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Abstract 

In crop protection science, variable rate application refers to the application 

of plant protection products at variable rates according to the size of the canopy to 

be sprayed. This system, therefore, adapts the spray mixture (pesticide + water) to 

the canopy in real time. As a result, this system enables significant improvements in 

spray deposition while reducing the environmental footprint simultaneously. In order 

to perform variable-rate application, a sensing system capable of characterising the 

canopy in real time is required. In recent years, many sensors have been developed 

that can detect the canopy, such as laser scanner, ultrasonic sensor, depth cameras 

and multispectral cameras. In addition, many technologies and techniques have been 

proposed for the acquisition and management of canopy data. Under these 

circumstances, the aim of this thesis is to evaluate the most promising sensors for the 

acquisition of canopy data (height, thickness, volume, density, foliar layers) in order 

to support the development and testing of a variable-rate implementation kit, based 

on an innovative ultrasonic sensor, with the aim of reducing the environmental 

footprint of crop protection operations. The first step of this work is presented in 

Paper I, which describes a LiDAR-based algorithm for the automatic 

characterisation of the tree canopy. This algorithm has been developed to automate 

and simplify the canopy volume calculation in order to support future developments 

of the variable-rate system. The algorithm was tested in different vineyards to 

evaluate its reliability in canopy characterisation. The results showed a good 

reliability in canopy volume estimation. In fact, a coefficient of determination of 

around 0.7 is obtained between manual and LiDAR-based measurements. These 

findings prove the effectiveness of the proposed algorithm. On this basis, the Paper 

II disclosed an evaluation of different technologies (mobile laser scanner, mobile 

app, unmanned aerial vehicle) and techniques (structure from motion, 2-3D point 

clouds) in the assessment of canopy size parameters such as thickness, height and 

volume. Therefore, the study aimed to evaluate, compare and cross-validate the 
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potential and limitations of different technologies to characterise the vine canopy and 

its spatial variability of growth. The highest coefficients of determination were 

obtained between the height  (R2 > 0.8) and volume data  (R2 > 0.7) for the mobile 

app vs. mobile laser scanner (R2 = 0.86) and unmanned aerial vehicle  vs. mobile 

laser scanner (R2 = 0.78) comparisons, respectively. For the thickness data, instead, 

the correlations were weaker (R2 > 0.5). On the basis of these results, all tools 

analysed are able to correctly assess different canopy size characteristics. In 

particular, the mobile laser scanner combines good estimation of canopy size 

characteristics with good usability, being an embedded solution. The further step was 

to combine this information with the innovative ultrasonic sensor proposed for the 

development and implementation of the variable-rate system. Therefore, Paper III 

presented the results of both the reliability of the innovative ultrasonic sensor in 

terms of canopy characterisation and the relationship between sensor readings, 

canopy characteristics and spray rates with the aim of future ultrasonic sensor 

implementation in a variable-rate sprayer. Based on this, the study revealed 

interesting correlations, particularly between the canopy height and the ultrasonic 

sensor parameters (R2 > 0.7) and between the canopy volume  and the ultrasonic 

sensor measurements (R2 > 0.6). On the basis of these findings, two actuation ranges, 

based on normalised deposition and spray coverage parameters, between sensor 

readings and applied spray volumes were investigated in order to transfer this system 

to a sprayer. This allowed the spray rates to be refined in relation to the ultrasonic 

readings, thus enabling the use of this sensor in a variable-rate sprayer. Finally, in 

Paper IV, the variable-rate application kit was integrated into a sprayer and tested 

to verify the operational functioning of the system and to analyse its economic 

performance over an entire crop protection season. The study analysed the 

parameters of spray deposition and spray coverage for evaluating the reliability of 

quality and quantity distribution of plant protection products. Based on the results 

obtained, the variable-rate system ensures good deposition rates and coverage of 
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plant protection products. In fact, over the three trials, the variable-rate system 

provided spray coverage of approximately 28%, compared to approximately 36% for 

the conventional system (uniform application). Using 30% coverage as the threshold 

beyond which overspray occurs, the uniform application system over-sprayed the 

canopy, particularly the part of the canopy that lies near the cordon. Moreover, the 

economic analysis highlighted the potential of variable-rate system. In fact, it 

showed significant savings in pesticide, water and fuel consumption. These savings 

had an impact both on the economic analysis, leading the break-even point to around 

the 4th year, and on the environmental sustainability of the crop protection stages, 

reducing above all the pesticides consumption. 
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1. Introduction 

Nowadays, crop productions are specialised systems, characterised by high 

planting densities, low genetic diversity and high intensity of external inputs (Di 

Bene et al. 2022). In this context, crops are highly susceptible to pests and diseases 

(Rockström et al. 2017), so the use of plant protection products (PPPs) is necessary 

to protect the crop from pathogens and to achieve high-quality production (Gil et al. 

2014). In recent decades, the extensive use of PPPs has contributed to a strong 

negative environmental footprint (Messéan et al. 2021). Pesticide use also affects the 

economic sustainability of farms, as PPPs are very expensive, costing farmers 

hundreds of euros per hectare (Mahmud et al. 2021).  According to research by 

Pimentel, pesticide use in the United States region results in annual environmental 

and economic losses of approximately $8.2 billion (Pimentel 2005). This is most 

evident in tree crops, such as vines, where plants need to be sprayed with pesticides 

several times during the season (Román et al. 2020). In order to understand the scale 

of pesticide consumption, the trends in pesticide use over the last decade and the 

ratio of use between different types of pesticide are shown in Figure 1 for the main 

European wine-growing countries (Eurostat 2022). 

 

a) 
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b) 

Fig.1a. – Pesticide consumption trends in the main European country for arboreal crops. 
Fig.1b. – Detailed pesticide consumption in 2020 in the main European country for tree crops.
(Eurostat 2022) 

On the basis of Figure 1a, the trend of pesticide consumption in Italy between 

2011 and 2020 seems to be decreasing. In fact, in 2011 it was around 70,000.00 

tonnes and at the end of this period it was around 55,00.00 tonnes, with a percentage 

reduction of 20%. In the other countries (France and Spain) the trend is very different 

from that in Italy. In fact, in France the trend is unpredictable because of the peaks 

and troughs in the middle part of the period considered. However, pesticide 

consumption at the beginning of the period is comparable to that at the end. On the 

contrary, the trend in Spain was a slight increase over the period considered. In fact, 

it was around 70,000.00 tonnes in 2011 and around 75,00.00 tonnes at the end of the 

period, with a percentage increase of around 5%.  

The data on pesticide consumption shown in Figure 1a include the total 

amount of pesticides, but cover different types of pesticides, such as fungicides, 

bactericides, herbicides, molluscicides, plant growth regulators and other products. 

Figure 1b shows the consumption of different types of pesticides in the main 

European countries. The categories fungicides, bactericides and herbicides are the 

most represented in the three countries. In Italy and Spain, only the category 

fungicides/bactericides accounts for more than half of the total pesticide 
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consumption. In France, this category represents slightly less than half of the total 

pesticides and the herbicides category is the most represented. This data is consistent 

with the findings of Pertot et al. (2017), who highlighted that it is common to apply 

an average of 10-15 treatments per year for fungal pathogens in Mediterranean basin 

tree crops (Pertot et al. 2017). In addition, the machinery used to spray PPPs does 

not have high efficiency pesticide deposition (Balsari and Marucco 2009). In fact, 

according to various studies, the amount of pesticide applied to the target is no more 

than 55% of the total volume sprayed, and in many cases as little as 20% (Chen et 

al. 2013; Hong et al. 2018). 

On this basis, public authorities have focused their attention in recent years 

on drastically reducing the use of pesticides and/or improving the efficiency of 

spraying operations (European Directive 2009/128/EC 2009; MIPAAF 2014). On 

this path, for instance, the maximum amount of copper that can be used has recently 

been decreased by the European Commission to 28 kg per hectare over a 7-year 

period (an average of 4 kg per hectare per year) (EU Regulation 2018/1981 2018). 

In addition, the European Commission has recently established challenging 

objectives to achieve a wholesome and sustainable food system in its publication 

"From Farm to Fork" (European Commission 2020). To fulfil these targets, farmers 

will need to reduce the number of chemical inputs such as PPPs, fertilisers and 

antimicrobials by at least 50% by 2030. 

Under these circumstances, the Precision Agriculture (PA) became a valuable 

strategy (Ammoniaci et al. 2021). According to the 14th International Conference on 

Precision Agriculture (ICPA), PA is “a management strategy that uses a wide range 

of technologies to gather, process and analyse data for the purpose of guiding 

targeted actions that improve the efficiency, productivity and sustainability of 

agricultural operations” (Sulecki 2018).Technologies such as sensors, GNSS 

receivers, microprocessors and others have paved the way for improvements in 

spraying techniques and machinery. (Gil et al. 2014). In this context, precision 
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spraying relies on precise application of PPPs based on canopy information such as 

shape, architecture, size and density. (Tona et al. 2018). Therefore, the precision 

spraying refers to the application of plant protection products (PPP) at variable rates 

according to the size of the canopy to be sprayed (A. Miranda-Fuentes et al. 2016). 

For this reason, it is also called Variable-Rate Application (VRA) (Gil et al. 2007; 

Román et al. 2020). 

Traditionally, crop protection treatments are applied uniformly, but the 

bottleneck is that crop canopies don't grow uniformly across a field (Wandkar et al. 

2018). This aspect causes unavoidable inhomogeneous depositions of PPPs, 

resulting in underspray or overspray and causing significant environmental impact 

due to spray drift (Abbas et al. 2020). Instead, the VRA system adapts, in real-time, 

the spray mixture (PPP + water) to the canopy size or growth stage of trees. 

Therefore, a sensing system capable of assessing the spatial variability of canopy 

growth is necessary to perform VRA in tree crops (Gil et al. 2013). This is valid for 

both sensor-based VRA and map-based VRA. In fact, both when a sensor calculates 

the canopy characterisation in real time and performs the spray rate adjustment at the 

same time, and when the canopy characterisation is performed in one period and the 

VRA is subsequentially performed, a sensing system is essential to perform it (Del-

Moral-Martínez et al. 2020; Escolà et al. 2013; Román et al. 2020). For this reason, 

a variety of sensors, tools and techniques are used to characterise the canopy of tree 

crops and, depending on the distance between the sensing system and the target, are 

differentiated in remote sensing and proximal sensing techniques (Ammoniaci et al. 

2021; Arnó et al. 2013; López-Granados et al. 2020; Sassu et al. 2021).  
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1.1. Proximal sensing technologies for canopy characterisation 

In crop or forestry science, the remote sensing relies on information gathering 

about a phenomena or a target without coming into contact with it (Hall et al. 2002). 

It is thus a set of techniques that enable the detection of the physical or chemical 

properties of an object from a certain distance (Matese et al. 2015). Sensing 

technology is therefore fundamental to detecting the characteristics or properties of 

an object. The distance between the sensor and the target distinguishes remote 

sensing from proximal sensing (Ammoniaci et al. 2021; Khaliq et al. 2019). In fact, 

the distance can vary from a few metres to thousands of kilometres, depending on 

the platform in which the sensors are embedded. If the distance is close, it is proximal 

sensing, otherwise it is remote sensing.  

In recent years, many applications of remote or proximal sensing techniques 

have been tested to detect the spatial variability of crops, predict crop yield, 

characterise and quantify canopy size, estimate water stress and predict crop diseases 

(Anifantis et al. 2019; Chandel et al. 2021; Khaliq et al. 2019; Ouyang et al. 2020; 

Romero et al. 2018; Rosell Polo et al. 2009; Sun et al. 2017; Terrón et al. 2015; 

Verma et al. 2016). It is generally accepted that for a specialised crop such as vines, 

and for some objectives such as canopy characterisation, proximal sensing is more 

appropriate than remote sensing based on satellite data because of its high spatial 

resolution, which allows better discrimination of canopy patterns (Khaliq et al. 2019; 

Matese et al. 2015). Instead, UAV-based remote sensing can provide greater 

accuracy and spatial resolution, paving the way for canopy characterisation and 

assessment of intra-field spatial variability in viticulture (Lorenzo Comba et al. 2019; 

Di Gennaro and Matese 2020; Matese and Di Gennaro 2018). However, a 

comprehensive comparison between remote and proximal sensing, terrestrial and 

aerial, real-time and post-processing is lacking to better understand the potential and 

limitations of different technologies for a strategic objective such as the canopy size 



20 | P a g e  
 

quantification. 

In arboreal crop protection science, the assessment of canopy size has always 

been a pivotal aspect for adjusting the rate of PPPs to plants (Pergher and Petris 

2008). Originally, the canopy measurements were made using manual techniques, 

and then, converted into appropriate canopy indicators such as Leaf Area Index 

(LAI), Tree Row Volume (TRV), Leaf Wall Area (LWA) and others (Antonio 

Miranda-Fuentes et al. 2015). In general, manual techniques are time-consuming, 

subject to human error and, in some cases such as the LAI index, destructive 

measurement (Cohen et al. 2000). For these reasons, a number of instruments have 

been developed over the years to provide more efficient, accurate and faster 

measurement methods (De Bei et al. 2016; Grantz et al. 1993). Thanks to 

technological advances, many sensors have been developed, proposed and field-

tested in recent years to measure canopy parameters in tree crops (Escolà et al. 2011; 

Rinaldi et al. 2013; Rosell et al. 2009). The most promising sensors for canopy 

characterisation in arboreal crops can be divided into two main categories: passive 

sensors and active sensors. (Rodríguez-Gonzálvez et al. 2014). This distinction is 

based on different modes of operation (Stamatiadis et al. 2010). The first category 

depends on the light available in the environment, as sensors detect the reflectance 

of natural sunlight reflected from a target (L. Comba et al. 2020; Matese and Di 

Gennaro 2018; Terrón et al. 2015). Instead, the second category actively uses an 

artificial signal (laser beam or ultrasonic waves) to detect the target, (Colaço et al. 

2018; Escolà et al. 2011; Llorens et al. 2011). 

Passive sensor 

This category includes multispectral, hyperspectral, red-green-blue (RGB) 

and stereo cameras. The first two technologies are able to measure the 

electromagnetic radiation reflected by canopies. This allows the spectral response of 

plants to be distinguished and their health condition to be assessed using various 

vegetation indices such as Normalised Difference Vegetation Index (NDVI), 
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Normalised Difference Red Edge Index (NDRE) and others (Mazzia et al. 2020; 

Sirera et al. 2021). These sensors can be categorised as multispectral if they have a 

small number of broad or narrow bands (less than 20) or as hyperspectral if they have 

a large number of narrow bands (Ammoniaci et al. 2021). They do not directly assess 

canopy dimensions, but focus on plant vigour, which is assessed using various 

indices and methods such as Plant Cell Density (PCD) (Román et al. 2020). 

However, many studies have shown promising correlations between vine vigour and 

the presence of plant diseases or pathogens, such as fungal infections, botrytis 

(Botrytis cinerea Pers.) and the yellow spider mite (Eotetranychus carpini Oud.), 

allowing them to be used for canopy characterisation and subsequently for precision 

spraying (Bramley et al. 2011; Ferrer et al. 2020, Román and Planas 2018). 

Typically, these sensors are embedded in satellites or UAVs (Ammoniaci et al. 

2021). A UAV-based multispectral camera is shown in Figure 2. 

  
Fig.2. –    UAV-based multispectral camera (Micasense Altum Camera, AgEagle Aerial Systems 
Inc., Wichita, Kansas, USA). 

RGB cameras work in a similar way to multispectral cameras, except that 

they only detect the red, green and blue spectral bands (around 400 - 700 nm) 

(Matese and Di Gennaro 2018). Thanks to the high resolution of these cameras, it is 

possible to obtain 2D images with very high spatial resolution. This makes it possible 

to obtain 3D plant models using Structure from Motion (SfM) algorithms (Lorenzo 

Comba et al. 2020). Therefore, the combination of the RGB sensor and the 

appropriate algorithms (SfM) paves the way for the characterisation of the tree 

canopy (Jay et al. 2015). In fact, Kalisperakis et al. showed relevant correlations 
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between the LAI index and 3D crop surface models based on RGB camera data (R2 

= 0.81) (Kalisperakis et al. 2015). The 3D crop models can be also obtained with 

multispectral imagery. Comba et al. reported  promising correlations (R2 = 0.82) 

between manual LAI and 3D crop model-based LAI, enabling the digitalization of 

LAI measurements (Lorenzo Comba et al. 2019).  

Another category of sensors that is interesting for the characterisation of the 

canopy is known as the depth cameras. With this definition, different operating 

modes are included based on stereoscopy vision, structured light method, and time-

of-flight approach (Luo et al. 2016; Rosell-Polo et al. 2017; Saberioon and Cisar 

2016). The basic operating principle of these sensors is to discriminate the depth of 

an image by combining two images taken simultaneously from different angles 

(stereoscopic vision), or by combining two cameras, one dedicated to capturing RGB 

images and the other dedicated to discriminating depth through infrared images 

(structured light), or by combining an RGB camera with a time-of-flight (TOF) 

sensor that provides direct measurements (Abbas et al. 2020; Mahmud et al. 2021; 

Moreno et al. 2022). In terms of canopy characterization, these sensors have some 

limitations due to the susceptibility to direct sunlight (Abbas et al. 2020). Depth 

cameras based on stereoscopic vision and structured light are the most susceptible to 

outdoor sunlight conditions, as noted by (Halmetschlager-Funek et al. 2019). Instead, 

the TOF-based depth cameras have good enough performance even in strong lighting 

conditions (Kuan et al. 2019). However, considering these limitations Bao et al. 

(2019) proposed to acquire data late in the evening (no earlier than 1 h before sunset). 

This solution provided promising correlations between manual and digital canopy 

characterization (before flowering: R2 = 0.96; after flowering: R2 = 0.83) (Bao et al. 

2019). 

