low temperatures (Fig. 9.9) (Ozawa  
et al. 2013; Tateno et al. 2019).

On the sulfur-rich side of Fe3S, Fe2S and Fe12S7 have been identified up to 125 
GPa and high temperatures (Zurkowski et al. 2022d). Under these high P–T, S-rich  
conditions, hexagonal Fe2P-type Fe2S (P-62 m, Z = 3) is observed (Koch-Muller 
et al. 2002; Zurkowski et al. 2022d) and Fe12S7 adopts the Co12P7 structure (P-6, 
Z = 1) (Zurkowski et al. 2020). Interestingly, Fe12S7 contains the same building 
blocks as the Fe2S polymorphs and proposed Fe3S2 structure. The Fe2S hexagonal 
and orthorhombic polymorphs are composed of columns of edge sharing FeS4 tetra-
hedra and FeS5 square pyramids in a ratio of 1:2, respectively. Fe12S7 contains one 
additional column of FeS5 square pyramids such that the ratio of tetrahedral to square
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Fig. 9.9 Phase diagram showing the stable sulfide coexisting with iron estimated to 360 GPa and 
high temperatures. Structures observed across these conditions include the cottunite-type Fe2S 
(Zurkowski et al. 2022b; Oka et al. 2022a, b), Fe3P-type Fe3S (e.g., Seagle et al. 2006; Kamada 
et al. 2010; Thompson et al. 2020; Zurkowski et al. 2022d), Co2Si-type Fe2S (Zurkowski et al.  
2022c, e; Tateno et al. 2019), Ni5As2-type Fe5S2 (Zurkowski et al. 2022d), and B2 FeS (Tateno 
et al. 2019; Ozawa et al. 2013). Fe–Fe3S eutectic melting curve from Mori et al. (2017) is included 
over the pressure stability range of Fe3S and a change in melting curve is inferred associated with 
the onset of stability of Fe5S2 (Zurkowski et al. 2022d). Comparison to the Fe melting curve is 
included (Anzellini et al. 2013) along with the pressure conditions of Earth’s core-mantle boundary 
(CMB) and inner core boundary (ICB)

pyramids is 1:3, and the Ni3S2 structure proposed for Fe3S2 contains only columns of 
FeS5 square pyramids. Reminiscent of the homologous structural series of Fe-oxides 
stable between Fe2O3 and FeO with pressure, the Fe-rich sulfides between Fe2S and 
FeS exhibit related structures that are sensitive to sulfur content with important 
implications for S-rich planetary core crystallization. 

9.2.8 Role of S in Planetary Core Crystallization 

For Fe-S rich planetary cores, Fe3S dominates the core mineralogy up to 120 GPa, 
which accounts for planets between Mars and Venus in size (Seagle et al. 2008;
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Kamada et al. 2010; Mori et al.  2017; Thompson et al. 2020). Complex melting 
relations in the Fe–FeS system above 100 GP (Fig. 9.8) make the core mineralogy 
strongly dependent on the bulk S content and core pressure of the planets. The change 
of liquidus phase from Fe3S to Fe5S2 and then to C37 Fe2S with increasing pressure 
leads to fundamental change of the core mineralogy. For example, at Venus or Earth’s 
core conditions, Fe5S2 becomes the stable Fe-rich sulfide above 120 GPa to melting, 
followed by C37 Fe2S above 290 GPa (Tateno et al. 2019; Zurkowski et al. 2022e) 
(Fig. 9.9). 

Sulfur does significantly depress the eutectic temperature compared to pure iron, 
with ~1500 K difference in eutectic melting temperature compared to pure iron at 
Earth’s outer core boundary conditions (Anzellini et al. 2013; Kamada et al. 2012; 
Mori et al. 2017). Sulfur is a potentially important alloying light element to explain 
the physical properties of Earth’s core. However, geochemical estimates of Earth’s 
core composition indicate that <1.7 wt% S is plausibly in the core (Suer et al. 2017). 
This estimate is compatible with inner-core formation, as it is within the Fe-liquidus 
field based on extrapolations of <6 wt% S Fe–S eutectic compositions at Earth’s 
current inner-core boundary (Mori et al. 2017). Between 100 and 300 GPa at high 
temperatures, sulfur solubility in pure iron at eutectic conditions averages ~ 3.5–4 
wt% with no P–T correlation indicating a likely solubility limit (Mori et al. 2017). 
Given a 1.7 wt% core sulfur content at the conditions of Earth’s inner core crystalliza-
tion, all sulfur would crystallize into the inner core hcp iron phase and not effectively 
contribute to the density contrast at the inner core boundary. On the other hand, 
S partitioning between liquid and solid iron may be strongly influenced by presence 
of other light elements. The role of S in the Earth’s core needs to be assessed with S 
partitioning in a multi-component system at the inner core boundary condition. 

The Martian core, by comparison to Earth’s core, is thought to have formed 
under more oxidizing conditions with significantly higher sulfur concentrations in the 
core (Yoshizaki and McDonough 2020). For an Fe–S–O composition, geochemical 
estimates suggest anywhere from 9 to 19 wt% S in the core with pressures ranging 
from ~20 to 40 GPa (Yoshizaki and McDonough 2020; Stahler et al. 2021; Khan 
et al. 2022; Gendre et al. 2022). As the Martian core is thought to be fully molten 
at present, the S-content in the Martian core must be in a liquidus field that does 
not produce a denser crystallizing phase: either on the S-rich side of the Fe–Fe3S 
eutectic (14–16 wt% S) (Mori et al. 2017) or on the S-rich side of the Fe3S–Fe2S 
eutectic (eutectic composition not known but must be >16 wt% and <22 wt% S). 
This eliminates S contents in the 9–14 wt% range, prescribed by Khan et al. (2022) 
for a more reduced Martian core, as they would produce an Fe-rich inner core unless 
the presence of other light elements alters these phase relations. Oxygen is also 
thought to be an important light alloying element in the Martian core, and at these 
conditions, liquid immiscibility is observed between metallic and O-rich ionic liquid 
(Morard et al. 2022) (Sect. 2.3). The separation of an Fe–O-rich ionic liquid from 
the remaining Fe–S Martian core may result in an effectively higher sulfur content 
in the metallic liquid. For sulfur contents higher than that of Fe2S, the similarity 
in iron content of Fe2S (22 wt% S), Fe12S7 (25 wt% S), and Fe3S2 (28 wt% S) 
may inhibit the formation of a well stratified inner and outer core (e.g., Zurkowski
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et al. 2022d). These Fe-sulfide thermodynamic properties further complicate the 
Martian core paradox, as the core size, oxidation state, fully molten state, and sulfur 
content are difficult to compatibly explain (Yoshizaki and McDonough 2020; Khan 
et al. 2022; Stahler et al. 2021; Gendre et al. 2021). Further experimental work in 
the Fe-S-O-C system and geochemical constraints are needed to explain the recent 
seismic observations of the Martian core (Stahler et al. 2021). 

The Mercurian core is highly reduced and may only contain ~1.5 wt% S (Namur 
et al. 2016); however, at pressures below 15 GPa, associated with Mercury’s outer-
most core conditions, studies of the Fe–S–Si system indicate liquid immiscibility 
(Sanloup and Fei 2004; Morard et al. 2008). An outer layer of Fe-S-rich liquid has 
therefore been proposed at the Mercurian core-mantle boundary (Tao and Fei 2021). 
At these low-pressure conditions, the stable Fe-rich Fe–S phase would be FeS. B8 
FeS-V is likely to crystallize in the outer shell around the Mercurian Fe-Si-rich core 
(Fei et al. 1995). 

9.2.9 Phase Relations in the Fe–C System 

Carbon is a potentially important light element in reduced planetary cores. Owing 
to its low atomic number, carbon can have a significant effect on the density-driven 
thermodynamics of metallic cores even if present in minor amounts. Several iron 
carbides are known to exist or predicted to become stable at high pressures and 
temperatures including: Fe3C, Fe7C3, and Fe2C (e.g., Tateno et al. 2010; Chen et al. 
2012; Liu et al. 2016; Prescher et al. 2015; Mashino et al. 2019; Takahashi et al. 2020; 
Sagatov et al. 2020; McGuire et al. 2021). Fe3C is stable coexisting with iron from 
1 bar to megabar pressures and high temperatures in the cementite structure (Pnma, 
Z = 4) (Fig. 9.10). Calculations suggest that the cementite structure transitions to 
a C-centered monoclinic (C2/m) structure above ~291 GPa and to the Fe3P-type 
structure (I-4, Z = 8) above 305 GPa and to high temperatures (Sagatov et al. 2020), 
but experimental work to 356 GPa and 5520 K indicate that the cementite-type 
Fe3C structure remains stable to these high P–T conditions (Tateno et al. 2010). 
Reported structures of Fe7C3 are conflicting among previous studies, as a hexagonal 
cell and two orthorhombic cells have been assigned to Fe7C3 from ambient pressures 
to 2 Mbar (Herbstein and Snyman 1964; Fruchart and Rouault 1969; Chen et al. 
2012; Prescher et al. 2015). All reported structures, however, are closely related 
and Prescher et al. (2015) finally resolved the structure of Fe7C3 based on 1,473 
reflections to the Ca7Au3 structure (Pbca, Z = 8) (Fig. 9.10). This Fe7C3 phase was 
further observed to 205 GPa and 3700 K (Prescher et al. 2015). Fe2C has recently 
been identified from a structure prediction study to adopt a Pnma-I structure (Co2P-
type, Z = 4) at moderate temperatures up to ~315 GPa. Above these pressures and 
temperatures, Fe2C is predicted to transition to a Pnma-II structure that is structurally 
related to the Pnma-I structure but marked by a change in coordination (Sagatov 
et al. 2020). A similar pressure-induced coordination change and Pnma structural 
distortion is observed in Fe2S around 150 GPa (Zurkowski et al. 2022c)
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Fig. 9.10 Comparisons of the Fe3C phase relations reported by Liu et al. (2016) (light blue dashed 
lines), Mashino et al. (2019) (green solid line), and Takahashi et al. (2020) combined with Tateno 
et al. (2010) (red dashed line). The thermodynamically modelled Fe3C+Fe7C3+Fe decomposition 
reported by McGuire et al. (2021) satisfying the experimentally results by Mashino et al. (2019) 
and Tateno et al. (2010) is shown in the purple dashed line. The high-spin to low-spin transition in 
Fe3C from Chen et al. (2018) is included and the Fe7C3 structure model refined by Prescher et al. 
(2015) is visualized. The melting curve of iron (Anzellini et al. 2013) and the pressure conditions 
of Earth’s core-mantle boundary (CMB) and inner core boundary (ICB) are included 

Up to 6 GPa, Fe3C is the stable Fe-rich carbide that undergoes eutectic melting 
with iron over a limited temperature before melting paratactically to liquid + C 
(diamond or graphite) (Fig. 9.11) (Lord et al. 2009; Nakajima et al. 2009; Fei and 
Brosch 2014). Between 10 and 20 GPa, Fe + Fe3C + liquid melts to Fe7C3 + liquid 
followed by diamond + liquid (Fig. 9.11) (Nakajima et al. 2009; Fei and Brosch 
2014), and the liquidus field of Fe7C3 expands with pressure and temperature (Fei 
and Brosh 2014). Between 5 and 20 GPa, solubility of carbon in iron ranges from 1.5 
to 1 wt%, respectively, and the Fe3C eutectic composition gradually migrates from 
4 wt%  C at 5 GPa to ~3.5 wt%  C at 20 GPa  (Fig.  9.11) (Lord et al. 2009; Fei and 
Brosh 2014).
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Fig. 9.11 Temperature-composition phase diagram for the Fe–C system at 136 GPa (blue) and 330 
GPa (red). The solid and dashed lines show the Fe–C phase diagrams based on the experimental 
work by Mashino et al. (2019) and the experimental and thermodynamic modeling work by Fei and 
Brosh (2014), respectively 

With increasing pressure, differing reports of the decomposition of 
Fe3C+Fe+Fe7C3 and eutectic melting of Fe+Fe3C versus paratactic melting of 
Fe+Fe3C+Fe7C3+liquid exist (Fig. 9.10) (Tateno et al. 2010; Liu et al. 2016; Mashino 
et al. 2019; Takahashi et al. 2020; McGiure et al. 2021). Based on in-situ X-ray 
diffraction collected during laser heating of Fe3C, Liu et al. (2016) reported the 
temperature-independent breakdown of Fe3C above ~150 GPa to form Fe7C3 + Fe. 
Additionally, upon heating, Liu et al. (2016) observed peritectic melting of Fe3C to  
Fe7C3 + liquid, and eutectic melting of Fe + Fe7C3. On the other hand, Mashino 
et al. (2019) observed eutectic melting of Fe + Fe3C to 203 GPa and of Fe + Fe7C3 

to 255 GPa based on in-situ X-ray diffraction and ex-situ chemical characterization. 
Another X-ray diffraction experimental work reported that up to ~330 GPa, Fe3C is  
stable at subsolidus conditions (Takahashi et al. 2020). Up to 200 GPa, Takahashi et al. 
(2020) observed peaks associated with Fe7C3 to grow into the diffraction patterns 
between ~2500 and 4000 K while peaks of Fe3C diminish. Then upon quenching, 
they observed Fe3C recrystallize. This behavior was interpreted as recrystallization 
of Fe3C from a melt coexisting with Fe7C3, suggesting paratactic melting of Fe3C 
to at least 200 GPa. The temperature at which they observed the melting of Fe3C to
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Fe7C3 + liquid is roughly consistent with that of Liu et al. (2016), however, Takahashi 
et al. (2020) did not observe the pressure-induced decomposition of Fe3C into Fe7C3 

+ Fe which does not agree with the decomposition reported by Liu et al. (2016) or  
Mashino et al. (2019). X-ray diffraction experiments and thermodynamic modeling 
by McGuire et al. (2021) identified a Fe3C into Fe  + Fe7C3 reaction phase boundary 
that is consistent with the change in melting relations reported by Mashino et al. 
(2019) and observations of Fe3C up to 356 GPa (Tateno et al. 2010; Takahashi et al. 
2020). Recent first principles calculations are also inconsistent with these studies, 
as they suggest that above 300 GPa, Fe7C3 is no longer energetically favorable and 
should break down into Fe3C (monoclinic or tetragonal)+ Fe2C (Pnma-I or Pnma-II) 
(Sagatov et al. 2020). 

9.2.10 Role of C in Planetary Core Crystallization 

Our current understanding of carbon retention and sequestration into Earth’s core 
during accretion is limited, and little metal-silicate partitioning data exist for carbon. 
Recent work by Fischer et al. (2020) suggests that carbon becomes less siderophile in 
Earth’s deep magma ocean, such that multi-stage core formation models put up to 0.2 
wt% C in the core. For hcp-Fe rather than a carbide to crystallize into the inner core, 
the eutectic melting studies discussed here limit the core carbon content to <3 wt% 
(Fei and Brosh 2014; Mashino et al. 2019; Morard et al. 2017). Up to 255 GPa the 
solubility of carbon into solid iron is estimated around 1 wt% (Fei and Brosh 2014; 
Mashino et al. 2019). Given the geochemical estimates of 0.2 wt% C in the core, all 
of Earth’s core carbon would currently alloy into the hcp-Fe phase in the inner core 
(Mashino et al. 2019) and would contribute considerably to the inner core density 
deficit. Carbon alloyed with iron depletes the melting temperature, and only 0.9 wt% 
C is necessary to lower the temperature profile of the core such that temperatures at 
the core-mantle boundary are below the mantle solidus (Morard et al. 2017). Density 
measurements of Fe3C suggest that 2.81 wt% carbon is required at the inner core 
boundary to match the density deficit compared to pure iron for a purely Fe–C core 
(Hu et al. 2019). Density measurements of carbon dissolved into hcp-Fe alternatively 
indicate that only 0.43–1.30 wt% C is needed to match the density at the inner core 
boundary considering a 5000–7000 K ICB temperature (Yang et al. 2019). 

In the hcp structure, carbon is found to increase the volume of the iron lattice either 
through a mechanism of carbon substitution for iron or interstitial substitution of 
carbon into the tetrahedral sites in the iron lattice (Yang et al. 2019). By incorporating 
carbon into the hcp structure of the inner core, the study by Yang et al. (2019) reveals 
that the a axis becomes increasingly compressible while the c axis becomes less 
compressible. The presence of 1 wt% carbon in the inner core with hcp crystals 
aligned with the c axis oriented along the inner core’s polar axis may explain the 3% 
faster seismic wave travel times along this direction (Yang et al. 2019). Additional 
experiments are needed to assess how the enhanced anisotropy of hcp-Fe with the 
incorporation of carbon contributes seismic anisotropy of Earth’s inner core as well
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as the details of the substitutional versus interstitial carbon incorporation into hcp-Fe 
at high P–T. 

Iron carbides have been suggested as possible C-bearing phases in the Earth’s inner 
core. The shear velocity and poisson’s ratio of Fe7C3 along with the sound velocity 
of Fe3C provide a good match to those of the inner core (Geo et al. 2008; Chen et al. 
2014; Prescher et al. 2015). The observed anomalously low shear wave velocity and 
high Poisson’s ratio in the solid inner core have not been satisfactorily resolved. 
The presence of iron carbides in the inner core is merely based on the required match 
of physical properties between core alloys and the inner core. It requires either high 
bulk C content in the core or drastic shift of the eutectic C composition toward 
the Fe endmember, which is not supported by the cosmochemical and geochemical 
constraints and our current understanding of the melting relations. The solution to 
this inner core paradox between the mineral physics models and geochemical and 
petrological constraints might rely on the melting relations in a multi-component 
iron alloy systems at the inner core boundary conditions to be determined by further 
experiments (Huang et al. 2022). 

In the case of carbon-rich exoplanets, the crystallization thermodynamics are 
more complex as the details of eutectic versus peritectic melting remain unresolved 
on the C-rich side of the phase diagram. C-rich exoplanets (e.g., >8.4 wt%, 30 at % 
C in the core) up to Earth in size may initially crystallize a shallow layer of Fe7C3 

overlain by Fe3C crystallization following the phase boundary reported by McGuire 
et al. 2021 (Fig. 9.10). This prediction assumes that Fe7C3 and Fe3C form eutectic 
melting relations with the coexisting C-rich phase. 

9.2.11 Phase Relations in the Fe–H System 

Hydrogen is a potentially key light element in planetary cores, as it is a cosmo-
chemical building block and becomes strongly siderophile with pressure (Li et al. 
2020; Yuan and Steinle-Neumann 2020). To the degree that volatiles were deliv-
ered to Earth and planetary bodies and retained in their interior during formation or 
accretion in a H-rich protoplanetary nebula, hydrogen would have likely alloyed into 
the core. At ambient pressures, hydrogen is not soluble in solid bcc or liquid iron 
(Okuchi 1997; Iizuka-Oku et al. 2017), however, with increasing pressure above 3.5 
GPa at room temperatures, hydrogen readily dissolves into iron to form FeHx (x ~ 
1) in a double-hexagonal close packed structure (dhcp, P63/mmc, Z = 4) (Badding 
et al. 1991). In this structure, hydrogen is found to occupy the octahedral interstitial 
sites. Stacking faults in the iron layers are prevalent and the associated defect sites are 
refined to accommodate ~3% iron and 6% hydrogen (Fig. 9.12) (Antonov et al. 1998). 
With increasing temperature and pressure, FeHx (x ~ 1) adopts a face-centered cubic 
structure with hydrogen occupying the octahedral sites (fcc, NaCl-type, Fm-3 m, Z 
= 4). The fcc FeHx (x ~1) has been observed up to at least ~145 GPa and 3750 K 
(Kato et al. 2020; Tagawa et al.  2022a, b). The dhcp—fcc FeH phase boundary is 
not well constrained, but upon heating FeH below ~50–60 GPa, dhcp FeH is stable
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to moderate temperatures prior to transforming to fcc FeH, whereas above ~50–60 
GPa fcc FeH is the only stable high P–T phase (Thompson et al. 2018; Kato et al.  
2020; Tagawa et al.  2022a) (Fig. 9.12). Fcc and dhcp FeH undergo a magnetic-to-
nonmagnetic transition between 40 and 60 GPa (Tagawa et al. 2022a; Kato et al.  
2020), which results in a significant increase in the slope of the FeH melting curve 
(Fig. 9.12) (Sakamaki et al. 2009; Tagawa et al.  2022b). 

Between 40 and 150 GPa, FeH is found to melt congruently with a high melting 
temperature (Tagawa et al. 2022b), indicating that a eutectic likely exists between 
hcp-Fe and fcc FeH to Earth and planetary core conditions. The Fe–FeH eutectic 
composition with pressure is not well constrained, but a heating experiment to 1900 K 
at 45 GPa on hcp FeH0.30 resulted in the formation of solid FeH0.20 coexisting with 
FeH0.26 which constrains the degree of solution of H into solid hcp-Fe and the liquidus 
composition at these conditions (Oka et al. 2022b) (Fig. 9.13). The Fe–FeH eutectic 
composition is therefore >26 at % H (0.6 wt%) at 45 GPa, and Oka et al. (2022b)
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approximated a FeH0.42 (0.75 wt% H) eutectic composition at 45 GPa (Fig. 9.13). 
Given that the slope of the melting curve of non-magnetic FeH above 40 GPa is like 
that of iron, Tagawa et al. (2022b) estimated that the eutectic Fe-FeH composition 
may not be significantly pressure dependent (Fig. 9.12). 

9.2.12 Role of H in Planetary Core Crystallization 

In Earth’s core, molecular dynamic calculations combined with core-formation 
models suggest that up to 1 wt% hydrogen sequestered into Earth’s core (Li et al. 
2020; Yuan and Steinle-Neumann 2020), while recent experimental partitioning data 
combined with a multi-stage core-formation model limits the hydrogen incorporation 
into Earth’s core around 0.56 wt% (Tagawa et al. 2021). The Fe—0.75 wt% H eutectic 
composition approximated for the Fe-FeH system above 40 GPa roughly constrains 
that Earth’s core hydrogen content may be limited to <0.75 wt% to crystallize an 
Fe-rich inner core. This constraint is in good agreement with the geochemical esti-
mates of 0.56 wt% H in the core (Tagawa et al. 2021). At these conditions, hydrogen 
would partition similarly between solid hcp and liquid iron; however, eutectic phase 
relationship data do not currently exist at Earth’s core conditions. Oka et al. (2022b) 
estimates ~0.2 wt% hydrogen difference between coexisting solid and liquid iron at 
45 GPa and 1900 K (Fig. 9.13). The presence of hydrogen in Earth’s core would 
likely result in a hydrogenated inner and outer core and would contribute to the 
overall lower density of Earth’s core compared to pure iron but would contribute less 
to the density discontinuity at the inner core boundary. 

As Mars likely formed under more oxidizing conditions compared to Earth, it is 
also possible that hydrogen is a candidate light element in its core. Examination of 
D/H ratios in hydrous minerals in Martian meteorites indicates that Martian mantle 
may contain similar amounts of water as that of Earth’s mantle (Hallis et al. 2012). At 
Martian core conditions (~20–40 GPa), the Fe–H2 phase diagram is quite complex 
in part due to the phase transitions in iron and ambiguity in eutectic melting relations 
between Fe and FeH. At the center of the Martian core, around 40 GPa, Oka et al. 
(2022b) report an approximate FeH0.42 eutectic (0.75 wt% H) (Fig. 9.13). If H were 
involved in Martian core evolution, oxygen is likely a coexisting element through 
the reaction of Fe and H2O (e.g., Fukai 1992). Understanding the core crystallization 
sequence in the 20–40 GPa pressure range requires further melting experiments in 
the Fe–O--H system. Sulfur is anticipated to be the predominant light element in 
the Martian core with oxygen and hydrogen as potential minor components. Recent 
Fe–S–H studies in the Martian core pressure range report liquid–liquid immiscibility 
between Fe–S and Fe–H liquids at these conditions (Yokoo et al. 2022). These results 
add further complexity to the evolution of the Martian core, as upon segregation 
of the S- and H-rich liquids, the Fe–H liquid would likely crystallize dense iron-
hydrides that may sink or remelt at the liquid–liquid interface. This liquid–liquid 
immiscibility may even extend to Earth’s core-mantle boundary (Yokoo et al. 2022).
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The thermodynamics of hydrogen-rich iron-alloy systems therefore requires further 
investigation with important implications for H-rich cores. 

9.2.13 Core Crystallization in Multicomponent Systems 
and Outlook for Future Studies 

As planetary cores are natural systems with complex chemistry, expanding miner-
alogical studies of iron alloys to multi-component Fe–(S, Si, O, C, H) compositions 
is critical to realistically explore their chemical and dynamic properties. Futher-
more, many of the current core paradoxes discussed in this work may be resolved 
with further exploration of multi-component systems. Experimental investigations 
in ternary systems at extreme pressures and temperatures remain less prevalent 
compared to binary iron-alloys, owing to the challenge in examining these systems 
at extreme conditions. For further review on the current state of multi-component 
Fe-alloy thermodynamics, we refer the reader to works such as Hirose et al. (2021). 
Here we will briefly note some interesting differences in multicomponent mineralogy 
compared to the respective binary systems and provide a summary of our current 
understanding of multi-component Fe-alloy phase diagrams. 

A recent study by Tao and Fei (2021) showed that Si dissolves into Fe2S and 
appears to expand its stability field to higher pressures and temperatures. Whereas 
in the Si-free system, Fe3S is the stable sulfide coexisting with iron at 21 GPa and 
1200 K, the presence of Si changes the phase relations at these conditions to (Fe,
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Si)-alloy + Fe2(S, Si) (Tao and Fei 2021). With increasing pressure, Tateno et al. 
(2018) reported that extensive solid solution of S and Si is further observed, where in 
Fe–2–2.7 wt% Si–2–2.1 wt% S compositions, one hcp Fe (S, Si) phase is observed 
upon heating above 80 GPa and 2500 K. These studies highlight that extensive solid 
solution of Si is likely to occur in both iron and iron-sulfides. Fe5S2 was recently 
identified above 120 GPa to adopt a related structure that is observed in Ni-silicides 
at lower pressures (Zurkowski et al. 2022e). The incorporation of Si into Fe5S2 at 
Earth’s core pressures is therefore plausible but has yet to be explored. Additionally, 
at pressures above 240 GPa FeSi, FeS, and even FeO adopt the B2 structure, but 
no multi-component studies have clarified the existence of a B2 Fe(Si, S, O) phase 
and its relation to Earth’s inner core properties. Chemical analysis work on Fe–S–O 
and Fe–Si–O samples recovered from below these pressures contrarily do not show 
evidence for solid solution of O into Fe–S or Fe–Si phases (Hirose et al. 2017; Ozawa  
et al. 2013; Yokoo et al. 2022). 

Experimental studies of the Fe–Si system in an H2 medium show that hydrogen 
dissolves into Fe-silicides and changes the mineralogy compared to the binary Fe–Si 
system. The reaction of H2 with Fe–Si alloys stabilizes the Fe5Si3Hx phase (Mn5Si3-
type, P63/mcm, Z = 3) between 30 and 40 GPa at high temperatures (Fu et al. 2022); 
whereas Fe5Si3 is not reported at these conditions in H-free systems (e.g., Fischer 
et al. 2014; Edmund et al. 2022). These studies, though limited at present, highlight 
exciting areas to continue to explore the complexities of multi-component Fe-alloy 
mineralogy. 

Most of the existing multi-component Fe-alloy studies have been focused on 
tracing the cotectics in Fe–(S, Si, C, O H) ternary systems related Earth’s inner core 
crystallization dynamics (Campbell et al. 2016; Hirose et al. 2017; Tateno et al. 2019; 
Yokoo et al. 2022; Hasegawa et al. 2021; Hikosaka et al. 2022; Oka et al. 2022a, b). 
Figure 9.14 shows a compilation of the current state of the ternary phase diagram 
studies, where the cotectic lines for the ternary systems based on experimental studies 
(Hirose et al. 2017; Tateno et al. 2018; Yokoo et al. 2022; Hasegawa et al. 2021; 
Hikosaka et al. 2022; Oka et al. 2022a, b) and thermodynamic calculations (Campbell 
et al. 2016) are compared to the estimations of the light element contents that best 
match the outer and inner core density (Sata et al. 2010; Fischer et al. 2011a, b; 2012; 
2014; Badro et al. 2014; Thompson et al. 2016, 2018; Huang et al. 2019; Thompson 
et al. 2020; Zurkowski et al. 2022c; Tagawa et al.  2022a) and geochemical estimates 
of the light element contents in the Earth’s bulk core (Fischer et al. 2015, 2020; Rubie 
et al. 2015; Suer et al. 2017; Li et al.  2020; Yuan and Steinle-Neumann 2020; Tagawa  
et al. 2021).

For Earth’s core, the multi-component core alloy must be contained within the 
Fe liquidus field. This is a major limitation for the Fe–S–Si and Fe–Si–O systems 
where neither the density of the outer or inner core can be explained by an Fe–S–Si 
composition that is in the Fe-crystallization field (Tateno et al. 2019). Geochem-
ically consistent compositions in the Fe–Si–C and Fe–O--C systems could poten-
tially satisfy the inner core density deficit but not the outer core simultaneously. Only 
compositions in the Fe-liquidus field of the Fe–O--H and Fe–Si–H systems could be 
consistent with geochemical estimates while simultaneously matching the outer and
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inner core density (Fig. 9.14). In an Fe–H–Si or Fe–H–O core, significant H and Si 
will be incorporated into the inner core and future work will hopefully resolve the 
effects of both Si and H on the elastic properties of the inner core. Compositions in 
the Fe–S–O and Fe–S–C systems could satisfy Earth’s inner and outer core density 
while crystallizing a Fe-rich core, but these compositions are not consistent with 
geochemical estimates of the S, O, and C contents of the core. 

