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The development of novel techniques to record wide-field brain activity enables estimation of

data-driven models from thousands of recording channels and hence across large regions of

cortex. These in turn improve our understanding of the modulation of brain states and the

richness of traveling waves dynamics. Here, we infer data-driven models from high-resolution

in-vivo recordings of mouse brain obtained from wide-field calcium imaging. We then

assimilate experimental and simulated data through the characterization of the spatio-

temporal features of cortical waves in experimental recordings. Inference is built in two steps:

an inner loop that optimizes a mean-field model by likelihood maximization, and an outer loop

that optimizes a periodic neuro-modulation via direct comparison of observables that char-

acterize cortical slow waves. The model reproduces most of the features of the non-

stationary and non-linear dynamics present in the high-resolution in-vivo recordings of the

mouse brain. The proposed approach offers new methods of characterizing and under-

standing cortical waves for experimental and computational neuroscientists.
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In the last decade, macroscale wide-field imaging, coupled with
fluorescent activity indicators (e.g., Genetically Encoded Cal-
cium Indicators, GECIs1–4), has provided new insights on the

study of brain activity patterns5–13. Although this microscopy
technique does not reach single-cell resolution and supports
temporal sampling rates much lower than classical electro-
physiology, it enables the recording of neural dynamics simulta-
neously across brain areas, with signal-to-noise ratio and spatio-
temporal resolution high enough to capture the cortex-wide
dynamics in anesthetized and behaving animals14,15. Further-
more, this technique allows to map spontaneous network activity
and has recently provided important information about the
spatio-temporal features of slow waves11,12,16,18. In this work we
consider raw imaging datasets made up of 10.000 pixels per frame
at 50 μm× 50 μm spatial resolution and sampled every 40 ms.
This poses the challenge to build a model capable of being
descriptive and predictive of this large amount of information.

The building of dynamic models requires to capture in a
mathematical form the causal relationships between variables
required to describe the system of interest; the value of the model
is measured by both its ability to match actual observations and
its predictive power. We mention two possible approaches to
model building, the classical direct and the more recent inverse. In
the former, parameters appearing in the model are assigned
through a mixture of insights from knowledge about the main
architectural characteristics of the system to be modelled,
experimental observations, and trial-and-error iterations. In the
latter, instead, model parameters are inferred by maximising
some objective function, e.g., likelihood, entropy, or similarity
defined through some specific observable (e.g., functional con-
nectivity). A small number of models following the inverse
approach have been so far able to reproduce, from a single
recording, the complexity of the observed dynamics. In19 the
authors constrain the model dynamics to reproduce the experi-
mental spectrum. The work presented in20 proposes a network of
modules called epileptors, and infers local excitability parameters.
Similarly, the authors in21 estimate parameters and states from a
large dataset of epileptic seizures. Some models focus on fMRI
resting state recordings and on the reproduction of functional
connectivity22. However, few works center on the reliability of the
temporal and spatial features generated by the inferred model,
such as in23, where spatio-temporal propagation of bursts of a
culture of cortical neurons is accurately reproduced with a
minimal spiking model. Indeed, the assessment of this kind of
results on large datasets requires methods capable of extracting
and characterising the emerging activity.

A major difficulty in assessing the goodness of inferred models
is the impossibility of directly comparing the set of parameters of
the model (“internal”) with the set of those observable in the
biological system, and the two sets are typically not coincident. In
order to fill the gap between experimental probing and mathe-
matical description, this paper proposes a method relying on a set
of flexible observables capable to optimally perform model
selection and to validate the quality of the produced prediction.
The developed modular analysis procedure is able to extract
relevant observables, such as the distributions of frequency of
occurrence, speed and direction of propagation of the detected
slow waves.

Another common problem when inferring the model para-
meters is that it is possible to only partially constrain the
dynamics. Usually, the average activity and the correlations
between different sites24,25 are used. However, it remains difficult
to constrain other aspects of the spontaneously generated
dynamics26, e.g., the variety of shapes of traveling wavefronts and
the distribution of frequency of slow waves. Aware of this issue,
we propose a two-step approach that we name inner loop and

outer loop. In the inner loop, the model parameters are optimised
by maximising the likelihood of reproducing the dynamics dis-
played by the experimental data locally in time (i.e., the dynamics
at a given time is dependent only on the previous iteration step).
Conversely, in the outer loop, the outcome of the simulation and
the experimental data are compared via observables based on the
statistics of the whole time course of the spontaneously generated
dynamics. Specifically, we demonstrate that the inclusion of a
time-dependent acetylcholinic neuro-modulation term in the
model enables a better match between experimental recordings
and simulations, inducing a variability in the expressed dynamics
otherwise stereotyped. This additional term influences the excit-
ability of the network along the simulation time course. The outer
loop thus enables a quantitative search for optimal modulation.

Another aspect to be considered is the combination of a large
number of parameters in the model and a typically short duration
of recording sessions (in our case, only six recordings lasting 40 s
each). Since the resulting inferred system could be under-
determined, it is important to use good anatomical and neuro-
physiological priors. Following this route, a minimal anatomical
assumption, is to decompose structural connectivities into a
short-range lateral connectivity contribution (the exponential
decay characterising the lateral connectivity27, or intra-area
connectivity) and a long-range white matter mediated con-
nectivity. It is well known, and confirmed in our experimental
data, that during deep sleep and deep and intermediate anes-
thesia, propagation is by slow wave propagation and therefore can
be mainly mediated by lateral cortical connectivity (ref. 28).
Relying on this, we chose to model lateral connectivity using local
elliptic kernels. Elliptical kernels are often used in neural field
theories to predict wave properties as a function of the con-
nectivity parameters29,30; this is usually referred to as a direct
approach, going from parameters to dynamics. In31 the authors
propose equations that include several properties of the cerebral
tissue (2D structure, temporal delays, nonlinearities and others),
retaining mathematical tractability. This allows to analytically
predict global mode properties (such as stability and velocity of
propagating wavefronts) for different geometries. Here, we pro-
pose a methodology to implement an inverse approach, from
wave properties to model parameters. The choice of local con-
nectivity kernels reduces the number of parameters to be inferred
from N2 to N (number of recording sites). The proposed
approach prevents overfitting and keeps the computational cost
of inference under control even for higher-resolution data. In
summary, this paper addresses the understanding of the
mechanisms underlying the emergence of the spatio-temporal
features of cortical waves leveraging the integration of two
aspects: the knowledge coming from experimental data and the
interpretation gained from simulations. We identified essential
ingredients needed to reproduce the main modes expressed by the
biological system, providing a mechanistic explanation grounded
in the neuro-modulation and spatial hetereogeneity of con-
nectivity and local parameters.

In the following, the Results section presents the main elements
of this work (for methodological details, see Methods section) and
the Discussion section illustrates limitations and potentials of the
approach we introduced, in particular in relation with experi-
ments, theoretical and modeling perspectives.

Results
We propose a two-step procedure to reproduce, in a data-
constrained simulation, the spontaneous activity recorded from
the mouse cortex during anesthesia. Here, we considered signals
collected from the right hemisphere of a mouse, anesthetized with
a mix of Ketamine and Xylazine. The activity of excitatory
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neurons labeled with the calcium indicator GCaMP6f is recorded
through wide-field fluorescence imaging, see Fig. 1a. In this
anesthetized state, the cortex displays slow waves from ≃0.25 Hz
to ≃5 Hz (i.e., covering a frequency range that corresponds to the
full δ frequency band and extends a little towards higher fre-
quencies). The waves travel across distant portions of the cortical
surface, exhibiting a variety of spatio-temporal patterns.