Active sensor 

This category includes multispectral cameras, laser scanners and ultrasonic 

sensors. Active multispectral cameras work in a similar way to passive sensors. The 



23 | P a g e  
 

only difference is that they emit laser beams to illuminate the canopy and measure 

the reflectance intensity of the plants, reducing the effect of sunlight intensity and 

time of day (Ammoniaci et al. 2021). Typically, these sensors are embedded in 

terrestrial platforms such as the OptRx sensor (Ag Leader Technology, Ames, IA, 

USA) and the CropSpec sensor (Topcon, Livermore, CA, USA) or hand-held such 

as the GreenSeeker sensor (Trimble Inc., Sunnyvale, USA) (Putra et al. 2018). A 

active-based multispectral sensor is shown in Figure 3. This type of sensor is a 

critical element in many canopy characterisation applications due to its versatility 

and ability to reproduce high-quality information (Ammoniaci et al. 2021; Gatti et 

al. 2016; Terrón et al. 2015). In addition, by reducing sunlight interferences these 

sensors provide more reliable vegetation indices, especially in tree crops, by 

avoiding ground interference (De la Fuente et al. 2020). 

  
Fig 3. – Terrestrial platform-based multispectral camera (Ag Leader Technology, Ames, IA, USA) 

In recent years, the use of laser scanners in agriculture has increased 

exponentially, particularly in the field of canopy characterisation. (Arnó et al. 2013; 

Colaço et al. 2017; Paulus et al. 2014; Rosell et al. 2009). Laser scanners are active 

sensing technologies that calculate the distance from sensor to target based on the 

time of flight of an artificial laser beam emitted by the sensors. Laser scanners can 

operate at different wavelengths, such as visible, ultraviolet or near-infrared light, 

and because they emit their own light source, they can measure day and night as they 

are independent of changing light conditions. (Rosell and Sanz 2012). As a 
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representative of scanning systems, Light Detection And Ranging (LiDAR) can have 

horizontal and/or vertical scanning ranges with various aperture angles (most 

common: 180°, 270°, 360°). Based on scanning ranges, it is to 2D LiDAR if it has 

only horizontal one, instead, 3D LiDAR has both horizontal and vertical scanning 

ranges (Rinaldi et al. 2013). Other important LiDAR characteristics are: angular 

resolution, i.e. the number of points detected within the aperture angle (most 

common: 1°, 0.5°, 0.33°, 0.25°); working range, i.e. the maximum scanning distance; 

scanning frequency, i.e. the number of scans per second (Hz). A 2D LiDAR sensor 

is shown in Figure 4. 

 

 

a) b) 
Fig.4a. – A tractor-mounted 2D LiDAR sensor (LMS-200 LiDAR, SICK AG, Waldkirch,  
Germany) (Rosell Polo et al. 2009). 
Fig.4b. –  Schematic representation of 2D LiDAR operation (Llorens et al. 2011). 

The most common LiDAR sensors used for on-the-go canopy 

characterisation are 2D LiDAR (x, y axis), which is positioned vertically in such a 

way as to scan tree rows (Llorens et al. 2011; Rosell Polo et al. 2009). Typically, 

2D LiDAR sensors are embedded in terrestrial platforms, such as tractor, allowing  

the 3D reconstruction of the canopy thanks to the forward movement (z-axis) of the 

terrestrial platform. (Rinaldi et al. 2013). Data obtained from LiDAR sensors are 
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consistent and reliable for the canopy estimation. Indeed, Rosell Polo et al. (2009) 

reported very good correlations between manual and LiDAR measurements in pear, 

apple orchards and vineyards (R2 = 0.97, R2 = 0.81 and R2 = 0.92, respectively) 

(Rosell Polo et al. 2009). Rinaldi et al (2013) showed very promising correlations 

between LiDAR impacts and the LAI index (R2 = 0.82) and between estimated TRV 

and LWA at different crop stages (R2 = 0.99 and R2 = 0.95, respectively) after 

processing the data with an R package, named PROTOLIDAR (PROcess TO LIdar 

Data) (Rinaldi et al. 2013). In recent years, thanks to technological advances in 

GNSS positioning accuracy (RTK, D-GNSS), the LiDAR data are collected with 

spatial positioning to reconstruct geo-referenced 3D point clouds (Cheraiet et al. 

2019; Tsoulias et al. 2019). These approaches are able to detect geometric variables 

in tree crops and show interesting correlations between manual and LiDAR-based 

canopy measurements (height, width and volume). However, these results are 

obtained in post-processing data processing and with expensive instrumentation. 

Therefore, the application of these approaches in sensor-based VRA is uncertain, as 

the reliability in real-time data processing has not been tested and the cost of VRA 

implementation may not be sustainable.  

Finally, another type of active technology used to characterise the vine 

canopy is the ultrasonic sensor (US). The basic principle is similar to the LIDAR 

sensor because it works with TOF measurements, but US works with ultrasonic 

waves instead of laser beams (Zhang et al. 2018). In addition, many sensors are 

needed to characterise the canopy, as the US provides a single measurement point 

for each ultrasonic emission (Rosell and Sanz 2012). A schematic representation of 

differences between US and LiDAR sensors is shown in Figure 5. For decades, US 

have been used in agriculture thanks to their robustness, low price and ease of use 

(Rosell and Sanz 2012). Many studies have demonstrated the reliability of US 

measurements in relation to the manual canopy measurements in different crop 

species (Escolà et al. 2011; Gil et al. 2007; Giles et al. 1988; Llorens et al. 2011; 
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Schumann and Zaman 2005), paving the way for precision spraying. However, some 

limitations may affect the canopy characterisation. In fact, Escolà et al. (2011) 

reported that when USs are located close to each other, errors can occur in the 

calculation of the TOF due to return ultrasonic waves from different sensors (Escolà 

et al. 2011). In order to reduce the source of error, Escolà et al. (2011) suggested 

that the sensors should be separated by more than 0.6 m (Escolà et al. 2011).  

 
Fig.5. – Schematic representation of differences between US and LiDAR sensors; a) Ultrasonic 
sensor; b) LiDAR sensor; (Colaço et al. 2018). 

In recent years, thanks to the technological advances new USs have been 

proposed (Palleja and Landers 2015). The breaking point of this sensor related to 

others, is that it has the potentiality to discriminate the foliar layers and the canopy 

density thanks to its innovative mode of operation. In fact, these innovative sensors 

are able to measure and discriminate the number of echoes and their intensity in a 

pre-selected region-of-interest (ROI) (Palleja and Landers 2017). Initial trials have 

shown promising results for estimating canopy density and thickness during the 

growing season in both apple orchards and vineyards, with an average error of 4.76% 
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(Ou et al. 2022; Palleja and Landers 2017). These recent studies proved the ability 

of new USs to estimate foliar layers, canopy density and thickness, paving the way 

for future advances in precision spraying (Ou et al. 2022; Zhou et al. 2021). 

However, to the best of my knowledge, no study has been carried out to develop and 

test a VRA sprayer fitted with these innovative sensors. 

1.2. Variable-rate technologies in viticulture 

Proximal sensing technologies pave the way for precision spraying, with the 

ultimate goal of improving the economic and environmental sustainability of crop 

protection (Zhang et al. 2018). As clearly stated in the previous sections, precision 

spraying, also known as variable-rate application, has become necessary to apply an 

adjusted volume rate of PPP to the target, based on tree size, and it arises in contrast 

to the uniform application (UA) of pesticides (Wandkar et al. 2018). In fact, since 

each tree in an orchard varies greatly in size and shape, uniform application results 

in low efficiency in terms of spray quality and quantity, with unavoidable losses of 

PPP to the environment (Abbas et al. 2020). Depending on the type of technology 

used, a distinction is made between sensor-based VRA sprayers, where a sensing 

system is embedded in the sprayer and directly controls the spray rate, and map-

based VRA sprayers, where a PPP prescription map is uploaded to the on-board 

console to control the spray rate (Rosell and Sanz 2012). 

Sensor-based  

The first implementations of precision sprayers date back to before the 2000s. 

Giles et al. (1987) developed a prototype that used ultrasonic sensors to switch 

spraying on and off in the presence or absence of foliage, reducing pesticide 

consumption by 28% to 35% for peaches and 36% to 52% for apples (Giles et al. 

1987). This sprayer did not perform a variable-rate application but it introduced the 

first sensing systems to crop protection spraying, reducing pesticide use. 

Subsequently, thanks to advances in electronics and technology, sensing systems 
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began to become more powerful, paving the way for the differentiation of canopy 

characteristics (Rosell and Sanz 2012). In the first decades of the 2000s, many VRA 

sprayers were developed based on different sensing systems (camera-based, 

ultrasonic-based and laser-based) in order to improve both spraying efficiency and 

environmental sustainability (Escolà et al. 2013; Gil et al. 2007; Llorens et al. 2010). 

Moltò et al (2001) developed a prototype VRA sprayer based on two ultrasonic 

sensors (one per side) and tested it in the field to evaluate both spray quality and 

savings on globular trees. They found that the VRA sprayer achieved an average 

saving of 37% of the spray mixture (Moltó et al. 2001). Gil et al (2007) developed a 

prototype VRA air-blast sprayer based on three ultrasonic sensors per side and 

reported that the VRA sprayer has been able to reduce spray volume by 

approximately 41.2% compared to UA without affecting spray deposition (Gil et al. 

2007). These results were obtained by comparing two application modes (VRA and 

UA) on 100 m of vine row. Llorens et al. (2010) extensively tested the previous 

sprayer in different phenological phases and on different varieties. The results 

confirmed those obtained by Gil et al. (2007), in fact they obtained savings of more 

than 40% in all the trials, with the maximum savings being 76.9% (Llorens et al. 

2010). Vieri et al. (2011) went a step further by developing a VRA sprayer prototype 

based on eight ultrasonic sensors (four per side), which can not only vary the 

application rate according to tree size, but also vary the inclination of the upper and 

lower outlet diffusers to improve spray deposition (Vieri et al. 2011). They expected 

PPP savings of 50 to 70% compared to conventional applications. Hočevar et al. 

(2010) developed a VRA sprayer based on an RGB camera and appropriate image 

analysis This system achieved an overall pesticide saving of 23% compared to 

uniform application (Hočevar et al. 2010). In addition, the authors stated that future 

improvements, such as moving the camera position or changing of sensing 

technology, are needed to increase the efficiency of the camera-based VRA sprayer 

(Hočevar et al. 2010). Chen et al. (2013) tested a VRA sprayer based on a laser 
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scanner to evaluate the reduction of spray drift and off-target losses. The results 

showed significant reductions in spray loss on the ground (68-90%), spray drift (70-

100%) and spray volume (47-73%) compared to a uniform rate sprayer (Chen et al. 

2013). 

 

 

a) b) 

 

 
c) d) 

Fig.5. – Sensor-based VRA sprayer: a) Ultrasonic-based (Vieri et al. 2011); b) Ultrasonic-based 
(Gil et al. 2013); c) LiDAR-based (Chen et al. 2013); d) Camera-based (Hočevar et al. 2010). 

Li et al. (2018) developed and tested a VRA sprayer based on LiDAR sensor, 

in contrast to two conventional sprayers (air blast sprayer and air-jet sprayer). 

According to the results, the VRA sprayer used less spray solution than the 
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conventional sprayer while maintaining the same penetration rates of PPP. In 

addition, VRA sprayers were more effective than conventional sprayers, as 

evidenced by the fact that normalised deposition was higher with VRA than with UA 

(Li et al. 2018). Various sensor-based VRA sprayers are shown in Figure 6. 

Map-based 

The concept of map-based variable rate application was derived from arable 

crops (Ess et al. 2001). For this reason, the first implementations were developed for 

variable-rate application of herbicides according to the presence of weeds or for 

application of granular fertilisers according to vigour indices or soil characteristics 

(Ammoniaci et al. 2021). For instance, Vogel et al. (2005) modified a conventional 

sprayer into a VRA sprayer in order to apply herbicides in a site-specific manner. 

Results showed that this system was able to control weeds in maize and soybean 

(Vogel et al. 2005). A crucial aspect of map-based VRA systems is the strategy used 

to generate a map (Ess et al. 2001). In tree crops, the precision spraying of PPPs is 

typically based on the canopy size such as height, thickness, volume or density 

(Mahmud et al. 2021). In map-based sprayers, the spatial variability of canopy needs 

to be assessed with a dedicated sampling (manual or digital) in order to generate a 

geo-referenced map (Ammoniaci et al. 2021). In addition, geo-statistical techniques 

are necessary for the production of accurate and reliable prescription maps (Del-

Moral-Martínez et al. 2020). In recent years, advances in remote and proximal 

sensing have made digital canopy characterisation practical and reliable, allowing 

precision spraying based on PPP prescription maps and increasing the economic and 

environmental sustainability of crop protection phases (Campos et al. 2020). Under 

these circumstances, Román et al. (2020) tested a variable-rate application, based on 

prescription maps generated from a multispectral airborne camera, in contrast with a 

uniform application. Results showed a reduction in pesticides use of around 25% 

without affecting the spray deposition (Román et al. 2020). A schematic 

representation of the process behind map-based VRA system is shown in Figure 6. 
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Fig.6. – Schematic representation of the process behind map-based VRA system (Román et al. 
2020). 

Another interesting study is that of Campos et al. (2020). In this study, a map-

based VRA sprayer and a conventional sprayer were extensively tested over an entire 

growing season to evaluate the quality of spray distribution and the biological 

efficacy of PPP spraying. The mapping process was very similar to the previously 

reported study (Román et al. 2020). Results showed an adequate spray coverage of 

20 - 40% and same rates of biological efficacy (Campos et al. 2020). 

Although numerous studies have noted a relevant decrease in the amount of 
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pesticide used when spraying, the majority of them assessed their savings on a small 

scale or in relatively controlled area. Only Campos et al. (2020) conducted a study 

to evaluate a map-based VRA sprayer on a large vineyard and over a full growing 

season  (Campos et al. 2020). Therefore, a comprehensive study of a sensor-based 

VRA sprayer in a large orchard and over a full season is lacking. Additionally, 

despite numerous prototypes developed by various research groups for tree crops 

over the last two decades very few variable-rate sprayers are commercially available 

for arboreal crops (Mahmud et al. 2021). Moreover, VRA sprayers are more 

expensive than conventional sprayers due to the use of sensors and more electronic 

components, and are therefore still out of the economic reach of the majority of 

wineries (Tona et al. 2018). Furthermore, Tona et al. (2018) identified other reasons 

for the low adoption of VRA sprayers in tree crops such as the need for specific 

technical training for operators or the maintenance requirements  (Tona et al. 2018). 

Under these circumstances, a kit for the implementation of VRA systems instead of 

the purchase of an expensive and new VRA sprayer is missing.   
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2. Aim and outline of the research 

The heavy environmental and economic footprint of crop protection stages 

and the availability of low-cost sensors and technologies inspired this thesis. This 

thesis addresses the development and evaluation of different proximal sensing tools 

for the characterisation of vine canopies with the aim of supporting the development, 

validation and testing of a variable-rate application kit for sprayers in order to 

improve the environmental and economic sustainability of crop protection stages.  

In detail, the following specific objectives will be conducted through four 

steps:  

1. To develop an algorithm for characterizing the vine canopies in real-

time with terrestrial LiDAR through the Tree Row Volume index 

calculation (Paper I); 

2. To assess the reliability of different 3D point clouds sources for vine 

canopy size assessment based on aerial and ground photogrammetry 

and terrestrial laser scanner (Paper II); 

3. To assess the operative performance of a second-generation 

ultrasonic sensor in canopy characterization and to fine-tune the 

actuation range between sensor readings and applied volume of plant 

protection products  (Paper III); 

4. To develop and implement a variable-rate application kit in a 

conventional sprayer and to assess its spraying performance and its 

economic sustainability in an entire crop protection season (Paper 

IV). 
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Abstract 

Precision spraying is one of the techniques for the reduction of pesticides use 

and it can help achieve the new European Green Deal standards. The aim of such 

technique is to apply the right amount of pesticides according to the target 

characteristics. The precision spraying implementation requires target volume 

assessment, which can be carried out by LiDAR sensors. Such technique requires 

complex and time-consuming procedures of canopy characteristics computing 

through post-processing points cloud reconstruction. The present work aimed to 

develop and test an algorithm through the use of a tractor-coupled with terrestrial 

LiDAR and GNSS technology in order to simplify the process. With the aim to 

evaluate the algorithm the LiDAR-based volume was correlated with two manual 

measurements of canopy volume (Tree Row Volume and Point Net Cloud). The 

results showed good correlations between manual and LiDAR measures both for 

total canopy volumes (R2 = 0.67 and 0.56) and for partial canopy volume (R2 = 0.74). 

In conclusion, although the LiDAR-based algorithm works in automatic mode, the 

canopy volumes approximation seems acceptable to estimate the canopy volumes, 

with the advantages of a swifter procedure and less laborious post-processing 

computations. 

 

Key words: canopy management technique, canopy measurements, site-specific 

data, variable rate technique, viticulture. 
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Introduction 

In the last few decades, the public authorities focused their attention on 

reducing pesticide use and/or improving the efficiency of spraying operation 

(European Parliament, 2009; MIPAAF, 2014). The European Commission has 

recently declared that it is essential to introduce coherent strategies to halve the use 

of chemical pesticides by the year 2030 (ECP, 2020). Variable rate applications 

(VRA), telemetry of crop protection stages, integrated pest management (IPM) and 

decision support systems (DSS) can be effective strategies to achieve the European 

goals. VRA consists of variable-rate spraying according to the characteristics of the 

canopy (height, width, volume, leaf area, leaf density) or vigour index (Miranda-

Fuentes et al., 2016; Tsoulias et al., 2019; Cheraïet et al., 2020; Román et al., 2020). 