This review highlights the expanse of Fe-alloy mineralogy and phase relations 
at the thermodynamic conditions of rocky planetary cores. Going forward, future 
studies will undoubtedly expand upon multi-component mineralogies that best repre-
sent planetary core compositions. Based on our current understanding of the rocky 
planets in our solar system, future explorations of Earth’s core should likely focus 
on the Fe–H–Si–O system, as ternary studies establish that a core containing these 
elements can match important geophysical and geochemical constraints. Studies of 
Mercury’s core may continue to explore reduced core compositions in the Fe–S–Si– 
C system and studies of the Martian core may continue to explore more oxidized 
Fe–S–O–H compositions. The degree of complexity inherent to multi-component 
Fe-alloy thermodynamics extending to multi-megabar pressures and temperatures 
will likely require interdisciplinary experimental and theoretical techniques but are 
critical to realistically exploring the mineralogy, dynamics, and formational history 
of planetary systems in our solar system and beyond. 
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Chapter 10 
Going Inside a Diamond 

Fabrizio Nestola , Martha G. Pamato, and Davide Novella 

Abstract Diamonds are rare minerals but thanks to their exceptional physical prop-
erties are able to travel through time (they can be up to 3.5 Ga old) and space (from 
great depths within the mantle to the Earth’s surface) often remaining completely 
uncorrupted with respect to the surrounding mantle. Time to time, diamonds can 
encapsulate minerals, providing a window into the deepest regions of the Earth and 
the processes occurring down to depths of not less than 1000 km. This chapter will 
outline the importance of diamonds and their mineral inclusions, covering some of 
the most significant aspects of diamond research. 

Keywords Diamonds · Inclusions · Lithospheric mantle · Super-deep formation ·
Earth’s deep interior 

10.1 Introduction 

Diamonds are not just the most valuable and sort after minerals for jewellery 
(Fig. 10.1) but they are among the most important geological samples in Earth 
Science. This is witnessed by more than 6000 published scientific articles (see www. 
scopus.com) focused on natural diamonds, which allow geologists to understand 
several deep geological processes. In addition, recently the Mineralogical Society of 
America (the largest mineralogy society in the world) dedicated an entire volume of 
876 pages to the study of diamonds (volume 88 of the Reviews in Mineralogy and 
Geochemistry). Indeed, diamonds are the deepest materials reaching the surface of 
the Earth and exhibit an extremely wide range of formation ages, from about 3.6 to 
0.5 Ga (Smit et al. 2022). From time to time, diamonds also transport mineral inclu-
sions directly from great depths of our planet; such inclusions, which often remain 
pristine materials thanks to the protection of the host diamond with respect to the 
surrounding mantle, represent windows into the deepest regions of the Earth. These 
regions are completely inaccessible to any mineralogist or geologist and provide
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Fig. 10.1 A 1-carat gem 
quality diamond, used for 
jewellery (Photo Fabrizio 
Nestola) 

direct insight into what happened (and when…) to the Earth over an extremely wide 
timespan. 

Diamonds are classified in two well distinct categories: (1) lithospheric diamonds, 
which form between about 120 and 220 km depth, with a global mode at 175 ± 15 km 
depth (Nimis et al. 2020); (2) sublithospheric or super-deep diamonds, which instead 
originate much deeper, at depths from about 300 to up to 1000 km. These two cate-
gories of diamonds are described in detail in Sects. 10.2 and 10.3, respectively, along 
with their precious entrapped mineral inclusions. Sections 10.2 and 10.3 also outlines 
a new approach for determining the depth of formation of diamond-host systems for 
both lithospheric and super-deep diamonds. Known as elastic geobarometry, this 
is becoming a widely used technique for characterising host-inclusion geological 
systems (e.g., Angel et al. 2017; Alvaro et al. 2022). 

Finally, Sect. 10.4 focuses on recent discoveries in one of the most debated topic 
in diamond research, the temporal relationships between diamond hosts and their 
mineral inclusions: who was born first? Are inclusions pre-existing materials which 
are then incorporated into younger, growing diamonds or are diamonds and their 
mineral inclusions formed simultaneously from the same chemical reaction? What 
are the geological implications of these two possibilities? 

10.2 Lithospheric Diamonds 

10.2.1 Morphology, Diamond Type, Age, Inclusions 

Lithospheric diamonds represent about 99% of all diamonds. For a detailed introduc-
tion to lithospheric diamonds we direct readers to the recent review by Stachel et al. 
(2022). Lithospheric diamonds usually form between 120 and 220 km depth beneath 
cratonic areas (Fig. 10.2), with an average value of about 175 km (Nimis et al. 2020).
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The most common temperature at which lithospheric diamonds originate within the 
mantle is around 1160 to 1170 (±110) °C (Pasqualetto et al. 2022); however, these 
precious stones can form over a wide temperature window between about 900 and 
1400 °C (Stachel and Harris 2008), and at pressures between about 5 to 7 GPa. 

Lithospheric diamonds are characterized generally by very regular morpholo-
gies, including the octahedron (Fig. 10.3), the most common habit for lithospheric 
diamonds, the cube, the dodecahedron and a series of mixed shapes or twins such as 
the cubo-octahedron, the macles, and others (see Harris et al. 2022 for an extensive 
review on the morphology of monocrystalline diamonds).

A further and very important feature of lithospheric diamonds is their nitrogen 
content and nitrogen aggregation state. Nitrogen is the most common impurity within 
the diamond crystal structure, with nitrogen atoms able to substitute carbon atoms. 
The nitrogen content in diamond is generally determined by secondary ion mass spec-
troscopy or, more commonly, by Fourier Transform infrared spectroscopy (FTIR). 
By using FTIR, it is also possible to determine the so-called “nitrogen aggregation 
state”, which is crucial in classifying the diamond type. In Fig. 10.4, the classification 
scheme for diamonds, based on aggregation data provided by FTIR, is shown. We 
direct the readers to the recent and extensive review by Green et al. (2022).

Most of lithospheric diamonds belong to type I, as they have significant amounts 
of nitrogen impurities which can be present up to about 4000 atomic ppm (part per 
million), with an average value of about 90 at. ppm (Stachel and Harris 2009). 

A very important piece of information about lithospheric diamonds is their age: 
these diamonds can date from about 3.52 Ga years ago until very recent times (some 
diamonds have been dated to only 0.01 Ga years ago). This means that diamonds are 
invaluable sources of information about the Earth over a wide geological timespan. 
The most recent review on the ages of diamonds is by Smit et al. (2022). 

Mineral inclusions in lithospheric diamonds are distinctive of this diamond cate-
gory and for an in-depth discussion we refer readers to Stachel et al. (2022). The most 
abundant inclusions in lithospheric diamonds can be listed as follows (mainly after

Fig. 10.2 Scheme of a cratonic area under which diamonds crystallize. These areas are far from the 
convergent plates boundaries. The dashed curve represents the graphite-diamond boundary, which 
is positioned at about 120–140 km depth; diamond symbols represent diamond formation (the figure 
is not in scale). All diamonds within the yellow areas are lithospheric, while all other diamonds are 
defined super-deep diamonds 
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Fig. 10.3 A lithospheric 
diamond showing a typical 
octahedral shape, with black 
inclusions of Cr-spinel 
(Photo Caterina Canovaro; 
diamond sample provided by 
Dr. J. W. Harris). The  in  this  
image is 2.5 mm across

Stachel and Harris 2008; the percentages reported below can vary considerably from 
locality to locality and must, therefore, be taken as an estimate mainly to illustrate 
which are the most common inclusions): 

– garnet [(Mg,Fe,Ca)3(Al,Cr)2Si3O12] = 32% 
– olivine [(Mg,Fe)2SiO4] = 16% 
– Cr-spinel [(Mg,Fe)(Cr,Fe,Al)2O4] = 16% 
– iron sulphides = 15% [mainly pyrrhotite Fe1-xS]. 
– clinopyroxene [(Ca,Na,Mg,Fe,Al)2Si2O6] = 13% 
– orthopyroxene [(Mg,Fe,Ca)2Si2O6] = 7% 
– coesite (SiO2) = 1% 
– rutile (TiO2) = 1% 

Many other inclusions can be found in lithospheric diamonds, but their abundancies 
are always below 1%. 

10.2.2 Depth of Formation of Lithospheric Diamonds 
by Elastic Geobarometry 

It is well established that lithospheric diamonds form between about 120 and 220 km 
depth. A recent study by Nimis et al. (2020) indicates that the global mode of depth 
of formation of lithospheric diamonds is at 175 ± 15 km. Most data relevant to 
determining depth of origin of diamonds are obtained by classical “chemical” data 
measured on their mineral inclusions; this approach is based on several methods,
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Fig. 10.4 Classification of diamonds carried out by Fourier-Transform Infrared spectroscopy 
(labels for each atom are reported in the figure). Redrawn after Breeding and Shigley (2009)

and we direct readers to Nimis (2022) for an extensive review. However, more 
recently, a new approach for determining depth of origin of lithospheric diamonds 
has been developed, known as “elastic geobarometry”. Research by Izraeli et al. 
(1999), Sobolev et al. (2000), Howell and Nasdala (2008), Howell et al. (2010), 
Nestola et al. (2011), and Howell et al. (2012) demonstrated the considerable poten-
tial of this approach around 10–20 years ago, and the method is now being actively 
developed and refined, providing very reliable results. The approach is based on 
the thermo-elastic contrast between a diamond host and its inclusions, and impor-
tantly, can be applied to various diamond-inclusion pairs. A recent review on elastic 
barometry is published by Angel et al. (2022). 

The elastic geobarometry method has been successfully for olivine, garnet, kyanite 
and Cr-spinel inclusions in diamonds. Specifically, elastic geobarometry provided 
pressures of formation of 4.8–6 GPa for temperatures between 930 and 1250 °C 
for garnet inclusions in lithospheric diamonds from Borneo (Kueter et al. 2016), a 
pressure of 5.2 GPa for a temperature of 1120 °C for a kyanite inclusion in diamond
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from Voorspoed (South Africa) (Nestola et al. 2019a), a pressure of 6.5 GPa for a 
temperature of 1125 °C for a Cr-spinel inclusion within a diamond from Udachnaya 
(Russia) and a pressure of formation of 6.2 GPa for a temperature of 1200 °C for an 
olivine inclusion within a Chinese diamond (Wang et al. 2023). 

Summarizing, data obtained by elastic geobarometry on lithospheric diamonds 
have, to date, involved four types of inclusions of which at least three are among the 
most abundant ones (garnet, olivine, Cr-spinel). It is also evident that this approach 
nearly parallel the modal global depth proposed by Nimis et al. (2020), with a pres-
sure, in average, close to 5.9 GPa, corresponding to a depth equal to about 175 km. 
This is very promising, and indicates that the method could be a robust approach 
which, in principle, can be applied to any inclusion within a diamond. As explained 
in Angel et al. (2022), the elastic geobarometry approach does, however, require 
precise and accurate constraints on the thermoelastic parameters of mineral inclu-
sions in diamond. Unfortunately, these data are not always available, even for some 
common minerals. 

10.3 Super-Deep Diamonds 

10.3.1 Morphology, Diamond Type, Age, Inclusions 

As we mentioned earlier, super-deep diamonds are those considered to have crystal-
lized much deeper than lithospheric diamonds, between about 300 and 1000 km depth 
(for example, see Stachel et al. 2005; Walter et al. 2011; Pearson et al. 2014; Smith 
et al. 2018). Super-deep diamonds are certainly the deepest minerals reaching the 
Earth’s surface and thus, when they entrap minerals, provide a window on the deepest 
regions of our planet (see Fig. 10.5 for examples of typical super-deep diamonds). 
For an extensive review on super-deep diamonds we direct the readers to Walter 
et al. (2022) and references therein. Unfortunately, for those scientists that study 
diamonds, super-deep diamonds only represent about 1% of all diamonds, and their 
extreme rarity makes their investigation very challenging.

The age of super-deep diamonds is, currently, one of the most complex, unsolved 
problems in diamond research. Until 2010, no age data for super-deep diamonds had 
been reported in the literature. Bulanova et al. (2010) published the first age for a 
super-deep diamond from Brazil, reporting a very young age of 0.101 ± 007 Ga, 
much younger than the average of lithospheric diamonds. As also reported in the 
extensive review by Smit et al. (2022), later, unpublished data (Smith and Shirey, 
unpublished data) on the same diamond studied by Bulanova et al. (2010) suggests 
an age of 0.650 ± 0150 Ga, which is notably older than the first age reported but 
still young with respect to lithospheric diamonds. Hutchison et al. (2012) reported 
an age of 1.27 Ga, again on a Brazilian diamond. From these studies, it is evident 
that, at present, any discussion about the age of super-deep diamonds is limited by a 
lack of data.
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Fig. 10.5 Typical super-deep diamonds with irregular shapes. The diamonds are tens carats (Photo 
© GIA. Reprinted by permission)

In comparing lithospheric diamonds and super-deep diamonds it appears clear 
that there are many distinguishing differences, the most important of which, beyond 
the depth of formation, are as follows: 

– super-deep diamonds often show extremely low nitrogen contents, with an average 
lower than 10 at. ppm and very often with values close to zero (Stachel et al. 2009); 
thus, super-deep diamonds are usually classified as Type II; 

– super-deep diamonds lack regular morphologies, in contrast to the very regular 
shapes exhibited by lithospheric diamonds; 

– super-deep diamonds entrapped very unusual and distinctive mineral inclusions; 
in detail, the most abundant mineral in super-deep diamonds is periclase (Mg,Fe)O 
(improperly termed ‘ferropericlase’ in the literature), followed by breyite CaSiO3 

(Joswig et al. 1999; Brenker et al. 2021) (previously referred to as CaSiO3-
walstromite), majoritic garnet, low-nickel enstatite (in super-deep diamond litera-
ture, enstatite associated to ferropericlase is considered a retrogressed bridgmanite 
when has low or no Ni), larnite Ca2SiO4, CaSi2O5 titanite-structure, jeffbenite 
(with the same stoichiometry as a garnet, Nestola et al. 2016), CaTiO3 perovskite, 
olivine or its high-pressure form ringwoodite (see Pearson et al. 2014; Lorenzon 
et al. 2022 and Gu et al. 2022), in rare instances clinopyroxene, and SiO2 (likely 
as a retrogressed phase from stishovite), and a series of other less abundant phases 
(see Kaminsky 2012 and Walter et al. 2022 for extensive reviews about inclusions 
in super-deep diamonds).
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10.3.2 Depth of Formation of Super-Deep Diamonds 
by Elastic Geobarometry 

The main problem in applying elastic geobarometry to super-deep diamonds is that 
members of this rare category of diamond show evidence for strong plastic defor-
mation (Ragozin et al. 2020); therefore the approach, successfully developed for 
lithospheric diamonds, in terms of elasticity, cannot be reliably used to determine 
the depth of super-deep diamond formation. This means that any attempt to deter-
mine the depth of formation of super-deep diamonds using elastic geobarometry can 
only provide a minimum pressure determination. However, recent work on a breyite 
inclusion, CaSiO3, (Anzolini et al.  2018) demonstrated that diamond-breyite pairs 
can provide meaningful results even in terms of minimum pressure determinations. 
Considering that breyite is the second most abundant mineral in super-deep diamonds 
(Brenker et al. 2021), this is certainly quite promising. 

A novel approach in determining the depth of formation of super-deep origin 
diamond using the elastic geobarometry method was developed in 2019 by Anzolini 
and coauthors, who studied ferropericlase inclusions in Brazilian diamonds. Anzolini 
et al. (2019) attempted to develop a novel plasto-elastic geobarometry method which 
takes into account changes in the physical properties of a diamond host during its 
ascent to the Earth’s surface. This model reasonably assumes that diamond behaves 
elastically in the upper mantle, and behaves plastically in the transition zone and 
lower mantle. This novel approach applied to diamond-ferropericlase from Brazil 
provided a depth of formation within the transition zone at about 15.7 GPa. Similar 
values were obtained on ferropericlase inclusions in blue diamonds (Smith et al. 
2018, see Fig. 10.6). Although there is significant complexity behind this method, 
we consider it a good starting point in developing the most reliable methods to retrieve 
depth of origin for super-deep diamonds. As remarked by Anzolini et al. (2019), in 
order to get more reliable depth data it will be necessary to determine the strength of 
diamond to much higher temperatures and pressures than currently provided in the 
literature (e.g., 10 GPa and 1550 °C, Weidner et al. 1994).

More conventional approaches to obtaining the depth of formation or origin of 
super-deep diamonds are available in the literature. For example, the composition of 
majoritic garnets is often used for this purpose (see the recent work by Thomson et al. 
2021). Pressure–temperature stability fields of specific minerals can also be used to 
constrain the origin of super-deep diamond. For example, the presence of ringwoodite 
in diamonds (see Pearson et al. 2014; Gu et al.  2022; Lorenzon et al. 2022) constrains 
the depth of origin to between about 525 and 660 km in the transition zone, and the 
association of ferropericlase and low-Ni enstatite in super-deep diamonds is often 
considered a typical lower mantle assemblage, i.e., a depth of origin below the 660 km 
depth (see Stachel et al. 2005), as enstatite is thought to be a retrograde product of 
bridgmanite. An inclusion of CaSiO3 perovskite with a certain TiO2 content can 
constrain the depth of diamond formation to more than 22 GPa (Nestola et al. 2018a, 
b). Furthermore, the presence of post-spinel phases constrains the formation pressure 
to a minimum value of 18 GPa (see Agrosì et al. 2019). Many other examples could
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Fig. 10.6 Ferropericlase 
inclusions (50–100 µm black 
minerals) in blue, super-deep 
diamonds (Smith et al. 
2018). Photo by Evan Smith, 
GIA

be cited here, however, a detailed and recent review on P–T data on diamonds can 
be found in Nimis et al. (2022). 

10.4 Temporal Growth Relationship Between Diamond 
and Its Mineral Inclusions 

One of the most important debates in diamond research is the temporal growth 
relationship between diamond and its mineral inclusions: which was born first? Were 
inclusions pre-existing materials before their encapsulation during later diamond 
growth, or were inclusions and diamonds created simultaneously as a consequence 
of the same or related chemical reactions? Furthermore, what are the geological 
implications of one or the other possibility? 

Before discussing such important aspects of diamond research, it is necessary 
to remark that in the literature, inclusions born before their diamond hosts are 
called “protogenetic”, while inclusions formed together with their diamond hosts are 
referred to as “syngenetic”. Finally, those inclusions that were formed after diamond 
formation are termed “epigenetic” and are not usually relevant in terms of geological 
implication. 

It is evident that if an inclusion is syngenetic, any implications regarding its 
petrology, geochemistry, and mineralogy can also be extended to its diamond host. In 
this instance, the geochemical and petrological environment under which a diamond 
formed within the mantle, and indeed the age of formation, are assessed by studying 
its mineral and/or fluid inclusions. On the other hand, the study of protogenetic
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inclusions cannot completely guarantee that what we get in terms of petrology, 
geochemistry and age can be directly applied to their diamond hosts. 

How can we understand whether an inclusion is syngenetic or protogenetic? 
Unfortunately, this is not a trivial exercise and many authors have faced this 
challenging question. 

In the literature, syngenesis is generally assumed based on two main arguments: 

(1) Epitaxial growth between diamond and its inclusions (see Orlov 1977). Epitaxial 
growth, i.e., the coincidence of crystallographic planes between a host diamond 
and a given mineral inclusion in case of diamond-inclusion system, is not defini-
tive evidence of syngenesis; indeed, even if we accept that a diamond and one of 
its inclusions have grown epitaxially, it is not clear why this should readily 
imply synchronicity. In fact, for epitaxial growth of a mineral on a substrate, 
it is necessary that the substrate is already pre-existing before mineral growth 
commences. For instance, it is reasonable to postulate that a diamond can grow 
with an epitaxial relationship to an inclusion substrate where the inclusion is 
2 Ga years older than the diamond. In addition, at least for all common inclu-
sions in diamonds (garnet, olivine, sulphides, Cr-spinel, clinopyroxenes), it has 
not yet been conclusively demonstrated that they show epitaxial relationships 
with their hosts (see Nestola et al. 2014, 2017, 2019b; Milani et al. 2016; Nimis 
et al. 2019; Pamato et al. 2021; Pasqualetto et al. 2022). 

(2) Shape of the inclusions within their diamond hosts. Very often, inclusions in 
diamonds show inherited diamond shapes and not their own symmetry-allowed 
morphologies or habits. This is typical for almost all inclusions in diamonds from 
olivine to garnets, from pyroxenes to Cr-spinels, and others (see for example 
Fig. 10.7). This common feature has, almost always, been considered as possible 
evidence of syngenesis (e.g., Meyer 1985 and others). However, although the 
imposition of diamond shape on inclusions still needs to be addressed from a 
quantitative point of view, recent crystallographic research has demonstrated 
that even protogenetic inclusions can exhibit shapes imposed by host diamonds 
(see Milani et al. 2016 in which more than 60 olivine inclusions in diamonds 
from various provenances worldwide were investigated).

On the other hand, arguments in favour of protogenesis can be here summarized based 
on a series of published studies. For example, Thomassot et al. (2009) demonstrated 
that sulphide inclusions in Jwaneng diamonds, based on geochemical evidence, were 
certainly pre-existing materials, i.e., protogenetic [in accordance with the findings of 
Spetsius et al. (2002) and Taylor and Anand (2004)]; Bruno et al. (2016) concluded 
that olivine inclusions (and likely other silicates) have no chemical affinity with host 
diamonds; Jacob et al. (2016), based on plastic deformation features in sulphides, 
inferred that such minerals must have crystallized before being encapsulated by the 
diamond host; Milani et al. (2016), Nestola et al. (2017), Pamato et al. (2021), and 
Pasqualetto et al. (2022) demonstrated that olivine, clinopyroxene, Fe-sulphides, and 
garnet inclusions in diamonds are often clearly protogenetic, occurring as clusters 
of inclusions with the same crystallographic orientation, but at the same time, with a 
random orientation overall with respect to their diamond hosts (see Fig. 9 of Angel
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Fig. 10.7 Cr-spinel 
inclusions in lithospheric 
diamonds with characteristic 
inherited diamond shapes 
(Photo Caterina Canovaro; 
diamond sample provided by 
Dr. J. W. Harris)

et al. 2022 for a detailed explanation). This crystallographic evidence (also reported 
in some cases for Cr-spinels, Nimis et al. 2019) has been interpreted as a ‘smoking 
gun’ for pre-existing inclusions before passive entrapment by diamonds (an extensive 
review on this approach is given by Angel et al. 2022). 

Summarizing and comparing arguments in favour of syngenesis and/or protoge-
nesis, it is evident that arguments in favour of syngenesis are often weak and poorly 
supported by quantitative data, while those in favour of protogenesis are defini-
tively more robust, at least at present. However, in general it is still reasonable to 
conclude that definitive evidence for whether any type of inclusion is syngenetic 
and/or protogenetic is lacking. 

In discussing the syngenesis/protogenesis issue, it is clear that one of the most 
critical aspects is the age of diamond hosts. To date diamonds, it is necessary to 
date their mineral inclusions using the well-known Sm–Nd, Re–Os, Rb–Sr, Pb–Pb, 
Ar–Ar isotopic systems (see Smit et al. 2022). However, in case of protogenetic 
inclusions, the risk is that their age does not coincide with that of their diamond 
hosts. However, three recent studies demonstrated that even in case of protogenesis, 
model ages of inclusions and diamonds could be synchronous, e.g., encapsulation by 
diamond at high temperature would reset the isotopic system, and thus the model age 
of the inclusion would match that of diamond formation (see Nestola et al. 2019b; 
Pamato et al. 2021; Pasqualetto et al. 2022). This happens when cation diffusion 
within inclusion’s crystal structure is rapid enough to allow re-equilibration and 
resetting of the isotopic system at the time of the diamond entrapment. Nestola et al. 
(2019b) demonstrated that model ages obtained from protogenetic garnets would be 
synchronous with formation of diamond hosts in instances where Sm–Nd systematics 
were applied to crystals smaller than about 0.1 mm, for temperatures of diamond 
crystallization exceeding 1000 °C. Similarly, Pamato et al. (2021) demonstrated that
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protogenetic sulphides dated using the Re-Os system are synchronous with their 
diamond hosts. In contrast, Pasqualetto et al. (2022) showed that dating protogenetic 
clinopyroxenes using Sm–Nd systematics almost never provides the age of diamond. 

10.5 Conclusions and Outlook 

The importance of natural diamonds in Earth Science research is evident. Diamonds 
and their inclusions provide key information on a wide range of geological processes, 
from the greatest depths to the surface and vice versa. We have learnt much from 
the study of natural diamonds, and diamond research has opened a new branch 
of science focussed on those regions of our planet that would, otherwise, remain 
inaccessible. Very often, investigation of diamonds and their inclusions allows us 
to confirm or build upon key findings and discoveries from laboratory studies (i.e., 
the discovery of hydrous ringwoodite in diamonds, Pearson et al. 2014, Gu et al.  
2022, which had only been predicted by laboratory experiments before 2014; breyite, 
CaSiO3, that Gasparik et al. 1994 synthesised in the laboratory before its discovery 
in diamonds; titanite-structured CaSi2O5, found in diamond by Brenker et al. 2005, 
which was first synthetized in the laboratory; and finally tetragonal ZrO2, Lorenzon 
et al. 2022, which had not been found in nature before 2022). There is enormous 
potential for future work in this exciting research field, as we unlock new secrets of 
the Earth’s deep interior. 

In recent years, mineralogy has become a key area within the field of diamond 
research. Mineral inclusions allow scientists to constrain the geochemical environ-
ments and mechanisms of diamond formation, but they also allow them to understand 
the depths and temperatures at which they form, and not least, the age of the diamond 
formation. What questions remain to be answered about natural diamonds? 

We have learnt much about the depths and temperatures at which lithospheric 
diamonds form beneath the world’s cratonic areas, and about how and when litho-
spheric diamonds formed. However, we do not yet know why many inclusions have 
diamond-imposed shapes, or fully understand why abundances of mineral inclu-
sions within lithospheric diamonds differ markedly from those we expect in diamond 
source regions based on laboratory experiments (e.g., experiments predict that the 
mineralogy of the subcratonic mantle should be approximately 60% olivine, 20% 
garnets, 20% pyroxene). There remain many unanswered questions regarding super-
deep diamonds. Currently, we do not really know when super-deep diamonds formed, 
or the growth relationships between inclusions and super-deep diamonds. We do not 
know how deep in the lower mantle diamonds can form, and what might control 
the maximum depth of diamond formation. We have yet to discover demonstrable 
mineral inclusions of the MgSiO3 bridgmanite structure within super-deep diamonds, 
even though this is volumetrically the most abundant mineral in the lower mantle. 
We do not know why this might be; super-deep diamonds instead contain inclu-
sions of low-Ni enstatite, and perhaps we will never find bridgmanite. Although we 
have discovered inclusions of ringwoodite, we have yet to discover inclusions of the
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other major component of the mantle transition zone, wadsleyite. Why this is the 
case it remains a mystery. Many other unanswered questions regarding super deep 
diamonds could be added. Without doubt, mineralogy has much to teach us about 
the nature of diamond formation and of the deepest regions of the Earth. 
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Chapter 11 
Mineralogy of Returned Sample 
from C-Type Near-Earth Asteroid 
(162173) Ryugu 

Shogo Tachibana 

Abstract Hayabusa2 spacecraft returned for the first time the sample from Cb-type 
(carbonaceous) near-Earth asteroid (162173) Ryugu. The sample has a close affinity 
to CI chondrites mineralogically, petrologically, and geochemically. CI chondrites 
are the most chemically pristine meteorites in the Solar System but the rarest in the 
meteorite collection. This suggests that CI chondrite-like material is more common 
in the Solar System, but the terrestrial atmosphere has worked as a filter resulting in 
the biased meteorite collection. In contrast to their chemical primitiveness, Ryugu 
rocks are heavily aqueously altered in a closed system like CI chondrites. The Ryugu 
samples are mostly comprised of minerals such as saponite, serpentine, dolomite, 
breunnerite, pyrrhotite, pentlandite, magnetite, and apatite, which are secondary 
phases formed during aqueous alteration. Fluid inclusions within a pyrrhotite grain 
were CO2-containing aqueous solutions, implying that the Ryugu’s parent planetes-
imal may have contained CO2 ice as one of its original ingredients, which is stable in 
the low-temperature outer region of the Sun’s protoplanetary disk. Dolomite precip-
itation occurred ~5 Myr after the Solar System formation, when dolomite was in 
equilibrium with magnetite in the aqueous fluid at ~40 °C. Framboidal magnetite 
has recorded the magnetic field during its formation during the aqueous alteration, 
and the recorded paleomagnetic intensity of 30–700 μT indicates that the Ryugu’s 
parent planetesimal had already been transported in the inner region of gaseous 
protoplanetary disk. The first evidence of space weathering on a C-type asteroid 
was also found on some Ryugu particles, of which characteristic feature is dehy-
dration in the space weathered layer. Dehydration caused by space weathering may 
explain the shallow OH-related absorption depth that the spacecraft observed during 
its proximity observation. Mineralogy of Ryugu samples demonstrates that CI chon-
drites have undergone terrestrial weathering that altered original Fe–Ni sulfides into 
sulfates and ferrihydrite and that the Ryugu sample is currently the best sample to 
determine the Solar System elemental abundance.
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11.1 Introduction 

The Solar System was born through the collapse of a molecular cloud core, which 
is a denser region of a molecular cloud, 4.567 billion years ago. As a natural conse-
quence of star formation, gas and dust with a large angular momentum formed a 
disk structure, called a protoplanetary disk, in which various chemical and physical 
processes occurred to form a variety of Solar System bodies, including the Earth. 

Especially, the chemical evolution of the Solar System materials prior to planet 
formation occurred within the first several million years since the formation of the 
Solar System. The record of such vigorous evolution processes has been found in 
pristine extraterrestrial materials such as chondrites, which have not experienced 
melting nor differentiation on their parent bodies, and interplanetary dust particles, 
some of which may have been originated from comets. 

