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Abstract 

Grasslands, covering about 70% of agricultural land and 15% of the non-water area on a global scale, 

represent a key food source for animal production systems and provide a wide range of ecosystem 

benefits, including water and nutrient regulation, biodiversity conservation, and carbon storage. 

However, the provisioning of these functions is dependent on the efficient use of the herbaceous 

resources through agronomic management and, at the same time, is influenced by current and future 

climate changes (forage production, quality, phenology, botanical composition, biodiversity, etc.). 

Thus, proper management and the assessment of possible current and future risks related to climate 

change appear necessary in order to preserve the production and ecosystem functionality of 

grasslands. 

In this sense, the potential offered by methodologies such as remote sensing and crop modelling 

represent a great opportunity to analyze the status of grasslands and predict their future trends. 

The main objective of this research was to test, validate and assess different approaches, namely 

modelling and remote sensing technologies, to monitor growth of grassland vegetation in its current 

state and according to future projections. 

Specifically, the aims of this PhD thesis were: 1) the development of a simplified simulation model 

for reproducing grassland system growth and production; 2) the evaluation of climate change-induced 

phenological changes of grassland ecosystems along the recent decades by using remote sensing 

technologies; 3) the assessment of potential changes caused by future climate and the identification 

of possible adaptation strategies for grassland management through the application of a 

biogeochemical process-based simulation model. 

With particular reference to objective 1, Chapter 3 presents the structure of a simulation model that 

uses the Normalized Difference Vegetation Index as proxy to estimate structural characteristics of 

vegetation (i.e. Leaf Are Index), thus simplifying the calibration of numerous parameters. Through 

the use of specific equations for reproducing the physiological, chemical and biological processes of 

the system and the adoption of NDVI from proximal and remote sensing data, the model provides, as 

output, forage production (above ground biomass) and water conditions of the system along the 

season. The simplified model, calibrated and validated in different environments, obtained robust 

results in simulating grassland aboveground biomass, as well as water dynamics (fraction of 

transpirable soil water and evapotranspiration), under different management, with few input required 

(e.g. minimum and maximum daily temperature, precipitation, solar radiation and soil texture). It can 

therefore represent an important tool for optimizing grassland management. 
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Chapter 4 answers the questions of objective 2, investigating, through long time series of MODIS 

satellite imagery, the impacts of climate change already visible in European grassland phenology over 

the period 2001-2021. The study offers a comprehensive methodological analysis regarding the 

optimal procedure to use for extracting the dates of the start (SOS), peak (POS) and end (EOS) of 

growing season from remote sensing data and, then, quantify the phenological changes observed from 

MODIS satellite imagery. The extent of these changes was then evaluated in light of the specific 

characteristics of the test sites, specifically average winter and spring temperatures during the years 

2001-2021, altitude and latitude of the analysed grasslands. Results of the study highlight a significant 

advance of SOS and POS in most of the tested grassland, while EOS proved to be difficult to detect. 

Finally, the impacts of future climate on grazing systems and the evaluation of specific management 

strategies are reported in Chapter 5. In this section, future projections in two pastures of the central 

Italian Apennines were performed by using a grassland simulation model (Pasture Simulation Model, 

PaSim, Riedo et al., 1998) under two time slices (i.e. 2011-2040 and 2041-2070) and future scenarios 

(RCP4.5 and 8.5). The simulations analyzed future forage production, length of growing season, 

hydrological status and green-house gas emissions. Alternative management strategies, involving 

changing of grazing season length and animal stocking rate, were tested to cope with future changes 

in extensive grazing systems simulated by the model. Results showed a significant increase in future 

grassland aboveground biomass in studied forage systems, allowing higher stocking rate and grazing 

period as adaptation strategies. 

The evaluation of growth development at the present time with remote sensing and modelling 

technologies proved to be a fundamental step to better understanding the state of the system under 

the growing season. The gathered information highlighted the potential of these technologies to 

optimize grassland management. On the other hand, the assessment of the climate change-induced 

impacts, at the current moment and in future projections, represent the prerequisite for the adoption 

of adaptation and mitigation strategies that can cope with the difficulties resulting from changes in 

the grassland system. 

 

 

 

 

 

 



9 
 

Riassunto 

Le praterie, vocabolo con il quale è stato tradotto in questa tesi il termine inglese “grassland”, coprono 

circa il 70% dei terreni agricoli e il 15% della superficie terrestre su scala globale, rappresentando 

una fonte di alimentazione chiave per i sistemi di produzione animale e fornendo un'ampia gamma di 

benefici ecosistemici, tra i quali, ad esempio, la regolazione delle acque e dei nutrienti, la 

conservazione della biodiversità e lo stoccaggio del carbonio. Tuttavia, le funzionalità di questi 

sistemi dipendono da un uso efficiente della risorsa erbacea, ottenibile attraverso una gestione 

agronomica ottimale. Parallelamente, queste funzionalità sono, e saranno, influenzate dai 

cambiamenti climatici attuali e futuri, che agiscono su questi sistemi sotto diversi aspetti, come ad 

esempio la produzione e la qualità di foraggio, la fenologia della vegetazione, la composizione 

botanica e la biodiversità. Pertanto, una corretta gestione e la valutazione dei possibili rischi, già 

visibili e futuri, legati al cambiamento climatico appaiono azioni necessarie per preservare le 

funzionalità produttive ed ecosistemiche delle praterie. 

In questo senso, le potenzialità offerte da due metodologie come il telerilevamento e la modellistica 

rappresentano una grande opportunità per l’analisi delle praterie al momento attuale e secondo 

proiezioni future. 

L'obiettivo principale di questo dottorato di ricerca è stato dunque lo studio e l’analisi di varie 

tecnologie di telerilevamento e modellistica per la valutazione dell’andamento di crescita della 

vegetazione nel presente e nel futuro, in un’ottica di cambiamento climatico. 

In particolare, gli obiettivi specifici di questa tesi di dottorato sono stati: 1) lo sviluppo di un modello 

di simulazione semplificato per la riproduzione del sistema prateria; 2) la valutazione dei 

cambiamenti fenologici, già visibili, indotti dai cambiamenti climatici negli ultimi decenni; 3) la 

valutazione dei potenziali impatti sulla vegetazione causati dal clima futuro e l'identificazione di 

possibili strategie di adattamento per la gestione delle praterie. 

Con particolare riferimento all'obiettivo 1, il capitolo 3 della tesi presenta la struttura di un modello 

di simulazione, basato sul concetto di light-use efficiency, che utilizza l'indice di vegetazione 

Normalized Difference Vegetation Index (NDVI) per stimare le caratteristiche strutturali della 

vegetazione (Leaf Area Index), in modo da semplificare la simulazione e, conseguentemente, la 

calibrazione di numerosi parametri. Attraverso l'uso di equazioni specifiche per riprodurre i processi 

fisiologici, chimici e biologici del sistema e l'adozione dell'NDVI da dati prossimali e telerilevati, il 

modello è stato in grado di fornire importanti indicazioni sulla produzione foraggera e sulle 

condizioni idriche del sistema (frazione di acqua traspirabile ed evapotraspirazione). Il modello 

semplificato, calibrato e validato in diversi ambienti, ha ottenuto risultati ottimali nella simulazione 
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della biomassa foraggera dei pascoli, nonché delle dinamiche idriche, in diverse tipologie di gestione 

utilizzando un numero limitato di input (temperatura minima e massima giornaliera, precipitazioni, 

radiazione solare e tessitura del terreno). Il modello sviluppato nell’ambito del dottorato di ricerca 

può dunque rappresentare uno strumento importante per la gestione efficiente dei pascoli. 

Il capitolo 4 risponde alle domande dell'obiettivo 2, indagando, attraverso lunghe serie temporali di 

immagini satellitari MODIS, gli impatti dei cambiamenti climatici già visibili nella fenologia delle 

praterie europee nel corso del periodo 2001-2021. Lo studio offre un'analisi metodologica completa 

sulla procedura ottimale da utilizzare per estrarre le date di inizio (SOS), picco (POS) e fine (EOS) 

della stagione vegetativa da dati telerilevati. La metodologia individuata è stata successivamente 

utilizzata per quantificare i cambiamenti fenologici osservabili dalle immagini satellitari MODIS. 

L'entità di questi cambiamenti è stata poi valutata alla luce delle caratteristiche specifiche dei siti di 

prova, in particolare delle temperature medie invernali e primaverili negli anni 2001-2021, 

dell'altitudine e della latitudine delle praterie analizzate. I risultati dello studio evidenziano un 

significativo avanzamento nelle date di SOS e POS nella maggior parte delle praterie analizzate, 

mentre la data di EOS si è rivelata difficile da rilevare. 

Infine, nel Capitolo 5 sono stati analizzati gli impatti del clima futuro sui sistemi estensivi di 

pascolamento e le possibili strategie gestionali di adattamento. In questa sezione, le proiezioni future 

in due pascoli dell'Appennino centrale italiano sono state effettuate attraverso l’utilizzo di un modello 

di simulazione specifico per i prati o pascoli (PaSim, Riedo et al., 1998), in diverse finestre temporali 

(2011-2040 e 2041-2070) e scenari (RCP4.5 e 8.5). Le simulazioni future hanno preso in condizione 

la produzione futura di foraggio, la durata della stagione di crescita, lo stato idrologico e le emissioni 

di gas serra. Per far fronte ai futuri cambiamenti simulati da PaSim sono state testate diverse strategie 

di gestione, incentrate principalmente sulla modifica della durata della stagione di pascolo e/o del 

carico animale. I risultati della simulazione hanno evidenziato un aumento significativo di biomassa 

nei pascoli nell'Appennino centrale italiano per le diverse finestre temporali e per i diversi scenari. 

L’incremento produttivo stimato si è dimostrato sufficientemente elevato per l’adozione di strategie 

di adattamento basate su un carico animale e un periodo di pascolo maggiori. 

La valutazione dello sviluppo di crescita con tecnologie di telerilevamento e modellistica si è 

dimostrata un passaggio fondamentale per la comprensione dello stato dei pascoli, mentre le 

informazioni raccolte ne hanno evidenziato il potenziale utilizzo per una gestione efficiente del 

sistema. Parallelamente, la stima degli impatti indotti dai cambiamenti climatici, allo stato attuale e 

nelle proiezioni future, rappresenta il prerequisito necessario per l'adozione di strategie di 

adattamento e di mitigazione che possano far fronte alle difficoltà derivanti dai cambiamenti futuri. 
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Chapter 1.  

 

General background 

 
Chapter 1 shows a general background on grasslands and describes the possible 

potential of two methodologies (i.e. remote sensing and simulation modelling) in 

assessing the current state and possible impacts of climate change on grassland 

systems. 
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1. General background 

 

Grassland systems 

The term grassland refers to a series of systems that are principally used for forage production. These 

environments can range from natural ecosystems (i.e. natural grasslands) characterised by the 

presence of indigenous and natural herbaceous species to imposed grazing-land systems (i.e. 

pastureland) in which  vegetation is managed with sowing, grazing, cutting or the combination of the 

latter two (Allen et al., 2011). Consequently, grasslands play a key role in animal systems (e.g. milk 

and meat) (Ertl et al., 2015; Herrero et al., 2013), providing the feed necessary for protein-rich food 

production (Barbour et al., 2022) in the context of a steadily increasing population (UN, 2019). In 

addition to food and other secondary production (Boval and Dixon, 2012), grasslands can also provide 

a wide range of ecosystem functions: water and nutrients (e.g. nitrate and phosphorus) regulation, 

biodiversity conservation, landscape preservation, areas for wild animals protection, soil fertility 

increase and carbon storage (Tamburini et al., 2022; Wepking et al., 2022). The importance of these 

systems is also given by the area they cover on a global scale: about 25% of the non-water surface 

area (Lemaire et al., 2011) and 75% of the agricultural surface area (FAO, 2013). 

In order to ensure the maintenance of these ecosystem benefits, how the pastoral resources are 

managed is utmost crucial. In the case of animal grazing, for example, it is necessary to properly 

balance the forage supply with the animal stocking rate in order to avoid cases of over- or 

undergrazing. Specifically, management that favours overgrazing leads to pasture degradation and 

desertification (Hilker et al., 2014), loss of SOC and change in botanical composition (Liu et al., 

2022), seed bank reduction (Gonzalez and Ghermandi, 2021), nitrate loss (Eriksen et al., 2015) and 

soil compaction (Krzic et al., 2014). On the other hand, undergrazing, or land abandonment can lead 

to soil degradation (Quaranta et al., 2020), increased fire risk (Bajocco et al., 2011) and, above all, 

reduced production of the grassland-livestock system (Fernandes et al., 2022). At the same time, high-

intensity mowing can also lead to changes in forage productivity (Reinhart et al., 2022), botanical 

composition (Piseddu et al., 2021) and a general reduction in biodiversity (Hannappel and Fischer, 

2020). 

It is evidence based that grasslands ecosystems are vulnerable to climate change (Dibari et al., 2020), 

especially when located in marginal areas. Studies analysing the observed and future impacts of 

climate on grassland ecosystems evidenced changes in forage production (Insua et al., 2019; 

Nandintsetseg et al., 2021; Zarrineh et al., 2020) which in turn altered and/or will alter dynamics in 

livestock systems (Fust and Schlecht, 2022; Ghahramani et al., 2019; Scocco et al., 2016), plant and 
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microbial biodiversity (Petriccione and Bricca, 2019; Wu et al., 2022), botanical composition (Dibari 

et al., 2020; Stanisci et al., 2016) and phenology (Gong et al., 2015; Ren et al., 2020; Stöckli and 

Vidale, 2004). 

The implementation of proper management and the assessment of possible current and future risks 

due to climate change is pivotal to preserve forage production and ecosystem functionality. 

In these contexts, approaches widely used in precision agriculture systems such as crop modelling 

and remote sensing may be considered also in analysing and predicting current and future grasslands 

ecosystems dynamics. 

 

Remote sensing 

The monitoring of grassland status, through the quantification of various production, physical, 

chemical or biological parameters, requires the collection of reliable data as a starting point. 

Traditional methods, based on ground surveys, represent a methodology capable of providing data of 

excellent quality, but as a disadvantage, they are cost and time-consuming, as well as generally 

applicable on a limited spatial scale, not suitable for regional or global analyses (Wang et al., 2022). 

In this sense, remote sensing, defined as “the acquisition of information about the land, sea and 

atmosphere by sensors located at some distance from the target of study” (Haines-Young, 1994), has 

been proved to be a consistent, cost-effective, and reliable methodology to acquire data and observe 

vegetation growth and development (Ali et al., 2016), providing useful indications in decision-making 

processes of agricultural management (Hatfield et al., 2019). Remote sensing applications are 

generally based on the use of vegetation indices (VIs, such as NDVI), strongly related to vegetation 

features (e.g. LAI, standing biomass, health, height, forage quality, etc.), derived from the 

combination of different waveband reflectance values captured from specific sensors (Xue and Su, 

2017; Bannari et al., 1995). Remote sensing images from specific optical sensors are obtained through 

multispectral or hyperspectral sensors (Wang et al. 2022). The former, generally more widely used, 

provide greater product availability and high temporal resolution, while the latter, relying on the use 

of a much higher number of spectral bands, enable more accurate analysis of vegetation dynamics. 

Various studies on grasslands have been carried out by using multispectral satellite images obtained 

from different types of satellites, such as MODIS (Ding et al., 2022; Gong et al., 2015), Sentinel 

(Andreatta et al., 2022; Guerini Filho et al., 2020), SPOT (He et al., 2020) and LANDSAT (Guo et 

al., 2019), each with its own technical characteristics in terms of spatial and temporal resolution. At 

the same time, hyperspectral sensors have also been used in the analysis of grassland characteristics 

(Ling et al., 2019; Lyu et al., 2020). Furthermore, another possible application of remote sensing data 

for the study of grasslands is the use of satellite radar sensors, based on synthetic aperture radar (SAR) 
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images, for the estimation of vegetation parameters or for grassland monitoring (Braun et al., 2018; 

Zalite et al., 2016). 

Satellite imagery has been widely applied in grassland studies to assess several aspects: forage 

production and quality (Askari et al., 2019; Edirisinghe et al., 2011; Lugassi et al., 2019; Serrano et 

al., 2019), phenology (Li et al., 2021; Tian et al., 2021), biodiversity (Bayle et al., 2019; Ma et al., 

2019) or water dynamics (Xia et al., 2014). The remotely acquired images can then be used to make 

estimates of the status (e.g. biomass, phenology, vegetation type, etc.) of the grasslands being 

analysed (Shoko and Mutanga, 2017; Wang et al., 2019; Wang et al., 2019). Otherwise, especially 

for certain types of satellites, the long-time series of images collected by optical sensors can be 

analysed to estimate the extent of changes occurred over the time frame under consideration, 

especially to assess the impacts of climate change that are already visible (Hou et al., 2014; Huang et 

al., 2018; Li et al., 2021). 

The spatial resolution of satellite-sensors may be considered a critical issue in remote sensing 

analysis, especially when satellite imageries are applied to monitor herbaceous vegetation 

characteristics at paddock-scale (Wu and Li, 2009). To overcome this issue, alongside satellite 

imageries, remote data can be collected from Unmanned Aerial Vehicle (UAV) equipped with 

different sensors and cameras: standard RGB cameras, multispectral and NIR cameras, hyperspectral 

cameras, thermal sensors and depth sensors (Hassler and Baysal-Gurel, 2019). In recent years these 

systems proved to be effective in analysing grassland production and quality at a finer spatial 

resolution (Askari et al., 2019; Murphy et al., 2019; Vong et al., 2019). Furthermore, indications on 

plant phenology and status conditions, in form of colour (e.g. green chromatic coordinate) or 

vegetation indices, can be obtained with good results from sensing instruments, such as digital 

cameras, settled in proximity of the target (Filippa et al., 2018; Inoue et al., 2015; Petach et al., 2014). 

Finally, the information collected from remote sensing techniques can also be integrated into crop 

growth models by forcing factors and/or model input data (Jin et al., 2018), so as to increase the 

accuracy of the simulation process (Huang et al., 2019) and reduce field data acquisition, well noted 

as time-consuming and expensive. With regard to grassland studies, major improvements concerning 

this issue can be foreseen in above ground biomass simulation through modelling by data assimilation 

from satellite imageries (He et al., 2015). 

 

Grassland system modelling 

Over last decades, crop simulation models have been widely utilized to understand and predict 

biophysical processes through a mechanistic representation of agricultural systems (Ehrhardt et al., 

2018b; Snow et al., 2014), including grazing land systems (Ma et al., 2019). Compared to generic 
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crop models, those focused on grasslands entail some challenges, such as simulating processes related 

to plants diversity, animal-plant interactions and animal mobility. An important application of these 

tools is their use in estimating the changes in the grassland system caused by future climate change, 

as this assessment can be performed through modelling exercises (Morales et al., 2007; Petersen et 

al., 2021) or by setting up long-run experiments (Brookshire and Weaver, 2015; Evangelista et al., 

2016). For instance, forage production, a basic requirement for all grazing land models, has been 

simulated in several studies to assess future climate impacts on pasture productivity and possible 

adaptation strategies in grasslands (Ghahramani and Moore, 2016; Harrison et al., 2016; Moore and 

Ghahramani, 2013). To perform such long-term predictions, grazing land models require data on 

future climate that are based on the results of climate models (Flato et al., 2013), in different possible 

scenarios of GHGs emissions and concentrations (e.g. Representative Concentration Pathways, IPCC, 

2014). In addition to this purpose, outputs of grazing land models are also useful for identifying 

proper management techniques, through comparisons of different agricultural practises and field 

conditions (Christie et al., 2018; Insua et al., 2019b; Vogeler et al., 2019). Although pasture biomass 

is generally well simulated on a seasonal basis (Pulina et al., 2018), improvements on forage 

production simulation are required in terms of temporal and spatial distribution, plant phenology and 

forage quality (Ma et al., 2019). Parameters needed in simulation runs are adjusted as a result of 

calibration processes in order to reduce model uncertainties. Currently, this is mainly achieved 

through a last square approach, a Bayesian approach or trial-and-error search (Seidel et al., 2018); 

also, sensitivity analysis has been often applied so as to identify the most influencing parameters in 

the simulation runs (Touhami et al., 2013). Considering model’s structure, one of the most commonly 

used types of models is based on the concept of light use efficiency (Monteith, 1972), in which GPP 

is elaborated considering the incoming photosynthetically active radiation (PAR), the fraction of 

radiation absorbed by the vegetation (FPAR), the maximum light use efficiency, and possible 

environmental stress factors (Pei et al., 2022). This type of approach is also used with remote data 

integration, often applied for large-scale simulations (Yu et al., 2020). 

Grassland simulation models can be successfully employed to evaluate different management 

practises and assess the effect of climate on grassland system under current state and future 

projections. As suggested by Ma et al. (2019) three possible actions can be adopted to improve the 

application of these model as decision supporting tool: increase user-friendliness, improve simulation 

on ecosystem services and grazing activity; enhance the cooperation between modelers, 

experimentalists, and stakeholders. 

In fact, the use of crop modelling for scientific and management purposes may remain limited due to 

the complex structure of these models. Calibration, which requires detailed field-collected data, can 
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therefore be time-consuming and can often result in a site-specific parameterization (i.e. 

overparameterization, Kirchner et al., 1996) that is then difficult to apply in other areas without 

performing a new calibration (Sinclair and Seligman, 2000). The possible use of crop modelling may 

also be partially limited by the requirement for very accurate input data needed for adequate system 

simulation, which are often available at the local scale but not for high spatial scale precision farming 

applications (Jin et al., 2018) in pastoral systems that are acknowledged to be very heterogeneous in 

terms of botanical composition and productive features. 

Moreover, recent studies have investigated the possibility of using a multi-model ensemble to 

improve model simulation efficiency as well as better define uncertainties in models’ outcomes 

(Ehrhardt et al., 2018b; Fitton et al., 2019; R. Sándor et al., 2017) or the integration into models of 

data collected from remote sensing (Maselli et al., 2013). 
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Chapter 2.  

 

Aim and outline 

 
Chapter 2 shows the objectives and structure of the thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhD candidate’s contribution: 

Edoardo Bellini wrote the entire chapter. 
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2. Aim and outline of the research 

 

The main objective of this research was to test, validate and assess different approaches, namely 

modelling and remote sensing technologies, to monitor growth of grassland vegetation under different 

climate and managements. 

The evaluation of growth development at the present time with these technologies represents a 

fundamental step in understanding the state of the system with the resulting information that can be 

used for optimal and effective management. On the other hand, the assessment of the changes of 

grasslands growth and production caused by current and future climate changes is a prerequisite for 

the identification and promotion of adaptation strategies to cope with the future climatic projections. 

In particular, the specific objectives of the thesis pursued as part of the PhD are: 

1) Development of a simplified simulation model, integrated with satellite-based vegetation 

indexes, to reproduce grassland systems dynamics and soil water balance; 

2) Evaluation of the impacts caused by climate change on grassland phenology in recent 

decades; 

3) Assessment of potential changes caused by future climate in grassland systems and 

identification of possible adaptation strategies. 

With particular reference to objective 1, Chapter 3 presents the development of a simplified 

simulation model based on the concept of light-use efficiency (Monteith, 1972) that uses specific 

vegetation indices (i.e. Normalized Difference Vegetation Index, NDVI) to estimate structural 

characteristics of vegetation (i.e. LAI). Through the use of specific equations for reproducing the 

physiological, chemical and biological processes of the system and the adoption of NDVI from 

proximal or remote sensing instruments, the model provides important information on the status of 

forage production (above ground biomass) and water conditions of the system with few input required 

(e.g. minimum and maximum daily temperature, precipitation, solar radiation and soil texture). The 

simplified model, calibrated and validated in different environments, can therefore represent an 

important tool for optimal grassland management. 

Chapter 4 answers the questions of the specific objective 2, investigating the changes that occurred 

in grassland phenology on the European continent over the period 2001-2021 through the analysis of 

a long time series of MODIS satellite images. The study offers a comprehensive analysis of the 

methodology to be used to effectively extract the phenological dates of the start, peak and end of 
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growing season and then reports in detail the phenological changes observed from the satellite 

imagery. The extent of these changes was then evaluated in light of the specific characteristics of the 

test sites, specifically average winter and spring temperatures during the years 2001-2021, altitude 

and latitude of the analysed grasslands. 

In conclusion, the impacts of future climate on grazing systems and the evaluation of specific 

management strategies are analysed in Chapter 5. This section reports the results of future 

projections carried out within two pastures in the central Italian Apennines with a specific simulation 

model (i.e. Pasture Simulation Model, Riedo et al., 1998) under different time windows (i.e. 2011-

2040 and 2041-2070) and future scenarios (RCP4.5 and 8.5). The simulations took into account the 

future forage production, growing season length, water conditions and climate-altering gas emissions. 

Alternative management strategies (grazing season length and animal stocking rate) are tested to cope 

with future changes in extensive grazing systems simulated by the model. 
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Chapter 3.  

 

VISTOCK: A simplified model for 

simulating grassland systems 

 
Chapter 3 has been based on the study:  

Bellini, E., Moriondo M., Dibari C., Bindi M., Staglianò N., Cremonese E., Filippa 

G., Galvagno M. and Argenti G. 2023. VISTOCK: A Simplified Model for 

Simulating Grassland Systems. (Published) European Journal of Agronomy 142 

(January). doi:10.1016/j.eja.2022.126647. 

