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Abstract

In this thesis, we study a few optimization problems for an insurance company whose purpose
is to maximize profits and/or minimize risks. Our results are collected in the next three
chapters.

In the first chapter, we analyze the optimal investment and reinsurance problem of a
company, endowed with forward dynamic utilities, in a stochastic factor model that allows for
a double dependence between the financial and insurance markets. Precisely, we assume that
the financial asset price and the insurance losses are both affected by a common stochastic
factor which is described by a continuous time finite state Markov chain or a diffusion process.
We construct a family of forward dynamic exponential utilities and we characterize the
optimal portfolio strategy and the optimal proportional level of reinsurance. We perform
some numerical experiments to further investigate our results. Moreover, we compare the
forward approach with the classical one based on backward utilities, both analytically and
numerically. We also discuss an extension of the conditional certainty equivalent.

In the second chapter, we study the dividend maximization problem and the ruin mini-
mization problem, under the constraint that the terminal surplus of the insurance company
follows a normal distribution with a given mean and a given variance, which may be set, e.g.,
to realize a Value at Risk or Expected Shortfall at some pre-specified confidence level. We
suppose that the surplus is modeled by a Brownian motion with drift. When the company
is allowed to distribuite dividends, we seek to maximize the expected discounted dividend
payments or to minimize the ruin probability under the terminal distribution constraint. We
find explicit expressions for the optimal strategies in both cases, when the dividend strategy
is updated at discrete points in time and continuously in time. Instead, if the company buys
reinsurance for part of its claim, we investigate the reinsurance retention level that minimizes

the ruin probability and allows the net collective to achieve the target distribution. Due to



the fact that updating reinsurance contract is a complicated matter from the practical point
of view, we study the case where the reinsurance retention level can be modified only once
over a fixed time interval, typically of one or two years. In this setting, we find out that an
admissible strategy is chosen at time zero, and we explicitly characterize the ruin minimizing
strategy. We also discuss the implications of mantaining the initial retention level over the
whole period and give the idea of how to deal with several strategy updates.

In the third chapter, we discuss the indifference pricing problem of a pure endowment
(namely a contract that yields a fixed amount at maturity, provided the policyholder is alive
at that time) for an insurance company, whose preferences are described by an exponential
utility function. We propose a modeling framework where the mortality intensity of a refer-
ence population is stochastic and the risky asset price evolves according to a jump diffusion
affected by regime changes. We determine the optimal investment strategies, with and with-
out the insurance policy, and characterize the indifference price as a classical solution to a
linear PDE with a suitable final condition and in terms of its probabilistic representation
via an extension of the Feynman-Kac formula. Furthermore, we also investigate the indiffer-
ence price for a portfolio of pure endowments and for a term life insurance. Finally, some

numerical experiments are performed to address sensitivity analyses.
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Introduction

Insurance is a preventive tool against risk, that is the possibility of the occurrence of future
and uncertain events which, if they happen, could produce an unexpected damage, not only
from a purely economic point of view. We can think of destabilizing events (such as road
accidents, thefts or other malicious acts, environmental disasters) that harm people’s assets
and people themselves. Non-life insurance policies are used to cover potential losses resulting
from the first occurrence, while life insurance treaties are used for the latter. Indeed, to hedge
against the risk of a contingent or uncertain loss, people can buy an insurance contract, by
which they receive financial protection or reimbursement from an insurance company. In
case of non-life insurance, the objective of the company is to protect policyholders from the
consequences that may arise from the occurrence of an accident by bearing a lower cost
than they would otherwise have to face if they had to deal with it individually. Instead, a
life insurance contract is a type of saving scheme: people usually purchase policies whose
payoff depends on their remaining lifetime, investing their money in order to get a long-
term profit. As a consequence, the insurance company is also subject to risks and it might
happen that the available reserves are not sufficient to meet obligations. To handle risky
situation to prevent ruin, a company may hedge its own risk in several ways, one of which
is by taking reinsurance. Reinsurance brings various advantages: the company mitigates its
risk exposure and can accept larger risks than its resources ordinarily would permit and this
facilitates its growth and expansion. Another way to avoid bankruptcy is to invest capital,
technical reserves and other available financial resources: trading financial assets (risky or
not) coulde make a valuable contribution to operating results and enable the company to
reduce premiums and increase dividends and bonuses, thereby improving its competitiveness.

Therefore, the wealth of the insurance company can be described by a dynamical system

subject to random financial perturbations and other risky factors and which can be controlled
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in order to optimize some performance criterion, such as the maximization of the expteced
utility of the terminal wealth, the maximization of the expected dividends value, the min-
imization of ruin probability and so on. In risk theory this leads to a dynamic stochastic
optimization. In other words, the goal of the insurance company is to maximize the profit
corresponding to its wealth (that is nothing but the reserve resulting from insurance pre-
mia received, reinsurance premia paid and claims covered, if financial investments are not
involved). Specifically, the company aims to find the optimal strategy that increases the
capital and/or minimizes the risk.

This thesis deals with the study of few optimization problems from the point of view of
an insurance company, in different settings. Such problems are analyzed through the next
three chapters.

In Chapter I} we analyze the optimal investment and reinsurance problem of an insurance
company, whose preferences are described via forward dynamic utilities of exponential type
in a stochastic factor model which allows for a possible dependence between the financial and
insurance markets. Endowing the company with forward utilities (as proposed by Musiela and
Zariphopoulou [81]) permits modeling the variation of utility over time and with respect to
some other stochastic factors that influence the market model. To the best of our knowledge,
it is the first time that this type of insurance optimization problems are addressed via the
forward approach. By stochastic control techniques, we construct a family of forward dynamic
exponential utility and we characterize the optimal investment strategy and the optimal
proportional level of reinsurance. We make a comparison with classical results on optimal
investment and reinsurance problems in analogous settings under backward utility preferences
(see e.g. Irgens and Paulsen [66], Liu and Ma [73]). Further, we discuss an extension of the
conditional certainty equivalent, generalizing the classical notion of the certainty equivalent
to the dynamic and stochastic environment involved, as in Frittelli and Maggis [53]. Finally,
we perform a numerical analysis to highlight some features of the optimal strategy and the
optimal value process under forward preferences. We highlight that in the forward approach,
the company gives today’s preferences and the utility is generated forward in time. Thereby,
the main difference with the classical approach based on backward preferences is that it

does not require to identify a trading horizon and set at the initial time a utility criterion
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to hold at some future date. As a consequence, forward utilities allocate the same value,
in terms of utility of wealth, to the optimal investment over any investment horizon. This
yields to a stochastic control problem where the value process is a semimartingale for any
admissible strategy and a proper martingale for the optimal strategy. Further, since any
market changes are absorbed by a utility function that updates forward in time according to
the new conditions, in the forward case the optimal strategy consists of the myopic component
only, whereas in the backward case there is an additional component which accounts for the
part of risk linked to the stock price.

Chapter [2] investigates the problem of dividend maximization and the problem of ruin
minimization for an insurance company whose purpose is to achieve a certain distribution
of the surplus at a particular future date. Taking into account a target terminal distribu-
tion for the surplus of the company facilitates the calculation of risk measures as e.g. the
Value at Risk (in short VaR) or Expected Shortfall (in short ES) and hence the Solvency
Capital Requirement, which is among the most common. To the best of our knowledge, such
a constraint on the terminal surplus distribution has not been considered in the literature
before. In this framework we consider two problems. In the first one we allow the insurance
company to pay dividends and seek the optimal strategy that maximizes the expected dis-
counted dividend payments or minimizes the ruin probability, binding the terminal surplus
to follow a normal distribution with a given mean and a given variance. We prove that the
optimal strategy is completely decided at the beginning of the trading interval. Moreover
we find that the ruin-minimizing strategy (which is also the strategy that leads to the mini-
mal expected discounted dividend value) starts with small dividend rates and then increases
when approaching the time horizon to achieve the target distribution. Second, we study
optimal ruin minimizing reinsurance with a pre-determined final distribution of the wealth,
assuming that ruin-checks are due at discrete deterministic points in time. Here, to mitigate
the risk exposure, the insurance company buys a proportional reinsurance with an appro-
priate level of retention that can be updated at some apriori fixed dates. Under a terminal
Gaussian surplus distribution, we show that the reinsurance strategy leading to the smallest
ruin probability in a 2-period model, is deterministic, namely it is uniquely choosen initially.

Moreover, the insurer acts in order to reduce the risk of ruin shortly before regulator’s time
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check. To prove our results, we use purely probabilistic methods. Indeed, the discrete nature
of the problem does not allow us to use the differential equation approach. We point out
that the dividend related problems can be easily generalised to a continuous time framework
whilst in the reinsurance setting we are able to fully analyze only the 2-period case. This is
due to the fact that the retention level acts on both the drift and the volatility of the surplus
process and, as a consequence, we can not compare different strategies 'path by path’ as in
the dividend setting.

In Chapter [3] we study the indifference pricing problem of pure endowment policies in a
stochastic-factor model for an insurance company, which can also invest in a financial market.
Precisely, we consider a market model where the hazard rate is stochastic (it is described by
a general diffusion process) and the risky asset price is affected by long-term macroeconomic
conditions, i.e. it evolves over time as a jump diffusion affected by a continuous time finite
state Markov chain representing regimes of the economy. In this context, we evaluate a pure
endowment, namely a life insurance contract which pays a fixed amount to the policyholder
at maturity if and only if she/he is still alive at that date, through the principle of equivalent
utility by comparing the maximal expected utility functions with and without issuing the
contract. The indifference pricing method, initially proposed by Hodges and Neuberger [63],
has been used extensively in finance, see Henderson and Hobson [59] for a survey, and then
also in insurance, see e.g. Mgller [79]. It is worth emphasizing that this is the first time that
the utility indifference pricing method is used to price life insurance policies in such Markov-
modulated financial-insurance market. Using the classical stochastic control approach based
on the Hamilton-Jacobi-Bellman (in short HJB) equation, we solve two optimal investment
problems. In particular, we provide the optimal investment strategies, with and without
insurance liabilities, and we characterize the indifference price of a pure endowment via a
classical solution to a linear partial differential equation (in short PDE), as the solution
of a final value problem and in terms of its probabilistic representation by means of an
extension of the Feynman-Kac formula. We also discuss the indifference price for a portfolio
of pure endowment policies and for a term life insurance treaty. We conclude performing

some numerical experiments in order to address sensitivity analyses.



Chapter 1

Optimal investment and reinsurance under forward
preferences

The aim of this chapter is to collect and discuss extensively the results of [32] and [33].
Precisely, we investigate an optimal investment and reinsurance problem for an insurance
company whose preferences are described by forward dynamic utilities in a stochastic factor
model allowing for a possible dependence between the financial and insurance markets.

Firstly, we provide some introductory considerations in order to motivate our choice to
address a classical optimal portfolio problem using forward utilities, emphasizing the many
advantages of this dynamic approach that allows agents to adjust their random preferences
over time. Specifically, in Section we place our study in the existing literature and point
out the differences with the standard backward approach.

In Section [I.2] we describe the general setting of our model into details, explaining the
mathematichal framework for the insurance and the financial markets. Our model is set to
encompass a desirable characteristic of hybrid markets that is mutual dependence between
the insurance/reinsurance business and the financial securities.

We consider forward preferences to describe the dynamic behavior of an insurance com-
pany whose purpose is to maximize the expected utility of its terminal wealth. In Section[I.3]
we introduce the formal definition of forward utilities as solutions of dynamic optimization
problems, and we formulate explicitly the problem faced by the insurance company.

Then, we construct a family of forward dynamic exponential utilities and characterize
the optimal investment and proportional reinsurance strategy, by considering two different

settings:



e in Section we focus on zero-volatility forward preferences in an interdependent
insurance insurance-financial market model affected by a stochastic factor described

by a Markov chain;

e Section[I.5is a follow-up: the problem is investigated under non-zero volatility forward
utilities in a more general framework allowing for a double dependence between the

insurance and financial markets.

In both cases, we manage to characterize a familiy of forward exponential utilites, penalizing
the classical utility with a process that accounts for financial and actuarial frameworks,
namely a process that depends on asset price, insurance and reinsurance premia. Moreover,
we find the corresponding optimal investment and proportional reinsurance strategy for
our class of forward preferences. We also perform some numerical experiments to further
investigate our results, in particular we discuss the qualitative characteristics of the optimal
investment portfolio and the optimal protection level implied by our model. We compare
the forward performance approach with the standard backward one, pointing out similarities
and differences, analitically and numerically. Finally, we analyze a dynamic version of the
conditional certainty equivalent for forward preferences and then we make a comparison with
backward utilities also in terms of conditional certainty equivalent. An Appendix, at the end

of the chapter, collects some technical assumptions and proofs.

1.1 Motivation and literature review

Non-life insurance policies are intended to protect policyholder against unforeseeable events
as, for example fire, water damage, earthquake, industrial catastrophes or car accidents, that
may cause financial losses. For such protection an insured pays premiums, which consist of
(periodic) payments and constitute the money income of the insurance company. The insurer
may invest money to build up an asset position that allows to cover the policy risk. Insurance
risk can be mitigated by buying a reinsurance. This is an agreement between a primary insurer
and a secondary insurer: a primary insurer, for a definite premium, contracts with another
insurer (or insurers) to carry a part or the whole of a risk assumed by the primary insurer.

The most common reinsurance contracts can be divided in two types, called proportional and



non-proportional reinsurance policies. Under proportional reinsurance, the reinsurer receives
a premium and bears a portion of the losses based on a pre-negotiated percentage. Instead,
with non-proportional reinsurance, the reinsurer is liable only if the insurer’s losses exceed a
specified amount, known as the priority or retention limit.

In this chapter we consider an insurance company that buys a proportional reinsurance
policy and invests part of the capital and of the premia in a financial market. We study the
optimal allocation of the wealth into reinsurance and investment to maximize the expected
forward dynamic utilities. Indeed, to better describe the behavior of the insurance company,
we consider dynamic preferences. Intuitively, a forward dynamic utility represents individual
preferences of an agent, possibly changing over time, according to the available information.
One of its advantages is that it allows for a significant flexibility in incorporating changing
market opportunities and agents’ attitudes in a dynamically consistent manner. This means
to define the forward performance process as an adapted stochastic process parameterized by
wealth, time and also by some stochastic factor (more or less correlated with the model), and
constructed “forward in time”, starting from an initial date. In this way agents specify their
preferences when entering the market, without defining their risk profile at a future horizon
time, unlike the classical backward approach. This idea to update preferences over time is
not entirely new. The earliest attempt to model the variation of utility with respect to time
dates back to the ninenties with the so called recursive utilities, see Epstein and Zin [50]
and Duffie and Epstein [47]. Afterwards, Musiela & Zariphopoulou introduce the notion of
forward dynamic preferences where utilities are determined today and they are generated for
future times, via a self-generating criterion. In [81, 82 [83], they study optimal investment
decision problems where agents track their risk preferences over time, for advancing the
timing of future satisfaction or impatience. In other words, agents may dynamically adjust
their preferences consistently with the information revealed over time and their impatience
might be compensated for by the opportunities given to them, if they can be exploited in
full according to their choices. This approach overcomes a few limitations of more traditional
backward preferences. Classical literature on portfolio optimization under backward utilities
is based on the assumption that a utility is exogenously chosen to hold at a future date (no

earlier than the end of the investment horizon) and employed to make investment decisions



for today; this means that, when entering the market, agents prescribe their risk profile at
the horizon time and therefore cannot adapt it to changes in market conditions or update
risk preferences. In addition, the investment horizon is fixed, and the portfolio is derived with
respect to this reference date. For optimal reinsurance and investment problems employing
classical backward preferences, we refer to Irgens and Paulsen [66], Liu and Ma [73], Gu et al.
[56], Brachetta and Ceci [17], Brachetta and Schmidli [I8], Cao et al. [22], Ceci et al. [28].
In the forward approach, instead of pre-specifying the utility function to be valid at some
future time and identifying a trading horizon, the agent gives today’s preferences and the
utility is generated forward in time, that is, it naturally moves in the same direction of the
market. The agent chooses the optimal strategy to maximize the expected forward utility of
her wealth, at any future time t > 0. The main consequence of this approach is that a forward
utility allocates the same value, in terms of utility of wealth, to the optimal investment over
any investment horizon. This yields to a stochastic control problem where the solution can be
obtained through the Bellman optimality principle: the value process is determined so that
it enjoys the semimartingale property for any admissible strategy and it is a martingale for
the optimal strategy. This reflects the natural idea that any sub-optimal strategy is under-
performing, and that the expected performance of an optimal strategy at any future time
is as good as today. In particular, the martingale property allows us to derive a PDE that

characterizes the value function and the optimal investment and reinsurance strategy.

1.2 General setting

We fix a complete probability space (2, F,P) endowed with a filtration F = {F;, t > 0},
satisfying the usual conditions of completeness and right continuity. All processes introduced
below are assumed to be F-adapted.

Let Y be an index that accounts for an environmental, social or even cultural factors and
which may affect both the insurance and the financial markets. We assume that Y is modeled
by a Markov process and that it affects both the losses faced by the insurance company and
the prices of the assets negotiated in the financial market, introducing a certain mutual
dependence between the actuarial and the financial markets. Such type of dependence is

empirically observed: see e.g. Tesselaar et al. [94], Baek et al. [7], Just and Echaust [69], Wang



et al. [99], where the economic effects of climate changes and COVID-19 pandemic on both
the insurance/reinsurance business and the financial market are analyzed.
Let C = {Cy, t > 0} be the cumulative claim process that represents the total losses of

the insurance company due to claims given by

Ny
Ct:ZZna tZOa

n=1
where {Z, }nen is a sequence of independent Fr,-random variables that indicate the claim
amounts and where T;, is the random time at which claims occur. Here, N = {Ny, t > 0} is
a doubly stochastic Poisson process that counts the number of claims and we assume that
the stochastic intensity {A(t,Y;—), ¢ > 0} depends on the common index Y.
In the next paragraph, we show in detail a standard construction of the claim amount

process.

Mathematical construction of insurance losses. In order to describe the losses of the
insurance company, we retrace the classic construction of the claim amount process, see for
instance [55, Chapter 2].

Define the process A = {As, t > 0} as

t
Ay :/ A(s,Ys—),ds, t>0, (1.1)
0
where the function A : [0,4+00) x R — (0, 400) is measurable and satisfies

E [/Ot)\(s,Ys_)ds] < 0, (1.2)

for every t > 0. Therefore, the process A is non-decreasing and it satisfies Ag = 0 and
Ay < 0o P-ass. for every t > 0. Let n = {m, t > 0} be a standard Poisson process (i.e. with
intensity equal to 1) and let us consider the process N = {NNy, ¢ > 0} defined as Ny = na,,
for every t > 0. Then, N is a doubly stochastic Poisson process (see Lemma 4 and the
discussion on stochastic random measures in [55, Section 2.1]). The process {\(¢,Y;), t > 0}
is called the intensity of N and condition implies that N is non-explosive. Moreover,

the compensated process N = {N;, ¢t > 0}, given by

Ny =Ny — A, >0,



is an (F,P) martingale (see [19, Chapter II]). The jump times of the process N describe
the claim arrival times and are represented through the increasing sequence of (nonnegative)
random variables {7}, }nen. Let I C [0,+00) an arbitrary interval and let {Z,},en be a
sequence of independent and I-valued random variables independent of IN such that for each
n € N, Z, is Fr,-measurable and E[e¢%"] < +o0, for every n and for £ > 0. For every n € N,
Zn, indicates the claim amount at time 7T},. The distribution of claim amounts is described
by the map F': [0,4+00) x R x I — [0, 1] which is such that for each (¢,y) € [0, +00) x R,
F(-,-, z) is a distribution function, with F(¢,y,0) = 0.

Thus, for every ¢t > 0, the cumulative claim process at time ¢ is given by
Ny
Co=Y_ Zn.
n=1

In the sequel, it will be useful to describe C in terms of its associated random measure defined

as

m(dt,dz) =Yz, 7,(dt, d2),
neN

where d(; . is the Dirac measure at point (¢, z) € [0, +00) x [0, +-00); hence, the claim process

t
Ct—//zm(ds,dz), t>0.
0 Jr

We recall a set of properties of the random counting measure m(dt,dz). For every A C I,

C reads as

the process {m((0,t] x A)} is a counting process that gives the number of claims with claim
size in the set A. In particular, m((0,t] x I) = N is the total number of claims up to time t.

The dual predictable projection v of the random measure m(dt,dz) is given by
v(dt,dz) = F(t,Y;—,dz)A(t, Y )dt.

Moreover, for every non-negative, predictable random field I' = {I'(¢,2), t > 0, z € I}, such
that

E [/Ot/Ir(s,Z)A(s,n_)p(s,n_,dz)ds] < 0,

for every t > 0, the process

{/Ot/lf(s,z)(m(dsjdz)—F(S,YS,dz))\(s’ys)ds)’ tzo}



is a martingale, see e.g. [19, Chapter VIII, Theorem T3| for further details. Consequently,
it holds that

E [/Ot/ll“(s,z)m(ds,dz)} ~E [/Ot/jl“(s,z)F(s,Y;,dz))\(s,Y;)ds :

for every t > 0.

From now on, we consider the following set of assumptions.

Assumption 1.1. It holds that
t ¢
E [/ /z)\(s,YS)F(s,Ys,dz)ds] < 00, E {/ /egz)\(s,Y;)F(s,K,dz)ds] < 00,
0o JrI 0o JrI

t t
E [/ /zegz/\(s,Y;)F(s,Y;,dz)ds] < oo, E / /22652/\(5,1/;)F(8,Y;,dz)d3] < 00,
0o JI o JI

for every t > 0 and € > 0.

Such integrability conditions will be used in some technical steps of the solution of the
optimization problem. One of the consequences is that the cumulative claim process is non-

explosive:

E[C)] =E [/Ot/lzm(ds,dz)} ~E [/Ot/IzA(S,YS)F(S,Y;,dz)ds < o0,

for every t > 0.

The insurance company receives premia and, in order to mitigate the risk exposure,
reinsures part of its claims by continuously purchasing a proportional reinsurance contract.
We assume that both insurance and reinsurance premia depend on the index Y, and hence
they are, potentially, stochastic. This is inline with the recent literature, see, e.g. Delong
and Gerrard [45], Cao et al. [22], Ceci et al. [28]. In fact, the reinsurance premium is often
a random variable since it is a function of loss amounts and/or the reinsurance treaty is
often assorted with clauses (such as paid reinstatements, sliding scale premium or profit
commission): it might be an idea to handle with a premium which consists of an initial fixed
amount plus a stochastic part, as described in Walhin [96], Albrecher and Haas [1], Campana
and Ferretti [21I]. It has also been observed in empirical studies that having a dynamic
premium would strongly reduce the risk of insolvency; for example in Assa and Boonen [5] it

is underlined the economic impact of COVID-19 in the UK and related policy implications.