One of such pristine materials are carbonaceous chondrites (e.g., Weisberg et al. 
2006). Many of them have not experienced severe thermal metamorphism while 
keeping a non-equilibrium assemblage of minerals. Some carbonaceous chondrites 
may have contained ice as primary materials and suffered aqueous alteration that 
transformed primary minerals (at least partly) to secondary minerals due to the 
melting of ice on the parent planetesimals (e.g., Brearley 2006). Hydrated carbona-
ceous chondrites contain higher abundances of organic matter, which also records 
the evolutional history of the Solar System and is of astrobiological interest, than 
other chondrite groups. 

Carbonaceous chondrites, consisting of ~4% of meteorites in the terrestrial collec-
tion by number (Meteoritical Bulletin Database), have been considered to be from C-
type asteroids because of their spectral similarity (low albedo and relatively feature-
less spectra in the visible to near infrared wavelength range) (e.g., Bus and Binzel 
2002). Because C-type asteroids are dominated in the middle and outer region of the 
main asteroid belt, they are expected to be a key witness to the early Solar System 
evolution. However, a link between carbonaceous chondrites and C-type asteroids 
have been a longtime hypothesis that should be tested. 

Hayabusa2 was the sample return mission (2014–2020) aimed at exploring a Cb-
type near Earth asteroid (162173) Ryugu (Tsuda et al. 2013, 2022) to test this hypoth-
esis. The samples from Ryugu, the first returned material from C-type asteroids, are 
expected to record not only the history of the asteroid but also the early evolution of 
the Solar System (Tachibana et al. 2014). If the samples contain hydrated silicates 
and organics, similar to those found in carbonaceous chondrites, the samples are also 
the subject of discussion on the delivery of volatiles such as water and organics to the 
early Earth as a potential source of ocean and life. Hayabusa2 returned the sample
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from Ryugu on December 6, 2020, and the samples have been analyzed to charac-
terize what the C-type asteroid Ryugu is and to investigate the history of Ryugu in 
the context of the Solar System formation. 

In this chapter, we review the Hayabusa2 mission and the highlights of the Ryugu 
sample analysis from the mineralogical perspective. 

11.2 Hayabusa2 and Asteroid Ryugu 

Hayabusa2 spacecraft (Fig. 11.1) that had its initial wet mass of 609 kg used the ion 
engine system for propulsion. The basic design of the spacecraft was similar to that 
of Hayabusa, which returned surface dust from the S-type asteroid (25143) Itokawa, 
but with technical improvements and implementation of new technologies (Tsuda 
et al. 2013, 2022). 

The scientific instruments on board were a multi-band telescopic camera (ONC-
T), wide-angle cameras (ONC-W1 and -W2), a laser altimeter (LIDAR), a near-
infrared spectrometer (NIRS3), a thermal infrared imager (TIR), a small carry-on 
impactor (SCI), a deployable camera (DCAM3), and a sampler. The ONC-T, ONC-
W1 and -W2 cameras were used for optical navigation of the spacecraft as well. The 
spacecraft also carried one lander (MASCOT) and three rovers (MINERVA-II-1A, 
MINERVA-II-1B, and MINERVA-II-2) for surface investigation.

Fig. 11.1 Schematic illustration of the Hayabusa2 spacecraft and asteroid (162173) Ryugu. (c) 
JAXA, Univ. Tokyo, Kochi Univ., Rikkyo Univ., Nagoya Univ., Chiba Inst. Tech., Meiji Univ. Univ. 
Aizu, AIST 
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11.2.1 Proximity Observation and the Results 

Hayabusa2 launched off on December 3, 2014, and arrived at Ryugu (Fig. 11.1) 
on June 27, 2018. This section briefly summarizes the scientific findings during the 
proximity observation from June 2018 to November 2019. 

Hayabusa2 discovered that Ryugu has a spinning top shape with an equatorial 
ridge (mean radius of 448 ± 2 m) (Watanabe et al. 2019). It rotates retrogradely with 
a period of 7.6326 h, and the obliquity of spin axis is 172°. The gravity measurement 
showed that the bulk density of the asteroid is 1.19 ± 0.03 g cm–3 (Watanabe et al. 
2019), which is smaller than those of typical carbonaceous chondrites. The low bulk 
density and the presence of abundant decameter-sized boulders, which are too large 
to be impact ejecta from craters on Ryugu, suggests that Ryugu is a rubble-pile 
body formed through the accumulation of impact fragments of a larger ancestor 
body (Watanabe et al. 2019; Sugita et al. 2019). The surface is darker than most 
meteorites, and its standard reflectance is 1.88 ± 0.17% at 0.55 μm (Sugita et al. 
2019). 

A weak 2.72-μm absorption feature of O–H vibration in hydrous silicates was 
found by NIRS3 ubiquitously over the surface (Kitazato et al. 2019), which was 
attributed either to partial dehydration of hydrous silicates or to lack of severe 
aqueous alteration in the Ryugu’s parent planetesimal (Kitazato et al. 2019, 2021). 
The TIR observation demonstrated that surface boulders have low thermal inertia 
(~300 J m–2 K–1 s–1/2), lower than those of carbonaceous chondrites (Okada et al. 
2020). A similar thermal inertia (~280 J m–2 K–1 s–1/2) was also obtained by the 
MASCOT lander for a ~3-cm pebble (Grott et al. 2019). These results indicates that 
Ryugu’s surface materials are more porous than carbonaceous chondrites (Grott et al. 
2019; Okada et al. 2020). 

The spacecraft made an asteroidal-scale impact experiment in April 2019, where 
a small carry-on impactor (SCI) hit the surface at a velocity of ~2 km s–1 (Arakawa 
et al. 2020). A crater with a diameter of ~15 m (nicknamed as Omusubikororin 
Crater) was created by the impact. The size of the crater and the observation of the 
impact event with DCAM3 demonstrated that that the Ryugu surface is composed 
of a cohesionless material similar to loose sand (Arakawa et al. 2020). 

11.2.2 Sample Collection 

The concept and design of the Hayabusa2 sampler are basically the same as the orig-
inal Hayabusa (Tachibana et al. 2014; Sawada et al. 2017; Okazaki et al. 2017), and 
the sampler system was developed in clean environments with continuous monitoring 
of potential contamination (Sawada et al. 2017; Sakamoto et al. 2022). In order to 
collect sufficient amount of samples compliant with both monolithic bedrock and 
regolith targets, a 5-g projectile made of tantalum was shot at ~300 m s–1 when the 
1-m long sampler horn (Fig. 11.2) made contact with the surface. The impact ejecta
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Fig. 11.2 (Left) Schematic illustration of the Sampler system. (Middle) The Sampler horn on-orbit 
configuration. (Right) The Hayabus2 sample container. Modified from Sawada et al. (2017) 

was captured in a sample catcher through the sampler horn and a conical horn under 
a microgravity condition. The sample catcher (~45 cm3 in volume), located at the 
top-end of the conical horn, had three separate chambers to store samples obtained 
at different locations separately (Sawada et al. 2017; Okazaki et al. 2017). 

The first touchdown was made at the location near the equatorial ridge in 
February 2019, and the second touchdown was done ~20 m north from the SCI-
made Omusubikororin crater in July (2019) (Fig. 11.3) (Morota et al. 2020; Tachibana 
et al. 2022). For both touchdown operations, temperature increase of projectors was 
confirmed, which was consistent with that observed when the projectile was shot in 
the on-ground shooting test. A large number of particles ejected from the beneath of 
the sampler horn were observed by a sampler-horn monitor camera (CAM-H) soon 
after touchdown for both operations (Tachibana et al. 2022), which also suggests that 
the projectile was shot as planned (Sawada et al. 2017).

After two sampling operations, the sample catcher was transported into the sample 
container inside the Earth re-entry capsule and sealed in August 2019. The container 
sealing was made with the aluminum metal sealing system (Okazaki et al. 2017), 
to avoid terrestrial contamination when returning to Earth and to also keep volatiles 
released from the sample inside the sample container. 

11.3 Hayabusa2 Returned Sample from Ryugu 

The Hayabusa2 spacecraft delivered its reentry capsule on December 6, 2020, to 
Woomera, South Australia. No damage to the capsule was observed at the landing 
site (Fig. 11.4), and the capsule was transported to the Quick Look Facility (QLF) in 
the Woomera Prohibited Area. The sample container was carefully taken out of the
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Fig. 11.3 Global map of the spectral slope, indicated by the color bar, superimposed on a v-band 
image map. The spectral slope is measured between the b-band (0.48 μm) and the x-band (0.86 μm) 
(Sugita et al. 2019; Morota et al. 2020). The white arrows indicate the locations of the first touchdown 
(TD1) and the second touchdown (TD2). Modified from Tachibana et al. (2022)

Fig. 11.4 (Left) The Hayabusa2 reentry capsule found on the ground. (Right) The Hayabusa2 GAs 
Extraction and Analysis system (GAEA) (Miura et al. 2022)

reentry capsule at the QLF. The temperature monitor attached to the sample container 
indicated that the container was never heated up to 65 °C, which is lower than the 
maximum daytime temperature at the Ryugu surface. The container was cleaned in 
the clean booth at the QLF and was installed onto the Hayabusa2 GAs Extraction 
and Analysis system (GAEA) (Fig. 11.4) (Miura et al.  2022; Okazaki et al. 2022a).
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After the overnight evacuation of the vacuum line of GAEA, on December 7, the 
bottom of the sample was pierced with a tungsten carbide needle to release sample 
volatile components held inside the sample container (Okazaki et al. 2022a). The gas 
extracted from the sample container was split into four gas tanks at room temperature, 
and the residual gas in the system was then trapped into two gas tanks cooled at 
liquid nitrogen temperature. A fraction of the gas was analyzed by a quadrupole 
mass spectrometer (WATMASS, Tokyo Electronics). The sample container was put 
into a nitrogen-purged anti-vibration transportation box and was safely transported 
to the curation facility at ISAS/JAXA on December 8, 2020 (~57 h after the capsule 
landing).

The Hayabusa2 sample container was sealed with the metal-to-metal sealing 
system. The container lid was pressed against the container edge with a pressure 
load of ~2700 N through pressure springs (Sawada et al. 2017; Okazaki et al. 2017). 
To open the container in the clean chamber designed for Ryugu samples in vacuum, 
the container was installed into the container opening system. The pressure springs 
and the outer lid with latches were then taken apart from the container while keeping 
the pressure load constant. During this operation, two mm-sized dark-colored parti-
cles were found, and it was later turned out that they were Ryugu particles expelled 
from the sample container in space before the container closing (Nakato et al. 2022). 

The container with the opening system was then attached to the clean chamber, 
which was designed to maintain the Ryugu samples in vacuum, and was opened 
after the chamber evacuation. The particles inside the container had the following 
characteristics (Fig. 11.5): (1) Particles were found in two separate chambers used 
for two landing operations at Ryugu, indicating that the samples at the different 
surface locations were obtained successfully. (2) The particles were black in hue, 
consistent with the color of Ryugu boulders (Sugita et al. 2019). (3) Millimeter- to

Fig. 11.5 Ryugu particles 
collected during the first 
touchdown operation. The 
diameter of the sample 
canister is 48 mm (Sawada 
et al. 2017)
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centimeter-sized pebbles are present. Centimeter-sized grains, close to the maximum 
obtainable size (Sawada et al. 2017; Thuillet et al. 2019), are found in the sample at 
the second touchdown site. (4) The particles’ morphology is similar to those observed 
for Ryugu’s surface pebbles, which were observed during the touchdown operations 
(Tachibana et al. 2022). (5) Visible and infrared reflectance spectra of the particles 
are not the same as but similar to those observed at Ryugu (Yada et al. 2021; Pilorget 
et al. 2021). A 2.7 μm absorption feature was deeper for the returned particles than 
the reflectance spectrum of the asteroid (Pilorget et al. 2021). (6) The samples did 
not show any obvious contamination from the sampler system (Takano et al. 2020; 
Sakamoto et al. 2022). (7) The total weight of the sample exceeds 5 g (Yada et al. 
2021), which is far more than the mission requirement (0.1 g) (Tachibana et al. 2014; 
Sawada et al. 2017). The spectral and morphological similarities of the returned 
sample to the spacecraft observation demonstrated that the returned sample well 
represents the asteroid Ryugu (Tachibana et al. 2022).

11.4 General Characteristics of Ryugu Sample 

After six-month initial description inside the nitrogen-filled clean chamber without 
exposure to the air, ~6 mass percent of the returned sample (~0.3 g in total) was allo-
cated the Hayabusa2 project for one-year science-oriented analysis (initial analysis). 
The initial analysis team consists of six sub-teams that analyzed the samples with 
different approaches and focuses: Chemistry, Petrology and mineralogy of coarse 
grains, Petrology and mineralogy of fine grains, Volatiles, Organic macromolecules, 
and Soluble organic matter (Tachibana 2021). In this section, we summarize general 
characteristics of Ryugu samples obtained through the initial analysis of the allo-
cated samples (e.g., Yokoyama et al. 2022; Nakamura T. et al. 2022b; Noguchi et al. 
2022; Okazaki et al. 2022a, 2022b; Yabuta et al. 2023; Naraoka et al. 2023). Note 
that consistent results have been reported for different aliquots from the advanced 
curation team (e.g., Nakamura E. et al. 2022a; Ito et al. 2022). 

The bulk elemental abundance of the Ryugu sample is similar to that of CI chon-
drites, which are the least fractionated from the Sun’s elemental abundance but are 
the rarest group of carbonaceous chondrites (Fig. 11.6) (Yokoyama et al. 2022). 
Consequently, the sample from Cb-type asteroid Ryugu is therefore chemically the 
most pristine material in the Solar System. The similarity between the Ryugu sample 
and CI chondrites has also been confirmed from bulk isotopic compositions of O, 
Ti, Cr, Fe, Ca, Zn, and Cu (Yokoyama et al. 2022; Hopp et al. 2022; Moynier et al. 
2022; Paquet et al. 2022) (Fig. 11.6).

Only nine meteorites have been classified into CI chondrites. Four of them expe-
rienced thermal metamorphism, and thus only five CI chondrites are equivalent to 
Ryugu samples. Contrary to the rareness of CI chondrites in the terrestrial collection, 
Cb-type asteroids represent ~10–20% of C-type asteroids (e.g., Demeo et al. 2009; 
Rivkin 2012). This implies that Ryugu-like (=CI-like) materials cannot survive the 
atmospheric entry, resulting in a biased collection of meteorites on ground.
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Fig. 11.6 Bulk elemental abundance of Ryugu particles analyzed by different techniques (XRF, 
ICP-MS, TG-MS and EMIA-Step). Taken from Yokoyama et al. (2022)

One of notable differences between Ryugu and CI chondrites is the abundance of 
water. Ryugu contains 6.84 ± 0.34 wt% of water, while CI chondrite Ivuna contains 
12.73 ± 0.68 wt% of water (Yokoyama et al. 2022). This is attributed to the difference 
in the abundance of interlayer water molecules in saponite because less water was 
released from Ryugu by heating at ~100–200 °C than CI chondrite Ivuna, and the 
interlayer water in CI chondrites could possibly be a terrestrial contaminant absorbed 
since their fall (Yokoyama et al. 2022). 

Although the abundances of C, H, O, and N are depleted compared to the Sun, 
their abundances in Ryugu samples are among the highest in the meteorite samples 
(Yokoyama et al. 2022; Naraoka et al. 2023). The carbon content of Ryugu is ~5 wt% 
(Yokoyama et al. 2022; Okazaki et al. 2022b; Naraoka et al. 2023). About one-third 
of the total carbon is present as inorganic minerals (mainly carbonates), while the rest 
is in the form of organic matter (Yokoyama et al. 2022). Macromolecular organics 
are present as distinct grains or as diffuse organics intermixed with phyllosilicates 
(Yabuta et al. 2023). More than 20,000 organic molecules were identified, including 
amino acids as racemic mixtures (Naraoka et al. 2023; Parker et al.  2023). The 
characteristics of organic matter in Ryugu samples are roughly consistent with those 
in carbonaceous chondrites including CI chondrites (Yabuta et al. 2023; Naraoka 
et al. 2023). 

The noble gas abundances on Ryugu sample are also the highest among the mete-
orite samples; They are comparable with or even higher than those in CI chondrites 
(Okazaki et al. 2022b; Broadley et al. 2023). The noble gases in Ryugu samples are 
in multiple origins (planetary component commonly found in Solar System bodies, 
presolar components, galactic cosmic ray-produced component, and solar wind). A 
part of solar wind helium, released inside the sample container, was stored in several 
gas tanks of GAEA before the container opening in Woomera, Australia, as the first 
gaseous sample returned from space (Okazaki et al. 2022a). The presence of solar
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wind noble gas and galactic cosmic ray-produced noble gas (e.g., 21Ne) suggests that 
the Ryugu’s surface is subject to the irradiation of energetic particles, such as solar 
wind and galactic cosmic rays, and the micrometeoroid bombardment. 

Several physical properties of Ryugu sample were investigated: The densities of 
Ryugu grains ranged from 1.7 to 1.9 g cm–3 with the average of 1.79 ± 0.08 g cm–3 

(Nakamura T. et al. 2022b), which is larger than the bulk density of Ryugu (Watanabe 
et al. 2022). With this average density, the bulk porosity of Ryugu is estimated to 
be 33.5 ± 3.4%, suggesting that Ryugu is a rubble pile body formed through the 
re-accumulation of broken pieces of an ancestor body. 

Thermal inertia of the returned sample was obtained to be 890 J m–2 K–1 s–1/2 

(Nakamura T. et al. 2022b), larger than those estimated at Ryugu by the spacecraft 
and the MASCOT lander (Grott et al. 2019; Okada et al. 2020). This difference is 
likely to be attributed to the scale difference. Observed boulders and pebbles, larger 
than the sample measured on ground, may contain cracks and/or pores in a larger scale 
than the returned grains, which make the surface boulders less thermally conductive. 

11.5 Mineralogy of Ryugu 

Ryugu grains are heavily aqueously altered and well resemble CI chondrites from 
mineralogical and petrological points of views as well (Fig. 11.7). However, the 
Ryugu samples have distinct mineralogical features from the CI chondrites. Here, we

Fig. 11.7 A back-scattered electron image (Left) and a false-color mineral map of Ryugu sample 
(A0058-C1001). Taken from Yokoyama et al. (2022)
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Table 11.1 Area fraction of 
minerals in the typical 
lithology of C0002. 
(Modified from Nakamura T. 
et al. 2022b) 

Mineral Plate 5 (area %) Plate 6 (area %) 

Phyllosilicates (Saponite 
and Serpentine) 

85.7 86.7 

Fe sulfides (pyrrhotite 
and pentlandite) 

5 3.3 

Magnetite 6.2 5.2 

Dolomite 1.8 2.9 

Breunnerite 0.93 1.5 

Ca carbonate 0.01 0.02 

Apatite 0.13 0.14 

Mg phosphate 0.12 0.15 

Olivine and Pyroxene 0.09 0.06 

Chromite 0.09 0.04 

review the mineralogical and petrological features of Ryugu samples analyzed during 
the initial analysis (22 mm- to cm-sized grains and finer particles) and the two Ryugu 
grains found outside of the sample container (Nakato et al. 2022). Volume fractions 
of minerals obtained from a section of one of the largest returned grains (C0002 
collected at the second touchdown site) are summarized in Table 11.1 (Nakamura T. 
et al. 2022b). We have found no clear difference in the mineralogical features from 
the samples obtained at the first and second touchdown sites.

11.5.1 Major Minerals 

Phyllosilicates 

More than 80% (in volume) of Ryugu samples consist of phyllosilicate matrix (Naka-
mura T. et al. 2022b), within which other minerals are hosted (Fig. 11.7). Since such 
hydrated silicates are most likely to have formed through the reaction between anhy-
drous silicates and aqueous solution on small bodies (Brearley 2006), the miner-
alogy of Ryugu clearly demonstrates that aqueous fluid was once present on the 
Ryugu’s parent planetesimal. A possible source of aqueous fluid is H2O-dominated 
ice, which formed the Ryugu’s parent planetesimal with anhydrous silicates. Radioac-
tive decay heat from a short-lived radionuclide 26Al (half-life 0.72 Myr) melted ice 
and promoted aqueous alteration on the Ryugu’s parent planetesimal (Nakamura T. 
et al. 2022b; Yokoyama et al. 2022). 

The phyllosilicate matrix consists of a mixture of magnesian saponite and serpen-
tine (Nakamura T. et al. 2022b; Yokoyama et al. 2022; Noguchi et al. 2022; Okazaki 
et al. 2022b; Nakato et al. 2022) as observed in CI chondrites (Tomeoka and Buseck 
1988). The phyllosilicate matrix contains numerous nano- to sub-micron sized 
sulfides (pyrrhotite and pentlandite), which are not the case for CI chondrites. The
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Fe3+/Fetotal ratio of phyllosilicates in Ryugu is ~0.4, while that in CI chondrite Orgueil 
is ~0.9 (Nakamura T. et al. 2022b). Another feature of phyllosilicates in Ryugu is 
its intimate association with diffuse organics (Yabuta et al. 2023), suggesting the 
coevolution of phyllosilicates and organic matter during aqueous alteration. 

The phyllosilicate matrix contains coarse phyllosilicate, which is also a mixture 
of saponite and serpentine, of several to several ten μm in size. The coarse phyl-
losilicates show the Mg/(Mg + Fe) ratio of 0.85 or higher (Fig. 11.8) (Nakamura T. 
et al. 2022b; Nakato et al. 2022), which is slightly more magnesian than those in CI 
chondrites (Tomeoka and Buseck 1988). 

The XRD peak of ~10 Å of Ryugu particles shifted after the particles were soaked 
in ethylene glycol (Nakamura T. et al. 2022b). This suggests that saponite in Ryugu 
has little interlayer water (Watanabe and Sato, 1988) and the interlayer spacing 
was expanded due to incorporation of ethylene glycol. This is consistent with the 
observation of little water release from Ryugu particles with heating at 100–200 °C

Fig. 11.8 The ternary compositional diagram of matrix phyllosilicates (pink) and coarse phyllosil-
icates (green) in a Ryugu grain Q001. The compositions of phyllosilicates in other Ryugu grains 
(Yokoyama et al. 2022) and matrix of Orgueil CI chondrite (this study) are also plotted. Taken from 
Nakato et al. (2022) 
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(Yokoyama et al. 2022). CI chondrites contain more interlayer water than Ryugu 
(Yokoyama et al. 2022), (at least a part of) which could be the absorbed water on Earth. 
The bulk oxygen isotope composition of CI chondrites, which is similar to Ryugu 
but slightly closer to the terrestrial mass fractionation line, also imply contamination 
of terrestrial water into CI chondrites (Yokoyama et al. 2022). Interestingly, an old 
literature, Cloëz (1864) published soon after the fall of the CI chondrite Orgueil, 
reported 9.06 wt% of water in the meteorite, while Wiik (1956) reported the water 
concentration of 19.89 wt% a century later. Details of the history of the Orgueil 
meteorite on the Earth are summarized by Gounelle and Zolensky (2014) to celebrate 
the 150-year memorial since its fall in 1864. 

Sulfides 

Along with nano- to sub-micrometer-sized iron sulfides enclosed in phyllosilicates, 
individual grains of pyrrhotite and pentlandite are present in the matrix (Nakamura 
T. et al. 2022b; Yokoyama et al. 2022; Okazaki et al. 2022b; Nakato et al. 2022). 
Pyrrhotite is ubiquitously present in Ryugu grains and is predominant over pent-
landite. Pyrrhotite grains typically occur as hexagonal disks ranging from several 
to several tens μm in size (Fig.  11.7), and their chemical compositions are close to 
Fe7S8 (Nakato et al. 2022). The average metal/sulfur ratio of pentlandite analyzed by 
Nakato et al. (2022) was 1.14 ± 0.03, which is identical to the value of stoichiometric 
pentlandite (Fe, Ni)9S8 (metal/sulfur = 1.125). 

A hexagonal-shaped pyrrhotite grain (~30 μm in size) from C0002 contained 
μm-sized fluid inclusions that were found with high-resolution synchrotron nano-
computed tomography (Nakamura T. et al. 2022b). The fluid inclusions were 
analyzed with time-of-flight secondary ion mass spectroscopy at –120 °C, and the 
trapped fluid was found to be a solution of H2O, CO2, S-bearing species, and organic 
species (Nakamura T. et al. 2022b). The pyrrhotite grain was a time capsule keeping 
the fluid that was responsible for aqueous alteration on the Ryugu’s parent body in 
the early Solar System. 

Carbonates 

Dolomite and breunnerite are common carbonates in the typical lithology of Ryugu 
grains (Table 11.1) (Nakamura T. et al. 2022b; Yokoyama et al. 2022; Noguchi et al. 
2022; Okazaki et al. 2022b; Nakato et al. 2022). They are also common carbonates 
in CI chondrites (Endreβ and Bischoff 1996). 

Dolomite is more abundant than breunnerite, and its average chemical composi-
tion ((Ca0.43–0.48Mg0.40–0.45Mn0.05–0.07Fe0.03–0.08)CO3; Nakato et al. 2022) is consis-
tent with those in CI chondrites (Endreβ and Bischoff 1996). Breunnerite in Ryugu 
((Ca0.01, Mg0.66, Mn0.14, Fe0.19)CO3; Nakato et al. 2022) also has the composition 
similar to those in CI chondrites (Endreβ and Bischoff 1996). 

The 53Mn-53Cr dating of dolomite, based on the decay of a short-lived radionuclide 
53Mn with a half-life of 3.7 Myr, shows that it formed 5.2 (+0.7/–0.8) Myr after the 
formation of oldest Solar System objects (Ca-, Al-rich inclusions) (Yokoyama et al. 
2022). Because carbonates precipitate from aqueous solution, this age indicates that
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Fig. 11.9 Back-scattered 
electron images of magnetite 
in Ryugu samples with 
various morphologies. Taken 
from Nakato et al. (2022) 

aqueous alteration on the Ryugu’s parent body occurred in the early stage of the 
Solar System formation. 

Magnetite 

Magnetite in Ryugu show a variety of morphologies (Fig. 11.9); framboids, plaquette, 
spherulites, or spherules (Nakamura T. et al. 2022b; Yokoyama et al. 2022; Noguchi 
et al. 2022; Okazaki et al. 2022b; Nakato et al. 2022; Dobrică et al.  2023). A similar 
morphological variation of magnetite was found in CI chondrites (Kerridge et al. 
1979; Hua and Buseck 1998). Magnetite grains are sometimes concentrated and are 
presented as a vein in polished sections (e.g., Bazi et al. 2022) or on the grain surface. 

Framboidal, plaquette, and spherulitic magnetite appears to have formed from 
supersaturated solutions. Dobrică et al.  (2023) investigated spherulitic magnetite 
grains using SEM and TEM, and demonstrated that spherulitic magnetite grains 
consist of radiating fibres having dislocations and nm-sized pores, which indicates 
that these grains formed under non-equilibrium conditions. 

Magnetite grains are sometimes closely associated with carbonates (Yokoyama 
et al. 2022). In-situ oxygen isotope analysis of closely-located magnetite spherules 
and dolomite shows that their Δ17O (= δ17O–0.52 × δ18O) are similar to each 
other (Yokoyama et al. 2022). The similar Δ17O suggests that they formed from the 
same oxygen isotope reservoir (fluid), and the difference in their δ18O indicates that 
two minerals precipitated at 37 ± 10 °C if their oxygen isotopes were equilibrated 
(Yokoyama et al. 2022). Some magnetite grains have higher Δ17O than carbon-
ates, which suggests that those magnetite grains precipitated before oxygen isotope 
equilibration between fluid and phyllosilicates. 

Electron holography shows that individual magnetite grains have vortex magnetic 
structures, and remnant magnetization measurements of the Ryugu samples found 
that framboidal magnetite grains record the paleomagnetic intensity of ~30–700 μT 
(Nakamura T. et al. 2022b; Sato et al. 2022).
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11.5.2 Minor Minerals 

Anhydrous silicates and associated minerals 

Some Ryugu grains are brecciated and contain less aqueously altered lithologies 
(Nakamura T. et al. 2022b; Kawasaki et al. 2022; Nakashima et al. 2023). Anhydrous 
silicates such as olivine and low-Ca pyroxene, typically smaller than 30 μm, are 
observed in less altered lithologies (Fig. 11.10). A large fraction of olivine grains is 
forsteritic (Mg/(Mg + Fe) > 0.97; Nakamura T. et al. 2022b; Kawasaki et al. 2022; 
Nakashima et al. 2023), but there are also Mg-poor olivine grains (Mg/(Mg + Fe) 
~0.40–0.5; Nakamura T. et al. 2022b; Kawasaki et al. 2022). In-situ oxygen isotope 
analysis of anhydrous minerals shows that some have 16O-poor compositions similar 
to chondrules and other are 16O-rich like refractory inclusions (Kawasaki et al. 2022). 
The oxygen isotope compositions suggest that anhydrous silicate minerals that were 
formed by high-temperature events in the inner region of the Sun’s protoplanetary 
disk and were transported to the outer region, where the Ryugu’s parent body was 
formed (Kawasaki et al. 2022). 

Chondrule-like objects were also found in the less altered lithology of Ryugu 
(Nakamura T. et al. 2022b; Nakashima et al. 2023) (Fig. 11.10). Chondrules are typi-
cally sub-mm sized spherical objects that formed by melting and rapid cooling of solid 
silicate precursors. They are a major constituent of chondrites except for CI chon-
drites. Chondrule-like objects in Ryugu show rounded-to-spherical morphologies 
with a diameter of 10–20 μm, which is smaller than typical chondrules but are similar 
to chondrule-like objects found in cometary samples returned from 81P/Wild2 (Naka-
mura et al. 2008). Three chondrule-like objects that were investigated by Nakashima 
et al. (2023) consist mainly of forsteritic olivine (Mg/(Mg + Fe) ~0.99). Diopside, 
Fe–Ni metal, and iron sulfide were also present as minor phases. Two CAIs, partly 
aqueously altered, were also found in the less altered lithology (Nakamura T. et al. 
2022b; Nakashima et al. 2023). They consisted of spinel and hibonite with tiny 
perovskite inclusions.