 

 

 

 

 

 

 

PhD candidate’s contribution: 

Edoardo Bellini developed the model for simulating grass growth with the 
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the results and wrote the sections of the chapter under the supervision of the other co-
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Abstract 

This article presents the structure and results of a simplified model (VISTOCK) for simulating grass 

growth and water dynamics of grassland systems. The model, based on a process-based approach 

coupled with proximal (SKR 1800 2-Channel Light Sensor) and remote (Sentinel-2) NDVI-derived 

data for estimating LAI, simulates aboveground biomass (AGB), net primary production (NPP), 

evapotranspiration (ET), and the fraction of total transpirable water in soil (FTSW). VISTOCK 

simulated a grassland system with few meteorological data (i.e., minimum and maximum daily 

temperatures, precipitation, global solar radiation), considering limitations to vegetation growth due 

to thermal and water stresses. It was calibrated for a natural alpine grassland in Italy (site T) during 

the most contrasting meteorological seasons of the dataset (2012, 2017, and 2018). It was then 

evaluated for the remaining years at site T (2013, 2014, 2015, and 2016) and for other two sites in 

Italy (sites B1, B2 and M) with different soil and climate conditions and diverse management 

strategies (2020 and 2021). VISTOCK accurately predicted AGB during the growing season (RMSE 

= 445, 240, 219, 365 kg DM ha-1 for T, M, B1, and B2, respectively) as well as for NPP, ET, and 

FSTW at site T. Simulation results suggest the ability of the model to simulate grassland in diverse 

environments with few inputs and parameters to be calibrated. The model’s simplified structure, 

combined with easy-to obtain input data and easy applicability, encourages its wider use for out- 

and/or upscaling and decision making. 
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1. Introduction 

Grasslands, which cover ca. 25% of the world’s land area (Lemaire et al., 2011) and ca. 70% of the 

world’s total agricultural area (FAO, 2013), provide a wide range of ecosystem services, such as 

erosion protection, water regulation, food for wildlife and aesthetic and recreational functions 

(Bengtsson et al., 2019; Hao et al., 2017; Ponzetta et al., 2010). Grazing land, defined as “any 

vegetated land that is grazed or has the potential to be grazed by animals” (Allen et al., 2011), plays 

a major role in animal production systems. Due to climate change, however, livestock systems based 

on grazing are facing variability in grassland production (Insua et al., 2019a) and changes in forage 

quality and quantity (Scocco et al., 2016; Dibari et al., 2021). This is particularly evident in mountain 

pastures, where these impacts are already visible on the botanical composition and as a decrease in 

suitable grazing areas (Dibari et al., 2015; A. Evangelista et al., 2016; Petriccione and Bricca, 2019). 

These effects are expected to increase even more in the future (Dibari et al., 2020). 

To properly balance grassland production with animal intake needs in these uncertain and variable 

conditions (Holechek et al., 2011), prompt and spatial information about vegetation growth would 

help farmers make decisions. Such monitoring would facilitate the adoption of management strategies 

(e.g., rotational grazing) that use forage better than other grazing systems (e.g., continuous grazing, 

Boavista et al., 2019) during the growing season. 

In this respect, simulation models are considered effective tools for predicting biophysical processes 

of agricultural systems (Brilli et al., 2013; Leolini et al., 2018; Maselli et al., 2012; Stöckle et al., 

2003), including grasslands (Ehrhardt et al., 2018a; L. Ma et al., 2019; Snow et al., 2014). However, 

using simulation models to identify strategies for optimising animal intake remains limited, mainly 

due to their complex architecture, which often requires detailed observed data to calibrate them and 

thus ensure that they reproduce local conditions as well as possible. In contrast, a model calibrated 

too strongly for a local situation would be difficult to extrapolate to another site without readjusting 

its parameters (Sinclair and Seligman, 2000), sometimes risking overparameterization (Kirchner et 

al., 1996). Furthermore, to predict growth processes accurately, simulation models require detailed 

input data (e.g., meteorological data, soil type, management practices) (Holzworth et al., 2014; Riedo 

et al., 1998) that are generally available at the field scale but often not readily available for precision-

agriculture applications at a larger scale (Jin et al., 2018). 

Hence, to overcome these issues we developed a grassland model that can simulate grass growth 

using a process-based approach and integrating remote sensing data as a proxy for canopy-intercepted 

radiation. This approach implies having a simplified architecture, which in turn reduces the number 

of processes that are simulated and thus the number of parameters that must be calibrated. This 

increases model robustness and applicability in different environments (Sinclair and Seligman, 2000) 
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as observed by Maselli et al. (2013), whose simplified model integrated with remote sensing data 

provided reliable simulation of grasslands with contrasting soil and climate conditions. 

This article presents a new simplified model for simulating grassland systems – VISTOCK – as a 

robust and effective tool to overcome some of the problems experienced by complex process-based 

crop models when used for grazing systems (i.e., input data availability and time-consuming 

calibration) (Graux et al., 2011; Parton et al., 1994; Simionesei et al., 2018). VISTOCK simulates 

potential grass biomass accumulation on a daily time step as a function of canopy-intercepted 

radiation that is reduced to actual biomass depending on the effects of thermal and water stresses. 

Leaf Area Index (LAI), derived from remote sensing platforms or proximal sensing tools, was used 

to drive simulations during the growing season. Along with grassland production, VISTOCK 

estimates grassland evapotranspiration (ET) fluxes and soil water content, which provides detailed 

information about water dynamics of the system. 

VISTOCK’s performance was evaluated for three sites with contrasting climates, soils and grass 

management practices to test its applicability to conditions different from those for which it had been 

calibrated. The results are discussed to highlight the flexibility of our approach in reproducing 

grassland systems, considering the potential to integrate model predictions into an automated system 

for optimizing the efficiency of rotational grazing systems and simplifying farm management. 

 

2. Materials and methods  

 

2.1 VISTOCK model description 

VISTOCK simulates daily dry matter (DM) production and biomass dynamics of grasslands, 

considering thermal and water stress as limiting factors for growth (Figure 1). The information 

gathered from proximal (i.e., field spectroradiometer) and remote sensing (i.e., satellite) Normalized 

Difference Vegetation Index (NDVI) is integrated in the model through LAI, which is estimated using 

empirical relationships between LAI and the specific vegetation index (section 2.3.3). The model is 

based on the light-use efficiency-model developed by Monteith (1972, 1977) and used in many 

studies (Maselli et al., 2013; Migliavacca et al., 2011; Rossini et al., 2014, 2012), in which grassland 

production is estimated as a function of the fraction of absorbed photosynthetically active radiation 

(fAPAR,%) and radiation-use efficiency (RUE, g MJ-1), considering limiting factors and 

meteorological variables. 
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Figure 1. Flow diagram of the VISTOCK model including biomass growth sub-model and water balance sub-model. 

Tmax and Tmin are the daily maximum and minimum temperatures, respectively, NDVI the Normalized Difference 

Vegetation Index, LAI the leaf area index, LAI Sen the LAI of senescent biomass, and Delta LAI the difference between 

LAI on day n and n-1. See Table 1 for variable and parameter descriptions. 

 

2.1.1 Grass growth model 

VISTOCK first calculates potential net primary production (NPP) of the grassland at a daily time step 

(pNPP, g·m-2·day-1) as: 

𝑝𝑁𝑃𝑃 = 𝑓𝐴𝑃𝐴𝑅 · 𝑃𝐴𝑅 · 𝑅𝑈𝐸 (1) 

where PAR (MJ·m-2·day-1) is photosynthetically active radiation, which is calculated from global 

solar radiation. 

Next, fAPAR is calculated according to Sinclair (2006) as: 

𝑓𝐴𝑃𝐴𝑅 = 1 − 𝑒−𝑘·𝐿𝐴𝐼 (2) 

where k represents the extinction coefficient of the vegetation cover, and LAI is the mean grassland 

LAI (m2·m-2). Coefficient k is assumed to increase linearly as LAI increases during the growing 

season, according to the relation found for grassland ecosystems by Zhang et al. (2014). 

LAI on day n is calculated as follows: 

𝐿𝐴𝐼𝑛 = 𝑐 · 𝑒𝑑·𝑁𝐷𝑉𝐼 (3) 
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where c and d are coefficients derived from the empirical relationship between LAI and NDVI 

developed from proximal or remote sensing instruments (section 2.3.3).  

RUE of vegetation was estimated through calibration (section 2.4). Next, pNPP is rescaled as actual 

NPP (aNPP, g·m-2·day-1), considering thermal and water factors that limit grass growth: 

𝑎𝑁𝑃𝑃 = 𝑝𝑁𝑃𝑃 · 𝑇𝐶𝑂𝑅 · 𝑊𝑆𝐶𝑂𝑅 · 𝑆𝑁𝑂𝑊 (4) 

where TCOR (proportion) is the factor for thermal stress, WSCOR (proportion) is the factor for water 

stress, and SNOW indicates the presence (0) or absence (1) of snow. 

TCOR is a function of daily minimum temperature, which varies from 0, for the temperature at which 

vegetation stops growing (GTMIN), to 1, for the temperature at which plant growth is optimal (GTOPT) 

(Heinsch et al., 2003). This approach based on minimum temperatures was used in other studies (Jolly 

et al., 2005; Migliavacca et al., 2011). The temperatures used for GTMIN and GTOPT depend on the 

botanical composition of a grassland, as grass species have different optimal temperatures for growth, 

as highlighted for forage mixtures by Movedi et al. (2019). WSCOR is calculated from the water 

balance sub-model (section 2.1.2), as a function of transpirable soil water. If snow is present, SNOW 

is set to 0, to represent vegetation growth stopping due to the interception of PAR. If not, SNOW is 

set to 1.  

Next, the daily production of aboveground DM (ADM, kg·DM·ha-1·day-1) is estimated as: 

𝐴𝐷𝑀 = 𝑎𝑁𝑃𝑃 · 𝑟 · 10                                                                                                              (5)                                                                                                                           

Where r is the proportion of aNPPdaily allocated aboveground and 10 is the factor to convert g·m-

2·day-1 to kg·ha-1·day-1. According to Xu et al. (2013), r is set to a fixed value of 0.5. 

Finally, ADM is used to estimate grassland aboveground biomass on day n (AGBn), whose change is 

driven by the difference in LAI between day n and day n-1 (DELTALAI).  

𝐷𝐸𝐿𝑇𝐴𝐿𝐴𝐼 = 𝐿𝐴𝐼𝑛 − 𝐿𝐴𝐼𝑛−1                                                                                                   (6) 

If DELTALAI is positive, AGB is assumed to increase by the value of ADM, and AGBn is calculated 

as: 

𝐴𝐺𝐵𝑛 = 𝐴𝐺𝐵𝑛−1 + 𝐴𝐷𝑀                                                                                                         (7) 

If DELTALAI is negative, AGB is assumed to decrease in linear proportion to the decrease in LAI, 

and AGBn is calculated as: 

𝐴𝐺𝐵𝑛 = 𝐴𝐺𝐵𝑛−1 + 𝐴𝐺𝐵𝑛−1 · (
𝐷𝐸𝐿𝑇𝐴𝐿𝐴𝐼

𝐿𝐴𝐼𝑛−1
)                                                                                 (8) 
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2.1.2 Water balance 

VISTOCK simulates daily water dynamics in the system in two soil layers, the first from the surface 

to the rooting depth of grasses (LGRASS), and the second from LGRASS to the maximum soil depth, 

which is assumed to equal 1 m (LTOT). Each layer is defined by the most relevant hydrological 

constants: field capacity (%), wilting point (%), available water content (AWC, i.e., the water between 

field capacity and wilting point), and total transpirable soil water (TTSW, mm) (i.e., AWC × layer 

depth [mm]). 

The water actually available (available soil water, ATSW (mm)) is calculated daily for each layer. 

ATSW for LGRASS depends on the amount of precipitation (PRC, mm) and irrigation (I, mm) on day 

n and ATSWg on day n-1: 

𝐴𝑇𝑆𝑊𝑔 𝑛 = 𝐴𝑇𝑆𝑊𝑔 𝑛−1 + 𝑃𝑅𝐶 + 𝐼                                                                                         (9) 

If ATSWg exceeds the TTSW of this layer, the excess enters the next layer.  

Assuming that plant growth is influenced by the ratio of ATSW to TTSW in the layer explored by 

plant roots (Sinclair et al., 1998) we used this ratio, called the fraction of transpirable soil water, 

FTSW (%, Eq. 10), to rescale potential RUE to its actual value according to the general equation of 

Sinclair (1986) and Bindi et al. (2005) (Eq. 11): 

𝐹𝑇𝑆𝑊𝑔 =
𝐴𝑇𝑆𝑊𝑔

𝑇𝑇𝑆𝑊𝑔
 (10) 

WSCOR=
1

1+𝑎·𝑒−𝑏·𝐹𝑇𝑆𝑊𝑔                                                                                                            (11)                                 

where WSCOR quantifies the decrease in RUE due to water stress, while a and b are empirical 

parameters that shape WSCOR as a function of FTSWg. 

At the end of the n-day simulation, ATSWg is re-calculated by subtracting soil evaporation (SEVP, 

mm) and grass transpiration (TR, mm): 

𝐴𝑇𝑆𝑊𝑔 𝑛 = 𝐴𝑇𝑆𝑊𝑔 𝑛 − 𝑆𝐸𝑉𝑃 − 𝑇𝑅                                                                                      (12) 

According to Soltani and Sinclair (2012), TR is calculated as:  

𝑇𝑅 =
𝑎𝑁𝑃𝑃·𝑉𝑃𝐷

𝑇𝐸𝐶
                                                                                                                        (13) 
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where VPD is the effective daily vapour pressure deficit for transpiration (kPa), and TEC is the 

transpiration efficiency coefficient (Pa) of the grass. 

According to Tanner and Sinclair (1983), VPD is calculated from the difference between vapour 

pressure at maximum and minimum daily temperatures (VPTmax and VPTmin): 

𝑉𝑃𝐷 = 𝑉𝑃𝐷𝑓 · (𝑉𝑃𝑇𝑚𝑎𝑥 − 𝑉𝑃𝑇𝑚𝑖𝑛)                                                                                    (14) 

where VPDf is a coefficient that ranges from 0.65 (humid and sub-humid climate) to 0.75 (arid and 

semi-arid climate), and VPTmax and VPTmin are calculated as: 

𝑉𝑃𝑇𝑚𝑎𝑥 = 0.6108 ·𝑒𝑥𝑝 (
17.27·𝑇𝑚𝑎𝑥

237.3+𝑇𝑚𝑎𝑥
)                                                                                   (15) 

𝑉𝑃𝑇𝑚𝑖𝑛 = 0.6108 · 𝑒𝑥𝑝 (
17.27·𝑇𝑚𝑖𝑛

237.3+𝑇𝑚𝑖𝑛
)                                                                                    (16) 

SEVP is determined from a two-stage model (Amir and Sinclair, 1991). The first occurs when water 

is freely evaporated and soil is considered wet (i.e., FTSWg higher than a specific threshold, FTSWg 

THR). Under these conditions, SEVP is calculated as potential SEVP (SEVPpot) using the equation of 

Moriondo et al. (2019): 

𝑆𝐸𝑉𝑃𝑝𝑜𝑡 = 𝑅𝐴𝐷 · (1 − 𝑠𝐴𝐿𝐵) · (1 − 𝑓𝐴𝑃𝐴𝑅𝑇𝑂𝑇) ·
𝐷𝐸𝐿𝑇 

𝐷𝐸𝐿𝑇+68
·

293

583
                                        (17) 

where RAD is global solar radiation (MJ m-2 day-1), sALB is the soil albedo, fAPARTOT is the amount 

of solar radiation intercepted by total grass cover (%), DELT (mbar °K-1) is the slope of saturated 

vapour pressure vs. temperature, and the last ratio converts energy to mm of water evaporated.  

fAPARTOT represents the proportion of radiation intercepted by the vegetation, a value that differs 

from fAPAR as, in this case, LAI in (Eq. 2) is replaced with LAITOT. 

𝐿𝐴𝐼𝑇𝑂𝑇 = 𝐿𝐴𝐼 + 𝐿𝐴𝐼𝑆𝐸𝑁                                                                                                        (18) 

where LAISEN is the LAI of senescent leaves. LAISEN is not considered in fAPAR as it is not 

photosynthetically active, although it does influence evaporation by covering the soil. Assuming an 

inversely proportional relation between LAI and LAISEN, LAITOT is set to a fixed value. For pasture 

and meadow-pasture, LAITOT is assumed equal to LAI, as grazing and mowing do not allow senescent 

leaves to accumulate as they do in natural grassland. 

DELT is calculated as a function of maximum daily temperature (Tmax, °C), according to Soltani and 

Sinclair (2012): 

𝐷𝐸𝐿𝑇 = 𝑒𝑥𝑝 · (21.255 −
5304

273+𝑇𝑀𝑃
) ·

5304

(273+𝑇𝑀𝑃)2                                                                   (19) 
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The second stage occurs when the evaporation in LGRASS is not equivalent to the evaporation of a wet 

surface (SEVPpot), as in the first stage. Under these conditions (FTSWg < FTSWg THR), SEVP is 

rescaled from SEVpot as follows: 

𝑆𝐸𝑉𝑃 = 𝑆𝐸𝑉𝑃𝑝𝑜𝑡 · (√(𝐷𝑌𝑆𝐸 + 1) + √𝐷𝑌𝑆𝐸)                                                                    (20) 

where DYSE represents the number of days since the last water supply (precipitation or irrigation) 

higher than a specific threshold (DYSETHR, mm). Daily evapotranspiration (ET, mm) is then 

calculated as: 

𝐸𝑇 = 𝑆𝐸𝑉𝑃 + 𝑇𝑅                                                                                                                  (21) 

Table 1. Variables and parameters used in the VISTOCK model for sites T, M and B. 

Type Name Description Units/value Reference 

B
io

m
a

ss
 pNPP Potential net primary production g m-2 day-1  

aNPP Actual net primary production g m-2 day-1  

ADM Daily dry matter production allocated above ground  MJ m-2 day-1  

LAI Leaf area index of green biomass m2 m-2  

AGB Aboveground biomass kg DM ha-1  

AGBMIN Minimum AGB 150 kg DM ha-1 Fixed 

DELTALAI Daily difference in LAI m2 m-2  

LAITOT Total LAI 2.5 m2 m-2 Fixed 

LAISEN LAI of senescent biomass m2 m-2 Fixed 

     

R
a

te
 

fAPAR 
Fraction of absorbed photosynthetically active 

radiation intercepted by green grass cover 
proportion (0-1)   

fAPARTOT 
Fraction of absorbed photosynthetically radiation 

intercepted by total grass cover 
proportion (0-1)  

SEVP Daily actual soil evaporation mm day-1   

SEVPpot Potential soil evaporation mm day-1   

ET Daily evapotranspiration mm day-1   

FTSWg 
Fraction of transpirable water in the upper soil layer 

(LGRASS) 
proportion (0-1)   

FTSWgr 

THR 
FTSWg threshold for estimating SEVP 0.35 Fixed 

WSCOR Factor for water stress proportion (0-1)   

TCOR Factor for thermal stress proportion (0-1)   

ATSWg Available transpirable soil water in LGRASS mm   

ATSWTOT Available transpirable soil water in LTOT mm   
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r Proportion of aNPP allocated aboveground 0.5 
Xu et al. 

(2013) 

a Coefficient for estimating WSCOR 9.49 Calibrated 

b Coefficient for estimating WSCOR -15.69 Calibrated 

c 
Coefficient of the empirical relation between NDVI 

and LAI 

0.0034 T; 0.0767 

M-B 
Calculated 

d 
Coefficient of the empirical relation between NDVI 

and LAI 

4.2965 T; 8.6362 

M-B 
Calculated 

VPDf Vapour pressure deficit coefficient 0.75 Fixed 

DELT Slope of saturated vapour pressure vs. temperature mbar °K-1   

     

P
la

n
t RUE Radiation-use efficiency 1.39 g MJ-1 Calibrated 

k Extinction coefficient of the vegetation cover  0.5 
Zhang et al. 

(2014) 

TEC Transpiration efficiency coefficient 3.0 Pa Calibrated 

GTMIN Minimum daily temperature at which growth stops 
-5.66°C T; 2°C M-

B 

 Migliavacca 

et al. (2011); 

Calibrated 

GTOPT Minimum daily temperature of optimal growth 
7.24°C T; 10°C M-

B 

 Migliavacca 

et al. (2011); 

Calibrated 

     

S
o

il
 AWC Available water content in the soil mm   

TTSWg 
Total transpirable water in the upper soil layer 

(LGRASS) 
mm   

TTSWTOT Total transpirable water in the lower soil layer (LTOT) mm   

AWAFC 
Amount of water that can be retained on the soil 

surface 
mm   

DEPTHg Depth of the upper soil layer (LGRASS) m   

DEPTHTOT Depth of the lower soil layer (LTOT) m   

sALB Soil albedo 0.9 Fixed 

     

E
n

v
ir

o
n

m
e
n

t TMAX Daily maximum temperature °C  Input 

TMIN Daily minimum temperature °C  Input 

PAR Photosynthetic active radiation MJ m-2 day-1  Input 

RAD Global solar radiation MJ m-2 day-1  Input 

PRC Daily cumulative precipitation mm  Input 

SNOW Snow presence 
0 (present) or 1 

(absent) 
 Input 
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VPD 
Effective daily vapour pressure deficit for 

transpiration 
kPa   

VPMAX Vapour pressure at maximum daily temperature kPa   

VPMIN Vapour pressure at minimum daily temperature kPa   

DYSE Days since the last water supply days   

DYSETHR DYSE threshold for estimating SEVP 6 mm Fixed 

 

 

2.2 Study sites 

Data for model calibration and evaluation were collected for three test sites in Italy (Figure 2): 

Torgnon (T), Marradi (M) and Borgo San Lorenzo (B). To test the model under diverse conditions 

and obtain a more robust evaluation, these study sites were chosen for their elevations, botanical 

composition, soil and climate characteristics, and management.  

Site T is an abandoned natural sub-alpine grassland located at 2160 m a.s.l. in the north-western 

Italian Alps (45.8444°N; 7.5781°E). The site has mean annual temperature of 3.1°C and mean annual 

precipitation of 880 mm (2008-2020, Oddi et al., 2021). Snow usually covers the grassland from 

October to May (Galvagno et al., 2013). Since 2007, the last time it was grazed, the site can be 

considered as a permanent grassland dominated by Nardus stricta, with the presence of Poa alpina, 

Trifolium alpinum, Arnica montana, and Ranunculus pyrenaeus (Pintaldi et al., 2016). 

Site M is a pasture at 600 m a.s.l. in the Tuscan Apennines (44.0810°N; 11.6327°E), with mean annual 

temperature of 12.4°C (2016, 2017, 2020) and mean annual precipitation of 1330 mm (2001-2020). 

Site M is a sown pasture tending to a rewilding process, with a predominance of Dactylis glomerata, 

Lolium spp., Festuca arundinacea, Phleum pratense, and Onobrychis viciifolia, with other minor 

forbs and the presence of many shrubs in some sectors, such as Rubus ulmifolius. The pasture is 

usually continuously grazed by Limousin cattle from May to July. 

Site B is a pasture located at 200 m a.s.l. in the Sieve River plain (43.9536°N; 11.3487°E), with mean 

annual temperature of 13.4°C (1951-2020) and mean annual precipitation of 990 mm (2001-2020). 

Site B is a sown pasture with grassland species generally present in commercial mixtures, such as 

Lolium spp., D. glomerata, Trifolium pratense, Trifolium repens, Lotus corniculatus, and F. 

arundinacea, with other minor forbs. For the purpose of the experiment, in 2020 site B was further 

divided into two areas with different management approaches: B1 and B2. Specifically, B1 was 

grazed by Limousin cattle from April to late October, while B2 was managed as a meadow-pasture, 

with mowing in May and grazing from June to late October. In 2021, both B1 and B2 were managed 

as pasture under continuous grazing. 
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Figure 2. Locations of the experimental sites in Italy: Torgnon (site T), Marradi (site M) and Borgo San Lorenzo (site 

B). 

 

2.3 Data collection 

2.3.1 Ground-based observed data 

Soil texture was collected by Pintaldi et al. (2016) for site T, while it was retrieved from the 

SoilgridsTM dataset (https://soilgrids.org/) for sites B and M. Field capacity, wilting point, and AWC 

of LTOT and LGRASS were calculated according to Saxton et al. (1986). At site T, information on soil 

water content (i.e., daily FTSWg) were calculated from data collected by a soil moisture sensor (CS-

616, Campbell Scientific) installed at a depth of 30 cm. 

Grassland production throughout the growing season (i.e., AGB (kg DM ha-1) and LAI) was measured 

during field surveys conducted from 2012-2018 at site T (58 field samplings), and in spring/summer 

2020 and 2021 at sites B and M (15 and 11 field samplings, respectively). Specifically, at site T, AGB 

and LAI were measured on each sampling date from 12 (2012-2013) and 9 (2013-2018) 30 × 30 cm 

samples located at the corners of 3 separate rectangular plots (40 × 15 m). LAI was measured with 

an area meter (model LI-3100, LI-COR, Inc., Lincoln, Nebraska, USA), while fresh grass samples 

were dried in an oven at 60°C and weighed (Filippa et al., 2015) . At sites B and M, AGB was 

https://soilgrids.org/
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measured from 8 randomly located 1 m2 samples per site, further subdivided at site B according to 

the two management approaches (4 in B1 and 4 in B2). Grass was cut with scissors at ground level 

and the fresh grass samples were dried in a forced-air oven at 60°C. LAI was measured using an 

AccuPAR PAR/LAI Ceptometer Model LP-80. 