The optical signal is highly informative about the activity of
excitatory neurons. However, the GCaMP6f indicator, despite
being “fast” compared to other indicators, has a slow response in
time if compared to the time scale of the spiking activity of the
cells. The impact on the observed experimental signature can be
described as a convolution of the original signal with a low-pass
transfer function, Eq. (2), resulting in a recorded fluorescence
signal that exhibits a peak after about 200 ms from the onset of
the spike and a long-tailed decay7 (see Methods, Experimental
Data and Deconvolution section for details). To take into account
this effect, we performed a deconvolution of the fluorescence
signal (Fig. 1b–top) to better estimate the firing rate of the
population of excitatory neurons, i.e., the multiunit activity,
recorded by each single pixel (see Fig. 1b–bottom).

We considered two sets of six acquisitions (each one lasting
40 s) collected from two mice. We characterized the slow waves
activity defining a set of macroscopic local observables describing
the properties of the cortex site, in opposition to cellular prop-
erties derived from the inference: local speed, direction, and inter-

wave interval (IWI, see Methods for more details). Also, we used
these observables to compare the spontaneous dynamics mea-
sured in experimental recordings with the one reproduced in
simulated data. In the first step of the proposed method, the inner
loop, the parameters of the model are inferred through likelihood
maximization, Fig. 1c–left, exploiting a set of known, still generic,
anatomical connectivity priors27 and assuming that mechanisms
of suppression of long-range connectivity are in action during the
expression of global slow waves28. Such anatomical priors cor-
respond to probabilities of connection among neuronal popula-
tions, and assume the shape of elliptical kernels exponentially
decaying with the distance. For each pixel, the inference proce-
dure has to identify the best local values for the parameters of
such connectivity kernels. In addition, for each acquisition period
tn∈ {t1,…, t6}, it identifies the best local (i.e., channel-wise)
values for spike-frequency-adaptation strength and external
current.

In the second step, the outer loop, we seek for hyper-
parameters (through a grid search exploration) granting the best
match between model and experiment by comparing simulations
and data, Fig. 1c-right. This second step exploits acquired
knowledge about neuro-modulation mechanisms in action during
cortical slow waves expression, implementing them as in32.

In Fig. 1d, we provide a qualitative preview of the fidelity of our
simulations by reporting three frames from the simulation (top)
and the data (bottom). This example shows similarities in the

Fig. 1 Experimental setup and sketch of the model. a The cortical activity of the right hemisphere of a mouse (under Ketamine/Xylazine anesthesia) is
recorded through wide-field calcium imaging (GCaMP6f indicator). b The calcium indicator response is slow if compared with the time scales of neuron
activity. Applying to the original signal (upper) a proper deconvolution function fitted from single-spike response7,79, it is possible to estimate a good proxy
for the average activity of the local population of excitatory neurons recorded by a single pixel (bottom). c Sketch of the inference model, made up of an
inner loop (likelihood maximization) and an outer loop (search for optimal neuro-modulation-related hyper-parameters granting the best match between
simulations and data). d Three frames from simulation (top) and experimental data (bottom), both expressing slow wave propagation.
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slow waves propagation: the origin of the wave, the wave exten-
sion and the activity are qualitative comparable, as well as the
activation pattern. A quantitative comparison is detailed in the
following sections.

Characterization of the cortical slow waves. In this work, we
improved the methodology implemented by16 (see Methods for
details), providing three local (i.e., channel-wise) quantitative
measurements to be applied in order to characterize the identified
slow waves activity: local wave velocity, local wave direction, and
local wave frequency. The high spatial resolution of the data
allows not only to extract global information for each wave, but
also to evaluate the spatio-temporal evolution of the local
observables within each wave.

For each channel participating in a wave event, the local
velocity is evaluated as the inverse of the absolute value of its
passage function gradient (see Eq. (21)), the local direction is
computed from the weighted average of the components of the
local wave velocities (see Eq. (22)), and the local wave frequency
is expressed through its reciprocal, the inter-wave interval (IWI)
evaluated from the duration between two consecutive waves
passing through the same channel (see Eq. (23)).

In Fig. 2a–c we show a summary of the data analysis performed
on all the recordings from the two mice. Interestingly, the defined
experimental observables are remarkably comparable among the
two subjects, since they display similar distributions in detected
waves velocity, directions and IWI.

Further, we classified the waves into propagation modes with a
Gaussian Mixture Model (GMM) classification approach applied
in a downsampled channel space (44 and 41 informative channels
for the two mice, respectively). The number of modes fitted by the

GMM is automatically identified using the Bayesian Information
Criterion (BIC) relying on a likelihood maximization protocol33.
For additional details see Supp. Mat. section Detecting the
number of components in the GMM. In Fig. 2d we report the
wave propagation modes identified through GMM (see details in
Methods, Gaussian Mixture Model section). Specifically, GMM
are fitted on a dataset composed by the observed spatio-temporal
wave patterns represented in the subsampled channel space (i.e.
for each entry in the dataset, the number of features is equal to
the number of reduced channels). See section Methods, Slow
Waves and Propagation analysis for a more detailed description
of how travelling waves are identified from the raw signal.
Coherently with what expected from previous studies34, in both
mice two main propagation directions are identified: a more
frequent antero-posterior and a less frequent postero-anterior
direction.

It is also worth noting that, as quantitatively shown in35, the
distributions of wave quantitative observables change as a
function of the downsampling factor. With a decreasing spatial
resolution, fewer waves are detected, and they appear more planar
as some complex local patterns are no longer detected. In Fig. 2a,
we show the distribution of local velocities measured over the
original dataset at a spatial resolution of 0.1 mm (black) and the
one downsampled at a spatial resolution of 0.6 mm (orange).
Here, the distributions are sharpened and have a lower mean,
coherent with the global velocities of the typical waves identified.

Two-step inference method
The inner loop. The first step of our inference method can be seen
as a one-way flow of information from data to model and consists

Fig. 2 Summary of wave propagation properties in experimental trials for two different mice. Measures for the quantitative characterization and
comparison of waves accumulated across all pixels and all trials in mouse 1 (upper row) and 2 (lower row), respectively. a Local wave velocity distributions
measured over the original dataset at a spatial resolution of 0.1 mm (black thick line) and the one downsampled at a spatial resolution of 0.6 mm (orange
thin line). b Local wave direction distributions. c Local inter-wave interval distributions. d. Wave propagation modes identified by Gaussian Mixture Model
(GMM). The GMM classification algorithm returns the optimal number of clusters appropriate for grouping the waves identified in the observed dataset,
then assigning each wave to a cluster, assuming each cluster is described by a multivariate Gaussian distribution in the channel space (with its mean vector
and covariance matrix). Distributions in panels a, b and c are at the original resolution (100 μm), while before application of GMM the channel-space
dimension has been reduced to 600 μm (see the original resolution compared to the downsampled one on top of the main panels). For comparison, in
panel a the velocity distribution is also reported for the downsampled signal. In the experimental data, three different wave propagation modes for each
mouse are identified. The spatio-temporal propagation dynamics of each mode is normalized to the temporal center of each wave (from blue to red pixels).
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of estimating model parameters by a likelihood maximization, see
Fig. 3a.