Fig. 11.10 A magnesian olivine grain (left) and a chondrule-like object (right) from the less altered 
lithology of Ryugu sample. Taken from Kawasaki et al. (2022) and Nakamura T. et al. (2022b) 
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Very low abundances of chondrules (chondrule-like objects) and CAIs in Ryugu 
are consistent with CI chondrites. The chondrule-like objects and CAIs in Ryugu 
were probably formed in the inner part of the Sun’s protoplanetary disk and trans-
ported to the forming region of the Ryugu’s parent planetesimal as minor compo-
nents (Nakashima et al. 2023) as discussed for anhydrous silicate grains (Kawasaki 
et al.2022) 

The less altered lithology also contains amorphous silicates, Ca-carbonate (calcite 
or aragonite) and phosphides (schreibersite and allabogdanite) (Nakamura T. et al. 
2022b). 

Presolar grains 

All major presolar grain types, which have been identified in carbonaceous chon-
drites, were discovered in the Ryugu samples (Barosch et al. 2022); 38 SiC, 16 
carbonaceous grains, 1 silicate, 1 oxide, and 1 O-anomalous supernova grain of 
ambiguous phase. The abundances of presolar grains (~25 ppm for SiC, ~11 for 
carbonaceous grains, and ~5 ppm for oxygen-anomalous grains) are similar to those 
in CI chondrites (Barosch et al. 2022). 

Other phases 

Other minor minerals found in Ryugu grains are apatite, Mg-Na-phosphate, Mn-rich 
ilmenite, chromian spinel with various amounts of FeO, MgO, and MnO, cubanite, 
daubréelite, ZnS, and CuS (Nakamura T. et al. 2022b; Yokoyama et al. 2022; Nakato 
et al. 2022; Tack et al. 2022). 

11.5.3 Comparison with Minerals in CI Chondrites 

The mineralogy and petrography of the Ryugu samples are in good agreement with 
those of CI chondrites (Brearley and Jones 1998 and references therein). A clear 
difference between Ryugu sample and CI chondrites is the absence of sulfates and 
ferrihydrite in Ryugu samples. Sulfates and ferrihydrite are commonly observed 
in CI chondrites (Tomeoka and Buseck 1988). Oxidative aqueous alteration was 
proposed to form these phases (Tomeoka and Buseck 1988), but it has alternatively 
been suggested that sulfates (at least in part) in CI chondrites are alteration products 
on the Earth (Gounelle and Zolensky 2001, 2014). 

Nakato et al. (2022) compared the compositional data of the fine-grained phyllosil-
icate matrix of Ryugu with that of CI chondrites. They found that the compositional 
trend of Ryugu fine-grained matrix is explained by a simple mixture of phyllosili-
cates and Fe–Ni sulfides, consistent with the detailed observation of the matrix. On 
the other hand, the compositional trend of CI chondrites is more complex and is 
attributed to the mixing between phyllosilicates, Fe-rich component, and Mg-, Ca-, 
Na-sulfates. These components seem to be consistent with the presence of ferrihydrite 
and sulfates in CI chondrites.
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It is now clear that CI chondrites have undergone non-negligible terrestrial alter-
ation (absorption of water and mineral alteration), and thus the Ryugu sample repre-
sents the freshest CI-like material and could serve as a new elemental reference for 
the Solar System (Yokoyama et al. 2022). 

11.5.4 Space Weathering Features 

The surface of airless bodies is constantly exposed to irradiation of high-energy parti-
cles (solar wind, solar cosmic rays, and galactic cosmic rays) and micrometeoroid 
bombardment. The alteration of surface materials, including changes in optical prop-
erties, is called space weathering. Evidence of space weathering has been found on 
the Moon and on the S-type asteroid Itokawa, from which the Hayabusa spacecraft 
returned the surface particles (e.g., Noguchi et al. 2011). 

The first evidence of space weathering of a C-type asteroid was found on 6–7% 
of the Ryugu particles (Noguchi et al. 2022). Space weathered Ryugu particles have 
a smooth layer, a frothy layer, or both (Noguchi et al. 2022) (Fig. 11.11). 

The smooth layer (Fig. 11.11) has a thickness of < 100 nm and is dehydrated 
amorphous with the same composition as the underlying phyllosilicate. A notable 
difference is the valance state of Fe, and the smooth layer contains more Fe2+ than the 
underlying phyllosilicate (Noguchi et al. 2022). A similar smooth layer formed when 
4 keV  He+ with a fluence of 1.3× 1018 ions cm–2 was irradiated onto an un-weathered 
Ryugu grain to simulate solar wind irradiation for ~3000 years at the current Ryugu’s 
orbit (Noguchi et al. 2022). This strongly suggests that solar wind irradiation is a 
main cause of the smooth layer formation (amorphization, Fe reduction from Fe3+ 

to Fe2+, and surface texture modification). 
The frothy layer (Fig. 11.11) consists of dehydrated silicate glass with abundant 

vesicles and nano Fe–Ni sulfide beads (Noguchi et al. 2022). The elemental compo-
sition of the frothy layer is different from the underlying phyllosilicate; the layer

Fig. 11.11 Space-weathered Ryugu particles (Left: C0105–03,004,800; Right: A0104– 
02,203,700). Taken from Noguchi et al. (2022) 
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is enriched in Fe and depleted in Mg, Si, and Al. The valance state of iron is also 
different, and the frothy layer contains more Fe2+ as the smooth layer does. These 
features suggest that the frothy layer was formed by local melting of the surface 
accompanied by abrupt dehydration that formed the vesicles and reduction of ferric 
iron to ferrous iron (Noguchi et al. 2022). Similar frothy layers are produced by 
pulse laser irradiation onto Murchison CM chondrite, simulating micrometeoroid 
bombardment (Thompson et al. 2019). 

Both smooth and frothy layers have lost hydroxy and water components. The dehy-
drated nature of the space weathered layer may hinder the spectroscopic detection 
of OH and/or water-related infrared absorption in the underlying hydrated silicates 
(Noguchi et al. 2022). The shallow OH absorption of Ryugu’s surface observed by 
NIRS3 (Kitazato et al. 2019, 2021) may be explained by the global surface dehydra-
tion due to space weathering, rather than the bulk dehydration of Ryugu materials 
(Noguchi et al. 2022). As this is the first finding of space weathering on C-type aster-
oids, it urges caution for interpretation of spectroscopic observation data of C-type 
asteroids having different water-related absorption depths. 

Nano-metallic iron particles are common space-weathering products on the Moon 
and Itokawa, which weaken absorption features in visible to near-infrared reflectance 
spectra, but rare nano-metallic iron particles were found in the space-weathered layers 
on Ryugu (Noguchi et al. 2022). This is most likely due to the oxidative nature of 
iron in Ryugu, enriched in Fe3+, compared with the Moon and Itokawa (Noguchi 
et al. 2022). 

11.6 Ryugu’s History Deduced from Minerals 
and Summary 

The Ryugu sample returned from the Cb-type asteroid provides us the opportunity 
to elucidate the history of the asteroid in the context of the Solar System evolution 
(Tachibana et al. 2014; Tachibana 2021). 

Most of the mineralogical, petrological, and geochemical features demonstrated 
have shown a close affinity of Ryugu with CI chondrites (e.g., Yokoyama et al. 2022; 
Nakamura T. et al. 2022b; Noguchi et al. 2022; Okazaki et al. 2022a, 2022b; Yabuta 
et al. 2023; Naraoka et al. 2023). Because CI chondrites are the most chemically 
pristine material in the Solar System, which have the elemental abundance that best 
matches that of the Sun except for highly volatile elements, the Ryugu’s parent 
planetesimal formed from the original ingredients of the Solar System without expe-
riencing significant elemental fractionation (Yokoyama et al. 2022). Ryugu’s volatile 
contents are the highest among chondritic meteorites (Okazaki et al. 2022b; Naraoka 
et al. 2023), and the fluid inclusions in pyrrhotite suggest possible presence of CO2 

ice in the Ryugu’s original ingredient (Nakamura T. et al. 2022b). These lines of 
evidence imply that the Ryugu’s parent planetesimal formed in the outer region of 
the Sun’s protoplanetary disk.
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Although the materials that formed Ryugu did not suffer any elemental fractiona-
tion processes, the Ryugu’s original materials (especially minerals) have experienced 
severe aqueous alteration in the closed system, turning into secondary minerals, such 
as phyllosilicates, formed on the planetesimal (Nakamura T. et al. 2022b). Aqueous 
alteration of the Ryugu’s parent planetesimal occurred through the reaction between 
anhydrous phases and aqueous fluids supplied by the melting of ice. Organic matter 
was also involved in the alteration process, resulting in the intimate association of 
phyllosilicates and diffuse organic carbon and in the evolution of organic molecules 
(Yabuta et al. 2023; Naraoka et al. 2023). 

Because the precipitation timing of dolomite, a major carbonate in Ryugu samples, 
is ~5 Myr after the Solar System formation (Yokoyama et al. 2022), the most likely 
heat source of aqueous alteration is a decay of short-lived radionuclide 26Al (half-life 
of 0.72 Myr). Framboidal magnetite in Ryugu samples record a paleomagnetic inten-
sity of 30–700 μT. Magnetite spherules were probably equilibrated with carbonates 
at ~40 °C (Yokoyama et al. 2022), and thus magnetite was present on the Ryugu’s 
parent planetesimal and recorded the magnetic field during their growth (Nakamura 
T. et al. 2022b; Sato et al. 2022). The paleomagnetic intensity recorded in magnetite 
could be that of the inner region of the Sun’s protoplanetary disk, implying that 
the Ryugu’s parent planetesimal had already been transported to the inner region of 
gaseous disk ~5 Myr after the Solar System formation. 

Space weathered Ryugu particles demonstrate that space weathering leads to 
dehydration of the asteroid surface (Noguchi et al. 2022), which may work as a thin 
veil that conceals the true hydrous nature of asteroids. 

Mineralogical comparison clearly demonstrates that CI chondrites, chemical 
equivalents of Ryugu, suffered terrestrial weathering to form sulfates and ferrihydrite 
from sub-micrometer-sized iron sulfides embedded in phyllosilicates (Nakamura T. 
et al. 2022b) and possibly contamination of terrestrial water (Yokoyama et al. 2022). 
Considering the terrestrial weathering effects and the rareness of CI chondrites, the 
Ryugu sample is the best material to determine the chemical reference of the Solar 
System. 
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Chapter 12 
Mineral Discoveries that Changed 
Everyday Life 

Giuseppe Cruciani and Alessandro F. Gualtieri 

The most exciting phrase to hear in Science, the one that heralds 
new discoveries, is not ‘Eureka!’ but ‘That’s funny…’ 
Isaac Asimov 

Abstract This chapter depicts examples of discoveries in the field of mineralogy 
that have significantly impacted human life, blooming numerous areas of science 
and technology. In the past, these outstanding discoveries have been accomplished 
in a random or empirical way or based on practical experiences. Since the industrial 
revolution, these discoveries have been the outcome of a more systematic approach 
based on the advance of scientific studies that have revealed the very nature of specific 
materials. These new discoveries or technologies defined new lines of development, 
leading to a revolution in many areas of basic and applicative science. Selected 
examples of mineralogy-related discoveries for climate change, energy, industrial 
applications, health and environment are presented and discussed, with a window 
open for the future opportunities in a sustainable changing world. The last para-
graph of this chapter leads the reader into the world of zeolites. Both natural and 
synthetic zeolites are probably the most outstanding impactful past, present (and 
future) mineral discoveries that changed our life and that’s why they deserve a full 
section dedicated to them. 
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12.1 Introduction 

The evolution of man is invariably linked to minerals. Archaeological finds indicate 
that since their first steps towards advanced civilization, humans have used naturally 
occurring materials to protect and enhance their lives, coming to rely more and more 
on minerals over time. 

The Palaeolithic age marks the first known widespread use of technology in human 
history resulting in the spread of civilization into the subsequent Copper, Bronze 
and Iron Ages. During the Stone Age, humans accumulated practical knowledge in 
making weapons and tools from minerals, developing remarkable skills (Fig. 12.1). 

It is likely that it was the observations of some “odd” characteristics of large 
mineral crystals (e.g., regular shapes and colours), with respect to the animal and 
vegetable realms, that stimulated the first forms of “scientific curiosity”, leading then 
to technological innovations. Past civilizations have therefore developed empirical 
knowledge about minerals for an increasingly widespread use in primary fields (e.g., 
preparation and conservation of food, construction of homes, etc.) and in the first 
forms of art (e.g., gems, pigments, stone carvings, artefacts, etc.) and socio-economic 
interactions (barter, pre-monetary systems, etc.).

Fig. 12.1 A rare 5,000-year-old “rock crystal” dagger, 21.5 cm long, uncovered in the prehis-
toric Iberian megalithic tomb in Montelirio, Spain. The fabrication of the technically sophisticated 
dagger blade from a single large quartz crystal must have required a considerable accumulation of 
transmitted empirical knowledge and very advanced flint carving skills (Morgado et al. 2016) 
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Table 12.1 Historical and 
modern usage of mineral 
commodities (rewritten from 
Casper 2007) 

Commodity Annual usage by the average 
American (kg) 

In 1776 In 2007 

Aluminum (bauxite) 0 36 

Cement 5 410 

Clay 45 132 

Coal 18 3,361 

Copper 0.5 9 

Iron ore 9 200 

Lead 0.9 5 

Phosphate 0 148 

Potash 0.5 20 

Salt 2 184 

Sand, gravel, stone 454 9,816 

Sulfur 0.5 42 

Zinc 0.2 5 

With the industrial revolution in the late eighteenth and early nineteenth centuries 
came major technological, socio-economic, and cultural changes. This has led to 
an intensification of mineral research and extraction compared to the pre-industrial 
period. Table 12.1 shows the comparison between the average quantities per person 
in the United States of mineral commodities used in 1776 compared to those used 
in 2007 (Casper 2007). In 1900, US mineral consumption was less than 100 million 
metric tons per year. By 2000, mineral consumption had increased to over 3.3 billion 
metric tons annually, equivalent to nearly 12 metric tons of minerals for each person 
annually, even with the addition of some of the materials for which there was no 
use in 1900. World mine production increased from 9.6 to 11.3 to 17.2 billion tons 
respectively from 1985 to 2000 through 2020 (Reichl and Schatz 2022). 

Life as we know it today would not exist without minerals. Agriculture, construc-
tion, manufacturing, communications, transportation, electronics, art and science— 
nearly every area of human activity depends in some way on minerals (Casper 
2007). 

At least 13 ore minerals (sources) of some mineral commodities are needed to 
make components of a mobile device (Fig. 12.2) and new uses for minerals are 
discovered and developed every day.

Increased use, however, means greater pressure on these natural resources, 
resulting in environmental impact of mining activities, dependence on the geograph-
ical location of deposits, ethical and social issues (e.g., “conflict minerals”), vulner-
ability to political instabilities and other issues. Furthermore, even if large mineral 
reserves are thought to be discovered, they are not infinite or renewable. New 
paradigms and policies are needed to maintain minerals as a ‘green’ and ‘sustainable’ 
resource. These policies can only be based on accumulated “scientific” knowledge.
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Fig. 12.2 Minerals in mobile devices (USGS 2016)

In this chapter we discuss selected examples of minerals that have a major impact 
on everyday life, such as silicates and carbonates for CO2 capture, Li-minerals 
for energy needs, critical raw minerals for technology (coltan and REE-minerals), 
minerals as building materials, minerals with relevance to health and the environment 
(asbestos and clays), and the “thousand-applications” group of zeolite minerals. 

12.2 Mineral Discoveries and Climate Change. Progresses 
in the CO2 Capture by Minerals 

Global warming is now universally perceived as a major planetary threat that requires 
immediate tangible actions. In the twenty-first century, the exponential growth of 
industrialization and use of fossil fuels have caused a continuous increase in atmo-
spheric CO2 levels that significantly contributed to global warming, as CO2 is one
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of the main green-house gases (Oschatz and Antonietti 2018), posing major threats 
to global ecosystems (Kumar et al. 2020). With this premise, to find solutions for 
the reduction and mitigation of CO2 emissions, necessary to maintain low levels of 
CO2 in the atmosphere for the benefit of humans as well as biological and ecolog-
ical systems, has become a priority in the agenda of the United Nations. To this 
aim, besides the reduction or elimination of the fossil sources of combustion, CO2 

capture from ambient air has become one of the most important and challenging 
endeavors. This challenge can be taken up my mineralogy. In fact, the “emergency” 
of the CO2 capture can be addressed and solved through ingenious and successful 
solutions in the field of mineralogy, taking advantages of the discoveries of carbona-
tion of minerals dating back more than a century (see for example Matson 1905 and 
later Verbeck 1958). One of the basic mineral reactions of carbonation is: 

MSiO3 + CO2 → MCO3 + SiO2 

where M = divalent cations such as Mg2+ and Ca2+; these reactions are also possible 
with monovalent cations (e.g. Na+, K+) although they are rarely involved in solid 
carbonate precipitation (Kump et al. 2000; Oelkers et al. 2008; Guyot et al. 2011; Hills 
et al. 2020; Koukouzas et al. 2022). Thanks to this basic knowledge, new outstanding 
discoveries aimed at optimizing the CO2 capture by minerals was recently possible. 
The most promising discovery was the understanding of the carbonation reaction 
of volcanic-rock-forming minerals such as olivine, wollastonite and plagioclase. 
Dissolution of forsterite, wollastonite and plagioclase consumes H+ ions, resulting 
in the precipitation of carbonate minerals (McGrail et al. 2006; Hanchen et al. 2008; 
Saldi et al. 2009, 2012; Gadikota et al. 2014): 

Mg2SiO4 + 4H+ 
(aq) → 2Mg2+ 

(aq) + H4SiO4(aq) 

CaSiO3 + 4H+ 
(aq) → Ca2+ 

(aq) + H4SiO3(aq) 

CaAl2Si2O8 + 2H+ 
(aq) + H2O → Ca2+ 

(aq) + Al2(OH)4Si2O5 

CO2(aq) + H2O ↔ H2CO3(aq) ↔ H+ 
(aq) + HCO3−(aq) 

Mg2+ 
(aq) + HCO3−(aq) → MgCO3 + H+ 

(aq) 

Ca2+ 
(aq) + HCO3−(aq) → CaCO3 + H+ 

(aq) 

The concept of carbonation of basaltic rocks was successfully employed in the 
CarbFix Pilot Project launched in 2006 in Iceland (Matter et al. 2011; Sigfússon et al. 
2018; Snæbjörnsdóttir et al. 2020). Through laboratory testing and modelling, the 
pilot injection started in January 2012. Since 2104, Carbfix (Fig. 12.3) injected over
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Fig. 12.3 Sketch of the CarbFix Project plant in Iceland (modified after Climeworks— 
carbfix.com/direct-air-capture) for  the CO2 storage by carbonation of basalt rocks 

80,000 tons of CO2 from the Hellisheidi plant in SW-Iceland into the basaltic reservoir 
(Snæbjörnsdóttir et al. 2022). Carbfix has planned further injection projects and effort 
is put to make this technology more cost effective by exploring its limits in terms 
of geological properties and injection methods for more widespread deployment of 
CO2 mineral storage. The ultimate goal is to bring this technology towards climate 
relevant scale (Snæbjörnsdóttir et al. 2022). 

In Italy, ENI (Ente Nazionale Idrocarburi) in joint collaboration with other indus-
trial partners has patented in April 2021 a process for the capture of CO2 by olivine to 
produce low emission raw materials for the formulation of green cements (Aste et al. 
2019). The process employs another outstanding finding in the field of mineralogy 
and chemistry, the carbonation reactions of olivine minerals leading to the crystal-
lization of hydromagnesite-like phases (King et al. 2010; Scott et al. 2021). In fact, 
forsterite in contact with HCl forms a solution containing MgCl2 and SiO2. A high 
pH and brucite seeding favour the polymerization of Mg(OH)2 (Scott et al. 2021). 
Aqueous carbonation of Mg(OH)2 results in the formation of hydrated Mg-carbonates 
such as nesquehonite (MgCO3·3H2O), dypingite (Mg5(CO3)4(OH)·2.5H2O), and 
hydromagnesite (Mg5(CO3)4(OH)2·4H2O) under atmospheric or near atmospheric 
conditions (Zarandi et al. 2017). These magnesium hydrated carbonates can be recy-
cled for the formulation of green building materials (Power et al. 2017). The ENI 
process allows the permanent sequestration of CO2 into building materials for greener 
construction and a demonstration plant to test this technology is under construction. 

Other new discoveries have been recently made in this field and a rapid progress 
to help reducing global warming and improving the quality of life in our planet are 
expected. In this scenario, it is interesting to report the very auspicious research line 
of the CO2 capture by adsorption on natural low cost fibrous layer silicates of high 
specific surface sepiolite (ideally Mg4(OH)2Si6O15·6H2O) and palygorskite (ideally 
(Mg,Al)2(OH)Si4O10·4H2O) (Cecilia et al. 2018).
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12.3 Mineral Discoveries and Energy. Lithium-Minerals, 
the Key “Energy” Source for the Future 

Today, lithium is one of the key “energy” metals in the life of modern global society. 
Since three decades, it has become the basic core component of Li-ion batteries 
powering portable electronic devices such as smart phones, tablets and laptops. 
This significant change towards a high-technology world was possible because new 
deposits of Li-rich minerals have been discovered and mined. Although brines are 
the major sources of Li, search for alternative deposits of Li-bearing minerals has 
skyrocketed in the last few years, with a number of new industrial projects launched 
and various novel methods proposed (Dessemond et al. 2019; Li et al.  2019). Driven 
by the growth of the market electric vehicles market, the demand for Li is forecasted 
to increase by more than 200% in 2025 (Li et al. 2019). 

Choubey et al. (2016) reported that there are around 131 known minerals of 
Li but only 7 of them have economic importance: amblygonite (Li,Na)Al(PO4) 
(OH,F); eucryptite LiAlSiO4; hectorite Na0.3(Mg,Li)3(OH)2Si4O10; jadarite 
LiNaB3SiO7(OH); lepidolite K(Li,Al)3(OH)2(Si,Al)4O10; petalite LiAlSi4O10; 
spodumene LiAlSi2O6; zinnwaldite KLiFe2+Al(OH,F)2AlSi3O10. Spodumene is the 
dominant Li source with sulfuric acid (H2SO4) roasting as major processing method 
(Li et al. 2019). 

The above minerals are found in Li-rich deposits that can be classified into three 
categories: brines, sedimentary deposits, and pegmatites, representing 66%, 8% and 
26% of world’s Li resources, respectively (Gruber et al. 2011). Brines and evaporitic 
s.s. deposits of economic concentrations are found in Argentina, Bolivia and Chile 
(also known as the “Lithium-Triangle”) (Kesler et al. 2012). Sedimentary deposits 
regard clays and lacustrine evaporites. In clay deposits, Li is mostly contained in the 
smectite species hectorite (from Hector, California, USA). For the lacustrine evap-
orites, the most important deposit is found in the Jadar Valley in Serbia, one of the 
largest Li deposits worldwide, with more than 200 Mt of Li extracted to date (Gruber 
et al. 2011). Pegmatite deposits, where the most common minerals are amblygonite, 
eucryptite, lepidolite, petalite, and spodumene are found in the following countries 
in decreasing order of estimated Mt (Tadesse et al. 2019): USA (13.80), Democratic 
Republic of Congo (3.80), Russia (3.69), Canada (2.41), China (2.40), Brazil (0.92), 
Australia (specifically Western Australia with its “Li-valley”) (0.79), Zimbabwe 
(0.73), Finland (0.68), Namibia (0.15), Austria (0.10), Mali (0.03), and Portugal 
(0.01). Generally, Li-pegmatite ores have considerably higher Li concentrations than 
brines (Beardsmore 2018). 

As far as the applications of Li are concerned, Li-ion rechargeable batteries 
account for the largest fraction (56%) of Li market in 2018, followed by ceramics and 
glass (23%) that directly use Li minerals as ore concentrates (Jaskula 2019). Specifi-
cally, the most important application of Li in the global market are in decreasing order 
of tons/year for 2020 (Amato et al. 2021): Li-ion rechargeable batteries (42,200) and 
rechargeable batteries (1,500), ceramics (7,800), glass–ceramics (7,000), greases
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(7,000), polymers (3,100), metallurgic powders (2,300), glass (2,300), air treatment 
(1,500). 

For the future, we expect an important role of mineralogy in finding suit-
able natural materials for the development towards Li-based energy sustainability 
processes. In fact, in combination with the electricity grid, Li-ion batteries could 
support the integration of high shares of photovoltaic and wind energy in the power 
mix by providing storage capacity and ancillary services. 

12.4 Mineral Discoveries and Industrial Applications. 
Selected Outstanding Examples 

12.4.1 Coltan and Electronic Devices 

As described in the previous paragraph, the industrial revolution in the field of “elec-
tronic devices” has started at the beginning of the 90s and required new outstanding 
materials to achieve ever more demanding performances. Among the new (natural) 
materials, coltan certainly has a key role and revolutionized a number of manufacture 
segments of electronic devices if one considers that tantalum extracted from coltan 
has been instrumental in reducing the size of mobile phones (Melcher et al. 2008). 

Coltan is a Central Africa commercial acronym for a complex mineral solid solu-
tion of the two obsolete terms (col)umbite and (tan)talite. The term “columbite” is 
actually the name of a group of minerals that includes double oxides with the general 
formula M12+M25+ 2O6 (orthorhombic, Pbcn, 3a0:b0:c0, Z = 4; M1 = Mg, Ca, 
Mn2+, Fe2+; M2 = Nb5+, Ta5+) (Chukanov et al. 2022). Coltan specifically refers to 
a mix of different mineral species: (i) columbite-(Fe), Fe2+Nb2O6. The crystal struc-
ture of natural columbite-(Fe) from Brazil has been refined by Tarantino and Zema 
(2005); (ii) columbite-(Mn), Mn2+Nb2O6. The crystal structure of natural columbite-
(Mn) from Norway has been refined by Tarantino and Zema (2005); (iii) tantalite-
(Fe), Fe2+Ta2O6. The majority of analyzed tantalite-(Fe) samples contains significant 
amounts of Mn and/or Nb. Samples with the compositions close to the Fe2+Ta2O6 

end-member display the structure of tapiolite (Ercit et al. 1995); (iv) tantalite-(Mn), 
Mn2+Ta2O6. The crystal structure of natural tantalite-(Mn) from Canada has been 
refined by Grice et al. (1976). 

The mineralogy and chemistry of coltan ores are extremely complex. Besides 
the mineral species described above, other Ta-Ba-bearing mineral phases like tapi-
olite, wodginite, ixiolite, bismutotantalite, stibiotantalite, microlite, fergusonite, 
aeschynite and euxenite mineral groups can be found in association with the main 
mining product (Melcher et al. 2008). 

When industrially processed, coltan delivers Nb and Ta that can hold a high 
electrical charge making them pivotal in creating capacitors (the electronic elements 
that control current flow inside miniature circuit boards). Ta capacitors are used in 
almost all mobile phones, laptops, and many other electronic devices. Ta powders for
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capacitors accounts for about 50% of total Ta consumption, with another 15% used 
to make foil and wire for capacitors, which are then incorporated into electronic 
equipment. Although the Ta content of a personal computer is <0.02%, it is still 
worth recycling and this practice is best done manually today to remove the relevant 
components (Sutherland 2011). 

The dark side of the skyrocket rise of coltan is the way it is exhausted and traded 
in the global market. Although the major producers of Ta are Australia, Brazil and 
Canada, artisanal and small-scale mining (hand-picking) of coltan are essential to 
many local economies in Africa (e.g., Mozambique, Ethiopia, Rwanda, Democratic 
Republic of Congo, Nigeria, and Namibia). The path that coltan takes to get from 
Africa to the world market is a highly complex one, with legitimate mining operations 
often being confused with illegal rebel operations (often causing hateful crimes and 
civil wars), and vice versa, making it difficult to trace the origin. To be safe, many 
electronics companies have recently rejected the use of coltan from anywhere in 
Central Africa, instead relying on their main suppliers in Australia. Regrettably, 
much of the coltan illegally stolen from Congo is already in laptops, cell phones and 
electronics all over the world (Delawala 2001). 

12.4.2 Rare Earth Elements 

Rare Earth Elements (REE) refer to the lanthanide series of elements (La, Ce, Pr, 
Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) plus Sc and Y. The latter elements 
exhibit properties close to those of the lanthanides and often co-exist in the same 
deposits (Simandl 2014). REE minerals revolutionized our world. They are key 
components in many electronic devices that we use in everyday life and have a 
crucial role in modern environmental and medical technologies, leading to a contin-
uously growing demand for these elements (Weng et al. 2013). The global demand 
for the REEs, often produced as refined rare earth oxides (REOs), has consistently 
increased over the last two decades as these elements have become of strategic impor-
tance to the sustainable world’s economy. Manufacturing permanent magnets is the 
largest global use for REEs, accounting for 29% of total forecasted demand. 

The abundance of REEs in the Earth’s crust is highly variable. In decreasing order, 
the most abundant REEs (with mean crust concentration >10 ppm) are (Rudnick and 
Gao 2003; Jowitt et al 2013): Ce (63 ppm) used in catalysis, chemicals and pigments; 
La (31 ppm) used in batteries, catalysis and optics; Nd (27 ppm) used in lasers, 
lightning, optics and magnets; Y (21 ppm) used in lasers, lightning, microwaves 
devices, superconductors; Sc (14 ppm) used in alloys and lightning. 