Daily gross primary production (GPP, g C m-2 day-1) and ET (mm day-1) were derived  from eddy-

covariance measurements taken at site T (IT-Tor ICOS site, https://meta.icos-

cp.eu/resources/stations/ES_IT-Tor). Details of instrument setup, measurements, and data processing 

are provided by Galvagno et al. (2017, 2013). To estimate daily aNPP, GPP was converted to NPP 

(g C m-2 day-1) by multiplying it by a fixed conversion factor of 0.53 (Chen et al., 2003; Zhang et al., 

2009) and then by 2 to convert g C to g DM (White et al., 2000). 

 

2.3.2 Meteorological data 

As mentioned, VISTOCK requires daily data on minimum and maximum temperatures, precipitation, 

and global solar radiation. Daily temperature, precipitation and solar radiation data at site T were 

measured by a meteorological station installed at the study site, as described in detail by Galvagno et 

al. (2013). For sites B and M, temperature and precipitation data were collected from weather stations 

operated by the Tuscany region (SIR, Servizio Idrologico Regionale, https://www.sir.toscana.it/) 

located near the study sites. Daily solar radiation data were calculated using the “sirad” package 

(Bojanowski, 2016) of R software (R Core Team, 2021) based on the model of Bristow and Campbell 

(1984). 

  

2.3.3 Remote and proximal sensing data 

NDVI (Tucker, 1979), used to estimate LAI, was calculated as follows: 

𝑁𝐷𝑉𝐼 =
𝑅𝑁𝐼𝑅−𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅+𝑅𝑅𝐸𝐷
                                                                                                                 (22) 

where RNIR and RRED are reflectance in near-infrared and red wavelengths, respectively. 

NDVI was calculated from proximal devices (site T) and satellite-derived observations (sites B and 

M). Specifically, for site T, NDVI (Skye-NDVI) was calculated using reflectances at 640 and 860 nm 

in red and near-infrared wavelengths, respectively (Eq. 22), measured by a SKR 1800 2-Channel 

Light Sensor (Skye Instruments). For sites B and M, NDVI (S2-NDVI) was calculated remotely from 

band 4 (red, central wavelength of 665 nm) and band 8 (near-infrared, central wavelength of 842 nm) 

of Sentinel-2 L2A images. Given the latter’s 5-day temporal resolution and the unavailability of some 

satellite images due to atmospheric conditions, processed S2-NDVI data were linearly interpolated to 

obtain daily data. 

https://meta.icos-cp.eu/resources/stations/ES_IT-Tor
https://meta.icos-cp.eu/resources/stations/ES_IT-Tor
https://www.sir.toscana.it/
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LAI was measured in the field at all test sites at different vegetation stages. Observed LAI and NDVI 

were correlated using an exponential function (Fan et al., 2009) to obtain a specific empirical 

relationship: 

𝐿𝐴𝐼𝑛 = 𝑐 · 𝑒𝑑·𝑁𝐷𝑉𝐼𝑛                                                                                                                (23) 

where LAIn and NDVIn are LAI and NDVI on day n, respectively, and c and d are empirical 

parameters.  

As proximal and remote sensing instruments operate with different specific central wavelengths and 

spatial resolutions, the LAI-NDVI relationships were kept separate. Hence, c and d for site T (Skye-

NDVI) differed from those for sites B and M (S2-NDVI). 

 

2.4 Model calibration and evaluation  

The parameters calibrated during model calibration were RUE, TEC, and the empirical parameters a 

and b that determine WSCOR. Because site T provided daily data for aNPP, ET and FTSWg, it was 

selected for the calibration process. Subsequently, the parameters were optimized using the 

estim_param function of the R package CroptimizR (Buis et al., 2018) by minimizing the difference 

between observed and predicted values of aNPP, ET, and FTSWg using the log transformation of the 

concentrated version of weighted sum of squares (Wallach et al., 2011). Calibration using 

estim_param required setting a range of values for each parameter: 1.3-2.0 g MJ-1 for RUE (Maselli 

et al., 2013), 3.0-4.5 Pa for TEC (Soltani and Sinclair, 2012), 9-30 for a, and -17 to -8 for b. During 

the minimization process, the options of the estim_param function were set to 20, 200, and 0.001 for 

the number of replicates, maximum number of evaluations of the minimized criterion, and the 

tolerance criterion between two iterations, respectively. 

Calibration was performed for site T for three years (2012, 2017, and 2018), which were chosen 

because they had the most diverse meteorological characteristics in the dataset, in order to capture 

the meteorological variability in the calibration. Specifically, for an approximate grassland growing 

season (i.e., day of year (DOY) 130-300), mean daily temperature varied slightly in 2012, 2017, and 

2018 (9.2, 9.6 and 9.8°C, respectively), while snow melt date (DOY 129, 131 and 142 for 2012, 2017 

and 2018, respectively) and cumulative precipitation (761, 694 and 1156 mm year-1, respectively) 

varied greatly.  

Once calibrated, VISTOCK was evaluated using the observed aNPP, ET, and FTSWg for the 

remaining 4 years of data (2013, 2014, 2015 and 2016) to predict grass growth (AGBn) at site T 

(2012-2018). The calibrated model was also applied to sites M and B (approximate season from DOY 
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60 to 300) using the same parameters as those for site T, except for GTMIN and GTOPT, as site M and 

B had plant species with different thermal requirements, which yielded different values of GTMIN and 

GTOPT than those set for the alpine conditions of site T (Migliavacca et al., 2011). To find optimal 

values for sites M and B, we applied the optimization procedure to the thermal requirements using 

observed AGB data at site M (2020) to minimize the error, varying GTMIN and GTOPT from 0-9°C 

and 9-20°C, respectively. The temperatures obtained were then applied to sites M, B1, and B2 for 

2020 and 2021. The AGB at the beginning of each simulation (i.e., DOY 1) was initialized both for 

calibration and evaluation using a spin-up procedure in which the model iteratively tests initial AGB 

in the range of 100-1500 kg DM ha-1 with a step of 50 kg DM ha-1 to provide the best match between 

predicted AGB and the AGB measured at the first destructive sampling. 

 

2.5 Assessing the accuracy of predicted aNPP, ET, FTSWg, and AGB 

VISTOCK’s ability to predict aNPP, ET, FTSWg and AGB of the grasslands was evaluated using the 

coefficient of variation (R2), Root Mean Square Error (RMSE), and relative RMSE (RRMSE, %) 

(Moriondo et al., 2019), calculated as follows: 

𝑅2 = 1 −  
∑ (𝑦𝑖−𝑓𝑖)2𝑛

𝑖=1  

∑ (𝑦𝑖− 𝑦)2𝑛
1=1

                                                                                                            (24) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑓𝑖)2𝑛

𝑖                                                                                                     (25) 

𝑅𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦
                                                                                                                     (26) 

where yi is the observed value, fi is the predicted value, and 𝑦 is the mean of the observed data.  

For observed AGB data, we used means calculated from AGB measured on the same sampling date. 

Statistical indicators were calculated for site T for the daily variables NPP, ET, and FTSWg only for 

the days on which there was no snow cover, which yielded a total of 555 points for the calibration 

and 743 for the evaluation. For observed AGB, the total number of evaluation points was 84 (51, 9, 

13, and 11 for sites T, M, B1, and B2, respectively). The first observed AGB value of each year was 

not considered in the statistical analyses as these points were used in the spin-up process to initialise 

the model. 
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3. Results 

3.1 Calibration 

From the optimization, RUE, TEC, a, and b used to simulate grass growth were set at 1.39 g MJ-1, 

3.0 Pa, 9.50, and -15.69, respectively, while GTMIN and GTOPT were set at 2°C and 10°C, respectively, 

for sites M and B. Empirical relationships between Skye-NDVI, S2-NDVI, and LAI had an R2 of 

0.77 (RMSE = 0.22, RRMSE = 25.6%) for site T (c= 0.0767 and d= 4.2965) and 0.76 (RMSE = 0.63, 

RRMSE = 40.0%) for sites B1, B2, M (c= 0.0034 and d = 8.6362). All the inputs and model parameters 

used to predict aNPP, ET, FTSWg (site T), and AGBn (sites T, B1, B2, and M) are shown in Table 1. 

The calibration for site T yielded good predictions under the diverse meteorological conditions (2012, 

2017, and 2018) (Table 2). VISTOCK generally predicted aNPP well, except for a slight 

overestimation during the peak of grassland production (ca. DOY 170-230) (Figure  3). The 

calibration showed a strong relationship between observed and predicted 10-day cumulative values 

of aNPP, with an R2 > 0.94 and RRMSE < 25% for all calibration years (Table 2). 

VISTOCK tended to underpredict ET, especially for 2017 (RMSE = 15.1 mm 10 d-1, RRMSE = 

47.8%) and 2018 (RMSE = 11.5 mm 10 d-1, RRMSE = 43.8%), but it predicted ET more accurately 

for 2012 (RMSE = 6.6 m 10 d-1, RRMSE = 26.7%) (Figure 4). Despite this bias, the model correctly 

predicted ET dynamics over the growing season, as highlighted by R2 equal to 0.86, 0.94, and 0.86 

for 2012, 2017, and 2018, respectively. 

For soil water content, the calibration provided optimal predictions of FTSWg (Figure 5). VISTOCK 

predicted water dynamics in the soil layer explored by roots well for 2012, 2017, and 2018 (R2 = 

0.91, 0.70, and 0.92, respectively), with robust quantitative accuracy as well (RRMSE = 12.0%, 

18.4% and 13.5%, respectively). 

3.2 Evaluation 

3.2.1 Site T 

When the calibrated model was applied to the remaining years for site T (2013, 2014, 2015 and 2016), 

it adequately reproduced aNPP dynamics during their growing seasons, thus capturing grassland 

growth dynamics at a daily time step (Figure 3). Moreover, 10-day cumulative values of aNPP 

showed a good fit between observed and predicted values (R2 > 0.84) for all evaluation years (Table 

2). At the same time, the quantitative accuracy was similar to that for the calibration results for 2013 
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and 2014 (RRMSE = 18.3% and 21.8%, respectively), but slightly lower for 2015 and 2016 (RRMSE 

= 30.9% and 33.5%, respectively), due to specific water-stress periods simulated by the model. 

Figure 3. Daily values of predicted actual net primary production (aNPP, g m-2 d-1) and NPP derived from eddy 

covariance method in 2012-2018 at site T, divided between (left) calibration and (right) evaluation years. 

 

VISTOCK generally underestimated ET (RMSE > 10.0 mm 10 d-1 for all evaluation years), which 

resulted in high RRMSE (> 35%) (Figure 4). Nevertheless, it generally captured ET dynamics well, 

especially in 2013 and 2014 (R2 = 0.95 and 0.93, respectively). As observed for aNPP, R2 was lower 

in 2015 and 2016 (R2 = 0.73 and 0.52, respectively) due to a period of decreased ET (ca. DOY 190-

210 and 230-260, respectively) predicted by the model during a drought, but which was not observed 

in the ET measured by the eddy covariance tower. 

Overall, VISTOCK reproduced FTSWg beneath grassland vegetation well. Specifically, the dynamics 

and quantitative accuracy of daily FTSWg were adequately reproduced (Figure 5, Table 2). Hence, 

FTSWg was correctly predicted in 2013 (R2 = 0.72, RMSE = 11.9%, RRMSE = 14.0%) and 2014 (R2 

= 0.51, RMSE = 6.0%, RRMSE = 6.3%), which usually had transpirable soil water available in the 

layer explored by grass roots. Soil water was also predicted well during extended periods of decreased 

FTSWg, as in 2016 (R2 = 0.95, RMSE = 10.6%, RRMSE = 15.9%), as well as in years with one brief 

period of decreased FTSWg during the growing season (i.e., 2015, R2 = 0.91, RMSE = 8.5%, RRMSE 

= 10.0%). 
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Figure 4. Observed and predicted daily evapotranspiration (ET, mm d-1) in 2012-2018 at site T, divided between (left) 

calibration and (right) evaluation years. 

Figure 5. Observed and predicted fraction of total transpirable soil water (FTSWg, %) in 2012-2018 at site T, divided 

between (left) calibration and (right) evaluation years. 

 

VISTOCK reproduced AGB well during the growing season of each evaluation year (R2 = 0.68, 

RMSE = 444.5 kg DM ha-1, RRMSE = 23.6%), capturing well the peak of AGB and the start of the 

decrease in green AGB due to senescence (Figure 6, Table 2). 
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3.2.2 Site M 

Despite estimating LAI for sites M and B using S2-NDVI instead of Skye-NDVI, VISTOCK robustly 

reproduced AGB production in 2020 and 2021 (Table 2). Specifically, predicted AGB at site M 

accurately followed observed AGB from its peak to the end of the growing season (R2 = 0.81, RMSE 

= 240.4 kg DM ha-1, RRMSE = 32.1%), which captured well the impact of grazing animals on AGB 

(Figure 7). 

3.2.3 Site B1 

Using site M parameters and LAI estimates in site B1simulation, VISTOCK reproduced AGB 

dynamics well during the growing seasons 2020 and 2021 according to R2 (0.70), although the 

RRMSE was relatively high (42.8%). Despite having the lowest RMSE (219.4 kg DM ha-1) among 

all evaluation sites, small differences between observed and predicted AGB had a high RRMSE, due 

to the small proportion of AGB left on the pasture by the cattle at the end of the grazing period. 

 

3.2.4 Site B2 

Using site M parameters and LAI estimates in site B2 simulation, VISTOCK reproduced well the 

combined effect of mowing (DOY 130), followed by vegetation regrowth, and then grazing on DOY 

180 in 2020 and continuous grazing in 2021 (R2 = 0.79, RMSE = 364.9 kg DM ha-1, RRMSE = 

33.9%). 
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Figure 6. Predicted and mean (±1 standard deviation) observed aboveground biomass (AGB, kg DM ha-1) at site T in 

2012-2018, divided between (left) calibration and (right) evaluation years. 

 

Figure 7. Predicted and mean (±1 standard deviation) observed aboveground biomass (AGB, kg DM ha-1) at sites M, 

B1, and B2 in 2020 and 2021. 

 

Table 2. Goodness-of-fit indicators (i.e., coefficient of variation (R2), root mean square error (RMSE), and relative 

RMSE (RRMSE)) of actual net primary production (aNPP), evapotranspiration (ET), fraction of transpirable soil water 

(FTSWg), and aboveground biomass (AGB) between observations and VISTOCK predictions for model calibration and 

evaluation. A 10 days-aggregation level was chosen for aNPP and ET to reduce the effect of daily fluctuations. 

Variable Site Simulation Year Aggregation R2 RMSE RRMSE 

aNPP T Calibration 2012 10 days 0.94 10.9 g m-2 10d-1 21.0% 

T Evaluation 2013 10 days 0.84 10.2 g m-2 10d-1 18.3% 

T Evaluation 2014 10 days 0.90 12.0 g m-2 10d-1 21.8% 

T Evaluation 2015 10 days 0.87 12.8 g m-2 10d-1 30.9% 

T Evaluation 2016 10 days 0.88 15.3 g m-2 10d-1 33.5% 

T Calibration 2017 10 days 0.94 8.5 g m-2 10d-1 23.0% 

T Calibration 2018 10 days 0.96 8.1 g m-2 10d-1 18.3% 

ET T Calibration 2012 10 days 0.86 6.6 mm 10d-1 26.7% 

T Evaluation 2013 10 days 0.95 10.8 mm 10d-1 35.7% 

T Evaluation 2014 10 days 0.93 10.3 mm 10d-1 39.2% 

T Evaluation 2015 10 days 0.73 14.2 mm 10d-1 55.9% 

T Evaluation 2016 10 days 0.52 15.3 mm 10d-1 53.3% 

T Calibration 2017 10 days 0.94 15.1 mm 10d-1 47.8% 

T Calibration 2018 10 days 0.85 11.5 mm 10d-1 43.8% 

FTSWg T Calibration 2012 daily 0.91 8.4% 12.0% 

T Evaluation 2013 daily 0.72 11.9% 14.0% 

T Evaluation 2014 daily 0.51 6.0% 6.3% 

T Evaluation 2015 daily 0.91 8.5% 10.0% 
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T Evaluation 2016 daily 0.95 10.6% 15.9% 

T Calibration 2017 daily 0.70 15.6% 18.4% 

T Calibration 2018 daily 0.92 8.0% 13.5% 

AGB T Evaluation 2012-2018 -  0.68 444.5 kg ha-1 23.6% 

M Evaluation 2020 and 2021 -  0.81 240.4 kg ha-1 32.1% 

B1 Evaluation 2020 and 2021 -  0.70 219.4 kg ha-1 42.8% 

B2 Evaluation 2020 and 2021 -  0.79 364.9 kg ha-1 33.9% 

 

4. Discussion 

Once calibrated, VISTOCK simulated the grassland system well (Table 2). The model’s potentially 

wide applicability, due to optimizing a few important parameters (i.e., RUE, TEC, a, and b) that are 

kept constant, is confirmed by its predictions for different environments (sites T, B1, B2 and M). 

As highlighted by Maselli et al. (2013) and Moriondo et al. (2019), simplifying the system increased 

the applicability of the model, which provided encouraging results, even for sites with diverse soil, 

climate, botanical, and management conditions. For VISTOCK, this simplification was to estimate 

LAI directly from NDVI data obtained from proximal and remote sensing techniques. It is well known 

that LAI is a key parameter for estimating carbon and energy fluxes between plants and the 

atmosphere, photosynthetic activity, and AGB production (Prieto-Blanco et al., 2009; Swain et al., 

2016; Verrelst et al., 2016; Yu et al., 2018). The importance of LAI for assessing these processes is 

also reflected in process-based models (Liu et al., 2018), in which LAI and related parameters (e.g., 

fAPAR) play a major role in simulating growth processes in agro-ecosystems (Touhami et al., 2013). 

Using NDVI during the growing season to estimate LAI, which is influenced by biotic (pests and 

disease, Baròn et al., 2013), abiotic (water or nitrogen stresses, Bahrani et al., 2010; Knops and 

Reinhart, 2000), and ecological factors (Westoby et al., 2004), is therefore of paramount importance 

for determining crop growth processes. The use of a strict relationship between LAI and remote 

sensing vegetation indexes observed for many crop systems (Liu et al., 2012; Xie et al., 2015), 

including grasslands (Fan et al., 2009; Palmer et al., 2017; Wylie et al., 2002), supports simplification 

of a crop growth model that no longer needs to estimate effects of limiting factors on leaf area growth 

and thus to calibrate relevant parameters, but rather relies on conservative relationships such as RUE 

or water-use efficiency (Sinclair and Seligman, 2000). Effects of thermal and water stresses related 

to these parameters were explicitly considered, as in other light-use-efficiency models (e.g., Maselli 

et al., 2013), to quantify effects of these factors and monitor plant conditions during the simulated 

growing season. This was especially important for reproducing water dynamics in the soil with the 

water balance sub-model, as plant transpiration influences them.  
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In addition, estimating LAI using remote sensing data also avoided the need to adjust model 

parameters to effectively simulate grassland systems with different types of management (i.e., natural 

grassland, pasture, meadow-pasture). Using NDVI to estimate LAI thus increases the robustness of 

the model, which can be potentially applied to contexts other than those for which it was calibrated 

and opens up the potential to simulate very local scales, thus exploiting the high spatial and temporal 

resolutions of currently available satellite data (Wakulinśka and Marcinkowska-Ochtyra, 2020). At 

the same time, using satellite data in models may overcome possible uncertainties in process-based 

models due to spatial variability in agricultural systems over large regions (Jin et al., 2018). 

In the present study, Skye-NDVI and S2-NDVI were equally effective at detecting grassland LAI 

during the growing season, thus confirming the results of Van Cleemput et al. (2018), who observed 

similar estimates of grassland biophysical traits for satellite and ground-based spectral measurements. 

The present study provided relationships between NDVI measured by different sensors and the LAI 

of generic multi-species grasslands. Using VISTOCK’s current structure, estimates of LAI based 

vegetation indices could be improved by using new empirical relationships using new ground-based 

data, especially when the botanical conditions differ greatly from those of this study (e.g., single-

species grasslands or grasslands dominated by species very different from those of this study), or 

using a variety of vegetation indices. 

Because a vegetation index was used to estimate LAI, model calibration was limited to parameters 

directly related to crop biomass accumulation (i.e., RUE), crop water loss (i.e., TEC), and effects of 

thermal and water stresses on RUE. The adjustment of only a few coefficients highlights VISTOCK’s 

good performance when evaluated for a variety of climate conditions; adjusting more coefficients 

would have likely made the model more accurate at local scale but less applicable to other contexts 

(Sinclair and Seligman, 2000). Hence, this simplification increases the model’s robustness, which 

makes it applicable to different contexts (Maselli et al., 2013), and at the same time may solve the 

problem of estimating spatial variability in grass growth and development by using the high spatial 

and temporal resolution of Sentinel-2 data. 

Four parameters (i.e., RUE, TEC, a, and b) were calibrated for three years (i.e., 2012, 2017, and 2018) 

for site T based on the most contrasting temperature and precipitation conditions. The model provided 

satisfactory predictions of NPP, ET, and FTSWg at a high temporal scale (i.e., 10 days for NPP and 

ET, daily for FTSWg) for the calibration years. The calibrated model showed reliable predictions 

when applied to the evaluation years of site T. Model generality is corroborated by predictions of 

AGB for sites M and B, which had climatic conditions very different from those used for calibration 

(site T).  
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Predictions of NPP were in line with those of other studies (Liang et al., 2015; Zhang et al., 2016) 

that used light-use efficiency with auxiliary remote sensing data to simulate NPP on a yearly basis. 

VISTOCK’s ability to predict NPP during different vegetative stages during the growing season of 

different study years, which had different thermal and water conditions, indicated the ability of the 

TCOR and WSCOR limiting factors to reproduce the influence of thermal and water stresses on NPP 

production, further supporting the findings that thermal and water regimes are the main drivers of 

grassland NPP dynamics during a growing season (Zhang et al., 2016).  

Indications of VISTOCK’s ability to reproduce water dynamics in the grassland system were 

provided by comparing observed and predicted ET and FTSWg. Although the model slightly 

underestimate ET dynamics of site T, it generally reproduced them well during the growing season, 

as reported in other studies of alpine grassland ecosystems (Liu et al., 2015). Differences between 

observed and predicted ET may have been influenced by i) the quality of input data (Battista et al., 

2018), ii) the partitioning between evaporation and transpiration (Wang et al., 2016), and iii) spatial 

and temporal variability in topography and snow cover in alpine grasslands (Gurtz et al., 1999). 

Along with ET, information on soil water content, expressed as FTSWg indicated the model’s ability 

to reproduce water dynamics in the grassland system at a daily time step under diverse conditions of 

soil water availability. Specifically, FTSWg during the growing season was correctly predicted, 

whether the grassland experienced general water availability (i.e., 2013 and 2014), an extended period 

of decreased FTSWg (i.e., 2012, 2016, and 2017), or one (i.e., 2015) or two (i.e., 2018) brief periods 

of decreased FTSWg. 

Due to the reliable simulation of LAI and fAPAR for predicting daily NPP, the calibrated model 

provided encouraging results for predicting grassland AGB using both proximal (site T) and remote 

sensing techniques (sites B and M). Specifically, when properly initialized with biomass on DOY 1, 

the model generally reproduced AGB well for different environments (i.e., mountains, hills, and 

plains) and types of management (i.e., natural grassland, semi-natural pasture, sown pasture, and 

meadow-pasture) with only a few parameters to calibrate and inputs to include. 

Regarding possible limitations, the presence of clouds, aerosols, or shadows in remote sensing data 

with high temporal and spatial solution during specific periods can limit the use of VISTOCK; 

however, methods to reconstruct time series of vegetation indices can be used to fill data gaps, for 

example by using additional sources of information, such as Synthetic Aperture Radar (Garioud et 

al., 2021; Moreno-Martínez et al., 2020). 

For future calibrations, the only varying parameters are those related to thermal requirements (GTMIN 

and GTOPT), which need specific consideration because they differ among species in diverse 

environments. To this end, we evaluated the model for two contrasting environments (sub-alpine (site 
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T) and hills and plains with a Mediterranean influence (sites M and B)), which provided a range of 

temperatures for GTMIN and GTOPT. 

The influence of nitrogen on plant growth (e.g., possible limitation) is not explicitly considered in 

VISTOCK, a simplification made considering that LAI estimated from NDVI already include 

information on N concentration, since NDVI can be related to plants’ nitrogen concentration or 

nitrogen-related characteristics (e.g., crude protein content) (Adjorlolo C., 2014; Vong et al., 2019). 

One source of error in model evaluation may have been the simplification of deriving NPP from GPP, 

which is not actually observed, but derived from the flux tower with the eddy covariance method. A 

fixed coefficient is usually used in the literature to convert GPP to NPP (Chen et al., 2003; Zhang et 

al., 2009), but this approach is theoretically less correct than methods based on estimating autotrophic 

respiration (Maselli et al., 2013). Concerning the model initialization, a spin-up process based on the 

first biomass sample of the season is required to properly initialize VISTOCK at the beginning of 

each year. 