We built a generative model as a network of interacting
populations, each of them composed of 500 AdEx (Adaptive
Exponential integrate-and-fire) neurons. Each population is
modeled by a first-order mean-field equation29,36–38, according to
which all the neurons in the population are described by their
average firing rate. The neurons are affected by spike frequency
adaptation, that is accounted for by an additional equation for each
population (see Methods for details). We remark that we considered
current-based neurons; however, the mean-field model might be
extended to the conductance-based case39,40. Each population
models the group of neurons recorded by a single pixel (the number
of considered pixels, i.e. populations, is obtained after an down-
sampling is performed, as illustrated in Methods). The parameters
of the neuron model, such as the membrane potential, the threshold
voltage, etc. have been set to the values reported in Table 1. The
other parameters of the model (connectivity, external currents, and
adaptation) are inferred from the data. This is achieved by defining
the log-likelihood L for the parameters {ξ} to describe a specific
observed dynamics {S} as

LðfSgjfξgÞ ¼ ∑
i;t

� Siðt þ dtÞ � FiðtÞ
� �2

2c2

" #
ð1Þ

where Fi(t) is the transfer function of the population i and c is the
variance of the Gaussian distribution from which the activity is
extracted (more details about this can be found in the Methods
section). We remark that in this work we consider populations

composed of excitatory/inhibitory neurons. To model this, it is
necessary to use an effective transfer function describing the average
activity of the excitatory neurons and accounting for the effect of
the inhibitory neurons (see Methods for details, Excitatory-
Inhibitory module, the effective transfer function section).

The optimal values for the parameters are inferred from
maximizing the likelihood with respect to the parameters
themselves. The optimizer we used is the gradient-based iRprop
algorithm41. The parameters are not assumed to be isotropic in
the space, and each population (identified by a pixel in the
image of the cortex) is left free to have different inferred
parameters. The resulting parameters can thus be reported in a
map, as illustrated in Fig. 3b-g. Each panel represents, color-
coded, the spatial map of a different inferred parameter,
describing its distribution over the cortex of the mouse.
Specifically, λ, k0, e, and a characterize the inferred shape of
the elliptical exponential-decaying connectivity kernels at a
local level (see Methods, section Elliptic exponentially-decaying
connectivity kernels); b is the strength of the spike frequency
adaptation (see section Generative Model and Eq. (4)); Iext is
the local external input current. Panel H in Fig. 3 presents, for a
few exemplary pixels, the total amount of incoming connectiv-
ity k, and confirms the presence of a strong eccentricity (e) and
prevalent orientations (ϕ) for the elliptic connectivity kernels.
Both of which contribute to the initiation and propagation of
wave-fronts along preferential axes, orthogonal to the major
axis of the ellipses.

In principle, such inferred parameters define the generative
model which reproduces best the experimental data. A major risk

Fig. 3 Inner Loop. a The inner loop: likelihood maximization. b–g Spatial maps of estimated parameters after 700 iterations of iRprop80, that we further
improved by setting priors for the expected spatial decay law of lateral connectivity. Parameters k0, e, λ, and a are the connectivity parameters (weight,
eccentricity, spatial scale, and anisotropy), as defined in Methods; Iext and b are the local external input and the strength of the spike frequency adaptation.
h Ten inferred elliptic connectivity kernels k, presented in an overlayed manner, that illustrate the existence of strong eccentricity e for the elliptic
connectivity kernels. i. Training and validation log-likelihoods (in blue and orange, respectively) as functions of the number of iterations.

Table 1 Neuronal parameters defining the two-population regular and fast-spiking populations model.

θ (mV) τm (ms) Cm (nF) Vr= El (mV) ΔV (mV) τi (ms) Ei (mV) b (nA) τW (s)

exc −50 20 0.2 −65 2.0 5 0 0.005 0.5
inh −50 20 0.2 −65 0.5 5 −80 0 0.5
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while maximizing the likelihood (see Fig. 3i, blue line) is over-
fitting, which we avoid by considering the validation likelihood
(see Fig. 3i, orange line), i.e., the likelihood evaluated on data
expressing the same kind of dynamics but not used for the
inference. A training likelihood increase associated with a
validation likelihood decrease during the inference procedure is
an indicator for over-fitting. This is, however, not the case here.

Notably, there is no spatial regularization in the likelihood. The
spatial smoothness of parameters naturally comes out when
inferring the model from data.

The outer loop. The likelihood maximization (inner loop) con-
strains the dynamics at the following time step, given the activity
at the previous step. Therefore, we expect that running a simu-
lation with the inferred parameters should give a good prediction
of the activity of the network. However, it is not straightforward
that the spontaneous activity generated by the model would
reproduce the desired variety of dynamical properties observed in
the data. Indeed, the constraints imposed within the inner loop
are local in time (i.e., the constraint at a certain time step t only
depends on the state of the network at the previous time step
t− 1). As a consequence, the model is not able to generate the
long-term temporal richness observed in data. In other words,
when running the spontaneous mean-field simulation for the
same duration of the original recording, we found that para-
meters estimated in the inner loop can be adopted to obtain a
generative model capable of reproducing oscillations and travel-
ling wavefronts. However, the activity produced by the model
inferred from the inner loop results is found to be much more
regular as compared to the experimental activity. For instance, the
down state duration and the wavefront shape express almost no
variability when compared to experimental recordings (see Fig. 3,
and Supp. Mat. Fig. S6).

For this reason, it is necessary to introduce the outer loop here
described (see Fig. 4a). First, we analyze the spontaneous activity
of the generative model and compare it to the data, to tune the
parameters that cannot be optimized by direct likelihood
differentiation (see Fig. 4a). Thus, we include an external
oscillatory neuro-modulation in the model (inspired by32), and
look for the optimal amplitude and period of the neuro-
modulation proxy, expected to affect both the values of Iext and
b (more details in Methods section).

The identification of the optimal values for these parameters
requires the definition of a quantitative score to evaluate the
similarity between data and simulation. On the whole set of
waves, we computed the cumulative distributions (i.e. on the
whole set of waves) of the three local observables characterizing
the identified travelling waves (speed, direction, and IWI, already
introduced in Section Characterization of the Cortical Slow
Waves, Fig. 4c, d). The distance between cumulative distributions
we chose is the Earth Mover’s Distance (EMD, see Methods
section for more details). EMD is separately evaluated over each
of these observables (Fig. 4e) in a grid search. We then combined
the three EMDs as in Eq. (20). The resulting “Combined
Distance” is reported in Fig. 4d for a single trial, and is further
constrained by an additional requirement that excludes the zone
marked in gray: we reject those simulations with too long down-
states and too short up-states, if compared to experimental
distributions (see purple and yellow lines in Fig. 4, respectively).
Further details about the rejection criteria can be found in
Methods Section The Outer Loop: grid search and data-
simulation comparison.