REE in mineral deposits are usually hosted in the lattice of a wide range of 
REE-bearing minerals. According to the classification of Weng et al. (2013), REE 
deposits types are formed: (1) through igneous processes in silica undersaturated 
types (carbonatites, alkaline complexes and alkaline pegmatites) or in silica satu-
rated to oversaturated types (rhyolites, granites and granitic pegmatites); (2) through 
hydrothermal processes in iron oxide copper gold or skarns types (granite-related
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or carbonatite-related); (3) through secondary or sedimentary processes in heavy 
mineral sands, laterites, tailings, shale-hosted, or alluvial/placers deposit types. In 
these deposits, the main economic source of REEs (REO wt% > 50), in decreasing 
order of REO wt%, are the minerals (Hoatson et al. 2011; Weng et al. 2013): 
cerianite-(Ce) (Ce4+,Th)O2 (81); hydroxylbastnäsite-(Ce) (Ce,La)(CO3)(OH,F) 
(75); bastnäsite-(Ce) (Ce,La)(CO3)(F) (70–74); monazite-(Ce) (Ce,La,Nd,Th)(PO4) 
(35–71); xenotime-(Y) YPO4 (52–67); mosandrite (Na,Ca,Ce)3Ti(SiO4)2F (<65); 
thalénite-(Y) YSi3O10(OH) (63); cerite-(Ce) Ce9 3+Fe3+(SiO4)6[SiO3(OH)](OH)3 
(60); calcio-ancylite-(Ce) (Ce,Ca,Sr)CO3(OH,H2O) (60); parasite-(Ce) Ca(Ce,La) 
2(CO3)3F2 (59); britholite-(Ce) (Ce,Ca)5(SiO4,PO4)3(OH,F) (56); ancylite-(Ce) 
CeSr(CO3)2(OH)·H2O (46–53); synchysite-(Ce) Ca(Ce,La)(CO3)2F (49–52); 
allanite-(Ce) (CaCe)[Al2Fe2+](Si2O7)(SiO4)O(OH) (3–51). 

As far as the REEs world mine production and reserves are concerned, China 
is the world’s largest producer with an estimated 168,000 t of REEs in 2021 (U.S. 
Geological Survey 2022), accounting for almost 60% of global production. Looking 
at the 2021 data, China is followed by USA (43,000 t), Myanmar (26,000 t), 
Australia (22,000 t), Thailand (8,000 t) (Garside 2022). Increase of the demand for 
REEs is changing the approach to REE mineralogy and resources. Recently, many 
attempts are made to produce heavy rare earth elements (HREEs) from unconven-
tional sources, such as peralkaline igneous rocks, which have not been regarded as 
a REE source (Hoshino et al. 2016). Mineralogy is expected to support the applied 
research for new potential sources of REEs, especially HREEs (ion-adsorption types 
and apatite deposits), which are regarded as the most critical group of elements for 
the future green sustainable technologies. 

12.4.3 Binders 

As discussed elsewhere in this chapter, the discoveries in the field of mineralogy that 
have bloomed certain areas of materials science and technology have a dual nature 
and time frame. Almost invariably in the past there have been discoveries, related 
to mineralogy, of a random, empirical nature or based on practical experience that 
have given rise to new materials or new technologies strategic for human life. Since 
the industrial revolution, there have been discoveries and advances in the knowledge 
based on systematic scientific (mineralogical) studies that have revealed the nature 
of specific materials or technologies and defined new lines of development in that 
field. The world of binders is as example of such distinct steps of discovery. To a 
broad approximation, binders can be classified as organic (like polymers) and inor-
ganic (lime, cements, plaster, etc.). Based on their chemical stability, binders can be 
further classified by their use: non-hydraulic (hydrated lime, plaster, etc.), hydraulic 
(Portland cement, hydraulic lime, etc.), acid-resistant (SiF cement, quartz cement), 
and autoclavable (like calcium-silicate materials) (Arizzi and Cultrone 2021). It is 
out of the aims of this paragraph to cover all the mineralogy-related discoveries in 
the field of binders. We will focus on gypsum plaster as illustrative case study.
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Plaster is a building material used for the protective or decorative coating of walls 
and ceilings and for moulding and casting decorative elements (Ridge 1958; De Brito 
and Flores-Colen 2015). A generic imprecise synonym of plaster is “stucco”, used 
for plasterwork to produce relief decoration, rather than flat surfaces (Gapper and 
Orton 2011). Plaster usually contains gypsum, lime, or cement. The gypsum-plaster 
is manufactured as a dry powder and is mixed with water to form a workable paste 
immediately before it is applied to the surface. The reaction of crystallization with 
water is exothermic and hardens the paste. In the case of the gypsum plaster (plaster 
of Paris), the reactions of thermal activation and later crystallization (hardening) are 
(Gourdin and Kingery 1975; Rehder 2000; Hauptmann and Yalcin 2000; Stoops et al. 
2017): 

CaSO4 · 2H2O (gypsum)
(
ca.150 ◦C

) → CaSO4 · 0.5H2O (hemihydrate gypsum) 

CaSO4 · 0.5H2O (hemihydrate gypsum) + 1.5H2O → CaSO4 · 2H2O (gypsum) (plaster of Paris) 

During the Pre-Pottery Neolithic period, the invention of plaster to produce archi-
tectural and artistic purposes all over the Middle East was reported through the 
earliest evidences of pyro-technology (thermal activation) (Hauptmann and Yalcin 
2000). Plaster was used in Egypt as a mortar to bind the blocks of pyramids and to 
provide a smooth facing for places and later the Romans “exported” plaster-work 
techniques to Europe (Kingery et al. 1988; Hauptmann and Yalcin 2000). 

Today, the full understanding of the mineralogical reactions of gypsum “hard-
ening” (Seligmann and Greening 1964; Singh and Middendorf 2007) and interac-
tion/catalysis of other minerals led to the creation of new classes of binders and binder 
production technologies. Among them, there are at least three innovative lines to be 
mentioned: 

(1) Plaster composites used for example as fire-retardants or mechanically enhanced 
materials. Early versions of these protective plasters often contain asbestos 
that has now been substituted by mineral wool or cellulose to add mechan-
ical strength. Vermiculite, polystyrene beads or chemical expansion agents are 
now often added to decrease the density of the finished product and increase 
thermal insulation (Gencel et al. 2014); 

(2) Plaster composites created using “secondary raw materials” obtained by non-
hazardous and hazardous wastes (del Rio-Merino et al. 2022). For example, 
Buratti et al. (2020) recently proposed the addition to plaster pastes of scraps 
resulting from industrial processing, such as leather cuttings, rice husk, and 
coffee chaff glued and pressed to fabricate insulation panels; 

(3) Application of 3D printing technology mostly in dentistry. This innovative tech-
nology takes advantage of the reaction of gypsum plaster with water, where the 
water is selectively applied by the inkjet head (Dawood et al. 2015).
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12.5 Mineral Discoveries for the Health and Environment. 
Examples from the Realm of Layer Silicates 

12.5.1 Asbestos 

Asbestos is a mineral matter with a peculiar fibrous shape (asbestiform) and 
outstanding technological properties exploited for about 5000 years for the manufac-
ture of materials of utility to humans. Regrettably, starting from the mid 50’s it was 
unequivocally proven that inhalation of asbestos fibres may cause fatal respiratory 
diseases like lung cancer, fibrosis and malignant mesothelioma. The key turning time 
was 1955 when Sir Richard Doll in its pioneering epidemiological study reported 
the first unequivocal correlation between asbestos exposure and lung cancer among 
asbestos workers (Doll 1955). About 30 years later, the International Agency for 
Research on Cancer (IARC) classified asbestos as a human carcinogen (IARC 2012), 
international health and work organizations decided to regulate asbestos, and many 
countries worldwide have banned its use since then. 

Mineralogy made a major contribution in the understanding of the crystal struc-
ture of asbestos revealing that it is actually not a single entity but actually a variety 
of mineral species with different physical–chemical properties and different toxi-
city/pathogenicity potential. Thanks to the mineralogical research, we know now 
that under the umbrella term “asbestos” there is family of minerals composed of 
chrysotile and five fibrous amphiboles (Gualtieri 2017). The amphibole asbestos 
species are asbestos actinolite, amosite (asbestos grunerite), asbestos anthophyllite, 
crocidolite (asbestos riebeckite) and asbestos tremolite (Gualtieri 2017). 

Chrysotile is a layer silicate that belongs to the serpentine group with general 
formula Mg3(OH)4Si2O5. The structure of chrysotile is characterized by units of 
tetrahedral (T) sheets centred by Si and octahedral (O) sheets centred by Mg with 
T:O = 1:1. Because the size of an ideal T sheet (b = 9.10 Å) is smaller than the 
size of an ideal O sheet (b = 9.43 Å), a mismatch occurs and induces differential 
strain (Ballirano et al. 2017). To compensate for this mismatch, the TO layers of 
chrysotile roll and form a cylindrical lattice (Ballirano et al. 2017). The curvature 
of the lattice develops along a preferred axis leading to the formation of the tubular 
structure typical of chrysotile fibres (Fig. 12.4a).

Amphiboles are double chain silicates with Si:O = 4:11. These chains are linked 
to a layer of sites with different coordination: M(1), M(2), M(3) are regular octa-
hedral cavities, M(4) is a large and distorted 6- to 8-fold cavity, and the A sites 
have a larger 10- to 12-fold coordination. OH− groups occur in the interiors of the 
rings in the double chains. The structure of amphiboles has the general formula 
A0–1B2C5T8O22W2 (Hawthorne et al. 2007) with A = Ca2+, K+, Na+, Li+ (6- to 12-
fold coordination); B = Ca2+, Mg2+, Na+, Fe2+, Mn2+, Li+ (with distorted eightfold 
coordination, the M(4) sites); C = Mg2+, Fe3+, Fe2+, Al3+, Mn3+, Mn2+, Ti4+, Li+ 

(with regular 6-fold coordination, theM(1), M(2) and M(3) sites); T= Si4+,Al3+, Ti4+ 
(the tetrahedral sites T (1) and T (2) running along the chains); W = OH−, Cl−, F−,
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Fig. 12.4 SEM images of chrysotile (Balangero mine, Italy) fibre bundles (a) and crocidolite (UICC 
Standard from South Africa) fibre bundles (b)
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O2−. These minerals preferentially crystallize along the c axis and mono-dimensional 
growth determines their fibrous crystal habit (Fig. 12.4b). 

The unique structural/microstructural features of asbestos fibres lend them 
outstanding technological properties (Gualtieri et al. 2022) like high tensile strength, 
non-flammability, low sound and thermal conductivity, chemical resistance, high 
surface area, and thermal stability. Asbestos minerals have been used to manufacture 
more than 3000 different asbestos-containing products known to date. The pecu-
liar shape and properties conveying outstanding properties are also responsible for 
the detrimental health effects. In 2012, IARC evaluation of epidemiological data, 
in vivo and in vitro studies resulted in the statement that all asbestos types (i.e., 
chrysotile and amphibole asbestos) are carcinogenic (IARC 2012). Hence, all six 
asbestos species are now included in Group 1 “carcinogen for humans” and classi-
fied as Category 1A carcinogens (IARC 2012). Notwithstanding, despite there is a 
consensus on the amphibole species, part of the scientific community questions the 
toxicity of chrysotile due to its low biopersistence (i.e., the resistance of a particle to 
biochemical decomposition and mechanical clearance) with respect to amphiboles 
and claims that only amphibole asbestos species are actual health hazards (Bernstein 
et al. 2013). 

Although in the last 50 years asbestos was subjected to intensive multidisciplinary 
studies, the causes of toxicity and pathogenicity and the mechanisms prompting 
adverse effects in vivo are not fully understood yet (Gualtieri 2021). In this scenario, 
two “global” blocks have risen and face in the so-called “global chrysotile issue”. 
One front considers all the regulated asbestos fibres as toxic and carcinogenic and 
supports their global ban. The other front asserts that only the amphibole asbestos 
species are toxic and carcinogenic while chrysotile is carcinogenic but with negligible 
toxicity with respect to amphibole asbestos (Bernstein et al. 2013) and hence its 
“safe/controlled” use (with protection devices) is viable (LaDou et al. 2010). For 
the pro-chrysotile front, lung diseases due to chrysotile exposure should be indeed 
attributed to amphibole-contaminated chrysotile exposure (the so-called “amphibole 
hypothesis”: Stayner et al. 1996; Hodgson and Darnton 2010; Berman and Crump 
2008). 

The unsolved “chrysotile issue” prevents a global harmonization in the handling 
and circulation of asbestos containing materials and products. Now, only 68 out of 196 
countries (ca. 35%) in the world banned all asbestos minerals whereas a “controlled 
use” of chrysotile is permitted in the remaining (65%) countries (International Ban 
Asbestos Secretariat 2022). The trend of production and global market of chrysotile is 
decreasing but it is still alive with the following top producing countries (tons/year) in 
decreasing order: Russian Federation (720,000), Republic of Kazakhstan (227,000), 
People’s Republic of China (120,000), Federative Republic of Brazil (71,200) and 
Republic of Zimbabwe (8,000). Besides that, this failure in the “asbestos globaliza-
tion” has another consequence: chrysotile has not been included to date in the cate-
gory of hazardous substances covered by the multilateral environmental agreement 
of the Rotterdam Convention (www.pic.int). Consequently, chrysotile-containing 
raw materials and products can freely circulate worldwide without any labelling nor 
filter. This situation can originate international short circuits if one considers that a

http://www.pic.int
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chrysotile-containing material produced in a country like China (where chrysotile 
asbestos is not banned) can be exported to a country like Italy where import, export, 
and use of all asbestos-containing materials are banned since 1992 (see for example 
the case of the brucite raw material reported in Malferrari et al. 2012). 

Research in mineralogy carried out in joint collaboration with medicine, toxi-
cology and bio-chemistry is focusing on understanding the behaviour of asbestos 
fibres in the lungs with respect to their chemistry, crystallinity and physical–chemical 
properties (Gualtieri 2021, 2022). This body of knowledge will hopefully shed light 
on the mechanisms and cause-effect relationships between asbestos exposure and 
onset of lung cancer and malignant mesothelioma. It is hoped that the contributions 
of mineralogy in this field will direct future global political, social, and economic 
decisions by bringing about another significant change induced by mineralogy in 
human life. 

12.5.2 Clay Minerals 

Clays are ubiquitous natural materials whose advances in scientific knowledge and 
technology have made substantial contribution to human society through the count-
less uses of clay-based products (Zhou and Keeling 2013). We should not forget that 
clays probably played a key role in the catalysis-driven synthesis of the primordial 
organic compounds that led to the origin of the primary living organisms (Hartman 
and Cairns-Smith 1986; Konta 1995). For clays, we should not refer to a single 
mineralogy-driven discovery but to many mineralogy-driven uses and applications 
that have been empirically discovered in the past and are being yet discovered today. 
Humans have actually been using clays since the Stone Age, due to the fact that clays 
are common at the Earth’s surface and widely utilized for agriculture, ceramics (espe-
cially traditional ceramics like tiles and porcelain), building materials, oil industry, 
absorbents, iron-ore pelletizing, animal feeds, pharmaceuticals, drilling fluids, waste 
water treatment, fillers in paint and plastic, coating paper and many more (Konta 
1995; Zhou and Keeling 2013). The contribution of mineralogy has been to accu-
rately define the crystal-chemistry of clay minerals and consequently to be able 
to assess their specific physical–chemical-technological properties. Thanks to this 
body of knowledge, new outstanding applications that changed our lives have been 
disclosed in the last decades. In fact, our increased understanding of the mineralogy, 
structure and properties of clay minerals has been accompanied by rapid advances in 
processing and modification of clay minerals for many new uses (Zhou and Keeling 
2013). 

Before we report the discoveries and applications of clays for the environment, we 
should attempt a definition of “clay”. A “clay” is a complex natural system composed 
of several minerals, namely the four major phases called kaolinite, illite, chlorite and 
smectite, and non-clay minerals (other layer silicates like mica and talc; other phases 
like quartz, feldspars, plagioclases, carbonates and iron oxides). The four major clay 
phases are (Gualtieri 2018; Ahmad et al. 2018):
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Fig. 12.5 Layer assemblage of the four major clay minerals with T = tetrahedral sheet and O = 
octahedral sheet. a kaolinite with H = hydrogen atoms (bonding); b illite with C = compensating 
cation (K+) and  H2O = water molecules; c chlorite with O =Mg2+—and Al3+—centred octahedral 
sheet; d smectite with C’ = compensating cation (Ca2+, Na+, K+) and  H2O = water molecules 

– kaolinite, (Al2(OH)4Si2O5 and space group C1) is composed of a tetrahedral 
(T) sheet centred by Si and an octahedral (O) sheet centred by Al forming a 
7 Å layer joined by successive TO layers via H-bonding in the interlayer space 
(Fig. 12.5a). Kaolinite is the most abundant species of the kaolinite mineral group 
which includes nacrite (space group Cc and TOTO layer periodicity: Zheng and 
Bailey 1994), dickite (space group Cc and TOTO layer periodicity: Zheng and 
Bailey 1994) and halloysite (Al2(OH)4Si2O5·2H2O (TO  + H2O 10 Å periodicity: 
Drits et al. 2018). An incoherent rock/soil is called “kaolin” if the kaolinite content 
> 50 wt%.  

– Illite, with the ideal formula K0.88(Al, Fe, Mg)2(OH,F)2(Si3.12Al0.88)O10 ·nH2O 
(Gualtieri 2018), is according to Środoń and Eberl (1984) a non-expandable, dioc-
tahedral, potassium aluminum–silicate, similar to micas with C2/c monoclinic 
space group and TOT 10 Å periodicity (Fig. 12.5b). 

– Chlorite is a generic term for a family of layer silicates with a TOT + O packing 
(Fig. 12.5c) (C2/m space group) whose Mg-end member (clinochlore) has ideal 
formula (Mg5Al)(OH)8Si3AlO10 and the Fe-end member (chamosite) has ideal 
formula (Fe5Al)(OH)8Si3AlO10 (Gualtieri 2018). 

– Smectite is a generic term indicating a family of di-trioctahedral TOT phyl-
losilicates with compensating cation and water molecules in the interlayer 
space (Fig. 12.5d). The most common terms of dioctahedral smectite in the 
montmorillonite-beidellite series have formula: (Na+, Ca2+, K+)x+y(Al2-yMgy) 
(OH)2(Si4-xAlx)O10·nH2O (when y > x, the smectite is called a montmorillonite: 
Güven 1988). The periodicity along the c axis varies from 14 to 21 Å, depending 
on the layers of water molecules in the interlayer volume. When a rock contains 
more than 50% smectite, it is called “bentonite”.



12 Mineral Discoveries that Changed Everyday Life 303

In addition to the four major clay minerals, clays can contain several 
other layer silicates (Gualtieri 2018). Among them, vermiculite is a 
clay-like term somehow between chlorite and smectite, with ideal 
formula (Mg,Ca)x(Mg,Fe2+,Al)3(OH)2(Si,Al)4O10·4H2O (see for example, 
Mg0.38Ca0.03Na0.02(Mg2.46Al0.3Fe0.22Ti0.02)(OH)2(Si2.83Al1.17)O10·3.815H2O: 
Arguelles et al. 2010) and assemblage TOT + C + H2O with 14 Å periodicity. 
Interstratified or interlaminated mixed sequences of single terms such as illite–smec-
tite (I-S) with variable periodicity along the c axis (Altaner and Ylagan 1997) are also 
common clay-like terms. Talc with ideal composition Mg3(OH)2Si4O10 (TOT, 10 Å 
periodicity) is also frequently found in Mg-rich clay assemblages. 

Mineralogy helped to disclose the outstanding properties of clay minerals, basi-
cally due to their high specific surface and crystal-chemistry assemblages and 
reflecting the state and distribution of the electrostatic charge of the layers (Konta 
1995). Specific surface area (kaolinite, illite, chlorite, smectite), adsorption capacity 
(kaolinite, illite, smectite), cation exchange capacity (smectite), swelling behaviour 
(illite-smectite, smectite) are the top distinctive properties of clays (Kumari and 
Mohan 2021) and determine their applications for the environment. 

Mineralogy helped to discover a huge number of applications of clays and clay-
based nanocomposites. The most relevant are reported below. 

Water cleaning (Grim 1962; Churchman et al. 2006; Ahmad et al. 2018; Awasthi  
et al. 2019): 

– removal of heavy metals. Smectite can remove As, Cd, Cu, Co, Cr, Hg; bentonite 
can remove Cd, Ni, Pb, and Zn; kaolinite can remove Cd, Cu, Cr, and Pb; and 
illite can remove Cu and Zn (Ahmad et al. 2018); 

– removal of hazardous synthetic dyes (acid, metal complex dyes, pigment dyes, 
anionic dyes, solvent dyes, ingrain dyes, sulfur dyes (Ahmad et al. 2018). Smectite 
can remove methyl orange; bentonite can remove methylene blue, acid green, 
reactive and Cango red, acid and Evans blue, orange II and amido black; kaolinite 
can remove malachite green and Coomassie brilliant blue; 

– removal of toxic substances. Smectite is used as a sorbent of nutrients from the 
water of dams and other reservoirs while kaolinite is suitable for the sorption of 
fluoride ions from water (Konta 1995). 

– removal of antibiotics. This is one of the most striking novel applications of clays 
that promises to have an outstanding impact. The degradation of pharmaceutical 
drugs like antibiotics in humans and animals is very low and drugs could be 
released into the environment bringing a variety of health risks. Clay minerals 
(mostly kaolinite and smectite) can adsorb cationic drugs, and especially antibi-
otics, from the soils and protect the environment (Chang et al. 2019). As an 
example, bentonite can remove ciprofloxacin (Ahmed et al. 2015) and amoxicillin 
(Putra et al. 2009); 

– removal of organic pollution from industrial effluents, domestic sewage, agri-
culture and urban run-off including fertilizers, pesticides, phenols, hydrocar-
bons, detergents, plasticizers, oils, biphenyls, proteins, greases and carbohy-
drates (Ali et al. 2012). Smectite can remove carbamazepine, cyanobacterial
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microcystis aeruginosa, atrazine, sulfentrazone, imazaquin, alachlor, naphtha-
lene, and phenolic derivative; bentonite can remove dichloracetic acid, carbon 
tetrachloride, Naproxen, salicylic acid, clorifibric acid, carbamazepine, phenol, 
and O-dichlorobenzene; kaolinite can remove salicylic acid (Ahmad et al. 2018). 

Soil cleaning and stabilization (Grim 1962; Ahmad et al. 2018): 

Clays can clean soils from oil, heavy metals, gasoline and stabilize them as they 
enhance its bonding. The organic polymers act in the aggregation of clay minerals 
and improve the structure of soils (Burchill et al. 1983). Clay minerals together with 
organic matter in soils form a humus complex which is very significant for the life 
of most plants. Energetically important organic substances, as well as potassium, 
calcium, phosphorus, iron, and many other elements are bound in this complex. 

Radioactive waste disposal (Grim 1962): 

Radioactive alkaline metals are most effectively adsorbed by mica clay minerals, 
while chlorite is suitable for divalent radionuclides (Konta 1995). 

Floor adsorbents (Grim 1962). 

Dump insulation (Konta 1995; Keith and Murray 2001; Awasthi et al. 2019): 

The insulation of dumps containing health-threatening substances can be obtained 
by clays like bentonite. A relatively new environmental application is the use of 
palygorskite blended with Na-bentonite in landfill and toxic waste barriers (Murray 
2006). 

12.6 The Wonderful World of Zeolites. Probably the Most 
Outstanding Mineral Discoveries that Changed 
Humans’ Life 

“Zeolites can be regarded as the minerals of the century because of their unique appli-
cations in ecology, radioactivity, oil production, and agriculture”, Marfunin wrote 
in one of his encyclopaedic volumes (Marfunin 1994). For more than 260 years to 
now, from their discovery to countless important current applications, this group of 
crystalline microporous minerals has transformed from a mere matter of curiosity 
to a technological cornerstone of our age (Masters and Mashmeyer 2011). The 
naturally occurring aluminosilicate framework minerals (build by 4-connected tetra-
hedra of Si and Al), their synthetic analogues, zeolite-like and zeotypes (i.e., with 
tetrahedrally coordinated cations other than Si and Al), and other zeolite-related 
compounds (including metallosilicates with metal-oxo penta- and octahedra along 
with tetrahedra building the framework, hybrid organic–inorganic aluminosilicates 
with carbon linkers, metal-organic frameworks made by polynuclear metal-clusters, 
covalent organic frameworks, etc.) continuously provide an exciting ground for both
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Fig. 12.6 Cronstedt’s 
zeolite crystals (Colella and 
Gualtieri 2007) 

scientific breakthroughs in fundamental research and technological developments to 
address today’s social and environmental challenges. 

Adjectives such as “amazing”, “surprising”, and “prodigious” (e.g., La Rocha 
Magica, Mumpton 1999) are still encountered very often when the peculiar properties 
of zeolites are introduced. Surely the first astonishment was that of Alex Fredrick 
Cronstedt in 1756: by heating in the intense flame of a blowpipe two samples of 
zeolites, one coming from a copper mine in northern Sweden and the other from 
Iceland, he observed the crystals hopping due to the water released as vapor from 
the mineral. The first “boiling stones” (zeo-lithos) had just been discovered but 
not yet clearly identified. Indeed, the very first authenticated zeolite was chabazite 
reported by Louis-Augustin Bosc d’Antic in 1792 (Gottardi and Galli 1985). The 
“Cronstedt’s zeolite” (Fig. 12.6), early attributed to stilbite, was much later revealed 
to be stellerite, when synchrotron radiation crystallography was applied (Colella and 
Gualtieri 2007). 

Fully understanding the diversity and complexity of zeolite structures requires the 
use of the most advanced techniques and stands for the first challenge when dealing 
with these minerals. Chabazite, stilbite, stellerite are only three of the approximately 
70 mineral species (including as single entries the 15 “zeolite series”, in which species 
are distinguished according to the most abundant channel cation) known today and 
approved by IMA-CNMMC which belong to the group of natural zeolites (NZs) and 
zeotypes. Of note, microporous minerals of the sodalite and cancrinite groups are 
not included because, while having structures closely related to zeolites, they are not 
considered zeolites in the strict sense under the Coombs et al. (1997) definition of 
“zeolite” applicable not only to the mineral phases but also to synthetic materials 
(Millini and Bellussi 2017). 

NZs can be classified according to Gottardi and Galli (1985) into six families 
(Table 12.2) based on a few complex structural units of tetrahedra, whether finite or 
infinite, as revised by Armbruster and Gunter (2001) with a seventh group comprising 
rare or structurally poorly defined zeolites.

This classification scheme incorporates the concept that a complete framework 
may be built by assembling of a small number of complex structural units, defined
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Table 12.2 Classification of natural zeolites according to Gottardi and Galli (1985) as revised  by  
Armbruster and Gunter (2001) 

Group Complex structural units of tetrahedra SBU Example 

1 Zeolites with T5O10 units (“Fibrous zeolites”) 4–1 Natrolite 

2 Zeolites with chains of corner-sharing four-membered rings 
and with finite units of edge-sharing four-membered rings 

S4R Chabasite 

3 Zeolites with chains of edge-sharing four-membered rings S4R, 4–2 Phillipsite 

4 Zeolites with six-membered rings S6R/D6R Faujasite 

5 Zeolites built from single five-membered rings with an 
attached tetrahedron unit (zeolites of the “Mordenite group”) 

5–1 
“pentasil” 

Mordenite 

6 Zeolites with T10O20 units (“Tabular zeolites” of the 
“Heulandite group”) 

4–4 = 1 Heulandite

Fig. 12.7 A selection of 7 out of 23 Secondary Building Units (SBUs) from IZA-SC database 
(https://europe.iza-structure.org/IZA-SC/SBUList.html) 

as Secondary Building Units (SBU), formed by a finite number of tetrahedra (Meier 
1968). The concept of SBU, while not considering infinite units and limited also for 
other reasons, proves to be useful for understanding the variety of zeolite framework 
topologies (Fig. 12.7). 

Van Koningsveld (2007) showed that several zeolite structures can be assembled 
by combining through the least number of connections and symmetry operations 
(translation, rotation, and reflection) some structurally invariant Periodic Building 
Units (PerBU), whether finite (single or double 4-rings, single or double 6-rings, and 
cages) or infinite (chains, multiple chains, tubes, and layers). The complex taxonomy 
of zeolite structures is best appreciated when considering the Zeolite Framework 
Types as described in the Database of Zeolite Structures which provides a wealth of 
structural information (topological symmetry, ring sizes, channel dimensionality, 
accessible volume of pores, SBUs, idealized coordinates of T atoms, coordina-
tion sequences and vertex symbols, tiling arrangement, etc.) as well as the calcu-
lated/measured X-ray powder diffraction (XRPD) patterns, the 29Si MAS NMR 
spectra, and references (Baerlocher and McCusker 1996 onwards). To date, 248 
framework types have been approved by the Structure Commission of the Inter-
national Zeolite Association (IZA-SC). This number refers to periodically ordered 
structures, including interrupted frameworks, while a separate database with 29 inter-
growth families (e.g., zeolite beta) has just been created for disordered zeolite struc-
tures (Baerlocher et al. 2022). Furthermore, more than 300,000 hypothetical struc-
tures for zeolites (and zeotypes) have been calculated by Pophale et al. (2011). Only

https://europe.iza-structure.org/IZA-SC/SBUList.html
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46 structure types have been found so far in NZs of which 37 were discovered for 
the first time in minerals while 9 structure types were obtained on synthetic zeolites 
(SZs) first then recognized in minerals. The remaining structure types were recog-
nized only in SZs, most of which are only laboratory synthesis products, while less 
than 20 structure types are produced, commercialized, and applied on an industrial 
scale. 