Notwithstanding the limitations, this modelling approach represents an advance in simulation models 

that integrate remote sensing data by providing results at a potentially higher spatial resolution than 

those of previous studies (Liu et al., 2015; Maselli et al., 2013) and adding a more detailed water 

balance sub-model for simulating water dynamics than those in Liang et al. (2015) and Zhang et al. 

(2016). Model predictions at high temporal and spatial resolutions, especially for a future pixel-level 

analysis, may represent a valuable tool for grassland management for farmers (Ding et al., 2020). 

Specifically, data collected by satellites such as Sentinel-2 offer the potential to upscale predictions 

to larger areas, which allows stakeholders to monitor grassland growth and, in turn, identify 

management strategies for optimization at a regional scale (Wang et al., 2019).  

Furthermore, the potential future use of VISTOCK at high resolutions combined with 

technologies/strategies that can increase grazing efficiency, such as rotational grazing (Li et al., 

2020), may represent a valuable tool for developing a new integrated system to support grazing 

management. Grassland AGB and its spatio-temporal variability could be monitored and predicted 

throughout the grazing season to determine the best extent and location of pasture for grazing in a 

context of rotational grazing. 

Concerning future prospects, application of VISTOCK will be investigated at the pixel level of 

Sentinel-2, instead of using mean values of NDVI at the field level. Furthermore, Sentinel-2 data may 

be supplemented with additional information (e.g., Sentinel-1, Landsat) to decrease the number of 

gaps in the remote sensing data and increase the accuracy of estimated LAI (Wang et al., 2019), thus 

improving grassland AGB predictions during the growing season. At the same time, to increase the 

information provided by the model, the potential of satellites to detect chemical and nutritional 
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properties of vegetation (Fernández-Habas et al., 2021) might be explored and included in the model 

structure. 

 

5. Conclusions 

The main aim of this study was to develop and test a new simplified model (VISTOCK) for simulating 

grassland growth and development under different bioclimatic zones and management. The model, 

based on process-based equations that require few input data and integrated with Skye-NDVI and S2-

NDVI, yielded robust and reliable predictions that can be used for out- and/or upscaling. Despite its 

simple structure, VISTOCK was generally able to reproduce processes of the grassland system, 

considering effects of thermal and water stresses on grass growth. Except for slightly underestimating 

ET, VISTOCK was able to effectively predict NPP, FTSWg, and AGB of grassland. The model’s 

applicability to different environments and management types, combined with the few inputs required 

and parameters to be calibrated, makes it an effective tool for farmers to support the optimization of 

grassland grazing systems. Future perspectives to enhance the model’s performances and potential 

include using additional remote sensing data and adding a specific sub-model to simulate the quality 

of AGB. 
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Abstract: The use of very long spatial datasets from satellites has opened up numerous opportunities, 

including the monitoring of vegetation phenology over the course of time. Considering the 

importance of grassland systems and the influence of climate change on their phenology, the specific 

objectives of this study are: (a) to identify a methodology for a reliable estimation of grassland 

phenological dates from a satellite vegetation index (i.e., kernel normalized difference vegetation 

index, kNDVI) and (b) to quantify the changes that have occurred over the period 2001–2021 in a 

representative dataset of European grasslands and assess the extent of climate change impacts. In 

order to identify the best methodological approach for estimating the start (SOS), peak (POS) and 

end (EOS) of the growing season from the satellite, we compared dates extracted from the MODIS-

kNDVI annual trajectories with different combinations of fitting models (FMs) and extraction 

methods (EM), with those extracted from the gross primary productivity (GPP) measured from eddy 

covariance flux towers in specific grasslands. SOS and POS were effectively identified with various 

FM×EM approaches, whereas satellite-EOS did not obtain sufficiently reliable estimates and was 

excluded from the trend analysis. The methodological indications (i.e., FM×EM selection) were then 

used to calculate the SOS and POS for 31 grassland sites in Europe from MODIS-kNDVI during the 

period 2001–2021. SOS tended towards an anticipation at the majority of sites (83.9%), with an 

average advance at significant sites of 0.76 days year−1. For POS, the trend was also towards 

advancement, although the results are less homogeneous (67.7% of sites with advancement), and with 

a less marked advance at significant sites (0.56 days year−1). From the analyses carried out, the SOS 

and POS of several sites were influenced by the winter and spring temperatures, which recorded rises 

during the period 2001–2021. Contrasting results were recorded for the SOS-POS duration, which 

did not show a clear trend towards lengthening or shortening. Considering latitude and altitude, the 
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results highlighted that the greatest changes in terms of SOS and POS anticipation were recorded for 

sites at higher latitudes and lower altitudes. 

Keywords: start of season (SOS); peak of season (POS); end of season (EOS); vegetation index; 

GPP; kNDVI 

1. Introduction 

Phenology is defined as the “study of the timing of recurring biological events, the causes of their 

timing with regard to biotic and abiotic forces, and the interrelation among phases of the same or 

different species” (Lieth, 1974). Vegetation phenology specifically addresses processes linked to the 

plant cycle, such as leaf emergence, flowering, leaf colouration and fall (Richardson et al., 2013). 

These are controlled by molecular mechanisms inside the organism and driven by factors such as 

temperature and photoperiod (Singh et al., 2017). 

The study of plant phenology through on-field observations, although a reliable approach (Templ et 

al., 2018), is time-consuming and costly when applied at large spatial scales or over long time series. 

Moreover, observed phenological data are site specific, often sparsely distributed and measured for a 

few plant species only and at discrete phenophases (Cui et al., 2019). 

To overcome these issues, the collection of data and information on phenology through remote 

sensing devices and methodologies has become of great importance over the years as a result of 

scientific advances in this field of study. Within remote sensing, different types of technologies can 

be considered for phenological analysis, such as satellites equipped with specific sensors (Dixon et 

al., 2021; Liu et al., 2017; Peng et al., 2021) or Phenocam digital cameras (Julitta et al., 2014; 

Migliavacca et al., 2011; Watson et al., 2019; Zhang et al., 2018). Taking into account satellite images 

and the different vegetation indices derived from them (Sonobe et al., 2018), the use of these data has 

been widely experimented in the literature in different environments, such as evergreen forests, 

deciduous forests, croplands and grasslands (Gonsamo et al., 2012; Tian et al., 2021), to assess the 

vegetation cycles through the extraction of phenological dates of the start, peak or end of the growing 

season. Approaches to retrieving these relevant phenological dates from vegetation indices have been 

previously investigated with regard to the smoothing and filtering functions of raw satellite data (Lara 

and Gandini, 2016) and date extraction techniques (Tian et al., 2021). Furthermore, there has been 

the development of specific software, such as Phenopix (Filippa et al., 2016), that simplified and 

automated data processing techniques for phenological studies. 

In addition to data collected from on-field and remote sensing observations, another important source 

of information for studying phenology is the gross primary productivity (GPP), i.e., the total amount 

of CO2 fixed by plants through vegetation photosynthesis (Gitelson et al., 2006; Running et al., 2004; 
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Wang et al., 2018), elaborated from eddy covariance measurements at flux tower sites. Since 

phenology is one of the most important controls of the interannual variability of GPP (Fu et al., 2014; 

Q. Zhang et al., 2014), these measurements have been used in a number of studies as a proxy for 

vegetation phenology (Peng et al., 2017; Tian et al., 2021). Unlike phenological on-field observations 

that are based on the human eye, GPP is focused on photosynthetic phenology, which is a result of 

both plant canopy development and light use efficiency (Medlyn, 1998). By measuring the 

photosynthetic carbon uptake of the vegetation canopy, dates of start and end of season elaborated 

from GPP measurements provide indications of when ecosystems switch from a source to a sink of 

C, and vice versa (Galvagno et al., 2013). Given the importance of these data, GPP measurements are 

also used to evaluate the efficiency of remote sensing data in estimating ecosystem phenological dates 

(Jin et al., 2017; Jin and Eklundh, 2014). 

In the last decades, the study of phenological events in plant communities has become increasingly 

important to assess the impacts of climate warming on vegetation cycles, with consequences on 

agricultural, forest and grassland systems (IPCC, 2014; Sparks and Menzel, 2013). With a specific 

focus on the latter, monitoring grassland ecosystems, which cover ca. 70% of the total world 

agricultural area (FAO, 2013), has gained interest due to the large amount of ecosystem services they 

provide, e.g., erosion protection, water regulation, carbon storage, biodiversity, food for animal 

production systems and wildlife, aesthetic and recreational functions (Bengtsson et al., 2019; Hao et 

al., 2017; Ni, 2002; Ponzetta et al., 2010). Given the huge spatial extent of these environments and 

the large number of functions they perform, understanding trends and potential climate-induced shifts 

in grassland phenology is impelling (Dibari et al., 2020). Studies of different environments in Europe 

have already shown changes in phenological phases over the period 1951–2018 in a limited number 

of countries for which long series of observed data were available (Menzel et al., 2020). 

In this regard, long time series of vegetation indices, such as those elaborated from MODIS satellite 

images, allow the study of phenology over a relatively long period of time, providing information at 

250 m spatial resolution and 16-day temporal resolution. This involves assessing changes in 

phenological dates over the past decades and quantifying the extent of the impacts of climate change 

on the plant life cycle that are already visible in grassland systems (Gong et al., 2015). Analyses of 

satellite-derived phenology over the period 1982–2001 also showed a general advance driven by 

climate change (Stöckli and Vidale, 2004). However, a comprehensive phenological analysis specific 

to European grasslands in recent decades is still lacking, as is the evaluation of the impact of rising 

temperatures on these changes. 

Building on these premises, the objectives of this research were, therefore, twofold: 
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(i) Identification of a reliable approach to determine the start (SOS), peak (POS) and end of the 

growing season (EOS) through the use of specific vegetation indices (i.e., kernel normalized 

difference vegetation index, kNDVI) processed from MODIS satellite imagery, relying on observed 

GPP data from grassland sites as comparison; 

(ii) Analysis of phenological trends of different European grasslands in the period 2001–2021 using 

the methodology identified in point (i) in order to highlight possible changes in the dates of SOS, 

POS and EOS and the relevant climatic drivers. 

 

2. Materials and Methods 

2.1. Preliminary Analysis and Optimisation of the Extraction Method 

In order to analyse the trend of phenological dates of a representative dataset of European grasslands 

over the last 20 years, it was necessary to identify the best strategy for extracting key grassland 

phenological phases (i.e., SOS, POS and EOS) from satellite images (Figure 1). The effectiveness of 

the use of satellite-derived vegetation indices (i.e., kNDVI) in the assessment of grassland 

phenological stages was evaluated using as a benchmark observed seasonal trend of grasslands’ gross 

primary production (GPP) as fitted by different models (FM) and extraction methods (EM). The 

complete procedure is given below. 

Figure 1. Workflow of the methodology, divided into “Approach to estimate SOS, POS, EOS” (2.1) and “SOS, POS, 

EOS trend analysis” (2.2). 
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2.1.1. GPP Data and Study Areas 

Daily GPP data (g C m−2 d−1), used as observed values of grassland growing seasons, were collected 

at study sites of the FLUXNET (https://fluxnet.org/, accessed 5 July 2022, Pastorello et al., 2020) and 

European Fluxes Database Cluster (http://www.europe-fluxdata.eu/, accessed on 7 July 2022) 

networks. At these sites, CO2 flux of grasslands is regularly measured from in situ towers by means 

of the eddy covariance method, and then further partitioned into ecosystem respiration and GPP 

(Liang and Wang, 2020). From these two networks, 9 study areas in Europe with different altitudinal 

and botanical conditions were selected in order to obtain a representative European dataset. The list 

of study areas with the relative information is reported in Table 1. From the GPP patterns elaborated 

from this dataset, SOS, POS and EOS were extracted with the different approaches that are explained 

in Section 2.1.3. 

Table 1. List of grassland sites used to obtain daily GPP data. Mamsl represents meters above mean sea level (m), while 

EFDC represents the European Fluxes Database Cluster. 

ID Site Country Network Lat Lon Mamsl Years 

AT-Neu Neustift (Wohlfahrt et al., 2008) Austria FLUXNET 47.1167 11.3175 970 2002–2012 

CH-Cha Chamau (Merbold et al., 2014) Switzerland FLUXNET 47.2102 8.4104 393 2002–2008 

CH-Fru Früebüel (Imer et al., 2013) Switzerland FLUXNET 47.1158 8.5378 982 2005–2014 

CZ-BK2 Bily Kriz Czech Republic FLUXNET 49.4944 18.5429 855 2006–2012 

DE-Gri Grillenburg (Prescher et al., 2010) Germany FLUXNET 50.9500 13.5126 385 2004–2018 

DE-Rur Rollesbroich (Post et al., 2015) Germany FLUXNET 50.6219 6.3041 514 2011–2018 

IT-Mal Malga Arpaco Italy EFDC 46.1140 11.70334 1662 2003–2004 

IT-Mbo Monte Bondone (Marcolla et al., 2011) Italy FLUXNET 46.0147 11.0458 1550 2004–2013 

IT-Tor Torgnon (Galvagno et al., 2013) Italy FLUXNET 45.8444 7.5781 2160 2009–2018 

 

2.1.2. Satellite Data 

For the purpose of the study, we selected the Moderate Resolution Imaging Spectroradiometer 

(MODIS) imagery to retrieve the vegetation index from which to extract SOS, POS and EOS, 

corresponding to what was assessed for GPP data. Despite its lower spatial resolution compared to 

http://www.europe-fluxdata.eu/
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other more recent satellites (e.g., Sentinel-2), MODIS provides a long-time series of data allowing 

the analysis of phenological trends in European grasslands over the last decades. 

The vegetation index used to reproduce the growing season of grasslands was the kernel NDVI 

(kNDVI), a specific vegetation index used to reconstruct GPP patterns in different environments, 

including grasslands (Camps-Valls et al., 2021). The kNDVI is calculated as follows: 

kNDVI =
1−𝑘(𝑛,𝑟)

1+𝑘(𝑛,𝑟)
                                                                                                                               (1) 

where n and r refer to the reflectance in the near-infrared (NIR) and red bands (RED), respectively, 

BAND 2 and BAND 1 in MODIS at 250 m spatial resolution and 8 days of temporal resolution 

(product: MODIS/006/MOD09Q1), while the kernel function k measures the similarity between these 

two bands. We used the RBF kernel proposed by the same authors (Camps-Valls et al., 2021): 

𝑘(𝑎, 𝑏) = 𝑒𝑥𝑝 
(−(𝑎−𝑏)2)

((2𝜎)2)
                                                                                                                     (2) 

where the σ parameter controls the notion of the distance between the NIR and RED bands, elaborated 

as the mean distance between these two bands: 

𝜎 = 0.5(𝑛 + 𝑟)                                                                                                                                  (3) 

For each site, kNDVI values were then processed from the MODIS RED and NIR bands according 

to the previous formulas, using the specific coordinates of the grassland sites with eddy covariance 

stations. 

2.1.3. Fitting Models and Extraction Methods 

In order to perform an accurate satellite analysis of phenological date trends over the period 2001–

2021, different fitting models (FMs) and date extraction methods (EMs) were applied both to raw 

data of GPP and kNDVI to find the most performing FM×EM approach. The methodology was then 

chosen taking into account the results of the comparison between SOS, POS and EOS extracted from 

GPP and kNDVI annual patterns. 

Consequently, raw data of GPP and kNDVI underwent a process for retrieving the phenological dates 

of SOS, POS and EOS. Specifically, using a work package for phenological analysis within the R 

work environment (phenopix, Filippa et al., 2016), the annual patterns of GPP and kNDVI were 

subjected to the fitting operation and, subsequently, to SOS, POS and EOS extraction. 

The FM used in this comparison were 4: Elmore et al. (2012) (ELM), Gu et al., (2009) (GU), Beck et 

al. (2006) (BEC) and Klosterman et al. (2014) (KLS). These methods fitted different double logistic 
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curves to the raw data of GPP and kNDVI according to the aforementioned studies. Equations of 

ELM, GU, BEC and KLS (Filippa et al., 2016) are shown below: 

f(t) = mn + (mx − mn) · (
1

1+e(m3
′ −t) m4

′⁄
−  

1

1+e(m5
′ −t) m6

′⁄
)                                                                 (4) 

f(t) = y0 +  
a1

[1+e−(t−t01) b1⁄ ]c1
−  

a2

[1+e−(t−t02) b2⁄ ]c2
                                                                               (5) 

f(t) = mn + (mx − mn) · (
1

1+e(−rsp·(t−sos))
+

1

1+e(−rau·(t−eos))
)                                                           (6) 

f(t) = mn + (mx − mn) · (
1

1+e(−rsp·(t−sos))
+

1

1+e(−rau·(t−eos))
)                                                           (7) 

The selected FMs optimise a different number of parameters and hence present diverse flexibility in 

fitting raw data. For a more comprehensive understanding of the methods and curve parameters, see 

the corresponding publications. 

The GPP and kNDVI curves obtained after FM application were then used to extract SOS, POS and 

EOS with four extraction methods (Filippa et al., 2016): three working on inflection points of the 

derivatives (Klosterman, Gu, Derivatives), and one that identifies the dates when a fixed threshold of 

the seasonal amplitude is reached (Thresholds). Specifically, Klosterman is based on local extremes 

in the rate of change of curvature k (Kline, 1998), Derivatives on local extremes in the first derivative, 

and Gu on a combination of local maxima in the first derivative (Gu et al., 2009). Regarding the 

Thresholds method, in this trial we tested different values for the fixed threshold: 10 (TRS0.1), 20 

(TRS0.2), 30 (TRS0.3), 40 (TRS0.4) and 50% (TRS0.5) of the seasonal amplitude. 

2.1.4. Evaluation Criteria 

The statistical analysis performed to evaluate the FMxEM methodology that provides the best match 

between SOS, POS and EOS from observed values (i.e., GPP) and satellite-derived values (i.e., 

kNDVI) was conducted using four statistical indicators: the coefficient of determination (R2), the 

mean absolute error (MAE), Akaike’s information criterion (AIC) and root-mean-square error 

(RMSE). 

The four indices are calculated as follows: 

R2 =  
∑ (yi−yi)2n

i=1

∑ (yi−ŷi)2n
i=1

                                                                                                                                (8)      

MAE =  
∑ |yi−ŷi|n

i=1

n
                                                                                                                               (9)  

AIC = 2k − 2 ln ln (L̂)                                                                                                                    (10) 

RMSE =  √
1

n
∑ (yi − ŷi)2n

i                                                                                                                (11)                                                                                            
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where n represents the number of observations, yi the observed value, 𝑦𝑖 the mean observed value, 𝑦̂𝑖 

the simulated value, k the number of estimated parameter and 𝐿̂ the maximum value of the likelihood 

function. In order to exclude outlier points, FM×EM approaches were evaluated by excluding years 

in which the difference between observed and simulated phenological dates was higher than 70 days. 

The percentage of points used out of the total was reported as pp (point percentage). 

2.2. SOS, POS, EOS Analysis in the 2001–2021 Period 

The approach to extract SOS, POS and EOS from MODIS satellite imagery was selected after the 

comparison between phenological dates extracted from kNDVI and observed GPP and then applied 

to different grassland systems in Europe over the period 2001–2021. Subsequently, the influence of 

seasonal mean temperatures was evaluated to understand the impact of climate change (Figure 1).  

2.2.1. Study Areas and Meteorological Time Series 

The analysis of the period 2001–2021 was performed across different grassland sites in Europe. Study 

areas were identified from WEkEO (https://www.wekeo.eu/services accessed on 27 July 2022), the 

EU Copernicus DIAS reference service for environmental data, virtual processing environments and 

skilled user support. From the specific layer that identifies the category “grasslands”, we selected 31 

different sites (Figure 2) from which the MODIS-kNDVI annual patterns to retrieve SOS, POS and 

EOS were elaborated and extracted. Sites were selected to include areas with different altitudinal and 

latitudinal conditions to increase the representativeness of the dataset (Table 2). 

Meteorological data were extracted from the National Centers for Environmental Information (NCEI) 

stations of the National Oceanic and Atmospheric Administration (NOAA) dataset 

(https://www.ncei.noaa.gov/maps/daily/ accessed on 29 July 2022). Wherever possible, mean daily 

https://www.wekeo.eu/services
https://www.ncei.noaa.gov/maps/daily/
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temperatures were collected from stations located in the closest proximity to the grassland site 

coordinates. 

Figure 2. Distribution of study areas across Europe. 

Table 2. European grassland sites selected for phenological analysis during the period 2001–2021. 

Site ID Country Latitude Longitude Altitude Meteo Station Meteo Years 

AUS1 Austria 46.7782 N 14.9746 E 1740 Feistritz Ob Bleiburg 2008–2021 

AUS2 Austria 47.0373 N 11.2085 E 1931 Obergurgl 2002–2021 

BOS Bosnia 44.2219 N 16.5075 E 1092 Livno 2001–2021 

BUL Bulgaria 42.1875 N 23.2977 E 2434 Mussala Top Sommet 2001–2021 

CZE Czech Republic 48.5850 N 14.3765 E 642 Budejovice Roznov 2001–2021 

DEN Denmark 56.1995 N 10.5378 E 40 Aarhus 2001–2021 

FRA1 France 45.5949 N 6.6931 E 1812 Bourg St Maurice 2001–2021 

FRA2 France 45.1842 N 2.7997 E 1169 Aurillac 2001–2021 

FRA3 France 42.2984 N 9.0294 E 1125 Ile Rousse 2001–2021 
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GEO Georgia 42.6512 N 44.601 E 2258 Pasanauri 2004–2016 

GER1 Germany 50.7660 N 10.7831 E 518 Erfurt 2005–2021 

GER2 Germany 51.7090 N 10.5377 E 697 Fritzlar 2001–2021 

HUN Hungary 47.4892 N 20.9926 E 276 Debrecen 2001–2021 

ITA1 Italy 45.1806 N 7.2695 E 1975 Bousson 2006–2021 

ITA2 Italy 45.6908 N 11.0631 E 1576 Paganella Mountain 2001–2021 

ITA3 Italy 42.4005 N 13.6756 E 1623 No station  

ITA4 Italy 40.0129 N 9.3181 E 1464 Perdasdefogu 2006–2021 

LAT Latvia 57.5046 N 27.3139 E 581 Aluksne 2004–2020 

POL Poland 50.4299 N 16.3272 E 630 Klodzko 2001–2021 

ROM Romania 46.8456 N 25.1027 E 1192 Batos 2014–2021 

RUS1 Russia 53.6425 N 35.5488 E 165 Bryansk 2001–2021 

RUS2 Russia 43.2756 N 41.6877 E 2544 Teberda 2013–2020 

SCO Scotland 56.5194 N 4.2276 W 559 Glen Ogle 2001–2021 

SLK Slovakia 49.1370 N 20.2007 E 1357 No station  

SLV Slovenia 46.4887 N 14.0553 E 1238 Ratece 2013–2021 

SPA1 Spain 43.0329 N 1.147 W 992 Pamplona 2001–2021 

SPA2 Spain 42.5973 N 0.0713 E 1759 No station  

SWE Sweden 64.9977 N 14.5455 E 854 Stekenjokk 2002–2021 

SWI1 Switzerland 46.9242 N 6.7304 E 1219 Bullet La Fretaz 2002–2021 

SWI2 Switzerland 46.9014 N 8.9249 E 1749 Disentis Sedrun 2001–2021 

TUR Turkey 41.2610 N 42.5550 E 2524 Ardahan 2009–2021 

Coordinates were reported in WGS84. 

2.2.2. Procedure and Trend Analysis 

In order to proceed with the extraction of phenological dates (i.e., SOS, POS and EOS), an area of 

250 × 250 m cleared of any interference (bare soil, rocks, shrubs, trees) was identified within each 
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grassland site on the WEkEO portal. From the centroid of this area, coordinates were subsequently 

extracted and used to identify the MODIS pixel for the processing of the kNDVI vegetation index. 

For each pixel, annual patterns of kNDVI for the period 2001–2021 were then recreated. From these 

trends, dates of SOS, POS and EOS were extracted according to the results obtained by the different 

approaches tested during the preliminary analysis. Specifically, the choice of methods took into 

account the need to use a single fitting model in order to extract SOS, POS and EOS from the same 

curve. Instead, the extraction methods were selected in accordance with the best results obtained in 

the preliminary analysis for each phenological date (i.e., SOS, POS and EOS) in order to achieve 

better accuracy. The selected FM×EM approaches (same FM, different EM for phenological date) 

were then applied to all sites and years to estimate SOS, POS and EOS. 

For each site, values of SOS, POS and EOS depicting a difference with the mean value higher than 

twice the value of deviance were discarded so as to exclude outliers from the analysis. Furthermore, 

in order to smooth out short-term fluctuations, a moving average with a three-year window was 

applied on phenological dates during the time period considered. 

After extracting and filtering SOS, POS and EOS, advances or delays in the cycle of grassland 

vegetation during the time period considered (2001–2021) were analysed.  

The results were then correlated with the processed weather data extracted from stations located in 

proximity to the study areas. Specifically, daily data of temperatures at each site were aggregated 

seasonally: winter (January, February and March), spring (April, May and June), summer (July, 

August and September) and autumn (October, November and December). Then, as well as for 

phenological dates, a moving average with a three-year window was performed on average seasonal 

values of mean temperature to smooth fluctuations and highlight temporal trends. Data were 

elaborated with a linear regression analysis in order to evaluate possible changes in mean seasonal 

temperatures over the period 2001–2021. 