Classical premium calculation principles can be extended to accommodate this assumption
by conditioning on the value of Y;. As remarked, for instance, in Delong and Gerrard [45],
the conditional version of the expected value principle keeps the property that premium rate
is proportional to the claim arrival intensity. This is also the case for the conditional variance
principle. Another possibility is to exploit the so called intensity-adjusted variance premium
principle, introduced by Brachetta and Ceci [17], that leads to a reinsurance strategy which
explicitly depends on the claim intensity. It is worth noting that in real life, continuously
updating reinsurance over time is complicated: unlike the financial products, sometime legal
cost may involved, reinsurance policies can hardly be changed. Thus, our dynamic reinsurance
seems to clash with reality. However, under some classical premium calculation rules, we
obtain deterministic premia (see below), in line with the common practice. In addition, it is
also worth mentioning that in the case of a reinsurance premium of deterministic type, the
reinsurance contract may be too expensive for the insurance company that then might even
decide not to buy it. A similar reasoning applies to the insurance premium. Hence, in order
to prevent the agreements between insurance and reinsurance companies from vanishing, we
consider stochastic premia. Precisely, we consider an insurance gross premium process of the
form {a(t,Y;), t > 0}, and a reinsurance contract of proportional type, with premium rate
process {b(t, Yz, ©;), t > 0}, where © = {©;, t > 0}, represents the protection level, for some
functions a : [0, +00) X R — [0, 4+00) and b : [0,400) x R x [0,1] — [0,400). In particular, at
any time ¢t > 0, O, represents the percentage of losses which are covered by the reinsurance.
We assume that functions a(t,y) and b(¢, y, ©) are jointly continuous with respect to the pair
(t,y) and the triplet (¢,y, ©), respectively. Throughout the section, we will also assume the

following integrability conditions

t t
E[/ a(s,YS)ds} < 00, E{/ b(s,Y;,l)ds} < 00, (1.3)
0 0
for every t > 0.

Remark 1.1. Conditional versions of some classical premium calculation principle read as

follows. Under the expected value principle, for every t > 0 we get that

a(t, ;) =(1 +5I))\(t,Yt)/zF(t,Yt,dz), b(t,Y;,0;) = (1 +5R)@tA(t,m)/zF(t,n,dz),
I I



where 67 > 0, 5% > 0 represent the insurance and reinsurance safety loading respectively, and

for the variance principle it holds that

I I

a(t,Y;) = A(t,Y}) </ 2F(t,Y};,dz) +(51/z2F(t,Yt,dz)> :
b(t,Y:, ©;) = O\(t, V) </1 2F(t,Y;,dz) +®t5R/Iz2F(t,Yt,dz)> :
for every t > 0. We point out that both the expected value principle and the variance premium
principle lead to deterministic optimal reinsurance strategies, as in the classical case. Indeed,
companies often do not change reinsurance policies in practice because they do not generally
incur extra costs, unlike what happens when they deal with financial products (legal cost are
always involved). However, it may make sense to consider that a pandemic, a political crisis
or other destabilizing events could affect also a reinsurance contract. One of the character-
1stics of these simple premium calculation rules is that the optimal reinsurance strategy does
not explicitly depend neither the stochastic factor nor the claim arrival intensity, even in the
conditional case. This does not happen for more sophisticated premium evaluation principles
such as the modified variance principle or the intensity-adjusted risk principle. Thus, to un-
derline the effect that a factor model may have on the reisurance strategy, following Schmidli
[89], in some of our numerical experiments we employ the modified variance principle, under

which premia are given by

2F(t,Y;,dz)
) = ALY [ 2P Y dz) 1 st E Y
a(t,Y) = A(t, t)/IZ (8, Y3,dz) + J;2F(t,Y:,dz)

2
- ro J;Z°F(t,Yy,dz2)
b(t, Y2, ©1) = O1A(t, V1) /I B Y de) 0O Y dz)

for every t > 0. In some other experiments, instead, we consider insurance and reinsurance
premia calculated under the intensity-adjusted variance principle, that is

at,YE) = A0 Y0) [ 2P (1 i d2) + SN YD+ TA® YD) [ 2F( Vi),
I I

b(t,Y:,0;) = O\, ;) /zF(t,Yt,dz) + 6RO\t Y1) (1 + TA(t, Y2)) /z2F(t,Yt,dz),
I I

for all T >t >0, with T denoting the maturity of the reinsurance contract. In both cases we
obtain dynamic optimal reinsurance strategies that turn to be adapted to information via the

dependence on the process'Y .
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We make the following set of assumptions that extend the usual natural hypotheses on

premia to the stochastic case.

b(t
Assumption 1.2. The function b(t,y,©) has continuous partial derivatives a(a’gG)7
2b(t
859(793/27@) in © € [0,1] and it is such thal

(1) b(t,y,0) =0, for all (t,y) € [0,400) x R, since the cedent does not need to pay for a
null protection;

(id) (%(gé, 0)

with respect to the protection level;

>0, for all (t,y,0) € [0,400) xR x [0, 1], because the premium is increasing

(131) b(t,y,1) > a(t,y), for all (t,y) € [0,+00) X R, for preventing a profit without risk;

db(t,y,0) ob(t,y,1)
20 59

In the sequel, are understood as right and left derivatives, respec-

tively.

The insurance company surplus (or reserve) process R® = {R®, t > 0} satisfies the

stochastic differential equation (in short SDE)
dR® = a(t,Yy)dt — b(t, Yz, ©;)dt — (1 — ©;_)dC;, RS = Ry > 0. (1.4)

Conditions imply in particular that the surplus process R® is well defined and E [R? ] <
oo, for all ¢t > 0.

Beyond that, the insurance company is allowed to invest part of its premia in a finan-
cial market where investment possibilities are given by a riskless asset with value process
SO = {89 ¢t >0} and a stock with price process S = {S;, t > 0}. We assume zero interest

rate, that is, SY = 1 for every ¢t > 0, and that S satisfies the SDE
dSy = p(t,Ys, Sp)dt + o(t,Y;, S) AW, Sy =s >0, (1.5)

where W* = {W?, t > 0} is a standard Brownian motion independent of the random
measure m(dt,dz). The functions p : [0, +00) x R? = R and o : [0, +00) x R? — (0, +-00),
representing the appreciation rate and the volatility of the stock, respectively, are assumed
to be measurable and such that the pair (Y, S) is a Markov process. We also assume the
Novikov condition

wu(r,Yr,Sr)

. 2
E e%fO(U(T‘,Yr,Sr)) dr < 00, (16)
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for every ¢ > 0, which implies the existence of a risk-neutral measure for S and ensures that
the financial market does not admit arbitrage opportunities.

We consider the problem of an insurance company with an initial wealth xg, which invests
its surplus in the financial market and buys a proportional reinsurance. For every ¢t > 0, we
denote by II; the total amount of wealth invested in the risky asset at time ¢, and hence
X¢ — II; is the capital invested in the riskless asset at time ¢. We assume that short-selling
and borrowing from the bank account are allowed and accordingly we take II; € R for every
t > 0. Moreover, for every t > 0, let ©,; € [0,1] be the dynamic protection level at time ¢
corresponding to the reinsurance contract. We consider only self-financing strategies. Then,

the wealth of the insurance company associated with the investment-reinsurance strategy

H = (1I,0) = {(II;, ©), t > 0} satisfies the SDE

dS;

St

4S9

dx” = dR® +11, —&
St

+ (X —11) (1.7)

with X =z > 0.

Remark 1.2. We observe that in our market model, the wealth process could attains neg-
ative values. Indeed, Schmidli [89] observes that “... The event of ruin almost never occurs
i practice. If an insurance company observes that their surplus is decreasing they will im-
mediately increase their premia. On the other hand an insurance company is built up on
different portfolios. Ruin in one portfolio does not mean bankruptcy.” In fact, in real life, a
company may easily have access to large amount of liquidity, for example by borrowing from
the bank. Moreover, the company usually updates its choices over time, increasing the price of
the policies or looking for other financial investments in order to recover a possible loss trend.
This means that if the wealth becomes negative, there are ways to make it positive again. In
other words, technical ruin does not mean that the insurance company stops operating in the
market. Thus, based on these considerations, we can allow the wealth process to be negative.
Notice that, from the mathematical point of view, dealing with a negative wealth is not a

problem due to the fact that we deal with forward utilities of exponential type.
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1.3 Forward utilities

We aim to study an optimal investment and reinsurance decision problem for the insurance
company, following a forward approach. Therefore, we assume that the preferences of the
insurance company are described by a dynamic utility function, which depends on wealth
certainly but also on time and possibly on some other additional stochastic drivers. The insur-
ance company starts with today’ specification of its initial utility, without pre-committing an
investment horizon and a terminal utility function at the beginning and then moves forward
in time, modifying its preferences in relation to the available information, via a self-generating

criterion, according to the following definition (see also Definition 2.1 in [82]).

Definition 1.1. Fiz a normalization point to > 0. An adapted process U = {U(z, to), t > to}

is a dynamic performance process (normalized at to) if
(a) the function x — U(x,ty) is increasing and concave for all t > to;

(b) for every self-financing strategy H, and for all t,T such that to <t < T it holds that

U X[ t0) > E [Ur(XH  t0)|F] 5

(c) there exists a self-financing strateqgy H* such that, for all t,T such that to <t <T, it
holds that
U X{ t0) = E |Up(X3 t0)| 7| 5

(d) at t =t

Uty (z,t0) = uo(),

where ug(x) is a concave and increasing function of wealth.

From now on the time point ¢ is our starting point (%o is usally called normalization point)
and all processes and filtrations will be considered for ¢t > t3. We work under exponential
preferences, that is we choose the initial utility function of exponential type, i.e. ug(x) =
—e 7" with the risk aversion coefficient v > 0. Then, in this case Definition describes a

forward dynamic exponential utility and can be re-formulated as follows.
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Definition 1.2. Let ty > 0. An F-adapted stochastic process U = {U(z,t9) : t > to} is
a forward dynamic exponential utility (in short FDU), normalized at to, if for all t,T such
that tg <t < T, it satisfies the stochastic optimization criterion

_6_7x7 t= 750,
H
maxged B [Up(XH t0)|Fe], to<t<T,

Ut(l’,to) = {

with X given by (L.7), ng =1z € [0,4+00) and v > 0, for a suitable class A of admissible

strategies which is characterized later.

This definition reflects the fact that the insurance company tracks its risk preferences
over time and its optimal strategy is associated with the martingale property along the
optimal wealth trajectory. Indeed, the rationale behind this definition is that at a certain
time ¢y (for instance, ¢y = 0), the insurance company specifies its utility which is based on
the available information. As time goes by, market conditions may change and hence the
insurance company might be willing to modify its preferences accordingly.

By construction, we get that forward dynamic exponential utilities have two important
features: (i) there is no constraint on the length of the trading horizon and so there is no need
to specify a priori a utility to be valid at the maturity, i.e. the investor does not fix today
investment preferences that will hold at a future date; (ii) a forward dynamic exponential
utility coincides with the dynamic value function of the optimization problem it generates, at
all intermediate times. An important characteristic of the forward approach is that a forward
dynamic utility might not be unique, as argued, for instance in Musiela and Zariphopoulou
182].

To represent a forward exponential utility, we penalize the classical exponential utility
with a stochastic process that describes the insurance company dynamic preferences; this
penalizing process depends on market coefficients, collected premia and paid premia but it
may also be linked to other sources of risk which affect the combined financial-insurance
market. Precisely, we define a penalizing process P = {P;, t > to} as

¢ t
P = /t g(s, XH S, Y,)ds +/ h(s, X2 S, Y)dWP, >0, (1.8)
0 to

where g : [tg, +00) X R x (0,400) x R — R and h : [tg, +00) x R x (0,400) x R — R are
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two measurable functions such that
¢ t
E { l9(s, XH, S,,Ys)|ds +/ R%(s, X1, S,,Y,)ds| < oo, (1.9)
to to
for every t >t and every H = (0,11) € [0,1] x R. Here, W = {W[, t > ¢y} is a standard
Brownian motion which is p°-correlated with W*° and possibly depends on Y.

Now, we define the set of admissible reinsurance-investment strategies.

Definition 1.3. An admissible strategy is a pair of predictable processes H = (©,II) =
{(©,11;), t > to}, representing the proportion of reinsured claims and the total amount
invested in the risky asset, respectively, such that © = {©y, t > ty} takes values in [0,1] and
IT = {IL;, t > to} is R-valued and such that

¢
E {/ (|| |pa(s, Ys, Ss)| + 202 (s, Vs, Ss)) ds| < o0, (1.10)
¢

0

and E [e*VXtH*Pt} < 00, for every t > tg. We denote by A the set of admissible strategies.

Whenever controls are restricted to the time interval [t,4+00), we will use the notation A.

Our goal is to characterize the forward dynamic exponential utility (Problem 1), i.e. to

prove that the process {Ui(z,to), t > to} defined as
Ut(l‘,to) = _e—vm—Pf,’ (t, :E) S [to, +OO) X R,

where P is given by (1.8)), is a forward dynamic exponential utility, normalized at .

In the sequel we make the integrability assumption.

Assumption 1.3. For every t > tg, and every H = (0,11) € [0,1] x R,

E {e% fgo R2(s,XH S5,Ys)ds <o
Mathematical construction of the penalizing process. Next, we describe the func-
tions g and h given in , that identify the penalizing process. We would like to account
for the market risk but also for the risk related to the claims that will occur. However, since
part of the losses will be covered by the reinsurance company, it would be advisable for the
penalizing process to take into account only the claims that the company will actually have

to pay. Therefore losses will affect the penalization according to a certain protection level.
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Firstly, we assume that

2
s 1::0) <Ay [ 0O R (L 0) (111)
1

for every (t,y,0) € [to, +00) x R x [0,1], and let © be the unique solution of the equation

56 :0) = Xt) [ 21O F(ty.dz), (112)

which exists in view of condition (1.11]). Set

Ot,y) =4 1, (t,y) € Dy (1.13)

where

Do = {(t,y) € [to, +o0) x R | A(t,y)/lzeWF(t,y,dZ) < gg(t,y,o)}’ (1.14)

b
D, = {(w) € lto+0) xR | 2 (t.0.1) < Aty) [ zF(t,y,dz>} (1.15)
I
and (DyoUD; )¢ is the complementary set of DopUD;. We introduce the function ¢ : [tg, +00) X
R — R defined as

o(t,y) = vb(t,y,0) + A(t,y) /[ (eV(l_é)Z - 1>F(t,y,dz), (1.16)

for every (t,y) € [to, +o0) X R, with © = O(t,y) given by (1.12). Then, we assume that g

and h satisfy

1 2
g(t,{E, S7y) = —’ya(t,y)+§h2(t,x,s,y)— ) (,U,(t, Y, S)—pSO'(t,:%S)h(t,CU, Say)) +30(t7y)7

202(t,y,s
(1.17)
for every (t,x,s,y) € [to, +00) X R x (0,400) x R.

Remark 1.3. We observe that in view of Assumption and (1.3), E [ftt) (s, Ys)ds} < 00,
for each t > to. Therefore, if E [ftz h%(s, XH S,,Y,)ds| < oo, for each t > to and H =
(0,1I) € [0,1] X R, then E [fti) ]g(s,Xf,Ss,Ysﬂds} < o0, for each t > to, so that (1.9)) is
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satisfied. Indeed, for each constant control H = (©,1II) € [0,1] X R and t > ty, we have

t
E { l9(s, XF ,Ss,Ys)rds}

to

t

1

—E [ | — ~va(s,Ys) + 5hZ(t,Xf, Ss,Y,) + (s, Ys)
to

1

T 202(s,Y,, 5;)

. 1 MZ(S Ys, Ss)

v v 14 SN2\ 7 2 XH Y. A TS ES)

/to {,}/‘a(s7 S)’ + ’@(37 S)’ + 2( +(p ) )h (ta s 7SS7 9)+ 20’2(373/:97‘5‘5)

O-(Svyt%SS)
¢ (1+ (p%)?) S 3°(5,Y;, 55)
Y Y U+07)7) 2 2 XH Y P AT 28 MS)

[ {olate, vt et v+ (S 4 ) 25,0+ P
(1.19)

2
(15 Y2 80) = (6, Ve S(s, X2, 8,10 |

<z

S

|h(s,Xf,Ss,Ys)|}dS] (1.18)

o

< 00,

where we have used the triangular inequality in (1.18), the Cauchy-Schwarz inequality in

(1.19), and the integrability conditions (1.3) and (1.6).

Loosely speaking, the process {e_Pt, t> to} can be interpreted as the density of a prob-
ability measure, Indeed, by the definition of P, this measure encompasses the main features

of the combined market: it depends on the risk aversion parameter ~ of the initial utility
,U'(ta }/h St)
U(ta Yt, St)

insurance market via insurance and reinsurance premia (a(t, Yz) —b(t, Y, O(¢,Y:))), the claim

and it is affected by the financial market through the Sharpe ratio and by the

arrival intensity and the claim size.

Remark 1.4. Since P, = fttog(s,Xf, S, Ys)ds + ftz h(s, XH S, Y)AWE | t > to, different
choices of the functions g and h will result in a different penalizing process P. For example,
if h(t,x,s,y) =0, we are in the zero-volatility case and, by , the function g does not
depend on x and is given by
2
g(t,s,y) = —% (M) —a(t,y) + ¢t y).
We observe that this choice for g also allows us to consider a function h of form
S

207 plt,y,s)

M8 Y) = T oty s)"
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Other special cases are, e.g., g(t,x,s,y) = %hz(t,x,s,y) or g(t,x,s,y) = %hQ(t,:c,s,y) —
14%(t,y, s)
202(t,y, s)
outline that the Brownian motion WT driving the dynamics of the penalizing process plays

— qa(t,y) + @(t,y), for every (t,a,5,y) € [to,+00) x R x (0,+00) x R. We

an important role, due to the correlation with the stock price dynamics; that is the penalizing
process includes part of the randomness coming from the stock price. Furthermore, it may
also directly depend on the stochastic factor: for example, if the latter is a diffusion process

driven by a Brownian motion correlated with W .

The definition of the function ¢, and hence of the function g, depends on the specific
choice of ©. Instead of taking © as in (1.13)), one could have taken other values in [0, 1].

For instance, the choice ©(t,Y;) = 1, for all t > to, implies that we have g(t,s,y) =
1/t y,s)

2\ o(t,y,s) _
not adjust for claims. Instead, taking O(¢,Y;) = 0, for all ¢ > ¢y, corresponds to set

2
g(t,s,y) = ! <m> —(a(t,y) — b(t,y,0)) + )\(t,y)/I (67Z - 1)F(t,y,dz), which

2
instead, implies that the penalizing process accounts for the whole claims amount. Our de-

2
) — y(a(t,y) — b(t,y,1), which in turn leads to a dynamic utility that does

cision on the function ©(t,y) lies in the middle: in a certain sense, as we will see later, we
would like to incorporate in the utility preferences the amount of claims that the insurance
will not able to cover via the optimal strategy.

In order to solve Problem 1, we need to add details about the stochastic factor that
affects the loss process and the risky asset price, specifying its mathematical features, as we
will see in the next sections. In particular, the common factor can be modeled as a Markov
chain (see Section or as a general stochastic process of diffusion type (see Section ;

the proof is very similar, except for some technicalities.

1.4 Optimal investment and reinsurance in a regime-switching
market model under forward preferences

In this section, we propose an interdependent insurance-financial market model where a com-
mon stochastic factor, which affects the stock price and the claim arrival intensity, is modeled
as a continuous time finite state Markov chain. In this framework, by stochastic control tech-
niques, we analytically construct a forward dynamic exponential utility and characterize the

optimal investment and reinsurance strategy. We also perform numerical experiments and
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provide sensitivity analyses with respect to some model parameters. Moreover, we point out
the differences between forward performance criteria and standard backward performance

criteria in the case of independent markets, both analytically and numerically.

1.4.1 Setting

In order to describe the stochastic factor, we introduce in our filtered probability space
(Q, F,P;F) a continuous time Markov chain Y = {Y;, ¢ > 0} with finite state space & =
{e1,...,ex}, where e;, with j = 1,..., K, denote the standard vectors of REX. Let Q =
(¢ij)ij=1,...k be the K x K matrix representing the switching intensity. The entries of the
matrix satisfy g;; > 0 for all 7 # j and ¢;; = — Z#j gij- We also recall that Y admits the

following semimartingale decomposition
t
Yt:YO+/ QYyds+ MY, t>0
0

where QY is the matrix-vector product and MY = {M}", ¢+ > 0} is a martingale with respect
to the natural filtration of Y. Due to the finite state nature of the Markov chain Y we also
get that, for any function f : £ — R, (V) = Zszl fil{y,=¢;}, where f; = f(e;), for all
j=1,..., K. Thus, we can relax many integrability conditions, required in Section
Retracing the construction of insurance losses, we introduce the process A as . In a
regime-switching setting we only assume that function A : [0, +00) x &€ — (0, +00) is such
that
+00
/0 A(t, ej)dt < oo, (1.20)

for every j =1,..., K, and A(-, e;) is Borel-measurable. Notice that condition (1.20)) implies
condition (|1.2)), since

+o0 +o0
E[/ )\(t,Yt)dt} < max / A(t, e;)dt < oo,
0 Jj=1...K Jo

and guarantees that the counting process N, representing the number of claims, is non-
explosive and the compensated process N is a martingale.

Finally, the claim arrival intensity {A(¢,Y:—), ¢ > 0} is an F-predictable process. In this
section, we consider a setting where claim amounts {Z,},en are given by a sequence of
independent and identically distributed Fr, -random variables with continuous cumulative

distribution function F'(z). To avoid too technicalities, we also assume that the function F'
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has compact support I C [0,+400) E Moreover, we suppose that they are independent of NV
and Y. Nevertheless, it is reasonable to assume independence between the claim sizes and
the number of claims: indeed, there is not always a link between the amount of the claims
and their frequency of arrival. For example, in car insurance, an earthquake, accounted by
the common factor Y, leads to an increase in road accidents, regardless their damage size.