Man began to take advantage of the unique (“magical”) properties of zeolites long 
before Cronstedt’s discovery. Considering that the first foundation of Rome in the 
eighth century B.C. was on two hills made up of zeolite-rich tuffaceous material, that 
the first Greek colonies in southern Italy settled between the sixth and eighth century 
B.C. in localities with abundant zeolitized tuffs, and that the Etruscans also populated 
volcanic areas in low Tuscany and high Lazio, it is not a surprise that these ancient 
peoples made extensive use of the zeolite-rich rock as testified by remnants or still 
preserved buildings, roads, excavated caves, sculptures, etc. (Colella et al. 2001). This 
is true not only in south-central Italy, where chabazite- and phillipsite-rich tuff was 
the common building material, but also elsewhere in the world such as in the Oaxaca 
Valley, Mexico, where the indigenous pre-Columbian Zapotec civilization (700 B.C.-
A.D. 1521) built many buildings using blocks of massive clinoptilolite tuff, or for the 
area of the Laacher See, part of the East Eifel volcanic field in Germany, from which 
dimension stones made of zeolite tuff were quarried to build numerous cathedrals 
and public buildings in Central Europe (Mumpton 1999). The ease in digging tunnels 
and caves inside the tuffaceous rock, the perception of the regulation of humidity and 
temperature by the walls rich in zeolite, the low bulk density and the high porosity 
with a homogeneous and compact texture, the ease of cutting to produce inexpensive 
lightweight dimensional stone, all of which have contributed to the popularity of 
zeolite-containing rocks in historic homes and buildings. It should not be forgotten 
that the most important pozzolanic raw material used by the ancient Romans was 
obtained from the “Neapolitan yellow tuff” near Pozzuoli, Italy (Mumpton 1999). 

For more than a century after Cronstedt’s discovery, zeolites did not attract much 
scientific interest. From 1792 to 1842, marking the first occurrences of chabazite 
and faujasite reported by Bosc d’Antic and Alexis Damour respectively, 18 species 
of zeolite had been discovered. Their mineralogical investigation was mainly based 
on the morphology of well-developed crystals, so that only well-formed zeolites of 
hydrothermal genesis were considered for description as mineral species (Gottardi 
and Galli 1985). 

Following the experimental studies on the reversible dehydration and ion-
exchange properties of NZs, respectively by the mineralogist Damour and the chemist 
Eichhorn, in 1862 Sainte-Claire Deville first claimed the laboratory synthesis of a 
zeolite (levyne) by heating an aqueous solution of potassium silicate and sodium 
aluminate in a glass tube at 170 °C. The early 1900s saw the beginning and develop-
ment of commercial and industrial interests in zeolites. The initial use of NZs (blends 
of stilbite, chabazite, natrolite and analcime), later replaced by SZs (e.g., zeolite A), 
gave confidence that the microporous aluminosilicates could be effectively used to 
soften water on a commercial scale. Zeolite A appeared as the first zeolite without 
a natural counterpart synthesized on an industrial scale by a US company after an
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intense 4-year training with the successful replication of 20 NZs (Breck et al. 1956). 
Even today, zeolite A best exemplifies one of the most impactful applications of 
nature-inspired materials in everyday life. In fact, a breakthrough came in 1974 
when a German company introduced zeolite A in the formulation of detergents to 
replace polyphosphates as water softeners, which were causing detrimental environ-
mental problems such as oxygen depletion and eutrophication of water reservoirs. 
With about 1.4 million tons, zeolites added as builders in detergents represent 68% 
of the global market of SZs produced in 2020 (Koohsaryan et al. 2020). 

The advent and development of X-ray crystallography during the first quarter of 
the nineteenth century gave an enormous boost to the crystal structure analysis of NZs 
also from a material point of view in the following years. While in 1929 F.M. Jaeger 
had used XRPD to model the crystal structure of ultramarine (sodalite), in 1930 Linus 
Pauling was the first to determine the crystal structures of zeolites mesolite, natrolite, 
and scolecite, the last two confirmed in 1933 by William H. Taylor who, between 
1930 and 1933, was the first to propose the crystal structures of analcime, edingtonite, 
and thomsonite (Gottardi and Galli 1985). In the same years the first in-depth studies 
of crystal chemistry, conducted by M. H. Hey, paralleled the XRD determinations. 
In 1933 J. Wyart proposed a model of the crystal structure of chabazite which was 
substantially revised in 1958 by the 27-year-old mineralogist crystallographer Joe 
V. Smith in a Nature paper (Dent and Smith 1958) to better interpret the sorptive 
properties of chabazite as a “molecular sieve” (Fig. 12.8). 

It had been observed in 1925 that dehydrated chabazite crystals were able to 
separate gas molecules based on molecular size, and the “molecular sieve effect” with 
reference to the selective adsorption property of zeolites was first defined in a treatise 
published in 1932 by J.W. McBain. McBain’s book was a great inspiration for a young

Fig. 12.8 Chabazite 
structure model by Dent and 
Smith (1958). Positions of 
the Si, Al atoms are shown; 
shaded quadrilaterals 
represent points of 
attachment of D6R prisms 
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chemist, Richerd M. Barrer, to become one of the pioneers of zeolite synthesis and a 
founding father of modern zeolite science (Masters and Mashmeyer 2011). Interested 
in gas sorption and fractionation of hydrocarbon mixtures, for at least one decade, 
Barrer made experiments using NZs (namely chabazite, gmelinite, mordenite, and 
analcime) achieving very encouraging results. Having a clear industrial perspective in 
his research, Barrer realized that the occurrence in nature of zeolites was not abundant 
enough to be economically sustainable for the planned applications (Mumpton 1978). 
For this reasons Barrer began a zeolite synthesis program first trying to mimic the 
likely geological conditions of formation of known zeolites which, at that time, were 
mostly from hydrothermal origin as occurring in basalt vugs and fissures (Masters 
and Mashmeyer 2011). Based on this approach, Barrer obtained in 1948 not only 
the synthetic counterpart of mordenite but, targeting chabazite, produced a zeolite 
with no natural counterpart, later identified as KF-5, whose framework type (KFI) 
is similar to that of chabazite (CHA) for a SBU (D6R) but also very different in the 
geometry of cages. 

The work of Richard Barrer (several times nominated for the Nobel Prize in Chem-
istry) paved the way for the “industrial era” to come for production of SZs not only 
aimed at reproducing known natural counterparts but at designing new materials 
(inspired by nature). In the 1950s and 1960s, some large chemical or oil compa-
nies, mostly in the United States, began to invest significant financial resources in 
zeolite synthesis research laboratories, hiring brilliant scientists and collaborating 
with universities. Initially addressed only to adsorbents for separations and purifi-
cations, with the discovery of the strong acid behaviour of post-synthesis modified 
zeolites as solid catalysts, the research was extended to petroleum refining catalysis, 
including cracking, hydrocracking and isomerisation. The first group of applica-
tions includes low silica and Al-rich zeolites A (LTA) and X (FAU), the second 
group spans from intermediate silica zeolites such as Y (FAU) and USY (FAU), 
with higher thermal stability, L (LTL), mordenite (MOR), etc. to high-silica zeolites 
such as ferrierite (FER), NU-87 (NES), ZSM-5 (MFI), silicalite (MFI), beta (BEA), 
etc. Synthesis of high-silica zeolites (more hydrophobic and with greater preference 
for sorption of organic molecules) required another innovation, namely the use of 
quaternary ammonium cations (e.g., tetrapropylammonium for ZSM-5) as “structure-
directing agents” instead of inorganic alkali-cations used for low silica zeolites (more 
hydrophilic). This was a further move away from the field of NZs which typically 
(but not exclusively, as discussed later) have Si/Al ratio less than 2 and in any case 
less than 5. 

From the 1980s onwards, further developments took place in the world of synthesis 
of zeolitic materials (Millini and Bellussi 2017). Based on the knowledge that Si 
and Al in the tetrahedral sites can be partially replaced by other tetra- and tri-
valent cations, phosphate-based zeotypes such as aluminophosphates (AlPO), sili-
coaluminophosphates (SAPOs), gallophosphates (GaPO) and their isomorphically 
substituted forms (MeAPO, MeSAPO, MeGaPOs) were synthesized. Compared to 
aluminosilicate zeolites consisting of covalently linked TO4 units these zeotypes 
have a more molecular-ionic character with idealized discrete Al3+, Si4+, e PO4 

3− 

leading to larger adsorption enthalpies for polar adsorbates. Known in natural zeolite



310 G. Cruciani and A. F. Gualtieri

kirchhoffite, substitution of B into several known zeolite frameworks, resulted in 
materials with weaker acid strength with respect to the parent aluminosilicates. In 
1893 the more challenging incorporation of Ti heteroatoms in the pure silica MFI 
framework, generating Titanium Silicalite-1 (TS-1), produced the first framework-
substituted redox catalyst which is still employed industrially today in selective 
oxidation processes involving H2O2 under mild conditions. The isomorphous substi-
tution of divalent heteroatoms such as Be2+, as found in several microporous natural 
silicates (alflarsenite, chiavennite, tvedalite, hsianghualite, nabesite, roggianite) and 
phosphates (weinebeneite, pahasapaite), and Zn2+ (gaultite) was used to tailor the 
aimed framework by stabilizing specific SBUs (e.g., 3- and 4-rings vs. 5- and 6-rings 
favoured in aluminosilicates). The most striking case was the use of Ge by Avelino 
Corma and co-workers to stabilize the double 4-ring achieving a series of new zeolites 
with extra-large pores named ITQ-n (e.g., ITQ-37 having a 3D channels system with 
30-ring openings and free dimensions 4.3·19.3 Å or ITQ-43 with 28-ring opening 
and free dimensions of 19.6·21.9 Å which can be regarded as the first example of a 
zeolite with a hierarchical micro-mesoporous system). While not obviously scalable 
for industrial applications, these latest results have shown the power to combine rapid 
chemical screening, quantum mechanical calculations and crystal structure analysis 
for high-throughput synthesis in the laboratory. More recent researches in the field 
of zeolite synthesis include the control of the morphology and dimensions of zeolite 
crystals, such as in “nanosized zeolites” (Mintova et al. 2016) and in the so-called 
two-dimensional (2D) or “lamellar” zeolites (i.e., with thickness of 2–3 nm, equiv-
alent to 1–2 unit cells) with great technological potential as precursors to produce 
3D structures by condensation of nanosheets and also to prepare materials with 
enhanced accessibility of the active sites located inside the crystals, eliminating the 
diffusion limitations imposed by the pore size (Millini and Bellussi 2017). Synthetic 
strategies have recently focused, on the one hand, on maintaining the classically 
small size and regular distribution of pores within zeolite crystals necessary for their 
success as heterogeneous catalysts, while, on the other, on overcoming the diffusion 
barriers which limit the wider use of microporous materials in reactions involving 
bulky molecules or exploiting the active sites located inside mm-sized zeolite crystals 
(Millini and Bellussi 2017). The so-called “hierarchical zeolite” couple in a single 
material the catalytic power of micropores and the facilitated access and improved 
transport consequence of a complementary mesopore network (Pérez-Ramìrez et al. 
2008). 

The trend of patents containing the word “zeolites” in the titles, filed since 1907 
(first patent by Robert Gans in 1907), until today (Fig. 12.9) shows the strong 
momentum at the beginning of the “industrial zeolite era” in the mid-1950. The total 
number of SZs’ patents up to the early twentieth century was 23,400 (Schoonover 
and Cohn 2000).

Today SZs are a commodity. Their global market, averaged from several estimates 
on the web, accounted for approximately USD 5 billion in 2021 and is projected to 
grow to almost USD 7 billion by 2030. Of the major zeolite types used (LTA, X, Y, 
USY, and ZSM-5), the LTA added in laundry detergents is expected to increase the 
most.
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Fig. 12.9 Trend of granted patents (logarithmic scale) filed at the end of each decade from the 
“Google Patents” (patents.google.com) search of titles containing the word “zeolite” (15,336 total 
at end of 2022: of which 72 “natural zeolite”; full number of patents, including those not containing 
“zeolites” in their title, was 23,400 in 1999)

According to Gies and Marler (2011) “there is no other discipline in materials 
science where structure—property relation is so evident and important than in micro-
porous materials”. It became clear since the early 1960s that knowledge of the 
crystal structure with atomic resolution, such as that achieved on NZs, was neces-
sary to guide the synthesis, to understand the sorption and catalytic properties, to 
support patent submission, etc. Building on early observation that zeolite proper-
ties required activation by dehydration and that exchange of channel cations had 
significant effects on thermal stability, sorption performance, etc. systematic work 
in collaboration between industry and academy was devoted to the crystal struc-
ture analysis of dehydrated metal-exchanged NZs (e.g., faujasite, a series of papers 
by Smith and co-worker in 1968) as models for their synthetic counterparts (e.g., 
zeolite Y, Smith et al. 1967). These studies were typically performed by single-
crystal X-ray diffraction, the only technique at the time capable of providing an 
atomistically accurate information. Crystals were heated ex situ (under vacuum) at 
selected temperatures, sealed and measured at room conditions. Pioneering powder 
diffraction experiments had been used to follow the crystallization with time of 
zeolite NaA and NaX, obtaining landmark results on the nucleation and growth of 
zeolite crystals (Flanigen and Breck 1960). Van Reeuwijk (1974) used Guinier-Lennè 
photographs to continuously record the crystal lattice response to dehydration of the

https://www.patents.google.com
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zeolite sample as it was heated in situ and interpret the thermogravimetric curves. 
These XRPD data, collected with sealed X-ray tube sources, did not allow a full 
crystal structure analysis but inspired in the 1990s the development of time- and 
temperature-resolved crystallography using intense synchrotron X-ray sources and 
fast detectors (e.g., Cruciani 2006 for a review). In the 1970s the crystal structure 
analysis by the Rietveld method was in its infancy and the ab initio structure solution 
of zeolites from powder data was still a dream. Given the difficulties to grow large 
crystals of zeolites in laboratory, most of the new structures determined in 1970s and 
1980s were of NZs, generally from hydrothermal origin, while laboratory products 
most frequently had the same structure type of known natural minerals. Mazzite was 
the first zeolite to be found in 1974 as a natural mineral, when a synthetic coun-
terpart with the same framework (zeolite Omega and ZSM-4) was already known 
(Gottardi and Galli 1985). The dialogue between mineralogy and synthetic chemistry 
became quite intriguing in 1991 when tschernichite, a recently discovered zeolite 
mineral from zeolitized basalts of the Eocene Goble volcanic series, was recognized 
to have the same topology as beta zeolite (BEA). While beta zeolite is the first high-
silica (Si/Al≈ 8÷10) zeolite ever synthesized, tschernichite had a much lower Si/Al 
(~3÷4). The year before, the same site had yielded boggsite (Si/Al = 4.3), with no 
synthetic counterparts. These results were consistent with the common belief at the 
time that the Si/Al ratio of 5, as in mordenite, was the upper limit in NZs likely 
due to the lack of organic agents required for the synthesis of high-silica zeolites. 
A big surprise came in 1996–1997 when, associated with the two zeolites found at 
Goble, three new zeolite minerals were discovered in the Jurassic Ferrar dolerite of 
Mount Adamson, Northern Victoria Land, Antarctica: gottardiite, terranovaite and 
mutinaite (Alberti et al. 2000) (Fig. 12.10).

Gottardiite turned out to have the same structural topology as the synthetic NU-
87 (NES), terranovaite had a new topology (TER), while mutinaite proved to be 
the synthetic counterpart of ZSM-5 (MFI), still today the most famous and studied 
synthetic zeolite both for its important industrial applications and for its structural 
complexity. All three of the new Antarctic zeolites belong to the “pentasil” family (i.e. 
they contain five-membered rings) and, even more surprisingly, show Si/Al ratios 
much higher than 5 (6.2, 5.7, 7.7 respectively) being rich in calcium as a cation 
channel, casting doubt both on the assumption that NZs are limited to Si/Al ≤ 5 and 
that expensive organic templates are always needed to stabilize MFI-type zeolites. 
This still represents a challenge for industrial chemists to find more sustainable 
synthesis routes inspired by nature. Based on Bernal’s seminal hypothesis that “life” 
initiated by catalytic assemblage on the surface of a mineral, Smith (1998) speculated 
that a natural zeolite such as mutinaite might have scavenged organic species from 
the “primordial soup” for catalytic assembly in specific polymers protected from 
rapid photochemical destruction. Whether or not they have to do with the origin of 
life, early catalytic reactions assisted by zeolite-like minerals likely played a role 
in the prebiotic Earth. Chirality of molecules is often considered when reasoning 
about the origin of life (e.g., Hazen and Sverjensky 2010). Interestingly, zeolites 
with chiral structure, i.e., those lacking any improper symmetry elements (inversion, 
reflection, glide, or roto-inversion), attract a lot of interest in industrial catalysis
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Fig. 12.10 Zeolites form Mt. Adamson, Antarctica: a tschernichite (Alberti et al. 2002); b 
gottardiite (Galli et al. 1996); terranovaite (Galli et al. 1997); mutinaite

because they can combine the desirable shape selectivity and enantioselectivity in 
different processes. Only 8 out of 248 zeolite structure types are intrinsically chiral, 
only 3 are aluminosilicates, two of which are the tetragonal polytype of tscherni-
chite (polymorph A of beta zeolite) and goosecreekite (no synthetic counterpart). 
The ordered distribution of the (Si, Al) distribution in the framework is a feature that 
distinguishes the tetragonal tschernichite from the monoclinic form (Alberti et al. 
2001); the distribution of (Si, Al) tetrahedra is almost fully ordered also in goose-
creekite and fully ordered in the third chiral aluminosilicate zeolite (Linde J) too. 
Once again food for thought for mineralogists, chemists and even biologists. 

As already noted, in the mid-1950s there was a sharp increase in the patent filing 
rate which fostered a somewhat curious but very important side effect. Given signif-
icant investment in zeolite research and concern about possible patent infringement 
if newly synthesized zeolites were found to already exist as minerals, companies in 
the United States undertook extensive geological explorations for NZs (Mumpton 
1978). What had hitherto been considered a class of rare minerals, ubiquitous but 
without commercially attractive reserves, was found to be abundant worldwide in 
hundreds of large sedimentary deposits of vitroclastic sediments that had undergone
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diagenetic or low-level metamorphic processes. Instrumental in evaluating whether 
a deposit was worth exploiting was the increased experience and availability of 
XRD methods which allowed the identification of very fine-grained assemblages of 
sub-microscopic crystals (<20–30 µm) and volcanic glass. Even today, the initial 
assessment and control of the zeolite deposit grade, typically variable in space and 
time, must be based on a rigorous protocol which includes the quantitative phase 
analysis by the Rietveld method with addition of an internal standard for the accu-
rate determination of the amorphous phase together with the actual zeolite content 
(Gualtieri et al. 2019). 

The most common zeolite minerals occurring in sedimentary deposits include 
clinoptilolite, chabazite, phillipsite, mordenite, and erionite (Fig. 12.11). 

The world’s resources of sedimentary zeolites have so far not been well defined 
but are estimated to be very large. The worldwide distribution of zeolite deposits 
can be estimated from reports of current producers in countries with natural zeolite 
mining operations (Fig. 12.12).

Global mine production is estimated to be in the order of 1.0–1.3 million tons per 
year (Crangle 2021). Production statistics and trends (Fig. 12.13) differ in different 
countries due to the demands for domestic and external market applications.

Compared to the tens of billions of dollars’ worth of SZs, the market for NZs is 
worth much less, probably in the tens of millions of dollars, due to the unit value 
of NZs up to a factor of 10 cheaper than cheapest SZs. The top end uses of NZs in 
the United States in 2018 were animal feed, odour control, and water purification, 
accounting for nearly 75 percent of domestic sales tonnage, with other uses including

Fig. 12.11 Most common sedimentary zeolites (SEM images from Gottardi and Galli 1985): a 
clinoptilolite from Hector, California (× 3800); b chabazite, with phillipsite, in the “tufo grigio 
Campano” from San Mango, Avellino, Italy (×900); c phillipsite from Ischia, Italy (×3800); d 
mordenite from Ponza, Italy (×2000); e erionite from Durkee, Oregon (× 500) 
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Fig. 12.12 Worldwide mine production of natural zeolites (form U.S. Geological Survey)

Fig. 12.13 Trends of mine production of natural zeolites in different countries (form U.S. 
Geological Survey)
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oil absorber and grease, unclassified end uses, fertilizer carrier, gas absorbent (and 
air filtration), pet litter, desiccant, wastewater treatment, soil amendment, traction 
control (ice melt), artificial turf, aquaculture, and fungicide or pesticide carrier. Other 
countries that mine large tonnages of zeolites typically use them in low-value, high-
volume construction applications, such as dimension stone, lightweight aggregate, 
and pozzolanic cement (Crangle 2021). 

Looking ahead to the future impact of zeolites on the daily life of humans and 
planet Earth, both synthetic and natural zeolites are expected to play an important role 
as sustainable materials. Sustainability can be defined as “a state of society where 
living conditions and resources continue to meet human needs without undermining 
the integrity and stability of the natural systems” (Li et al. 2017). The global industrial 
and economic development of the last century has largely been based on the combus-
tion of non-renewable fossil fuels, which are also harmful to our environment due 
to the release of a large amount of CO2. Meanwhile, industrial processes and human 
activities have produced various hazardous gases and volatile organic compounds, 
and liquid wastes containing emerging organic contaminants (e.g., hydrocarbons, 
PFAS, antibiotics, etc.), heavy metals and radionuclides, which have posed serious 
threats for the environment and human health. Establishing ecological and economic 
processes to obtain renewable energy sources and environmental improvement is 
currently one of the most pressing issues for the sustainable development of our 
society (Li et al. 2017). Applications of SZs have already extended from use as the 
most important solid catalysts in the traditional petrochemical industry to several 
promising sustainable processes such as biomass conversion, fuel cells, thermal 
energy storage, CO2 capture and conversion, air-pollution control and water purifica-
tion. The peculiar mineralogical features of NZs (low Si/Al ratio, high polarity, abun-
dant and weakly bonded extra-framework cations) make them ideal for ion-exchange 
processes. Clinoptilolite, chabazite and other NZs have been used in large quantities 
to capture the radioactive isotopes 137Cs and 90Sr and reduce the consequences of 
nuclear accidents in Chernobyl (Ukraine), Three Mile Island (USA) and Fukushima 
Daiichi (Japan). In treatment of radioactive waste, also with other radionuclides (e.g., 
60Co, 45Ca, 51Cr, etc.), NZs perform better than other materials in terms of selectivity, 
resistance to nuclear degradation and cost (Mumpton 1999). The effective use of NZs 
in environmental remediation processes such as the removal of heavy metals (Fe, Pb, 
Cd, Zn, etc.) from acid mine drainage and, additionally, of NH4 

+ from municipal 
waters and wastes is well documented (Misaelides 2011; Morante-Carballo et al. 
2021). Clinoptilolite, also in its surface-modified forms, and ZSM-5 are the most 
reported NZs and SZs, respectively, to act as pollutant-adsorbers and reactive media 
in permeable reactive barrier for in situ groundwater remediation (Zhang et al. 2022). 
Applications in agronomy, horticulture, aquaculture, zootechnics, etc., long recog-
nized as the field of choice for the use of NZs (Mumpton 1978; 1999), have great 
potential to improve agricultural activities with sustainable solutions (reduction of 
greenhouse nitrogen-related gases, synergistic and optimal combination with fertil-
izers, increased water retention of soils, etc.) and even assist human missions to other 
planets as with NASA’s formulation of a synthetic “zeoponic” soil for the growth 
of plants in space (Boettinger and Ming 2002). Applications of zeolites for food
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quality and safety management have been recently reviewed (Villa et al. 2022). In 
the last decades, zeolites have also emerged as promising materials for biomedical 
applications such as detoxicants, antibacterial agents, drug carriers, vaccine adju-
vants, enzyme mimetics, etc. (Pavelic et al. 2001) and natural clinoptilolite, as an 
example, has been shown to have potentials in pharmaceutical preparations (Cerri 
et al. 2016). Encapsulation of UV filters in zeolite has been found to improve the 
stability of sunscreens (Fantini et al. 2021). 

Solar energy harvesting and thermal energy storage are where zeolites (and 
zeotypes) can help address some of the major challenges for present and future gener-
ations, such as reducing CO2 emissions and improving quality of human life, espe-
cially in remote areas of the planet. Pioneering work has shown that NZs performs 
as well as SZs (e.g., 13X) in solar energy storage, heating and cooling applica-
tions (Tchernev 2001). Solar refrigerators constructed using natural chabazite or 
Ca-exchanged clinoptilolite/water pairs have been shown to produce up to 100 kg of 
ice/day, depending on the size of the zeolite collector, suitable for storing food (e.g., 
milk) or vaccines in areas without access to electricity; this condition affects around 
1 billion people worldwide. Pioneering intermittent solar heating/cooling systems 
based on the desorption/adsorption process of NZs, controlled by the daily solar 
cycle, have been developed for residential buildings in the US to supply more than 
90% of all energy needed for a typical single-family home (Tchernev 2001). Adsorp-
tion heat pumps or cooling systems have been developed using SZs (e.g., 13X) or 
higher performing (and expensive) CHA-type zeotypes (Li et al. 2022), where the 
mechanical compressor is replaced by a “zeolite compressor”. Today, zeolite beds can 
be found in household appliances such as boilers or washing machines, to improve 
their heating and drying performances. Other advanced applications can be briefly 
mentioned: SZs in fuel cells function both as catalysts for hydrogen or methanol 
production and as electrodes and membranes (Li et al. 2017); large zeolite crystals 
with embedded dyes mimic the photonic antenna system of green plants for light 
harvesting, transport, and trapping (e.g., Calzaferri and Lutkouskaya 2008); micro-
porous zeolite-like organosilicates perform as novel gas sensors, selective in the 
presence of humidity at room temperature (Fabbri et al. 2017). 

In addition to their multi-talented nature as application materials, zeolite minerals 
and their synthetic counterparts constantly challenge scientists with often unusual 
phenomena to observe, understand and possibly exploit to develop exciting new 
materials. An example is the intriguing ferroelastic behavior of ZSM-5 that has 
much potential relevance with the production of hierarchical zeolites (Ardit et al. 
2015). The interplay between water, as the main guest, and the zeolite framework 
(host) has always attracted much scientific curiosity. From a purely thermodynamic 
point of view, it is the enthalpy of hydration that stabilizes the structure of the other-
wise less stable anhydrous zeolite, even if the entropy of hydration works against the 
stabilization (Navrotsky et al. 2009). This explains the exo-/endothermal character of 
ad-/desorption in zeolite thermal storage. In addition to water adsorbed on external 
surfaces, the H2O molecules in zeolites come in different “types”, such as truly 
“zeolitic” or “hydrate-like” (Bish and Carey 2001), and are confined in nanopores 
with a variety of H-bonding network structures (“ice-like”, one-dimensional or
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helical water chains, worm-like clusters, spherical nanoclusters, etc.). Water confined 
in nanoporous materials is currently the subject of very active computational and 
experimental work (Coudert et al. 2021). The combination of zeolite confinement and 
high pressure provides a unique mechanochemical approach to catalyst-free synthesis 
of challenging compounds such as amorphous or cristobalite-type carbonia and CO2-
SiO2 solid solutions, dense glassy-like form of H2, conjugated chain polymers/zeolite 
nanocomposites (e.g., Santoro et al. 2013). Non-ambient studies of zeolites are fasci-
nating. For example, zeolites at high pressure (e.g., Gatta and Lee 2014 for a review) 
revealed a counterintuitive effect of pressure-induced superhydration with volume 
expansion (Lee et al. 2002); zeolite collapse to low-density “perfect” glass then to 
high-density glass shed light on polyamorphism (Greaves et al. 2003). Several other 
counterintuitive phenomena have been described in zeolites: “negative hydration 
expansion” (i.e., a strong contraction upon water adsorption) mirrors “positive dehy-
dration expansion” frequently encountered when hydrogen bonds between H2O and 
framework oxygens are weakened in the early stages of dehydration; anhydrous or 
dehydrated zeolites are found to shrink upon heating, with “negative thermal expan-
sion” (NTE) in some cases to be interpreted as due to rigid unit modes, while in 
others resulting from water-mediated chemical changes during dehydration, in still 
others just being a consequence of the framework relaxation after the perturbation 
caused by H2O molecules diffusing through narrow channel apertures of zeolite 
pores, as exemplified by analcime (Fig. 12.14; Cruciani and Gualtieri 1999). These 
“far-from-equilibrium” non-quenchable structural dynamics can only be recorded 
by time-resolved in situ methods and provide useful insights into mechanisms, such 
as the pore-mouth breathing motion or the trap door effect, with much relevance in 
applications (Cruciani 2006). 

To conclude this overview of zeolites as the “multifaceted minerals of the century”, 
it should be noted that it would be difficult to find another family which, starting

Fig. 12.14 Changes of 
T-O-T angles in analcime 
induced by water molecules 
escaping from zeolite pores 
through six-ring apertures, 
which becoming wider and 
more regular, in the T range 
180–480 °C; for T > 480 °C, 
relaxation to the initial 
six-ring distortion is 
accompanied by apparent 
NTE (redrawn after Cruciani 
and Gualtieri 1999) 
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out of pure curiosity, had contributed so much to technological developments and 
today inspires promising sustainable solutions for the future. The interaction between 
natural and synthetic zeolites will remain a unique ground for fusing mineralogy, 
chemistry, physics, and material sciences. 

12.7 Concluding Remarks 

Quoting the famous sentence by Plato, “Necessity is the mother of invention”, the 
major driving force of discoveries is certainly the (increasing) needs of Mankind. 
The field of mineralogy makes no exception as most of the discoveries related to 
this discipline were or are prompted by the demand to solve problems faced in 
the everyday life. This chapter has reported examples of discoveries in the field of 
mineralogy that have significantly impacted human life, blooming numerous areas 
of science and technology. 

Mineralogy has been and continues to be a tool for the understanding of the 
very nature and properties of natural (and man-made) materials. The development of 
new mineralogy and crystallography analytical methods with both conventional and 
non-conventional sources (synchrotron radiation, XFEL, and neutrons) is giving an 
incredible boost and powerful tools to go beyond the existing limits and paradigms 
of knowledge to face the future of Mankind with awareness and hope. 
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Chapter 13 
Hydrogen, the Principal Agent 
of Structural and Chemical Diversity 
in Minerals 

Frank C. Hawthorne 

Hydrogen (both neutral H and H+) is the smallest element in the Periodic Table 
(Rahm et al. 2017) and small size and high volatility make it perhaps the most widely 
distributed element on Earth. Despite the fact that H constitutes less than 0.1% of the 
Earth by mass, it is capable of incorporation into the majority of minerals at a major 
level. Hydrogen occurs as a required constituent in ~60% of all minerals and plays 
a variety of roles that give rise to the complexity (sensu lato) and range of structure 
and chemical composition that is characteristic of oxide and oxysalt minerals in 
particular. Here I examine the diversity of mechanisms by which H is incorporated 
in minerals and the various ways in which H promotes stable atomic arrangements. 
I will use Φ to designate a ligand: Φ = O2–, (OH)–, F–, Cl–, (H2O)0 and I will write 
a polyhedron most generally as (MΦn) and more specifically by the central cation: 
thus the expression “Mg2+ octahedron” designates an (MgΦ6) octahedron. 