Finally, mean temperature data were compared through a correlation analysis to phenological dates 

extracted from kNDVI patterns to investigate the potential impact of this factor on advances or delays 

in the grassland growing season. As in Stöckli and Vidale (2004), analysis of phenological trends 

considered 3 different levels of significance (statistical analysis F-test): 1, 5 and 10%. 

 

3. Results 

3.1. Optimisation of the Extraction Method 

The analysis conducted by comparing SOS, POS and EOS extracted from GPP with those extracted 

from the kNDVI index course (Figure 3) allowed the identification of reliable methodologies to assess 

phenological dates. 
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Regarding SOS, the FM×EM methodologies providing the best match between observed (i.e., GPP) 

and estimated data (i.e., kNDVI) were: ELM×TRS0.3, GU×TRS0.3 and BEC×TRS0.4. 

In the case of the peak of the season (POS), the use of the TRS extraction method was limited to one 

result, as this date was extracted from the maximum value reached by the curve (TRS = 1). As shown 

in Table 3, the best results in POS calculation were obtained with ELM×GU and BEC×GU. 

The identification of EOS dates via remote sensing, on the other hand, was more problematic, with 

sub-optimal statistical values (R2, MAE, AIC, RMSE) and a generally lower number of usable points 

after filtering with respect to SOS and POS (Table 3). Due to the low performance in determining 

EOS through the kNDVI index, the end of the season was not considered in the analysis over the 

2001–2021 period. 

Among the methodologies that performed best in predicting SOS and POS, those chosen for the 

analysis of the period 2001–2021 were ELM×TRS0.3 and ELM×GU, respectively. The choice fell on 

these two specific methodologies since for the extraction of start and peak dates, it was relevant to 

maintain the same type of fitting model (i.e., ELM), even if the extraction methods that worked better 

for SOS and POS were different (TRS0.3 and GU for SOS and POS, respectively). 

Table 3. Goodness of fit indicators between phenological dates extracted from GPP and kNDVI patterns with different 

FM×EM approaches. The results underlined and in bold are those relating to the approach chosen for the start (SOS) and 

peak (POS) of the season, respectively. 

  SOS POS EOS 

  ELM GU BEC KLS ELM GU BEC KLS ELM GU BEC KLS 

GU MAE 15.2 17.1 15.2 17.4 13.4 14.4 13.9 12.5 19.2 21.6 25.3 24.7 

 R2 0.76 0.74 0.75 0.83 0.66 0.62 0.54 0.56 0.08 0.06 0.00 0.05 

 AIC 627 671 647 577 647 652 651 614 533 595 527 496 

 RMSE 19.2 21.5 20.0 20.7 18.5 19.3 19.3 18.0 26.0 26.3 29.2 29.7 

 pp 93 96 94 88 91 93 93 88 77 83 73 72 

DER MAE 15.0 16.9 14.2 12.6 16.2 28.6 23.8 16.8 18.8 35.8 39.5 36.3 

 R2 0.63 0.69 0.73 0.77 0.55 0.49 0.30 0.61 0.09 0.05 0.12 0.16 

 AIC 682 668 674 568 512 480 530 416 557 498 560 479 

 RMSE 21.1 21.9 17.8 16.3 21.1 34.6 30.2 23.7 25.4 40.6 43.1 40.1 

 pp 95 95 99 86 73 64 69 56 79 69 80 72 

KLS MAE 17.4 15.0 13.9 19.5 10.3 15.8 13.9 13.6 22.6 23.3 24.1 27.1 

 R2 0.85 0.73 0.57 0.6 0.89 0.57 0.57 0.71 0.00 0.00 0.02 0.17 

 AIC 116 300 582 505 110 345 582 431 104 222 458 351 
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 RMSE 21.5 18.2 19.0 24.0 13.1 22.2 19.0 19.3 33.1 29.5 28.65 32.7 

 pp 17 46 83 69 16 47 83 60 16 30 64 47 

TRS0.1 MAE 15.4 19.4 21.0 19.2 16.2 28.5 23.8 16.8 21.1 21.5 22.9 24.4 

 R2 0.35 0.57 0.56 0.51 0.55 0.49 0.30 0.61 0.06 0.06 0.00 0.00 

 AIC 635 612 651 598 512 480 530 416 589 302 325 235 

 RMSE 19.3 24.1 25.7 24.3 21.06 34.6 30.2 23.7 26.5 26.0 28.0 30.0 

 pp 91 83 94 81 73 64 69 56 84 46 48 33 

TRS0.2 MAE 14.0 14.8 13.6 15.8 - - - - 22.8 21.9 24.9 25.9 

 R2 0.78 0.79 0.79 0.91 - - - - 0.14 0.14 0.01 0.09 

 AIC 609 611 625 497 - - - - 588 498 583 459 

 RMSE 17.7 19.7 17.6 19.5     28.3 27.0 30.4 30.2 

 pp 91 89 94 75 - - - - 85 72 80 68 

TRS0.3 MAE 13.6 15.0 12.9 14.6 - - - - 27.5 29.4 28.9 31.6 

 R2 0.82 0.85 0.80 0.86 - - - - 0.12 0.16 0.07 0.15 

 AIC 599 593 627 553 - - - - 588 547 548 529 

 RMSE 16.9 19.0 16.2 17.9     32.0 33.8 33.9 35.8 

 pp 91 90 95 86 - - - - 85 79 78 78 

TRS0.4 MAE 13.7 14.9 12.8 13.3 - - - - 34.2 36.1 35.5 36.6 

 R2 0.80 0.81 0.79 0.80 - - - - 0.10 0.22 0.14 0.22 

 AIC 629 624 626 580 - - - - 569 574 545 522 

 RMSE 18.1 19.3 15.9 16.7     38.4 39.4 39.1 39.8 

 pp 94 93 95 88 - - - - 83 83 79 78 

TRS0.5 MAE 13.7 15.7 13.3 12.6 - - - - 39.8 42.0 40.3 40.3 

 R2 0.73 0.69 0.76 0.76 - - - - 0.12 0.21 0.21 0.19 

 AIC 652 674 648 566 - - - - 523 567 527 505 

 RMSE 18.6 20.5 17.1 16.7     43.5 45.0 43.1 43.6 

 pp 94 95 96 84 - - - - 75 81 78 74 
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The FMs reported are Elmore (ELM), Gu (GU), Beck (BEC) and Klosterman (KLS), the EMs Gu (GU), Derivatives 

(DER), Klosterman (KLS) and Threshold (TRS). Pp represents the percentage of points used for the evaluation (difference 

between dates extracted from GPP and kNDVI < 70 days). 

                                              a                                                                                    b 

Figure 3. Example of SOS, POS and EOS extraction from GPP (a) and kNDVI (b) patterns of the Torgnon site (year 

2017), with different fitting models: Becker (BEC), Elmore (ELM), Gu (GU), Klosterman (KLS)) and GU extraction. 

OBS represents the raw values of GPP and kNDVI. Vertical bars represent estimated SOS (green), POS (red) and EOS 

(dark red). 

3.2. SOS and POS Trend Analysis (2001–2021) 

The procedures selected during the methodological analysis (ELM×TRS0.3 and ELM×GU, 

respectively, for SOS and POS) were used to investigate possible changes in the phenological timing 

of European grasslands. Given that from the results obtained in 3.1 (Table 3), the end of the season 

(EOS) was not well identified by MODIS-kNDVI when compared to EOS extracted from GPP, the 

analysis considered exclusively the start (SOS) and peak (POS) dates of the growing season. 

Satellite-derived SOS showed a clear trend over the time span considered. As depicted in Table 4 and 

Figure 4, 26 sites (out of 31, i.e., 83.9% of the total) evidenced a negative correlation between SOS 

and years, indicating a progressive advance in the start of the growing season from 2001 onwards. 

From the SOS-years regression analysis, 17 grasslands sites showed a level of significance (F) < 0.1 

in SOS anticipation. Specifically, 3 sites reported F values between 0.05 and 0.1 (AUS1, POL, 
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RUS1), 5 between 0.01 and 0.05 (GEO, GER2, RUS2, SLV, TUR) and 9 < 0.01 (AUS2, BOS, CZE, 

DEN, FRA2, ITA3, HUN, SLK, SWI1). 

The advance in SOS was subsequently quantified (Figure 4) by applying the equation identified from 

the specific SOS-years linear regression. From 2001 to 2021, the average advance of the growing 

season at significant sites (F ≤ 0.1) was 15.92 days (0.76 days year−1). However, it should be noted 

that the significant sites analysed showed different levels of SOS earliness, ranging for example from 

the 5.6-day advance of the RUS1 site to the 42.0-day advance of the DEN site. 

Figure 4. Changes (days) in SOS during the period 2001–2021. SOS advance is highlighted with red circles, whereas 

delay is highlighted with green circles. Sites that display a significant SOS-year correlation are marked with * (0.05 < F 

≤ 0.1), ** (0.01 < F ≤ 0.05) and *** (F ≤ 0.01). 

As with SOS, the POS dates in the period 2001–2021 showed a trend towards an earlier peak of the 

grassland growing season. In fact, although in a smaller percentage than in SOS, 21 sites (67.7% of 

the total) evidenced an advance in POS dates (Table 4 and Figure 5). 
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From POS-years regression analysis, 13 grassland sites showed a level of significance (F) of < 0.1 in 

POS advance during the period 2001–2021. Specifically, 6 sites reported F values between 0.05 and 

0.1 (BOS, DEN, FRA2), 3 between 0.01 and 0.05 (AUS2, CZE, SWE) and 4 < 0.01 (GER2, LAT, 

RUS2, TUR). In the case of POS, in addition to sites that showed a significant advance in the 

beginning of the season, two sites highlighted contrasting trends (FRA1 and ITA2), showing a clear 

delay in the peak of the season (0.01 < F < 0.05). As for SOS, changes in phenological dates during 

the period 2001–2021 were quantified for each site (Figure 5). Considering all the significant sites (F 

≤ 0.1), including those that showed a delay, the average advance in the peak of the growing season 

was 11.66 days (0.56 days year−1).  

Figure 5. Changes (days) in POS during the period 2001–2021. SOS advance is highlighted with red circles, whereas 

delay is highlighted with green circles. Sites that display a significant POS-year correlation are marked with * (0.05 < F 

≤ 0.1), ** (0.01 < F ≤ 0.05) and *** (F ≤ 0.01). 

Table 4. Results of SOS and POS analysis over the period 2001–2021. Mean represents the mean value of SOS and POS 

during the period 2001–2021, reported to give general information about each site (data not included in the analysis). R 

columns show the correlation coefficient (R) between phenological dates (i.e., SOS and POS) and years, Sign. the 

significance (F) of the SOS and POS-years regression, and Days the difference between SOS and POS in the years 2001 

and 2021 according to the equation found with the linear regression. 

 SOS POS 

ID Mean R Days Sign. Pp Mean R Days Sign. Pp 

AUS1 139.32 −0.43 −15.89 0.06 0.9 169.35 −0.25 −4.54 0.3 0.95 



83 
 

AUS2 159.3 −0.66 −17.51 <0.01 0.95 187.16 −0.52 −14.02 0.03 0.9 

BOS 116.05 −0.68 −10.08 <0.01 0.9 157.52 −0.4 −9.93 0.09 1 

BUL 172.7 −0.17 −3.77 0.48 0.95 197.9 −0.11 −5.53 0.65 0.95 

CZE 85.16 −0.66 −13.88 <0.01 0.9 129.68 −0.52 −17.2 0.02 0.9 

DEN 91.63 −0.74 −42 <0.01 0.86 124.18 −0.44 −14.31 0.06 0.81 

FRA1 124.3 −0.34 −4.42 0.15 0.95 154.19 0.5 4.44 0.03 0.95 

FRA2 94.47 −0.61 −20.6 <0.01 0.9 140.42 −0.4 −6.66 0.09 0.9 

FRA3 97.5 −0.61 −15.99 <0.01 0.95 130.85 −0.12 −3.57 0.64 0.95 

GEO 148.95 −0.47 −5.55 0.04 0.95 177.65 −0.4 −7.42 0.1 0.95 

GER1 84.75 −0.01 −0.42 0.96 0.76 117.67 −0.15 −5.47 0.53 0.86 

GER2 99.05 −0.48 −14.76 0.04 0.9 131.48 −0.62 −27.73 <0.01 1 

HUN 69.23 −0.65 −22.95 <0.01 0.65 154.11 0 −12.02 0.74 0.95 

ITA1 138.84 −0.07 −2.42 0.77 0.9 167.9 0.17 4.51 0.49 0.95 

ITA2 136.95 0.22 4.3 0.36 0.95 165.65 0.5 6.8 0.03 0.95 

ITA3 11.56 −0.77 −25.14 <0.01 0.86 143 0.22 5.28 0.36 0.95 

ITA4 107.35 0.08 1.71 0.73 0.81 128.05 −0.2 −5.74 0.41 1 

LAT 113.11 −0.11 −1.12 0.65 0.9 146.35 −0.89 −27.1 <0.01 0.95 

POL 102.58 −0.43 −14.06 0.07 0.9 138.8 −0.4 −10.82 0.09 0.95 

ROM 128 0.22 6.64 0.38 0.95 166.85 0.07 1.58 0.78 0.95 

RUS1 119.26 −0.39 −6.56 0.1 0.9 149.94 −0.24 −6.37 0.33 0.81 

RUS2 148 −0.52 −7.59 0.02 0.95 181.76 −0.64 −13.49 <0.01 1 

SCO 125.2 −0.34 −31.05 0.16 0.95 161.39 0.13 7.21 0.61 0.86 

SLK 122.76 −0.66 −20.52 <0.01 0.81 157.82 0.37 17.35 0.18 0.81 

SLV 130 −0.54 −13.89 0.02 0.86 164.25 −0.4 −8.3 0.09 0.9 

SPA1 88.28 0.32 11.75 0.18 0.9 155.21 0.37 15.1 0.12 0.9 

SPA2 125.67 0 −0.05 0.99 1 154.89 −0.24 −3.86 0.32 0.9 

SWE 172.21 −0.02 −0.5 0.94 0.9 191.53 −0.55 −19.62 0.02 0.9 

SWI1 110.35 −0.7 −12.11 <0.01 0.95 135.04 0.19 3.78 0.44 0.95 

SWI2 124.6 0.32 7.37 0.17 0.95 152.86 −0.33 −11.51 0.17 1 

TUR 151.8 −0.55 −7.4 0.02 0.95 185.9 −0.55 −9.54 <0.01 0.95 

Pp is the percentage of points used out of the total after the filtering procedure. Results with significance <0.1 are shown 

in bold. 
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In order to carry out an assessment of temperature influence in determining the phenological dates of 

European grasslands over the 2001–2021 period, statistical analyses were performed to assess the 

temperature trend over the years considered and the impacts of thermal factors on SOS and POS. 

From the results of the linear regressions performed between temperatures and years (Table 5), the 

mean winter temperatures showed an increasing trend in 21 of the 23 sites (sites with no or little 

weather data were excluded), corresponding to 91.30% of the total. Of these, 16 (69.57%) showed a 

significant change (F < 0.1) over the time period analysed. On the other hand, the average spring 

temperatures showed a less homogenous trend, with a lower tendency of temperature increase 

(65.21%) and fewer sites (6) with significant change (26.08%). 

The results on the influence of winter and spring temperatures on SOS, showed a negative correlation 

between SOS and temperatures, significant in 7 sites (F < 0.1, AUS1, BOS, CZE, DEN, FRA2, LAT, 

SWI1) with winter temperature and in 6 (BOS, FRA1, LAT, POL, SWE, SWI1) with spring 

temperature as the main driver. 

Since POS always occurred several weeks after winter’s end, in the analysis we considered only the 

effect of spring temperatures. Here, too, the relationship highlighted a negative correlation between 

phenological dates (i.e., POS) and temperature. In particular, 10 sites (AUS2, BOS, DEN, FRA3, 

ITA4, LAT, POL, RUS1, SCO, SPA1) showed a significance F in the POS-spring temperature 

relationship of less than 0.1. 

Table 5. Results of the statistical analysis conducted on weather data from 2001 to 2021. R years highlights temperature 

trends over the 2001–2021 period by reporting the values of the correlation coefficients found by correlating the average 

winter and spring temperatures with the reference years, while R SOS and R POS report the values found by comparing 

the extracted SOS and POS with the average winter and spring temperatures of the respective years. For each comparison, 

the level of significance F is reported (Sign.). T mean values represent the mean temperatures of the winter and spring 

seasons, reported to give general information about each site (data not included in the analysis). 

 Winter Spring 

ID T Mean R Years Sign. R SOS Sign. T Mean R Years Sign. R SOS Sign. R POS Sign. 

AUS1 1.12 0.78 <0.01 −0.51 0.09 13.93 −0.11 0.74 −0.41 0.19 −0.22 0.5 

AUS2 −4.15 0.72 <0.01 −0.36 0.16 5.9 0 0.99 −0.03 0.91 −0.52 0.03 

BOS 3.73 0.74 <0.01 −0.63 0.01 16.1 0.62 0.01 −0.61 0.01 −0.64 0.01 

BUL −9.07 0.68 <0.01 −0.28 0.25 −0.22 0.47 0.04 −0.16 0.51 0.18 0.45 

CZE 1.73 0.66 <0.01 −0.55 0.02 13.82 0.33 0.18 - - −0.3 0.23 

DEN 2.16 0.72 <0.01 −0.64 <0.01 11.44 0.76 <0.01 −0.29 0.24 −0.62 <0.01 

FRA1 2.33 0.56 0.01 −0.27 0.27 13.79 0.05 0.84 −0.57 0.01 −0.06 0.82 
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FRA2 4 0.36 0.13 −0.67 <0.01 12.93 −0.24 0.32 −0.17 0.48 0.09 0.72 

FRA3 10.82 0.65 <0.01 −0.08 0.75 18.07 0.11 0.65 0.09 0.71 −0.49 0.03 

GEO 0.06 0.25 0.43 0.02 0.95 13.22 −0.01 0.97 −0.29 0.34 0.15 0.62 

GER1 1.91 0.46 0.08 −0.03 0.91 12.92 0.24 0.39 - - −0.41 0.13 

GER2 2.77 0.3 0.21 0 1 13.15 0.12 0.63 −0.32 0.18 0 0.99 

HUN 2.26 0.61 0.01 −0.31 0.27 16.45 0.36 0.13 - - 0.04 0.87 

ITA1 a −0.24 - - - - 9.46 - - - - - - 

ITA2 −3.83 0.1 0.67 0.02 0.93 4.94 −0.36 0.13 −0.04 0.88 −0.16 0.52 

ITA3 b - - - - - - - - - - - - 

ITA4 8.17 0.67 0.01 0.32 0.27 17.48 −0.07 0.82 −0.35 0.22 −0.56 0.04 

LAT −3.92 0.53 0.04 −0.52 0.05 10.8 0.51 0.05 −0.53 0.04 −0.55 0.03 

POL −0.32 0.53 0.02 −0.32 0.18 12.32 0.23 0.34 −0.57 0.01 −0.55 0.02 

ROM a 1.88 - - - - 15.02 - - - - - - 

RUS1 −3.57 0.48 0.04 −0.33 0.17 14.09 0.44 0.06 −0.28 0.25 −0.74 <0.01 

RUS2 a 1.24 - - - - 11.53 - - - - - - 

SCO 1.22 −0.37 0.12 −0.18 0.47 6.71 0.24 −0.31 −0.14 0.56 −0.47 0.05 

SLK b - - - - - - - - - - - - 

SLV a −0.25 - - - - 11.69 - - - - - - 

SPA1 7.08 −0.11 0.66 0.08 0.74 15.48 −0.87 <0.001 - - −0.45 0.05 

SPA2 b - - - - - - - - - - - - 

SWE −8.69 0.03 0.89 0.24 0.34 1 −0.34 0.17 −0.69 <0.00 −0.2 0.43 

SWI1 −0.1 0.63 <0.001 −0.56 0.02 9.37 0.17 0.51 −0.46 0.06 −0.15 0.55 

SWI2 0.15 0.52 0.02 0.01 0.97 10.51 0.03 0.92 −0.16 0.51 −0.02 0.92 

TUR a −3.43 - - - - 13.17 - - - - - - 

Site names with a and b represent the sites with insufficient (a) or no (b) weather data to conduct the analysis. Results with 

significance <0.1 are shown in bold. 

Taking into account the grasslands where the change was significant at both the SOS and POS dates 

(11 sites), we investigated the influence of two other potential phenological season variables: the 

latitude and altitude of the test sites. As can be seen in Figure 6, the change in advance during the 

period 2001–2021 is greater with increasing latitude for both SOS and POS, with the former showing 

a higher correlation (R = −0.81) than the latter (R = −0.55). Observing the correlations between 

changes in phenological dates and altitude, sites at higher altitudes show less advance in SOS and 
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POS than those at lower altitudes. As in the case of the SOS and POS-latitude correlation, the absolute 

values of R are greater for the change in SOS dates (R = 0.69) than for POS (R = 0.36). 

Figure 6. SOS and POS changes during the period 2001–2021 compared with the latitude and altitude of the sites where 

changes are significant in both SOS and POS. 

In addition to the analysis of the changes that occurred in SOS and POS over the reference period, 

changes in the duration of the timeframe between SOS and POS (i.e., SOS-POS duration) were also 

analysed (Figure 7). 
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Figure 7. Changes in SOS-POS (number of days) interval during the period 2001–2021 for all test sites. 

The data did not show any common trend within the framework of the European grasslands analysed. 

Indeed, within the dataset considered, some sites showed an increase in the SOS-POS duration 

(56.67%), while others showed a decrease (43.33%). The lengthening of the SOS-POS duration 

between 2001 and 2021 was determined by a less marked anticipation of the POS with respect to the 

SOS (e.g., DEN) or the postponement of the former (e.g., FRA1). The reduction in the SOS-POS 

duration, on the other hand, was generally caused by a higher advance in POS than in SOS (e.g., 

GER2). 

The change in the time duration of the SOS-POS interval was also analysed in the light of the 

individual changes in SOS dates. Figure 8 depicts the change in the SOS-POS interval, showing an 

increase in the number of days as the magnitude of the SOS advance grows and highlighting the 

influence of an advanced SOS on the lengthening of SOS-POS duration. The analysis was also 

conducted considering three different levels of altitudinal and latitudinal ranges, but no clear trends 

emerged. 
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Figure 8. Relationships between changes in SOS-POS duration and changes in SOS during the period 2001–2021. Figures 

represent the same equation, highlighting sites graphically according to altitude (left) or latitude (right). Sites are divided 

into 3 different classes of altitude (low, 0–650 m; medium, 650–1300 m; high +1300 m) and latitude (low, 40–45°; 

medium, 45–50°; high +50°). 

Figure 9 shows an example of the trend in average temperatures for the 30 days following the SOS at 

the DEN site, highlighting how an earlier SOS date results in a generally colder initial growing season, 

which can lead to a delay in the POS date and a lengthening of the SOS-POS duration (e.g., DEN). 

Although colder average temperatures are generally present when the start of the season occurs early, 

the lengthening of the SOS-POS duration, visible for example at the DEN site, was not always visible 

at all test sites (e.g., Figure 7), likely due to different grass species. 

Figure 9. Example of relationships between SOS and the mean temperature of the 30 days after SOS at the DEN site. 
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4. Discussion 

This study aimed to identify the best methodology for the estimation of phenological dates through 

satellite-processed vegetation indices. As in other studies (Jin et al., 2017; Jin and Eklundh, 2014), 

GPP measurements were used to extract SOS, POS and EOS as observed data to be compared with 

those elaborated from kNDVI patterns. Due to the valuable relationship between kNDVI and GPP 

found for grasslands in (Camps-Valls et al., 2021), the use of this index enabled phenological dates 

(i.e., SOS and POS) to be estimated in agreement with those extracted by GPP patterns at sites 

endowed with eddy covariance flux towers. Various fitting models and extraction methods were 

tested and evaluated in our study, providing different results for SOS, POS and EOS detection. For 

consistency, a trend analysis was performed by deploying only one fitting model (i.e., ELM) among 

those selected. Then, we identified the best extraction method for each specific phenological date 

(i.e., TRS0.3 and GU for SOS and POS, respectively). It is important to underline that the fitting model 

(i.e., the curve that fits kNDVI points and from which dates are extracted) is the same in all trend 

analyses (i.e., SOS and POS) and for all sites and years. The choice to use different extraction methods 

on the same curve for SOS and POS derived from the results obtained in Section 3.1. Although it was 

more coherent to select only one method, we decided to select the most robust extraction methods for 

each phenological date (i.e., SOS and POS) in order to achieve more precision in SOS and POS 

estimation during the analysis of the 2001–2021 period. In fact, using the same extraction method 

could determine greater errors, since, for example, one method can be optimal for SOS but sub-

optimal for POS estimation. SOS and POS dates extracted from kNDVI were in line with those 

estimated from GPP, even if some uncertainties were still present, as seen from MAE (13.6 and 13.4 

days, respectively for SOS and POS) and RMSE values (16.9 and 18.5 days, respectively for SOS 

and POS). EOS, conversely, proved to be more difficult to detect than SOS and POS. This is 

confirmed by Tian et al. (2021), who achieved lower levels of accuracy in estimating EOS in different 

environments, and by Zheng and Zhu (2017), who observed large differences and poor correlation 

between EOS extracted from satellite vegetation indices and ground-observed EOS in a specific study 

on grasslands. Differently from Tian et al. (2021) and Gonsamo et al. (2012) for forests and croplands, 

in this study the estimation of EOS from satellites did not reach a level of accuracy that can provide 

a reliable analysis for EOS trends over the period 2001–2021. However, it should also be noted that 

the extraction of SOS and EOS dates in grasslands is subject to greater uncertainties than in other 

environments, such as deciduous-broadleaf and mixed forests (Xu et al., 2020). Leaf senescence 

responses in herbaceous species are influenced by several meteorological variables, with a complex 

dependence on species, functional types and geographical gradients (Ren et al., 2022). Differences in 

scale and content (spectral response and phenological event) between satellite-derived and ground-
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observed phenology can result in discrepancies between satellite-derived phenological dates and 

changes in leaf colouring, although these measurements are related (e.g., EOS and the beginning of 

leaf colouring) (Badeck et al., 2004; White et al., 2009; Xu et al., 2014). This is especially noticeable 

for EOS. In fact, the change in canopy greenness is slower and longer in autumn with respect to spring 

(Gallinat et al., 2015; Wu et al., 2017), thus causing a reduced variability in EOS compared to SOS 

and a greater difficulty in detecting the end of season from satellite (Tian et al., 2021; Zheng and Zhu, 

2017). 