A 20–30% reduction in pesticide use has been achieved by detecting tree size and 

architecture, (EPRS, 2016). Other improvements have been reached by using 

auxiliary telemetry tools for crop protection phases (Sarri et al., 2020). In addition, 

the adoption of Integrated Pest Management (IPM) was able to reduce a sprayed area 

by approximately 50–80% (EPRS, 2017). The variable-rate application technique 

consists in obtaining similar plant protection products (PPP) deposits according to 

canopy characteristics (Gil et al., 2013). To fulfil the variable-rate applications, 

canopy dimensions have to be measured. Originally, canopy measurement was 

carried out manually and the corresponding canopy indicators were created (Tree 

Row Volume, Leaf Area Index, Leaf Wall Area, Unit Canopy Row, Ellipsoid 

Volume Method) (Pergher & Petris, 2008; Miranda-Fuentes et al., 2015). Obtaining 

these manual indicators was time-consuming. Gradually, thanks to technological 

development, faster and more efficient measurement methods have been developed 

(Rosell & Sanz, 2012; Comba et al., 2019). Several studies have used ultrasonic 

sensors to improve variable-rate application (Llorens et al., 2010; Llorens et al., 

2011, Gil et al., 2013). These sensors operate with ultrasonic waves, and provide a 

precise assessment of canopy width in small portions of vegetation. Improvements 
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of canopy detections were provided by LiDAR (Light Detection and Ranging) 

sensors. The LiDAR technology works with laser beams, and it provides canopy 

point cloud, at various angular resolution and various aperture angle (Rosell & Sanz, 

2012). Thus, the entire vertical profile of the canopy can be reconstructed. Many 

studies were carried out for implementing the LiDAR-based canopy measurements 

(Palacín et al., 2007; Rosell et al., 2009a; Llorens et al., 2011; Sanz et al., 2013; 

Miranda-Fuentes et al., 2015; Tsoulias et al., 2019). Some works obtained canopy 

characteristics with complicated and laborious steps that required a great amount of 

post-processing operations. In other works it was necessary to carry out point cloud 

reconstruction and data filtering to obtain a correct and precise canopy 

characterization. Only after these operations it was possible to run the canopy 

parameters computing. Although they are valid methods for research domains, these 

procedures do not coincide with the implementation of variable-rate operations 

during work operations. The data extract must be well suited with the tractor speed 

during spray operations to implement VRA. Therefore, for data processing, few 

milliseconds are usable. Moreover, the accuracy of canopy measurements, reached 

by post-processing operations is often too high for practical purposes. Very few 

studies were focused on practical and operative tools for assessing canopy volumes 

in real time (Zhang et al., 2018). It is thus evident that a functional LiDAR-based 

tool is needed to optimise the variable-rate application of pesticides in viticulture. A 

procedure for automating the LiDAR-based canopy volume computing in real-time 

was developed to reach this target.  

Therefore, this paper focuses on the development and testing of a LiDAR-

based algorithm and software for the automatic calculation of canopy volume using 

a tractor- coupled with terrestrial 2D LiDAR and GNSS receiver.  

In order to check algorithm and software, a number of comparison tests were 

carried out between two different manual canopy volume measurements and LiDAR 

canopy volume measurements. The experimental tests were carried out in two 
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vineyards, with different row spacing and plant density parameters. Finally, the 

canopy volumes of four vine-rows, which were completely travelled, were analysed 

in two work sessions to check the software functioning during the different growth 

stages. 

Materials and Methods 

Instrumentations:  

The 2D LiDAR Sick TIM561 was used (Fig. 1, a) to perform the study. The 

main sensor features were an angular resolution of 0.33°, an aperture angle of 270°, 

a working range from 0.05 m to 10 m, a laser emission wavelength of 850 nm and a 

scanning frequency of 15 Hz (TIM561 Sick). Thanks to these characteristics, 12,150 

points were captured each second. 

Moreover, to obtain geo-referenced data, the 2D LiDAR was coupled with 

Ag Leader GPS6500 GNSS receiver (Fig. 1, b). This GNSS receiver provides 

differential correction with a horizontal position accuracy of 0.4 m, a velocity 

accuracy of 0.03 m s-1 and a maximum data rate of 50 Hz (GPS 6500, Ag Leader).  

The LiDAR sensor and GNSS receiver were connected together through a 

Panasonic Tough Pad FG-Z1, where the algorithm and software for calculating the 

canopy volume were installed (Fig. 1, c). 

During field tests, all these instrumentations were mounted on a Kubota 

B2420 tractor. On the one hand, the Panasonic computer and the GNSS receiver were 

assembled near the steering station. On the other hand, the 2D LiDAR was positioned 

in the rear of the tractor in a vertical position to correctly scan the vertical profiles of 

the canopy, thanks to 270° opening angle. 
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Figure 1. Instruments assembled during a field test session with details of the individual tools 
used (a) GNSS receiver; b) LiDAR sensor; c) Panasonic computer. 

Algorithm and Software: 

The calculation of the canopy volume was made using an algorithm for 

extracting the canopy contours, integrated into software for real-time visualisation 

of the canopy volumes and its main characteristics. In addition, the software creates 

a comma-separated values (CSV) file-data where the volumes of canopies, 

associated with their global position (EPSG:4326-WGS 84), and working parameters 

of the tractor (speed, distance between scani–scani+1) were recorded. 

It is worth noting that before starting the data acquisition, the GNSS 

acquisition frequency can be changed from 0.1 to 15 Hz in the software interface 

page. Its frequency rate controlled the entire exchange of data. Specifically, each 

time the GNSS string arrived, it was processed by software that sent a data request 

to the LiDAR. Instantly, a LiDAR scan was run, processed and recorded (with an 

angular resolution of 0.33° and a scan range of 270°). This process was reiterated 

until the data acquisition end. For the transfer of LiDAR data, an ethernet connection 

was used. Instead, an RS232 serial port was used for GNSS data transfer. 

First of all, row data provided by LiDAR sensor were transformed from polar 

to cartesian coordinates. The transformation was made for all points individuated by 

LiDAR sensor in a single scan (angular resolution: 0.33°; aperture angle: 270°; 
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maximum point for single scan: 810) and for all scan frequency (scan frequency: 15 

Hz = 15 scan s-1), using the following formula: 

𝐶_𝑥𝑦 =  ൜
𝑋 = 𝐷𝑉 ∗ cos 𝛼               

𝑌 =  𝐻 +  𝐷𝑉 ∗ sin 𝛼  
 (1) 

where 𝐶_𝑥𝑦 – detected canopy point in cartesian coordinates; 𝐷𝑉 – distance 
between LiDAR and canopy at determined angular position j and the moment i; 𝛼 
– angle subtended by 𝐷𝑉; 𝐻 – LiDAR average height from ground-level. 
Graphically representation is shown in Fig.2. 

Then, if X coordinates of the canopy points (𝐶_𝑥𝑦), that corresponded to the 

distance between LiDAR and canopy in the cartesian system, were equal or bigger 

than semi row spacing (𝐷௦ 2⁄ ), they were considered in the calculation of canopy 

volume as values 0, because these points did not belong to the canopies near the 

tractor. In comparison, laser beams that did not encounter any obstacles were not 

counted. Moreover, another condition had to be respected. The Y coordinates of the 

canopy points (𝐶_𝑥𝑦) must be bigger than 𝐻 (average cordon height). In this way, 

the points detected in the ground-level or other interferences, as grass or vine trunk, 

were not considered. Thanks to LiDAR characteristics (TIM561 Sick), particularly 

the aperture angle of 270°, it was possible to detect two sides of vine-rows for each 

working route. Therefore, the conversion formula and the conditions previously 

exposed were viable for both sides of vine-rows (Fig.2_left side).  

A subdivision of total canopy volume in three bands according to the height 

from cordon was carried out. Specifically the low band was between the cordon (𝐻) 

up to 0,30 m in vertical height (𝐻ାଷ ), the middle band was between the end of the 

previous one up to 0.60 m apart the cordon (𝐻ା) and the high band was between 

the end of the previous one up to the last canopy detected point (𝑦𝑚𝑎𝑥) (Fig. 2_right 

side). The subdivision in three bands was necessary to discriminate how the canopy 

arranges on the vertical profile. Without these partitions, only the total canopy 

volume would have been measured and it would not have been possible to show the 
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differences in the vertical profile of the canopy. 

Then the algorithm, according to different canopy bands, computed total and 

partial means  of the x-values of canopy points  (𝐶_𝑥𝑦). To differentiate the three 

bands, the y-values of canopy points (𝐶_𝑥𝑦) were used. These average values (𝑋௧௧
തതതതത; 

𝑋ప
തതതതതതത; 𝑋పௗ

തതതതതത; 𝑋௪
തതതതതത) correspond to distance between LiDAR and canopy in a different 

portion of canopy profile. The subtraction between semi row spacing (𝐷௦ 2⁄ ) and 

average values were done to obtain both total average canopy width and partial 

average canopy widths (low, mid and high canopy bands). Finally, the entire and 

partial areas of canopy sections were obtained by the multiplication between their 

widths and heights. In such a manner, the canopy areas (m2 scan-1) of vertical LiDAR 

scan were obtained, both for left and right sides. The equations below showed the 

procedure aforementioned (2) (3) (4) (5). 

𝑋௧௧
തതതതത =

 ∑ 𝑥
௬௫
௬ୀு 

𝑛௧
  𝐴௧௧ = ൬

𝐷௦

2
−  𝑋௧௧

തതതതത൰ ∗ (𝑦𝑚𝑎𝑥 − 𝐻)  (2) 

𝑋ప
തതതതതതത =

 ∑ 𝑥
௬௫
௬ୀுశలబ 

𝑛
  𝐴 =  ൬

𝐷௦

2
− 𝑋ప

തതതതതതത൰ ∗  (𝑦𝑚𝑎𝑥 −  𝐻ା) (3) 

𝑋పௗ
തതതതതത =

 ∑ 𝑥
ுశలబ
௬ୀுశయబ 

𝑛
  𝐴ௗ = ൬

𝐷௦

2
−  𝑋పௗ

തതതതതത൰  ∗  (𝐻ା −  𝐻ାଷ) (4) 

𝑋௪
തതതതതത =

 ∑ 𝑥
ுశయబ
௬ୀு 

𝑛
  𝐴௪ = ൬

𝐷௦

2
− 𝑋௪

തതതതതത൰ ∗  (𝐻ାଷ −  𝐻) (5) 

where  𝑋௧௧
തതതതത, 𝑋ప

തതതതതതത, 𝑋పௗ
തതതതതത, 𝑋௪

തതതതതത – average values of x coordinates, respectively for 
total canopy, high canopy band, mid canopy band and low band; 𝐻 – cordon height; 
𝐻ାଷ – cordon height plus 0.30 m; 𝐻ା – cordon height plus 0.60 m; 𝑦𝑚𝑎𝑥 – 
the y coordinate of last canopy point detected by LiDAR; 𝑥 – x coordinate in 𝐶_𝑥𝑦; 
𝑛௧, 𝑛, 𝑛, 𝑛 – number of canopy points included respectively in total, high, mid 
and low canopy band; 𝐴௧௧, 𝐴, 𝐴ௗ, 𝐴௪ – respectively total section area of the 
canopy and partial sections area (high, mid, low); (𝐷௦ 2⁄ ) – semi row spacing. 

The first version of the algorithm had not division into three canopy bands. 

Nevertheless, during the early tests, it became necessary to highlight how the canopy 

arranges in the vertical profile. It has been essential for showing how the total canopy 

volume and the proportion of partial canopy volume, in the vertical profile, changed 



45 | P a g e  
 

during the growing season. 

The final algorithm step consisted in calculating the canopy volumes through 

the multiplication between the canopy area and travelled distance by tractor during 

a detection session. The travelled distance was obtained by GNSS receiver. The final 

output was a CSV file with canopy volumes (total and partial) linked with their 

global positions, provided by GNSS receiver. The volumes of canopy can be 

obtained referring to the distance travelled (Eqs 6, 7, 8, 9) or to the linear meter of 

row (Eqs 10, 11, 12, 13). 

𝑉௧௧ =  𝐴௧௧ ∗ 𝐷௧   𝑚ଷ𝐷௧
ିଵ (6) 𝑉௧௧ =  (𝐴௧௧ ∗  𝐷௧) ∗  

1

𝐷௧
 𝑚ଷ𝑚ିଵ (10) 

𝑉 =  𝐴 ∗ 𝐷௧ 𝑚ଷ𝐷௧
ିଵ (7) 𝑉 = ൫𝐴 ∗  𝐷௧൯ ∗  

1

𝐷௧
 𝑚ଷ𝑚ିଵ (11) 

𝑉ௗ =  𝐴ௗ ∗  𝐷௧ 𝑚ଷ𝐷௧
ିଵ (8) 𝑉ௗ =  (𝐴ௗ ∗ 𝐷௧) ∗  

1

𝐷௧
 𝑚ଷ𝑚ିଵ (12) 

𝑉௪ = 𝐴௪ ∗ 𝐷௧  𝑚ଷ𝐷௧
ିଵ (9) 𝑉௪ =  (𝐴௪ ∗ 𝐷௧) ∗  

1

𝐷௧
 𝑚ଷ𝑚ିଵ (13) 

where 𝑉௧௧ – total canopy volume;  𝑉 – high band canopy volume; 𝑉ௗ – mid 
band canopy volume; 𝑉௪ – low band canopy volume; 𝐷௧ – distance travelled. 

The algorithm carried out all calculations, both for left and right side of vine-

rows, during a working session. 

  

Figure 2. In the left side of the figure, the LiDAR and algorithm working principles were 
represented. In the other side, the subdivisions in three bands were shown. 

The algorithm was integrated into a software, designed to process LiDAR 

data automatically and in real-time. This software was implemented in Visual Studio 

with C# programming language. The software has an interface page, where 
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parameters can be changed according to vineyards characteristics, and a working 

page, where canopy volumes and heights, positions and errors codes (about LiDAR) 

can be seen. On the first page, it was possible to change parameters such as row 

spacing, LiDAR height and cordon height from ground level. This allowed the 

setting into other vineyards (with different characteristics) or potentially into other 

crops for instance orchards. In the second window, the recording of the work session 

can be activated and, at the end of it, a CSV file is created. This output contains the 

main working parameters such as time, GNSS position and tractor speed, and canopy 

characteristics such as total canopy volumes, high band, mid band and low band 

canopy volumes for both the right and left side. 

 
Figure 3. Software interface for computing, in real-time, canopy volumes. On the left, the 
interface window, that allows to set parameters about LiDAR position and vineyard 
characteristics was shown. On the right, there is the working window, where canopy volumes 
(right and left side) and canopy heights were shown in real-time. 

Field tests: 

The field tests were carried out in two different vineyards in Chianti Classico 

region. The first one was located in Gretole (43°27'23.0" N; 11°13'51.9" E), 

Castellina in Chianti, Siena, Italy and the other located in San Felice (43° 23' 24.8" 

N; 11° 27' 26.5" E), Castelnuovo Berardenga, Siena, Italy.  

At the moment of tests, the vineyard in Gretole was 11 years old, was cordon 

trained, with a row spacing of 2.5 m and an average distance between vines of 0.8 
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m. With a plant density of ~5,000 vine ha-1. San Felice's vineyard was cordon trained, 

it was 15 years old, and the plant density was higher than the first one (~9,000 vine 

ha-1). It is due to a smaller row spacing (~1.4 m). Both vineyards were mainly 

composed of Vitis vinifera L. cv. ‘Sangiovese’. During the 2020 vegetative season 

(May-July), three test sessions were carried out in three different phenological phases 

(BBCH 57, BBCH 71, BBCH 81), for a total of 26 vines sampled for each 

measurement technique. This was done to test whether the algorithm could work at 

very different inter-row distances, distinguish canopy growth during sprout's 

development, and differentiate canopy volume according to different vigour zones.  

To check the algorithm two different types of manual non-destructive canopy 

measurements were carried out. The first manual measurements was the Tree Row 

Volume (TRV) which was measured for each single vines involved in the 

experiments. The TRV technique involved in this experiment was partially revised 

from conventional TRV to provide the volume of the canopy of each vine (m3 plant-

1) (Scapin et al., 2015). This was achieved by computing the average canopy height 

(m), the average canopy width (m) and the average canopy length (m) of a single 

vine with the following Eq. (14). 

𝑇𝑅𝑉 = 𝐻ഥ ∗ 𝑊ഥ ∗ 𝐿ത (m3 pl-1) (14) 

where 𝐻ഥ – was the average canopy height; 𝑊ഥ  – was the average canopy width; 𝐿ത – 
was the average canopy length; m3 pl-1 – unit of measure; 

The other manual measurements adopted was the Point Net Canopy (PNC). 

It consisted in measuring the canopy width for each mesh of the net, positioned in 

parallel to vineyard row and in front of the canopy surface (Fig. 4). The PNC 

provides more detailed canopy volume than TRV because several canopy width for 

each vine sampled were measured. To calculate the PNC, a net, with a mesh of 0.15 

m × 0.15 m, was located to a distance of 0.5 m from vertical canopy axis. Then, the 

distance (di) between canopy external surface and net was manually measured for 

each mesh of the net. In addition, the value di was subtracted by the distance between 
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the net and vertical canopy axis (0.5 m) in order to obtain canopy widths for each 

mesh of the net. This value was multiplied by the area of the mesh (Ai = 0.0225 m2) 

to obtain the volumes of the canopy subtended by single meshes. Finally, they were 

added up to obtain the total volume of the canopy of a single vine, as follows in the 

Eq. (15). 

𝑃𝑁𝐶 =  [𝐴 ∗ (0.5 𝑚 − 𝑑)]



ୀଵ

 (m3 pl-1) (15) 

where 𝑑  – distance between canopy external surface and net; 𝐴 – mesh area; 0.5 𝑚 
– the distance between net and canopy vertical axis; 𝑖 – number of meshes contained 
the sampled vine canopy. 

PNC provides detailed information on the spatial distribution of canopy 

volume. In particular, canopy volumes for different vegetation bands (0–0.3 m; 0.30–

0.60 m; and > 0.60 m; distance from cordon) can be extracted from this manual 

measurements. This was essential to correlate with the canopy volume bands 

provided by LiDAR algorithm. 