13.1 Stereochemistry of H+ 

Hydrogen is electropositive and may be considered as a monovalent cation in crystals 
where it commonly has the coordination number [2]. The geometrical details of the 
local stereochemistry around the hydrogen atom in inorganic structures have been 
examined in considerable detail: e.g., Ferraris and Franchini-Angela (1972), Brown 
(1976), Ferraris and Ivaldi (1984) and Milovanović et al.  (2022). Commonly, [2]-
coordination of H+ is very asymmetric: H+ forms a strong bond with the closer anion 
and a weak bond with the more distant anion (Fig. 13.1). This arrangement can be 
written as D–H…A where D is the strongly bonded donor anion, A is the weakly 
bonded acceptor anion, and H…A is the hydrogen bond. In general, 100 < D–H…A
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Fig. 13.1 The geometry and 
nomenclature of the 
hydrogen bond. Large yellow 
circles: O2– ions; small red 
circle: H+ ion; full black line: 
O2– 

donor–H+ bond; dotted 
black line: hydrogen bond 

≤ 180° with an average value of ~165°; large angles (~180°) are usually characteristic 
of strong hydrogen bonds (Brown 1976). Coordination numbers greater than [2] do 
occur for H+ in minerals although they are much less common than [2]: there is one 
short D–H bond and two (or more) weak H…A hydrogen bonds, usually designated 
as bifurcated (or trifurcated) hydrogen bonds. 

13.2 Bond-Valence Theory 

Bond-valence theory (Brown 2002, 2016; Hawthorne 2012, 2015) is a theory 
of atom–atom interactions in atomic arrangements. It is a back-of-the-envelope 
method in which physical details are not obscured by complexities of compu-
tation, and can be used for very complicated minerals with considerable 
chemical and structural disorder (e.g., byzantievite: Ba5(Ca,REE,Y)22(Ti,Nb) 
18(SiO4)4[(PO4),(SiO4)]4(BO3)9O22[(OH),F]43(H2O)1.5, Sokolova et al. 2010). For 
any pair of bonded atoms, bond valence is a measure of the strength of the bond and is 
inversely proportional to the length of the bond. It may be calculated using observed 
bond-lengths and bond-valence curves of the general form sij = exp[(Ro–Rij)/B], 
where sij is the bond valence between ions i and j, Rij is the observed bond-length, 
and Ro and B are fitted parameters, e.g., Gagné and Hawthorne (2015) for atom pairs 
involving O2–, and Brown and Altermatt (1985) for atom pairs involving other simple 
anions (e.g., Cl–, F–). 

13.2.1 Lewis Acids and Lewis Bases 

Brown (2002, 2016) defined the Lewis-acid strength of a cation as its character-
istic bond-valence, which is equal to its atomic (formal) valence divided by its 
mean coordination-number; a comprehensive set of values is given by Gagné and 
Hawthorne (2017) based on ~10,000 well-refined crystal-structures. The Lewis-base 
strength of an anion is defined as the characteristic valence of the bonds formed by the 
anion. Simple anions, e.g., O2–, F–, exhibit an extremely wide range of bond valence;
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Fig. 13.2 The bond-valence structures of the (SO4)2– polyanion with a two additional bonds inci-
dent at each O2– ion, and b five additional bonds incident at each O2– ion; small blue circles: S6+ 

ions

for example, values for O2– vary from 0.17 vu in (NaO6) polyhedra to 2.0 vu in CrO3 

(Stephens and Cruickshank 1970), and Lewis basicities for such simple anions have 
little or no predictive value. However, high-valence polyanions, e.g., (SO4)2–, exhibit 
a much more restricted range of Lewis basicity. Figure 13.2 shows the bond-valence 
structure of the (SO4)2– polyanion. Most of the bond valence required by each O2– 

ion of (SO4)2– is provided by the S6+–O2– bond (at ~1.5 vu), and the remainder comes 
from the cations bonded to the (SO4)2– polyanion. Two examples are shown here; 
in Fig. 13.2a, each O2– accepts two additional bonds of 0.25 vu, and in Fig. 13.2b, 
each O2– accepts five additional bonds of 0.10 vu. For  M2(SO4), M+ = Na+, K+, 
Rb+, Cs+, and Mg(SO4)(H2O)n, n  = 6,7, the mean number of bonds accepted by 
the (SO4)2– polyanion is 3.83 × 4 and the Lewis basicity is 2/(3.83 × 4) = 0.13 
vu. It is apparent that the range of incident bond-valences possible is far less for the 
(SO4)2– polyanion than for the simple O2– ion, and that defining Lewis basicities 
for polyanions provides useful predictive capability. Values for Lewis basicities of 
polyanions are given in Table 13.1. 

13.2.2 The Basic Axioms of Bond-Valence Theory 

Bond-valence theory has three principal axioms: (1) the valence-sum rule; (2) the 
path (loop) rule; and (3) the valence-matching principle. 

The valence-sum rule: The magnitude of the sum of the bond valences incident 
at each ion is equal to the magnitude of the valence of that ion. For any field, the 
flux theorem of Gauss (Matthews 1998) relates the distribution of electric charge to 
the resulting electric field: the flux of the field intensity through a closed surface is
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Table 13.1 Lewis basicities 
(vu) for oxyanions 

(BO3)3– 0.33 (AsO4)3– 0.25 

(BO2(OH))2– 0.27 (AsO3(OH))2– 0.19 

(BO4)5– 0.42 (AsO2(OH)2)– 0.13 

(SiO4)4– 0.33 (VO4)3– 0.25 

(SiO3(OH))3– 0.29 (VO3(OH))2– 0.19 

(SiO2(OH)2))2– 0.23 (VO2(OH)2)– 0.13 

(AlO4)5– 0.42 (CO3)2– 0.22 

(PO4)3– 0.25 (CO2(OH))– 0.19 

(PO3(OH))2– 0.19 (NO3)– 0.17 

(PO2(OH)2)– 0.13 (SO4)2– 0.13 

(As3+O3)3– 0.33 (SO3(OH))– 0.06

related to the total net charge enclosed within that surface. The valence-sum rule is 
thus a corollary of the flux theorem applied to the electrostatic potential field (Preiser 
et al. 1999). 

The path rule: The sum of the directed bond-valences along any path between 
crystallographically equivalent ions in a structure is equal to zero (Gagné et al. 2018). 
This definition includes closed paths (loops) as this rule was originally formulated 
just for loops (Brown 1981). 

The valence-matching principle: For a chemical bond to form, the Lewis acidity 
(the electron-attracting capacity of the cation) must match the Lewis basicity 
(electron-donating capacity) of the anion. This argument is based on the handshaking 
principle of Graph Theory (e.g., Wilson 1979), and leads to a specific criterion for 
chemical bonding, the valence-matching principle (Brown 2016): Stable structures 
will form where the Lewis-acid strength of the cation closely matches the Lewis-base 
strength of the anion. 

Bond-valence theory plays a critical role in understanding the different mecha-
nisms involved in incorporating H+ into mineral structures, in particular because of 
the disorder that so often accompanies the presence of (OH)– and (H2O)0 in minerals. 

13.3 The Incorporation of H+ into Mineral Structures 

Hydrogen may be incorporated in mineral structures in the following ways: (1) as 
strongly bonded complexes involving other first-row ions; (2) as strongly bonded 
complexes involving oxyions; (3) as an itinerant ion.
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13.3.1 Strongly Bonded Polyions Involving H+ and Other 
First-Row Ions 

Hydrogen is strongly bonded to a donor anion, and it is common practice to consider 
the first-row elements bonded to H+ as complex species (polyions) or groups. With 
regard to the Earth, there are four ions of relevance here: C4–, N3–, O2– and F–. The  
bonding behaviour of H+ and F– is similar to that of the other three first-row ions 
but HF and HF(H2O) occur only as fluids at the surface of the Earth, and HF has not 
been reported as a constituent of a mineral. 

There are four different H+–O2–-bearing groups in oxide and oxysalt minerals: 
(OH)–, (H2O)0, (H3O)+ and (H5O2)+ (Fig. 13.3a–d). It is apparent from the typical 
bond-valence values shown in Fig. 13.3 that the coordination of H+ is very asym-
metric, with common Odonor–H bond-valences ranging from 0.90–0.50 vu and 
H…Oacceptor bond-valences ranging from 0.10–0.50 vu. This behaviour is apparent 
in the variation of observed Odonor–H and H…Oacceptor bond-distances (Fig. 13.4a) 
which show a very strong bimodal distribution with maxima at 0.983 Å for Odonor–H 
bonds and 1.764 Å for H…Oacceptor bonds (Gagné and Hawthorne 2018). There is 
also a weak third maximum at 1.236 Å that corresponds approximately to the length 
of a symmetrical hydrogen-bond. There is a very strong correlation between the 
H…Oacceptor distance and the Odonor–H distance for [2]H+ (Fig. 13.4b). The solid line 
in Fig. 13.4b was calculated with the H+–O2– bond-valence parameters of Gagné and

Fig. 13.3 The geometry and typical bond-valence structures of hydrogen-bearing groups in 
minerals: a (OH)–; b (H2O)0; c (H3O)+; d (H5O2)+; bond-valence values in vu (valence units)
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Fig. 13.4 a Bond-length variation for [2]H+ bonded to O2– in inorganic structures; b variation of 
H…Oacceptor hydrogen-bond distance as a function of the Odonor–H distance for [2]H+. The solid line 
shows accord with the valence-sum rule for the bond-valence parameters of Gagné and Hawthorne 
(2015). c Calculated energy of hydrogen-bond distortion as a function of H…Oacceptor distance at T 
= 298 and 373 K. Continuous lines: H…Oacceptor pair energy; discontinuous data: system energy. 
All functions are shifted to have a common minimum energy of zero; the red line indicates the 
mean H…Oacceptor distance in minerals (see text). (a) and (b) modified from Gagné and Hawthorne 
(2018); (c) modified from Smith et al. (2005) 

Hawthorne (2015) and shows accord with the valence-sum rule of Brown (2016), 
indicating that the H+–O2– interaction may be described adequately by a single set of 
bond-valence parameters across the whole range of observed distances. Moreover, 
the grand mean observed H…Oacceptor distance of 1.764 Å with a standard deviation 
of 0.156 Å (red line and yellow box in Fig. 13.4c) is close to the minimum-energy 
H…Oacceptor distance calculated for water (Fig. 13.4c) by Smith et al. (2005).

Positively-charged groups involving H+ and O2– act as polycations although 
they are extremely uncommon in minerals (Table 13.1). They have been 
identified in hydronium jarosite {H3O}[Fe2+ 3(SO4)2(OH)6], Ripmeester et al. 
(1986); rhomboclase {H5O2}[Fe3+(SO4)2(H2O)2], Mereiter 1974); mejillonesite 
(H5O2)NaMg2(PO3OH)(PO4)(OH), Atencio et al. (2012). Larger arrangements of 
donor anions and H+ ions have been noted in synthetic inorganic crystals, e.g., 
(H7O2)3+, (H14O6)2+; Emsley et al.  (1981), but these cannot be considered as strongly 
bonded complexes as their internal bonds must include (weak) hydrogen bonds as 
integral linkages of the arrangements.
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There are two H+–N3–-bearing groups in oxide and oxysalt minerals: (NH3)0 and 
(NH4)+ (Fig. 13.5). As (NH3)0 is a neutral group, it may occur as (1) an occluded 
group where it is trapped in a cavity in a structure but not bonded to any of the 
surrounding ions (Fig. 13.5a); as the N3– ion lies to one side of its coordinating H+ 

ions, (2) N3– may bond to a cation in the structure, and the valence-sum rule will 
then give rise to hydrogen bonds to other anions in the structure (Fig. 13.5b). This 
latter arrangement is seen in shilovite, Fig. 13.5c, Cu(NH3)4(NO3)2, Chukanov et al. 
2015). In the (NH4)+ group, the tetrahedron of H+ ions surround the central N3– ion 
and prevents any other cation from bonding to N3–, and (NH4)+ acts as a polycation 
(Fig. 13.5d). There are two H+–C4–-bearing groups in oxide and oxysalt minerals: 
(CH3)–1 is pyramidal (Fig. 13.6a) and bonds to other ions in a structure whereas 
(CH4)0 (Fig. 13.6b) is neutral and may occur only as an occluded group where it 
is trapped in a cavity in a structure. Their frequencies of occurrence as dominant 
polyions in minerals are summarized in Table 13.2; note that where there is solid 
solution of F– for (OH)–, many additional minerals will contain substantial but non-
essential (OH)–, increasing the number of mineral species with significant (OH)– 

content. 

Fig. 13.5 The bond-valence 
structures of the (NH3)0 and 
(NH4)+ polyions: a the 
(NH3)0 group; b sketch of 
the (NH3)0 group with N3– 

bonded to an M2+ ion; c an 
example of (b) in the 
structure of shilovite 
(Chukanov et al. 2015), Cu2+ 

coordinated by four (NH3)0 

groups and two O2– ions; d 
(NH4)+ polyion. Green 
circle: N3– ion; dark-blue 
circle: Cu2+ ion
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Fig. 13.6 The bond-valence 
structures of the (CH3)– and 
(CH4)0 polyions: a the 
(CH3)– group; b the (CH4)0 

group. Large blue circles: 
C4– ions 

Table 13.2 Numbers of 
minerals containing specific 
H-bearing complexes 

H-bearing complex Number of minerals % of minerals 

(OH)– 1021 20.02 

(H2O)0 823 16.14 

(OH)– + (H2O)0 1004 19.69 

(H3O)+ 16 0.31 

(NH4)+ 154 3.02 

SO3(OH) 9 0.18 

PO3(OH) 66 1.29 

PO2(OH)2 2 0.04 

AsO3(OH) 57 1.12 

AsO2(OH)2 5 0.10 

SiO3(OH) 23 0.45 

CO2(OH) 9 0.18 

As(OH)3 1 0.02 

13.3.2 Strongly Bonded Polyions Involving H+ 

and High-Valence Oxyanions 

The bond-valence requirements of high-valence-oxyanion minerals are dominated by 
the oxyanion and its polymerization, in accord with the definition and organization of 
structure hierarchies of minerals (Hawthorne 2014). Of particular interest with regard 
to minerals are linkages between H+ and (TO4)n– and (TO3)n– groups where [4]T = 
S6+, P5+, As5+, V5+ and Si4+, and [3]T = As3+, B3+ and C4+. The atomic arrangements 
of these (TO4–n(OH)n) and (TO3–n(OH)n) groups occurring in minerals are shown in 
Fig. 13.7a–d and their chemical compositions are listed in Table 13.2 together with 
their frequencies of occurrence.

There are two situations with regard to the occurrence of these groups in minerals:

(1) H+ will bond to a ligand of [3]T or  [4]T where the general arrangement of coor-
dination polyhedra is such that there is not a cation of sufficient Lewis acidity 
close enough to bond to that ligand and satisfy its bond-valence requirements.
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Fig. 13.7 The atomic arrangements of (TO4–n(OH)n) and  (TO3–n(OH)n) groups in minerals: a 
TO3(OH); b TO2(OH)2; c As3+O2(OH); d TO2(OH). Small mauve circles: T atoms

This situation may be accommodated by the ligand acting as an Odonor ion for 
H+, forming an (OH)– group and an acid oxyanion: e.g., (T5+O3(OH)–)2–.

(2) The protonated (acid) oxyanion occurs in aqueous solution, e.g., (CO2(OH))–, 
and may retain its identity upon crystallization. 

Many of the polyanions listed in Table 13.1 occur as complexes in aqueous solu-
tion, suggesting a link between the aqueous complexes and the atomic arrangements 
of the minerals that crystallize from such solutions. I will use the following defini-
tions: (1) (H2O) is a group or molecule; (2) water is a liquid of chemical composition 
~(H2O)n; (3) ice is a solid phase of chemical composition ~(H2O)n. I use the term 
H2O to refer to the chemical composition of H2O, and (H2O) to refer to the group in 
an extended crystal structure. Why be so specific about this? Because the physical 
states and the resulting physical properties of ice, water and vapour are different 
(away from critical points), and their roles in Earth processes are also different. 

H2O is amphoteric: it can act as an acid and as a base. Water dissociates via the 
following reaction: 

2H2O = (H3O)+ + (OH)− 

and pH is inversely related to the activity of the H+ ion in solution. Where pH is low 
(below ~7), the activity of H+ is high and represented by the presence of (H3O)+;
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Fig. 13.8 Lewis basicity of 
some polyanions in Table 
13.1 versus pKa of the 
corresponding polyprotic 
acid 

where pH is high (greater than ~7), the activity of H+ is low and represented by 
the presence of (OH)–. Many of the Lewis bases of Table 13.1 exist as complexes 
in aqueous solution and the crystallization of minerals from aqueous solution may 
be summarized by the reaction acid + base = salt + water. The base in solution is 
controlled by the dissociation of the corresponding acid. Where the acid is polyprotic 
(has more than one proton), a sequence of dissociations occurs, e.g.: 

H3PO4 ⇌ (PO2(OH)2)
− + H+, pKa1 = 2.2 

H2PO
− 
4 ⇌ (PO3(OH))2− + H+, pKa2 = 7.2 

HPO2− 
4 ⇌ (PO4)

3− + H+, pKa3 = 12.3 

where pKan is the negative log of the nth acid-dissociation constant. The base reaches 
its maximum concentration in solution at a pH midway between the two bounding 
pKa values (from Perrin 1965). Thus one expects a correlation between pKa and 
the Lewis basicity (Table 13.1) of the corresponding polyanion. Figure 13.8 shows 
that this is indeed the case. As the polyanion is stable over a range of pH, the 
assigned Lewis basicity will be an average value over this range. Moreover, pKa is 
also dependent on temperature, and detailed analysis of crystallization-dissolution 
relations will need to take this dependency into account. 

13.3.3 Itinerant Protons 

The H+ ion, or proton, has a much higher diffusion rate than other cations of the same 
charge (Table 13.3, data from https://en.wikipedia.org/wiki/Grotthuss_mechanism). 
As a consequence, H+ is an important catalyst in many mineral reactions and also

https://en.wikipedia.org/wiki/Grotthuss_mechanism://en.wikipedia.org/wiki/Grotthuss_mechanism
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strongly effects the physical properties of minerals. In particular, it often shows 
dynamic disorder as in the examples given below. 

The crystal structure of vesuvianite is most generally written as 
X19Y13T5Z18O68W10 (Groat et al. 1992a) where X = Ca, Na, REE, Pb2+, Sb3+; Y  
= Al, Mg, Fe2+, Fe3+, Mn2+, Ti4+, Cr3+, Cu2+, Zn;  T  = O, B; Z = Si; W = (OH), 
F, O. In this rather complicated structure (Groat et al. 1992b), H+ occurs both in the 
bulk of the structure and in channels down the c-axis. The arrangement of H+ in the 
channels is shown in Fig. 13.9a. The H+ ion labelled H2 has O(10) as both donor and 
acceptor anions, and crystal-structure refinement shows it to be disordered about a 
centre of symmetry halfway between the two O(10) locations. As the bond-valence 
requirement of H+ is not satisfied where either of the locally associated O(1) anions 
is the donor anion, it seems likely that H+ hops between the two off-centre H2 
positions in a vain attempt to improve its accord with the valence-sum rule. Infrared 
spectra of this vesuvianite (Fig. 13.9b) show bands from 3700–3400 cm–1 due to 
H+ in the bulk of the structure and bands from 3200–3000 cm–1 due to H+ in the 
channel. At room temperature, the 3200 cm–1 band has a long tail to ~2900 cm–1, 
unlike bands due to localised H+ at 3700–3400 cm–1, and is partly resolved into 
three bands at liquid-nitrogen temperature, suggesting that the long tail at room

Table 13.3 Diffusion rates of 
ions in an electric field 

Ion Mobility* 

H+ 3.620 

NH4 
+ 0.763 

K+ 0.762 

Na+ 0.519 

* ×10–3/cm2V–1 s–1 

Fig. 13.9 a The arrangement of H+ and associated ions in the channels of the vesuvianite structure 
(modified from Groat et al. 1992b); b polarized infrared spectra in the principal (OH)-stretching 
region for vesuvianite at liquid-nitrogen temperature (modified from Groat et al. 1995)
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temperature is due to a spectrum of environments associated with hopping of the 
proton, and the three absorptions at low temperature are due to partial inhibition of 
hopping.

The crystal structure of schwartzemburgite, Pb2+ 5I3+O6Cl3H2 Welch et al. (2001), 
consists of sheets of composition [(Pb2+ 5I3+)O2– 

6]+ similar to the structure of tetrag-
onal PbO with every sixth Pb2+ replaced by I3+, intercalated with sheets of Cl– ions 
which provide additional coordination to the Pb2+ ions. Electroneutrality is main-
tained in the structure by the inclusion of H+ 

2, but there are no anions that have suffi-
cient deficiency in bond valence to act as donor anions to H+ which is thus forced to 
move throughout the structure along the paths of highest anion bond-valence defi-
ciency, suggesting that schwartzemburgite may be an ionic conductor. This behaviour 
is in accord with the infrared spectrum in the principal (OH)-stretching region 
(Fig. 13.10a) which shows a fine-structured absorption band with a half-width of 
~600 cm–1, close to two orders of magnitude larger than bands for well-ordered 
(OH)– ions. 

Cámara et al. (2004) reported on the structure of a synthetic (OH)-excess amphi-
bole, NaNa2Mg5Si8O21(OH)3. In the structure, there are no obvious donor anions 
for the excess H+ ion as the incident bond-valence sums (ignoring excess H+) at the  
available anions are in the range 1.50–2.0 vu (Cámara et al. 2004), it seems more 
likely that the excess proton is itinerant. The infrared spectrum (Fig. 13.10b) shows 
a very broad peak centered on ~3400 cm–1 with a long tail stretching to ~2800 cm–1 

when adsorbed moisture is removed on heating at 250 °C, somewhat similar to the 
spectra of vesuvianite and schwartzemburgite. This result is very intriguing with

Fig. 13.10 a Polarized infrared spectra in the principal (OH)-stretching region for schwartzembur-
gite (modified from Welch et al. 2001); b infrared spectra in the principal (OH)-stretching region 
for synthetic (OH)-excess amphibole (modified from Cámara et al. 2004) 
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regard to the crystal chemistry of the amphibole-supergroup minerals. Until fairly 
recently, it was assumed that (OH + F + Cl) = 2 apfu in amphiboles (with the excep-
tion of kaersutitic compositions). However, more recent work has shown that (OH + 
F + Cl) can be much less that 2 apfu in many compositions, and ideally anhydrous 
compositions with O ~24 apfu are now known. The possible incorporation of H+ in 
excess of that required by (OH + F + Cl) = 2 apfu would broaden the flexibility of 
amphibole chemical compositions even further. 

13.3.4 Quantum Tunnelling 

Beryl, ideally Be3Al2Si6O18, may contain (H2O) in the channels parallel to the c-
axis. Infrared spectra (Wood and Nassau 1968) show two types of (H2O) in beryl: 
type I with the H–H vector parallel to the c-axis and type II with the H–H vector 
perpendicular to the c-axis. Hawthorne and Černý (1977) showed that type I (H2O) 
is non-bonded and type II (H2O) is bonded to alkali metals that also lie within the 
channel, and assumed that type I (H2O) is statically disordered over six possible orien-
tations within the channel. Recent DFT calculations (Kolesnikov et al. 2016) showed  
that the potential barrier for rotation of (H2O) around the c-axis is about 176 meV in 
accord with a model of static disorder. However, inelastic neutron-scattering spectra 
indicate extensive tunnelling of protons between the six symmetrically equivalent H 
positions within the channel and coherent delocalization of the protons that consti-
tute a “new state” of the (H2O) group (Kolesnikov et al. 2016). Examination of type 
I beryl as a function of pressure (Kolesnikov et al. 2019) showed that the vibrational 
and tunnelling modes of type I (H2O) are very sensitive to the confining pressure. 
No tunnelling modes were observed for type II (H2O) in either beryl or cordierite. 

It will be interesting to see if such tunnelling effects extend to neutral H-bearing 
species that are itinerant at higher temperatures in zeolitic crystals. 

13.3.5 (OH)––F– Solid Solution: Constraints Imposed 
by Hydrogen Bonding 

As (OH)– and F– are isovalent, it might be thought that there should always be the 
possibility of solid solution between them. However, this is not the case. Where 
hydrogen bonding is relatively weak in a structure, possibly <0.20 vu, there is often 
extensive to complete solid solution of (OH)– and F–. This situation is common in 
many key groups of rock-forming minerals, e.g., amphiboles (Hawthorne et al. 2012), 
micas (Rieder et al. 1999), in which the principal (OH)-stretching frequencies in the 
infrared are in the range 3500–3730 cm–1. As noted above, this solid solution consid-
erably increases the number of mineral species with substantial but non-essential 
(OH)–. Where hydrogen bonding is stronger, the atomic arrangement cannot relax



340 F. C. Hawthorne

sufficiently to accord with the valence-sum rule if F– were to replace (OH)–, and hence 
such solid solution does not happen, as is the case for the brackebuschite-supergroup 
minerals (see below). 

Coupled hydrogen-bonding may lead to unusual constraints on solid solution 
of (OH)– and F–. Consider the structure of hambergite, Be2(BO3)(OH,F). There is 
no F-dominant species recognized by IMA-CMMNC and F–→(OH)– replacement 
reaches a maximum of 48% (Burns et al. 1995). Moreover, synthetic Be2(BO3)F has 
a completely different structure (Baidina et al. 1978). In the F-free (F0) composi-
tion (Fig. 13.11a), symmetrically equivalent (OH)– ions form a staggered hydrogen-
bonded chain that extends in the c-direction. For the F50 composition, (OH)– and 
F– alternate along the chain, and there are two possible hydrogen-bonding arrange-
ments: (1) each H+ ion may form a bifurcated hydrogen bond to the two adjacent F– 

ions (Fig. 13.11b); (2) each H+ ion may form a single hydrogen bond to the adjacent 
F– ion (Fig. 13.11c). Whichever arrangement occurs for the F50 composition, it is 
apparent that F– substitution for (OH)– cannot go beyond 50%. Such constraints on 
partial solid-solution of F– and (OH)– are not uncommon in minerals. 

Fig. 13.11 Possible local F––OH– arrangements along the hydrogen-bonded strips in hambergite. 
a All sites are occupied by OH–; b one half the sites are occupied by F– and the H– ion forms a 
bifurcated hydrogen bond with adjacent F– ions; c one half the sites are occupied by F– with the 
occurrence of hydrogen-bonded O2––H+…F– pairs. Blue circles: F– ions. Modified after Burns 
et al. (1995)
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13.3.6 Trace H in Minerals 

Wilkins and Sabine (1973) first showed that many nominally anhydrous silicate 
minerals contain trace levels of H+ as (OH)– and proposed that this (OH)– is associated 
with some kind of defect or defects. Much subsequent effort was spent on developing 
accurate calibrations necessary to achieve quantitative chemical analysis of trace 
amounts of H. Bell and Rossman (1992) reported H contents on a cross-section of 
nominally anhydrous mantle and crustal minerals and addressed the issue of how 
much of the Earth’s H is resident in the mantle. Subsequent estimates of the amount 
of H (expressed as H2O) in the mantle have ranged from one to seven times the 
amount of H2O in the oceans of Earth (Peslier et al. 2017). 

13.4 Binary Structure Representation 

A structural unit is defined as the strongly bonded part of a crystal structure and 
generally consists of oxyanions (e.g., (SO4)2–, (SiO4)4–) and trivalent and divalent 
cations in [5]- and [6]-coordination. An interstitial complex is defined as the weakly 
bonded part of a structure and generally consists of monovalent and divalent cations, 
(H2O) and (OH)–. This division of a structure into two constituent parts is illustrated 
in Fig. 13.12 for botryogen: Mg2(H2O)10[Fe3+ 2(SO4)4(H2O)2]2 (Majzlan et al. 2016).

On the one hand, these definitions give no indication of the strength of a bond 
for the constituent atoms to be considered as part of the structural unit. On the other 
hand, the definitions provide a degree of flexibility as the division between bonds 
where the cation belongs to the structural unit and bonds where the cation belongs 
to the interstitial species can depend on the relative distribution of bond valences 
and the topology of the bond network. This division is commonly taken at 0.30 
vu, somewhat less than the Lewis acidities of the common [6]-coordinated divalent 
cations (Mg2+, Fe2+, Mn2+, etc.; Gagné and Hawthorne 2017) and greater than the 
Lewis acidities of the common large divalent and monovalent cations (Na+, K+, Ca2+, 
etc.). This division has the advantage that the strengths of H+…O2– bonds in aqueous 
solution are similar to the strengths of bonds involving interstitial cations, and one 
can understand chemical reactions involving minerals exposed to aqueous solutions 
of varying pH as it is these weak interactions that control structure stability. Thus the 
binary representation of complex structure gives a simple but quantitative model of 
even the most complicated mineral, and provides insight into the weak interactions 
that control the stability of its structure.
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Fig. 13.12 The crystal structure of botryogen, Mg2(H2O)12[Fe3+ 2(SO4)4(OH)2](H2O)2, parti-
tioned into two units, the strongly bonded structural unit (shown as colored polyhedra) and the 
weakly bonded interstitial complex (shown as individual atoms and chemical bonds). Yellow tetra-
hedra: (SO4) groups; green octahedra: (Fe3+O6) octahedra; large blue circles: O2– ions; small red 
circles: Mg2+ ions; mauve circles: (H2O) groups linked only by hydrogen bonds; grey lines: Mg–O 
bonds. Modified after Hawthorne (2015)

13.5 The Effects of (OH)– and (H2O)0 on Dimensional 
Polymerization in Oxysalt Structures 

The importance of (OH)– and (H2O)0 in oxysalt minerals arises from their very 
strong polarity and the fact that they have a net dipole moment. As is apparent from 
Fig. 13.3a, b, the oxygen side of each group functions as an anion, accepting a bond 
from a neighbouring cation, whereas the hydrogen side of each group functions as a 
cation, forming a bond with a neighbouring anion. The other ions in Fig. 13.3 have 
much higher symmetry with the result that although the bonds involving single H+ 

ions are very asymmetric, this is not the case for the complexes themselves which 
act as polycations with Lewis acidities equal to the mean strength of their constituent 
hydrogen bonds.