The dual predictable projection v of the random counting measure m is given by
v(dt,dz) = F(dz)\(t, Yy )dt.

The cumulative claim process C' is non-explosive, without requiring any further conditions

since it holds that

E[C]=E [/Ot/lzm(ds,dz)} _E M/sz(s,ys_wdz)ds <o, (121)

for every t > 0. We refer to Brémaud |[19] (Chapter VIII, Section 1) for further details.

We suppose that both the claim premium rate and the reinsurance premium are subject
to different regimes. The insurance gross premium is of the form a(t,Y}), for every ¢ > 0,
where a : [0,4+00) X & — [0, 400) is a continuous function in ¢t > 0, for all j =1,..., K. We
consider reinsurance contracts of proportional type, with protection level © = {©;, ¢t > 0}
and premium rate {b(¢,Y;,©;), t > 0}, for some function b : [0, +o00) x € x [0,1] — [0, +00),
which is jointly continuous with respect to (¢, ©), for every e; € £, with j =1,..., K.

Insurance and reinsurance premia are assumed to satisfy the classical premium properties
listed in Assumption (1.2)).

Moreover, from the continuity of the functions a(t, e;) with respect to ¢ and of the function
b(t, e;,®) with respect to (¢,0), forall j = 1,..., K, and the finite state nature of the Markov

chain Y, we have that for every ¢ > 0,
la(t,Y:) — b(t,Y:, O1)| < k(t), P—as., (1.22)

for some continuous function k : [0,4+00) — [0,+00), since ©; € [0,1]. In particular

1Specifically, we need a compact interval I in order to avoid some technical requirements concerning the
expected value. It is clear that for certain distributions such as the exponential one, our results can be applied
thanks to integrability conditions . Therefore, this assumption of compactness for the values of the claim
amount can be relaxed. In our setting, however, assuming this kind of support is not restrictive as typically
claim amounts can be arbitrarily large but do not explode.
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f(f k(s)ds < oo, for all ¢ > 0. Furthermore, the following implications hold:

t t
E[/ b(s,YS,@S)ds] < max / b(s,e;,0)ds < oo, (1.23)
0 LJo

=Ll

for every t > 0, and

j=1,..K

E[/Ota(s,YS)ds] < max /Ota(s,ej)ds < 0, (1.24)

for every t > 0. We emphasize that conditions (1.24) and (1.23)) naturally descend from the
mathematical properties of the finite state Markov chain Y.

For any strategy © € [0,1], the insurance company surplus (or reserve) process R® =

{RP, t >0}, given by (T.4), is well defined and for every ¢ > 0,

t t
IRO| = /(a(s,y;)ds—b(s,n,@s))ds—/ (1— 0, )dC,
0 0

<

/ (a(s, Ya)ds — b(s, Vo, 0,))ds| +

/Ot(l - 6,-)dCs

~1Jo

t
< [ k(s)ds+C;, P —as,
0

and hence E [|RP|] < oo, for every ¢ > 0, in view of ([.22) and (L.21).

The financial market is characterized by a risk-free asset SO with zero interest rate and a
risky asset S which follows a regime-switching constant elasticity of variance (CEV) model,
i.e.

s, = S, (u(Yt)dt + a(msfdwf) . So=s>0, (1.25)

where —1 < 8 < 0 s the coefficient of elasticity and the Brownian motion W* = {W°, t > 0}
is independent of the random measure m(d¢,dz) and also of the Markov chain Y. The func-
tions p: £ - R and o : £ — (0,4+00) are measurable functions representing the appreciation
rate and the volatility of the stock, respectively. We also assume that the diffusion term is
not degenerate, that is, o(e;) > 0, for every j = 1,..., K. Notice that functions y and o may
only take a finite number of values and therefore, they are bounded from above and below;
in particular, it holds that y < u(Y;) <@ and 0 < ¢ < o(Y;) < @, for every t > 0, where
wo=minj—1 g p(ej), f = maxj—1_ g p(ej), ¢ = minj—1 g o(e;), ¢ = max;—1,_ g o(e;).

Consequently, the ratio ZL 82; is also bounded from above and below for every t > 0.
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Remark 1.5. Let us comment the choice of a CEV model for the stock price process. This
model was originally introduced by Cox and Ross [35] under the assumption that the elas-
ticity coefficient is strictly negative, i.e. f < 0. Later, Emanuel and MacBeth [[9] extended
this paper to the case 8 > 0. The CEV model, as the elasticity parameter 5 varies, allows
considering several situations that usually arise in financial market models. Firstly, we notice
that for specific choices of B € R the stock price dynamics reduces to well known processes.
For example, if B = 0 and the coefficients u and o are constant, we get the classical Black &
Scholes model, for § = —% we end up with a Coz-Ingersoll-Ross process and when B = —1 the
process S becomes an Ornstein-Uhlenbeck process. It is clear that, depending on the values of
B < 0, the local volatility is a decreasing function of the stock price which then may touch zero
with positive probability in finite time and even become negative. Even though the probability
1s generally quite small, this is an unpleasant characteristic for modeling risky asset prices.
On the other hand, if B > 0, the increasing local volatility is able to generate upward-sloping
volatility skews and thus the price process S may explode. The latter implies the presence of
a stock price bubble, as shown in Heston et al. [60], and which is not a desirable feature for
financial applications since there might exist arbitrage opportunities. Therefore both choices
for the range of B, either 8 < 0 or 8 > 0, have advantages and drawbacks. In the literature
it is common to take —1 < B < 0. Taking into consideration this range for [ and constant
coefficients u and o, Delbaen and Shirakawa [{2] show the existence of an equivalent martin-
gale measure and provide many considerations on absence of arbitrage. In this work we opt
for a regime-switching extension of the CEV model, since the drift and the volatility depend
on the Markov chain which represents an exogenous factor affecting the market model. For
further details about the calibration of the elasticity parameter in CEV models we also refer

to, e.g., Dias et al. [{0], Heath and Schweizer [58].

As in Section , the insurance company, with an initial wealth zg, subscribes a pro-
portional reinsurance and invests continuously the remaining part of its wealth in the fi-
nancial market, following a self-financing strategy. Then, in this regime-switching model,
the wealth of the insurance company associated with the investment-reinsurance strategy

H = (1I,0) = {(II, 0;), t > 0} satisfies the following SDE

dX/" = {a(t,Y}) — b(t, Yy, ©p) + Mep(V3) }dt + o (V) S7 AW — (1 — ©,-)dCh, (1.26)
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with X! = 29 > 0. Thus, the solution of the SDE ([.26)) is given by

XE =zt [ (als¥0) — (s, Y2 04) + ap(12) s

/ o(Ys)SPdw?s — //1— Yzm(ds, dz), (1.27)

The preferences of the insurance company are described by a dynamic forward utility

for every t > 0.

of exponential type (see Definition [1.2)). Now, we focus on the zero-volatility case, i.e. we
assume that the penalizing process satisfies
t

P(t) = /to o(s, Ss. Va)ds, (1.28)

for all ¢ > ty. In this subsection we use the notation P(¢) to underline that the penalizing

process is absolutely continuous with respect to the Lebesgue measure. Here, the function

g : [to, +00) x (0,+00) x &€ — R is given by

1/ ple; 2
g(ta S, 67;) - _5 <0(£)25> - 7a(t7 ei) + Sp(tv ei)7 (129)
where the function ¢ : [tg, +00) x € — R is given by
ot €) = Vb(t, €1, 0) + AL, 1) / (08 —1) F(az), (1.30)
I

with ©; = O(t,Y;) that satisfies:

0, (t, 61') € Do,
B(t,e) = { Ot e, (tes) € (DyUDy), (131)
1 (t, ei) € Dy,

where (Dy U Dy)¢ is the complementary set of Dy U D; that are given by
_ 7 0b
DO = (t7 ei) € [t[), +OO) x & ‘ )\(t7 eZ)E [Zle’y 1:| < %(tu €i70) )
Dy = {(te0) € tn+o0) x € | S (tsenl) < Nt (2]}
and O is the unique solution of the equation:

ob —(t,€;,0) = A(t, e;) / 271702 p(d2). (1.32)
90 I
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The concavity assumption (1.11)) reduces to

2
—%(t, e1,0) < YAt 1) /I 11-0)2,2 (), (1.33)

for every (t,e;,0) € [0,400) x € x [0, 1], which guarantees the existence of a unique solution

to Equation (1.32).

Remark 1.6. We observe that, from the mathematical point of view, the condition (|1.33)
ensures that the value function is globally concave with respect to © and hence that it admits
a unique mazimizer ©* € [0,1]. This condition, for instance, can come from the concavity of
the reinsurance premium b(t,ej, ©) with respect to the protection level ©, which is satisfied
under classical premium calculation principle and implies that extreme cases (full reinsurance

as well as no reinsurance) are never optimal.

We point out that this special penalizing process ([1.28)) turns out by setting the function
h(t,z,s,y) equal to zero. We notice that the function g does not depend on wealth explicitly;
that is, the standard exponential utility is penalized by a process P which accounts only for

market coefficients, collected premia and paid premia.

1.4.2 Optimal investment and reinsurance

Our objective is to show that the process {U(z, o), t > to} defined as
U(z,to) = —e PO (t,2) € [tg, +00) x R,

where P is given in , is a forward dynamic exponential utility, normalized at ty, and
to charaterize the optimal reinsurance and investment strategy.

First of all, recalling Definition [I.3] we specify that in this framework, an admissible
strategy is a pair H = (II, ©) of F-progressively measurable processes with values in R x [0, 1],

such that, for every T' > tg, E [e_VX%{_P(T)} < 0o and

E [/tT (\HS\ + ngsgﬁ) ds] < .

0
Next, we prove that the triplet (X, S)Y) is a Markovian process and we compute its
infinitesimal generator that will be useful in the sequel. Denote by C’; 22 the set of all bounded

functions f(t, x, s, ej), with bounded first-order derivatives with respect to ¢, , s and bounded



24

second-order derivatives with respect to x,s, for every j = 1,..., K. Let LM denotes the

Markov generator of (XS Y) associated with a constant control H = (©,1I) € [0, 1] x R.

Lemma 1.1. Let f(-,-,-,e;) € 02’2’2, for each e; € &. For any constant strateqy H =
(I1,0) € R x [0,1], the triplet (X7 S,Y) is a Markov process with infinitesimal generator

L£H given by

E7 f(t, 5,00 = 00 1,2, 5,¢0) + [alt, o) — blt, 1, ©) + Ta(en)] 22 (1,2, 5,¢)

s
0x2

K
of L2 o
+ Z f(t,x,s,e5)q; + su(ei)a(t, x,s,e)+ 51‘[ o“(e;) (t,x,s,e;)

0%f o*f
2642 (. N 4 T2 (e ) g8+ ‘
+s 0(62) 832 (tvxasael) + o (62)8 81‘38 (tv$>8a€1)

F A ) /I {f(t,x —(1-0)z,5,¢;) — f(t,, s, ei)}F(dz). (1.34)

J=1

Proof. To prove the result, we first characterize the martingale MY in the semimartingale
decomposition of the Markov chain Y. Let {7, },en be the sequence of jump times of Y and
denote by mY the jump measure of Y, which is given by
Y
m ([Oa t]a {ej}) = Z 1{Y7n:e]-}1{7-n2t}7
n>1

with compensator

t K

SCTRCHEN ) SRR
1,j=1,
i

for every t > 0. Hence, we get that
t K t K
V=Y, +/ > (ej = Yoy, jdr +/ > (e = Yo )(mY = v¥)(dr, {e;}),
0 5 0%
7j=1 7j=1

for every t > 0 (with a slight abuse of notation we identify gy, j|v,_ = = ¢i;.). Now, let
£ [0,400) x R x (0,400) x €& = R be a function in ;> and H = (I,0) € R x [0, 1]
constant. Then, the result follows by applying It6’s formula to f(X*,S,Y). Indeed, we get
that {f(t, X1, S;,Y;),t > 0} has the semimartingale decomposition

t
£t XS0, Ya) = £(0, X2 So, Yo) + / FH e, X S, Y)dr + MY, 30,
0
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where M/ = {Mtf, t > 0} is the (IF, P)-martingale null at ¢ = 0 given by

0 0
l(tv XA,8,7) + HtU(Yt)Sﬁl

am = <a(yt)sf+1 o o

(tv XtHa Sta YZ)> ths

+/(f(t,X£ —(1-0)z,5.Y;) — f(t. X1, S, V1)) (m(dt,dz) — A(t,Y;—)F(dz)dt)
I

K
+ Z (f(t,XfI,St, 6j) - f(t7XtH7St)Y;f—)> (mY - VY)(dt7 {ej})‘
j=1

O
Let us introduce the following optimization problem
EAH t i) — g(t,s,e; t, av’i:Oa 1.35
max L7 f(t, 2,5, €5) — g(t,5,€i) f(t, 2, 5, 1) (1.35)
for all (¢,z,s,e;) € [to,T) x R x (0,400) x &€, with the final condition
f(T,x,s,e) =—e 17, (1.36)

for all (z,s,e;) € Rx (0,400) x £, where f is a a function in 05’2’2, g is the specific function
given by and we recall that the operator £ denotes the infinitesimal generator of the
Markov process (X, S,Y) defined in associated with a constant control H € [0, 1] xR.

After that, we establish a general verification result for this final value problem that
will allow us to achieve our main goal that is to construct analytically forward utilities of

exponential type (see Theorem below).

Theorem 1.1 (Verification Theorem). Let tg > 0 be the normalization point and T > to. Let
w : [to, T]xRx (0, +00)xE — (—00,0) be a smooth solution of the HIB Equations (1.35)) and (1.36))
(i.e., the function u(-,-,- e;) € CH>2, for all j = 1,..., K ), which satisfies

T T I 2
(i) E [/ o~ Jig 9LSLY Al (HTO(Y})Sﬁ%(T? Xf[75r,Yr)> dr} < 00,

to v al‘

T r m 2
) | [0 (o5 x5, 1)) | < oc,
0

T .
(ii)) B / e Lo SN Ly, X5, e5) =, X, 80, Vo) Jo (ar fes)) | < o0,
0

j=1

T s
) B[ [ & fart g, v,

to

x max ‘ﬂ(r, X2 (1-0,)2,8,.Y,) —a(r, X" S,.Y,)
ze

dr} < 00.
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Then, u(t,x,s,e;) < u(t,x,s,e;), for every admissible control H € A and for every
(t,z,s,€;) € [to, T] x R x (0,400) x E.

Moreover, if u(T, z,s,e;) = u(T, z,s,e;), for every (x,s,¢e;) € Rx (0,400) x E and there
exists H* € A such that ﬁH*H(t,m, s,e)+g(t,x, s, e;)u(t,z,s,e;) =0, for every (t,z,s,e;) €
[to, T[XR x (0,400) x &, then w =" in [to,T] x R x (0,+00) x &.

Proof. Let H € A be an admissible control. Using Equations (1.25) and (1.26]) and applying

t
t6s formula to e Jio 9N ¥y u(t, X}, 8;,Y;), we have that

_ft (r,Sr,Yr)dr_— (T XT,ST,YT)_E f g(r,Sr, Yy )dr (t 2,8 ez)

+/ e S A S Ul XIS, Y,) + g, S, Yo)u(r, X1, S, 1) dr
t

+/ —J 9SO 5y, )Sf‘g“(r xH,8,,Y,)dw;?
t

b [ eI ot »Sf“%“m X[,V )dWE
t
/ / Ji 951 Y))dl Z {u r, X,, , Sy, e]) a(r, X,H, S, YT,)} (mY — VY)(dr, {e;})
/ / — SO (g (r X~ (1 -0, )2,5,,Y,) —a(r, X[, S, Y;))
m(dr,dz) — \(r,Y,_)F(dz)dr),
where £ is introduced in (I.34). Let M = {My, t € [to, T]} be the process given by

t .
M, :/ e i g(l’Sl’Yl)lero(Y})Sﬁ@(r, X2 S, v,)dw?

to " 8$

t
+/ e i 9SGy, )SﬁHgU( XS, v, )dw?

to

t K
—i—/ /e JrosYodl Z {a(r, X, S, e;) —a(r, X", S, Y,_)} (m¥ —v¥)(dr,{e;})
to JI j=1

t
b [ e SN (X (1= 0,025, %) ~ ar X[ S,.Y2)
o JI

x (m(dr,dz) — A(r,Y,_)F(dz)dr),

and observe that integrability conditions (i), (ii), (iii), (iv) ensure that M is an (F,P)-
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martingale. Now, since @ solves the HJB-equation in (1.35)) and ([1.36]), we have

ft (r,Sr, Yy )dr— r,Sp, Yy )dr—

a(T, X2, Sp, Yr) < e Jio

_|_/ —ft lSl,Yl)le ( )Sﬁa
t

u(t,x, s, e;)

o (r, X2 S, V,)dw?

+/ e Je 9S Yl (Y)Sﬁﬂg (r, X7 S, V,)dw? (1.37)
t

T K
b [ [ HAUSIONST (e, X0, ) =l XS, Vo) (Y =0V feg))
t I X
7j=1

T .
b [ [ S0 (e X (10, )2, 77) XI5, 0)
¢ Jr
x (m(dr,dz) — A(r,Y,—)F(dz)dr),
for every H € A.

Then, taking the conditional expectation with respect to XtH =z, S5 =sand Y; =¢; on

both sides of Equation leads to
Et,x,s,el[ fto 9(r,Sr.Yr)dra u(T, X7 ,ST,YT)} ftﬂ 9(r,Sr.Yr)dra u(t,x, s, e;).
By the final condition in Equation , we obtain
By [ - X050 <1 )
for every H € A. Hence, u(t,z,s,e;) < u(t,z, s, e;), as we wanted. Finally, we observe that

if H € A is the maximizer in the HJB-Equation (.35, then the inequality above becomes

an equality, which proves the second part of the statement. ]

Now, we are ready to address the optimal investment and proportional reinsurance prob-
lem of our insurance company.
In the following theorem, we provide the analytic construction of a class of forward

dynamic exponential utilities in order to describe the preferences of the company.

Theorem 1.2. Lel tg > 0 be the forward normalization point. Then, the process {U(x,to), t >

to}, given for x € R and t > tg, by
Uy(x,tg) = —e 17 PO, (1.38)

with the process {P(t), t > to} defined in (1.28), is a forward dynamic exponential utility,

normalized at tg.
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Proof. The proof consists in showing that the process {Uy(, to), t > to}, introduced in (1.38)),
satisfies Definition [[.2] (equivalently, Definition[L.1]with the initial condition ug(z) = —e™7%).
Firstly, we see that U(x,tg) is Fy-measurable for each ¢t > to and normalized at tp, as the
condition at ¢ = tg is satisfied (i.e., Uy, (z,t9) = —e™7*). Next, we need to prove that for

arbitrary ¢,7T such that tc <t < T,

—e PO = maxE [—ef'YX’}{*P(T)’ft} : (1.39)
HeA

This means that for any self-financing strategy H we get
_e Pt > | [_e—vxﬁ —P(T) ’ ;t] ’

and we will also show that there is a self financing strategy H* € A such that equality holds.
We notice that Equation (1.39)) is equivalent to say that

—e 7 = maxE [—GM’X#*(P(T%P@))“B} . (1.40)
HeA

We define the right-hand side of Equation (1.40]) as

u(t,z,s,e;) =maxE; ;s | — e_VX%{_(P(T)_P(t))} =maxE; ; s, { — e XE—f 9 Sr Yryar ,
HEA et et bt} HGA Rt et g 2
(1.41)
for a function w : [0, 4+00) X R x (0,400) x & — (—00,0). We proceed as follows.

Step 1. We first notice that

o ftto g(r,Sy,Yr)dr —’yX{j—Lﬁ g(r,Sy,Yy)dr

u(t,x, s, e;) = maxE ;. | —e€

HeA
Using the martingale property of the conditional expectation, if u is sufficiently smooth
(ie., u € C;’Q’z), by 1t6’s formula and the product rule we get that u solves the final value

problem
max ﬁHu(t,x, s,e;) — g(t, s, e;)u(t,x,s,e;) =0, (1.42)
HeA

for all (¢,z,s,e;) € [to,T) x R x (0,400) x &€, with the final condition

w(T,x,s,e;) = —e 7", (z,8,¢6) € R x (ty, +00) x &, (1.43)

where we recall that £ denotes the infinitesimal generator of the Markov process (X Hg Y)

defined in (|1.34) associated with a constant control H.



29

Y, _
Step 2. Next, we choose H* = (IT*, ©*) such that II} = 'u(it)m and ©f = O(t,Y?)
V0% (Y1) Sy
as in Equation (1.31]). We show that the function u of the form

u(t,z,s,e;) =u(x) =—e ", xR, (1.44)

is the unique solution of the problem (1.42)—(1.43). Indeed, the function u(z) = —e 77,
with x € R, solves f. To get uniqueness, we apply the Verification Theorem (see
Theorem [I.1)). We notice that conditions (ii) and (iii) of Theorem are trivially satisfied
since the function u(x) does not depend on s and y, and hence we just need to show that
for every t,T such that tg <t < T, we have

TNATn 2
E[/ ( I} sl () BT, gu(T Xf,ST,Y,.)) dr] < o0,

TNATp
// e = J{ 9, Sz,Yz)dl‘ ( XH (1— @T_)Z,ST,Y;)) . U(T', XT}"-{’ Sy, Y,)
X Ar, Y, )F (dz)dr] < 00

for a suitable, non-decreasing sequence of random times {7, },en such that lim,,_, y o 7, = +00.

We define the sequence {7, }nen by setting
t
T, = inf {t >tp: efto lg(r, S, o) dr >nV XtH < —n}, n € N.