 
Figure 4.  Net positioned for a manual measurement session. (a) Net mesh dimension; b) Net 
structure; c) Distance Net structure–Vertical canopy axis. 
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Finally, TRV and PNC measurements were compared with LiDAR 

measurements to validate the performance of the algorithm. The LiDAR 

measurements were carried out throughout vine-rows, containing the sampled vines, 

at an average speed of 1 m s-1. The acquisition frequency was set up at 10 Hz, to 

obtain a scan each about 0.1 m. From these data, the LiDAR canopy volumes, 

corresponding to sampled vines manually, were extracted thanks to GNSS receiver 

and a digital marker that highlights sampled vines in the file output. The vine-rows, 

including the sampled vines, were travelled in their entirety in order to get the full 

characterisation of the canopy. 

Results and Discussion 

Manually and LiDAR measurements on single vines: 

As far as the canopy volumes of sampled vines, the minimum, average and 

maximum values for the three measurement techniques (TRV, PNC and LiDAR) 

were summarised in Table 1. In this table, canopy volume values, in different work 

sessions (May and July), were simultaneously shown to highlight how LiDAR 

measurements have detected the increase of canopy volumes during the growing 

phase (from BBCH 57 to BBCH 81). The increase in canopy volumes was also 

identified by the other manual measurements. This suggest that the algorithm and 

software work well enough. 

Table 1. Minimum, mean and maximum values of manuals and LiDAR measurements in the same 
plants at different growth stages (BBCH 57–BBCH 81).  

TRV PNC LIDAR 
 

BBCH 
 57 

BBCH 
 81 

BBCH 
 57 

BBCH  
81 

BBCH  
57 

BBCH  
81 

Min. 0.118 0.326 0.086 0.115 0.096 0.219 

Mean 0.229 0.368 0.150 0.253 0.193 0.288 

Max. 0.307 0.472 0.210 0.360 0.290 0.403 

Two comparisons of total canopy volumes between instrumental and 

manually measurements to validate the LiDAR measurements were analysed. Linear 
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regressions provide more evidence of the algorithm good functioning. This analysis 

highlights good correlations between TRV and LiDAR measurements (R2
 = 0.67) 

and PNC and LiDAR measurements (R2
 = 0.56), how it is shown in Fig. 5. The 

obtained linear regression (TRV vs  LiDAR) has slightly lower coefficients of 

determination than other similar comparisons presented in some papers (Rosell et 

al., 2009b; Tsoulias et al., 2019). Indeed, Tsoulias et al. (2019) found a better 

coefficient of determination (R2
 = 0.77), under similar conditions and with the same 

experimental parameters, but this result was obtained with a significantly lower 

tractor speed. Instead, Rosell et al. (2009b) reported a better coefficient of 

determination (R2 = 0.97), but this was obtained with a small sample size and in an 

apple orchard. 

This study wanted to test the automated assessment algorithm of canopy 

volume in operational working conditions, hence this could be the reason for 

obtaining smaller coefficients of determination. However, this approximation is 

justified because the tractor speed was set to the average speed for future software 

implementation in canopy management operations and variable-rate spraying 

applications. 

 
Figure 5. The linear regression of TRV (x) versus LiDAR (y) volume measurements is shown 
on the left graph. The linear regression of PNC (x) versus LiDAR (y) volume measurements 
is represented on the right chart. 

With regard to canopy volumes divided into three bands, linear regressions 
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between LiDAR and PNC measurements were obtained. The TRV measurements 

were not considered because the TRV method does not provide specific canopy 

information as vertical distribution of canopy volumes. LiDAR and PNC correlations 

for low and mid bands reported similar determination coefficients, respectively 0.498 

and 0.491 (Fig. 6). Instead, the coefficient of determination for the high band, i.e. the 

portion of the canopy between a distance of 0.60 m from cordon height and the last 

canopy point detected by LiDAR, is 0.736, as shown in Fig. 6. The differences in 

coefficient of determination between the canopy bands are probably due to the 

dimension of bands. In fact, the high band includes a portion of canopy bigger than 

other bands. So, this brings about the values of the canopy of high band (m3 pl-1) 

being bigger than those of the mid and low band. Therefore, slight deviations 

between PNC and LIDAR measurements in the high band cause a minor 

deterioration of the coefficient of determination compared to what happens in low 

and mid bands, where the values of the canopy are smaller. 

However, this value highlights a good approximation provided by the 

algorithm for automated canopy volumes computing. This information is essential in 

future developments of precision spraying. In fact, the total canopy volume based on 

LiDAR is an excellent index to assess the spatial variability in terms of canopy 

quantity in vineyards. Thanks to the total canopy volume, the pesticides spray 

volume can vary according to site-specific information. Moreover, the spray volume 

can be targeted according to the vertical canopy variability, due to the division of the 

canopy into bands. 

The significant correlation obtained in the high canopy bands is another 

interesting aspect to be evaluated more carefully. Indeed, the computation of canopy 

high bands could potentially be affected by less accuracy due to slight lateral 

inclinations of vineyards or tractor roll motion. Nevertheless, they do not seem to be 

problematic in the canopy volume approximation. Therefore, the algorithm gives a 

good approximation of the total canopy volume and provides helpful information 
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about the vertical distribution of canopy volumes. 

 
Figure 6.  The linear regressions of PNC (x) versus LiDAR (y) volume measurements are 
shown with the detail of the three canopy bands (on the left: Low Band; in the middle: Mid 
Band; on the right: High Band). 

LiDAR measurements of entire vineyards 

The canopy volumes detected by LiDAR software during two working 

sessions (May and July) were showed. The data represent the canopy volumes (m3 

m-1) of four vine-rows completely travelled at a constant tractor speed of 1 m s-1. 

This situation simulated the usual working conditions of canopy management. 

 
Figure 7.  Absolut frequencies of LiDAR measurements with a interval of 0.01 (m3 m-1). Such 
measurements were part of the software output (CSV file) where tractor, coupled with LiDAR, 
travelled completely four vine-rows. The red line corresponds to the mean value. 

 The absolute frequency of total canopy volumes partitioned in breaks of 0.01 

m3 m-1 during the evolution of total canopy volumes from BBCH 57 stage to BBCH 
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81 was showed in Figure 7. 

In BBCH 57 stage, an average canopy volume of 0.282 m3 per linear meter 

of vine-row was detected, with a minimum value of 0.120 m3 m-1 and a maximum of 

0.483 m3 m-1. Instead, in BBCH 81 stage, an average canopy volume of 0.385 m3 m-

1 was measured, with a minimum of 0.185 m3 m-1 and a maximum of 0.644 m3 m-1.  

The increase in canopy volume (from 0.282 to 0.385 m3 m-1) between the two 

phases was 37% reflecting the natural growth phase of the vineyard, as shown in 

table 2. This increase was also detected by the two manual canopy measurements 

(Table 1). Therefore, the algorithm for the automatic calculation of canopy volumes 

was able to detect the different canopy volumes during the growth phase of the 

vineyard. 

Table 2. Means of canopy volumes of LiDAR measurements, percentage of canopy distribution 
between bands and rate of volume increase between different growth stages (BBCH 57 – BBCH 81)  

BBCH 57 BBCH 81 BBCH 57 - 81  
 

Mean % Mean % % 

Tot 0.282 
 

0.385 
 

37% 

High 0.1565 61% 0.205 60% 31% 

Mid 0.0598 23% 0.0834 24% 39% 

Low 0.0417 16% 0.0549 16% 32% 

In addition, the canopy volumes data were analysed according to the 

differentiation of the three bands (low, mid and high band). In this case, the absolute 

frequency of partial canopy volumes was partitioned in intervals of 0.001 m3
 m-1

 

because of the lower canopy volume detected for single bands. Fig. 8 showed the 

data obtained in two different work sessions, corresponding to the BBCH 57 and 

BBCH 81 growth stage, and differentiated for single bands. The lower band is 

situated on the bottom of Fig. 8, and the others are above according to an increasing 

levels layout. 
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Figure 8. Absolut frequencies of LiDAR measurements of the three bands (Low, Mid, High) 
with an interval of 0.01 (m3 m-1). These measurements are part of software output (CSV file) 
where tractor, coupled with LiDAR, travelled completely four vine-rows. The red line 
corresponds to the mean value. 

The graphs of low band canopy volumes showed that the average value of 

canopy volumes ranges from 0.042 m3
 m-1

  to 0.055 m3
 m-1

 during the growth stage 

(May–July), increasing 32%. A similar trend was highlighted for the other bands. 
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The mid band ranges from 0.059 m3
 m-1

 to 0.083 m3
 m-1, with a volume increase of 

39%, and the high band goes from 0.156 m3
 m-1

  to 0.205 m3
 m-1, with a rise of 31% 

(Table 2) These increases prove that the software could also detect the growth of 

canopy volumes into the three bands between different moments of detections. The 

proportion of canopy distribution between bands seems not to change in the two 

different data collections. 

Conclusions 

The LiDAR-based algorithm and software for automated canopy volume 

calculation described in this work, can be a valid alternative to the complex and 

laborious procedures of canopy characteristics computing through post-processing 

points cloud reconstruction. The good correlations obtained between manual and 

LiDAR-based measurements (R2= 0.67, R2= 0.74) suggest that the simplified 

computing system can be a valuable tool for measuring canopy characteristics, such 

as tree row volume, and distinguishing the spatial canopy distribution. The LiDAR-

based algorithm showed good working adaptability on different vineyards vertical 

training systems, such as cordon training or Guyot, with different plant density. With 

inputs that can be set (row spacing, cordon height and LiDAR height) according to 

crop characteristics, the software for automatic canopy volume calculation can 

potentially be used in orchards. The working conditions under which the software 

was tested are an indication that the LiDAR-based system can work at speeds similar 

to the on-farm management and spraying operations. Further tests will need to be 

carried out to fully investigate the best scanning frequency to achieve more accurate 

canopy volumes without compromising tractor working speed and efficiency. In 

addition, another interesting suggestion to evaluate further is the relation between 

canopy evaluation shown in this paper and canopy extraction in post-processing. The 

results achieved in correlations between manual and LiDAR measurements take the 

work to the next stage of development. Firstly, it is necessary to check for bugs or 



56 | P a g e  
 

other instrumental problems through a large number and lengthy field tests. 

Moreover, it will be about understanding how to best interact the data obtained from 

this system with the spraying equipment and spray volume. In conclusion, the system 

(LiDAR, GNNS receiver, algorithm and software) has the potential to be 

implemented in precision viticulture both in on the go variable-rate equipment and 

in on-board terminals based on prescription maps. 
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Abstract  

In precision viticulture, the intra-field spatial variability characterization is a 

crucial step to efficiently use natural resources by lowering the environmental 

impact. In recent years, technologies such as Unmanned Aerial Vehicles (UAVs), 

Mobile Laser Scanners (MLS), multispectral sensors, Mobile Apps (MA) and 

Structure from Motion (SfM) techniques enabled the possibility to characterize this 

variability with low efforts. The study aims to evaluate, compare and cross-validate 

the potentiality and the limits of several tools (UAV, MA, MLS) to assess the vine 

canopy size parameters (thickness, height, volume) by processing 3D point clouds. 

Three trials were carried out to test the different tools in a vineyard located in the 

Chianti Classico area (Tuscany, Italy). Each test was made of a UAV flight, an MLS 

scanning over the vineyard and a MA acquisition over 48 geo-referenced vines. The 

Leaf Area Index (LAI) were also assessed and taken as reference value. The results 

showed that the analysed tools were able to correctly discriminate between zones 

with different canopy size characteristics. In particular, the R2 between the canopy 

volumes acquired with the different tools was higher than 0.7, being the highest value 

of R2= 0.78 with a RMSE = 0.057 m3
 for the UAV vs. MLS comparison. The highest 

correlations were found between the height data, being the highest value of R2
 = 0.86 

with a RMSE = 0.105 m for the MA vs. MLS comparison. For the thickness data, 

the correlations were weaker, being the lowest value of R2
 = 0.48 with a RMSE = 

0.052 m for the UAV vs. MLS comparison. The correlation between the LAI and the 

canopy volumes was moderately strong for all the tools with the highest value of R2
 

= 0.74 for the LAI vs. V_MLS data and the lowest value of R2 = 0.69 for the LAI vs. 

V_UAV data. 

Keywords: precision farming; vegetation index; remote sensing; sensor; vineyard; 

spatial variability; mobile app; UAV; LAI; LiDAR 
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Introduction 

Site-specific crops management represents an essential improvement in 

efficiency and efficacy of the different labours, and its implementation has 

experienced significant development in the last decades, especially for field crops [1, 

2]. In particular, precision viticulture techniques are becoming necessary in a 

production context focused on achieving the best possible operating efficiency and 

reducing costs by paying attention to environmental sustainability [3]. 

Precision Agriculture (PA) is defined as an agricultural, forestry and 

livestock management based on the observation, measurement and response of the 

set of inter and intra-field quantitative and qualitative variables that act in agricultural 

productions [4]. Data collection by proximal or remote sensors is the first step for 

acting a precision agriculture approach [5]. Then, collected data are interpreted and 

evaluated by an agronomical point of view (e.g., canopy vigour) to traduce them into 

manual implementations or into inputs for variable rate technology (VRT) machines, 

which can perform the prescribed actions in a semi-automatic or fully automatic way 

[6, 7]. Many studies stated that the canopy size of Vitis vinifera L. is closely 

correlated with the amount of sunlight intercepted, i.e., the amount of carbon 

assimilated [8–10]. It is also an essential characteristic in assessing crop management 

and plant health and water use [11]. The vineyard spatial variability is mainly due to 

exposure, soil composition, soil tillage, micro-climate, and water availability [12–

14]. All these characteristics directly affect morphological, physiological and 

productive responses. Among the primary affected vegetative and productive 

responses there are canopy vigour, leaf area index (LAI), canopy volume, yield, 

grape quality, which can be further influenced by the type of rootstock used [15]. In 

specialty crops, the canopy size measurement is the main practice to fulfil the 

variable-rate applications that can be performed with manual techniques or by digital 

sensing tools. Usually, the measurements are then converted into corresponding 

canopy indicators (e.g., Tree Row Volume, Leaf Area Index, Leaf Wall Area, Unit 
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Canopy Row, Ellipsoid Volume Method) [16, 17]. 

In assessing the canopy size, the most used traditional methodologies and 

tools are listed as following: empirical and non-destructive methods [18–20], direct 

and destructive methods [21], point quadrat [22], optical and radiation sensors 

methods [21, 23, 24]. However, these methods can be very time-consuming and can 

have several uncertainties. 

Thanks to technological advancements, more efficient, more precise and 

quicker measuring methods have emerged in the last decade [25, 26]. Ultrasonic 

sensors were employed in several researches to enhance variable-rate applications 

[27–30]. Some researchers used them in orchards and vineyards in a continuous way 

(non-discrete), others used image processing from RGB cameras or laser scanners 

that measured the canopy shape or volume for selective real-time spraying [28, 31–

33]. The ultrasonic sensors enable an accurate measurement of canopy width in spot 

areas of canopy plants using ultrasonic waves. With the 2D LiDAR (Light Detection 

And Ranging) sensors, significant advancements in canopy recognition were made. 

LiDAR technology uses laser beams to create a point cloud of the canopy at varying 

angular resolutions and aperture angles [25]. As a result, the canopy complete 

vertical profile may be rebuilt. Recently, Mendez highlighted the potential of 3D 

LiDAR technology for canopy reconstruction in citrus and stated the critical issues 

for information extraction due to the lack of commercial software which allows quick 

processing [34]. 

Recently, thanks to open-source satellites imaging (e.g., ESA Sentinel-2, 

NASA Landsat-8), a considerable quantity of geo-referenced datasets are available 

for free. However, the resolution of satellites images is not often sufficient to 

highlight vineyard spatial variability because of different types of soil tillage and 

canopy management that can invalidate the canopy vigour data [35–37]. Therefore, 

other technologies are necessary to point out the vineyard spatial variability. Among 

them, the most recent tools that can be used in viticulture for measuring the canopy 
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size in a precise and fast way are: Unmanned Aerial Vehicles (UAVs) [26, 38], 

Mobile Laser Scanners (MLS) [39], multispectral sensors [40], Mobile Apps (MA) 

(e.g., Viticanopy) [41] and Structure from Motion (SfM) photogrammetry techniques 

[42]. These tools, also used in combination with each other, permit the reconstruction 

of a 3D model of the vine that can be processed to assess the canopy size in terms of 

volume, LAI and vigour [26, 38, 39]. Several studies proved the advantages and the 

potential in viticulture of the canopy 3D reconstruction to evaluate the spatial 

variability of the vineyard, to estimate the yields, to optimize pesticide treatments, 

fertilizers and water use [43–48]. 

In light of the mentioned framework, this article aims to evaluate, compare, 

and cross validate the potentials and limits of MA, MLS and UAV to assess the 

canopy size parameters and their variability within the vineyard by processing 3D 

point clouds. Moreover, it is emphasized that this study is not meant to validate the 

quantitative volume assessment but to compare different tools used to calculate 

volumes and understand their limitations and advantages. 

Materials and Methods  

Three surveys were carried out for data collection, namely: 

1. Ground data acquisition with a smartphone and mobile apps (MA); 

2. Ground data acquisition with a mobile laser scanner (MLS); 

3. Aerial data acquisition with an unmanned aerial vehicle (UAV). 

The MA data were first processed to generate a LAI map of the test vineyard 

and then to reconstruct 3D point clouds of the tested vines. The MLS data were 

directly processed to create a NDVI (Normalized Difference Vegetation Index) map, 

a NDRE (Normalized Difference Red Edge) map and a 3D point cloud of the scanned 

vineyard rows. The UAV data were preliminary processed to generate an RGB 

orthomosaic of the vineyard and then reconstruct its 3D point cloud using the same 

MA algorithm and processing workflow. 
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The point clouds were processed to assess the canopy size (i.e., height, 

thickness, volume) of the sampled vines and then to compare the results of the 

different tools.  

The complete workflow for the different tools is shown in Figure 1. 

 
Figure 1. Overview of the methodology and general workflow. In blue, green and red, the 
steps for MA, MLS and UAV data processing, respectively. In purple, the input data necessary 
for processing: the GNSS position of the test vines was used to correctly geo-reference the 
orthomosaic, the inter-row and the Region of Interest (ROI) were used to select and process 
each test vine point cloud.  