For (OH)– and (H2O)0, the cation–Odonor bond(s) are commonly strong, ~0.8 and 
0.4 vu, respectively, and form part of the structural unit, whereas on the Lewis-acid 
side of the group, the weaker (hydrogen) bonds do not form an integral part of the
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Fig. 13.13 a The crystal structure of newberyite, Mg3(PO3OH)(H2O)3, projected onto (010); 
b the crystal structure of artinite, [Mg2(CO3)(OH)2(H2O)3], projected onto (001); yellow octa-
hedra: (MgΦ6) groups; lilac tetrahedra: (PΦ4) groups; lilac triangles: (CO3) groups. Modified after 
Hawthorne (2015)

structural unit unless they bond to an anion of the structural unit. Where the H+ ion 
bonds to an interstitial anion, the resultant hydrogen bond is not part of the structural 
unit and the polymerization of the polyhedra of the structural unit is limited or 
terminated. Thus the speciation of H+ and its position in the structural unit are major 
factors in controlling the dimension of polymerization of the coordination polyhedra 
in minerals (Hawthorne 1992). 

Newberyite, Mg3(PO3OH)(H2O)3 (Sutor 1967), contains (MgΦ6) octahedra that 
link to (PΦ4) tetrahedra to form a sheet parallel to ac with each tetrahedron sharing 
three vertices with adjacent octahedra (Fig. 13.13a). This arrangement leaves three 
octahedron vertices and one tetrahedron vertex that could potentially link to other 
strongly bonded polyhedra adjacent in the b direction to form a framework structure. 
A H+ ion is attached to the free O2– anion of the (PΦ4) tetrahedron to form an acid 
phosphate group: (PO3OH)2–. The bond-valence incident at the Odonor ion is ~2 vu 
and prevents the constituent O2– ion being part of another adjacent tetrahedron or 
octahedron. Similarly, H+ ions attach to the free O2– anions of the (MgΦ6) octa-
hedron to form an (MgO3(H2O)3)4– group. The bond-valence incident at each of 
the Odonor ions of the (H2O) groups is ~2 vu and prevents them from being part of 
another tetrahedron or octahedron. Thus the presence of H+ in newberyite prevents 
all linkage between the individual layers of tetrahedra and octahedra parallel to ac, 
and newberyite is a mixed tetrahedron-octahedron sheet structure in the structure 
hierarchy of the phosphate minerals (Huminicki and Hawthorne 2002). 

The arrangement of the (OH)– and (H2O) groups in newberyite prevents any 
linkage between adjacent layers of linked octahedra and tetrahedra. However, 
(OH)– and (H2O) can allow linkage of a structural unit in some directions and 
prevent such linkage in other directions, depending on the local details of their stere-
ochemistry. Artinite, [Mg2(CO3)(OH)2(H2O)3] (Akao and Iwai 1978) has a ribbon
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of edge-sharing (MgΦ6) octahedra decorated by (CO3) triangles (Fig. 13.13b). The 
anions down the middle of the ribbon link to three Mg2+ which provide them with 
0.36 × 3 = 1.08 vu, and are donor anions to their associated H+ ions which weakly 
hydrogen-bond to a neighboring ribbon. Thus the (OH)– group prevents linkage of 
the structural unit in the c-direction but allows linkage in the a- and b-directions. 
The three anions along the margin of the ribbon bond to Mg2+, Mg2+ 2 and Mg2+ 

+ C4+, with incident bond-valence values of ~0.3, 0.6 and 1.7 vu, corresponding 
to (H2O), (H2O) and O2–, respectively. The first (H2O) group prevents additional 
polymerization of the structural unit in all three directions, and the second (H2O) 
group allows polymerization in the b-direction but prevents polymerization in the a-
and c-directions. 

Hydrogen as (OH) and (H2O) can control the dimensional polymerization of a 
structural unit, limiting it in one or more directions. This is the principal mechanism 
that produces the wide structural diversity in oxygen-based minerals. Moreover, 
the distribution of H throughout the Earth, together with the anharmonic nature of 
the hydrogen bond and its response to variations in pressure, is a major factor in 
accounting for the systematic distribution of mineral species from the core to the 
surface of the Earth (Hawthorne 2015). 

13.6 The Valence-Matching Principle and the Role of (H2O) 

Above, the valence-matching principle was stated as follows: Stable structures will 
form where the Lewis-acid strength of the cation closely matches the Lewis-base 
strength of the anion. What was not stated is that the valence-matching principle is 
the most important and powerful idea in bond-valence theory (Hawthorne 2012): it 
allows us to test whether a structure arrangement can exist or not, which moves us 
from a posteriore analysis to a priori  analysis. I will consider two simple examples 
from Hawthorne (1994) to illustrate this principle. 

Consider the composition Na2SO4. The Lewis basicity of the (SO4) group is 0.13 
vu. (Table 13.1) and the Lewis acidity of Na is 0.17 vu (Gagné and Hawthorne 2017). 
The Lewis basicity of the anion approximately matches the Lewis acidity of the 
cation, the valence-matching principle is satisfied, and thenardite, Na2SO4, is stable. 
Consider the composition Na4SiO4. The Lewis basicity of the (SiO4) group is 0.33 
vu (Table 13.1) and the Lewis acidity of Na is 0.17 vu. The Lewis basicity of the 
anion does not match the Lewis acidity of the cation, the valence-matching principle 
is not satisfied, and Na4SiO4 is not a mineral (or stable structure).
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13.6.1 The Principle of Correspondence of Lewis 
Acidity-Basicity 

In the examples of the valence-matching principle given above, the structural 
unit is a simple oxyanion, (SO4)2– and (SiO4)4–, and the interstitial complex is a 
single cation, Na+, and their interaction involves individual atom–atom interactions. 
This approach is not practical for minerals with a structural unit and an intersti-
tial complex that both contain several different types of ions, e.g., metavoltine, 
K2Na6Fe2+Fe3+ 6O2(SO4)12·18H2O. Hawthorne (1997) showed that bond-valence 
theory is also valid as a mean-field approach, suggesting that we consider the struc-
tural unit as a very complicated oxyanion (or oxycation) and the interstitial complex 
as a complicated oxycation (or oxyanion). This approach allows us to define an 
aggregate Lewis basicity for the structural unit and an aggregate Lewis acidity for 
the interstitial complex, and the valence-matching principle may be generalized to 
the principle of correspondence of Lewis acidity-basicity (Hawthorne and Schindler 
2008): Stable structures will form where the Lewis-acid strength of the interstitial 
complex closely matches the Lewis-base strength of the structural unit. Using this 
principle, we may examine the mean-field (average) interaction between the struc-
tural unit and the interstitial complex, an interaction in which the H+ ion commonly 
plays a major role in promoting a more stable linkage between the two components 
of the structure (Schindler and Hawthorne 2001, 2004, 2008; Schindler et al. 2006). 

13.6.2 (H2O) as a Moderator of Bond Valence 

As noted above, the H+ ion usually has a very asymmetric coordination. As a result, 
(OH)– and (H2O)0 groups are very polar: the O2– side of the group acts like an anion, 
whereas the H+ side of the group acts as a cation with a (weak) hydrogen bond to 
any neighbouring anion. 

(H2O) bonded to one cation: Consider a cation, M, bonded to an anion, S, with 
a bond valence of v vu (Fig. 13.14a), and a cation, M, bonded to an (H2O) group, 
each H+ ion of which hydrogen-bonds to an anion, S (Fig. 13.14b). In Fig. 13.14a, S 
receives a bond valence of v vu; in Fig.  13.14b, S receives a bond valence of v/2 vu. 
The (H2O) group bonded to a single M cation splits the M–O bond into two bonds 
of (on average) half the bond valence, v/2 vu, in effect acting as a bond-valence 
transformer: thus this type of (H2O) is designated transformer (H2O).

(H2O) bonded to two cations: Consider two cations, M, bonded to an (H2O) group, 
each H+ ion of which hydrogen-bonds to an anion, S (Fig. 13.14c); each S receives 
a bond valence of v vu, the same bond valence as where it is bonded directly to one 
M cation (Fig. 13.14a). Here, (H2O) does not act as a bond-valence transformer, 
and hence is denoted non-transformer (H2O). Note that where the donor O2– ion 
also accepts two hydrogen bonds, it is also part of a non-transformer (H2O) group 
(Fig. 13.14d).
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Fig. 13.14 Bond-valence 
structure around (H2O) as a 
function of local 
bond-topology: a a cation M 
bonds to an anion, S, with 
bond valence v vu; b M 
bonds to Odonor of an (H2O) 
group with bond valence v 
vu; the  H+ ions hydrogen 
bond to S with bond valence 
v/2 vu; c two cations bonded 
to Odonor of an (H2O) group 
with bond valence v vu and 
the H+ ions hydrogen bond 
to S with bond valence v vu; 
d two H+ ions hydrogen 
bond to Odonor of an (H2O) 
group and the H+ ions of the 
(H2O) group hydrogen bond 
to S with bond valence v vu. 
Green circle: M cation; 
brown circle: Odonor; yellow  
circle: Oacceptor. Modified 
after Hawthorne (2012, 
2015)

In the arrangements of Fig. 13.14, the  Oacceptor anions are tacitly assumed to be 
simple anions. However, there is an additional possibility: the Oacceptor anions can 
be part of an (H2O) group of the interstitial complex; this arrangement is shown in 
Fig. 13.15 in which the bond valences to the final Oacceptor anions S are one quarter of 
the original bond-valence of the cation M involved in the arrangement. This double-
transformer effect greatly expands the range and Lewis acidity of the cations that 
can be incorporated into the interstitial complex as shown above.
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Fig. 13.15 A cation M 
bonds to Odonor of an (H2O) 
group with bond valence v 
vu, the  H+ ions of the (H2O) 
group hydrogen bond to 
Odonor of two interstitial 
(H2O) groups with bond 
valence v/2 vu, and  the H+ 

ions of each interstitial 
(H2O) group hydrogen bond 
to Oacceptor anions with bond 
valence v/4 vu 

13.6.3 An Example: The Pascoite-Family Decavanadate 
Minerals 

The decavanadate isopolyanion, ideally [V10O28]6– (Fig. 13.16), is a constituent 
of the pascoite-family vanadate minerals (Kampf et al. 2021) and their 
synthetic analogues, and there are protonated, [HxV10O28](6–x)–, and mixed-valence, 
[(V4+ 

xV5+ 
10–x)O28](6+x)–, varieties (Table 13.4). They occur as low-temperature 

phases associated with the roll-front U deposits of the Colorado Plateau, and their 
synthetic analogues have wide application in industry as coatings, gas sorbents, 
sensors, dyes, capacitors and cation exchangers, and in medicine as anti-tumor agents, 
antiviral agents, cancer antagonists, and in the treatment of Alzheimer’s disease. The 
structural units of these minerals show a limited range of Lewis basicity (0.054–0.154 
vu) but the interstitial complexes show a wide range in chemical composition, and the 
question arises as to how these compositions accord with the principle of correspon-
dence of Lewis acidity-basicity (Hawthorne et al. 2022). Figure 13.17 shows the vari-
ation in Lewis acidity and mean coordination number for all cations of the Periodic 
Table with Lewis acidities <0.80 vu, with the range of Lewis basicity of the decavana-
date polyions shown as green circles and the Lewis basicity of individual decavana-
date O2– anions shown as black circles. According to the valence-matching principle, 
the only simple cations that can bond to the decavanadate ions are Na+ to Cs+, and it is 
notable that synthetic decavanadates of industrial interest commonly involve Cs+ as 
an interstitial cation. Inspection of Table 13.4 shows that the pascoite-family minerals 
contain univalent, divalent and trivalent cations as interstitial components, and it is 
transformer (H2O) that allows this to occur. Figure 13.15 shows how polycations 
bonded to two linked (H2O) groups have their bond valences reduced by a factor 
0.25. We may write these polycations as Mn+(H2O)0–6 and Mn+(H2O)6(H2O)0–12 
with Lewis acidities varying from 0.50 to 0.13 vu for M3+ and from 0.33 to 0.08
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vu for M2+. As shown in Fig. 13.18, the Lewis acidities of these polycations are 
reduced such that they may now bond to the decavanadate polyanion in accord with 
the valence-matching principle. It is interesting to examine the polycations involving 
Al3+ in these structures. The series of polycations in Fig. 13.19a–c may be written 
as the chain [Aln(OH)2(n–1)(H2O)2(n+2)](n+2)+ which has a Lewis acidity of 0.25 vu, 
independent of the value of n, the number of octahedra in the chain, which adds an 
extra degree of flexibility in linking to the polyanion in the presence of additional 
simple interstitial cations. As shown in Fig. 13.19d, e, these polycations can become 
as complicated as their coexisting polyanions. As is apparent by comparison of Table 
13.4 and Fig. 13.17, none of these minerals could exist without the moderating effect 
of transformer (H2O). 

Table 13.4 The minerals of 
the pascoite family 

Mineral species Ideal formula 

Decavanadaites: 

Ammoniolasalite (NH4)2Mg2[V10O28]·20H2O 

Burroite (NH4)2Ca2[V10O28]·15H2O 

Gunterite Na2Ca2[V10O28]·22H2O 

Huemulite Na4Mg[V10O28]·24H2O 

Hughesite Na3Al[V10O28]·22H 2O 

Hummerite K2Mg2[V10O28]·16H2O 

Hydropascoite Ca3[V10O28]·24H2O 

Kokinosite Na2Ca2[V10O28]·24H2O 

Lasalite Na2Mg2[V10O28]·20H2O 

Magnesiopascoite Ca2Mg[V10O28]·16H2O 

Okieite Mg3[V10O28]·28H2O 

Pascoite Ca3[V10O28]·17H2O 

Postite MgAl2(OH)2[V10O28]·27H2O 

Protocaseyite [Al4(OH)6(H2O)12][V10O28]·8H2O 

Rakovanite (NH4)3Na3[V10O28]·12H2O 

Schindlerite (NH4)4Na2[V10O28] ·10H2O 

Wernerbaurite (NH4)2Ca2[V10O28]·16H2O 

Mixed-valence and protonated mixed-valence decavandaites: 

Bluestreakite K4Mg2[(V4+ 
2V5+ 

8)O28]·14H2O 

Caseyite [(V5+O2)Al7.5(OH) 
15(H2O)13]2[H2V4+V5+ 

9O28] 
[V5+ 

10O28]2·90H2O 

Nashite Na3Ca2[(V4+V5+ 
9)O28]·24H2O 

Trebiskyite Na3Mg2[(Ti4+V9)O28]·22H2O
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Fig. 13.16 The [V10O28]6– decavanadate polyanion. Small black circles: V5+ ions; red circles: 
[1]-coordinated O atoms; blue circles: [2]-coordinated O atoms; green circles: [3]-coordinated O 
atoms; yellow circles: [6]-coordinated O atoms; thick black line: V–Ovanadyl bond; thin black line: 
V–Otrans bond; gray shaded line: V–Oequatorial bond. From Hawthorne et al. (2022)

13.7 Multi-scale Processes from Small-Scale Mechanisms 

Although H is the smallest element, and the mechanisms by which it is incorporated 
into mineral structures are on the scale of Ångstroms, the effects of many of these 
mechanisms occur on scales from microns to meters to thousands of kilometres. 
As Earth scientists, we are aware of many of these effects and accept them without 
paying too much attention to the critical role played by hydrogen. Lovelock and 
Margulis (1973) emphasize the importance of water to the Gaia hypothesis in the 
second sentence of their abstract: “The geological record reads that liquid water was 
always present and that the pH was never far from neutral”. The principal thrust of 
their argument involves the atmosphere and the biosphere, but the solid Earth and 
the oceans are also involved in this synergy, particularly when considered from the 
point of view of H rather than just the liquid and vapour phases of H2O. Here I will 
just mention a few of the well-known large-scale processes, and discuss in more
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Fig. 13.17 Mean observed coordination number for 91 cations as a function of their Lewis acidity 
(red circles). Green circles: Lewis basicities of the decavanadate structural units; black circles: 
bond-valence deficiencies of various O2– ions of the vanadate unit. The black dashed lines denote 
the maximum value of the green circles and black circles, respectively. Modified from Hawthorne 
et al. (2022)

detail the roles of H+ in two of the more recently described medium- and large-scale 
processes in which the details of the atom-scale mechanisms have been proposed. 

13.7.1 Medium-Scale Processes: Relative Humidity 
as a Driver of Structural Change 

The direct interaction of minerals with H2O in ambient air has long been recognized 
as a significant process, particularly by mineral collectors and museum curators. 
Perhaps most widely known example is the oxidation of marcasite and some forms 
of pyrite to form sulfuric acid plus various Fe2+-sulfates: e.g., Fe2+(SO4)(H2O)n from 
szomolnokite (n = 1) to melanterite (n = 7) and a wide variety of mixed (Fe2+–Fe3+)-
sulfates and Fe3+-sulfates, a process widely known as pyrite decay. Although such 
solid–vapor reactions may play a role in acid-mine drainage, it is generally subsidiary 
to aqueous reactions. 

The recent description of the reversible hydration↔ dehydration of metatamboite-
tamboite is particularly interesting as it proposes a mechanism of hydration



13 Hydrogen, the Principal Agent of Structural and Chemical Diversity … 351

Fig. 13.18 Ranges in Lewis acidity of interstitial polycations with one layer of coordinating trans-
former (H2O) groups (yellow boxes) and with two layers of coordinating transformer (H2O) groups 
(green boxes); legend as in Fig. 13.17. Modified from Hawthorne et al. (2022)

that is related to the structure of atmospheric H2O (Cooper et al. 2019). These 
minerals have the following general formula: Fe3+ 3(SO4)(Te4+O3)3(Te4+O(OH)2) 
(OH)(H2O)x{H2O}y with x = 3, y = 0 for metatamboite and x = 3, y = 2 for  
tamboite. The structures contain topologically identical ferric-iron-sulfate-tellurite-
hydrate slabs parallel to (011). In metatamboite, these slabs are linked by hydrogen 
bonds bridging adjacent slabs (Fig. 13.20a, hydrogen bonds not shown in this figure 
to emphasize the space between each slab). In tamboite (Fig. 13.20b), there are an 
additional four (H2O) groups forming an {(H2O)4} cluster with the internal and 
external hydrogen bonds shown by red and black dotted lines, respectively. (H2O) 
enters and leaves the structures with variation in ambient humidity, and this change 
is reversible, whereas exposure to a desiccant results in irreversible dehydration and 
melding of the slabs into a framework structure.

The four (H2O) groups form a homodromic hydrogen-bonded cyclic tetramer 
(Fig. 13.20a) in the interstices between the slabs in tamboite (Fig. 13.20b), denoted 
as {(H2O)4}, the interstitial complex in tamboite. There are two low-energy square-
planar cyclic tetramers with homodromic hydrogen bonding: the S4 tetramer in 
which the out-of-plane H+ ions are in a udud (up-down-up-down) arrangement 
relative to the plane of the square, and the Ci tetramer in which the out-of-plane 
H+ ions are in the uudd arrangement. Both tetramers are major constituents of the 
Earth’s lower-atmosphere under humid conditions, with approximate concentrations
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Fig. 13.19 Polycations involving Al3+ in decavanadate minerals: a the monomer [Al(H2O)6]3+ in 
hughesite; various flatimers in minerals: b postite; c protocaseyite; d caseyite; e synthetic [Al13(OH) 
24(H2O)24]Cl15(H2O)13. Blue circles: (H2O); red circles: (OH)–; green circles: O2– ions. Modified 
from Hawthorne et al. (2022)

of 1011 clusters/cm3). The absorption of (H2O)4 clusters is shown conceptually in 
Fig. 13.20a, where planar atmospheric (H2O)4 clusters enter (and exit) the inter-
stitial space between the structural units, accompanied by shear between adjacent 
slabs as shown by the red arrow in Fig. 13.20a. We do not know if the mechanism 
suggested actually occurs, but it is of interest to identify which other atmospheric 
(H2O)n clusters may be active in hydration-dehydration reactions in other minerals. 

13.7.2 Large-Scale Processes from Small-Scale Mechanisms 

From a geochemical perspective, H2O has many unusual properties that are critical 
to its roles on Earth. H2O is the only common substance to exist as solid, liquid 
and vapour under surface conditions on Earth. As a constituent of H2O, H with its 
small size, mobility and wide range of possible bond-valence can exchange easily
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Fig. 13.20 Parts of the adjacent structural slabs in the crystal structures of a metatamboite and b 
tamboite; the H atoms and the interslab hydrogen bonds are omitted in (a) and  (b) for clarity. The 
compositional difference between (a) and  (b) is the square cluster of (H2O) groups in (b) marked  
by the black ellipse. In (a), the solid red arrow indicates the direction of movement of the left slab 
when atmospheric {(H2O)4} is introduced into the structure (along the dashed red arrow) between 
the two slabs. Green octahedra: (FeΦ6); yellow tetrahedra: (SO4); dark-blue circles: Te6+; pink  
circles: (OH)–; pale-blue circles: (H2O); red dotted lines: Odonor–H+…Oacceptor linkages within 
the {(H2O)4} cluster; black dotted lines: Odonor–H+…Oacceptor linkages external to the {(H2O)4} 
cluster. Modified from Cooper et al. (2019)

and rapidly between solid, liquid and vapour phases, making it the most pervasive 
element on Earth (sensu lato). For example, it is hydrogen bonds that give water its 
high surface tension, and it is this high surface tension that is essential to the existence 
of vascular plants (including trees), a large group of land plants containing lignified 
tissue through which water and nutrients are transported upward via surface tension 
between water and the internal surfaces of the plant. 

The bicarbonate polyanion (CO2(OH))– shows the profound effect of acid disso-
ciation in Earth processes and the crystallization of minerals. (CO2(OH))– is bounded 
by pKa values of 6.4 and 10.3 and reaches its maximum concentration in aqueous 
solution at a pH of ~8.3; as a consequence, bicarbonate is the dominant form of 
dissolved inorganic C in sea water. Rainwater contains weak carbonic acid that reacts 
with surficial rocks to produce bicarbonate in freshwater which eventually finds its 
way to the sea. Bicarbonate has a Lewis basicity that matches extremely well with 
the pH of near-neutral water and thus bicarbonate remains in solution. High concen-
trations of bicarbonate and Ca2+ in solution will result in precipitation of calcium 
carbonate as the Lewis acidity of Ca2+ matches much better with (CO3)2– than with 
(CO2(OH))–, and chemical sediments are dominated by limestones sensu lato.
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13.7.2.1 Ice 

H2O is unlike most compounds in that the density of the solid (ice) is less than that of 
the liquid (water) which results in ice being one of the most (if not the most) important 
minerals on Earth. (1) In cold climates, ice forms on the surface of terrestrial water 
(lakes, rivers), insulating the underlying water and allowing aquatic life to survive the 
cold winters. (2) Sea level is controlled dominantly by the amount of (non-floating) 
ice, and climatic variations result in drastic changes in sea level with changes in 
terrestrial ice, resulting in major changes in glacial erosion, ice loading on the crust, 
and drastic changes in sea level. 

13.7.2.2 Polarons and Mobile H+: Anomalous Conductivity 
in Subduction Zones 

There has been an enormous amount of work on oxidation-dehydroxylation mecha-
nisms in amphiboles, particularly riebeckite (Della Ventura et al. 2018; Oberti et al. 
2018) and the mechanism may be summarized as follows (Bernardini et al. 2022): 

CFe2+ +W(OH)− ↔CFe3+ + e− +WO2− + H+ → 1/4extO2 →CFe3+ +exte− 

+WO2− + 1/2extH2O 

Oxidation of Fe2+, primarily at the M(1) site, couples to the release of an electron 
and disassociation of the bonded (OH)– anion to O2– and H+, and the electron and 
the H+ ion migrate through the crystal, the latter to react with oxygen at the surface 
of the mineral and be released as H2O in the presence of oxygen. High-temperature 
resonance Raman scattering shows the presence of thermally activated anisotropic 
small polarons caused by coupling of longitudinal optical (LO) polar phonons and 
conduction electrons arising from electron transitions in [6]Fe2+ and the accompa-
nying strain associated with the reduction in size of the M octahedra caused by the 
oxidation of Fe2+ to Fe3+ (see overviews by Mihailova et al. 2021, 2022). The overall 
process begins with the onset of activation of small polarons (at temperature T’ as 
denoted by Bernardini et al. 2022), continues to completion of polaron activation 
and H+ delocalization (at T''), and concludes with the termination of dehydrogena-
tion (T''’). The onset of itinerant small polarons and mobile H+ (protons) greatly 
increases the electrical conductivity of the amphibole, and is accompanied by the 
delocalization of H+ and its release as H2O in the presence of external oxygen. 

Anomalous high-conductivity layers and H2O recycling are characteristic of 
subduction zones. Blueschists characteristically contain alkali amphiboles, particu-
larly glaucophane, the Mg-dominant analogue of riebeckite. As described in detail by 
Bernardini et al. (2022), oceanic crust subducts beneath southwest Japan and enters 
the eclogite facies at a depth of ~50 km (Fig. 13.21a) and a low seismic-velocity 
layer extends to 60 km, the maximum depth of intraslab earthquakes. Oceanic crust 
subducting beneath north-eastern Japan enters the eclogite facies at a depth of 110 km
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(Fig. 13.21b), the low-velocity layer extends to 150 km and intraslab earthquake 
activity to 200 km. The shaded regions in Fig. 13.21a show the P–T conditions for the 
subducting crust and the temperatures T', for the onset of activation of small polarons 
and H+ delocalization, T'' for the cessation of small polarons and H+ delocalization, 
and T''' for the termination of dehydrogenation. In the warm SW Japan subduction 
zone (Fig. 13.21b), shallow activation of small polarons and dehydrogenation are 
consistent with a shallow conductivity anomaly, shallow intraslab earthquakes, and 
sparse arc volcanism. In the cold NE Japan subduction zone (Fig. 13.21c), deep acti-
vation of small polaron conduction and dehydrogenation are consistent with a deep 
conductivity anomaly, deep intraslab earthquakes, and abundant arc volcanism. 

The thermal structure of a subducting slab controls (1) the depth of activation 
of small polarons and H+ delocalization, (2) the depth for the cessation of small

Fig. 13.21 Calculated PT conditions for oceanic crust subducted beneath SW and NE Japan; the 
stability for eclogite, lawsonite-blueschist, epidote blueschist (EB), epidote amphibolite (EA) and 
greenschist (GS) facies rocks are indicated. Contour interval: 100 K. Solid lines: top of subducting 
oceanic crust; dashed line: base of subducting oceanic crust. Under NE Japan, the top of the 
descending slab is colder than the base of the descending slab; the situation is reversed for the 
SW Japan. In this latter area, the temperature at the base and top of the slab are predicted to be equal 
at 65 km depth and reverse at greater depth. b, c Cross sections and calculated thermal structure for 
SW and NE Japan subduction zones. a The temperatures T', T'', and  T''' mark the onset of polaron 
formation, completion of polaron activation and H+ delocalization, and completion of amphibole 
dehydrogenation, respectively. The yellow areas denote the range of fully reversible activation of 
charge carriers, and the blue areas denote the presence of mobile polarons and itinerant H+ with 
evolving Fe-oxidation and dehydrogenation. Blue arrows: aqueous fluids produced during dehy-
drogenation. Black triangles at the surface in (b) and (c) show the locations of the volcanic front. 
Figures assembled from Bernardini et al. (2022) 
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polarons and H+ delocalization, and (3) the depth for the termination of dehydrogena-
tion. Small polarons and delocalization of H+ provide the atomic-scale mechanisms 
whose macroscopic-scale expression controls the presence of conductivity anoma-
lies, affects H2O recycling and the depth and strength of associated earthquakes and 
arc volcanism in subducting regimes. 

13.8 Coda 

(1) There are two features that distinguish H+ from every other ion: it is the smallest 
element (Rahm et al. 2017), and it shows the greatest variation in the strength 
of its chemical bond to O2–. Its small size means that it is by far the most 
mobile ion in a crystal, both with regard to speed of diffusion (e.g., Table 13.3) 
and capability of diffusion (it can pass through much smaller constrictions in a 
structure than any other ion). Variation in strength of its chemical bonds give 
H a diversity of roles in both solids and fluids that is not matched by any other 
element. 

(2) H+ is incorporated in crystals predominantly as polyions that may be Lewis 
bases, neutral complexes and Lewis acids: (OH)–, (CH3)–, (H2O)0, (NH3)0, 
(CH4)0, (H3O)+, (H5O2)+, (NH4)+, but also may occur as itinerant H+. 

(3) Bond-valence theory provides a very effective approach to understanding the 
structural and chemical diversity of oxide and oxysalt minerals. In particular, 
hydrogen has a pivotal role to play in matching the Lewis basicities of the 
structural units and the Lewis acidities of the interstitial complexes such that a 
wide diversity of minerals exists over a wide range of pH, Eh, T, P and activities 
of their various constituents. 

(4) Although the critical features of H+ (size, bonding characteristics) are at the 
Ångstrom level, their behaviour can provide the atomic-scale mechanism for 
processes whose macroscopic expression occurs on a global scale. 
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