Observe that, over the stochastic interval [to, T'A7,] there is a finite value 7 < n such that
fto lg(rSr¥nldr 5 and XH > —n, for all t € [to, T A 7] (the existence of @ is guaranteed
from the fact that the process {effo lo( T’Sr’ymdr,t > to} is continuous and the process X
is the unique solution of Equation and hence it does not explode in [tg, T]). Since
limy, 400 T = +00, it holds that for large n, T'A 7, = T' and therefore n does not depend

on n. Then, we get that

TNATh 2
E U ( — Jlgsiydipy U(Y)S’Bg (r ,XF,ST,YT)) dr}
t

TATn H\ 2
) [/ o2, 9(1.51YD) le2 2( r)STQ'B (Veﬂxr ) dr]
t

T
< (ﬁ’yem)Q ‘max_o?(e)E [/ Hfoﬁdr] < 00,
t

j=1,...,.K
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since II is an admissible strategy. Moreover, we have that

TNt .
E[/ /e_ft g(l’S”Yl)dl‘u(r, X2 —(1-0,)2S5,.Y,) —u(r, X2 S, Y,)
t

X A(r, YT_)F(dz)dr}

TNTh,
_EU / — J7 9S YAl —y X
< ne™ [/ /eW)\ r, Y, (dz)dr]

< ne™E u A(r, Y, )dr ]/I e F(dz) < o0,

since I C [0,400) is compact and the integrability condition (1.20) holds. Therefore, thanks

Y1700z _ 1 I\ (r, E_)F(dz)dr]

to Theorem the function u(x) = —e™?* is the unique solution of the final value prob-

tem (T33)- (L),

Step 3. The steps above prove that the value function wu(t,z, s ei) is given by u(z) =
—e 7. Hence, using the equality -, we get that Equations and ( - ) hold.
Consequently, according to Deﬁnition U= {Ui(x,tg) = —e‘”fc—P(t), t > to} is a forward

dynamic exponential utility. O

Now, we characterize the optimal investment portfolio and the optimal reinsurance level
for this family of forward dynamic exponential utilities in (1.38]). Since it will be necessary to
demonstrate that the optimal investment-reinsurance strategy is also admissible, according

to Definition [I.3] let us state a preliminary result.

Lemma 1.2. Let T > 0. Define the process L = {L;, t € [0,T]} as

w2 (v d t_p(Yr) dW
Li=e¢ 2k 2(vsP 0 GvpsE

then, L is an (F,P)-martingale. Moreover, Ly is the density of a probability measure f’,

equivalent to P on Frp.

Proof. For the ease of notation we now take tg = 0. The proof extends that of Theorem 2.3
in [42] to the regime-switching version of the CEV model. We summarize the main steps.
Consider the couple (Y, S) where Y is a finite state Markov chain, with infinitesimal generator

@, and S is a process with continuous trajectories. Consider the following equations

48, = Syu(Y)dt + S P o (v;)dW,
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and

48, = S} o (V)dW,,

where W is a Wiener measure. Next we denote by P the law of the couple (Y,5), where S
satisfies the first equation, on the interval [0, 7] and by P the law of the couple (Y, S), where
S satisfies the first equation, on the interval [0, 7T]. Notice that the generator of the Markov
chain Y is the same under P and under P. Then, we can find a P-Brownian motion W and

a P-Brownian motion W, both independent of Y, such that
4S; = Syu(Y:)dt + S P o (v;)dw,

and

48, = S} o (Y,)dW,.

We denote by FY*¥ the filtration generated by the pair (Y, S). Notice that, for instance,
this coincides with the filtration generated by the processes (Y, W), and moreover, because
of independence of the couple (Y, .S) with the jump measure m(dt, dz), describing the jumps
of the claim process, we can extend our analysis to the whole filtration F. The laws P and
P are measures on the product space M x C, where M is the space of piecewise continuous
functions of [0, 7] and C is the space of continuous functions on [0,7]. In order to show that

P and P are equivalent we define the sequence of stopping times

t
nn:inf{t>0: /S;Q*Bern}.
0

Clearly, 1, — +o0o (since 0 < —f < 1) and the density of P with respect to P on F, a1

is given by
_ 1 AT 12 (Y3) di— AT _e(Yy) AW,
270 o2(vy)sp? 0 o(vy)Sy

Lnn/\T =€

Because fOT S;wdt < 400 P-a.s. and Zgig is bounded for every t > 0, we have that

P is absolutely continuous with respect to P on Fr. Conversely, we can repeat the same

reasoning and use that fOT S, Bt < +o0 ﬁ—a.s., which implies equivalence. Hence L is a
strictly positive martingale with E [Ly] = 1.

We also observe that, the change of measure above does not alter the law (i.e., the
infinitesimal generator) of the Markov chain Y nor the law (i.e., the compensator) of the

jump process C. Hence, Y and C have the same law under P and P. ]
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Next, we prove that the optimal investment-reinsurance policy associated to forward

exponential utilities belongs to the set of admissible strategies A.

Proposition 1.1. Let tg > 0 be the forward normalization point. The optimal investment
portfolio I} = II*(t, S, Y:) is given by

I (t, s, ;) = m, (1.45)

for every (t,s,e;) € [to, +00) x (0,400) x E. Assume that condition (1.33) holds for every

(t,e;,©) € [to,+00) x & x [0,1]. Then, the process ©F = {Of,t > to}, where ©Ff = O(t,Y;)
and O(t, e;) is given in Equation (1.31)), is the optimal reinsurance level.

Proof. We observe that, because of the relation between the value process U and the function

u(t, z, s, e;) in (1.41)), we can define the functions ¥ and ¥® as

0 1 0?
Ut 2,5, 00, 10) = Tja(es) 5 (8,2, 5,00) + 511202 (e)s™ S5 (1, 5.e0)
a

2 ox2

—|—HO’2(€')826+1ﬁ(t x,S,€;)
(2 axas Y 9y =1

WO (t,x, s, e, 0) = —b(t,e;,0)

du

Ox
+ A(t, ei)/l(u(t, z—(1-0)z,s,e) —u(t,z,s,e)) F(dz).

(ta z,s, ei)

Then, for every T' > t¢, the problem (1.42)—(1.43]) can be written as

u . |\ Ou . 10U VoL oy 220 .
iy (t,x,s,e;) + alt, 61)837 (t,z,s,e;)+ u(ez)sas (t,x,s,e;) + 57 (e;)s 952 (t,x,s,e;)

K
+ Z U(t, z,s, el)qu - g(tv S, ei)u(t7 €, s, 67;)
Jj=1

+ max \IJH(t,as7 s, e, II) + max \Ife(t,x, s,€,0) =0,
IeRrR 0€]0,1]

for all (¢,z,s,e;) € [to,T) x R x (0,400) x £ with the final condition w(7, z,s,e;) = —e™ 77,
for all (z,s,e;) € R x (0,400) x &.

We start with the computation of the optimal investment strategy. Since W' (¢, z, s, e;, II)
is a polynomial function in II, from the first and the second order conditions and the form
of the function u(t, z, s, ¢;) in Equation , we get .

For the optimal reinsurance strategy, we apply a classical argument (see, e.g., [I7] [Propo-

sition 4.1]). Because of the assumptions on the function b(t,e;, ©) and the smoothness of
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function wu(t,x, s, e;) in (T.44)) with respect to 2, ¥® is continuous in © € [0,1] and twice
continuously differentiable in © € (0,1), for every (t,z,s,e;) € [to,T] x R x (0, +00) x &, for

all T > tp, and its first and second partial derivatives are given by

(S)
—a;é (t,z,s,€;,0) = fye_'“{gg) (t,e;, ©) — A(t,e;) /eV(I_G)zzF(dz)},
I
9%u® 0%b
——(t,2,5,6;,0) = —ye 7 —(t,€;,0) +YA(L, e /67(1_6)2z2F dz) 3.
o )= {a@2< )+ite) [ (@)

By condition (T.11)), ¥9(¢,z, s, e;, ©) is also strictly concave in © € [0, 1], and hence it

admits a unique maximizer ©* € [0,1]. Next we observe that, by concavity of ¥© with
owe
respect to ©, the function 79(1&, x, s, €;,0) is decreasing in © and it holds that
ove ove owe
%(t, Zr,S, e, 1) S %(t, ZT,S, e, @) S %(t, ZT,S, €4, 0), (146)
for all © € (0,1). Then, the following cases arise:

a. If ¥® is increasing in © € [0, 1], then the maximizer is realized for ©* = 1.

b. If U® is decreasing in © € [0, 1], then the maximizer is realized for ©* = 0.

ow®

T
“ 250

(t,z,s, e, é)) = 0 for some © € [0, 1], then ©* = o.

We observe that U® is increasing if and only if (¢,e;) € Di. Indeed, because of concav-
©

ov
ity of W® with respect to © (see (1.46)), we get that 50
S

lent to say that %(t,x,s,ei, 1) > 0. This implies that ¥® is increasing if and only if
b

%(t, ei, 1) < Mt,e;)E[Zy]. Equivalently U® is increasing if and only if (¢,e;) € Dy, and
©

ov
finally %(t, x, s,e;,©) = 0 corresponds to solve Equation ([1.32)).

(t,z,s,e;,0) > 0 is equiva-

It only remains to show that the process H* = (II*,©*) is an admissible strategy. It
is clear that ©; € [0, 1], for every ¢ > to, and that ©* is F-adapted and cadlag, hence F-
progressively measurable. The investment strategy IT* is also F-adapted and cadlag (hence

F-progressively measurable), and for every T > ¢ it satisfies:

E [/T (1] + (1252 dr]

to

T 2

(B I s P
o \[102(1,)S2| T 1204(Y,)S3

T
<cE [/ S{Q’Bdr] < 00,
to
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for some constant ¢ > 0, where the first inequality here is implied by the boundedness of
w(Yz) and o(Y;), for every ¢ € [tg, T]. To show that E [e‘”Xg* _P(T)} < 00, we observe that
in view of (1.27)), and recalling that ©F = Oy, for every ¢, we have

. 1 T LAy, T u(y,
_ 'YXII“{ — P(T) = gy — / pe( t)%dt / p( t)BthS
2 )t a2(Vy)S, to o(¥1)5;

+7/tT/](1 — ©;_)zm(dt, dz) —/Tx(t,yz)/(eﬂl—@tﬁ— 1) F(dz)dt,

to I

where X{! = x4, € R. Then,

1];7 e (Yy) dt ftqo w(Yt) d”’ts
(&

E [e*vX%’ ,P(T)] — e o2(vy)s7’ o(ve)sy

s oo J(0=Be)zmidtdz) o~ [ AwYio) [y (eV(let—)z—l)F(dz)dt] . (1.47)

For T > to, we define the process L = {L;, t € [to,T]} as

2y, Y,
é‘[;fto Jd ( t) dt ftto /"( t) d‘{fs
Lt =e

o2(vy)s7? (vpsy T :

then, L is an (integrable) (IF, P)-martingale. Precisely, L is an exponential martingale with

expected value equal to 1 (see Lemma and defines an equivalent change of probability
dP

dP |7,
the law of the Markov chain Y and the compensator of the claim process C, since it only

measure, i.e., Ly = . Moreover, the change of measure from P to P does not modify

affects the Brownian motion W. This means that Y and C have the same law under P and

under P. Equation (L.47) becomes:

J—— {LTe” S 1,08 )zm(dtdz) = i MEYeo) f; (0B 1) (et

_ o1 |:e’y S J1(=8e)zm(dtdz) ~ fig M(6Yio) f; (1087 1) F(dz)at ]

R [67 St Ji(0=8 e )zm(dtdz) o~ [ AtYio) [y (€0-5e02 1) F(az)at]

where IE[] denotes the expected value computed under the probability measure f’, and in
the last equality we have used the fact that Y and C have the same law under P and under

P.In particular,

_ (T Y(1-6¢ )z _ T ) T )
o g AtV Jy (o 1) F(dz)dt < el MY )t o maxin e g Mbe)dt o p
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Finally,
E |:e'y ftﬁ fI(lfgt_)zm(dt,dz)e— ftﬁ MY [, (emet)z_l)F(dz)dt}
< crE |:€’th7(; I; zm(dt,dz):| — crE [e'yz:i\g Z,L-:|

= CTZE [GWZZ{E Zi|Np = n} P(Npr=n)= CTZE [6721]”P(NT =n) < o0,

n>0 n>0

which implies the assertion. O

Remark 1.7. We stress that the optimal protection level ©* coincides with ©, provided
by . Thus, considering a very general reinsurance premium described by the function
b(t,e;,0), condition implies that the set D1 may be non-empty, and consequently
that full reinsurance may be optimal for certain time periods and certain market conditions.
From an economic point of view, we could say that if the reinsurance is sufficiently cheap,
namely when the price of an infinitesimal protection is below o certain dynamic threshold, then
full reinsurance is optimal. If instead the reinsurance premium s above a certain dynamic
threshold, meaning that it is too much expensive, the best strategy is to not reinsure anything.
Otherwise, that is when the cost lies in the middle, it is best to reinsure part of the claims
and precisely the optimal protection level is provided by , i.e. by equating the marginal

reinsurance cost and the marginal gain.

We notice that the optimal reinsurance level and the optimal investment portfolio do
not depend on the normalization point tg, which is consistent with the classical theory on
forward dynamic utilities (see e.g. [81]). Moreover, we observe that a penalizing process with
a different choice of ©® would not lead to the same optimal protection level. Our choice is
motivated by the fact that taking © as in means that the forward utility accounts for
the amount of claims that are covered by the insurance (i.e. not reinsured claims), and hence

represents a risk for the insurance company.

1.4.3 Comparison with the backward utility approach

Now, we examine the case of independent markets. Clearly, this is a simplification of the
general framework considered above: there is no more dependence on the Markov chain

in the CEV model since the exogenous factor does not influence the risky stock price. In
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this example we retrace several key characteristics that allow us to discuss some important
differences between the forward and the standard backward performance criteria.

We consider an insurance framework as in Subsection The financial market, instead
consists of a riskless asset with price process SP = 1, for all t > 0, and a risky asset with
price process S whose drift and volatility are not affected by the factor Y, and hence its
dynamics follows

A8, = Sy(udt + o SPAWS), Sy =s >0,

with ¢ € R and o > 0. The results can be easily extended to the case where drift and
volatility are functions of time.

The wealth associated to a strategy H = (II,0) € A is given by X = {X, t > to}
such that

AXH = {a(t, ;) = b(t, Y3, 0) + M) Yt + o SYAWS — (1 — ©,-)dCy,

with X{g = x4, > 0 being the wealth at time %o.
We can derive the optimal investment and reinsurance strategy H* = (II*, ©*) under the
forward dynamic exponential utility, which is given by II} = II*(S;) where

1
IT*(s) = ~o2528’
and ©* is given by Equation (I.31)). The optimal value satisfies Uy(z,to) = —e 7>~ F®) for

all t >ty and x € R, where now the process P(t) is given by

P = [ (-3 —atn ¥+ o) )

o\ 25257
and we recall that the function (¢, e;) is given in ([1.30).
Next we compare the optimal strategies and the value processes arising under the forward
and the standard backward utilities. We fix a time horizon T > tg which coincides with the

end of the investment period, and consider the optimization problem (Problem 2)

maxE |:—677X71’{} i
HeA
Proposition 1.2. The optimal investment and reinsurance strategy HP* = (IIP* 05*) is

given by

B _ M 28J1(t)
II°*(t, s) = po BT (1.48)
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and ©P* = O, with © provided in Equation (1.31)). The optimal value function satisfies
V(tv Z,Ss, ei) = _e*’wahB(t,S,ei)’

where hB(t,s,e;) = Ji(t)s™28 — Jo(t,e;), for every (t,x,s,¢e;) € [to, T] x R x (0, 400) x &.
2

The function Ji(t) is given by Ji(t) = 2”—2(T —t), for every t € [to,T] and the function
o
Jo(t, ;) solves the following system of ODEs
dJ K 12
dt2 (t,e;) =7la(t,e;) — b(t,e;, © Ze‘]"’ tei)=Ja(bei) g, +£ ﬁ(Q,B—i- 1)(T —t)
7j=1
—/\(t,ei)/< — 1) F(dz), t € [to, T) (1.49)
I

with the final condition Jo(T,e;) =0, foralli=1,... K.

Proof. We notice that the optimization is taken over the set of admissible functions A,
even though in the backward case one would require that E {e_'YXiIF{ ] < oo in place of
E {e*VX%{*P(T)} < 00. However, because of the assumptions on the model coefficients these
two conditions are equivalent.

’27

Suppose that the value function V (¢, x, s, e;) is C1"*2, then it solves the equation

glgﬁﬁ V(t,z,s,e;) =0, (t,x,s,e;)€[0,T) xR x(0,+00) x &, (1.50)

where £ is the infinitesimal generator given in , with the terminal condition V(T z, s, ;) =
—e™7. We guess that the value function has the form V (¢, z, s, ¢;) = —e 17~ 1(0)s ™+ a(tei)
Plugging this expression into and taking the first order condition on II yields .
The second order conditions guarantee that IT?* is the optimal investment strategy. For the
optimal reinsurance strategy ©2*(t, e;) we argue as in the proof of Proposition and hence
we get that ©5*(t,e;) = ©*(t,¢;) given in Equation (T.31).

Next, we establish a verification result. Let v(¢, x, s, €;) be a solution of the Equation (|1.50)
with the final condition v(T,x, s, e;) = —e ?* (that is v(T,x,s,e;) = V(T,x,s,e;)). Then,

by It6’s formula it holds that (for simplicity, we omit the dependence of X on the strategy
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H)

T
o(T, X7, S7,Yr) = v(t,z,s,€;) —|—/ LHy(r, X, Sy, Yy )dr
t

T ov T ov
+/ HTU(Y)sf&C(r,XT,ST,mdwf+/ PSP 1, X, 8, )W
¢
/ (r, Xy, Sr,e5) —v(r, Xy, ST,YT_)} (mY — VY)(dr, {ej})

+ / / (o(r, Xy (1 — ©,1)2, 5, Yy) — v(r, Xy, Sp, Y;) Ym(dr, dz) — A(r, Y,_ ) F(dz)dr).
tJ1
Since v satisfies Equation ((1.50]), we get that
(T, X7, S, Yr) <wv(t,x,s,e;)

T 8 S T 81) S
+/ o, )s{?a (r, Xy, Sy, Yy ) AW / oy, )sﬁﬂa (r, Xy, Sy, Yy ) AW
t t

T K
+ 2 000 565) =1 o S Vi ¥ =) () (151)

/ /{v rXe— —(1-0,.)2,5.,Y,) —ov(r, XT,,ST,YT)}
m(dr,dz) — \(r, Y, )F(dz)dr).

Let
t t
M; = / IT o(n)sfgl(r, X, S, Y, )dw? +/ o(Y, )Sﬂ“aav(r X, S, Y, )dw?
X to
/ V(r,X,, Sy, e;) = V(r,X;, Sy, YT_)} (mY — I/Y) (dr, {ej})

0]1

+ / /V(T, Xr- —(1-06,2)2,5.,Y) = V(r,X,—, 5, Y,) (m(dr,dz) — A(r, Y,—)F(dz)dr) .

If M is an (F, P)-martingale, then taking the conditional expectation given X; = z, S; = s,
Y; = e; on both sides of inequality (1.51)) yields

Vt,z,s,e) <v(t,z,s,e),

and the equality holds if H is a maximizer of Equation ([1.50)). Then, it only remains to prove

that the function V(¢t,z,s,¢;) = —e~ = N(M)sT +2(tei) ig quch that the process M is an
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(F, P)-martingale. To this aim, observe that Ji(t) and Ja(t,e;) are both bounded in [to, T]

and we consider the localizing sequence of random times {7, },en defined as
= . Q28
Tn.—lnf{tZto. S, 7 >, Xt<—n}, n € N.
Then, {7, }nen is an increasing sequence, lim,, o 7, AT = T and hence we get that

TNATn
E [ / V2o 282V 3 (r, X, Sy, YT)dr}
t

0

r rTAT
+E / 45202J12(T)ST_26V2(7°,XT,ST,Y,n)dr]

LJto

r pTATh
L E /
to

K
V(r, X, Ser—)‘ Z (er(T,Ej)*Jz(r,Yr_) _ 1) Vy(dr, {69})]

J=1

r rTAT
+B| [ MYV X8, )

LJto

max (e“’(l_&)z — 1) dr] < 00,
zel

which concludes the proof. O

Notice that applying the transformation j(t, e;) = e’2(ted)  Equation can be re-
duced to a linear ODE with a final condition, which has a unique solution.

Now, we comment on some differences with the foward approach.

First of all, the standard backward approach requires that a utility function to be valid at
some future time 7T, is specified today, as soon as the company enters the market. Instead, in
the forward approach, the utility is set to hold at the initial time, in relation to the available
information, and may be updated as time goes by since the company usually modifies its
preferences due to changes in market conditions or in its personal attitudes. In this sense the
word "forward" is used: under forward preferences, the company acts in the same direction of
time, and therefore it may capture information about the market in a dynamic and consistent
way.

Next, we see that the forward and the backward problems share the same optimal reinsur-
ance strategy. Instead, the optimal investment strategies are different in the two approaches,
with the backward portfolio being always smaller than the forward one. In the forward case,
we observe that the optimal strategy consists of the myopic component only, whereas in the
backward case there is an additional component (always negative) which reflects the fact

that the instantaneous variance of the percentage asset price change is not constant.
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As for the value processes under backward and forward utility preferences, we note that
they do not coincide in general, as argued also in Musiela and Zariphopoulou [81]. In some
sense, they are similar: in both cases the value processes are of exponential type and they
are affine in the wealth. However, that they are generated in completely different ways, as
it results from the different multiplicative component which involves the function h® or
the process P. Specifically, in the backward context the value function accounts for market
incompleteness by estimating the future changes, via the function h”. Instead, in the forward
case the value function coincides with the forward utility at all intermediate times and
it is adjusted dynamically over time, according to the arrival of new information. This is

encompassed in the function h.

1.4.4 Numerical experiments

In this part, we resort to a numerical approach in order to get qualitative characteristics of
optimal investment and reinsurance strategies implied by our model. We also provide few
illustrations on the case of independent markets, making a comparison analysis with classical
results obtained via backward utility preferences.

We have seen that the behavior of an interdependent insurance-financial market can be
modeled by a finite number of regimes, each with its specific parameters. To simplify the
economic interpretation and analysis, let us suppose that the exogenous index is described by
a two-state Markov chain Y, that is, £ = {ey, e2}; without loss of generality we may assume
that e; represents a more favorable state of the combined market and es is a less favorable
state. For instance, regime e; might be a market with good conditions, that is a market in
which few claims occur and asset prices are expected to rise. On the other hand, with regime
ez we may consider a market under bad conditions, such as the arrival of so many claims
and the fall of financial assets. In the following, we refer to ey (respectively, es) as the good
(respectively, bad) state.