From our trend analysis, the European grasslands analysed showed a general advance in the start 

(SOS) and peak of the season (POS) over the 2001–2021 time period. This anticipation is in 

agreement with what was observed in different time frames in both grassland (Adu et al., 2021; Gong 

et al., 2015; Hou et al., 2014; Li et al., 2021; Ren et al., 2020) and non-grassland biomes in Europe 

(Menzel et al., 2020; Stöckli and Vidale, 2004). Specifically, in our study, SOS and POS advance in 

significant sites (Table 4) was 0.76 days year−1 and 0.56 days year−1, respectively for the 2001–2021 

period. In some cases, however, an opposite trend was observed, i.e., a slight tendency to delay in the 

SOS and/or POS dates. This could be partially explained for SOS and, consequently POS, by an 

insufficient cooling effect due to warming conditions in late autumn or winter (Adu et al., 2021). On 

the other hand, as regards the POS only, the anticipation of SOS in response to increasing 

temperatures may shift the following SOS-POS duration to colder environmental conditions (e.g., 

Figure 9), which in turn may lead in some cases to a progressive lengthening of SOS-POS durations. 

This is in agreement with the modelling exercise of Sadras and Monzon (2006), who suggested that 

an earlier flowering in wheat due to temperature increase during the period 1971–2000 may have 

determined shifts in post-flowering development at lower temperatures, neutralising the trend of 

increasing temperatures and leaving post-flowering phase duration unchanged. The same was 

observed in the field of grapevine (Sadras and Moran, 2013). This could explain part of our results 

regarding SOS-POS duration, particularly for those sites showing a lengthening. However, the trend 

is not evident in all the grassland sites analysed in this study, as a certain number of sites (i.e., 13) 

showed a shortening of the SOS-POS length. These outcomes result from a not too marked SOS 

anticipation (e.g., LAT, SWE, SWI2) and a consequent relapse of SOS into a time range (i.e., DOY) 

similar to the ones observed at the turn of the year 2001. In addition, the generally higher temperatures 

(i.e., global warming) and, probably, less water availability occurring after each specific SOS 

probably caused an advance in the vegetation peak (Cleland et al., 2006; Hua et al., 2021), inducing 

a shortening in SOS-POS duration, as the SOS remains unchanged and the POS is advanced. The 

presence of a spurious bias in SOS-POS length deriving from the different extraction methods for 

SOS and POS in estimating SOS-POS length is possible. However, investigating SOS-POS length 
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per se was not our final goal, since our attention was mainly focused on trends. In fact, if a bias was 

present, this error did not influence the trend analysis, as it was present in the same way in all years 

from which SOS and POS were extracted. 

The study of seasonal average temperatures (i.e., winter and spring) showed a general rise in 

temperatures across Europe for the period 2001–2021, resulting in a negative correlation, significant 

in some cases (Table 5), with SOS and POS dates. Summer and autumn temperatures were not 

considered since EOS, the phenological date that occurs after these seasons, was excluded from the 

trend analysis since satellite estimations were not sufficiently reliable. 

The effect of temperature was found to be a decisive factor in the change of phenological dates of 

SOS and POS, in agreement with Ganjurjav et al. (2018) and Ren et al. (2020), also influencing 

phenology spatially (Vitasse et al., 2021). Consequently, the rise in temperatures recorded in the 

2001–2021 time frame could also have had an indirect effect on the advancement of the SOS date by 

causing an advancement in the snowmelt dates recorded in recent years (Hock et al., 2019), without 

the risk of increasing frost exposure (Klein, 2018). Snow melt and snow cover are indeed decisive in 

determining the length of the growing season and the phenological development of high-altitude and 

high-latitude grassland (Körner, 2021; Vorkauf et al., 2021), also influencing water availability or 

thermal conditions by soil insulation (Grippa et al., 2005). However, according to Xie et al. (Xie et 

al., 2021), in a specific study on the European Alps, spring temperature was the predominant factor 

in SOS advancement, while snow cover and snow melt, although important, played a secondary role. 

Temperature is therefore an important factor, but our results often do not show a significant 

relationship between this parameter and SOS and POS (Table 5). This can be explained by the fact 

that, in addition to temperature, there are other factors that may influence phenological dates, such as 

CO2 concentration, the presence of nitrogen in soil, solar radiation, wind speed, atmospheric pressure, 

snow cover or precipitation (Cleland et al., 2006; Hua et al., 2021). Snow cover for instance, as 

reported in Jerome et al. (2021), can act through temperature accumulation but also independently as 

a driver of plant phenology. Regarding precipitation, Xu et al. (2021) observed an earlier onset of the 

grassland growing season due to higher temperatures only when water was not a limiting factor, with 

a non-linear response. In contrast, Hua et al. (2021) pointed out that high precipitation can have a 

delaying effect on the peak season (POS) as a result of the high correlation between this phenological 

stage and rainfall. 

Our study highlighted the influence of altitudinal and latitudinal conditions on the phenological stages 

of grassland with significant changes (F ≤ 0.1) in SOS and POS during 2001–2021. Correlations 

between the magnitude of change in SOS and altitude and latitude indicated higher absolute values 

than the respective correlations with POS. The sites that showed higher changes in the dates of SOS 
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and, to a lesser extent, POS were those located at higher latitudes and lower altitudes (e.g., DEN, 

56.1995 N, 40 m a.s.l.), while at low latitudes and high altitudes (e.g., TUR, 41.2610 N, 2524 m a.s.l.) 

showed smaller phenological changes.  

The contrasting behaviour of changes (i.e., advances and/or postponement) in SOS and POS dates 

can also be explained by the variability in botanical composition as a result of the different 

environments in which the study sites are located. This is confirmed by several studies (Castillioni et 

al., 2022; Mutanga and Shoko, 2018; Ren et al., 2022; Weil et al., 2017; Weisberg et al., 2021) that 

highlight the importance of species or functional types on the phenological stages of plants. In 

addition, as observed by Cleland et al. (2006), diverse plant functional types have different 

phenological changes in response to multiple environmental factors (e.g., CO2 concentration or soil 

resources). Moreover, the changes in temperatures recorded over the last few decades, beyond having 

a direct effect on the early or late season, may have influenced the change in the composition of 

functional groups (Dibari et al., 2021), which in turn may alter the grassland phenological stages. 

Nevertheless, the main aim of our work was to highlight general trends in phenology, without a 

particular focus on the species present in the test areas. Given the spatial-temporal extent of the trend 

analysis, reliable and timely information on the specific botanical composition at the 31 study sites 

over the years of investigation was, moreover, difficult to obtain. Indications regarding phenological 

responses of different species can, however, also be gathered indirectly from observing the results in 

Figure 6, which analyses the phenological changes observed at different altitudinal and latitudinal 

gradients, conditions that reflect the type of vegetation that may be present in those environments. 

Although investigating the phenology of different species was not our main objective, knowing the 

type of species or functional groups present would have provided useful information to increase 

understanding of the results. In fact, as explained above, this information may clarify the contrasting 

results obtained for some study sites. Nevertheless, the results showed a clear general tendency of 

grassland phenology to advance, especially the SOS date. 

Overall, our results confirmed what was already observed in a sparse and limited number of EU 

countries (Menzel et al., 2020) and under a different time span in Europe (Stöckli and Vidale, 2004), 

while remaining in line with other studies in other areas of the world (Adu et al., 2021; Hua et al., 

2021). The analysis conducted with an exclusive focus on the grassland environment provides 

important indications of both the extent of these phenological changes and their distribution within 

the European continent, as well as the influence of increasing temperatures. 

The phenological estimates obtained from MODIS satellite data over the time period 2001–2021 

represent key information for understanding the evolution of grassland phenology that has occurred 
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in recent years and the trend towards which it is heading, providing policy makers and stakeholders 

with useful indications for the identification of possible adaptation and mitigation strategies. 

Despite the uncertainties, the methodology presented in this paper can represent a first step in a 

European-wide assessment of grassland phenology, opening up the possibility of investigating 

phenological trends over large and numerous grassland areas of the continent. Concerning future 

perspectives, a specific end-of-season study could be important to reduce uncertainties in EOS 

detection from satellites and refine the methodology. In addition, the analysis performed can be 

extended by focusing on the differences that may occur in grasslands characterised by the presence 

of different dominant species and groups. The analysis of the factors driving the phenological changes 

can also be extended to water conditions (i.e., precipitation and snowmelt date) in the case of high-

quality data over an extended period of time. 

 

5. Conclusions 

This study provided important information on the phenology of European grasslands. kNDVI resulted 

in being a reliable vegetation index for estimating the phenological dates of SOS and POS, but the 

same effectiveness cannot be applied to EOS. The analysis of MODIS satellite data from 2001 to 

2021 showed a clear trend towards an earlier start to the growing season (SOS) across Europe. An 

advance in the date of the peak season (POS) is also evident, although generally less marked and, in 

some cases, even delayed than at the beginning of the reference period of analysis. The seasonal 

average temperature (i.e., winter and spring) was generally found to be increasing at all sites, often 

proving to be a significant driver of the advancement of grassland phenological dates over the 

European domain. Analyses conducted with a specific focus on grasslands have provided very 

important insights into the status of these systems throughout Europe and the evolution, in 

phenological terms, that they have been undergoing in recent decades. 
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5. Opportunities for adaptation to climate change of 

extensively grazed pastures in the Central Apennines (Italy) 
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Abstract: Future climate change is expected to significantly alter the growth of vegetation in 

grassland systems, in terms of length of the growing season, forage production and climate-altering 

gas emissions. The main objective of this work was therefore to simulate the future impacts of 

foreseen climate change in the context of two pastoral systems in the central Italian Apennines and 

test different adaptation strategies to cope with these changes. The PaSim simulation model was 

therefore used for this purpose. After calibration by comparison with observed data of aboveground 

biomass (AGB) and leaf area index (LAI), the model was able to produce different future outputs, 

such as length of growing season, AGB, greenhouse gas (GHG) emissions for two time-windows (i.e. 

2011-2040 and 2041-2070) using 14 global climate models (GCMs) for the generation of future 

climate data, according to RCP (Representative Concentration Pathways) 4.5 and 8.5 scenarios under 

business as usual management (BaU). As a result of increasing temperatures, the fertilizing effect of 

CO2 and a similar trend in water content between present and future, simulations showed a 

lengthening of the season (i.e. mean increase: +8.5 and 14 days under RCP4.5 and 8.5 for the period 

2011-2040, +19 and 31.5 days under RCP4.5 and 8.5 for the period 2041-2070) and a rise in forage 

production (i.e. mean biomass peak increase of the two test sites under BaU: +53.7% and 62.75% for 

RCP 4.5. and 8.5 in the 2011-2040 period, +115.3% and 176.9% in RCP4.5 RCP8.5 in 2041-2070). 

Subsequently, three different alternative management strategies were tested: a 20% rise in animal 

stocking rate (+20 GI), a 15% increase in grazing length (+15 GL) and a combination of these two 

management factors (+20 GI×15 GL). Simulation results on alternative management strategies 

suggest that the favorable conditions for forage production could support the increase in animal 

stocking rate and grazing length of alternative management strategies (i.e. +20 GI, +15 GL, +20 

GI×15 GL). Under future projections Net Ecosystem Exchange (NEE) and nitrogen oxide (N2O) 

emissions decreased, whereas methane (CH4) rose. The simulated GHG future changes varied in 

magnitude according to the different adaptation strategies tested. The development and assessment 
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of adaptation strategies for extensive pastures of the Central Apennines provide a basis for appropriate 

agricultural policy and optimal land management in response to the ongoing climate change. 

Keywords: grasslands, modelling, PaSim, climatic scenarios, aboveground biomass 

 

1. Introduction 

With an herbage production potential up to ~ 15 t DM ha−1 (Dillon, 2018), grasslands contribute 

significantly to global food security by providing fodder for ruminants used in the production of 

protein-rich foods, such as meat and milk (Barbour et al., 2022; Mara, 2012). In Italy, grassland areas 

(i.e., permanent meadows and pastures) cover approximately 3.6 Mha (ISTAT, 2022), roughly 12% 

of the entire Italian territory, and are located mainly along the Alpine and Apennine mountain ranges 

and on the islands (Burrascano et al., 2010). Differing in climate and land use, factors that influence 

productivity and botanical composition, Italian grasslands can be divided into three different 

biogeographic regions: Alpine, Apennine, and Mediterranean (Dibari et al., 2021). They are mostly 

large-scale rainfed pastoral systems, with permanent pastures dominant in the mountains and hilly 

areas and fodder crops also dominant in the Mediterranean region. Generally, these systems provide 

forage for only short periods of time during spring and summer, exhibiting great inter-annual 

variability in production (Argenti et al., 2011; Cavallero et al., 2007). With regard to mountain areas 

(i.e., Alps and Apennines), grasslands are often located in areas with nutrient-poor soils and/or 

extreme climate conditions that make vegetation growth, and consequently forage production, reliant 

on seasonal dynamics (Orlandi et al., 2016). Focusing specifically on Apennine mountain pastures, 

forage quality is generally lower than in Alpine pasturelands (Targetti et al., 2013), due mainly to the 

great variability in pedo-climatic conditions that can be found along the latitudinal gradient of Italy 

(Metzger et al., 2005). 

In addition to forage production, grasslands provide several other ecosystem services important for 

human well-being, such as water and nutrient regulation and protection from soil erosion (Bengtsson 

et al., 2019; Hao et al., 2017; Ponzetta et al., 2010; Tamburini et al., 2022; Wepking et al., 2022). 

Particularly important is the role that these systems can play in climate-changing emissions (Renáta 

Sándor et al., 2018), as they can stock/emit carbon dioxide CO2 (Oates and Jackson, 2014; Smith et 

al., 2008) and emit non-CO2 greenhouse gases, such as methane (CH4) and nitrous oxide (N2O) 

(Franzluebbers, 2020). According to Guillaume et al. (2022), soil organic C stock measured from 

surface to 50 cm depth in permanent grasslands is approximately 7 kg C m−2, and evidence from 

European grasslands shows that soil C sequestration rates can reach 0.77 g C m−2 yr−1 (Soussana et 
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al., 2007). Compared with other ecosystems, grasslands are, in fact, an important store of C (Dass et 

al., 2018), and management (grazing in particular) is an important regulator of C and N fluxes 

(Steinfeld and Wassenaar, 2007). Grasslands have the advantage of potentially acting as C and N 

sinks, compared with croplands, and can mitigate GHG emissions in livestock production systems, 

as C and N sequestration can offset GHG emission (Barthel et al., 2018; Sándor et al., 2018, Soussana 

et al., 2007) 

Pastoral resources in the Apennines during the last decades have shown fragility in the face of changes 

induced by recent global warming. There was a shift in air temperature distribution towards warmer 

values in all seasons (especially for minimum temperature, while maximum temperature shows a 

more intense warming and a pronounced peak in summer) since the 1980s, with an acceleration in 

the 2000s (Toreti and Desiato, 2008), and it is projected to increase in the future (Tomozeiu et al., 

2018). In view of the expected increase in temperatures associated with a decrease in precipitation 

during the summer period, forage production is assumed to change in terms of quantity and quality 

(Chelli et al., 2017; Scocco et al., 2016). Moreover, evolution of the distribution of species in 

herbaceous communities and changes in the botanical composition of semi-natural grasslands are 

highlighted (Petriccione and Bricca, 2019). In fact, rising temperatures and summer droughts tend to 

promote the predominance of thermophilic communities or species more adapted to xeric 

environments, which now grow in environments at lower altitudes, as was already observed in the 

Alps (Dibari et al., 2020) and Apennines (Alberto Evangelista et al., 2016; Stanisci et al., 2016). 

In this view, simulation models, through the reproduction of system biophysical processes, can help 

stakeholders in decision-making by assessing the impacts of climate change and/or testing different 

management strategies under current (Bebeley et al., 2022; Kamilaris et al., 2020) or future scenarios 

(Fullman et al., 2017; Kalaugher et al., 2017; L. Ma et al., 2019; Moore and Ghahramani, 2014; Snow 

et al., 2014). In this context, appropriate management (e.g., stocking rate and grazing period) can 

preserve grassland biodiversity, maintain socio-ecological systems, and counteract the effects of 

climate change. On the basis of assessment of the previous literature, it can be said that a very small 

number of modelling exercises have examined the effect of foreseen climate changes on pasture 

production characteristics in the Apennine area (Dibari et al., 2021), as almost all works have 

analyzed the effects on vegetation features and biodiversity (e.g., Dibari et al., 2015; Ferrarini et al., 

2017; Frate et al., 2018). Therefore, the present research aims to analyze the expected effect of 

climatic changes mainly from an agronomic perspective, providing an approach that can be repeated 

in other contexts and that is aimed at evaluating the impacts on productive features of forage resources 

and the possible adaptation strategies of some of the main pasture management characteristics . 
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This perspective forms the basis for the design and implementation of this study initiated in 2020 on 

two pastoral farms in the Apennines territory of central Italy, based on field observations and model-

based simulations. Modelling the performance of pastoral systems is helpful in defining management 

strategies that maximize pastoral production and minimize environmental impacts (Vigan et al., 

2017). Field data support the modelling exercises by providing detailed on-farm information on the 

spatial and temporal variation of important canopy state variables, which are often difficult to obtain 

(Insua et al., 2019b). Simulation results under future climate change scenarios were the key tools for 

the design and assessment of the analytical framework concerning climate change adaptation 

strategies, pivotal factors for the conservation of grassland resources (Gao et al., 2014). Based on the 

hypothesis that future climate change will significantly affect extensive grazing systems of the Central 

Apennines, the specific objectives of this study were: (1) to inform the modelling via calibration with 

field data; (2) to use the calibrated models to project the impacts of climate change; and (3) to assess 

a set of adaptation options for pastoral management identified locally. 

 

2. Materials and Methods 

The study was initially conducted by calibrating the grassland simulation model PaSim (Riedo et al., 

1998) with observed data collected on two specific farms in the Italian Apennines (Suite 1). The 

parameterization obtained was subsequently used, together with the climate models, to simulate the 

impacts of climate change on grasslands (Suite 2). In parallel, a sensitivity analysis was performed 

with specific attention to biomass production (Suite 3). Finally, on the basis of the results obtained in 

the impact analysis, possible adaptation strategies were identified and tested (Suite 4). A general 

outline of the methodology used can be seen in Figure 1. 

 

Figure 1. Workflow of the methodology applied in this study. PaSim is the grassland simulation model used for the 
analysis. 
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2.1. Study Sites, Experimental Layout, and Data Collection 

The study considered two pastoral farms (Figure 2) located at different altitudes in the Tuscan 
Apennines (Table 1), both managed under continuous grazing system of Limousin cattle (Table 2). 

Figure 2. Aerial view of the study sites of Marradi (M, left) and Borgo San Lorenzo (B, right). Satellite images of the 
sites were obtained from Google Earth. 

The Marradi study site (M) covers more than 5 ha of upland sown pasture that tends towards a re-

naturalization, usually grazed from May to July. The Borgo San Lorenzo study site (B) covers 30 ha 

of lowland sown pasture. For the purpose of the trial, Site B was divided in 2020 into two differently 

managed sub-areas, B1 (approx. 10 ha) and B2 (approx. 20 ha). Specifically, in sub-area B1 the 

pasture was grazed by Limousin cattle from April until the end of October, while sub-area B2 was 

managed under a mixed utilization: mowed in May and grazed from June until the end of October.  

Table 1. Description of the study sites. 

Description Unit 

Site M 

(Marradi) 

Site B 

(Borgo San Lorenzo) 

Location 

Latitude (WGS84) degree N 44.08° 43.95° 

Longitude (WGS84) degree E 11.63° 11.35° 

Elevation m a.s.l. 600 200 
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Climate 

Mean annual temperature1 °C 12.4 13.4 

Mean annual precipitation2 mm 1330 990 

Soil3 

Depth m 1 1 

Clay % 37 37 

Silt % 42 36 

Sand % 21 27 

Total organic carbon g kg−1 33.6 23.5 

Total nitrogen g kg−1 3.0 2.5 

Soil pH - 6.6 7.4 

Bulk density g cm−3 1.29 1.44 

Saturated soil water content m3 m−3 0.52 0.51 

Field capacity m3 m−3 0.36 0.35 

Wilting point m3 m−3 0.21 0.21 

Dominant vegetation - 

Dactylis glomerata, Lolium sp., 

Festuca arundinacea, Phleum 

pratense, and Onobrychis viciifolia, 

with other minor forbs and a large 

presence in some sectors of shrubs, 

such as Rubus ulmifolius. 

Lolium sp., Dactylis glomerata, 

Trifolium pratense, Trifolium 

repens, Lotus corniculatus, and 

Festuca arundinacea, with 

other minor forbs. 

1 Site M: mean of 2016, 2017, and 2020; Site B: mean of 1951–2020. 

2 Site M: mean of 2001–2020; Site B: mean of 2001–2020. 

Data collected from regional weather stations of Tuscany Region (SIR, Servizio Idrologico Regionale, 

https://www.sir.toscana.it/index.php). Distance from sites <10 km. 

3 1 m soil profile mean. 

Table 2. Management of the two study sites. Livestock Standard Unit (LSU) refers to a dairy cow producing 3,000 kg 
of milk per year, without additional concentrated feed (EC, 2008). 

Management Unit 

Site M (Marradi) 

Site B (Borgo San Lorenzo) 

B1 B2 

2020 2021 2020 2021 2020 2021 

Surface ha 5.4 10 20 10 

Cut day of year - -  - 125 - 
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Grazing 

period 

days of 

year (start, 

end) 

139–244a;  

244–267 b 

135–176a; 

176–276b 

100–180a; 

186–300b 

100–145a; 

145–306b 

180–186a; 

186–300b 

110–145a; 

145–306b 

Stocking rate 
LSU ha−1 

d−1 
4.0a; 3.4b 3.3a; 2.0b 2.9a; 1.0b 1.5a; 1.0b 0.9; 1.2b 

a and b represent two distinctive grazing periods during the season in terms of stocking rate. 
 

Samples of aboveground dry matter (DM) biomass (AGB, kg DM m−2) and measurements of leaf 

area index (LAI, m2 m−2) were collected during field surveys conducted in spring/summer (2020 and 

2021) at both sites and used for the modelling work (Table S1). Field data were collected in 16 

randomly arranged samples in an area of 1 m2 each (eight in M, four in B1, and four in B2). The 

sampling position was changed from time to time, taking care to choose areas that represented the 

general situation. The AccuPAR PAR/LAI Ceptometer Model LP-80 (Decagon Devices, 2017) was 

used to measure LAI in each plot. 

2.2. Climate Scenarios and Models 

Daily-downscaled (bias-corrected) weather data were selected to map a broad range of climate 

outputs for impact modelling (Wilcke and Bärring, 2016) (Table S2).  

In order to take into account the uncertainties of the different climate models in the projected 

simulations (Pierce et al., 2009), the outputs of an ensemble of models were considered for the 

modelling exercise under the future scenarios RCP4.5 (intermediate scenario) and RCP8.5 (extreme 

scenario). The climate change scenario ensemble included 14 members deriving from the 

combination of 14 Global Climate Models (GCMs) downscaled to six high-resolution (~0.12°) 

Regional Climate Models (RCMs) in the framework of the Med-CORDEX project (Ruti et al., 2016). 

Daily climate outputs (minimum and maximum temperatures and cumulative rainfall) obtained from 

the 14 GCMs (available at https://www.medcordex.eu/index.php/) were then bias-corrected over the 

study sites according to Cornes et al. (2018) and Lange (2019) in order to drive the relevant 

simulations in future periods. Daily global radiation and relative humidity were retrieved from daily 

temperature according to Bristow-Campbell (Bristow and Campbell, 1984) and the FAO Irrigation 

and Drainage paper (Allen et al., 1998), respectively. CO2 annual concentrations (ppm) for past, 

current, and future projections were calculated from the IPCC report (IPCC, 2021). 