The combination of such distances as a function of the two
hyper-parameters (amplitude and period) leads to the identifica-
tion of the optimal point (where the “Combined Distance” is
minimal) reported as a green cross in Fig. 4d. The comparison

between experimental and simulated cumulative macroscopic
distributions for a “good” (optimal match) and a “bad” (non-
optimal match) point in the grid search is depicted in panels 4b
and 4c, respectively. We applied the procedure to both mice, 6
recorded trials per mouse, and calibrated the model on each trial
independently. Optimal values for amplitude and period for each
of them are depicted in Fig. 4f and g, respectively. The
distributions of the inferred neuro-modulation period (T) and
amplitude (A) (Fig. 4f and g, respectively) are consistent between
the two mice. The period mildly oscillates around 1 Hz. Instead,
we observe more variability in the inferred amplitudes: this is
reasonable, because the level of anesthesia changes among trials.
In panel 4h, on the other hand, the span of combined EMD
measurements for each trial in both mice is shown (within the
range of values for amplitude and period considered in the grid
search), depicting the variety of the observed phenomena. The
black points report the “Combined Distance” for the simulation
resulting from the inner loop. Moreover, Fig. 4h shows that the
best “Combined Distance” achieved in the grid search (Fig. 4h,
bottom of the candle) is lower than the worst one (Fig. 4h, top of
the candle), and also than the one obtained for the inner-loop
simulation (Fig. 4h, black points). Indeed, looking at the grid
search results in Fig. 4d, the row corresponding to an amplitude
A= 0 reports results for simulations without neuro-modulation,
i.e. the inner-loop output. We observe that, according to the
metrics we defined, the simulation outcome is much worse than
the optimal point indicated with the green cross.

Validation of the simulation through GMM-based propagation
modes. As shown in Fig. 5, the sequential application of the inner
and the outer loop (i.e., the two-step inference model) results in
an evident improvement of the simulation. Specifically, when
looking at the raster plot, the neuro-modulation (outer loop)
appears to be a key ingredient able to reduce the level of ste-
reotypization of the wave collection, and to introduce elements
that mimic the richness and variability of the biological
phenomenon.

To further stress out this aspect, we introduce a color code for
labeling waves belonging to the different clusters identified as
distinct propagation modes by GMM when the model is applied
to the collection of experimental and simulated waves (see Suppl.
Mat. Detecting the number of components in the GMM for more
details on how the algorithm detects the number of clusters).
Indeed, besides illustrating the propagation features of the wave
collections (as in Fig. 2), we use GMM as a tool for posterior
validation of the simulation outcome (Fig. 6). The idea behind
this approach is that GMM, acting on a wave collection, is able to
identify distinct clusters, grouping wave events with comparable
spatio-temporal features, if each identified cluster is significantly
populated. This happens if the wave collection to which the
GMM is applied for fitting the propagation modes is auto-
consistent, i.e. contains propagation events that represent
instances of the same coherent phenomenon. It is worth noting
that the features fit by GMM are the spatio-temporal propagation
pattern of each wave (i.e. a point in the spatially downsampled
channel space). These features differ from those used by the outer
loop (i.e. local velocity, direction and IWI cumulative distribu-
tions), thus providing a validation for the experiment-simulation
comparison.

Results reported in Fig. 6 suggest this interpretation: here, for
each mouse, the wave collection to which the GMM is applied is
made up by putting together wave events from the six
experimental trials and wave events from the corresponding
simulated trials. In Fig. 6a and e it is reported the comparison
between experimental and simulated distributions of wave
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Fig. 4 Outer Loop. a The second step of the inference method consists in comparing simulations and data, to optimize neuro-modulation amplitude and
period hyper-parameters. Here, we have a bi-directional flow of information from data to model and the other way round. b Direct comparison of the
distributions of velocity (left panel), waves direction (central panel), and IWI (right panel) between data and simulation. The simulation is obtained
selecting the optimal point (i.e. the minimum “Combined Distance” between experimental and simulated distributions) for the hyper-parameters grid
search (amplitude and period of the neuro-modulation signal, see panel d). c Same as panel b, but for a nonoptimal point of the grid search (see panel d).
d Results of the hyper-parameters grid search on a single trial. “Combined Distance” between simulated and experimental distributions (see text for
details) is plotted as a function of the two hyper-parameters (amplitude and period). The gray area depicts the simulations rejected because of too long
down-states (yellow line) or too short up-states (purple line), if compared with experimental distributions. The green cross depicts the optimum value,
while the orange cross is a non-optimum, in fact corresponding to the inner-loop case (A = 0). e EMD between experimental and simulated distributions of
velocities (left), directions (center) and IWI (right), for the same single trial of panel d. f, g Summary (across trials, and for the two different mice) of
optimal hyper-parameter values obtained from the grid search, and their distribution (on the right). h Summary for the span between minimal and maximal
“Combined Distances” for all the trials of the two mice, for the grid search in the same ranges of amplitude and period values of panel d. Black points refer
to “Combined Distance” from the inner-loop simulation. On the right, the histogram of the lower bound of the EMD span is shown.
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velocity (left panel), direction (central panel), and IWI (right
panel). GMM acting on the entire collection (experiments +
simulations) identifies 4 propagation modes; despite differences
between the two mice, results illustrated in the pie charts (panels
Fig. 6b and f) show that the GMM is “fooled” by the simulation,
meaning that the clustering process on the entire collection does
not trivially separate experimental from simulated events. Or
rather, experimental and simulated waves are nicely mixed when
events are grouped in clusters identified by the GMM, implying a
correspondence between data and simulations.

A validation of this is depicted in panels Fig. 6c and g.
Specifically, we compared the optimal simulation with a control
case obtained by “shuffling” the output of the simulation through
channel permutation equally for all the simulated waves. The
GMM correctly reports a segregation between data and numerical
events, suggesting that the GMM is not deceived by a simulation
that is properly approaching the data. In Fig. 6c and g, it is shown
the fraction of occupancy of waves identified in the shuffled
dataset. This case is explored in Supplementary Note 1.

In other words, we can claim that data and simulations
obtained from the two-step inference model here presented
express the same propagation modes (centroids) as shown in
Fig. 6d, h, while the modes expressed by the “shuffled” simulation
(as a control) are orthogonal to modes found in data.

Discussion
In this paper, we have proposed a two-step inference method to
automatically build a high-resolution mean-field model of the
whole cortical hemisphere of the mouse.

In recent years, the field of statistical inference applied to
neuronal dynamics has mainly focused on the reliable estimate of

an effective synaptic structure of a network of neurons42–44. In45

the authors demonstrated, on an in-vitro population of ON and
OFF parasol ganglion cells, the ability of a Generalized Linear
Model (GLM) to accurately reproduce the dynamics of the
network46; in addition, they studied the response properties of
lateral intra-parietal area neurons at the single-trial, single-cell
level. The capability of GLM to capture a broad range of single
neuron response behaviors was analyzed in47. However, in these
works, the focus was on the response of neurons to stimuli of
different spatio-temporal complexity. Moreover, recurrent con-
nections, even when accounted for, did not provide a decisive
correction to the network dynamics. To date, a very few published
studies have focused on the spontaneous dynamics of networks
inferred from neuronal data. Most of them focused on the resting
state recorded through fMRI and on the reproduction of its
functional connectivity22. In23 the temporal and spatial features
of bursts propagation have been accurately reproduced, but on a
simpler biological system, a culture of cortical neurons recorded
with a 60 electrodes array. Here we aim at reproducing the
dynamics of the whole hemisphere of the mouse with approxi-
mately 1400 recording sites.