The infinitesimal generator matrix ) has entries {Qij}i,je{l,Z} such that g2 > go1: this
choice suggests that it is more likely for the market to switch from the good state to the bad

state than the opposite.
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For the sake of simplicity, we consider a claims arrival intensity of exponential type, i.e.,
A(t, e5) = AgeFrtha(es), (1.52)

where Ao = e¥0, k1 > 0, for every t € [0, +00), and the function kg(e;) = j- ko for all j = 1,2
and some ko > 0. Moreover, claim size distribution is assumed to be truncated exponential.
We assume that insurance and financial operations take place in one year, starting from today
(i.e., to = 0); this means that we analyze our theoretical results in a time interval [0, T, with
T = 1. Insurance and reinsurance premia are computed according to the intensity-adjusted

variance principle (see [I7]), and hence, they are specifically given by

b(t,e;,0) = A(t, €;)E[Z1] © + 26gA(t, €;)E [Z7] (1 + TA(t, e)) ©, (1.53)

a(t,e;) = At,e;)E[Z1] + 201 \(t, €)E [Z7] (1 + TA(t, ¢e5)), (1.54)

for j = 1,2, and dgp > 0 and é; > 0 denote the reinsurance and insurance safety loading,
respectively. In Equations and we reported 1" to underline the dependence on
contracts maturity, which will be omitted later, plugging 7' = 1. Finally, we set the following
parameter values to g2 = 2, go1 = 1, k1 = 0.5, ko = 1 and we fix the insurance and the

reinsurance safety loading to 67 = 0.05 and ér = 0.1, respectively.

Dependent Markets

We consider the general financial market which consists of a locally risk-free asset S° with
zero interest rate and a risky asset S which follows a CEV model with drift and volatility that
depend on the Markov chain Y as described by the SDE . According to our interpreta-
tion of regimes e and ez, we assume that u; > ps and o1 < o2, where u; and o; represent
the expected rate of return and the volatility of the stock, respectively, in the j-th regime,
for j = 1,2. In fact, it is reasonable to associate to a good state for the combined market
a higher appreciation rate and eventually smaller fluctuations, and viceversa lower rate of
return and larger volatility to the bad state. This mechanism is well known in economics (see,
e.g., French et al. [52] and Hamilton and Gang [57| that find evidence of these relationships
between the regime of the market and the financial coefficients, using empirical data). We
report the parameters choice for the financial coefficients ;1; and o, for j = 1,2 in Table

Our framework, however, also involves the actuarial market and the interpretation of
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Regime I o
e1 (good) | 0.1 | 0.1
es (bad) | 0.05 | 0.2

Table 1.1: Parameter set for the rate of return and the volatility of the stock price in the two
market regimes.

the Markov chain is not of a purely economic nature, but may also incorporate reactions to
events, such as natural disasters, pandemics or even climate and environmental states, which
have an impact on both insurance losses and the general trend of financial assets. Equation
, for instance, shows that the common factor Y affects the claim arrival intensity in
a way that the average number of claims is smaller in the good state and larger in the bad
state.

To illustrate the typical sample path of an optimal strategy, we provide in Figure
the plot of one trajectory of the optimal dynamic investment and reinsurance strategy given
by Proposition [I.I] We observe that both the investment portfolio and the protection level
depend on different states and exhibit jumps at switching times of the Markov chain. More-
over, if the good regime is in force, then the insurance company opts to invest more in the
risky stock and to reinsure a greater percentage of losses. The model specification considered
in this example (i.e., the form of the intensity function, the claim size distribution and the
reinsurance premium) implies that the optimal reinsurance level is given by ©F = O, for all
t € [0,1], where ©; = O(t,¢;) is the solution of the equation

E[Z1] + 40R0E [Z7] (1 + A(t,e))) = / 271792 p(dz).
zZ

We observe that the optimal reinsurance protection level decreases linearly piecewise.
Indeed, using the Implicit function theorem, we check that the derivative of ©* with re-
spect to time is negative for every t. Let G(t,e;,0) = E[Z1] + 46gOE [Z7] (1 + TA(t, ¢;)) —
/1267(1_9)ZF(dz), then, for every fixed j = 1,..., K we have that

A (te;)  MLeote)) 40(t, ;)05 E [22] Aokyekrttha(e)) .
de - dG(te;,0(te;)) N _46RE [ZIQ] (1 + eklt+k2(€j)) +7f] z2e'y(1—®(t,ej))zF(dz) < V.

de
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Figure 1.1: The optimal investment strategy (left panel) and the optimal reinsurance strategy
(right panel), as functions of time, with parameters Sy = 1, § = —0.5 and v = 0.5.

In the sequel, we perform a sensitivity analysis of the optimal investment portfolio in
order to study the effect of model coefficients on the insurance company decision, in both
economic regimes. Specifically, our aim is to analyze how sensitive the optimal investment
strategy II* is to any change of the risk aversion v and the elasticity £, which are two
parameters characterizing our market model.

First, in Figure [1.2] we analyze the effect of the elasticity coefficient 5 on the optimal
investment strategy at a certain date t* € [0, 1]. The left panel illustrates the situation when
the price of the stock is smaller than 1. In this case, we notice that if 8 grows up, then an
increasing portion of the company’s wealth is invested in the risky asset; this means that
the optimal investment is positively correlated to the parameter of elasticity. Otherwise, the
amount invested in the risky asset decreases as long as (8 increases, as shown in the right
panel. Further, it is worth noting that the strategy is more sensitive to variations of the
elasticity parameter when the combined insurance-financial market is in the good regime
(solid lines). Furthermore, we notice that the investment policy is always more aggressive if

the market conditions are good.
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Figure 1.2: Optimal investment strategy at a fixed time ¢* as a function of elasticity coefficient
B, for different values of stock price S+, when the economic regime is e; (solid line) or ey
(dashed line). Parameter values: v = 0.5, Si= = 0.5 (left panel) and S = 1.5 (right panel).

Second, we are interested in knowing how much the company’s risk aversion v affects
the optimal portfolio. From Figure [I.3] we observe that the optimal investment is negatively
correlated to the risk aversion parameter, under both regimes. As expected by (L.45)), there
is an inverse relationship on the values of the stochastic volatility; in other terms, if the
risk aversion increases, then the insurance company finds it more convenient to invest in the
risk-free asset. As before, we observe that if the bad regime is in force (dashed lines), the

optimal investment policy is less aggressive and less affected by the coefficient changes.
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Figure 1.3: Optimal investment strategy at a fixed time ¢* as a function of risk aversion
coefficient v, for different values of stock price Sy« and constant elasticity coefficient 8, when
the market state is e; (solid line) or es (dashed line). Parameter values: 8 = —0.5, Si= = 0.5
(left panel) and S+ = 1.5 (right panel).
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Independent Markets

Now, we focus on the case of independent markets discussed in Section in order to
compare numerically the forward approach with the backward one.

For the numerical analysis below, we take Y to be a two-state Markov chain, and let (p, 1—

g21
q12+q21

p) denote the stationary distribution of Y, i.e., p = . We calculate the appreciation
rate and the volatility of the stock price, p and o, as the average of the values puq, po and
01,02, according to the stationary distribution of Y, that is u = pu; + (1 — p)uz and o =
po1 + (1 — p)os.

We recall that insurance and reinsurance premia are evaluated via the intensity-adjusted
variance principle and that the claim size distribution is exponential with expectation equal
to 1.

In Figure and Figure we plot the difference between the optimal strategies under
forward and backward utilities. Precisely, we plot that difference as a function of time in
Figure [I.4] as a function of the elasticity parameter [ in the left panel of Figure[I.5] and
as a function of the risk aversion coefficient v in the right panel of Figure [I.5] Thanks
to Proposition and Proposition [I.2] the optimal backward portfolio, in addition to the
myopic component, has another term due to the fact that the corresponding value function
is not updated dynamically over time. Indeed, by , it is clear that the optimal forward
investment strategy II* is more aggressive than the backward one II?*. Figure also
shows that the difference between optimal strategies decreases over the time interval and it
disappears at the end of trading horizon. Moreover, we get that the higher the initial price
of the risky stock is, the higher the initial gap. A similar behavior is observed in the left and
in the right panel of Figure where we illustrate the difference in optimal initial portfolios
with respect to the elasticity coefficient and the risk aversion parameter, respectively, for

different initial values of the stock price.
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Figure 1.4: One trajectory of the optimal investment as a function of time for 8 = —0.5 and
v = 0.5.
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Figure 1.5: Left panel: Optimal investment as a function of elasticity coefficient at time 0 for

v = 0.5. Right panel: Optimal investment as a function of risk aversion parameter at time 0
for 8 = —0.5.

We conclude, comparing optimal value functions with respect to the stock price at the
beginning of the trading interval, under both market regimes. Indeed, the optimal strategies
under the forward and the backward criterion lead to different value functions. In particular,

at the initial time, the optimal value corresponding to the backward utility is given by

V(0,z,s,¢e;) = —e*'yx*‘h(o)sﬁ*‘h(o’ei), whereas the optimal value in the forward utility simply
satisfies U(x,0) = —e 7", Figure plots the difference between value functions at the
initial time (in percentage), i.e., Ayy(s,e;) = W (notice that this quantity is

independent of the initial wealth), as functions of the initial stock price, in states e; and eq,
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assuming that the Markov chain Y has only two states.

Ayylsey)

-0.1
02 ~ o
-03F -

04+ L

-05

Initial stock price s

Figure 1.6: The effect of stock price on the difference between the backward optimal value
functions and the forward one (in percentage) at time 0, when the market state is e; (solid
line) or ey (dashed line). Parameter values: 5 = —0.5, v = 0.5

We point out that the gap between the backward and the forward values at initial time
is decreasing with respect to the stock price at t = 0, in both economic regimes. As a
consequence, when market conditions are good, the difference between the two value functions

decreases as the price of the risky asset increases.

1.5 Optimal investment and reinsurance under exponential for-
ward preferences with non-zero volatility

In this section, we study the optimal investment and reinsurance problem of an insurance
company, following a forward-looking approach, in a stochastic factor model allowing for a
mutual dependence between the actuarial and the financial markets. Specifically, the common
stochastic factor is modeled as a diffusion process. Moreover, the preferences of the company
are described by a non-zero volatility forward dynamic utility of exponential type. Now,
the penalizing process that reflects the insurance company dynamic preferences, depends on
market coefficients, collected premia and paid premia but it is also linked to another source
of risk which affects the interdependent market model. We provide an analytical construc-

tion of forward dynamic exponential utilities and we characterize the optimal reinsurance
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and investment strategy. Finally, we analyze a dynamic version of the conditional certainty
equivalent (in short CCE) for forward utility preferences and we also compare it with the

conditional certainty equivalent in the backward setting, both analytically and numerically.

1.5.1 Setting

In this section, the stochastic factor that affects the market model is described by a process

Y ={Y;, t > 0} that solves the following SDE
dY; = a(t, Y;)dt + B(t, Y)dW)Y | Yy =y € R, (1.55)

where, WY = {W}, t > 0} is a standard Brownian motion on (Q,F,P;F) and «,f :
[0,4+00) x R — R are two measurable functions. We assume that there exists a unique strong

solution to the SDE (L.55)) such that

E Uotya(s,ys)\ds] <00, E [/0t62(s,Ys)ds} < oo, (1.56)

for every t > 0. For completeness, a set of classical sufficient conditions for uniqueness is
given in Assumption in Appendix [1.5.6]

The financial market consists of a risk-free asset with price process S° = {S?, t > 0}
which is equal to 1 at any time and by a risky asset whose price process S = {S;, t > 0} is

given by the following SDE
dS; = p(t,Y;)Sydt + o(t, ;) S;dW°, Sy =35>0, (1.57)

where the process WS = {W;, t > 0} is a standard Brownian motion on (2, F,P;F),
correlated with WY with constant correlation coefficient p € [~1,1], and independent of
the random measure m(d¢,dz). Also here, the functions p : [0,4+00) x R — R and o :
[0, +00) X R — (0,400), representing the drift and the volatility of the stock price process,
respectively, are assumed to be measurable and such that the system of equations —
admits a unique strong solution. Hence, the pair (Y, S) is a Markov process. Sufficient
conditions for existence and uniqueness of the solution to the system — can be
found, e.g. in [84, Theorem 5.2.1], and recalled in Appendix [L.5.6]
In this context, the Novikov condition required in can be written as

1t p(s,Ys) 2
E |:62 fO(U(S,Ys)) ds:| < 0,
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for every t > 0.

We notice that in our framework there is a possible double dependence between the finan-
cial and the insurance markets, since two different interactions between them are involved.
The first one is realized by assuming that the claim arrival intensity, the claim amount distri-
bution and the financial market coefficients (namely the appreciation rate and the volatility
of the stock price) are functions of a common stochastic factor, the process Y. Indeed, ex-
ogenous events of different nature (such as social, cultural, geographical conditions, political
decisions, natural events) may affect the claims that an insurance company experiences (their
arrival frequency, their average number, their size and so on), as well as the performance of
portfolios negotiated in the market. The second kind of interaction is due to the non-zero
correlation between the Brownian motions W and WY driving the stock price and the fac-
tor process dynamics, respectively. This link between the two sources of noise can be viewed
as an environmental contagion effect. We point out that, even if the correlation coefficient is
zero, there remains an indirect dependence via Y.

We recall that for any given strategy H = (©,1I) € [0,1] x R, the wealth process X =
{X[, t >0} of the insurance company satisfies the SDE

dX = {a(t,V}) = b(t, Y3, ©;) + Myp(t, V) bdt + o (t, Y)W, — (1 — ©,-)dC, (1.58)

with X! = 29 > 0, being the initial wealth. Equivalently,

t t
XtH—:U0+/ (a(s,Ys) — b(s,i@,@s)—l—ﬂsu(s,n))ds—l—/ Hsa(s,Ys)dWSS

0 (1.59)
/ / (1-— )zm(ds, dz),

for every t > 0.

The pair (X ,Y) is a Markov process with infinitesimal generator
LY f(t,2,y)

= O (t,2,) + [altyy) ~ b(t,,0) + nﬂa,yngfw,m

875
O f o0 f
— 2.2 -

052 5 (62, y)

Oty + 2 820) 2 1

(t,2,y) +alt,y) == 3y

2
+ Lo (1,)B(0,) 50 2 (0,0.0)

+ At y) /1 {fta— (1= 0)z2,y) - f(t,2,9) }F(t,y, d2), (1.60)
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for every function f : [0, +00) x R? — R in C'1? which is sufficiently integrable and any given
constant control H = (©,1I) € [0,1] x R, for every (¢,z,y) € [0, +00) x R2.

We wish to maximize the profit of our insurance company that updates its risk profile
forward in time. Since we set the normalization point {5 = 0, in the sequel we can omit the
dependence on the normalization point and we simply write Uy(z) in place of Ui(zx,0), for
notational convenience. In the literature, forward dynamics utilities with ¢ty = 0 are often
called spot utilities.

We consider a penalizing process P given by and we assume that Brownian motions
WP and WY are correlated, denoting by p* € [~1,1] the correlation coefficient. Moreover,
the function h is not necessarily equal to zero; in this way we manage to capture also the
randomness coming from the stock price S and the common factor Y.

In this framework, solving the Problem 1, introduced in Section is equivalent to
prove that the process {Ui(z), t > 0} defined as

U(z) = —e @0 (t,2) €[0,+00) x R,

where P is given in ([1.8)), is a forward dynamic exponential utility, normalized at time O.
It is easy to check that the process (XY, P) is a Markovian triplet; its infinitesimal

generator £ is given by

L2 f(t,z,y,p)
0 0
= S t,20.0) + [olt0) — 86,9, 0) + Tla(t,)] 32 (t,,.)
82 a 2
+ %HzaQ(t,y)an;(t,x,y,p) +aft, y)a‘g(t,m,y p) + ﬁQ(t W52 ch(t ,,p)
0?2 0 92
+ pllo(t )36, 0) 5 3 (6 ) + 9t 0,0) 5 (60 + (02, ) G L (6, p)
§ ot h(ta) O () + ¥ Btz y) 2T (1, y.p)
p lo(tl,y €,y O a t,x,y,p P Y €,y 3 6 z,Y,p
+A(t,y)/{f(t,x— (1-©)z,y,p) —f(t,w,y,p)}F(t,y,dZ), (1.61)
I

for every (t,z,y,p) € [0,+00) x R and for every function f : [0,+00) x R® — R in C!?

which is sufficiently integrable.
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1.5.2 Optimal investment and reinsurance

In this subsection, we characterize a family of forward utilities (in order to describe the
preferences of the insurance company) and the optimal investment portfolio and optimal
protection level.

In the following theorem, we provide the analytic construction of a class of forward

dynamic exponential utilities normalized at tg = 0.

Theorem 1.3. The process {Uy(x), t > 0}, given for x € R and t > 0 by
Up(x) = —e @1t (1.62)

with the process P defined in (1.8)), is a forward dynamic exponential utility, normalized at

time 0.

Proof. To show the result we prove that the process {Ui(z), t > 0} defined in verifies
Definition with the initial condition u(x,p) = —e~7*~P. By construction, for every ¢ > 0
the random variable Uy(x) is Fi-measurable. Next, we need to show that for arbitrary ¢, 7
such that 0 <t < T, we have

e —XH_
—e 7P — max B | —e X7~
HeA

]:t} . (1.63)

The equality (1.63) implies that {Uy(z), t > 0} is a supermartingale for all admissible
strategies H € A, and a martingale along some strategy H* € A. In view of the Markov
property of the process (X*,Y, P), we consider the function u : [0, +00) x R?® — (—o0,0)
given by
—~XH_p
u(t,x,y,p) == nax Et%y,p[ —e 0T T}, (1.64)

where E; ., , denotes the conditional expectation given XH =2, Y, =yand P, = p, for
every (t,z,y,p) € [0,T) x R3.

If u(t,z,y,p) is C' in ¢t and C? in (z,y,p), by applying Itd’s formula, we get that the
function u(t, z,y,p) solves the final value problem

LTy (t =0, (¢ 0 R3 1.65
O o u(t,z,y,p) =0, (t,z,y,p) € [0,00) x R’ (1.65)

u(T7x7y7p) = _e_vx_pv (x7y7p> c R37 (166)
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with the operator £# denoting the infinitesimal generator of the Markov process (XY, P)
associated with a constant control H, see (|1.61)).
Now, we choose H* = (©*,1I*) given by

M(@Y;&) 7pSh(ta XtH*aY;f>
V0%(t, Yr) vo(t,Yr)

;=

and ©F = O(t,Y};), for each t € [0,T], with ©(t,y) as in (1.13); equality holds and
then the martingale property along H* is satisfied.
Next, we use a guess-and-verify approach and we show that the function u(¢, z,y, p) given
by
u(t,z,y,p) = u(x,p) = —e P, (z,p) € R?, (1.67)
provides the unique classical solution to the problem (1.65| - Clearly, u(x,p) = —e 7*7P,
with (z,p) € R?, is C* and it is easy to check that solves (1.65)-(L.66]. Moreover, uniqueness
follows from the Verification Theorem (see Theorem [1.5/in Appendix). Indeed, condition (ii)

of Theorem is trivially satisfied since the function u(z,p) does not depend on y. Then,

we just need to show the following conditions: for every ¢,7T such that 0 <t < T,

TNATn, 2
E[/ (a(s,ys)ns@(s,xf,n,g)) dv] < o0,
) oz

E[/TW (n(s, X2, )g (s, X7V, P))de] < o0,

e

with I C [0,+00) being an arbitrary interval, for a suitable, non-decreasing sequence of

(s, X2 — (1 -0,.)2,Y,, Pn)) —u(s, XYy, Po_) [ \(s, Ys) F (s, Yy, dz)ds

stopping times {7, }nen such that lim,, 4o 7, = +00. Therefore, for every n € N, we define
o =inf {s € [t,T]: |Ps| >nV XH < —n}.

Over the stochastic interval [t, T A 7,], since X and P do not explode, there is 7 € N, with

n < n, such that yX/T + P, > —n(y + 1). Hence, we get that
TNy, 9
B[ (ot yom s X2y p))
t 856

TATy 2 N2 r
=FE [/ o?(s, Ys)II2 ('ye_”Xf_PS) ds} < ('ye('yﬂ)”) E {/ UQ(S,YS)HgdS] < 00,
t t
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since II is an admissible investment strategy. Moreover, we have that

TAT,
n ou 2
H H
E M (h(s,XS ,Ys)—ap(s,Xs ,YS,PS)) dv]

TATn, - 2 N\ 2 T
—E U hQ(S,Xf,YS)@*’VXs *Ps) ds] < <e(7+1)”> E [/ hQ(s,Xf,Ys)ds} < 0,
t t

thanks to (1.9). Finally, we have that

T NATn
[/ /‘ s, X7 —(1-0,)2Y, P)) —u(s,XSH_,YS,PS)’A(S,K)F(S,K,dz)ds}

-k [/TATR/ =X =P
LD U /e'vz Y,)F (s, Ys,dz)ds] < o0,

by Assumption Therefore, Theorem applies and the function u(x,p) = —e 7*7P is

the unique solution of the problem (1.65)—(1.66]).
We conclude that (T.63)) holds, and then {Uy(z) = —e~7*~ ¢ > 0} is a forward dynamic

7(1-0s- 1)A 5,Ys)F(s,Ys,dz)ds }

exponential utility normalized at 0. O

Now, we characterize the optimal investment portfolio and the optimal reinsurance level

for this family of forward dynamic exponential utilities in ([1.62]).

Proposition 1.3. The optimal strategy H* = (0*,11*) is given by the optimal reinsurance
protection level ©* = {OF, t > 0}, where ©f = O, = O(t,Y}), with O(t,y) defined by (1.13)),
and the optimal investment portfolio II* = {11}, t > 0}, where 11} = II*(¢t, X", Y;), with

) u(ty) — sh(t,z,y)

I (t,z,y) = , 1.68
( yo2(t,y) yo(t,y) (1.68)

for every (t,x,y) € [0, 4+00) x R2.