Experimental Site: 

Field tests were carried out in a vineyard in the Chianti Classico area, located 

in Gretole (43°27’23.0’’ N; 11°13’51.9’’ E), Castellina in Chianti, Siena, Italy 

(Figure 2). The experimental site was focused on 2 ha, where 48 test vines were 

sampled at three different phenological stages (BBCH 55, BBCH 65, BBCH 73) 

[49]. In each phenological stage, three types of measurements technologies, namely 

MA, MLS and UAV, were performed in the same day. The vineyard was located on 

a hillside, had a density of 5000 vines ha-1
 and the cultivar was the Vitis vinifera L. 

cv. ‘Sangiovese’. The vines were 15-years old, trained with a horizontal spur-cordon 
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(4–6 buds per spur), at 0.80 m mean height from the ground with a planting distance 

of 2.50 x 0.80 m. The vine rows orientation was East-West. 

 
Figure 2: The geographical border of Tuscany is shown in red line, whereas the yellow line 
highlights the experimental site and the white points are the test vines locations. 

Data Acquisition: 

Ground Measurements  

 Leaf Area Index 

To characterize the spatial variability of the vineyard, the LAI was acquired 

over the 48 geo-referenced test vines using VitiCanopy, a free app for iOS and 

Android devices that has been developed by a team of researchers of the University 

of Adelaide and the University of Melbourne [41]. The working scheme of the app 

is reported in Figure 3.  

VitiCanopy allowed to quickly and easily monitor the vine growth and the 

vigour of a vineyard and was used in place of traditional manual measures, which 

are time consuming (e.g., point quadrat method), not accurate and often require the 

destruction of the samples (e.g., defoliation of the vine to scan all the leaves and 

estimate the total leaf area). 
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The images were acquired using the frontal camera of an Apple iPad mini 2, 

placing it on the ground under the row line and at the middle of the vine cordon, 

following the indication provided by the app developer. Specifically, images were 

taken at 0.70 to 0.80 m from the cordon with a number of subdivisions of 5 (25 sub-

images), a gap fraction threshold equal to 0.75 and a standard light extinction 

coefficient (k) = 0.7 [41]. 

 
Figure 3: Example of LAI measurement procedure using the VitiCanopy app. From left to 
right, the app user interface, the shot image of the vine canopy, the segmented binary image of 
the canopy and the results in terms of LAI and canopy porosity. 

 Mobile App (MA) 

Ground images of the 48 geo-referenced test vines were collected in each 

survey date using a MA called Pix4Dcatch (Pix4D SA, Prilly, Switzerland), available 

for Android and iOS devices. 

This app allowed ground-based 3D point clouds to be created using a 

smartphone or tablet camera. While the user scans a scene or an object, the app 

automatically records geo-referenced images with a very high overlap (i.e., 95%). 

Each vine was scanned on both sides by hand with approximately 150–200 images, 

as schematically shown in Figure 4. 

The scans were performed by positioning the tablet perpendicular to the vine 

canopy at a distance of approximately 2 m. The acquisitions of the images were made 

by scanning from 0.30 m under the vine cordon and continuing in height on further 
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two levels to reach the maximum height of 2.50 m above ground level in order to 

guarantee a good overlap between the photos. Half of the adjacent vines in the same 

row were also scanned to collect enough data for the sampled vine under study. The 

sampled vine was then extracted in the pre-processing phase and the borders cleaned. 

 
Figure 4: MA ground data acquisition: (a) Pix4Dcatch window app; (b) scanning pattern 
followed during the surveys. 

 Mobile Laser Scanner (MLS) and Vigour Index 

The MLS was carried out through a 2D LiDAR TIM 561 (Sick,Waldkirch, 

Germany) and a D-GNSS receiver (Differential-Global Navigation Satellite System) 

mounted on the rear part of a tractor (Figure 5a), where, on the right side of the Roll-

Over Protective Structure (ROPS) the OptRx sensor (AgLeader Technology, Ames, 

IO, USA) is placed and coupled with the hardware and the rough book for data 

collection and storing, on the top of the front ROPS the D-GNSS receiver is placed 

and in the centre of the rear ROPS the LiDAR is oriented to the ground. In Figure 

5b, the algorithm geometry scheme and the sensor are shown. In particular, LiDAR 

has an angular resolution of 0.33°, a working range from 0.05 m to 10 m, a scanning 

angle of 270° and a scanning frequency of 15 Hz. 

Along with the LiDAR sensor, the OptRx sensor was used to collect canopy 

vigour information. This proximal sensing tool was mounted in the central part of 

the tractor and arranged parallel to the vertical canopy axis, in order to avoid any 

noises of soil and grass. It measures the reflectance in the 630–685 nm (red), 695–
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750 nm (red edge) and 760–850 nm (NIR—Near InfraRed) wavebands, which were 

used to process the NDVI and NDRE indices. Reflectance data were collected 

simultaneously and at the same acquisition frequency of LiDAR data.  

The average speed of MLS was 1.4 m s-1 with an acquisition frequency of 5 

Hz, in order to obtain a scan every 0.30 m. 

 
Figure 5. MLS ground data acquisition: (a) Main devices installed on the MLS for the canopy 
volume and vigour data acquisition. On the right side of the Roll-Over Protective Structure 
(ROPS), the OptRx sensor is placed and coupled with the hardware and the rough book for 
data collection and storing. On the top of the front ROPS, the D-GNSS receiver is placed and 
in the centre of the rear ROPS the LiDAR is oriented to the ground. (b) LiDAR and algorithm 
working geometry. Model orientation and main geometries and measurements considered for 
the calculation of the volumes i.e., HLi – LiDAR height from ground-level; Hco – cordon height 
from ground-level; Drs – row-spacing; Dvij – distance between LiDAR and canopy at specified 
angular position j and at moment i, αij – angle subtended by DVij, C_xyij – pinpointed canopy 
data in cartesian coordinates. 

Aerial Measurements  

 Unmanned Aerial Vehicle (UAV) 

The DJI Phantom 3 Professional UAV (DJI, Shenzhen, China) (Figure 6a) 

was used as aerial platform. This UAV is equipped with a 12.4-megapixel CMOS 

sensor, has a diagonal size of 350 mm, a maximum take-off weight of 1280 g, a full 

flight time of 23 min, a top horizontal flight speed of 16 m s-1 and maximum ascent 

and descent speeds of 5 and 3 m s-1, respectively. The pitch angle range of the camera 

is approximately – 90° to +30°. 
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(a) (b) 

Figure 6: UAV aerial data acquisition: (a) DJI Phantom 3 Professional UAV in the vineyard; (b) 
UAV photogrammetry mission over the vineyard (Map Pilot app) with the overview of the 
interface for the flight mission and parameters. The yellow lines indicate the borders of the survey 
area, the green and red placemarks indicate the mission start and end points respectively and the 
purple placemark indicate the UAV take-off/landing point (i.e., the UAV pilot position). 

On every survey date, the UAV imagery acquisition was made using the 

mobile app Map Pilot (Drones Made Easy, San Diego, CA, USA) (Figure 6b) to 

reconstruct the orthomosaic and the 3D point cloud of the vineyard in different 

phenological stages. UAV nadir, i.e., perpendicular to the terrain, photogrammetry 

images were acquired at a flight height of 30 m above ground level and a maximum 

cruise speed of 1.8 m s-1. The overlap between two consecutive acquired images as 

well as the side lap, i.e., the overlap between images in adjacent parallel flight lines, 

was 85%. The image resolution was 4000 pixels x 3000 pixels and the GSD (Ground 

Sampling Distance) was 1.3 cm/pixel. In order to guarantee a high quality of the 

post-processed orthomosaic, the “terrain following” feature was considered, i.e., the 

autopilot automatically adjusted the UAV altitude to keep the same relative height 

above the vineyard during the mission. 

3D Point Cloud Reconstruction: 

The 3D point cloud reconstruction was carried out by the software 

Pix4Dmapper Pro (Pix4D SA, Prilly, Switzerland). Pix4Dmapper Pro is a 

photogrammetric software that can quickly and automatically merge thousands of 
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geo-referenced images to produce accurate orthomosaic, DSM (Digital Surface 

Model), point clouds and 3D models. It has been widely used in the fields of aerial 

photogrammetry and remote sensing applied to agriculture [50–52].  

The software firstly evaluates the quality of the photogrammetric survey 

(e.g., good overlap between images), then marks key points between the images and 

automatically generates a densified point cloud and an orthomosaic of the test site or 

subject. Pix4Dmapper Pro was used to: 

(1) Generate three 3D point clouds of the test vineyard from the aerial RGB images, 

i.e., about 600 images for each UAV flight; 

(2) Generate 144 3D point clouds of the test vines from the ground RGB images, i.e., 

about 200 images for each MA acquisition;  

To geo-reference the aerial 3D point clouds in the WGS84 (World Geodetic 

System 1984) reference system, the position of 4 header poles located at the vertices 

of the test vineyard were measured with a GNSS RTK system. The CloudCompare 

v. 2.10.2 open- source software (http://www.cloudcompare.org/ (accessed on 3 

February 2022) was used to remove the noise and separate the vines from the soil for 

the point clouds generated by the MA. In particular, the “segment” feature was used 

to manually select the points, or point cloud portions, that had to be removed. 

The average density of the processed aerial 3D point clouds was about 1800 

points m−3, while the ground 3D point clouds had a density ranging between 50,000 

points m−3 and 500,000 points m−3.  

The point clouds generated by the MA and the UAV are reported in Figure 

7, whereas it was not possible to represent graphically the MLS point clouds due to 

the different processing procedure. 
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(a) (b) 

Figure 7: 3D Point Cloud Reconstruction: (a) MA vine point cloud processed with 
Pix4DMapper and cleaned with CloudCompare; (b) UAV vineyard point cloud processed with 
Pix4DMapper. In the detail, the vineyard rows and vines are shown. 

3D Point Cloud Processing Algorithm 

The UAV and MA 3D point clouds were processed by an algorithm that was 

coded in Matlab (The MathWorks Inc., Natick, MA, USA). The algorithm was built 

following the approach defined in Comba et al. [26]. In particular, the 3D point cloud 

of a vineyard row portion, where the x, y and z axes were aligned with the vineyard 

row, the canopy width and the vertical axis, respectively, was processed through a 

series of spatial manipulation, also taking into account for the local soil slope. Then, 

the canopy density, height and thickness were calculated. For the canopy height and 

thickness assessment, respectively, the 80th percentile of the point cloud distribution 

projected in the xz plane and the difference between the 98th and the 2nd percentile 

of the point cloud distribution projected in the yz plane were found to be the best 

numerical descriptors with respect to the measured ones. For these reasons, the same 

descriptors were used in the present code.  

Substantially, the code reads the processed UAV and MA 3D point clouds 

and gives as results the main canopy size parameters (i.e., thickness, height and 

volume). The working schemes of the algorithm for the UAV and MA 3D point 

clouds are reported in Figure 8. 
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(a) (b) 

Figure 8. Matlab algorithm processing scheme: (a) processing workflow for the aerial 3D point 
cloud; (b) processing workflow for the ground 3D point cloud. 

For the UAV aerial survey (Figure 8a), the 3D point cloud was firstly loaded 

in its original coordinate system (WGS84), and the GNSS coordinates of the start 

(A) and end (B) of the trunk of the test vine were given as input to isolate it from the 

rest of the vineyard. Then, the algorithm took into account the soil slope in the 

proximity of the test vine, which is, in turn, roto-translated to achieve the local 

coordinate system origin in A and the x, y and z axes aligned with the vineyard row, 

the canopy width and the vertical axis, respectively. Finally, the canopy size was 

assessed in terms of thickness, height and volume.  

For the MA ground survey (Figure 8b), the process was analogous, but in this 

case, the input 3D point cloud of the test vine was previously cleaned from noise and 

the soil was deleted thanks to Cloud Compare. The roto-translation of the 3D point 

cloud of the test vine to match the x, y and z axes was carried out manually as well 

as the definition of the Region of Interest (ROI), i.e., the parallelepiped containing 

the selected test vine which was necessary to detect the processing canopy volume. 

The MLS point clouds were processed separately by an integrated software. 

In particular, MLS data were processed, in real-time, by an algorithm that provided 
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the canopy size parameters (volume, width, height) using canopy contours extraction 

operations, that consisted in converting the MLS raw data from polar to cartesian 

coordinates. Then, the contours widths (right and left) of the vertical canopy profiles 

were extracted for each MLS laser beam. After this step, the mean value of the widths 

was calculated and multiplied by the height of the canopy, extracted from the MLS 

data, for both sides, resulting in the total area of the canopy. These steps were 

repeated for each scan provided by the MLS during the work sessions. Lastly, the 

distance from one scan to another was calculated through the D-GNSS positioning 

and multiplied by the canopy areas previously calculated to achieve the total canopy 

volumes. The MLS-based algorithm was implemented in the software to 

automatically calculate the canopy volume. Such a process was repeated 

continuously throughout the survey stage. The software provided an output file 

(.csv—comma-separated values) with the data of the canopy volumes and their 

spatial position. Further information can be found in Pagliai et al. [53]. 

The canopy volume calculation for the three tools was carried out using the 

following equation: 

𝑉 = 𝑇 ∙ 𝐻 ∙ 𝐿 (1) 

where T and H are the canopy thickness and height, respectively, as calculated by 
processing the point clouds of the different tools, and L was the cordon length that 
was considered equal to 1 m on average. 

Data Analysis and Correlation 

The LAI, NDVI, NDRE and the canopy size parameters, extracted by MLS, 

UAV and MA technologies, were analysed using the open-source software R (R 

Core Team, 2021) [54]. The statistical analysis adopted to check the reliability and 

goodness of variables was the linear correlation between all measured and calculated 

parameters. The coefficient of determination (R2) and the Root Mean Square Error 

(RMSE) were used to assess the model goodness and reliability. All the variables 

were checked to ensure a normal distribution of errors with the Shapiro-Wilk test 
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(p > 0.05), by visual inspections (frequencies histogram, normal Q-Q plots and box 

plots) and by the verification of homoscedasticity using the Levene’s test.  

The “corrplot” package was used to visualize the R2 data matrix and the 

“ggplot2” package was chosen to show the linear correlations and canopy parameters 

trends with scatters- and box-plots, respectively [55, 56].  

After the statistical analysis, the LAI and the canopy parameters were 

processed and transformed from punctual data into spatialized maps using the open-

source software QGIS (https://www.qgis.org (accessed on 3 February 2022). The 

raster maps were generated using the IDW (Inverse Distance Weighting) 

interpolation algorithm [57] with the distance coefficient P equal to 5. Then, the maps 

were smoothed by the application of a Gaussian filter with a square grid of 9 × 9 

pixels. 

Results 

Vineyard Spatial Variability Assessment: 

The spatial variability results in terms of LAI, NDVI and NDRE for each 

phenological stage are reported in Table 1. The LAI, NDVI and NDRE ranged in 

0.34–3.11, 0.40–0.85 and 0.11–0.28, respectively. 

Table 1. LAI, NDVI and NDRE values and percent coefficient of variation (C.V.%) over the three 
phenological stages. 

BBCH Canopy Parameter Max Min Mean C.V.% 

55 
LAI 0.99 0.34 0.60 23% 

NDVI 0.65 0.40 0.57 9% 
NDRE 0.18 0.11 0.15 13% 

65 
LAI 2.02 0.47 1.10 21% 

NDVI 0.78 0.55 0.70 7% 
NDRE 0.23 0.15 0.20 10% 

73 
LAI 3.11 0.89 1.93 25% 

NDVI 0.85 0.64 0.78 6% 
NDRE 0.28 0.18 0.24 13% 

In Figure 9, the LAI, NDVI and NDRE box-plots and the LAI zonation map 
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in three classes are reported for each phenological stage, highlighting the trend of 

canopy growth in time and the intra-field spatial variability of the vineyard. The 

classes in the LAI maps were determined using the 25% quantile for the LOW class 

and the 75% for the HIGH class, being the MEDIUM class related to the 25–75% 

quantile interval. 

The LAI, NDVI and NDRE data were used as reference values to validate the 

canopy size parameters reported in par. 4.2, since they are directly related to the 

amount of biomass [58], i.e., higher values of LAI, NDVI and NDRE represent 

denser vegetation areas and higher canopy volumes. 

 
Figure 9: (a) LAI, NDVI and NDRE box-plots for the three phenological stages; (b) LAI 
zonation maps in three classes of the test vineyard for each phenological stage, where the 
classes were determined using the 25% quantile for the LOW class and the 75% for the HIGH 
class, being the MEDIUM class related to the 25%-75% quantile interval. 

Canopy Size Assessment 

The canopy size results in terms of thickness, height and volume of the 48 

test vines for each phenological stage are summarized in Table 2, where the 

maximum, minimum and mean values are reported along with the percent coefficient 

of variations (C.V.%). 

For the UAV, the thickness, height and volume ranged in 0.18–0.84 m, 0.13–

1.36 m and 0.02–0.87 m3, respectively. For the MA, the thickness, height and volume 
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ranged in 0.13–0.50 m, 0.14–1.23 m and 0.02–0.49 m3, respectively. 

For the MLS, the thickness, height and volume ranged in 0.14–0.48 m, 0.15–

1.34 m and 0.01–0.52 m3, respectively. The UAV thickness estimation was higher 

than the other tools over the three phenological stages since the point cloud had more 

noise due to the inter-row (grass and soil) and to neighbour vines. In fact, the UAV 

point cloud is less precise in detecting a single vine than the other tools. On the other 

hand, the MA and MLS thickness estimations are very close one to each other. The 

height values are closer for the UAV-MLS comparison than for the UAV-MA and 

MLS-MA in all the phenological stages because of the more detailed point cloud 

generated from the MA processing with respect to the other ones. As results, the 

canopy volumes estimations are greater for the UAV due to a less precise detection 

of the single vine and a noisier point cloud, whereas the MA volumes estimations 

are the lowest among all the tools because of a more detailed and cleaner point cloud 

with respect to the UAV and MLS ones, being the latter coarser and with lower 

resolution. 