One of the major risks when inferring a model is the failure of
the obtained generative model to reproduce a dynamics com-
parable to the data. The reason for this is the difficulty to con-
strain some of the observables when inferring a model. A
common example is offered by the Ising model: when inferring its
couplings and external fields, only magnetizations and correla-
tions between different spins are constrained24, but it is not
possible to constrain the power spectrum displayed by the model
and other temporal features. When this experiment is done on the
Ising model itself, this is not a problem: if the dataset is large

Fig. 5 Dynamics comparison. Raster plot of the detected waves in experimental data (top), in simulated data without neuro-modulation (output of the
inner loop, center), and in simulated data with optimal neuro-modulation (output of the outer loop, bottom). For visualization purposes, only 30 s out of the
40 s of the recording (mouse 1, trial 1) are reported. All the waves detected in the three scenarios are classified though a GMM approach; the four GMM
modes are identified from fitting the collection of experimental + simulated waves of all trials. In this chunk specifically, the fourth mode (pink) is not
found. Wave colors indicate the resulting modes of propagation.
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enough, the correct parameters are inferred and also the temporal
features are correctly reproduced. However, if the original model
contains some hidden variables (unobserved neurons, higher-
order connectivities, other dynamical variables), the dynamics
generated by the inferred model might not be representative of
the original dynamics. This led us to introduce the two-step
method, in order to adjust parameters beyond likelihood
maximization.

Another obvious but persisting problem in the application of
inference models to neuroscience has been how to assess the value
of inferred parameters, as well as their biological interpretation.
In the literature, a cautionary remark is usually included, recog-
nizing that inferred couplings are to be meant as “effective”,
leaving of course open the problem of what exactly this means.

One way to infer meaningful parameters is to introduce good
priors. In this work, we assumed that under anesthesia the inter-
areal connectivity is largely suppressed in favor of lateral con-
nectivity, as demonstrated e.g. in28 during a similar oscillatory
regime. Also, the probability of lateral connectivity in the cortex is
experimentally known27 to decay with the distance according to
an exponential shape, with a spatial scale in the range of a few

hundreds of μm. Furthermore, the observation of preferential
directions for the propagation of cortical slow waves48 suggested
us to explicitly account for such anisotropy. For all of these
reasons, we introduced exponentially decaying elliptical con-
nectivity kernels in our model. We remark that inferring con-
nections at this mesoscopic scale allows obtaining information
complementary to that contained in inter-areal connectivity
atlases, where connectivity is considered on a larger spatial scale,
and it is carried by white matter rather than by lateral
connectivity.

Another possible approach to get priors could be to make use
of Structural Connectivity (SC) atlases that, however, ignore
individual variations in anatomic structures and are usually based
on ex-vivo samples for which the structure can be modified by
brain tissue processing49–51. Also, SC atlases fail to track the
dynamic organization of functional cortical modules in different
cognitive processes52,53. Indeed, a key feature of neural networks
is degeneracy, the ability of systems that are structurally different
to perform the same function49. In other words, the same task can
be achieved by different individuals with different neural
architectures.

Fig. 6 Validation of propagation modes. Analysis over the full set of 6 experimental trials and corresponding optimal simulations (for each of the two
mice). Optimal simulations are selected trial-wise following the grid search approach, as described in section The Outer Loop. a and e Direct comparison
between experimental and simulated distributions of wave velocity (left panel), direction (central panel), and IWI (right panel). b and f Fraction of each of
the detected modes in the full collection (experiments + simulations, left), in the sub-collection of experiments only (center), and simulations only (right).
c and g Modes fraction of shuffled simulated waves classified by a GMM fit over shuffled simulation + experimental dataset (see Fig. S3 in Supplementary
Note 1 for a detailed description). Shuffled simulation: a posteriori validation of the simulated model. d and h. Centroids of the 4 gaussian distributions
(modes) in the downsampled channel space describing the collection of experimental and simulated waves fitted with the GMM.
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On the other hand, Functional Connectivity (FC) is individual-
specific an activity-based measure still highly dependent on phy-
siological parameters like brain state and arousal so that FC atlases
might not be representative of the subject under investigation54.
E.g., state-dependent control of circuit dynamics by neuromodu-
latory influences including acetylcholine (ACh) strongly affects
cortical FC55. In addition, functional modules often vary across
individual specimens and different studies52,56,57.

In summary, generic atlases of Structural Connectivity (SC)
and Functional Connectivity (FC) contain information averaged
among different individuals. Though similar functions and
dynamics can be sustained in each individual by referring to
specific SCs and FCs50,51, detailed information about individual
brain peculiarities are lost with these approaches. In the frame-
work here presented, detailed individual connectivities can be
directly inferred in vivo, therefore complementing the informa-
tion coming from SC and FC, and contributing to the construc-
tion of brain-specific models descriptive of the dynamical features
observed in one specific individual.

One of the values added by the modeling technique here described
is that its dynamics relies on a mean-field theory, which describes
populations of interconnected spiking neurons. This is particularly
useful in order to set up a richer and more realistic dynamics in
large-scale spiking simulations of slow waves and awake-like
activity58, that in absence of such detailed inferred parameters
behave according to quite stereotyped spatio-temporal features.

In the framework of the activity we are carrying out in the
Human Brain Project, aiming at the development of a flexible and
modular analysis pipeline for the study of cortical activity35 (see
also59), we developed for this study a set of analysis tools
applicable to both experimental and simulated data, capable to
identify wavefronts and quantify their features.

In perspective, we plan to integrate plastic cortical modules
capable of incremental learning and sleep on small-scale networks
with the methodology here described, demonstrating the bene-
ficial effects of sleep on cognition38,60,61.

This paper is based on data acquired under a Ketamine-
Xylazine anesthesia. An example of application with potential
therapeutical impact is to contribute to the understanding of the
mechanisms underlying the effect of ketamine treatments in
therapy of depression62.

Generally speaking, there are strong evidences of oscillatory
neuro-modulation currents, affecting the cortex and coming from
deeper brain areas (such as the brain-stem), with a sub-Hertz
frequency63,64. However, we acknowledge that this shape for the
neuro-modulation might have a limited descriptive power, and
we plan to develop more general models. A possible choice can be
that of a combination of many oscillatory modes or noisy pro-
cesses such as Ornstein-Uhlenbeck and gaussian processes.
However, the risk of this kind of models is overparametrization.
This raises the necessity of a penalty to discourage a too large
number of parameters and avoid over fitting (see e.g. Akaike
Information Criterion65).

Finally, we stress once again that in the current work we only
considered spontaneous dynamics. Then, we plan to go beyond
spontaneous activity, aiming at modeling the dynamics of slow
waves when the network receives input signals66,67, ranging from
simple (local) electrical perturbations to proper sensory stimuli.
The methodology to achieve this would be very similar to what
presented in68–70. We present an example of the response of the
inferred network to a pulse stimulation in Supp. Mat. Sec-
tion Simulation with pulse stimulation.

Methods
Mouse wide-field calcium imaging. In-vivo calcium imaging datasets have been
acquired by LENS personnel (European Laboratory for Non-Linear Spectroscopy

(LENS Home Page, http://www.lens.unifi.it/index.php)) in the Biophotonics
laboratory of the Physics and Astronomy Department, Florence, Italy. All the
procedures were performed in accordance with the rules of the Italian Minister of
Health (Protocol Number 183/2016-PR). Mice were housed in clear plastic enri-
ched cages under a 12 h light/dark cycle and were given ad libitum access to water
and food. The transgenic mouse line C57BL/6J-Tg(Thy1GCaMP6f)GP5.17Dkim/J
(referred to as GCaMP6f mice (For more details, see The Jackson Laboratory,
Thy1-GCaMP6f, https://www.jax.org/strain/025393; RRID:IMSRJAX:025393))
from Jackson Laboratories (Bar Harbor, Maine, USA) was used. This mouse model
selectively expresses the ultra-sensitive calcium indicator (GCaMP6f) in excitatory
neurons.