Proof. We consider the optimization problem defined by ([1.65)—(1.66)). Using the form of the

function u, we observe that the problem can be written as

—ya(t,y)u(z,p) — g(t, =, y)u(z,p) + th(t z,y)u(z, p)

+ max Uy(0,t,,v, p)—i—max\I/g(H t,z,y,p) =0,
©¢€[0,1]
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for all (t,z,y,p) € [0,+00) x R? with the final condition u(T,z,y,p) = —e 7*7P, for all

(z,y,p) € R3, where the functions Wy, Uy are defined as

U1(0,t,2,y,p) = vb(t,y, ©)u(z, p) + A(t,y) /U(w,p)(e”“@)z —1)F(t,y,dz),
I

1
Uo(IL t, 2, y,p) = —Hu(t, y)u(z, p) + 572H202(t, y)u(z,p) +vp Mo (t,y)h(t, z, y)u(z, p).

Now, we compute the optimal protection level ©*. The function ¥, is continuous in O, due
to the assumptions on the function b(t,y,©), and © € [0,1], therefore a maximum exists.
The first and second order derivatives of Uy are respectively given by

o,
00

82\1’1 826 v(1-0)z 2
Hoz (©:1,2,4:p) = —1u(z,p) { 552 (14, 0) + 1AL, y)/le 2°F(t,y,dz) ¢,

and they are continuous in © and well defined thanks to Assumptions [[.I]and [I.2] In virtue

ob o
e @t = —ute.p) { 55(0.0) = Aty) [ 2y},

of condition (L.11)), ¥1(0,¢,x,y,p) is strictly concave in © and hence it admits a unique
maximizer ©* € [0, 1], whose measurability follows by classical selection theorems. Let )
be the solution of the equation %\I(;l(@,t,x,y,p) =0.1f0 € (0,1), then 5) provides the
optimal protection level; if ® > 1, then the optimal protection level is 1, which means
full reinsurance is optimal; finally, if ) < 0, then the optimal protection level is 0, that is

no reinsurance. Next, we describe the sets corresponding to these three cases. Recall the

definition of sets Dy and Dj in definitions (1.14)) and (1.15), respectively. From (|1.11)), we

ov
get that 50 (@ t,z,y) is decreasing in © € [0,1], for every (t,z,y,p) € [0,+00) x R?, that
Uy Uy
is, aG)(ltxyp) aG(Gtxyp) %G(Ot:ﬁyp)Wehave:

ov
(i) if 8@1 (0,t,z,y,p) < 0, then ©*(t,x,y,p) = 0, i.e. no reinsurance is chosen. This is

equivalent to say that (¢,y) € Dy.

(i) if aa@(l,t,:c,y,p) > 0, then ©*(¢t,z,y,p) = 1, i.e. full reinsurance is chosen. This

corresponds to the case (t,y) € D;.

(iii) the case (@ t,z,y,p) = 0 for some © € (0,1), corresponds to (¢,y) € (Dy U D;)°.

00
To characterize the candidate for the optimal investment portfolio IT*, we observe that

the function Wo(I1, ¢, x, y, p) is continuous in II. Then, taking the first order condition we get
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that IT* given in equation (|1.68) is a stationary point of the function Wy (Il, ¢, z,y, p), which
corresponds to a maximum since the second derivative with respect to Il is negative.
Finally, we show that the pair (II*,©*) € A, since all required integrability conditions

are satisfied. Both ©* and II* are predictable; moreover, for every t > 0 it holds that
t
B | [ (Ml )l + (5%, v) s

t 2 t t Y's h XH Y's
< cE [/ M(S)ds} + E {/ h2(s,Xf,Ys)ds} +c3E [/ (s, Ys)hls, X7, )ds < 00,
0 70%(s,Ys) 0 0 yo(s,Ys)

thanks to conditions (1.6) with 5 =0, (1.9) with t9 = 0 and the Cauchy-Schwarz inequality,

for some positive constants ¢, ¢z, cs. Hence, condition (1.10) is satisfied. It remains to prove
that E {e*'YXtH *Pt} < oo for each t > 0. In view of (1.59)), (1.8) and (|1.68)), we have

2
* _ 1t po(s,Ys) t p(s, Yg)
E [e_WXtH _Pt} = e—V‘””OIE[e 2o 2y B0 o~ Jo G AW = 5 V1= (05)2h(s, X I Y2) AW

MY ,

—(pS))R2(s XH" Ya)ds oy fi [ (1-6")zm(dsdz) ;= Jo A(s,Ys)fI(m(u@,s_)z_l)F(&Ysydz)ds]

where XI! = 29 > 0 is the initial wealth and W = {Wt, t > 0} is an additional Brownian

motion that is independent of W*. We define the process L = {Ly, t >0} as

L ”QE: }’f) ggg: Q;dws L[ a—(p5))h2(r, X H" Yo )dr— [ /1= (p5)2h(r, X Y, ) AW,

Ly =
Then, L is a square integrable martingale thanks to condition (1.6) and Assumption .
Therefore,

E |:e—'thH* —Pt:| = ¢ VTR |:Lt€’7f0 J;(1=6,_)zm(ds dz fo 5,Ys) [} (67(1_957)Z*1>F(S:Y57dz)d31|
)

< e [12]V2E [evféffu—és_)zm(ds,dz)}1/2

because f(f (s, Ys) [ (er*és_V — 1) F(s,Ys,dz)ds > 0 P-a.s. for all ¢ > 0. Finally, we
recall that E [L?] < 0o and note that
E |:62'yf0t fl(l—(:)rf)zm(dr,dz):| <E [62721}21 Zi]

= ZE |:62’YZ£V=t1 Z Nt = n:| P(Nt = TL) = ZﬁE [627211] P(Nt = TL) < o,

n>0 n>01i=1

thanks to the assumptions on the random variables {Z, },cn and the fact that the process

N does not explode in finite time. ]
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Similar observation as for the regime switching case can be done for this setting; see

Remark [I.6] and subsequent comments.

1.5.3 Numerical experiments

In this subsection we conduct a numerical analysis in order to investigate some features of
the optimal reinsurance-investment strategy and the optimal value process under forward
utility preferences of exponential type.

In these experiments, we analyze our theoretical results in a time interval [0,7], with
T = 1, assuming that insurance and financial operations take place in one year, starting
from today.

The proposed model specification is rich enough to incorporate several stochastic factor
models well known in the literature. In our first example, the stochastic factor process is

chosen to follow a Vasicek model, i.e.
dY; = (a1 + epY)dt + SdW), Yo =—02,

with constant coefficients a; = 0.2, as = —1 and 5 = 0.1.

We also suppose that the function A is given by A(¢,y) = \oe?, for each (¢,y) € [0,T] xR,
where \g = ke with & > 0, which guarantees that the intensity of the claims arrival
process N is positive. For the sake of semplicity, all random variables {Z,, },en have common
distribution and the claim size distribution, specifically the claim size distribution is assumed
as I'(ar, Ar), ar, fr > 0. In particular, we set k = 1, apr = 1 and two different values of S,
namely Sr = 2 which corresponds to larger losses and fr = 1/3 to smaller claims.

We consider a risky asset price process with an affine appreciation rate and a uniformly

elliptic Scott volatility, described by the following SDE
dS; = u(Y;)Sedt + o(Y;)S:dW,,  Sp =1,

where
pw(y) == p1 + p2y, o(y) =: c\/er + eV,

for every 3 € R. The Brownian motions W* and W7 are correlated with correlation coeffi-

cient p. We set the risk aversion coeflicient to v = 0.5.
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First, we study the case where the reinsurance premium is calculated under the conditional

modified variance principle, and given by
b(y, ©) = arfrA(y)© + drpro, (1.69)

for each (y,0) € R x [0,1]. As pointed in Remark [1.1] this premium calculation principle
allows keeping the dependence on Y in the optimal reinsurance strategy, which in turn,
means that the strategy adapts to the index value over time. Regarding the insurance safety
loading 7 and the reinsurance safety loading dr, the condition é; < dr < 287 usually holds
true; thus, we set 4y = 0.3 and dp = 0.5.

Under these parameters, we wonder how many claims should be reinsured in order to
maximize the forward expected utility. In Figure[I.7], we plot the optimal reinsurance strategy,
both when large claims (solid line) occur and when small claims (dashed line) occur. We
observe that in the latter case, null reinsurance might be optimal for almost all negative
values of the stochastic factor, whereas in case of large claims a big percentage of claim is
always reinsured.

9.=0.5

08 //

o
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Large claims | |
- == == Small claims

0.3 -0.2 0.1 0 0.1 0.2 0.3

Figure 1.7: Optimal proportional reinsurance strategy with respect to the values of the
index, for large claims (solid line) and small claims (dashed line)

Moreover, we note that the protection level in case of big claims is larger than in the
case when claims are smaller. This means that, under the same claim arrival intensity, when
expected claim amount is small, the insurance company purchases less reinsurance whilst for

large losses it buys reinsurance with a higher protection level, to mitigate the risk.
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Next, we analyze the behavior of the protection level over the time interval. Since Y
follows a Vasicek model with mean level 0.2, starting from —0.2, we can easily describe
the evolution of the reinsurance strategy as time goes by. Indeed, simulating the Brownian
motion WY, we notice from Figure that trajectories of the optimal reinsurance strategy
are accumulated around 0.85 in case of large claims and in the range [0,0.25] in case of

smaller claims.

I

0.5

04

Optimal reinsurance strategies

0 0.2 0.4
Time t

Figure 1.8: Some trajectory of the optimal proportional reinsurance strategy for large claims
(solid line) and small claims (dashed line)

To better understand the form of the reinsurance strategy, in Figure [1.9] and Figure [I.10]
we consider different safety loadings as the ones used in all the rest of this numerical section.
Using a reinsurance premium of the form , we obtain that if reinsurance is expensive
(which is the case, for example, of safety loadings at level 6z = 0.9, 6; = 0.6), the insurance
company will reinsure fewer claims. In particular, as shown in Figure[1.9] in the case of small
claims null reinsurance is optimal for every value of the index in the range [-0.3,0.3] [

On the other hand, if reinsurance is enough cheap, namely if the reinsurance safety loading
is quite small (for instance, dp = 0.1, 6; = 0.07), the insurance company prefers to protect
itself as much as possible and thus will opt for a larger protection level ©.

As can be seen from Figure in both cases (large claims and small claims), under our
parameter setting, full reinsurance and null reinsurance are never optimal. The reinsurance

level, however, is always large, as reinsurance is very cheap.

2The range of y has been chosen according to the values in the simulations of the index Y.
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Figure 1.9: Optimal proportional reinsurance strategy with respect to the values of the index,
for large claims (solid line) and small claims (dashed line), with safety loadings g = 0.9,
oy = 0.6.

Further, we point out that the optimal protection level is always quite high when large
claims occur, always greater than what one get when the claim size is smaller: indeed Figure
and show that the solid line is always above the dashed one.

Now, we will highlight the characteristics of the optimal investment strategy correspond-
ing to our family of forward exponential utility preferences. In order to consider a reinsurance
policy neither too expensive nor too cheap, we restore the insurance safety loading at level
67 = 0.3 and the reinsurance safety loading at level g = 0.5. In this setting, we examine
the optimal portfolio strategy. As pointed out by Remark [1.4] different choices of the func-
tions g and h lead to a different forward utility and, as a consequence, to a different optimal
investment strategy. In the sequel, we consider the following choices of the function h, for
every (t,z,y) € [0,T] x R%:

(i) hi1(t,xz,y) = 0. This corresponds to zero volatility utility function and the optimal

p(y)

52~. 'This means that when there
¥o2(y)

investment portfolio is the myopic strategy I} (y) =
is no additional stochastic part describing utility preferences, the optimal investment

in the risky asset only depends on the drift and volatilty of the stock price.

S
(ii) ho(t,z,y) = ha(y) = —2P7M. In this case the insurance market only affects

1= (p%)?a(y)
the drift of the penalizing process involved in the forward utility but not its volatility.

S
The optimal investment strategy is given by II5(y) = 1) + #y) P

C02(y)  yo2(y) 1 - (po)? and
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Figure 1.10: Optimal proportional reinsurance strategy with respect to the values of the

index, for large claims (solid line) and small claims (dashed line), with safety loadings 0g =
0.1, 6; = 0.07.

(i)

consists of a myopic component and an additional term that accounts for the correlation
between the stock price and the preferences of the insurer. The latter reflects the
incremental changes in the optimal behavior due to the presence of two sources of risk
which may also be linked to each other. Notice that the optimal investment reduces
to the myopic component (namely the additional demand disappears) even when the
penalizing process presents a stochastic noise which however is not correlated with that

of the risky asset.

hs(t,z,y) = hs(y) = 1) \/go —b(y,©). In this instance, the insurance
company adjusts its pieferences according to the state of the financial market, the
collected premia and the paid premia. Interestingly, in this case the optimal portfolio
depends on uncovered claims and the market volatility but it is not affected by the
stock Sharpe ratio and the insurance and reinsurance premia. Indeed, the optimal

\/go — vb(y, ©). This is due

to the fact that since forward utilities are dynamlcally updated, the company can

investment strategy in this situation is II5(y

account into her preferences some randomness which therefore the portfolio must not
take into account: for example, the risk arising from premia is processed in the utility

rather than delegated to the insurance company actions.



61

. L k
(iv) ha(t,z,y) = _kpfg’YU(y)kx + pg%/)

explicit dependence on wealth. In particular, taking hy as an affine function of the

. Unlike the previous cases, here we have an

wealth implies that the optimal strategy is of the form IT}(z) = kz, i.e. the insurance
company would always invest in the risky asset the same percentage of the wealth.
Notice that the optimal portfolio strategy is highly dependent on the scale parameter
k. In particular, if £ > 1 the insurance company would always borrow from the bank

account and if k < 0 it always short-sells the risky asset.

In Figure [L.11] we plot the optimal portfolio strategies corresponding to the first three
choices of the function h, with respect to the value of the exogenous index which influences
our combined market model. Taking, for example, fr = 2, p° = 0.5 and k = 0.5, we consider
two different parameter settings for the appreciation rate and the volatility of the stock price
and we match them to obtain three different situations. In the left panel we consider the
case where the stock price volatility is highly affected by the index and the drift is almost
constant. We observe that all strategies decrease with respect to the common factor. However,
the decline is not the same: II} is the strategy most affected by the variation of the index
whilst II3 is the less affected one. In the middle panel, instead, the effect of the index on the
drift dominates the effect on volatility. Here, we see that strategies are increasing for all y
in the range [—0.3,0.3]. Notice that II} still assumes a wider range of values, hence also in
this situation it is the most affected by the variation of the index. Finally, in the right panel
we plot the optimal portfolio strategies when both the drift and the volatility highly depend
on the values of the common index. We outline that strategies II7 and II3 are not monotone

and II5 has the largest variation as for the other two cases.

1.5.4 Comparison with the backward utility approach

In this subsection, in order to more easily compare dynamic forward preferences with stan-
dard backward utilities, we focus on the zero-volatility case, namely we assume that the

penalizing process satisfies
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stment strategy 11

Optimal inve

Figure 1.11: Optimal portfolio strategies with respect to the values of the index. un-
der different forward preferences. Parameter settings: Left panel p € [0.094,0.106], o €
[0.0748,0.1354]; Middle panel g € [0.02,0.14], o € [0.1002,0.1008]; Right panel pu €
[0.02,0.14], o € [0.0748,0.1354]

for all ¢ > 0, where the function g is given by

2
olt.0) = =5 (L5 = rat) + plt.0), (170

for all (¢,y) € [0,+00) x R, with ¢(t,y) introduced in (1.16)).
The following result characterizes the forward utility process and the corresponding op-
timal strategy in the case where the additional stochastic part describing utility preferences

is not involved.
Corollary 1.3.1. The process {Uy(x), t > 0}, given for x € R and t > 0 by
U(z) = —e~17fo 9(s,¥s)ds, (1.71)

with g(t,y) defined in , is a forward dynamic exponential utility, normalized at 0.
Moreover, the optimal strategy H* = (©*,11*) is given by the optimal reinsurance protection
level ©* = {O©F, t > 0}, where ©f = O, = O(t,Y;), with O(t,y) defined by (L.13)), and the
optimal investment portfolio IT* = {II}, t > 0}, where II} = IT*(¢,Y;), with

II*(t,y) = ,Yﬁ(f(ty;) (1.72)

for every (t,y) € [0,400) x R.

Proof. It follows from Theorem and Proposition setting h(t,z,y) = 0, for every
(t,x,y) € [0,+00) x R2 O

Next, we address the optimization problem under the backward approach, since our pur-

pose is to compare the optimal strategy and the value of the optimal investment-reinsurance
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problem under dynamic forward zero-volatility utility to the classical backward utility, under
the model setting outlined above. The first result provides the optimal strategy and the value

function when the preferences of the company are described by the backward exponential

utility function u”(x) = —e~7*. Consider the backward reinsurance-investment problem
max E [—ef"’Xg} , (1.73)
HeA

where T € (0, +00) is a fixed time horizon which coincides with the end of the investment

period. We introduce the Cauchy problem

9%, 9, p(t,y) 102, oo
el D)+ D) (ot = o200 ) + 55 20T ),
0
#3 (o)) (L= A5 e) ~ alt) =0, (t.9) € [0.7) x R.
d)(Tvva) =0, y € R.

(1.74)

Theorem 1.4. Let ¢(t,y;T) be the unique classical solution of the problem (L.74). Then,
the value function corresponding to the problem (1.73)) is given by

V(t,z,y, T) = —e 12— 0uT),

Moreover, the optimal Markovian reinsurance-investment strategy (05, 11%8) = {(@:’B, H:’B) =

(©*B(t,Y;), I1B(t,Y3)), t € [0,T]} is given by

0*5(t,y) = O(t,y),

99(t,y; T)
(t,) 20T
2 ) = e 1)

for every (t,y) € [0,T] x R, where the function O(t,y) is given in (1.13)).

A sketch of the proof of Theorem is provided in Appendix [1.5.6]

The results obtained so far deserve a few considerations. By Proposition and Theorem
[1.4] we immediately notice that the optimal reinsurance strategies under the backward and
the forward utilities coincide. This can be explained at the mathematical level, using the
same argument of the zero-correlation case. In fact the martingale driving the factor process

Y, which affects the loss intensity, is orthogonal to the loss process. In this way, our model
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manages to capture an interesting effect that arises due to the nature of the forward utility,
even when the financial and insurance frameworks are not independent.

As for the investment strategy, we note that forward and backward preferences induce
different optimal investment portfolios. Moreover, by expressions and , equality
holds only if the factor process Y and the price process S are driven by uncorrelated Brownian
motions. In particular, the optimal investment strategy under forward performances consists
entirely of the myopic component. This means that it depends only on the risk aversion
coefficient, the drift and the volatility of the stock, without taking into account other sources
of risk, especially those related to the insurance business. This is a consequence of the fact
that any changes in state of the market are absorbed by utility that updates forward in time
according to the new conditions. The backward approach, instead, is based on the assumption
that a future utility preference is set at the beginning of the investment period and does not
change over time. Therefore, what needs to account for changes in market conditions must be
the investment strategy which consists of a myopic part and an additional risk adjustment.
The latter accounts for the part of risk correlated with the stock price. It is evidente that
this additional demand vanishes if stochastic movements of the factor process Y and the
stock price process are orthogonal, i.e. the martingales driving the processes Y and S have
zero predictable quadratic covariation.

One last comment should be made on the value functions: similarities and differences
between the forward approach and the backward one. In both cases, they are exponential
and they have a structure affine in the wealth. However, each of the two value functions is
characterized also by another term that makes them very different. Indeed the multiplicative
components e~ ") and e~?(:¥T) gather the effect due to market changes in very different
ways. It is worth noting that P also depends on y, which we omitted to keep the same
notation as in the classical literature. If we compare the implicit expression of P(t) given by
(f?l;Et) = ¢(t,y) with the initial condition P(0) = 0 and the PDE satisfied by ¢(t,y; T),
we can conclude that both performance criteria process market changes in an aggregate way.
But, observing carefully, the forward utility (which coincides with the forward value function

that it generates) accounts for past observation, whereas in the backward case the value

function estimates the future risk. It is clear that P(t) and ¢(¢,y;T) are not easy to compare
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from the analytical point of view. As discussed in [8I] these two processes are related to
well known martingale measures, namely the minimal martingale measure and the minimal
entropy measure.

It remains to establish existence (and uniqueness) of a classical solution to the PDE in
, which is in general difficult to obtain because it is not linear. The next paragraph is
devoted to this.

Existence and uniqueness of a classical solution

In the sequel, we provide sufficient conditions for existence and uniqueness of the solution
to the PDE in , involved in the backward reinsurance-investment problem and, as a
consequence, of the classical solution to the corresponding HJB equation associated with our
optimization problem.

First of all, it is easy to see that, if Brownian motions WY and W* have zero correlation,
then the PDE becomes linear and a solution exists under suitable conditions on the model
coefficients (see, for instance [86, Theorem 5.3] or |31, Theorem 1])

We also notice that the PDE is linear even when there is a perfect correlation (either
positive or negative) between the two Brownian motions that drive the stochastic factor Y
and the stock price S. Consequently, also in this case it is easy to obtain existence of a classic
solution of the problem (|1.74)).

Otherwise (i.e. for p # 0,1, —1), similarly to [103], we introduce a transformation given
by

o(t,y) = sn(€(t,y)), (t,y) €[0,7] xR,

for a suitable parameter x € R \ {0}. Differentiating yields

0 e 09 s

ot (t,y) = £(t,y) ot (t:9), dy (ty) = §(t,y) 9y

¢ k0% ko (O€ ?
dy*  &(ty) 9y §*(t,y) \9y
Substituting the above derivatives in (1.74) gives the following PDE

2
)+ et (altn) — 58D 500,00 ) + 5 5L 008 )

dy 852 U(tvy) 2 8y2 é(t )
Y
Tt gay " y)B*(ty) (5(1 = p) = 1) = g(t,y) =

(t,y),

o
ot

(1.76)
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for all (¢,y) € [0,T) x R, with the final condition &(T,y) = 1, for every y € R. The above

expression suggests that if we take the parameter

1
K=17 ek
then the PDE (1.76)) becomes linear. Indeed, the transformed solution £(¢,y) satisfies
—(t t t — - —g(t,y)———= = 1.
o 5o ) () = o200 a0 ) 45 5 S -ate Y —o,

for all (¢t,y) € [0,T) x R, with the final condition £(T,y) = 1, for every y € R.

Now, we provide some sufficient conditions that guarantee the existence of a classical
solution of the equation , which is unique under the associated final condition, applying
Theorem 1 of [58]. They prove that there exists only one classical solution and also provide
a probabilistic representation by means of the Feynman—Kac formula. In order to apply this
result, we introduce a new probability measure P equivalent to P, by setting

:zt:e_(l 0P (55:2 ) ds+ [y p

n(s,Ys)
o(s,Ys)

I )

€ [0,T.