2.3. The Grassland Model 

The Pasture Simulation model (PaSim) was chosen for this study because it can describe in detail the 

dynamic biogeochemical responses of a grassland system under altered climate and management. 

Originally developed by Riedo et al. (1998), PaSim simulates the cycling of water, C, and N in 
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grassland systems at a sub-daily time step (1/50th of a day) or, as in this work, at a daily time step. 

Microclimate, soil biophysics, vegetation, herbivores, and management practices are interacting 

modules. The simulations are not spatially resolved (e.g., inhomogeneity is not taken into account) 

and input/output data are assumed to be representative of the entire field. The assimilated 

photosynthetic C is dynamically allocated to a root and three shoot compartments (each composed of 

four age classes) or lost through animal metabolism (ecosystem respiration). Accumulated 

aboveground biomass is cut, grazed, or relocated to the litter pool. Management includes the 

application of organic and mineral N fertilizers, mowing, and grazing. Details on the model processes 

are provided in published articles (L. Ma et al., 2019; Vigan et al., 2017), which have contributed to 

the recognition of PaSim as a suitable tool to reproduce biophysical and biogeochemical processes in 

managed grasslands and its inclusion in international modelling exercises (Ehrhardt et al., 2018b; 

Renáta Sándor et al., 2018). 

2.4. Simulation Design 

The modelling work was performed in four simulation suites: Suite 1 with observational data 

(calibration), Suite 2 with projected climate change scenarios with CO2 fertilization effect (impact 

projections), Suite 3 with projected climate change scenarios without CO2 fertilization effect 

(sensitivity), and Suite 4 with modified management under projected climate change scenarios with 

CO2 fertilization effect (adaptation assessment). 

For Suite 1, the simulations setup included weather, soil, vegetation variables and management 

implementation in the studied years (2020 and 2021). The weather variables included daily minimum 

and maximum air temperatures, precipitation, and solar radiation. Temperature, precipitation, and 

wind speed data for 2020 and 2021 were collected from the regional weather stations of Tuscany 

Region (SIR, Servizio Idrologico Regionale, https://www.sir.toscana.it/index.php) located near the 

study sites. Daily global solar radiation data were generated from the R package “sirad”, developed 

by Bojanowski et al. (Bojanowski et al., 2013), based on the model of Bristow and Campbell (1984). 

The soil data were extracted from the SoilgridsTM dataset (https://soilgrids.org), described in Poggio 

et al. (2021). The actual management practices (grazing intensity and periods) are described in Table 

2. Model calibration was not applied separately to each site. The model was calibrated on all datasets 

to obtain more realistic and robust parameter values for application on a larger scale, as in (Ma et al., 

2015). The availability of detailed LAI and AGB data from two grassland sites offered the possibility 

of a genuine (multi-location and multi-output) calibration of the model, on the assumption that a 

unique calibration across sites is appropriate under these conditions. We assumed that a common set 

of eco-physiological model parameters can be established to simulate C3 grasslands (including grass, 
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forb, and legume species) under contrasting climatic and management regimes (e.g., Site M represents 

hill situations, and Site B represents plain situations), while site-specific climatic and management 

conditions provide the local drivers of actual grassland biomass and foliage production.  

In particular, PaSim calibration (Suite 1) was performed against LAI and AGB data collected in the 

years 2020 and 2021 by modifying the values of a set of parameters (Table S3) to which model 

sensitivity was determined in previous studies (Ma et al., 2015; Pulina et al., 2018; R. Sándor et al., 

2018; Touhami et al., 2013). Parameter values were modified (with the generation of 1000 sets of 

values using the random Latin hypercube method) within their plausible ranges (Riedo et al., 1998) 

to ensure satisfactory performance, which is a realistic representation of both outputs. The sets of 

parameter values resulting from the model calibration were used to compare the PaSim outputs (AGB 

and LAI) with the observations in each study site. The agreement between simulated and observed 

AGB and LAI was assessed by inspection of time-series plots (fluctuations of output variables over 

time) and numerically, through two performance metrics commonly used in model evaluation 

(Richter et al., 2012): relative root mean square error (best, 0≤RRMSE<+∞, worst) and coefficient of 

determination (worst, 0≤R2 ≤1, best). 

For Suites 2, 3, and 4, simulated pastoral outputs were obtained by forcing the calibrated PaSim with 

the downscaled (bias-corrected) daily weather data described in Section 2.2, Climate Scenarios and 

Models. Projected PaSim responses to climate change forcing options were calculated on changes in 

a set of agro-ecosystem outputs related to growing season length, fodder production, water cycle, and 

C-N fluxes (Table 3). At both sites, we assessed the sensitivity of the grassland model to climate 

change (RCP4.5 and RCP8.5 for the ongoing and mid-future periods) under business-as-usual (BaU) 

management (Suites 2 and 3) and alternative management scenarios (Suite 4). 

For Suite 2 (impact projections) and Suite 4 (adaptation assessment), grassland modelling results 

were obtained with a climate forcing based on atmospheric CO2 concentration set at 363 ppm, on 

average, for the baseline scenario (near past: 1981–2010). In this way, the year 2010 was taken as the 

end of the time horizon used in this study to emulate the near-past climate, i.e., 30-year time span 

until the late 2000s, which includes the limit of the historical period (1765–2005) of the atmospheric 

observations used to drive the climate models (Meinshausen et al., 2011). Then, mean atmospheric 

CO2 concentrations were prescribed according to the selected RCPs (middle impact: 4.5; extreme 

impact: 8.5) and timeframes (ongoing: 2011–2040; mid-future: 2041–2070): 431 (ongoing) and 523 

(mid-future) mean ppm under RCP4.5; and 438 (ongoing) and 613 (mid-future) mean ppm under 

RCP8.5. The results related to the pasture system obtained in Suite 2 were then used in the choice of 

the possible future adaptation strategies (e.g., increase or decrease in animal load and/or length of 

grazing season). 
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For Suite 3 (sensitivity), any fertilization effect from the additional CO2 emitted during the period 

from 2011 to 2070 was eliminated. What has been carried out here is, in effect, a test of the sensitivity 

of PaSim to alterations in weather inputs, this exercise being ultimately focused on understanding the 

grassland modelling process (not on assessing impacts of climate change and elevated CO2). 

Table 3. Climate change impact metrics. 

Type Output Acronym Unit Description 

Date 

Growing season 

start 
GSs 

day of year 

(doy) 

Day after seven consecutive days with a mean 

air temperature ≥8 °C from 1 January onwards 

(Movedi et al., 2019a) 

Growing season 

end 
GSe 

Day after seven consecutive days with a mean 

air temperature <8 °C from 1 July onwards 

(Movedi et al., 2019a) 

Biomass peak date BPd 
Day of the year with the highest value of 

aboveground biomass 

Count 
Growing season 

length 
GS days Number of days between the GSs and GSe 

Amount 

Biomass peak BP kg DM m−2 Aboveground biomass value at the peak date 

Aboveground 

biomass 
AGB kg DM m−2 Aboveground biomass values 

Net ecosystem 

exchange 
NEE kg C m−2 yr−1 

C-N fluxes (annual balance) 

 

(These include emissions from ecosystem 

respiration, RECO = plant + soil + animal 

respiration, as well as estimates of the plant 

production of organic compounds from 

atmospheric CO2 (GPP: gross primary 

production) and other system variables: 

NEE = RECO - GPP, enteric emissions of CH4 

from grazing animals and N2O emissions from 

the N cycle) 

Methane CH4 kg C m−2 yr−1 

Nitrous oxide N2O kg N m−2 yr−1 

Soil water content SWC m3 m−3 
Annual mean of daily soil water content values 

(0.35-m topsoil). In supplementary materials. 

 

3. Results 

3.1. Climate Analysis 

The monthly distribution of air temperatures at the two study sites (Figure 3), averaged from the 

outputs of 14 climate models, showed an overall increase in temperature towards the mid-future, 
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similar for both sites, with the highest increases in summer (roughly +2.6 °C at both sites under the 

warmest scenario) and the lowest in autumn–winter (roughly +2.1 °C at both sites under the warmest 

scenario). 

Analysis of simulated rainfall data (Figure 3) showed increases in the November-March period 

relative to the baseline in both scenarios and sites (Site M: +3.1% and +5.1%; Site B: +6.0% and 

+8.2%, for RCP4.5 and RCP8.5, respectively), while between April and October there was a sharp 

decrease in rainfall at both sites (−7.0% and −8.9% at M and −9.4% and −8.9% at B for RCP4.5 and 

RCP8.5, respectively). 

 

Figure 3. Absolute change (°C) in monthly mean air temperature (top graphs) and relative change (%) of monthly 
cumulated rainfall (bottom graphs) generated in the two study sites with the RCM ensemble (14 models) for two 
climate scenarios (RCP4.5, RCP8.5) and two periods – 2011–2040 (ongoing) and 2041–2070 (mid-future)—over the 
baseline period 1981–2010 (near past). 

3.2. Suite 1 of Simulations: Evaluation of the Model Against Observed Data 

AGB simulations (Figure 4, Table 4) indicate that estimates substantially reflect patterns of vegetation 

dynamics (R2~0.70) although some departures from observed data are noted. The RRMSE values 

(<15%), in particular, suggest that the model has strong predictive ability for biomass production. 
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This was also obtained with the LAI, with R2<0.50 only in sub-area B1 of Site B, where the RRMSE 

of ~25% was acceptable. 

 
Table 4. Model performance for the two study sites (M: Marradi; B: Borgo San Lorenzo, sub-areas B1 and B2) based on 
two performance metrics: R2, coefficient of determination of the linear regression between estimates and observations; 
and RRMSE (%), Relative Root Mean Square Error. AGB: aboveground biomass; LAI: Leaf Area Index. 

Output 

Site M Site B 

R2 RRMSE 
B1 B2 

R2 RRMSE R2 RRMSE 

AGB 0.76 14.9 0.66 13.5 0.68 10.0 

LAI 0.96 9.6 0.47 24.5 0.71 12.6 

 

 
Figure 4. Simulated (blue line) and observed (red square dots) patterns of aboveground biomass (AGB) and leaf area 

index (LAI) at Sites M (a), B1 (b), and B2 (c) for the period 2020–2021. 
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3.3. Suites 2, 3, and 4 of Simulations: Impacts of Future Scenarios, Sensitivity to Weather Inputs, 

and Adaptation Strategies 

For both sites, we assessed the response of the grassland model to climate change (RCP4.5 and 

RCP8.5 for the ongoing and mid-future periods) with business-as-usual (BaU) management (Suite 2) 

and to different management options (Suite 4). Multi-year mean responses for growing season length 

(GS), biomass production (AGB), and biogeochemical (C-N fluxes) were calculated. Sensitivity 

analysis was performed without the CO2 fertilization (Suite 3) effect by observing future AGB trends 

over the season for the different RCPs and time periods. 

3.4. Growing Season 

Under the climate change scenarios, the estimated length of the growing season increases at both sites 

because optimal thermal conditions for vegetation growth occur earlier and later in the season. This 

leads to an earlier onset (GSs) and later end (GSe) of the growing season (GS) in both sites, especially 

in the mid-future (i.e., 2041–2070) (Figure 5). Specifically, for RCP4.5, GSs was advanced by 4 and 

8 days, on average, in Site M and by 6 and 12 days in Site B for the periods 2011–2040 and 2041–

2070, respectively. In addition, GSe was delayed by 3 and 9 days, on average, for the periods 2011–

2040 and 2041–200, respectively, at Site M and by 4 and 9 days, on average, at Site B for the periods 

2011–2040 and 2041–2070, respectively. The most pronounced differences from the baseline are 

visible for the RCP8.5 scenario. Earlier onsets of 4 and 17 days for Site M and 11 and 15 days for 

Site B under the periods 2011–2040 and 2041–2070, respectively, are accompanied by delays in GSe 

(5 and 18 days for Site M and 8 and 13 days for site B under the periods 2011–2040 and 2041–2070, 

respectively). 

                                                       a                                                                                     b 

Figure 5. Estimated durations (30-year mean values) of vegetation growing seasons (green bars) for baseline and 
climate change scenarios under business-as-usual management at both study sites (a). On the right, increases of growing 
season length compared with the baseline (b). 
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3.5. Aboveground Biomass 

Figure 6 shows the AGB production patterns under BaU management in both sites for the baseline 

and future projections, while the AGB patterns obtained with all alternative management options can 

be found in the Supplementary material (Figures S2-S5). 

The main differences in AGB patterns among alternative management and climate scenarios were 

assessed from changes in peak biomass dates (BPd) and corresponding AGB values (BP), which 

strongly influence stakeholders’ and farmers’ decisions in choosing the most suitable periods for 

grazing. 

With the baseline climate scenarios, PaSim reported peak biomass on days 138 (Site M) and 157 (Site 

B). With the future climate scenarios, the model indicated the same BPd at Site M (day 138) with 

both scenarios and time slices, as grazing starts on day 139, while Site B showed a general delay in 

BPd, specifically 1 to 5 days in RCP4.5 and 3 to 10 days in RCP8.5. 

In the baseline scenarios, the peak biomass production (BP) is 0.13 (±0.03 standard deviation) kg DM 

m−2 at Site M and 0.09 (±0.02 standard deviation) kg DM m-2 at Site B. With the climate change 

patterns, PaSim estimated higher BP values with both RCP4.5 (by 48.4 and 90.8% at Site M and 58.9 

and 139.7% at Site B, for 2011–2040 and 2041–2070, respectively) and RCP8.5 (by 52.1 and 136.9% 

at Site M and 73.4 and 216.8% at Site B, respectively), mainly due to the fertilizing role of CO2 in 

the selected emission scenarios and the absence of sensible water deficits simulated by PaSim (Figure 

S1). With respect to SWC, in fact, although the simulated patterns suggest that, with drier summer 

conditions, grassland growth may be limited by some water stress in the future, differences between 

the baseline and climate change scenarios are limited at both sites. In particular, no significant 

changes in SWC are evident during the spring period, when plant growth activity is the greatest. 

To assess the effect of CO2 fertilization (Suite 3), we tested the same climate change scenarios using 

the mean baseline CO2 concentration (i.e., 363 ppm recorded, on average, during 1981–2010), 

showing that BP values under the baseline CO2 concentration did not increase to the same extent as 

observed for the future scenarios with higher CO2 concentration (Figure 7). Specifically, compared 

with the baseline, the BP increased by 24.8 and 29.5% at Site M and 10.5 and 16.5% at Site B for 

RCP4.5 (for 2011–2040 and 2041–2070, respectively) and by 25.2 and 50.0% at Site M and 15.4 and 

27.0% at Site B for RCP8.5 (for 2011–2040 and 2041–2070, respectively). 
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Figure 6. Daily simulation (30-year mean) of aboveground biomass (AGB) with PaSim for baseline and climate change 
scenarios under business-as-usual management at both study sites. 

 

Figure 7. Daily simulation (30-year mean) of aboveground biomass (AGB) with PaSim for baseline and climate change 
scenarios (no CO2 fertilization) under business-as-usual management at both study sites. 

Considering the results of Suite 2, alternative management practices (Suite 4) included: (1) livestock 

grazing intensity increased by 20% (i.e., +20 GI); (2) extension of the grazing period length by 15% 

(i.e., +15 GL), specifically 7 days earlier start and 7 days later end at Marradi, 16 days earlier start 

and 16 days later end at Borgo San Lorenzo; (3) combination of (1) and (2) (i.e., +20GI x 15GL). For 

the impact of adaptation strategies, the value of the peak biomass obtained with alternative 

management practices (i.e., BaU and adaptation management options) was compared with the peak 

biomass from business-as-usual (BaU) management under the projected scenarios (Figure 8). 
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Figure 8. Changes in peak aboveground biomass (kg DM m-2) among business-as-usual management (BaU) under the 
baseline climate (black histogram) and all alternative management options under RCP4.5 (cyan and blue histograms) 
and RCP8.5 (orange and red histograms) in both sites as provided by PaSim. Vertical bars are standard deviations. 

According to model’s outputs, the aboveground peak (Figure 8) and the trends over the season 

(Figures S2-S5), obtained using the different adaptation strategies, show that future biomass 

availability will reach higher values when compared with the baseline, even by increasing the animal 

stocking rate (i.e., +20 GI) and/or the number of grazing days (i.e., +15 GL or +20 GI x 15 GL). 

3.6. Carbon–nitrogen Fluxes 

Under current climate and management conditions, PaSim shows limited non-CO2 emissions at both 

sites, i.e., ~2 g C m−2 yr−1 for CH4 and 4.6–4.7 g N m−2 yr−1 for N2O emissions, while the C exchanges 

reflect that both sites are sources of C (NEE≥ 350 g C m-2 yr-1). 

Table 4. C-N emissions (NEE: net ecosystem CO2 exchange; CH4: methane; and N2O: nitrous oxide) from the two 
study sites (baseline climate), estimated (30-year mean with standard deviation) using PaSim. The estimated 
components of the C budget (GPP: gross primary production; RECO: ecosystem respiration) can be found in 
Supplementary material (Table S4). 

Site 
NEE CH4 N2O 

g C m−2 yr−1 g N m−2 yr−1 

Site M 381.3 ± 245.6 2.2 ± 0.3 4.6 ± 3.4 

Site B 350.1 ± 236.1 1.8 ± 0.2 4.7 ± 3.2 

 

 

Heatmaps of the % differences between current conditions (i.e., baseline climate and BaU 

management) and combinations of alternative climate and management scenarios allow the impact of 

altered climate and management changes on gas emissions at the two study sites to be assessed (Figure 

9). For NEE, in particular, the PaSim heatmaps show overall trends towards C uptake (more negative 
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NEE values) in both study sites by moving towards extreme climate conditions (i.e., RCP8.5 and 

time-frame 2041–2070), with all management options. This reflects the AGB pattern (Figure 6) 

resulting from a higher photosynthetic plant production from atmospheric CO2, even with increased 

animal respiration under the option of increased livestock density (GPP and RECO values in Table 

S4). 

As for CH4 emissions, the PaSim heatmap indicates that emissions are higher with the warmest 

scenario and as livestock density increases (up to <100%). Finally, the N2O emissions estimated by 

PaSim tend to be lower under future climate and alternative management scenarios. 

Figure 9. Heatmap visualization of the relative differences (%) of the three main greenhouse gas emissions (NEE: net ecosystem 

exchange; CH4: methane; and N2O: nitrous oxide), estimated using PaSim, for alternative management and climate change scenarios 

compared with current climate and management in the two study sites. OG: ongoing period, MF: mid-future period, 4.5: RCP4.5, 8.5: 

RCP8.5, GI: grazing intensity; and GL: grazing length, 20: +20%, 15: +15%. 
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4. Discussion 

4.1. Model Parameterisation 

The great deal of fundamental research incorporated into the mechanistic PaSim model has ensured 

satisfactory estimates, which are also comparable to published grassland modelling studies (R Sándor 

et al., 2017; Schucknecht et al., 2022). This is relevant considering that simulations for grasslands are 

generally less accurate compared with arable crops (Kollas et al., 2015) since large uncertainties in 

biomass and LAI measurements cause simulation of grassland vegetation dynamics to be difficult to 

perform (Movedi et al., 2019b; Vuichard et al., 2007). 

This was obtained with calibrated parameter values (Table S3) that do not deviate substantially from 

those obtained in previous studies on continental and Mediterranean grasslands. For instance, the 

maximum specific leaf area, slam=27.2 m2 kg−1, is similar to slam=29 m2 kg−1 obtained in the Europe-

wide calibration of Ma et al. (2015). Light-saturated leaf photosynthetic rates for reproductive 

(pmco2rep=12.88 μmol C m−2 s−1) and vegetative (pmco2veg=9.49 μmol C m−2 s−1) stages are similar 

to the values obtained for Mediterranean grasslands (pmco2rep=14.0 μmol C m−2 s−1 and 

pmco2veg=10.0 μmol C m−2 s−1) from Pulina et al. (2018). The root and shoot turnover rates at 20 

°C, kturnrt20=0.0155 d−1 and kturnsh20=0.0468 d−1, respectively, exceed those estimated by Pulina 

et al. (2018) for grasslands dominated by annual self-seeding plant species: 0.0144 d−1 and 0.0250 

d−1, respectively. With the obtained calibration, the shoot turnover parameter dwindled to 

approximately 21 days (1/0.0144 d−1), which is lower than 40 days (1/0.0250 d−1), as in Pulina et al. 

(2018). In fact, perennial plants tend to invest mainly in long-lived and competitive adult individuals, 

and, consequently, shoot turnover tends to be faster in perennial plants than in annual species, as the 

former allocate more resources for new leaf growth to maximize photosynthetic efficiency (Schippers 

et al., 2001). 

4.2. Uncertainties in Climate Change Impacts and Adaptation Strategies 

The adopted impact model was widely applied in various contexts (Fuchs et al., 2020; Ma et al., 2015; 

Pulina et al., 2018; Touhami et al., 2013; Vital et al., 2013), dealing with multifaceted territorial and 

vegetation structures and extreme weather conditions, which are often difficult to parameterize (Wang 

et al., 2022) due to the complex response of the vegetation growth with respect to critical thresholds 

(e.g., air temperatures, water requirements, and radiation use efficiency) for mixed plant communities 

(Renáta Sándor et al., 2018). In this study, PaSim represented the effects of climate change and 

management options on the timing and extent of the growing season and C-N fluxes, together with 

biomass production and peaks. The longer growing season length was due to the extension of the 

potential growing season in both spring and autumn, as already observed in grasslands during the last 
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decades (Bellini et al., 2023; Ren et al., 2022). The mean plant growth trend simulated with the model 

(30-year means) mirrors the observed pattern of vegetation growth during the growing season, 

indicating that the overall pattern of response to elevated atmospheric CO2 concentration significantly 

stimulates leaf photosynthesis (Ainsworth and Long, 2005; Ellsworth et al., 2004). Sensitivity 

analysis performed in Suite 2 highlighted this fertilization effect of increased CO2 concentration 

simulated by PaSim; nevertheless, it must be underlined that similar trends of increased aboveground 

biomass in both future climate change scenarios and time periods are visible also with steady CO2 

concentration (i.e., baseline concentration, 363 ppm), albeit to a lesser extent. In addition, although a 

down-regulation strategy can be useful to limit the effect of increased CO2 concentration on plant 

growth (Ainsworth and Rogers, 2007), it is worth emphasizing that the production increases projected 

for the mid-future (2041–2070) resulted in being particularly high when compared with a baseline 

that reflects a situation of the near past (period 1981–2010). When compared, instead, with the 

ongoing period (2011–2040), which reflects average aboveground biomass values similar to the 

present and to the calibration period, the increases are smaller, comparable to those found in other 

studies (Shrestha et al., 2015; Zarrineh et al., 2020). The CO2 positive effect is reflected in the higher 

C uptake estimated by PaSim as a result of increased productivity, also with higher stocking rates 

(i.e., higher C losses due to higher animal respiration), which confirms the increased worldwide 

productivity of grasslands exposed to increased CO2 (Chang et al., 2021). 

PaSim estimated increasing CH4 emissions and decreasing N2O emissions with climate scenarios. 

The former logically reflects evidence that grasslands emit more CH4 at higher temperatures (Zhu et 

al., 2020). Although the latter does not reflect the direct effect of temperature on the enzymatic 

processes involved in N2O production, N2O emissions are controlled mainly by soil properties and 

current soil N levels (Butterbach-Bahl et al., 2013), which may have been reduced with increased 

plant demand due to higher biomass production under climate scenarios. This increase in future 

biomass production, driven by the higher average annual GPP (gross primary production), also led to 

a consequent decrease in simulated NEE over the years. 

4.3. Consequences for Grassland Sustainability 

Herders depend on pasture and water resources for their livestock and are among the groups most 

vulnerable to climate change impacts in dry regions (Cullen et al., 2009; Moore and Ghahramani, 

2014; Murphy et al., 2002; Ouled Belgacem and Louhaichi, 2013; Parton et al., 1994). Although there 

are reasons to be concerned, some impacts of climate change are expected to be positive. Foreseen 

climate variability can be an opportunity for effective management, as actions could be timed to the 

most effective conditions, and climate change could be a motivation to develop a broader and more 
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responsive and collaborative management paradigm. We showed that increases in plant productivity 

and longer growing seasons in central Italy may support more livestock and increase economic 

benefits. Rising air temperatures simulated by climatic models, combined with increasing 

concentrations of CO2 in the atmosphere in RCP4.5 and RCP8.5 scenarios, are expected to offer 

important opportunities in terms of forage production for livestock systems in central Italy. This is 

possible if future water availability is not a limiting factor, as stressed by various research studies on 

grassland potential production (He et al., 2022). Indeed, as seen from the results of climatic models, 

precipitations are expected to decrease in the future, mostly in summer months but not particularly in 

spring. The availability of water in the soil, therefore, does not vary significantly over time and future 

climate change scenarios, as is visible from the soil water content simulated by PaSim (Figure S1). 

These trends on future pasture productivity are consistent with other studies, originating also from 

different geographical sectors. Already in the understanding of Rounsevell et al. (1996), it seemed 

unlikely that climate change would have a negative impact on grasslands in England and Wales, while 

Riedo et al. (1998) predicted a positive effect on grassland productivity in central Europe. 