Surgery procedures and imaging: 6-month-old male mice were anaesthetized
with a mix of Ketamine (100 mg/Kg) and Xylazine (10 mg/Kg). The procedure for
implantation of a chronic transcranial window is described in16,17. Briefly, to
obtain optical access to the cerebral mantle below the intact skull, the skin and the
periosteoum over the skull were removed following application of the local
anesthetic lidocaine (20 mg/mL). Imaging sessions were performed right after the
surgical procedure. Wide-field fluorescence imaging of the right hemisphere were
performed with a 505 nm LED light (M505L3 Thorlabs, New Jersey, United States)
deflected by a dichroic mirror (DC FF 495-DI02 Semrock, Rochester, New York
USA) on the objective (2.5x EC Plan Neofluar, NA 0.085, Carl Zeiss Microscopy,
Oberkochen, Germany). The fluorescence signal was selected by a band-pass filter
(525/50 Semrock, Rochester, New York USA) and collected on the sensor of a high-
speed complementary metal-oxide semiconductor (CMOS) camera (Orca Flash 4.0
Hamamatsu Photonics, NJ, USA). A 3D motorized platform (M-229 for the xy
plane, M-126 for the z-axis movement; Physik Instrumente, Karlsruhe, Germany)
allowed the correct subject displacement in the optical setup.

Experimental data and deconvolution. We assumed that the optical signal Xi(t)
acquired from each pixel i is proportional to the local average excitatory (somatic
and dendritic) activity (see Fig. 1). The main issue is the slow (if compared to the
spiking dynamics) response of the calcium indicator (GCaMP6f). We estimate the
shape of such a response function from the single-spike response7 as a log-normal
function:

LN
t
dt

; μ; σ
� �

¼ dt
t

1ffiffiffiffiffi
2π

p
σ
exp � ln t

dt � μ
� �2

2σ2

 !
; ð2Þ

where dt= 40 ms is the temporal sampling frequency, and μ= 2.2 and σ= 0.91
have been estimated in16. We assumed a linear response of the calcium indicator
(which is known to be not exactly true7) and we applied the deconvolution to
obtain an estimation of the actual firing rate time course Si(t). The deconvolution is
achieved by dividing the signal by the log-normal in the Fourier space:

ŜiðkÞ ¼
X̂iðkÞ
L̂NðkÞΘðk0 � kÞ ð3Þ

where X̂iðkÞ ¼ fftðXiðtÞÞ and L̂NðkÞ ¼ fftðL̂NðtÞÞ (fft( ⋅ ) is the fast Fourier trans-
form). Finally, the deconvolved signal is SiðtÞ ¼ ifftðŜiðkÞÞ (ifft( ⋅ ) is the inverse fast
Fourier transform). The function Θ(k0− k) is the Heaviside function and is used to
apply a low-pass filter with a cut-off frequency k0= 6.25 Hz.

Generative Model. We assumed a system composed of Npop (approximately 1400,
as the number of pixel) interacting populations of neurons. The population j at
time t has a level of activity (firing rate) defined by the variable Sj(t) (expressed in
ms−1). As anticipated, each population j is associated to a pixel j of the experi-
mental optical acquisition, and contains Nj neurons; Jij and Cij are the average
synaptic weight and the average degree of connectivity between populations i and j,
respectively.

We defined the parameter kij=NjJijCij as the relevant one in the inference
procedure. We also considered that each population receives an input from a
virtual external population composed of Next

j neurons, each of which injecting a
current Jextj in the population with a frequency νextj . Similarly to what done above,
we defined the parameter Iextj ¼ νextj Next

j Jextj .
In a common formalism, site i at time t is influenced by the activity of other

sites through couplings kik23, in terms of a local input current defined as

μiðtÞ ¼ ∑
k
kikSkðtÞ þ

Iexti

Cm
� biWiðtÞ

Cm
ð4Þ

The term � biWiðtÞ
Cm

accounts for a feature that plays an essential role in modeling

the emergence of cortical slow oscillations: the spike frequency state-dependent
adaptation, that is the progressive tendency of neurons to reduce their firing rates
even in the presence of constant excitatory input currents. Spike frequency
adaptation is known to be much more pronounced in deep sleep and anesthesia
than during wakefulness. From a physiological stand-point, this is associated to the
calcium concentration in neurons and can be modeled introducing a negative
(hyper-polarizing) current on population i (the− bi Wi(t) term in Eq. (4)).

W(t) is the adaptation (adimensional) variable: it increases when a neuron i
emits a spike and is gradually restored to its rest value when no spikes are emitted;
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its dynamics can be written as

Wiðt þ dtÞ ¼ ð1� αwÞWiðtÞ þ αwτwSiðt þ dtÞ ð5Þ
where αw ¼ 1� expð�dt=τwÞ, and τw is the characteristic time scale of spike
frequency adaptation.

It is also customary to introduce the adaptation strength bi that determines how
much the fatigue influences the dynamics: this factor changes depending on neuro-
modulation and explains the emergence of specific dynamic regimes associated to
different brain states. Specifically, higher values of b (together with higher values of
recurrent cortico-cortical connectivity) are used in models for the induction of
Slow Oscillations.

It is possible to write down the dynamics for the activity variables by assuming
that the probability at time t+ dt to have a certain level of activity Si(t+ dt) in the
population i is drawn from a Gaussian distribution:

pðSiðt þ dtÞjSðtÞÞ ¼ pðSiðt þ dtÞjFiðtÞÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πc2

p exp � ðSiðt þ dtÞ � FiðtÞÞ
�2

2 c2

" #
:

ð6Þ
For simplicity, we assumed c= 2 s−1 to be constant in time, and the same for all

the populations. Its temporal dynamics might be accounted for by considering a
second-order mean-field theory36,71.

The average activity Si(t+ dt) of the population i at time t+ dt is computed as a
function of its input by using a leaky-integrate-and-fire response function

hSiðt þ dtÞi ¼ F½μiðtÞ; σ2i ðtÞ� :¼ FiðtÞ ð7Þ
where F½μiðtÞ; σ2i ðtÞ� is the transfer function that, for an AdEx neuron under
stationary conditions, can be analytically expressed as the flux of realizations (i.e.,
the probability current) crossing the threshold Vspike= θ+ 5ΔV40,72:

FðμÞ ¼ F μ; σ2 ¼ σ2?
� � ¼ 1

σ2?

Z θþ5ΔV

�1
dV
Z θþ5ΔV

maxðV ;Vr Þ
du exp � 1

τmσ
2
?

Z u

V
½f ðvÞ þ μτm�dv

� �
:

ð8Þ
where f ðvÞ ¼ �ðvðtÞ � ElÞ þ ΔV exp ðvðtÞ � θÞ=ΔV	 


, τm is the membrane time
constant, El is the reversal potential, θ is the threshold, Cm is the membrane
capacitance, and ΔV is the exponential slope parameter. The parameter values are
reported in Table 1. Here we considered a small and constant σ2? ¼ 10�4 mV2=s,
since we assumed small fluctuations, and fluctuations have a small effect on the
population dynamics in any case. We will verify such assumption a posteriori. It is
actually straightforward to work out the same theory without making any
assumption on the size of σ, the only drawback being an increased computational
power required to evaluate a 2D function (in Eq. (8)) during the inference (and
simulation) procedure.