Condition (L.6) ensures that the process L = {L;, t € [0,T]} is a P-martingale. By the

Girsanov theorem, the process WY = {V[N/ty, t € 10,71}, defined as I/TN/t =WY+p ft ﬁ(i gs)ds

for every t € [0,77], is a P-Brownian motion. Thus, the dynamics of the stochastic factor Y

under P are given by

p(t, Y2)
Po(t,Y0)

a; (a<t,m - Bt m) dt + B Y)W, Yo=yo € R

Proposition 1.4. Suppose that functions u(t,y), o(t,y), a(t,y), 5(t,y) are locally Lipschitz
continuous in (t,y) € [0,T] x R. Suppose also that a(t,y), b(t,y,0) and A(t,y) are bounded
and Lipschitz-continuous in (t,y) € [0,T] x R. In addition, let us assume that 5(t,y) > n,

for all (t,y) € [0,T] x R. Then, there exists a unique positive and bounded classical solution

of equation (1.77) which is given by
E(t,y) = B [ ae¥qs (1.78)
for all (t,y) € [0,T) x R, with terminal condition £(T,y) =1, for every y € R.

Proof. We apply Theorem 1 of [58] to prove existence and uniqueness of classical solution to

equation ([1.77) by verifying that their required conditions (A1), (A42), (A3a’)-(A3¢€") hold in
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our case. Consider a sequence of bounded sets {D,, = (—n,n), n € N}, such that U D, =R.

neN
Since functions p(t,y), o(t,y), a(t,y), B(t,y) are locally Lipschitz continuous in (¢,y) €

[0,T] x R, conditions (A1) and (A2) of [58] for the coefficients a(t,y) — pg t’Z;ﬂ(t y) and
B(t,y) are satisfied on (¢t,y) € [0,7] x R. This also implies that (A3a’) holds. Moreover,
32 is uniformly elliptic on (¢,y) € [0,T] x D,, for every n € N; i.e. (A3V) holds. The
Hoélder-continuity of functions a, b and A imply that also the function g, defined by ,
is Holder-continuous, as required by (A3¢’). Further, in our problem g = 0 and h = 1; thus,
condition (A3d') is trivially satisfied. To complete the proof, we check for (A3e’). Thanks to
[58, Lemma 2], it is sufficient to prove that the function g is continuous and bounded from

above, which is satisfied under our assumptions. Hence, the PDE (1.77) admits a unique
classical solution &(¢,y) on (t,y) € [0,T] x R satisfying &(T,y) = 1, given by (L.78). O

1.5.5 The conditional certainty equivalent

In this subsection, we discuss the conditional certainty equivalent (in short CCE) introduced

n [53], which extends the classical notion of the certainty equivalent.

Definition 1.4. Let X = {XH t > 0} be the wealth process corresponding to a constant
strategy H = (0,11) € [0,1] X R and let T > 0 be a finite time horizon. For every 0 <t < T,
let Uy(x) be the forward dynamic utility defined according to Definition (1.2)). Then, we define

the conditional certainty equivalent Ct(X:,}iI) as the random variable given by
Cuxf) = v (B [Un(Xf,0)7] ,0),
for every t € [0,T].

The inverse exponential utility process {U; '(x,0), t > 0}, and hence the CCE, is well
defined (see [53] Lemma 1.1 and Definition 1.1]) and satisfies the properties below that can
be directly derived from [53 Proposition 1.1]: for every 0 < ¢ < s < T and every constant

strategies H, H € [0,1] x R, we have

(i) Ci(X7) = Ci(Cu(X7))-

(if) Co(xi") = X{'.
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(ifi) Tf Co(XAT) < Co(XJT) then Cy(XfT) < CH(XFT).
In particular, if X < Xﬁ then Cy(XH) < C’t(XZEI) and if X1 = XZEI then Cy(XH) =
Cu(XH).

(iv) IfU(z,0) = {Us(z,0), t € [0,T]} is decreasing in time, then C;(X#) < E [Cs(XH)| 7]
and E [Cy(XH)] < E [Co(XH)]. Moreover, Cy(X#) < E [XH|F,] and therefore E [C,(XH)] <
E [X7'].

The properties listed above have important financial implications. The first one, coming
from property (iii), is time consistency. That is, any two wealths with the same CCE at a
given time s, have the same CCE at any time prior than s. Second, by property (iv), we
get that for dynamic utilities that are decreasing in time, the CCE is increasing. We point
out that it is common practice to consider time-decreasing utilities since they reflect the
impatience of the insurance company, namely the effective desire for accumulation mixed
by the perspective undervaluation of the future. In this case, the guaranteed amount that
a company would accept not to take the risk, becomes larger and larger as time goes, as a
consequence of a the fact that the company has a better perception of the combined market
conditions, which is represented by a smaller utility. Let us underline that the inequality
Cy(XH) < E [Xrﬁ |ft], also provided in (iv), expresses the risk aversion of the company,
similarly to the well-know inequality in the static environment.

In the sequel, we focus on the case of zero-volatility forward dynamic exponential utilities,
discussed in Section

In this case it is immediate to see that the monotonicity property with respect to time
holds true. Indeed, if the function g(¢,y) defined in is non-negative for every (t,y) €
[0,4+00) X R, then given a constant strategy H = (©,1I) € [0, 1] x R, the forward exponential
utility process is decreasing in time, and hence

1
Ct(XII!) = _; In (E |:e_7X7}“I_f0T g(s,Ys)ds

A]) = [ ot vaas

for every t € [0,T7, i.e. the CCE is increasing in time.
Next, we will use the CCE to provide an additional comparison between forward dynamic

and classical static backward exponential utilities (i.e. U(z) = —e " = € R). We observe
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that CCE, for the static case is given by

Co(xXf!) =~ 1n (B e

)

for every t € [0, 7.
At time t = 0, CCEs under forward exponential dynamic utility and backward exponen-

tial static utility reduce, respectively, to

H

1 H_ T ~ 1
Hy - —XH— [ g(s,Ys)ds Hy -~ —vX
Co(XH) 71n<1[-3[e =1 ]) Co(XH) 7hn(IE[e T])
Then, we have the following implication.

Lemma 1.3. For every t € [0,T], the cumulative penalizing P(T) — P(t) > 0, P—a.s. if
and only if Cy(XH) > ét(X:IF{), P—a.s., for any given constant strategy H € [0,1] x R. In
particular, P(T) > 0 if and only if Co(XH) > éo(Xﬁ).

Proof. For every t € [0, T], we consider the difference

= 1
Ci(XF) — Cy(XF) = - In (E [e*'YX%{ — [} g(s,Ys)ds

7))+ }yln (B [e¥F|7])

This is larger than zero if and only if

E[e

:| S E {e—'quIZI—ftT g(s,Ys)ds

]—'t} .

Since e=7X% and e~ J 96Y)d5 are both nonnegative random variables then we get that
the inequality holds if and only if 0 < e~ [ a(s¥ods < Recalling that P(T) — P(t) =
ft (s,Ys)ds we get that Cy(XH) > Ct(XH) if and only if P(T) — P(t) > 0. Taking t = 0

we obtain the second inequality for the CCEs at the initial time. O

Lemmoal.3|provides necessary and sufficient conditions to establish a relationship between
CCEs under forward exponential dynamic utility and backward exponential static utility, at
any time t. First of all, we comment the result at time ¢ = 0. At the beginning of time interval,
the guaranteed amount that an insurance company endowed with a forward utility would
accept not to take the risk of investing and reinsure its claims is larger than the guaranteed
amount for an insurance company with static backward utility, i.e. Co(XH) > C~’0(X%{ ), if

and only if the total penalizing P(T fo (s,Ys)ds is nonnegative. Indeed, in this case
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we will have that the forward utility is smaller than the backward utility, and hence that,
at time ¢t = 0, the perception of the risk for the first company (the one with the forward
utility) is lower than for the second company (the one with the backward). Such condition
is satisfied, e.g., when the penalizing process is increasing, that is when g(¢,y) > 0, for every
(t,y) € [0,T] x R.

When t > 0, the situation gets complicated. Due to the structure of the penalizing
process, it is not easy to compare, in general, the values of Cy(X#) and @(XYH ). However,

under specific conditions some considerations can be made, as we see in the next Proposition.

Proposition 1.5. If

gzg:z; > —2va(t,y) + 2 min {b(t, y, 1), \(t,y) /I <eVZ - I)F(t, y,dz)} , (1.79)
for every (t,y) € [0,T] x R, then @(XYH) > Cy(XH), for each t € [0,T).

Otherwise, let K := inf(y y)c0mxr 70(t, y,0) + A(t,y) [ (e”’(l_é)z - 1) F(t,y,dz) > 0,
with © given by (L.12). If a(t,y) < K/v for all (t,y) € [0,T] x R and

12(t,y)
o%(t,y)

<2(=alt,y) + K), (1.80)
for every (t,y) € [0,T] x R, then Co(XH) > Cy(XH), for each t € [0, T).

Proof. Recall that, in the zero-volatility case, the function g(t,y) is given by

_1p%(ty)
20%(t,y)

g(t,y) = —va(t,y) + f(t,y,0),

where we have set f(t,y,0) = ~b(t,y,0) + X(t,y) [, (67(1*9” - 1) F(t,y,dz), for each © €

[0, 1]. Notice that f(¢,y,0) is convex in O, then it admits minimum, which is given by ©.

Moreover, since © € [0, 1], by convexity we get that

f(t,y,0) < min {’yb(t,y, 1), A(t,y) /I (e7* —1) F(t,y, dz)} , (1.81)

for every (t,y) € [0,T] x R; Then, by and (L.81)), we get that g(¢,y) < 0, for each
(t,y) € [0,T] x R, yielding P(T) — P(t) < 0, for every t € [0,7]. Lemma implies that
Ci(XH) > Cy(XH), for each t € [0, T).

On the other hand, we note that f(t,y,0) > 0, for every (¢,y) € [0,T] x R. Indeed, if
O # {0,1}, then b(t,y,0) > 0 and [; (67(1*@)2 —1) F(t,y,dz) > 0. For © =1 f(t,y,1) =
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b(t,y,1) > 0 and for © = 0 it holds that f(¢,y,0) = A(t,y) J; (e = 1) F(t,y,dz) > 0. We
let K > 0 be the infimum over all (¢,y) € [0, T] xR of the function f(t,y, ©). If a(t,y) < K/v
for all (t,y) € [0,T] x R and (1.80), we get that

2
e =5

- ,ya(tv y) + f(t’ Y, (:)) > Oa

which implies P(T') — P(t) > 0, for every ¢ € [0,T]. Finally, thanks to Lemma[I.3] we have
that Cy(XH) < Cy(XH), for each t € [0,T). O

Proposition is technical but meaningful. We could say that if market conditions are
favorable, the insurance company with forward utility preferences has smaller certainty equiv-
alent, meaning that they are more willing to risk. When we speak of favorable market, we
mean the situation when the revenues from investment allow to cover for the payment of
the claims, according to . In this case the amount of guaranteed money an insurance
company would accept today instead of taking a risk of getting more money at a future date,
is larger when preferences are described by a forward dynamic utility. Instead, if company’s
income (that comes from investing in a risky stock and collecting insurance premia) is not
sufficient to cover reinsurance premia and payments of the remaining claims, then the rela-
tionship between CCEs reverts: in an unfavourable market, the forward approach leads to a
lower willingness to risk.

In the numerical section we present two examples where each of the two conditions of

Proposition is satisfied.

1.5.6 Toy example: CCE and comparison with backward investment

We conclude this chapter with a comparison analysis between optimal strategies under for-
ward and backward utilities. We give a toy example of our proposed model where the back-
ward value function as well as the optimal strategy are characterized in closed form.

We consider a trading interval [0, 7], with 7' = 1, assuming that all market operations
take place in one year, starting from today. We assume that the claim arrival intensity is a
quadratic function of y, i.e. A(y) = Ao(14+y+ %yQ), so that it stays positive. We specify that
this choice of the function A corresponds to the second order approximation of A(y) = Age?,

where )¢ is a nonnegative constant, which is taken in the previous numerical experiments.
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Now, we suppose that claims follow a Gamma distribution I'(ar, fr), where ar = fr = 1
(i.e. exponential distribution with mean 1).
Moreover, we employ the well-known expected value principle to calculate insurance and

reinsurance premia, that is

a(t,Y;) = (14 60)E [Z1] A(t,Yy),

b(t,Y;,0) = (1+0r)A(t,Y2)E [Z1] ©;.

For simplicity we denote a = (1 4 6;)E[Z1] and b®) = (1 4 6z)E[Z1]©; and E[Z)] =
J ; 2F'(dz), where the insurance safety loading and the reinsurance safety loading now are set
as 0y = 0.4 and dg = 0.7, respectively. We notice that in this case the optimal reinsurance
strategy is given by ©*F = min{l, 0} where © is the unique solution of the equation
(14 6r)E[Z1] = [; 2e7*9F(dz). Clearly, ©*% does not depend on the stochastic factor Y.

We suppose that the dynamic of S is given by
dS; = Sy(py + poYy)dt + SpodW;, Sy =1,

where now o = ¢\/e; + 1 is a non negative constant (it corresponds to the Scott volatility
above taking ea = 0). As for the other parameters, we take u; = 0.08, 2 = 0.2, ¢ = 0.27 and
€1 = 0.01. We also denote ¢(0) = [; (67(1_@)“’ —1)F(dz). In this case the function g(¢,y) is
a quadratic function given by

2
9(t.y) = =55 — (ya = 1H(O") = «(©" ") Aa(t)

2
(125400 0@ ) @ () - (7 =000 —e©7 ) G )47

To solve the PDE (|1.74) we consider the following guess function:

o(t,y; T) = ¢ (t) + oM (t)y + 6P 1)y

B ) +262 (t)y)
Yo

Plugging the guess function in (1.74) and collecting the coefficients of y, y? and the constant

Then, the optimal investment strategy becomes 115 (t,7) = ’“;;‘ézy +p
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term leads to the following system of ODEs

8?);0) (t) = — ¢ (1) (ar (t) — p= 1§(t)) - %(W(t))z(l — ") (t) — P (1) (t)
L (0= 3(O") = O ) (1)
200 = = 00 et~ 22) — 260 (0 - 150
=200 (1= P + T3 + (o —1H(O") — (")) Aa(t)
90 1) = 260 (0at) — 2220 _ o)1 - 2550
L (va - 1b(©"7) — e(e"#)) 2o

202 2’
with the final conditions ¢(O(T) = ¢M(T) = ¢P(T) = 0. Regularity of the coefficients
guarantees that a solution exists.

To highlight the effect of the common index on the optimal investment portfolio, we plot
in Figure the optimal investment strategies corresponding to forward and backward
utilities as functions of the stochastic factor. Precisely, Figure depicts the marginal
impact on the optimal investment policy (both under forward and backward utilities) of
the stochastic factor, for two different values of the correlation coefficient. Clearly, for the
backward case, we have to fix an instant of time in order to represent the strategy as a
function of the stochastic factor; for illustrative purposes, we check the strategy at the initial
of the trading period and after 6 months, i.e. we choose the beginning and the middle of the
time interval.

It is worth noting that the optimal portfolio varies less if the preferences of the company
are described by forward utility. This means that the backward optimal portfolio is more
sensitive to any variation of the stochastic factor with respect to the forward one, and this
effect is amplified when the correlation coefficient is large (right panel). Moreover, we observe
that this effect flattens out as maturity approaches: indeed, the big range of values at the
beginning of the trading period shrinks a lot after 6 months. It is also clear that backward
strategy gets closer and closer to the forward one, as the correlation coefficient approaches
to zero, and they actually coincide when p = 0. The difference between the optimal strategy
under the forward utility and the optimal strategy under the backward utility decreases with

time: the additional risk adjustment characterizing the backward portfolio gets smaller and
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Figure 1.12: The optimal investment strategy when p = 0.4 (left panel) p = 0.9 (right
panel), as functions of the stochastic factor. Solid (resp. dashed lines) line corresponds to
the optimal portfolio under Forward (resp. Backward) utility.

smaller. Indeed, as time to maturity reduces, also the estimates of future risk in the backward
case has a smaller effect on the value function and hence on the optimal strategy that gets
closer and closer to the myopic component.

We conclude with a brief analysis of the CCE in order to outline some of its features. In
Figure We provide a trajectory of the process Ry := E [X%{\]-"t] — C’t(Xij), for t € [0,7],
which expresses the risk aversion of the company during the time interval. This process is
decreasing over time and disappears at maturity. Moreover, this process is mainly affected

by big claims: when a large claim occurs, there is a downward peak. Next we compare the

0 0.2 0.4 0.6 0.8 1
Time t

Figure 1.13: The risk aversion of the company with respect to time.
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CCE for the forward and the backward utility preferences. To make the presentation more
clear, we fix p = 0. Under the parameter setting that has been fixed in this subsection,
holds true. Therefore, by Proposition |1.4] we get that P(T) — P(t) > 0, P—a.s. that in turns
implies that Cy(XH) > ét(X%{), P—a.s., thanks to Lemma . Figure confirms this
lower willingness to risk under unfavorable circumstances in the forward approach rather in

the backward one.

Conditional certainty equivalent

0 0.2 0.4 0.6 0.8 1
Time t

Figure 1.14: CCEs under forward exponential dynamic utility and backward exponential
static utility, with Sr = 1 and ¢ = 0.27.

For comparison purposes we also analyze the case of a smaller claim size and a smaller
stock volatility, taking fr = 1/3 and ¢ = 0.1. As a result, condition holds true and
thus the relationship between the CCEs reverts, as shown in Figure [L.15]

This parameter setting represents a favorable market where the revenues from financial
investments with the collected premia cover claim payments and hence the company does not
buy reinsurance and instead invests a large part of its wealth in the risky asset. We obtain
that the CCE under forward preferences is always smaller than the CCE under backward
preferences, i.e. C’t(Xr}{) < @(X{f), P—a.s., meaning that the company opts to risk more
if its preferences are specified forward in time. We also notice that the CCE in the forward
case fluctuates slowly around a specific value whereas in the backward case the CCE shows

a remarkable decrease over time, due to the lower flexibility of the backward utility.
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Figure 1.15: CCEs under forward exponential dynamic utility and backward exponential
static utility, with fr = 1/3 and ¢ = 0.1.

Appendix

A.1 Assumptions

This section contains a set of classical sufficient conditions on model coeflicients under which

existence and uniqueness of the solutions of the SDEs for the processes Y and S hold.
Assumption 1.4. The functions a and 3 satisfy:

1. local Lipschitz-continuity: for every R > 0 there is a constant kg > 0 such that for

every y1,y2 € B(0, RIF|it holds that |a(t, y1)—a(t, y2)|+|8(t, y1)—B(t, v2)| < krlyr—val,
for allt > 0;

1. sublinear grownth: there is a constant k > 0 such that for every y € R it holds that

lat, y)| + 158 y)| < k(1 +[yl), for all £ > 0.

Under Assumption classical results (see, for instance, Gihman and Skorohod [54])
yield that,for every initial condition (¢,y) € [0,7] x R, existence and uniqueness of a strong
solution to equation and that condition is satisfied.

To ensure existence of equation , which describes the stock price process, we make

the following assumption.

Assumption 1.5. The functions p and o satisfy:

3B(0, R) is the disc centered at the origin with radius R.
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i. local Lipschitz-continuity: for every R > 0 there is a constant kg > 0 such that for

every yi,ys € B(O,R) it holds that |p(t, y1)—u(t, y2)|+|o(t, y1)—o(t, y2)| < Rplyr—yv2l,
for all t > 0;

1. sublinear grownth: there is a constant K > 0 such that for every y € R it holds that

[t y)| + lo(t y)| < K(L+ |y]), for all t > 0.

Under Assumptions and [L.5] the system of equations (1.53)-(1.57) admits a unique

strong solution (Y, S), with S; > 0, P-a.s., for every ¢t > 0, see e.g. Oksendal [84, Theorem
5.2.1]. Moreover the pair (Y, S) is an (F, P)-Markov process and it holds that

t t
E U |,u(s,YS)|ds—|—/ U(S,YS)QdS} < 0,
0 0

for every t > 0.

A.2 Technical results

In this section, we collect some technical proofs.

The verification theorem

Here, we prove a quite general verification result, which ensures that the function u(t, z,y, p)

defined in ([1.67)) is the unique solution of the optimization problem ([1.64]).

Theorem 1.5 (Verification Theorem). Let T > 0 and let 4 : [0,T] x R® — (—o0,0) be a

classical solution of the final value problem (1.65)-(1.66) which satisfies

N ot I 2
(i) E /0 (a(r,mnr%(r,){r ,YT,P,)) dr} < 0,

ou

(i) E /OT (5<r,may(r,xﬁ,n,a))2dr] < 0,

. i
ou 2
(iii) E /O (h(r, XHvg o X] ,Y;,P,.)> dr] < o0,

o T
(iv) E / )\(r,YT)/‘u(r, X2 _(1- ©,-)z,Y,, P._) — a(r, X"y, P._) F(r,Yr,dz)dr] < 0.
LJo I

(a) Hence, u(t,z,y,p) < u(t,z,y,p), for every admissible control H € A and for every
(t7 x?y?l)) E [07 T] >< ]RS'
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(b) Moreover, if u(T,z,y,p) = w(T,x,y,p), for every (x,y,p) € R® and there exists H* €
A such that LH a(t,z,y,p) = 0, for every (t,x,y,p) € [0,T) x R3, then u = u in
[0,T] x R3.