Table 2. Main canopy size results and percent coefficient of variation (C.V.%) in terms of thickness, 
height and volume for the different tools over the three phenological stages. 

BBCH Value 
Thickness Height Volume 

UAV MA MLS UAV MA MLS UAV MA MLS 

55 

Max 0.50 0.34 0.29 0.61 0.36 0.66 0.23 0.09 0.15 
Min 0.18 0.13 0.14 0.13 0.14 0.15 0.02 0.02 0.01 

Mean 0.29 0.21 0.21 0.40 0.24 0.42 0.12 0.05 0.09 
C.V.% 24% 24% 19% 30% 17% 24% 42% 40% 33% 

65 

Max 0.61 0.45 0.35 1.05 0.70 0.97 0.48 0.20 0.34 
Min 0.28 0.21 0.20 0.28 0.29 0.40 0.12 0.04 0.08 

Mean 0.41 0.32 0.29 0.68 0.52 0.75 0.28 0.10 0.22 
C.V.% 20% 19% 10% 24% 19% 16% 29% 40% 23% 

73 

Max 0.84 0.50 0.48 1.36 1.23 1.34 0.87 0.49 0.52 
Min 0.38 0.29 0.22 0.73 0.68 0.71 0.36 0.26 0.26 

Mean 0.58 0.40 0.36 1.07 0.94 1.04 0.59 0.38 0.40 
C.V.% 22% 13% 17% 12% 14% 13% 22% 16% 15% 

The canopy thickness, height and volume data were processed and 

transformed into raster maps for each phenological stage using the same procedure 
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that was described in par. 3.5. In Figures 10–12, the maps are reported along with 

the box-plots for each phenological stage and for each tool.  

Linear regression models between each tool were analysed to verify whether 

the different point clouds results were able to represent the canopy structure 

correctly. The results are shown in Figure 13, where H, T and V are, respectively, 

the canopy height, thickness and volume. As main result, it can be noted that the R2 

between the canopy volumes acquired with the different tools was higher than 0.7, 

being the highest value of R2 = 0.78 with a RMSE = 0.057 m3 for the UAV vs. MLS 

comparison, which indicates a strong correlation between them [59]. Such 

regressions indicate that all the tools have the same trends in representing the 

variability of the canopy volumes during the three phenological stages. The highest 

correlations were found between the height data for all the tools, being the R2 values 

higher than 0.8 with the highest value of R2 = 0.86 with a RMSE = 0.105 m for the 

MA vs. MLS comparison. For the thickness data, the correlations were weaker, being 

the R2 between 0.5 and 0.6 with the lowest value of R2 = 0.48 with a RMSE = 0.052 

m for the UAV vs. MLS comparison. 
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Figure 10. UAV, MA and MLS thickness results: (a) box-plots for the three phenological 
stages; (b) thickness zonation maps of the test vineyard for each phenological stage, where a 
single colour scale was used starting from the minimum value (red) to reach the maximum 
value (green). 
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Figure 11. UAV, MA and MLS height results: (a) height box-plots for the three phenological 
stages; (b) height zonation maps of the test vineyard for each phenological stage, where a 
single colour scale was used starting from the minimum value (red) to reach the maximum 
value (green). 
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Figure 12. UAV, MA and MLS volume  results: (a volume box-plots for the three phenological 
stages; (b) volume zonation maps of the test vineyard for each phenological stage, where a 
single colous scale was used starting from the minimum value (red) to reach the maximum 
value (green). 
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Figure 13. Scatter plots of the 48 sampled vines in the three phenological stages for all the 
tools. 

The full R2 matrix is reported in Figure 14, where it is shown that the 

correlation between the LAI values and the canopy volumes was moderately strong 

(> 0.65) for all the tools. Being the measured LAI values taken as reference data to 

represent the test vineyard spatial variability, this indicates that all the point clouds 

were able to correctly represent the spatial variability of the canopy size in all the 

analysed phenological stages, with the highest value of R2 = 0.74 for the LAI vs. 

V_MLS data and the lowest value of R2 = 0.69 for the LAI vs. V_UAV data. 

Furthermore, good correlations were found for the NDVI and NDRE variables with 

respect to the measured LAI (R2 = 0.67 and R2 = 0.74, respectively) and with respect 
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to the canopy volumes, being the best value of R2 = 0.79 for the NDRE vs. V_MLS 

comparison. Interesting correlations were also found between H_MA and H_UAV 

with respect to V_MLS (R2 = 0.87 and R2 = 0.8, respectively) and between H_MA 

and H_MLS with respect to V_UAV (R2 = 0.78 and R2 = 0.7, respectively). 

 
Figure 14. R2 matrix for all the involved parameters and tools. H, T and V represents 
respectively the canopy height, thickness and volume. 
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Discussion 

In this research, UAV, MA and MLS point clouds were compared to assess 

the canopy size parameters of vertical trained vines (Vitis vinifera L.). Manual 

measurements of the canopy volumes were not taken due to several uncertainties, 

such as the identification of the vine canopy boundary and being subjective and 

dependent on the person taking the measure itself as well as on the tool or strategy 

used to assess the canopy height and thickness [60, 61]. Moreover, some researchers 

have found that manual measurements over-estimate the canopy thickness of about 

30% with respect to LiDAR ones [62]. 

 This study aims to give all the stakeholders an overview of the available tools 

and procedures used to assess the canopy size parameters of the vines in order to 

provide a reference for the vineyard precision management. The spatial variability 

detection is crucial in precision farming to automatize the VRT operations and to 

optimize the chemical inputs. Therefore, more than the precise quantitative 

estimations of the canopy volumes, it is essential to assess whether an area in the 

vineyard is more vigorous than another to differentiate the operations such as 

pruning, harvest, fertilization and crop protection stages, being the agronomist 

responsible to determine the quantitative applications based on the spatial variability 

maps. 

Since LAI is directly related to the canopy volume in vineyards [28, 29, 63], 

LAI measurements computed with the app VitiCanopy were taken as an objective 

reference value to assess whether the different tools correctly characterize the canopy 

volume intra-field variability.  

The results indicate that it is feasible to use 3D point clouds from the 

investigated tools to automatically compute the canopy height, thickness and volume 

of the vines and that the canopy size parameters variability in the test vineyard is 

detected correctly by all the tools in the analysed phenological stages. The results 

highlight the possibility to use different tools to determine the vines canopy growth 
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trend, thanks to a good correlation that was found between them for the same 

variable.  

UAV technology was widely used to assess canopy volumes and it was 

shown to be a quick and low-cost solution compared to ground measurements of 

canopy size parameters [50, 60, 64–69]. The UAV point cloud processing led to 

similar results in canopy volume values concerning other research, but they used a 

voxel method [70] and an alpha- shape approach [38, 71]. Therefore, direct 

comparison is not possible. Among different UAV-based measurements, canopy 

volume was found to be more sensitive to changes in canopy structure, compared to 

NDVI and projected canopy area, and demonstrated a more significant potential to 

assess the outcomes of a range of canopy management practices [72]. In addition, 

the MLS technology has also been widely used to assess canopy characteristics 

(canopy height, thickness and volume) but the goodness of canopy characterization 

was, mainly, compared to manual estimation. [28, 61, 62, 64, 73, 74]. Rosell et al. 

[74] and Llorens et al. [28] stated that LiDAR is a valuable tool to characterize the 

canopy parameters and provides very precise canopy characterization. Instead, the 

MA technology based on the Pix4DCatch app is very recent (2020) and no research 

was found on its use in assessing vines canopy volumes. However, it is possible to 

affirm that this technology is a high-resolution photogrammetry solution to 

reconstruct high-detailed point clouds that is based on the same principle followed 

by the UAV technology. Even though the cost for the photogrammetric software to 

process the photos can be a bottleneck, an advantage of this method is the fact that it 

is not necessary to buy any expensive tool to take the photos nor an expensive 

hardware to process them (common smartphones and PC are enough), which makes 

it the most cost-effective and versatile approach for wineries with small vineyards 

scattered in distant areas. Moreover, the use of open-source photogrammetric 

software such as Open Drone Map (https://www.opendronemap.org/ (accessed on 3 

February 2022) could overcome the economic limitation due to the software cost. 
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Confirmed that all the analysed tools can assess the intra-field variability of 

the canopy size parameters, their advantages and limitations can be assessed. The 

UAV technology allows to quickly map lots of hectares, taking about 20 min of 

acquisition time for 2 ha of vineyard at an altitude of 30 m and 2 h of processing time 

with a standard laptop. For this reason, this solution can be more practical and 

economically relevant in medium- to-big wineries (> 20 ha) and hilly environments. 

However, it requires trained staff and specific requirements to respond to national 

and international laws. The MA technology generates the more detailed point clouds 

but its measurement is punctual. It can be helpful for research purposes or in small 

wineries (< 5 ha) because, at this time, the processing procedure requires a lot of 

work. However, if all the processing parts are automatized, it can become a powerful 

tool to directly assess the canopy volumes by the agronomists or farmers in order to 

support their vineyard management decisions more rationally. The MLS technology 

has the advantage to be an on-the-go system that can be installed directly on farm 

tractors so that the data are collected automatically during field operations. On the 

other hand, this technology is more time consuming than the UAV one, being 1.5 h 

the acquisition time for 2 ha, and the LiDAR sensor requires maintenance since it is 

very sensitive and susceptible to dust and its use can be complex in high-slope 

vineyards [75].  

For all the tools, the processing procedures were time consuming and 

required enough computational resources to be performed in an efficient way. Some 

limitations and issues were experienced during the trials. In particular, the use of 

VitiCanopy to measure the LAI experienced difficulties in early stage (BBCH 55) 

and in vines with a low canopy volume, because the cordon was detected as a part of 

the canopy volume itself, making an overestimation of the LAI. On the other hand, 

the Matlab algorithm used for the UAV and MA data overestimates the canopy 

thickness when the canopy is very well developed (i.e., BBCH 73). The 

overestimation is due to some very long branches that deflected inside the vineyard 
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inter-rows so that the generated vines point clouds were much thicker than they 

actually were. For the MLS processing, the limitations are due to the data verification 

that has to be carried out manually and that the point cloud cannot be graphically 

visualized for further investigations. Another critical issue is the post-processing data 

analysis, how highlighted by Rosell et al., 2009 and Cheraiet et al., 2020. Despite 

these issues, in the last years many improvements regarding automated MLS data 

processing were developed and one of them was used in this study [53, 75–77]. 

Conclusion 

In this study, different digital tools, namely MA, MLS and UAV, were used 

to create 3D point clouds of test vines (Vitis vinifera L.) in order to assess the canopy 

size parameters such as thickness, height and volume in three different phenological 

stages. The tools were compared in terms of ability to detect and characterize the 

spatial variability of the vineyard in order to generate zonation maps useful for a 

precision farming management and VRT applications. Along with these 

measurements, the LAI, the NDVI and the NDRE indices were also assessed, being 

the LAI values taken as reference data to represent the vineyard spatial variability. 

The results indicated a good correlation between all the tools in terms of detecting 

the intra-field variability and the canopy size parameters. In particular, the R2 

between the canopy volumes acquired with the different tools is higher than 0.7, 

being the highest value of R2 = 0.78 with a RMSE = 0.057 m3 for the UAV vs. MLS 

comparison. The highest correlations were found between the height data for all the 

tools, being the R2 values higher than 0.8 with the highest value of R2 = 0.86 with a 

RMSE = 0.105 m for the MA vs. MLS comparison. For the thickness data, the 

correlations were weaker, being the R2 between 0.5 and 0.6 with the lowest value of 

R2 = 0.48 with a RMSE = 0.052 m for the UAV vs. MLS comparison. The correlation 

between the LAI values and the canopy volumes was moderately strong (> 0.65) for 

all the tools with the highest value of R2 = 0.74 for the LAI vs. V_MLS data and the 



91 | P a g e  
 

lowest value of R2 = 0.69 for the LAI vs. V_UAV data.  All the tested tools 

demonstrated to have some advantages and limitations: the UAV technology allows 

to quickly map lots of hectares but it requires trained staff and specific requirements 

to respond to national and international laws, the MA is a more punctual 

measurement but cheaper than the other tools so more affordable by small farms, the 

MLS can be installed directly on farm tractors so that the data can be collected 

automatically during field operations. The major limitations for all the tools are 

related to the data processing step which is time consuming and requires proper 

computational power. Further developments of this study can be the use of UAV-

based multispectral imagery, the automatization of the algorithms and the processing 

steps as well as the creation of prescription maps for pesticide treatments, based on 

the canopy volume maps. 
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Abstract 

The reduction of pesticide use in agriculture is one of the main goals of the 

European Union and it can be achieved with new technologies. This work aimed to 

test in the field a 2nd generation ultrasonic sensor (US), able to directly distinguish 

foliar layers and density, and to verify its working performance. Field trials were 

carried out in a vineyard and in different phenological phases. The best correlations 

were found between the canopy volume and the US Envelope parameter, and 

between the canopy height and the US Density parameter, R2 of 0.67 and 0.73 

respectively. Therefore, US parameters can estimate canopy characteristics with 

good reliability and thanks to the actuation-range refinement, this system can be 

implemented in conventional sprayers, improving their environmental sustainability. 

 

Keywords: proximal sensing, sustainable pesticide management, spray coverage, 

deposit, viticulture
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Introduction 

One of the most environmentally impacting factors in crop production is 

plant-protection product management and distribution. The reduction of pesticides 

is considered a fundamental process by the European Union, as stated in the “Farm 

to Fork” strategy. The European Union addresses, as a viable solution, the 

application of precision agriculture (PA) techniques. In viticulture, and generally in 

perennial crops, various planting layouts, different canopy management and shapes 

can be considered sources of variability. All these aspects must be carefully 

considered in the management of operations like crop protection (Miranda-Fuentes 

et al. 2018).  

Variable Rate Application (VRA) is a technique capable of taking into 

account these aspects and, at the same time, reducing the environmental impacts by 

adjusting, in real-time, the amount of spray distributed based on the volume of 

canopy that has to be treated (Gil et al. 2013). A sensing system able to detect the 

canopy is necessary to carry out VRA management. In general, sensors such as 

ultrasonic sensors (US) or laser scanners (LS), which provide direct measurements 

of the canopy, are more reliable than sensors that measure the reflectance of visible 

and infrared light for obtaining three-dimensional characteristics of canopies and 

therefore for performing real-time VRA (Abbas et al. 2020). In addition, LS 

performance is significantly weakened in high-light intensity and dusty 

environments (Rosell and Sanz 2012). Instead, US's robustness and low price make 

it more suitable for agriculture purposes (Rosell and Sanz 2012). In last decades, 

many authors have used US to assess canopy characteristics, using various sensors 

to characterise the whole canopy and the time of flight (TOF) as a sensing parameter 

(1st generation) (Gil et al. 2014; Llorens et al. 2010). However, in recent years new 

integrated US capable of managing TOF of different echoes and wavelengths, have 

been developed (2nd generation). Those sensors can distinguish foliar layer and 
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canopy density. Some studies have shown promising results for real-time canopy 

characterisation with these new sensors, but linking these results to spray quality and 

quantity parameters to improve VRA is lacking (Palleja and Landers 2017).  

The present work aimed to test in-field a second-generation ultrasonic sensor, able 

to directly determine foliar layers and density, to verify the canopy detection 

reliability performances of the sensor and to fine-tune the spray actuation range. 

Materials and Methods 

Experimental site and design 

Field trials were carried out in a cordon spur vineyard, located in Castellina 

in Chianti, Siena, Italy (43°27'39.27"N; 11°13'22.51"E), in the middle of Chianti 

Classico. The vineyard had a density of 5000 pl ha-1 and followed the traditional 

Tuscan planting layout, with a planting distance of 2.5 x 0.8 m and a cordon mean 

height from the ground of 0.8 m. The cultivar was Vitis vinifera L. cv. “Sangiovese”. 

The experimental site covered around 0.5 ha, where 20 vines were sampled and data 

were collected at three phenological phases (BBCH 61, BBCH 73, BBCH 81), both 

for canopy characterisation and for refining the spraying range (Lorenz et al. 1995). 

Since the vineyard was located on a hillside and showed important vigour variability 

along the vine row, a completely randomized design was performed with three 

repetitions. The main characteristics of the trials were reported in Table 1. 
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 Table 1. Main characteristics of trials and spray volumes applied. 

Trials 
Phenological 

phase 
Tree row volume 

Sampled 
vines 

n° artificial 
target 

Levels 
Application 

volume 
 (BBCH) (m3 m-1) ± sd    (l ha-1) ± sd 

 
61 0.258 ± 0.08 

 
3 

L1 150 ± 0.5 
1° 20 L2 200 ± 0.8 
  L3 175 ± 0.7 
 

73 0.311 ± 0.10 
 

4 
L1 200 ± 0.8 

2° 20 L2 225 ± 0.8 
  L3 250 ± 0.9 
 

81 0.334 ± 0.10 
 

5 
L1 275 ± 1.1 

3° 20 L2 250 ± 0.8 
  L3 225 ± 0.4 

 

Data acquisition for canopy characterisation  

For canopy manual measurements, a revised Tree Row Volume (TRW) was 

adopted: the canopy height (H) and thickness (T) were measured for each sampled 

vine, and the volume of the canopy (V) was calculated as meter cubic of vegetation 

per meter of vine row (m3 m-1). To ensure good reliability of measurements three 

repetitions were taken. A second-generation ultrasonic sensor was used for canopy 

instrumental measurement assessment. The instrumentation (Fig. 1) used was a 

NORAC Ultrasonic sensor (Topcon Positioning Group, Tokyo, Japan). The sensor 

features a 1 mm resolution, a measurement range of 0.15 m to 10 m, a maximum 

acquisition frequency of 30 Hz, and it generated 50 kHz ultrasound waves. The 

sensor was integrated with a microprocessor capable of performing all computations 

onboard, i.e. selecting the range of interest (ROI) and outputting the final values in 

a .csv file (comma-separated values). This sensor was able to measure the number of 

echoes and their intensity in a pre-selected ROI and it provided three simplified 

values of readings (Edges, Envelope and Density). Considering the canopy layout in 

the involved vineyard, the ROI was set at 1 m and the relative ultrasonic cone 

diameter was around 0.50 m. 
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a) b) 

Figure 1. a) Schematic representation of NORAC ultrasonic sensors (NORAC – Datasheet); b) 
Sensors used in the experimentation. 