Additionally, in the case of grasslands in the United States, pasture production is generally expected 

to increase under projected climate scenarios (Edmonds and Rosenberg, 2005). Moreover, Morales 

et al. (2007) predicted an increase in grassland productivity in Europe, albeit with significant regional 

variability. In this regard, it should be emphasised that the impacts of climate change on grazing 

systems may be region-specific (Harrison et al., 2016). 

Adaptation strategies must face different and opposite effects on rangeland productivity, as already 

previously pointed out (Cheng et al., 2022; Joyce et al., 2013), and in some cases, it is foreseen that 

climate change can produce a positive effect, being able to support greater livestock numbers (Briske 

et al., 2015) and to lengthen the duration of the grazing season due to a higher herbage availability 

early in the year (Hristov et al., 2018). In our study, we provided clues for increasing stocking rates 

and extending grazing periods (mainly by putting animals out to pasture earlier) to take advantage of 

the change in seasonality and increased forage production compared with the baseline (1981–2010), 

especially in the mid-future (i.e., 2041–2070). The possibility of having an earlier vegetative recovery 

that prolongs the duration of the grazing season allows, along with the higher productivity assumed, 

an increase in animal density, and, in this way, a biomass intake more consistent with the forage 

availability. Consequently, these conditions allow a more efficient management of the resource (Xu 

et al., 2016) with less waste and a more adequate stocking rate, a factor that ensures less degradation 

of the pasture itself (Allen et al., 2011). Results confirm these opportunities also comparing mid-

future aboveground biomass under adaptation strategies (peak and trend, Figure 8 and Figures S2–

S5) with those of the ongoing period under BaU (i.e., 2011–2040), which is the condition most similar 
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to the one of calibration. In this view, it is, however, important to emphasize that in the simulation of 

adaptation strategies, the model does not specifically consider the role of increased animal stocking 

rate and/or duration of the grazing season on soil compaction, a condition that may disadvantage 

forage quality, vegetation regrowth, and biodiversity (Li et al., 2017; Liu et al., 2022). In addition, 

warming and altered rainfall patterns may reduce the forage quality and palatability of Italian 

grasslands (Dibari et al., 2021). Indeed, climatic changes, as well as land-use changes, have already 

strongly modified the botanical composition, species distribution, and size of grasslands in the central 

Italian massifs since the 1950s (Frate et al., 2018). The observed floral, ecological, and structural 

variations confirm that grassland ecosystems in mountainous environments in Italy have undergone 

a process of thermophilization, with an evolutionary trend towards more nutrient-demanding 

vegetation (Alberto Evangelista et al., 2016; Ferrarini et al., 2017). Variations in vegetation 

composition in response to increased competition for environmental factors indicate, at higher 

altitudes, less displacement of plant species from higher slopes as well as dispersal of species from 

south-facing to north-facing slopes, with greater presence of grass- and shrub-dominated 

communities replacing rare and cold-tolerant species (Porro et al., 2019). This reflects the narrower 

thermal niche of mountain plant species, which makes short-term adaptation/acclimation more 

difficult (Löffler and Pape, 2020). As a narrow thermal niche prevents plant species from adapting 

quickly to high altitudes, site elevation explains the response of species richness to warming (Piseddu 

et al., 2021). Indeed, although changes in species cover and plant community composition indicate 

an accelerated transformation to more heat-demanding vegetation, this colonization process may 

occur at a slower rate than the continued decline of cryophilic species, favoring periods of accelerated 

species decline (Lamprecht et al., 2018). 

The analyses performed in this study identified the possible impacts of climate change on a typical 

grazing system of the Apennines in Central Italy, highlighting future trends of different system 

characteristics, such as length of the growing season, pasture productivity, soil water conditions, and 

gas emissions, as well as possible alternative management strategies in a context of future climate 

change. In fact, the results obtained in this study highlight the potential of employing specific models 

for simulating the behavior of pastoral resources under actual utilization and different future scenarios 

(i.e., RCP4.5 and RCP8.5), testing adaptation management options. In this sense, the study has 

produced a significant step forward compared with previous studies that analyzed climate change 

impacts on Apennine grasslands, mainly with regard to the botanical evolution of the plant 

communities, by providing insights on future agronomic conditions and possible adaptation 

strategies. The modelling approach used has, thus, been demonstrated to be a useful tool to support 

the management decisions that breeders will have to make in the near future. 
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5. Conclusions 

The results of this study represent a step forward in the knowledge of the impacts of future climate 

change on a typical pasture system in the central Apennines. Specifically, this study fills a lack of 

information on future grassland development, as well as providing detailed information on the length 

of the growing season, GHG emissions, water conditions, and the effectiveness of different adaptation 

strategies in response to the increase in forage production simulated by PaSim in future scenarios. In 

particular, the analysis of adaptation strategies investigated possible management changes to cope 

with climate change impacts, providing useful indications to stakeholders and policy-makers for 

appropriate agricultural policy and optimal land management strategies for ongoing climate change. 

However, while modelling approaches capture distinct aspects of the adaptive process, they have 

done so in relative isolation from the use of other technological supports (e.g., remote sensing and 

precision farming) and participatory approaches, without producing improved unified 

representations. As well, management options to sustain grassland ecosystems under global change 

are many and need to be tested for their ability to maintain or enhance resource values in the future. 

Social impact assessment studies are, thus, needed to examine how the impacts, i.e., the effects of 

climatic anomalies on the performance of Apennine pastures, propagate through the socio-economic 

and political systems. This type of integrated approach, which would include the potential for 

adaptation and adjustment to climate pressure, would reflect the reality of pastoral communities much 

better than the modelling used and raises fruitful research questions regarding the vulnerability of 

Apennine territories and their adaptive capacity. 
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Chapter 6.  

 

General conclusions 

 

Chapter 6 reports the general conclusions of the work carried out during 

the PhD, analyzing the results in light of the research questions. 
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6. General conclusions 

The streamline of this doctoral research was grasslands monitoring and prediction by using different 

approaches (remote sensing and crop modelling), considering different contexts (natural and 

extensively managed grasslands), spatial scales (local, regional and continental), and timelines 

(present and future). The outcomes deriving from the different approaches were critically analysed, 

achieving important results through the development of new methodologies and the identification of 

key information for grassland knowledge and management. These results enabled the achievement of 

the main objective concerning the use of these technologies and methodologies to maintain the 

productive and ecosystem functionalities of the grassland system through optimized management, the 

estimation of already visible and future climate change impacts, and the identification of possible 

adaptation strategies. 

As previously reported, the objectives pursued during the PhD course reported in this thesis were: (i) 

the development of a simplified grassland-specific simulation model that, through the use of remotely 

collected information, could faithfully reproduce the dynamics of the system and, potentially, take 

advantage of the spatial resolution offered by different optical sensors to obtain detailed information 

of the area under study; (ii) the identification of a methodology for extracting the start, peak, and end 

dates of the season from sets of satellite images and the quantification of the changes that have 

occurred in grassland phenology at the continental level over the past few decades; (iii) the analysis 

of the impacts of future climate on extensive grazing systems of the central Italian Apennines and the 

identification of management strategies to be adopted to cope with these changes. 

Specifically, the first objective was achieved by developing a simplified simulation model based on 

the concept of light use efficiency, capable of using information collected in the form of vegetation 

indices from proximal or satellite instruments for data integration. The simplification provided by the 

NDVI index, which was used to directly estimate Leaf Area Index (LAI) through a relationship 

identified by correlating the index to LAI measured in the field, made it possible to obtain accurate 

results in the simulation of forage biomass and water dynamics of the system, particularly in the 

estimation of the fraction of transpirable water in soil (FTSW) and evapotranspiration. These results 

were achieved through a general calibration of a few parameters, obtained in a typical alpine grassland 

context, validated, with the exception of the parameters related to optimal growth temperatures, with 

forage biomass data collected in the field in two managed pastures in the central Apennines during 

two years of this PhD research activity. 
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In this way, the model developed can be used in diverse contexts and with the potential to exploit the 

spatial resolution provided by satellite imagery, thus prefiguring itself as a tool applicable by 

stakeholders for grassland management based on the principles of precision agriculture. 

The second specific objective of this research thesis, aimed at studying the impacts of climate change 

already visible in grassland phenology, was investigated through the use of remote sensing 

technologies, specifically the use of vegetation indices (i.e. kNDVI) derived from satellite images. 

First, the methodology to be used to estimate the phenological dates of the beginning (SOS), peak 

(POS) and end (EOS) of the growing season was identified. Specific grasslands were used to compare 

phenological dates estimated from seasonal curves of vegetation indices and Gross Primary 

Production (GPP) data, a proxy for plant photosynthetic activity, extracted using different fitting 

models and extraction methods. The identified methodology, effective in detecting SOS and POS, 

but not EOS, was then applied on long time series of MODIS satellite images in 31 European 

grasslands, different in altitude and latitude, during the period 2001-2021. The study carried out 

revealed a significant trend of advancement in the start and peak of the growing season, especially 

accentuated in the former case. In parallel, an analysis of the average seasonal temperatures, which 

tended to increase during the period analysed, made it possible to emphasise the role of temperatures 

in the anticipation of these phenological dates, an anticipation that was found to be greater with 

increasing latitude and decreasing altitude. This research work led to the obtaining of important 

information on the changes in the growth pattern of vegetation already visible as a result of rising 

temperatures in recent decades. The results, attained through the use of remote sensing technologies, 

provide a comprehensive methodological line for the analysis of phenology from satellites and, above 

all, quantify the early onset and peak of the growing season of different European grassland sites. 

This type of information is an important indication for assessing the current phenological trend, 

allowing for an estimation of future phenological trends and providing the necessary tools for 

policymakers and stakeholders to provide for the identification of effective adaptation strategies. 

The third line of research, aimed at assessing future climate impacts, was carried out using the PaSim 

simulation model as an analysis tool. The simulation model was calibrated with observed values of 

aboveground biomass and LAI allowing for a region-specific calibration. The calibrated model was 

then applied using as input data the results of future climate simulations of 14 GCM climate models, 

downscaled and bias-corrected, according to different time windows (i.e. 2011-2040, 2041-2070) and 

climate scenarios (RCP4.5 and 8.5). The analysis carried out provided important information on the 

future trend of the forage biomass in an extensive grazing context in the Apennine environment, as 

well as indications on the length of the growing season and the emission of climate-altering gases. 
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The results of future projections showed an increase in the growing season and forage production for 

both time windows and scenarios, with higher magnitudes for the 2041-2070 window and for the 

RCP8.5 scenario. The improved growing conditions, favoured by an increase in temperature and CO2 

concentration not accompanied by a significantly more severe water deficit than in the baseline, were 

the starting point for the identification of possible adaptation strategies. In particular, this production 

increase simulated by PaSim was sufficient to support an increase in the grazing season (+15%) and 

animal load (+20%) without incurring in lower biomass production compared to the baseline values. 

With regard to greenhouse gases emissions, PaSim estimated a rise in CH4 emissions and a decline 

in N2O emissions with future projections. The former depended on the increasing values of air 

temperatures, while the second relied on soil N level, which may have been reduced with increased 

plant demand. This rise in future biomass production, driven by the higher average annual GPP (Gross 

Primary Production), also led to a consequent decrease in simulated future NEE (Net Ecosystem 

Exchange). The study represents a significant step forward compared to previous studies on climate 

change impacts on Apennine grasslands by providing insights on future agronomic conditions and 

possible adaptation strategies. The adopted modelling approach has thus been demonstrated to be a 

useful tool to support the decisions that breeders will have to make in the near future.  

In conclusion, the combination of remote sensing and modelling, used as analytical tools for the study 

of grasslands, has allowed us to pursue different lines of research, but always aimed at understanding 

and finding information that could be useful for preserving the productivity and functionality of the 

system. As described above for each specific objective, the various research works led to important 

insights on multiple topics, with particular reference to the current and future conditions of the system. 

New lines of research and future perspectives that can bridge the remaining limits of grassland 

research through remote sensing and modelling approaches can be identified in Chapters 3, 4 and 5 

within their respective “Discussions” and “Conclusions” sections. However, it must be emphasised 

that barriers still exist in the adoption of these methodologies as operational tools to be used to 

maximise the impacts of research in grassland management. 

However, the collected results have already highlighted the potential of these systems and 

technologies, which are foreshadowed, with the advancement of the level of technology and the state 

of research, as increasingly important tools for researchers, stakeholders and policy-makers in 

understanding the grassland system in its complexity. 
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Supplementary Materials 

Table S1. Aboveground dry matter biomass (AGB) and leaf area index (LAI) collected in 2020 and 
2021 in the two study-sites (sample mean and standard deviation of eight sub-samples in Marradi and 
four sub-samples in Borgo San Lorenzo). 

Var. 
Site M (Marradi) 

Site B (Borgo San Lorenzo) 

B1 B2 

2020 2021 2020 2021 2020 2021 

AGB 

doy kg m-2 doy kg m-2 doy kg m-2 doy kg m-2 doy kg m-2 doy kg m-2 

139 0.22±0.08 89 0.03±0.01 131 0.10±0.10 62 0.03±0.02 147 0.08±0.01 62 0.04±0.02 

154 0.18±0.09 138 0.09±0.04 147 0.04±0.05 110 0.08±0.04 161 0.13±0.04 100 0.05±0.01 

167 0.12±0.06 166 0.05±0.02 161 0.03±0.04 125 0.08±0.02 174 0.23±0.06 125 0.08±0.03 

180 0.07±0.03 202 0.03±0.02 174 0.02±0.02 152 0.15±0.08 188 0.15±0.06 152 0.17±0.12 

194 0.05±0.02 257 0.03±0.02 188 0.02±~0.00 165 0.10±0.09 202 0.19±0.11 165 0.12±0.03 

209 0.04±0.02 - - 202 0.02±~0.00 188 0.07±0.06 286 0.04±0.03 188 0.13±0.08 

- - - - 286 0.02±~0.00 244 0.03±0.03 - - 244 0.06±0.04 

- - - - - - 287 0.01±0.01 -  287 0.03±0.02 

LAI 

doy m2 m-2 doy m2 m-2 doy m2 m-2 doy m2 m-2 doy m2 m-2 doy m2 m-2 

154 1.67±0.85 89 0.72±0.27 161 0.42±0.44 62 0.21±0.25 161 1.30±0.84 62 0.28±0.39 

167 1.20±0.55 138 1.97±0.69 174 0.26±0.09 110 1.27±1.12 - - 110 0.80±0.44 

180 0.82±0.56 166 1.12±0.69 202 0.12±0.12 125 1.36±0.66 188 2.56±1.21 125 0.80±0.47 

194 0.58±0.28 - - 286 0.10±0.06 152 2.55±1.79 202 1.93±2.01 152 2.46±1.59 

209 0.70±0.30 - - - - 165 0.58±0.19 286 0.52±0.40 165 1.22±0.39 

 

Table S2. Climate models used in this study, an indication of their origin (institute), version, 
realisation and frequency. The suffixes i and p of each realisation (r) indicate the initialisation and 
physics indices, respectively. 

Institute 
Global Climate Model 

(GCM) 
Experiment  Realisation 

Regional Climate 

Model (RCM) 
Frequency 

CLMcom 

CNRM-CERFACS-CNRM-CM5 
RCP4.5 r1i1p1 

CLMcom-CCLM4-8-17 

day 

RCP8.5 r1i1p1 day 

ICHEC-EC-EARTH 
RCP4.5 r12i1p1 day 

RCP8.5 r12i1p1 day 

MOHC-HadGEM2-ES RCP4.5 r1i1p1 day 
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RCP8.5 r1i1p1 day 

MPI-M-MPI-ESM-LR 
RCP4.5 r1i1p1 day 

RCP8.5 r1i1p1 day 

DMI NCC-NorESM1-M 
RCP4.5 r1i1p1 

DMI-HIRHAM5 
day 

RCP8.5 r1i1p1 day 

IPSL-INERIS IPSL-IPSL-CM5A-MR 
RCP4.5 r1i1p1 

IPSL-INERIS-

WRF331F 

day 

RCP8.5 r1i1p1 day 

KNMI 

ICHEC-EC-EARTH 
RCP4.5 r1i1p1 

KNMI-RACMO22E 

day 

RCP4.5 r1i1p1 day 

MOHC-HadGEM2-ES 
RCP8.5 r1i1p1 day 

RCP4.5 r1i1p1 day 

MPI-CSC MPI-M-MPI-ESM-LR 
RCP4.5 r1i1p1 

MPI-CSC-REMO2009 
day 

RCP8.5 r1i1p1 day 

SMHI 

CNRM-CERFACS-CNRM-CM5 
RCP4.5 r1i1p1 

SMHI-RCA4 

day 

RCP8.5 r1i1p1 day 

ICHEC-EC-EARTH 
RCP4.5 r12i1p1 day 

RCP8.5 r12i1p1 day 

IPSL-IPSL-CM5A-MR 
RCP4.5 r1i1p1 day 

RCP8.5 r1i1p1 day 

MOHC-HadGEM2-ES 
RCP4.5 r1i1p1 day 

RCP8.5 r1i1p1 day 

MPI-M-MPI-ESM-LR 
RCP4.5 r1i1p1 day 

RCP8.5 r1i1p1 day 

 

Table S3. Summary of the PaSim parameters considered for the calibration. 

Parameters 

Value 

Name Description Unit 

Canopy height parameter 1 (hcanhalf) 
This parameter expresses the leaf area index for which 

the canopy corresponds to half the maximum height. 
m2 m-2 4 

Canopy height parameter 2 (hcanmax) 
This is the height of the flowering plant, the highest 

leaf not being elongated. 
m 1.203 
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Maximum specific leaf area (slam) 

The maximum value of the specific leaf area is the 

maximum ratio of leaf area to dry weight, used to 

derive the canopy leaf area from the leaf biomass. 

m2 kg-1 27.2 

Light-saturated leaf photosynthetic rate for 

reproductive stage (pmco2rep) 

They represent the influence of developmental stage on 

the photosynthetic rate of light-saturated leaves 

(defined under standard conditions of temperature and 

atmospheric CO2 concentration), which is a component 

of the photosynthetic rate of the canopy. 

μmol C m−2 

s−1 
12.88 

Light-saturated leaf photosynthetic rate for 

vegetative stage (pmco2veg) 
  

μmol C m−2 

s−1 
9.49 

Root turnover parameter (kturnrt20) It is the root turnover rate at 20 °C. d-1 0.0155 

Shoot turnover parameter (kturnsh20) It is the shoot turnover rate at 20 °C. d-1 0.0468 

Parameter of the fractional N content of 

new plant structural dry matter (fnref) 

This parameter is used to derive the nitrogen 

concentration of the newly produced structural dry 

matter. 

kg N kg-1 

DM 
0.033 

Temperature dependence factor of the soil 

respiration (kfactor) 

It multiplies the temperature-dependent function to 

estimate soil respiration. 
- 2 

Relative root distribution (froot) 
This is the relative dry matter of the roots in the 

different soil layers (one value per soil layer). 
% 

0.095 

0.297 

0.238 

0.145 

0.195 

0.030 

Base temperature (Tbase) 
This is the air temperature below which plant growth 

and development are nil. 
K 277.94 

Normalisation factor for development 

(tasumrep) 

This parameter (which divides the sum of the thermal 

units) normalises the developmental stage index in 

such a way that a value 1 marks the transition from the 

reproductive to the vegetative stage. 

K-d 734.3 

Figure S1. Daily simulation (30-year mean) of 0.35-m soil water content (SWC) with PaSim for 
baseline and climate-change scenarios under business-as-usual management at both study-sites. 
RCP4.5 and 8.5 are the different Representatives Concentration Pathways used in the simulations. 
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Figure S2. Daily simulation (30-year mean) of aboveground biomass (AGB) with PaSim for climate-
change scenarios under different adaptation strategies at Marradi site for 2011-2040 period. +20 GI 
represent a 20% rise in animal stocking rate, 15 GL a 15% increase in grazing length and +20 GI×15 
GL a combination of these two management factors. RCP4.5 and 8.5 are the different Representatives 
Concentration Pathways used in the simulations. 

 

Figure S3. Daily simulation (30-year mean) of aboveground biomass (AGB) with PaSim for climate-
change scenarios under different adaptation strategies at Marradi site for 2041-2070 period. +20 GI 
represent a 20% rise in animal stocking rate, 15 GL a 15% increase in grazing length and +20 GI×15 
GL a combination of these two management factors. RCP4.5 and 8.5 are the different Representatives 
Concentration Pathways used in the simulations. 
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Figure S4. Daily simulation (30-year mean) of aboveground biomass (AGB) with PaSim for climate-
change scenarios under different adaptation strategies at Borgo San Lorenzo site for 2011-2040 
period. +20 GI represent a 20% rise in animal stocking rate, 15 GL a 15% increase in grazing length 
and +20 GI×15 GL a combination of these two management factors. RCP4.5 and 8.5 are the different 
Representatives Concentration Pathways used in the simulations. 

Figure S5. Daily simulation (30-year mean) of aboveground biomass (AGB) with PaSim for climate-
change scenarios under different adaptation strategies at Borgo San Lorenzo site for 2041-2070 
period. +20 GI represent a 20% rise in animal stocking rate, 15 GL a 15% increase in grazing length 
and +20 GI×15 GL a combination of these two management factors. RCP4.5 and 8.5 are the different 
Representatives Concentration Pathways used in the simulations. 

Table S4. Simulated flux components (30-year mean) from the two study-sites for the baseline (1981-
2010) and climate scenarios (RCP4.5 and RCP8.5) under different management options, estimated 
using PaSim (GPP: gross primary production; RECO: ecosystem respiration; NEE: net ecosystem 
exchange). +20 GI represent a 20% rise in animal stocking rate, 15 GL a 15% increase in grazing 
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length and +20 GI×15 GL a combination of these two management factors. RCP4.5 and 8.5 are the 
different Representatives Concentration Pathways used in the simulations. 

Marradi  CH4 N2O GPP RECO NEE 

   RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

BAU Baseline 2.2 2.2 4.7 4.7 337.3 337.3 718.7 718.7 381.3 381.3 

 2011-2040 2.9 3.0 0.7 0.6 511.8 539.0 544.7 568.4 32.9 29.4 

 2041-2070 3.5 3.9 0.4 0.3 716.5 962.4 701.3 911.2 -15.1 -51.2 

+20 GI 2011-2040 2.7 2.9 0.7 0.7 469.5 491.3 505.0 523.9 35.5 32.6 

 2041-2070 3.3 3.8 0.4 0.4 621.5 813.6 616.3 784.0 -5.2 -29.6 

+ 15 GL 2011-2040 2.6 2.8 0.7 0.6 434.9 456.5 471.5 491.4 36.6 34.9 

 2041-2070 3.4 4.0 0.4 0.3 602.1 837.0 595.4 797.0 -6.8 -39.9 

+20 GI x 15 GL 2011-2040 2.5 2.6 0.7 0.7 404.2 422.2 443.1 459.6 38.9 37.3 

 2041-2070 3.2 3.8 0.4 0.4 535.5 716.8 534.7 693.4 -0.8 -23.4 

 

Borgo San 

Lorenzo 
 CH4 N2O GPP RECO NEE 

   RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

BAU Baseline 1.8 1.8 4.6 4.6 509.4 509.4 859.5 859.5 350.1 350.1 

 2011-2040 2.2 2.3 0.8 0.8 714.5 792.0 737.0 807.2 22.5 15.2 

 2041-2070 2.5 2.7 0.4 0.4 965.0 1258.1 932.3 1187.9 -32.7 -70.3 

+20 GI 2011-2040 2.4 2.5 0.7 0.7 610.3 679.6 632.9 695.8 22.6 16.2 

 2041-2070 2.8 3.1 0.4 0.4 875.3 1185.0 844.7 1113.0 -30.5 -72.0 

+ 15 GL 2011-2040 2.1 2.2 0.7 0.7 552.2 607.0 580.4 629.5 28.2 22.5 

 2041-2070 2.5 2.8 0.4 0.4 807.3 1104.3 780.1 1036.3 -27.3 -68.0 

+20 GI x 15 GL 2011-2040 2.1 2.1 0.7 0.7 445.4 459.0 477.8 489.5 32.4 30.5 

 2041-2070 2.7 3.1 0.4 0.3 701.3 979.3 678.2 912.6 -23.1 -66.7 

 

 

 

 



149 
 

Acknowledgements 

The writing of this PhD thesis represents the final work of a research activity carried out during my 

three years at the University of Florence. A certainly not easy path, which at the cost of great effort 

and commitment, however, has led to great satisfaction. 

For the achievement of this important result, I would like to thank all the people who have been close 

to me, both in and outside of work. 

First, I would like to thank Prof. Giovanni Argenti, Dr. Marco Moriondo, and Dr. Camilla Dibari for 

the opportunity I was given and the help and support they offered me during the course of my PhD.  

Likewise, I would like to thank all the members of the EcoAgroMeteo research group, who have 

always assisted me whenever needed. Special thanks go to my friend Riccardo Rossi, who shared the 

PhD journey with me and helped me with constant support. 

Many thanks also go to Prof. Gianni Bellocchi, for his welcome and help during my time abroad at 

the INRAE Institute of Clermont Ferrand, France. 

In addition, I want to thank all the people who shared with me this PhD time outside the University, 

in particular my group of closest friends, Ander De Palas. 

Finally, very great thanks to my family, especially my parents, Sauro and Rossella, who have always 

supported me in every possible way throughout all these years. 

 

To all these people, 

 

Grazie 

 

 