In a first-order mean-field formulation, the gain function depends on the
infinitesimal mean μ and variance σ2 of the noisy input signal. μ is proportional to
K=NJp (number of neurons, weights, and connectivity, respectively). However, Jp
can be rescaled in order to keep K fixed. On the other hand, σ2 is proportional to
K2/(Np), thus necessarily depending on N. However, this latter aspect is neglected
in our current formulation (e.g. see Eq. (8)), as we assumed a constant small value
for the infinitesimal variance, allowing to arbitrarily choose N, with the proper
rescaling. In order to be compliant with neuronal densities coming from
physiological literature (about 45 K neurons per mm2) we took N= 500 in
our model.

The inner loop: likelihood maximization. It is possible to write the log-likelihood
of one specific history {Si(t)} of the dynamics of the model, given the parameters
{ξk}, as follows:

LðfSgjfξgÞ ¼ ∑
i;t

� Siðt þ dtÞ � FiðtÞ
� �2

2c2

" #
ð9Þ

The optimal parameters, given a history of the system {S(t)}, can be obtained by
maximizing this log-likelihood. When using a gradient-based optimizer (we indeed
used iR-prop), it is necessary to explicitly compute the derivatives

∂LðfSgjfξgÞ
∂ξk

¼ �∑
i;t

ðSiðt þ dtÞ � FiðtÞÞ
c2

� �
∂FiðtÞ
∂μi

∂μi
∂ξk

ð10Þ

where ∂FiðtÞ
∂μi

are computed numerically, while ∂μi
∂ξk

can be easily evaluated analytically.

The value of c2 is not relevant since it can be absorbed in the learning rate.
The optimization procedure was performed independently on the 12 data

chunks of 40 s here considered. For each chunk, parameters were actually
optimized on the first 32 s, while the remaining 8 s were used for validation. In
more detail, the likelihood evaluated on such a validation dataset with the values of
the parameters inferred on former datasets is referred to as validation likelihood,
and helps to prevent the risk of overfitting.

Excitatory - inhibitory module, the effective transfer function. In this paper, the
single population (pixel) was assumed to be composed of two sub-populations of

excitatory and inhibitory neurons; the mean of the input currents reads as:

μei ðtÞ ¼ ∑kk
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It is not always possible to distinguish the excitatory Se from the inhibitory
firing rates Si in experimental recordings. Indeed, in electrical recordings, the signal
is a composition of the two activities. However, in our case we can make the
assumption that the recorded activity, after the deconvolution, is a good proxy of
the excitatory activity Se. This is possible thanks to the fluorescent indicator we
considered in this work, which targets specifically excitatory neurons. In this way, it
is possible to constrain the excitatory activity and to consider Si as hidden variable.

The transfer function depends both on the excitatory and the inhibitory
activities Fe(Se, Si). However, Si is not observable in our dataset, and it is necessary
to estimate an effective transfer function for the excitatory population of neurons
by making an adiabatic approximation on the inhibitory one73. We defined the
effective transfer function as

F Seð Þ ¼ Feff
e Seð Þ ¼ Fe Se; Si Seð Þ� � ð12Þ

The inhibitory activity Si is assumed to have a faster time scale. In first
approximation, a biologically plausible assumption when comparing the activity of
fast-spiking inhibitory neurons with regular spiking excitatory neurons. As a
consequence, Si(Se) can be evaluated as its stationary value given a fixed Se value.
The likelihood then contains this new effective transfer function as a function of kee

and kei, which are the weights to be optimized. The dependence on kie, kii

disappears: they have to be suitably chosen (we set kie= kii=− 25 mV in our case)
and cannot be optimized with this approach.

Elliptic exponentially decaying connectivity kernels. Having a large number of
parameters, especially in the case of small datasets, can cause convergence pro-
blems and can increase the risk of overfitting. However, experimental constraints
and priors can be used to reduce the number of parameters to be inferred. In our
case, we decided to exploit the information that lateral connectivity decays with the
distance, in first approximation according to a simple exponential reduction law27,
with long-range inter-areal connection suppressed during the expression of slow
waves28. Furthermore, we supposed that a deformation from a circular symmetry
to a more elliptical shape of the probability of connection could facilitate the
creation of preferential directions of propagation observed in the experiments.

Therefore, we included this in the model as an exponential decay on the spatial
scale λ. In this case the average input current to the population i can be written as
already presented in Eq. (4), with kik taking into account the above-discussed
assumptions:

μiðtÞ ¼ ∑
k
kikSkðtÞ þ

Iext
Cm

� biWiðtÞ
Cm

; kij ¼ kj0 exp � dij
λj

 !
ð13Þ

where dik is the distance between populations (i.e. pixels) i and k,

dik ¼ ρik 1þ ek cos 2θik þ 2ϕk
� �� �

1þ ak cos θik þ ϕk
� �� � ð14Þ

Parameters can be inferred by differentiating such parametrization of the
connectivity kernel. For example, the derivative with respect to the spatial scale λk
to feed Eq. (10) would be:

∂μiðtÞ
∂λk

¼ kikSkðtÞ
dik
λ2k

ð15Þ

Gaussian mixture model. Collected the transition times to the up state in each of
the L downsampled channels (44 and 41 informative channels for the two mice,
respectively), each wave is hence described by a vector x in a L-dimensional space.
The problem of classifying slow waves into typical spatio-temporal patterns of
propagation can then be tackled as a clustering problem in such high-dimensional
space. We chose the approach based on Gaussian Mixture Model (GMM)74.

We initially assumed K typical propagation patterns, each described by a L-
dimensional multi-variate Gaussian, with its mean μk and covariance matrix Σk.
The probability of a wave xn to belong to the k-th cathegory is hence given by the
related multi-variate Gaussian density function:

pðxnjkÞ ¼ N xn; μk;Σk

� � ð16Þ
Ignoring which cluster each wave belongs to, one has to sum over all the

possibilities, taking into account the relative weights π of the K Gaussians in the
mixture. The total likelihood for the set X of waves hence reads:

pðXÞ ¼
YN
n¼1

pðxnÞ ¼
YN
n¼1

∑
K

k¼1
πkN xn; μk;Σk

� � ð17Þ

in fact depending on the set of Gaussian means and covariances θ≡ {μk, Σk},
p(X)= p(X; θ), as well as on the number K and the relative proportions π of
propagating modes.

The scope of this clustering procedure is in first place to infer the features of
typical propagation patterns, i. e. their mean μ and their covariance Σ. Then, each
wave is assigned to one of these modes. To this aim, maximum-likelihood
approaches are exploited, pointing at finding the optimal values of parameters θ
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that maximize the likelihood LðθÞ � pðX; θÞ from Eq. (17). This can be easily
attained through the Python library sklearn.mixture.GaussianMixture33, exploiting
the Expectation-Maximization (EM) algorithm for likelihood maximization.

Notice that EM is guaranteed to converge to a local maximum of the likelihood.
This implies that, for non-convex problems, the solution to which the algorithm
converges depends on the initial condition. To get rid of this dependence, a
possible strategy is to run the maximization by reshuffling the data and finally
averaging over the final configurations of clusters.