 

Data acquisition for spray quality and quantity 

To perform the calibration of the actuation range, a study of spray distribution 

for each phenological stages was conducted on the same day of the canopy data 

acquisition. The profile sampling strategy of the British Standard ISO 22522/2007 

was followed. Particularly, both plastic sheets (50 x 90 mm, SEFAR NITEX) and 

water-sensitive papers (WSPs, 26 x 76 mm, Syngenta, Switzerland) were arranged 

on the canopy on both sides and in various positions, following the plant growth in 

the three trials (Tab 1.). To verify the right amount of spray volume in relation to the 

canopy dimensions, the sampled vines were sprayed at three different application 

levels in each phenological phase, with an 8 g l-1 concentrated solution of water and 

yellow Tartrazine (Andrea Gallo S.r.l., Genova, Italy). To analyse spray distribution 

reliability, normalized deposit and spray coverage have been taken into account. A 

well-known spectrophotometer methodology was used to quantify the Tartrazine 

concentration in plastic sheets (Gil et al. 2007). In particular, the Eq.  (1) was applied 

to obtain the normalized deposits. 

𝑑 =  

 

(𝐴 −  𝐴)
𝛼

×  𝑉ௗ

𝑆௦
  ×  100

𝐴௩ ×  𝑐௧
 

(1) 

where: 𝑑 is the normalized deposit expressed in mg cm-2;  𝐴 is the absorbance 
value of the sample; 𝐴 is the absorbance of the blank sample; 𝛼 is the calibration 
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curve coefficient; 𝑉ௗ is the amount of washing solution; 𝑆௦ is the area of plastic 
sheet; 𝐴௩ is the applied spray volume expressed in l ha-1; 𝑐௧ is the concentration 
of tartrazine. 

Instead, an image analysis technique was used to measure the spray coverage 

from the WSPs. First of all, the collected WSPs were digitized with a professional 

scanner at a resolution of 600 dpi. Finally, the WSP images were analysed by the 

Deposit Scan software to extract the spray coverage values. 

Instrumentation 

Both the canopy characterisation studies and the spray tests were conducted 

with the same equipment. A Lamborghini RF90 tractor coupled with a drawn 

pneumatic sprayer (Martignani M612 Whirlwind, Ravenna, Italy) was used. The 

main characteristics of the sprayer were: a 1000 l tank, a centrifugal fan capable of 

generating a homogeneous air flow of about 26,000 m3 h-1, a centrifugal pump, and 

6 nozzles per side (4 mm) located inside two radial fans. In addition, two US sensors 

were mounted in the front part of the sprayer and the maximum acquisition frequency 

(30 Hz) was set in all the canopy characterisation sessions. Both for the instrumental 

characterisation and the spray tests the tractor speed was set at 1.4 m s-1 and the 

sprayer or the sensors sprayed/measured both sides of the vine rows. Before each 

spray test, the sprayer was accurately calibrated to ensure homogeneous depositions 

and coverages. During the tests, a weather station was placed inside the vineyard to 

record the main meteorological parameters (air temperature, air humidity, wind 

speed and direction). 

 

Data analysis 

The statistical analysis and the graphical representation were undertaken with 

the open-source statistical software R under an RStudio environment. All the 

variables were analysed to ensure the reliability and robustness of the linear model 

assumption. The normal distribution of errors and the respect of homoscedasticity 

were inspected using the Shapiro-Wilk test (p < 0.05) and Levene’s test, respectively. 
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The coefficient of determination (R2) was used to evaluate the model’s goodness and 

reliability. R-software native functions, the “corrplot” package and the “ggplot” 

package were used to check the assumptions of the linear model, to visualize the R2 

matrix and to show the linear correlations with scatters-plots, respectively (Wickham 

2016). 

Results and discussion  

   
BBCH 61 BBCH 73 BBCH 81 

Figure 2. R2 matrix for all the involved canopy measurements. V, H and T represent canopy 
volume, height and thickness. EDG, ENV and DEN represent edges, envelope and density of US 
variables. 

In Figure 2, the three correlation matrices for each phenological phase are 

shown. The matrices concern the canopy manual measurements (V, H, T) and the 

canopy instrumental characterizations (Edges - EDG, Envelope - ENV, Density - 

DEN). The second trial showed the highest values of R2 between different 

combinations. Instead, the R2 values of the third trial revealed the lowest 

performance in terms of correlation. Between the second and the third trial, a vertical 

and horizontal topping was carried out by the wine farm. Palleja and Landers (2017) 

highlighted that there is a correlation between manual measurements and envelope 

signal of the US but it is not constant and it could differ for many reasons, for instance 

the canopy management. On the basis of the BBCH 81 matrix, the canopy 

management (topping) could have affected the canopy measurements in the last trial. 

A common trend showed in the matrices was that the lowest R2 values are shown 
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between the canopy thickness and the US readings (EDG, ENV and DEN). Instead, 

the highest R2 values are disclosed between canopy volume and the instrumental 

measurements, except for the last trial where the canopy height highlighted the 

highest values. However, the highest R2 was observed between the canopy height 

and the US Density in the first trial (R2 = 0.87), between the canopy volume and the 

US Envelope in the second trial (R2 = 0.94), and between the canopy height and the 

US Envelope in the last trial (R2 = 0.78).  

In Table 2, the linear relation of aggregated data (BBCH 61, BBCH 73, 

BBCH 81) were reported for all the involved measurements. Generally, a common 

decrease in the goodness of R2 is shown in Table 2. The maximum achieved R2 is 

0.75, while in the previous matrices was 0.94. In particular, a significant decrease in 

goodness was disclosed between the canopy thickness and the US measurements, in 

which the maximum value of R2 was 0.57 (T vs DEN). This is due to the values 

recorded in the last trial  (BBCH 81). In fact, they showed the worst R2 and they 

impacted on the correlation coefficients showed in table 2. The maximum values of 

R2 were shown between the canopy height and all the involved US measurements. 

In particular, the R2 were 0.74, 0.75 and 0.73 between the H variable and EDG, ENV, 

and DEN respectively. Llorens et al (2010) showed the best R2 between US 

parameters and canopy height (around 0.55) than the other manual canopy 

measurements. This trend is reported also in the present work, as shown in Table 2.  

Table 2. Linear relation between all the involved canopy measurements for aggregated data. 

Sources DF p>(F) Significancea R2 Equation 
EDG ~ V 59 4.7E-13 *** 0.59 y = 5.37x + 2.02 
ENV ~ V 59 7.6E-16 *** 0.67 y = 809.37x + 92.41 
DEN ~ V 59 1.5E-11 *** 0.54 y = 4355.1x + 3306.3 
EDG ~ H 59 2.2E-16 *** 0.74 y = 3.54x + 0.66 
ENV ~ H 59 2.2E-16 *** 0.75 y = 505.07x - 87.06 
DEN ~ H 59 2.2E-12 *** 0.73 y = 2994.1x + 2094.6 
EDG ~ T 59 2.3E-09 *** 0.46 y = 7.36x + 1.18 
ENV ~ T 59 6.4E-09 *** 0.44 y = 1020.87x - 3.14 
DEN ~ T 59 2.7E-12 *** 0.57 y = 6953.6x + 2268.9 
Statistical significance level: NS p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001 

In Figure 3, the scatter plots between canopy volume (TRW) and spray 
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parameters (spray coverage and normalized deposits) are shown. In particular, the 

points are represented in different shapes and colours depending on trials and applied 

volume levels. The horizontal lines represent the thresholds for filtering spray data 

in order to maximize the efficacy and minimize the over and under-spraying and the 

over and under-dosing of application (Grella et al. 2022; Miranda-Fuentes et al. 

2016). In general, the spray coverage data exceeded significantly the thresholds 

related to the normalized deposits, especially for the highest applied volume (black 

triangle and black circle). In fact, the spray deposits are more concentrated in the 

region of interest. This is probably due to the type of analysis. Spray coverage values 

were extracted by WSPs. They are artificial targets very susceptible to external 

interference, such as the dislocation of collectors in the spraying moment or in 

general weather conditions (wind direction and intensity) (Grella et al. 2022). 

Instead, the deposit values are more stable to external interferences and this is the 

reason many authors used this parameter than the spray coverage (Gil et al. 2007; 

Llorens et al. 2010; Miranda-Fuentes et al. 2016). However, in the present work, 

both methods were presented and disclosed in order to provide a deeper analysis. 

 
a) b) 

Figure 3. a) Scatter plot between spray coverage and canopy volume; b) Scatter plot between 
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normalized deposit and canopy volume. Different shape of points represent different trials and 
different colour represent different applied volumes. 

The data showed in Figure 3 were used to refine the actuation range after 

filtering them according to the set thresholds. The filtered data was then portioned 

into ten subsets according to the canopy volume. This portioning has been necessary 

to create small datasets of homogeneous and representative vines regarding the 

canopy volume. Subsequently, the modal values of applied volume for each dataset 

were collected and plotted to build the actuation range. Finally, the equations of 

regression between the canopy volume and all the US parameters (EDG, ENV, DEN) 

were used to create and refine the actuation range for the US sensor. The actuation 

ranges, build according to spray coverage and normalized deposits, for the TRW and 

for the more reliable US measurements are shown in Figure 4. 
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a) b) 

Figure 4. Actuation ranges for the TRW and for the US measurements. a) on the left, according 
to spray coverage; b) on the right, according to normalized deposits 

Conclusion 

The second-generation US sensor tested in this study opens new frontiers in 

precision spraying in terms of increasing environmental sustainability. In particular, 

concerning canopy detection reliability, the ultrasonic sensor showed good reliability 

in estimating canopy characteristics. Indeed, interesting correlations were found, 

especially between the canopy height and the US Envelope and Density parameters 

(R2 = 0.94 and 0,92). On the basis of these results, two actuation ranges were reported 

according to the normalized deposit and spray coverage parameters. Thanks to them, 

it was possible to refine the spray volume application in compliance with good 

spraying thresholds. Moreover, thanks to these actuation ranges, this US sensor can 

be mounted in a sprayer, enabling the variable-rate application so as to improve the 

environmental footprint and meet European goals. 
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Abstract 

The European Union has set ambitious goals in terms of reducing pesticides 

in agriculture. These goals could be achieved in different ways e.g. by Variable-Rate 

Application (VRA) technologies. This work aims to assess the spraying performance 

of a VRA sprayer and its economic sustainability. To evaluate operational 

performance, three trials (BBCH 65, BBCH 73, BBCH 83) were performed in a 

vineyard following a profile sampling strategy (BS ISO 22522:2007). A randomized 

complete block design was performed with three replications for each application 

mode (Uniform and Variable - UA and VRA). Variables (normalized deposition and 

spray coverage) were extracted from artificial targets using spectrophotometry and 

image analysis techniques, respectively. Moreover, the economic performance of the 

VRA sprayer compared to the UA sprayer was performed for an entire vegetative 

season in two plots. Normalized deposit results showed differences between 

detection heights (H1, H2, H3, H4) rather than between modes (VRA vs UA). 

Therefore, VRA and UA efficacy was confirmed, given the similar values of deposit. 

The same trend was evident in the spray coverage results, even though the UA spray 

coverages were higher than VRA, usually exceeding the overspray threshold. The 

economic performance highlighted an average volume saving of 35% for VRA, 

ranging from 76% in the first session to 10% in the last. The resulting economic 

saving was €2,599.50, consisting of: €2,502.5 in pesticides, €52.14 in water and 

€44.86 in fuel. Overall, the VRA system showed good spray performances reducing 

the spray volume significantly and enhancing economic sustainability. 

 

Keywords: VRA, spraying optimization, pesticide, ultrasonic sensor, vineyard, 

environmental sustainability. 
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Introduction 

The economic sustainability of farms has always been the main aspect to 

consider in order to maintain a stable business. In recent years, environmental 

sustainability has been complemented  by  economic sustainability [1]. Particularly 

in viticulture, some field activities such as crop protection have a heavy 

environmental and economic footprint [2]. Recently, the war between Russia and 

Ukraine , the post-pandemic situation and  ongoing inflation are hitting all sectors 

hard. The price of raw materials as fertilizers, fuel, pesticides and energy is 

increasing, pushing farms in a difficult position [3]. At the same time, the attention 

of public decision-makers is focused on green policies. Recently, the European 

Commission, through the documents «From Farm to Fork», has set ambitious goals 

to reach a healthy and sustainable food system [4]. To achieve these targets, farmers 

must reduce the number of chemical inputs as PPP (plant protection products), 

fertilizers and antimicrobials products. 

In particular, many techniques and tools exist in viticulture to achieve these 

goals for example  decision support systems, development of less dangerous PPP, 

low volume applications, anti-drift nozzles and variable-rate applications [5]. 

The latter is one of the most interesting tools for adapting plant protection 

products to the canopy characteristics, thus reducing their consumption [6]. In 

general, the new VRA sprayers are very expensive compared  to conventional ones. 

This fact leads farmers not to buy them, even if VRA sprayers can improve spray 

performance, reduce the consumption of pesticides and, in general, enhance 

economic and environmental sustainability [7].  

Within this context, the present work aims to develop a low-cost modification 

kit to convert the existent sprayer into an innovative VRA in order to reduce 

pesticides consumption and enhance environmental and economic sustainability 

without affecting operational performance. Therefore, the purpose of this research is 
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to test and assess the spraying and economic performance of this kit, for conventional 

sprayers, able to perform  variable rate spraying according to canopy  size. The study 

can be split in two different parts. In the first part, three trials were conducted at 

different phenological stages to evaluate the spraying performance of the sprayer in 

VRA  compared to UA mode. In the second, the same sprayer was used to perform 

an entire season of spraying in VRA mode, with the aim of assessing its economic 

performance in relation to UA one. 

Materials and Methods 

A vineyard in the Chianti Classico area has been the place of 

experimentation. In particular, the vineyard was located in Gretole (4813930.984 N; 

680511.290 E), Castellina in Chianti, Siena, Italy (Fig. 1). The vineyard had a density 

of 5000 vines ha-1, with a planting distance of 2.50 x 0.80 m, and the cultivar was 

the Vitis vinifera L. cv. ‘Sangiovese’. The vines were 16-years old and trained with 

a horizontal spur- cordon. This vineyard was used for both operational and economic 

performance tests. 

 
Figure 1. Experimental site for operating and economic performances of VRA sprayer. 
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During the trials, a tractor-drawn, PTO-powered, pneumatic sprayer 

(Martignani M612 Whirlwind, Ravenna, Italy) was used. The sprayer was equipped 

with a 1000 L polyethylene tank, a centrifugal fan, a centrifugal pump (120 l/min, 

150kPa), and 6 nozzles per side (∅ 4 mm). Air was expelled by  two radial air 

conveyors at 90° to the direction of the travel, with a homogeneous air flow around 

26,000 m3 h-1. The sprayer was customized to be able to applicate pesticides at 

variable rate (VRA) according to the canopy  size. A new generation of ultrasonic 

sensors has been installed at the forepart of the sprayer to perform the VRA (NORAC 

Topcon, Tokyo, Japan). These sensors can analyse the canopy in terms of thickness, 

foliar layers and density. These data were used to adjust the spray volumes to the 

size of the canopy. The spraying components were also customised. In fact, the 

original valves have been replaced by electronic ones. In particular, in the rear of the 

sprayer, there were eight electro-valves, four for the left side and four for the right 

side. These valves control the flow rate of spray volume, thanks to their switching 

on/off. The combination of opening and closing of electro-valves and the variation 

of pressure from 1 bar to 2 bars permits to applicate pesticides at variable rate. The 

flow rates for each electro-valves are shown in table 1, at 1.5 bar of pressure. 

Table 1. Flow rates for each electro-valves (EV – Electro-Valve; L or R – Left or Right; A, B, C, D 
– correspond to different electro-valves) 

1.5 bar EVLA EVLB EVLC EVLD EVRD EVRC EVRB EVRA 

Flow rate 
(l m-1) 

0.56 0.86 1.46 2.26 2.26 1.46 0.86 0.56 

All the instrumentations were controlled by X25 Topcon console, mounted 

on the cabin of the tractor and connected with a D-GNSS antenna (Differential - 

Global Navigation Satellite Systems). From this monitor, all working parameters can 

be controlled, managed and recorded.  

Operating performances 

The operating performances of VRA consist of evaluating the quality and 

quantity of the application  against the uniform application (UA). Both of them 
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followed the British Standard ISO 22522/2007. In particular, the profile sampling 

strategy was used. During the growing season, three trials were carried out in three 

different phenological phases (BBCH 65, BBCH 73, BBCH 83) and, in each one, 

twelve vines were sampled [8]. Before each trial, the sprayer was calibrated 

correctly. During each test, air temperature, air humidity, wind speed and direction 

were monitored at a height of 2 m, using a 2900ET Watchdog Weather Station 

(Spectrum Technologies Inc., Illinois, USA).  Fig. 2 shows the sampling strategy 

within the vines and in the different tests. To guarantee a good sampling strategy, 

following the BS ISO, a  randomized complete block design was performed with 

three repetitions for each application mode (UA vs. VRA) and both sides of the 

canopy were sampled. 

 
Figure 2. Sampling strategy in different phases (L or R – Left or Right; H1, H2, H3, H4 – Different 
heights of sampling;   – collectors;  – plastic collector;  – water sensitive paper). 

Concerning the spray volume applied in the trials, the farm protocol for the 

UA mode was followed. Instead, a calibration curve between the canopy  size, spray 

volumes and sensor readings was developed and applied for the VRA mode. During 

trials, the forward speed of tractor was of 5 km h-1. Table 2 shows the whole spray 

settings in the three trials. 
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Table 2. Application parameters during the field trials 
Trials Phenological stage UA mode sd VRA mode sd  

1° trial BBCH 65 200 ±0.5 0 (48 -  198) ±4.5 l ha-1 

2° trial BBCH 73 250 ±1.9 0 (109 -  299) ±1.6 l ha-1 

3° trial BBCH 83 300 ±0.5 0 (131 -  344) ±0.8 l ha-1 

Regarding the samples, water-sensitive papers (WSP, 26 x 76 mm, Syngenta, 

Switzerland) and plastic collectors (50 x 90 mm, SEFAR NITEX) were arranged to 

evaluate the quality and the quantity of spraying, respectively [9, 10]. In laboratory, 

the WSPs  were  scanned  at  a  resolution  of  600  dpi  using  a  Kyocera TASKalfa 

3554ci KX scanner-printer and then, were analysed by the software ImageJ (v. 1.38x) 

to extract the spray coverage parameter (%).The amount of application was instead 

evaluated through the use of tartrazine, plastic collectors and spectrophotometry 

methodology. In particular, E-102 yellow Tartrazine (Andrea Gallo S.r.l., Genova, 

Italy) were added to the sprayer’s tank at a concentration of 8 g l-1 [11]. The tartrazine 

concentration on plastic collectors was quantified by using a spectrophotometer UV-

1200 (ChromTech, Bad Camberg, Germany), after having washed collectors with 20 

ml of distilled water.  Before obtaining the absorbance values of the samples, the 

blank values were subtracted from the samples to obtain the real absorbance. Then, 

the absorbance values were converted to deposits (di) using a calibration curve, 

obtained by dilutions of the tank liquid, and the below formula: 

𝑑  =  

(𝐴 − 𝐴)
𝛼

× 𝑉ௗ

𝑆௦
 mg cm-2 (1) 

where: di is the spray deposit expressed in mg cm-2; Ar is the absorbance value of the 
sample; Ab is the absorbance of the blank sample; α is the calibration curve 
coefficient; Vdil is the washing solution of collectors; Sps is the area of plastic 
collectors.  

In order to avoid influences of different rate of application and tracer 

concentration, values of deposit (di) were converted to normalized deposits (dn) 
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values through the below formula (Eq. 2). 

𝑑  =  
𝑑 ×  100

𝐴௩ × 𝑐௧
 

mg cm-2 (2) 

where: dn is the spray normalized deposit expressed in mg cm-2; di is the spray deposit 
expressed in mg cm-2; Avol is the application volume of sprayer expressed in l ha-1; 
ctar is the concentration of tartrazine (8 g l-1). 

Economic performances 

The economic performance analysis was conducted on an entire season of 

crop protection in two neighbouring plots of around 1 ha each (Fig. 1). In the first 

plot, the sprayer was used in UA mode, i.d. the same spray volume was applied 

within the plot for each individual crop protection phase .In the other plot, the sprayer 

was operated in VRA mode, i.d. the ultrasonic sensor varied the spray volume 

according to the size of the canopy.  

Concerning the crop protection protocol (spray volumes, pesticides and 

schedule), the farm protocol was followed for the UA mode while,  only the spray 

volumes were modified for the VRA mode. In particular, a calibration curve between 

the canopy size, application volume and sensor readings was developed and applied 

at every crop protection phase. Table 3 shows the spray settings during the entire 

crop protection season.  

To perform a costs/benefits analysis, spraying volumes, pesticides, 

equipment and raw materials were monitored. Specifically, the reports for each phase 

of crop protection were downloaded from the monitor’s storage memory and 

analysed to extract the values of spraying volumes for both modes (UA, VRA). 

Finally, the accounting of pesticides, equipment and raw materials (water, fuel) was 

evaluated in terms of quantity and costs using the farm’s fields-book and the 

national/regional quotation. 
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Results and Discussion 

Operative performances 

The results of the spraying performance were shown in Figure 3a and 3b. The 

three phenological phases, were reported In each graph. According to the plant 

growth, the sampling heights increase in the different trials (BBCH 65, BBCH 73, 

BBCH 83).  

Considering the spraying coverage graph (Fig. 5a), it was found that 

statistically significant differences were found between heights and application mode 

(VRA, UA) in all theses and trials, with the exception of H3 in BBCH 73 and H2 in 

BBCH 83 among the application mode, and for H2 and H3 within VRA in BBCH 

73 phase. However, the overall spraying coverage trend highlighted quite constant 

rates of coverage between phenological phases, with the first stage in   VRA mode, 

which was significantly lower than the other theses. In relation to the UA mode, it 

could mean that the farm protocol was correct because it ensured the same rate of 

coverage in different canopy volumes. However, the values of coverage are too high 

in relation to the overspray threshold widely agreed upon by other authors [12]. 

Regarding the graph in figure 5b, it was found that statistically significant differences 

were only found between different sampling heights and in the BBCH 83 phase 

between the application modes in H1, H2 and H3. In all these cases, deposits were 

higher in VRA in VRA than UA. Generally, the common trend between analysed 

variables (%, dn) is the decreasing of values between the H1 detection height and 

subsequent ones. This aspect was highlighted in both the VRA and UA and was 

probably due to the construction characteristics of the sprayer. In fact, the sprayer 

had two air conveyors located below the cordon and they sprayed the entire canopy 

with a radial spraying. Therefore, the vertical profile of canopy was not at the same 

distance as the air conveyors, causing scalar values in both deposits and coverage. 

This aspect was also highlighted by Matthews et al. (2014) [13]. 

Reading the overall values of the three trials, , the minimum values for  good 
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pesticide efficacy were respected in all cases [11, 14, 15]. In general, uniform 

application provides higher values in the coverage parameter, especially for the 

sampling zone near the cordon., these values often exceed the maximum value for 

good coverage. 

  

a b 

Figure 3. Results of the two-way ANOVA for the spray coverage (%) and the normalized 
deposits (mg cm-2). Statistical significance: p < 0.05 (Tukey’s HSD post-hoc test)  

Economic performances 

The results of economic performance were shown in table 3. In particular, 

two main aspects were shown in the table. The first one is called technical analysis, 

where important parameters such as the number of crop protection phases, volumes 

of mixture applied in UA and VRA modes, the number of tank refills and the number 

of days to complete a work activity were reported. These values were recorded or 

calculated from reports provided by the tractor console and the spatial layout of the 

farm’s vineyards, which affected the downtime of refills. The second aspect concerns 

the costs of pesticides, water and fuel. Here, the economic performance of the UA 

and VRA modes were reported for each phase. 

Regarding the technical analysis, the wine farm protected the vineyards with 

nine phytosanitary treatments during the season for both spraying modes. During this 

period, there was a saving in spray volume ranging from 76% in the first stage to 

10% in the last. This decreasing trend in spray volume savings between the first and 

the last stage is a normal consequence of modern training systems. This is due to the 

closing and compactness of the canopy during the growing season [16]. The average 
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saving was 35%. Similar savings were found in other studies as reported by Gil et al. 

(2007), Jejčič et al. (2011) and Tona et al. (2018) [12, 17, 18]. As far as work 

performance is concerned, an increase in efficiency in VRA mode compared to UA 

one can be shown. This is due to fewer refills of the sprayer tank because of less 

spray volume consumption. This increased the work performance of VRA in terms 

of days to complete a crop protection stage in a 22 ha field . The wine farm size was 

set at around 22 ha because Tona et al. (2018) stated this value is the limit to perform 

crop protection with a single sprayer (“sharp cost edges” effect) [18].  

With regard to the costs analysis, the type and quantity of pesticides and their 

costs were monitored at each stage using the field book of the wine farm. Then, the 

unit cost per litre was calculated and multiplied by the volume sprayed in both 

application modes for each stage thus obtaining the cost of each treatment. The same 

was done for water costs. In this case, the local water cost per cubic metre was used. 

the increase in the fuel cost in UA mode, on the other hand, is due to the need for 

more refills due to the higher consumption of spray volume. This leads to the farmer  

going to the farm centre several times to refill the sprayer tank, especially in the early 

stages, causing considerable fuel consumption. The accounting of cost fuel was 

carried out following the methodology of Sarri et al. (2020) and analysing the wine 

farm arrangement of vineyards [2].  

In terms of pesticide cost savings , the farm was able to save € 113.75 per 

year, and € 2,502.50 for a 22 ha farm  by using VRA. The savings in terms of water 

use was smaller. In fact, the farm was able to save € 52.14 per a 22 ha-farm . This is 

due to the cheaper price for water use. In terms of fuel cost, the farmer was able to 

save € 44.86 over an entire season and for 22 ha thanks to VRA mode. Overall, the 

cost saving in VRA mode was € 2,599.50. Regarding savings on raw materials, the 

farm can reduce its consumption of pesticides by around 262.67 kg, water by around 

18.00 m3 and fuel by around 35.00 l. 
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Table 3. Summary table of main parameters and their costs in a whole crop protection season 
both in UA and VRA mode. 
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The costs for customising the sprayer amounted to approximately € 

20,000.00. These costs mainly regarded sensors, electro-valves, console, cables and 

working customisation time. Taking this and the VRA savings into account, it was 

possible to perform a break-even analysis, as shown in figure 4. This analysis 

highlighted that the profitability of this technology will be within the 8th year of 

customization. However, customisation costs were considered as actual costs and 

therefore overestimated due to prototyping actions. Considering that, it is estimated 

that  customization costs can be reduced by around 50%. For this reason, the break-

even point was set at year 4th. 

 
Figure 4. Results of costs/benefits analysis in terms of break-even point. 

Conclusion 

In order to achieve the EU goals in terms of reducing  pesticide use and 

effectively introducing new technologies on farms, the technological innovation 

must be both environmentally and economically sustainable . In particular, spatial 

variability in vineyards is one of the most important aspects to take into account to 

reduce the environmental footprint of crop protection. This variability can be 

managed with new variable rate sprayers that can adapt the spray volume to the size 

of the canopy. However, to keep costs under control, an economic modification kit 

was presented in this paper. This kit is able to convert conventional sprayers into 
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innovative VRA sprayers to reduce pesticide consumption and enhance 

environmental and economic sustainability without affecting operational 

performance. The results obtained are promising. In fact, the differences reported in 

the results section mainly reflect the architectural design of the sprayer rather than 

the mode of application (UA & VRA). However, all parameters examined 

(normalized deposit and spray coverage) in the trials ensure good quality and 

quantity distribution of pesticides. Moreover, the variable-rate application reduces 

application volumes while ensuring excellent performance in terms of normalized 

deposit and spray coverage. Nonetheless, economic analysis has demonstrated that 

variable-rate technology enhances the economic and environmental sustainability of 

crop protection. 
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4. General conclusions 

Environmental sustainability is fast becoming a critical aspect of modern crop 

production. New technologies and digitalisation are paving the way for reducing the 

environmental footprint without compromising the economic sustainability of farms. 

In viticulture, for example, one of the largest footprint operations is the crop 

protection phase. Many phytosanitary treatments need to be applied throughout the 

growing season to protect the vines from pathogens. This scenario is the basis of my 

Ph.D. path, in which the main objectives of my studies have been addressed in four 

scientific manuscripts. In each paper, I have focused on specific preliminary 

questions and actions, attempting to fulfil them, contribute to the scientific 

community's knowledge and achieve a concrete result in reducing the environmental 

footprint of crop protection. Specifically, the objectives of my PhD were to 

understand the strengths and weaknesses of new sensors (LiDAR, US), technologies 

(UAV, MA) and techniques (SfM, 2-3D pint clouds) in canopy characterisation. 

These preliminary studies were fundamental for the development and calibration of 

a VRA kit, based on a new US sensor, to be implemented in existing sprayers. 

Finally, the modified sprayer was tested to verify that its operating parameters 

ensured good crop protection reliability and to determine its economic and 

environmental sustainability. 

Specifically, Paper I proved that the proposed automatic algorithm, based on 

LiDAR sensor and D-GNSS, was able to assess the canopy volumes in vineyards 

with a good reliability in relation to the TRV index. This solution provided a 

simplified method to automatically manage the 3D point clouds, avoiding the 

complex and laborious procedures of canopy characteristics computing through post-

processing point clouds reconstruction. Moreover, the proposed solution, thanks to 

its flexibility, can be used in different contexts (planting distance, training systems) 

and in different ways (in real-time or in post-processing). In fact, thanks to its high 
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computational speed, the software is able to process data in real time, opening the 

way to the on the go solutions.  It can also record data in a .csv file, giving the 

opportunity to process data and to create prescription maps thanks to the geo-

referenced data. Based on this, an interesting point of investigation not explored in 

this study is to further evaluate the relationship between canopy assessment shown 

in this paper and canopy extraction in post-processing with other technologies and 

techniques. 

Under these circumstances, an evaluation of different technologies (MLS, 

MA, UAV) and techniques (SfM, 2-3D point clouds) in the assessment of canopy 

size parameters such as thickness, height and volume (TRV) was disclosed in Paper 

II. This comparison was necessary to answer two questions. Firstly, it was a further 

validation of the functioning of the LiDAR-based algorithm. Secondly, the tools 

were compared in terms of their ability to detect and characterise the spatial 

variability of the vineyard in order to generate zonation maps useful for precision 

spraying management and the implementation of VRA systems. In general, the 

results showed a good correlation between all the tools in terms of detection of the 

intra-field variability and the canopy size parameters. Specifically, the highest 

coefficient of determination were obtained between the height data for all the tools, 

with the highest value of R2 = 0.86 for the MA vs. MLS comparison. Instead, the 

lowest correlations were found between the thickness data, ranging from 0.5 to 0.6. 

In detail, the weaker correlation was between UAV and MLS (R2 = 0.48). Finally, 

the R2 between the canopy volumes acquired with the different tools showed 

moderately strong correlations. In fact, the highest value of R2 = 0.78 was found 

between the UAV and MLS tools. On the basis of these results, all tools and 

techniques ensured a good reliability in terms of canopy characterisation. In terms of 

usability, the UAV technology allows to quickly map lots of hectares but it requires 

trained staff and specific data collection sessions. The MA shares the specific data 

collection sessions with the UAV, but it provides more punctual measurements and 
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is cheaper than the other tools, making it more affordable for small farms. Instead, 

the MLS can be installed directly on farm tractors so that the data can be collected 

automatically during field operations. The main limitations of the UAV and MA 

tools are related to the data processing step which is time-consuming and requires 

adequate computing power. However, as the MLS tool is an embedded solution, the 

above weaknesses are not a problem. 

These studies were critical to the development and the validation of the 

sensing system in the VRA implementation kit. In fact, the reliability of a new US 

sensor in terms of canopy characterisation was demonstrated in Paper III. In 

addition, the relationship between sensor readings, canopy characteristics and spray 

rates was investigated for future implementation of the US sensor in a VRA sprayer. 

The sensor tested in this study is able to discriminate the foliar layers and the canopy 

density thanks to its innovative mode of operation. In fact, unlike the most common 

US, this new sensor works on the wave intensity of different ultrasonic echoes. The 

study revealed interesting correlations, particularly between the canopy height and 

the US parameters (R2 > 0.7). However, the correlations between the canopy volume 

(TRW) and the US measurements also showed moderately strong correlations (R2 > 

0.6). Furthermore, the lowest correlations were between the canopy thickness and 

the US parameters. These findings are consistent with the those of Paper II. On the 

basis of Paper III’s results, a good reliability in the estimation of canopy 

characteristics was demonstrated for the innovative US sensor. Therefore, in order 

to transfer this technology to a sprayer, two actuation ranges were reported according 

to the normalised deposition and spray coverage parameters. This allowed the spray 

rates to be refined in relation to the US readings, thus enabling the use of this sensor 

in a VRA sprayer. 

Finally, Paper IV presents the studies on the operational functioning and 

economic analysis of the VRA implementation Kit. The previously disclosed sensor 

system was embedded into a conventional sprayer in order to keep costs under 
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control and make the innovation more profitable. Thanks to that, it was possible to 

convert it into an innovative VRA sprayer, in order to reduce pesticide consumption 

and enhance environmental and economic sustainability without affecting 

operational performance. In terms of operational performance, all the parameters 

studied in the trials (normalised deposition and spray coverage) ensure good quality 

and quantity distribution of the pesticides. In fact, the differences observed are 

mainly due to the sprayer's architectural design rather than to the application method 

(UA & VRA). In addition, the variable rate application reduces spray volumes while 

maintaining excellent performance in terms of normalised deposition and spray 

coverage. These aspects were clearly supported by the economic analysis, which 

showed significant savings in pesticide, water and fuel consumption. These savings 

had an impact both on the economic analysis, leading the BEP to around the 4th year, 

and on the environmental sustainability of the crop protection stages, reducing above 

all the pesticides consumption. 

In summary, during these three years of intensive work, many activities have 

been carried out to characterise the canopy using different sensors, technologies and 

techniques, and to develop and implement a VRA kit. These activities have had one 

main focus, i.e. to reduce the environmental footprint in the crop protection phases 

without compromising economic sustainability. Therefore, this research aims both 

to increase the scientific community's knowledge of the use of innovative 

technologies applied to canopy characterisation in viticulture and to implement a 

practical tool for farmers to convert a conventional sprayer into an innovative VRA 

one. However, future efforts should focus on solving the homogeneity issue of spray 

deposition and coverage over the vertical profile of the canopy highlighted in Paper 

IV. This problem could be solved by replacing the factory radial air conveyor with a 

tower-shaped one. Another significant improvement in minimising the 

environmental footprint of crop protection stages could be the implementation of the 

current VRA kit in a tunnel sprayer. In this way, the spray can be adjusted according 
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to the VRA system, and the spray not retained by the canopy (spray drift) can be 

recovered by the tunnel system, filtered and re-injected in the sprayer. In addition, 

full electrification of the sprayer would allow all components, particularly the air fan, 

to be controlled at variable rates to further improve the application of PPP. Of course, 

these improvements would change the original concept of this research, which was 

to find a practical, economic and innovative solution for farmers to minimise the 

environmental impact of crop protection phases without compromising economic 

sustainability.  
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