In fact, the number of typical propagation patterns K is not even known a
priori, so it has to be inferred as well. To face this problem, we run the above
procedure for different numbers K of clusters and compare the resulting
performances, exploiting a Gaussianity test (scipy.stats.normaltest75) as a
quantitative parameter for comparison.

Neuro-modulation. The periodic neuro-modulation we included in our network
was modeled as a periodic oscillation of the parameters b and Iext described by the
following equations:

Iexti ðtÞ ¼ Iext;0i 1þ A cos 2πt
T

� �� �
biðtÞ ¼ b0i 1þ A

2 cos 2πt
T

� �� �
(

ð18Þ

where we defined Iext;0i and b0i as the set of parameters inferred in the inner loop, while
A and T are the amplitude and the oscillation period optimized in the outer loop.

The outer loop: grid search and data-simulation comparison. There can be
different ways to define the outer loop. One way might be an iterative algorithm
where at each step simulation and data are compared, and parameters are updated
with some criterion.

Here we used a simpler strategy, implementing a grid search of the parameters
to be optimized, in order to find the best match between simulations and data. The
parameters we considered are A and T, namely the amplitude and the period of the
neuro-modulation (Eq. (18)). We run a 21(T) × 22(A) grid search with parameter
A linearly ranging from 0.0 to 6, and parameter T linearly ranging from 0.37 s to
6.9 s. This choice was performed heuristically. However, it is possible to run a wider
and denser grid search at the cost of a higher computational expense.

Thus, we processed the simulation run over for each couple of values (A, T) in
the grid, applying the same pipeline of analysis applied to experimental data,
obtaining in output the distribution of the three previously defined local
observables: wave speed, propagation direction and inter-wave interval (see Section
Slow Waves and Propagation analysis for more details).

We quantitatively compared each of these distributions with the ones observed in
experimental data applying an Earth Mover’s Distance (EMD) measure. Specifically,
given two distributions u and v, EMD can be seen as the minimum amount of work
(i.e. distribution weight that needs to be moved multiplied by the distance it has to be
moved) required to transform u into v. In a more formal definition, EMD is also
known as the Wasserstein distance between the two 1D distributions, namely

EMDðu; vÞ ¼ inf
π2Γðu;vÞ

Z
R ´R

jx � yj dπðx; yÞ ¼
Z þ1

�1
jUðsÞ � VðsÞj ds ð19Þ

where Γ(u, v) is the set of (probability) distributions onR ´R whose marginals are u
and v on the first and second factors, respectively. U and V are the respective
cumulative density functions (CDFs) of u and v. The proof of the equivalence of both
definitions can be found in76.

Specifically, for the purposes of this work, we evaluated the CDFs of each
distribution sampling with a discrete binning. Moreover, in order to have this
measure independent from the characteristic bin scale of the three studied
observables, we evaluated EMD for speed, directions and IWI in “bin units”: thanks
to this approach, we can combine these measurements without incurring into non-
homogeneous measure unit inconsistencies.

Then, to define a quantitative “score” describing the similarity between data and
simulation, we chose to combine the three EMDs computed over the three
macroscopic local observables in an Euclidean way

EMD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EMD2

speed þ EMD2
direction þ EMD2

IWI

q
ð20Þ

Finally, we imposed two constraints on the simulation output, in order to reject
biologically meaningless values for A and T: 1) most of the down-state duration
distribution and 2) most of the wave duration distribution need to be both lower
than their minimum values observed in experimental data (after having removed
outliers; acceptance criteria: 98th and 95th percentile, respectively). This allowed us
to exclude an entire region of non-interesting simulations and identify the optimal,
biologically meaningful results.

Slow waves and propagation analysis. To compare the simulation outputs with
experimental data we implemented and applied the same analysis tools to both sets.
Specifically, we improved the pipeline described by some of us in16,35 to make it
more versatile.

First, experimental data were arranged to make them suitable for both the
application of the slow wave propagation analysis and the inference method. Thus,
data were loaded and converted into a standardized format; the region of interest
was selected by masking channels of low-signal intensity; fluctuations were further
reduced applying a spatial down-sampling: pixels were assembled in 2 × 2 blocks
through the function scipy.signal.decimate75, curating the aliasing effect with the
application of an ideal Hamming filter. Then, data were ready to be both analyzed
or given as input to the inference method.

Both experimental data and simulation output can then be given as
input to these analysis tools. The procedure we followed is articulated into four
blocks:

● Processing: the constant background signal is estimated for each pixel as
the mean signal computed on the whole image set; it is then subtracted
from images, pixel by pixel. The resulting signal is then normalized by its
maximum.

● Trigger Detection: transition times from Down to Up states are detected.
These are identified from the signal local minima. Specifically, the
collection of transition times for each channel is obtained as the vertex
of the parabolic fit of the minima.

● Wave Detection: the detection method used in16 and described in77 is
applied. It consists in splitting the set of transition times into separate
waves according to a Unicity Principle (i.e. each pixel can be involved in
each wave only once) and a Globality Principle (i.e. each wave needs to
involve at least 75% of the total pixel number).

● Wave Characterization: once that the wave collection has been identified,
such set of waves is characterized by measuring local wave velocities, local
wave directions and local SO frequencies.

Specifically, we computed the local wave velocity as

vðx; yÞ ¼ 1
j∇Tðx; tÞj ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂Tðx;yÞ

∂x

� �2
þ ∂Tðx;yÞ

∂y

� �2r ð21Þ

where T(x, y) is the passage time function of each wave. Having access to this
function only in the pixel discrete domain, the partial derivatives have been
calculated as finite differences

∂Tðx;yÞ
∂x ’ Tðxþd;yÞ�Tðx�d;yÞ

2d
∂Tðx;yÞ

∂y ’ Tðx;yþdÞ�Tðx;y�dÞ
2d :

(

where d is the distance between pixels.
Concerning local directions, for each wave transition we computed a weighted

average of wave local velocity components through a Gaussian filter w(μ, σ) centered
in the pixel involved in the transition and with σ= 2. The local direction associated
to the transition is

θðx; yÞ ¼ tan�1
hvyiwðy;σÞ

hvxiwðx;σÞ

 !
ð22Þ

Finally, the SO local frequency fSO is computed as the inverse time lag of the
transition on the same pixel by two consecutive waves. Defining T(w)(x, y) as the
transition time of wave w on pixel (x, y), the SO frequency can thus be computed as

f ð1;2ÞSO ðx; yÞ ¼ 1

Tð2Þðx; yÞ � T ð1Þðx; yÞ ð23Þ

Statistics and reproducibility. The model is built upon several recordings coming
from two different mice (six for each mouse). The obtained results are remarkably
comparable between the two mice, indicating a good reproducibility of our method.

We performed validation on our model and acquired long simulations in order
to conduct a grid search for optimal parameters. This ensured the accuracy and
reliability of our results.

Data availability
Experimental wide-field calcium imaging recordings of anesthetized mice are publicly
available datasets from the EBRAINS Knowledge Graph platform at the link https://kg.
ebrains.eu/search/instances/Dataset/28e65cf1-ce13-4c12-92dc-743b0cb6686278.

Code availability
The implementation of the inference method and data-analysis is available on GitHub at
the link https://github.com/APE-group/CorticalSW_Inference, together with the source
codes to reproduce the figures in this paper.
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