Proof. Let H € A be an admissible control. Using equations (1.58)) and (1.55) and applying
Ito’s formula to u(t, X/, Y}, P;), we have that

T
(T, XH Yp, Pr) :a(t,x,y,p)—}—/ L, X2y, P)dr
t
r o]
+/ HJ(rY)a (r, X2Y,, P)dW? + / mY rXHY , Pydwy
t

T ot
+/ h(r, XH, Y)ap( r, X2 Y,, P)dWS

/ / r X2 —(1-0,2)2,Y, P_) —a(r, X1, Y, P_))
m(dr,dz) — \(r, Y, )F(r,Y,,dz)dr),
where £ is introduced in (T.61)). Let M = {M,, t € [0,T]} be the stochastic process given
by
Mt:/OHU(rY)g (r, X2 v,, P)dW? + /wy (r, X2Y,, P)dwY

ou

T
X"y,
+/ h(r, >8p

(r, X2 Y,, P)dw?r

/ / X = (1= 0,02, Y, Po) — a(r, X1 Y, Po)) (m(dr, d2) — Ar, Y,) F(r, Ye, d2)dr)

and observe that integrability conditions (i), (ii), (iii), (iv) ensure that the process M is a

martingale. Now, since 4 solves equation (1.65) with final condition (1.66)), we get

T _
AT XA Vi, Pr) < tgp) + [ Wo(n¥,) 52 (XY, P)AWS (152)
t X
T ot o p
/ B(r,Y,)=—(r, X2 Y,, P.)ydw} + / h(r,Xﬁ,Yr)a—(r,XT Yy, P AW,
t p

/ / X2 —(1-0,)2Y,, P_) —a(r, XY, P,_)) (m(dr,dz) — A(r,Y;)F(r,Y,,dz)dr),

for every H € A. Thus, taking the conditional expectation with respect to X =, Y; =y
and P, = p on both sides of inequality (1.82)), leads to

Et,a:,y,p [ﬂ(T, le:lv YT, PT)] < ﬂ(t, z, yvp)'
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By the final condition in equation (1.66]), we obtain
Et,ﬂt,y,p [ _ e*’YXq}“I*(PT*Pt):| < ﬁ(t, x, y’p)7

for every H € A. Hence, u(t,z,y,p) < u(t,z,y,p), as we wanted. Finally, we observe that if
H € A is the maximizer in equation (1.65) with final condition (L.66)), then the inequality

above becomes an equality, and we obtain statement (b), which concludes the proof. ]

Proof of Theorem

We notice that the optimization is taken over the set of admissible functions A, even though
in the backward case one would require that E [e‘”Xg} < oo in place of E [e‘VX%{_PT} <
o0o. However, because of the assumptions on model coefficients, these two conditions are
equivalent. The proof of this result uses a guess-and-verify approach. Suppose that the value
function V(t,z,y) is C! in t and C? in x and v, then it solves the equation

LAV(t,z,y) =0, (t,z,y)e[0,T)x RZ, 1.83
(08 T xR (t,z,y) (t,z,y) €10,T) x (1.83)

where £ is the infinitesimal generator given in (T.60), with the terminal condition V (T, z,y) =
—e 7 for every x € R. We guess that the value function has the form V(t,z,y) =
—e 70y T) where ¢(t,y; T) is the unique classical solution of the problem (L.74). Plug-
ging this expression into and taking the first order condition yields . The second
order conditions imply that the optimal investment strategy II*? is given by (??) and the
optimal reinsurance strategy is given by ©*5(t,y) as in (1.13).

Next, we establish a verification result. Let v(¢,x,y) be a solution of the equation ([1.83)
with the final condition v(T,z,y) = —e™7* (that is v(T,z,y) = V(T,z,y)). Then, by Itd’s

formula it holds that (we omit for simplicity the dependence of X on the strategy H)

T
o(T, X, Yr) = vlt, z,y) + / FHo(r, X, Y,)dr

/ (r X,, Y, )dW? + / B(r, Y)gy(r X, V) dwY

/ / rXee —(1—06,_)z,Y,) —v(r,X,_,Y;) (m(dr,dz) — X(r, Y;)F(r,Y,,dz)dr) .
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Since v satisfies equation (1.83), we get that

T
o(T, X7, Yr) < o(t,z,y) +/ o(r, Y)g (r, X, Y, )dW? + / B(r, Y)g (r, X, Y, )dWY
t

T
+ / /U(T, Xrm —(1-06,2)z,Y,) —ov(r, X,_,Y;) (m(dr,dz) — X(r, Y;)F (1, Y,,dz)di).84)
t JI
If the process on the right side of (1.84) is a martingale, taking the expectation yields
Vt,z,y) <v(t,z,y),

and the equality holds if H is a maximizer of equation ((1.83). Then, it only remains to prove

that the function V (t,z,y) = —e~7*+¢(t¥:T) is such that

ov

M, = /tHa(rY)a (r, X, Y, )dW? + /BrY)aV

X, Y,)dw)Y
3 (r, )dw,

/ / X — (1= 0,02, Y,) — V(r, X, Ys) (m(dr, dz) — A(r, Y,)F(r, Y, dz)dr)

t t
—/ H,.a(r,E)’ye_VXTe‘f’(r’Y“T)de+/ ﬁ(r,Y})?(r,E;T)e_VXTe‘z’(T’Y’“?T)dW?}/
0 0 Y

t
- / /e_VXTeqb(r’Y“T)(eV(l_er)Z — 1) (m(dr,dz) — X(r, Y;)F(r,Y,,dz)dr)

is a martingale. To this aim, we consider the localizing sequence of random times

9¢

Tp := inf {S et,T]: |o(t,Yy; T)| > n, By

—(t, Yt,T)' >n, X < —n}, n € N.

Then, (7,)nen is an increasing sequence, lim, o, 7, AT = T and computations similar to

those in the proof of Theorem [1.3] show that

E[ / o { (nmmmg‘;(r, XT,YT.))Q s (mr,m?;(r, Xr,n>)2

+ / WVir, X, —(1-06,_)z,Y,) - V(r,X,_,Y,)| )\(’I“,)/T)F(T,Y;,dz)}d’f} < 0.
1

This concludes the proof.



Chapter 2

Optimization problems in insurance with a terminal
distribution constraint

The content of this chapter is based on the paper [34] which is a joint work with J. Eisenberg
and K. Colaneri. We consider an insurance company whose objective is to choose a dividend
payment or a reinsurance strategy leading to a certain surplus distribution. The question
which strategy to prefer depends on the underlying objective functional: the value of expected
discounted dividends or the ruin probability. Maximizing the first or minimizing the latter
are classical optimization problems in insurance. The novelty of the problem studied in this
chapter is to compute optimal strategies under the additional constraint that the terminal
surplus follows a certain prescribed distribution. Such a problem is motivated by need to
evaluate risk measures which are useful for the calculation of the capital required to ensure
solvency of the system, according to Solvency II regulations. In other words, fixing a terminal
wealth distribution would allow computing several risk measures at once, instead of choosing
a specific constraint in the beginning of an optimization task.

The chapter is organized as follows. In Section we introduce the topic, placing it with
respect to related papers in the literature. Then, we describe the mathematical framework for
the dividend setting and we maximize the expected discounted dividend payments in Section
After that, considering the same insurance setting, we address the ruin minimization
problem in Section [2.3] We conclude discussing the reinsurance optimization problem in

Section 2.4

81
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2.1 Motivation and literature review

In this chapter, we study two optimization settings for an insurance company, under the
constraint that the terminal surplus at a deterministic and finite time follows a normal dis-
tribution with a given mean and a given variance. We are motivated by the need of computing
risk measures, typically based on the distribution of a future loss at some fixed date. Indeed,
fixing a terminal wealth distribution would allow computing several risk measures. This may
be of a particular interest from a practical point of view since the calculation of the necessary
capital reserves is one of the problems faced by practitioners on the almost daily basis. Mea-
suring the solvency of a collective of risks remains a key task in insurance mathematics. The
first attempt to describe mathematically this situation dates back to 1903 when Filip Lund-
berg proposes a model (well known as the classical risk model or Cramer-Lundberg model)
for the surplus. He suggested to represent the total claim amount of an insurance company
or of a collective of insured by a compound Poisson process and to assume that premia ar-
rive at a constant positive rate. As a result, the surplus process, which is made of incomes
(namely the initial capital and premia) and payments (namely the claims), is described by
a jump process with drift that may eventually take negative values if for instance claims
exceed premia. One way to assess the solvency is to look at the so called ruin probability,
that is the probability that the surplus becomes negative in finite time (the aggregate claims
exceed the collected premia) i.e. writes red numbers. This is a key topic in the classical risk
model and has been studied in many settings since Harald Cramer republished the results of
Lundberg in the 1930s. The Cramer-Lundberg model describes well the reality, with jumps
that represent the claim sizes. However, from a mathematical point of view, it is not always
easy to handle with jumps. As a consequence, explicit form representations of the ruin prob-
ability can be found just for a few claim size distributions, exponential distribution above
all. For this reason, one often considers an approximation of a compound Poisson process by
a diffusion, see, e.g., Schmidli [88], p. 226] for more details.

Taking into account this approximation, we address two classical optimization problems
faced by an insurance company. Firstly, we concentrate on dividend payments: the objec-
tive of the insurance is to decide on the dividend rates in order to maximize the expected

discounted dividends or to minimize the ruin probability under the terminal distribution
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constraint. Maximizing the expected dividends value is a well-known problem in insurance;
therefore the literature about this optmization problems is quite rich; we refer to Asmussen
and Taksar [4], Shreve et al. [91], Albrecher and Thonhauser |2], Avanzi [6], Hipp [62] and
references therein for an overview of the existing results. We point out that the optimal
dividend payout strategy in the most "unconstrained" settings turns out to be of a barrier
or a band type, meaning that the strategy can change from "paying the maximal possible
amount" to "paying nothing", in dependence on the current value of the surplus. These
stategies, called bang-bang strategies, are very common in optimal control problems. How-
ever, switching abruptly betweenall and nothing would not be counsidered realistic for an
insurance company. Moreover, solvency requirements imposed by regulators may not allow
paying dividends according to the optimal, possibly bang-bang, strategy. Therefore, to make
the models more realistic, one needs to put restrictions. For example, Paulsen [85] studies
the optimal dividend problem taking into account a no-bankruptcy constraint, namely he
requires that the company pay dividends only if its surplus has reached a certain amount.
The latter is chosen as the smallest level such that the probability that the surplus will be
negative is sufficiently low. In other words, a barrier is introduced into the model and the
company does not distribute dividends if its surplus is below such barrier in order to avoid
ruin in the future. Some years after, an extended setting with transaction costs and taxes is
analyzed in Bai et al. [8]: also there, the purpose is to maximize expected discounted dividend
payments, assuming that, whenever dividends are distributed, the probability of ruin should
not exceed a predetermined level.

A similar approach to optimal dividend payment with different constraints can be found
in Hipp [61]. Here, there is no constraint on the surplus directly but only on the probability
that it becomes negative. Precisely, considering a stylized model for insurance business in
discrete time, the optimal dividend problem is addressed assuming that the ruin probability
remains under a given boundary.

It is worth mentioning also the paper of Thonhauser and Albrecher [95] where they maxi-
mize the total discounted utility of dividend payments including strictly positive transaction
costs and imposing two constraints on the dividend strategy, namely a payment is allowed if

it is greater than the tax amount and does not make the surplus negative.
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The main novelty of our model is that the constraint is put on the probability distribution
of the surplus at some terminal time. Indeed, we require that the distribution of the final
surplus is of gaussian type with fixed exogenously given mean and variance. We point out
that choosing a normal distribution as a target distribution is the natural choice since the
surplus is modeled by a diusion process.

In our second problem, an insurance company may decide to reinsure part of its claims
in order to reduce losses. We are looking at the surplus of an insurance company who buys
proportional reinsurance. The purpose is to minimize the probability of ruin, under the
constraint that the terminal surplus follows a gaussian distribution, with a given mean and
a given variance.

To control the risk exposure and to be able to meet regulatory requirements, insur-
ance companies need to pay attention to various constraints that reflect different practical
considerations; prominent examples include insurers’ budgetary, regulatory and reinsurers’
participation constraints. For instance, Bernard and Tian [12], Lo [74, [75], Huang and Yin
[65] search for the optimal reinsurance strategy under a constraint (that is a strictly positive
surplus or a fixed risk measure under some prespecified boundary) on the loss at the terminal
time.

Over the years, optimal investment and reinsurance problems have been considered with
several constraints. For example, Bi et al. [I4] address such type of optimization problems for
an insurer under the criterion of mean-variance with the so-called bankruptcy prohibition,
namely requiring that the wealth process of the insurer is not allowed to be below zero at
any time. Instead, Choulli et al. [30], Bi and Cai [13], Wang and Siu [98] investigate optimal
investment and reinsurance problems, under constraints strictly closed to VaR.

Finally, let us outline that the problem of choosing a reinsurance strategy to minimize the
ruin probability (or equivalently to maximize the survival probability) has been investigated
imposing a constraint on the risk measure (that is the VaR or the more general ES), see e.g.
Zhang et al. [I04] in a finite time interval and Chen et al. [29] under an infinite time horizon.

Here, the ruin minimization problem is faced for the first time with a constraint imposed

on the distribution of the terminal wealth.
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2.2 Maximizing dividends under a terminal distribution con-
straint

In this section, we consider an insurance company who is allowed to pay dividends. The
dividend rate has to be chosen in such a way that the surplus at some future deterministic
time T achieves a given distribution. At the same time, the value of expected discounted
dividends should be maximized.

We consider a probability space (2, F,P), a finite time horizon 7" > 0 and a Brownian
motion W = {W;, t € [0,T]}. We denote by F = {F;, t € [0,T]} the natural complete
and right continuous filtration of W, with Fr = F. We model the wealth of the insurance

company in the interval [0, 7] by a Brownian motion with drift as
X? =z + at + oWy,

for every t € [0,T], where xy > 0 represents the initial capital and 1,5 > 0 denote the drift
and the volatility, respectively.

The company is allowed to pay dividends in form of dividend rates 0 < ¢ < £ for some given
¢ > 0. It means that the post-dividend wealth under a dividend strategy ¢ = {¢¢, t € [0,T]}
is given by

t
Xf::c0+ut—/ csds +aWy , (2.1)
0

for every t € [0,T]. Our aim is to determine the strategies that maximize the expected dis-
counted dividends and simultaneously lead to a normally distributed post-dividend terminal
surplus X7. Specifically, we assume that the target distribution is Gaussian with the mean
xo + MT, and the variance §27T", for some M € R and 6 > 0.

At first, the company is only allowed to update a dividend strategy at n € N equidistant
time points Tk/n, k € {0,..,n — 1} in the period [0,7]. Thus, an admissible strategy is a
sequence ¢ = (cg, ..., cp—1) of dividend rates such that for all k =0,1,...,n—1, ¢, € [0,£] is
an F kT -measurable random variable and the total surplus at time 7' satisfies X ~ N (zo +
MT,§%T) D We denote the set of admissible strategies by A(,), where the subscript (n)

indicates the number of the allowed change points. Then accumulated dividends up to time

N (zo + MT,5°T) indicates the Gaussian distribution with mean zo + M7 and variance 627"



86

t are given by
n—1

ch(T(kn+ D % /\t).
k=0

We point out that dividends can be paid (up to time T') even if the surplus is negative,
differently than in the classical dividend problems, see for instance [4]. When surplus becomes
negative or touches zero (we can speak of technical ruin), the company usually continues to
operate, since she has enough reserves to bridge a certain period of unfavourable business
periods. Indeed, some insurance companies continue to pay dividends even during protracted
crisis times: for instance, Munich Re did not reduce its dividends since at least 2006, see
[87]. As a consequence, it seems reasonable to allow the company to proceed with dividend
payments even if a technical ruin occurs. In this way our model manages to alleviates the
drawback of stopping at the ruin time.

The following lemma indicates the range of achievable target expectations xg + MT by

a post-dividend Brownian surplus, see equation (2.1)), at time 7.

Lemma 2.1. The parameter M in the target distribution of the surplus at time T has to

fulfil i — € < M < f.

Proof. For any admissible dividend strategy ¢ = (co,...,cn-1) € Ay, the distribution of
the surplus in equation (2.1)) at time 7" is Gaussian with mean

nflE[c]
a:o—i-(u—z k)T:l’o-i-MT.

n
k=0
Using the fact that 0 < ¢; <&, for every k € {0,...n — 1}, we get that

_ Yiso Elexl

$0+(/1—§)T§900+<ﬂ n

) T <xo+ ,aT )
which proves the statement. O

Note that, for large values of &, the range of achievable means may include negative
values. Although this is mathematically feasible, an insurance company would not pursue a
strategy to achieve a negative expected surplus, but it would rather choose M € [0, | in
order to obtain a expected net profit at time 7', even if small. Next, we better identify the

features of admissible strategies.
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n—1

Proposition 2.1. Any admissible strategy ¢ = (co, ..., cn—1) € A(p) is such that Y ") ¢; is

Fo-measurable, i.e. deterministic.

Proof. Let ¢ = (¢, ...,cp—1) be an arbitrary admissible dividend strategy. The correspond-

ing surplus at time 7 is then given by

T Tn—l
X5 = il —cog— — — oWr . 2.2
T = o+ [T —co n;clﬁ-ﬁ T (2.2)

We now identify the set of dividend strategies that lead to a normal distribution with mean
7o+ MT and variance §°T. Let Y be a generic random variable with Y ~ N(zo+ MT, §°T).
Then, for ¢ € R it holds that E[e¢Y] = eC(IOJrMT)*%CZT. Now, considering the surplus at
time T given by and the fact that c is an admissible strategy, we get that Xf ~
N(zo + MT,5?T) and it holds that

eg(x0+MT)+§42T _ E[eCXg] _ e((zo+ﬂT—coT/n)E[e<6WT—c pDH, CkT/n] ) (2.3)

Let Q be a probability measure on (€2, Fr) equivalent to P, with the Radon-Nikodym deriva-
_ comp
Fr

tive % . Then, applying change of measure techniques in (2.3]), we obtain

E[eC6WT_C ZZ;II CkT/n] — 6C26'22TEQ [e_c Zz;ll ckT/n] .

Together with (2.3]), we get for all ( € R

Clao+MT)+ 52T _

e eg(zo-l—ﬂT—coT/n)+ &Qg@ EQ [6_4 22;11 ckT/n]’

leading to

Eqle¢ Shot ekT/n] — (COM—frteo/mT+ 52T

T

If §2—&2 > 0, then by uniqueness of the moment generating functions, the variable ZZ;% Ck oy
follows a normal distribution with mean (M — i + co/n)T and variance (62 — 52)T. Hence
it has positive Q-probability to attain negative values, which contradicts the equivalence of
Q and P, since Y321 ¢, T/n > 0 P-as.

If, instead, 62 — 62 < 0, there is no random variable with such a moment generating

function.

Finally, if 6 = &, the variable ZZ;% ¢, T'/n must be a constant, i.e. deterministic. O
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For the special case n = 2 we obtain the following corollary.

Corollary 2.1.1. The set of admissible sirategies A(z) only consists of deterministic pairs

(co,c1), t.e. c1 is Fo-measurable.

Note that the dividend strategies act solely on the drift and do not affect the volatility
of the wealth process. Due to this fact, we can compare different strategies by looking at the
surplus "path by path". Moreover, in the case n = 2, both components are deterministic; that
is the optimal dividend strategy is completely decided at the beginning of the trading period.
This means that that once the dividend rate cg, to be valid in [0,7"/2], is chosen, then ¢; is
also uniquely determined at time ¢ = 0 in order to achieve the final probability distribution.
We will see in the reminder of the section that the optimal strategy is deterministic also for
n > 2.

Let now r > 0 be the preference rate of the insurer. We call return function corresponding
to a strategy ¢ = (co, ..., cn—1) € A(y) the expected total present value of the dividends paid

up to time T, that is

Ve(x) :=E,

g kT T
Sk (1))
r
k=0
The function V¢(x) can be derived from the usual definition of return functions corresponding

to continuous time dividend controls, as an integral over discounted dividend rates. Let

¢ ={G,t €0, T]} with ¢ = cxLje(ri/n,r(k+1)/n) for k € {0,..,n — 1}, That is,
T n—1 7(k4+1)/n
Vg(xo) = Exo |:/ 6_T5C5d5:| = Exo Z/ G_Tsckds
0

k=0 Y Tk/n
n—1
Ck _,pkT T
:]E _ r n — rn
= Z Te (1 e )]
k=0
= V(o) .

Note that the dependence on the initial capital xg is in this setting purely nominal. As
stressed before, we do not stop our considerations at the time of ruin. The strategy will
depend only on the parameters of the surplus process and the target distribution.

%

The target of the insurance company is to find a strategy ¢* = (cf,...,c;_1) € A

leading to

Vo) = g B

e kT T
ke (1 - e_rn)] : (2.4)

r
k=0
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To analyze Problem (2.4)), we start with the case of two periods, i.e. n = 2.

2.2.1 A 2-period model

Suppose that the insurance company is allowed to update its dividend strategy only once,
at time 7'/2. By Corollary we get that the set of admissible dividend strategies A(y)

consists of all deterministic pairs ¢ = (cg, ¢1) with cg, ¢; € [0,&], and such that

__cta
2

=M.

In this case we immediately get, from the fact that cg,c; € Fp, that it must also hold that
% = 42, otherwise the target distribution would not be reachable. In the next step, we

investigate how to determine the optimal strategy.
Proposition 2.2. The optimal strategy c* = (cf, ¢}) is given by

.o, if 20— 2M <&,
C1 = .
YUloa—oM -, if2n—2M > €

Proof. We consider the problem
max cT (1 _ e—rT/Q) i ﬂe—rT/z (1 _ e—rT/Q) .
(60,61)6./4(2) T T

—’/‘T/27 is

It is easy to see that, for » > 0, the discounting coefficient in the first period, 1 — e
larger than in the second period, e~"7/2(1 — e="T/2). Therefore, to maximize the discounted
dividends, cg must be chosen as big as possible. Taking into account that 0 < ¢y < £ and that
cotc1 =2(p— M), we get that cg = min (§,2(n — M)), and consequently, ¢; = 2(n— M) —¢§

ifcop=&and ¢ =0if ¢ =2(p — M). O

We notice that, in a two-period setting, the optimal dividend strategy is deterministic,
i.e. it is optimal to pay dividends at the maximum rate in the first period and then adjust
the strategy to achieve the target distribution in the second period. Such behavior is justified

by the effect of discounting which has a larger impact in the time interval [T'/2,T.
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2.2.2 An n-period model

We now extend our analysis to an n-period framework; this means that now the dividend
strategy can be adjusted n times in the interval [0, T']. Recall that, according to Proposition
the sum of dividend rates is necessarily deterministic.

We start considering the case n = 3, to better explain the mechanism for the computation

of the optimal dividend strategy.

Example 2.1. Let n = 3 and let ¢ = (cp,c1,c2) be an admissible strateqy. The ezpected

discounted total dividends are given by

—rT/3

070(1 - e—rT/S) . efrT/3(1 _ e—rT/S)
T r

E|c1 + cse

We easily see that, that due to discounting (r > 0), the strateqy co to be applied in the first
period has a larger weight than the others, hence, as in the two period model, it would be
optimal to choos it the largest possible. Taking into account that xo + MT = xg + gl —
M and that ¢, € [0,€], for k =0,1,2, we have that

)

. {3@ — M), if3(n-M)<g,

£, if 3(n— M) > ¢

equivalently, co = min(3g — 3M,&). Now we move to the choice of c1,co. After choosing co,

we get that Elcr + 2] = ¢1 + c2 = max(0,3(i — M) — &), according to Proposition [2.1] If

co = 3 — 3M, since ¢1 and ca are non-negative, it holds that ¢y = co = 0. If instead, co = &,

using the same argument like for cy, we choose ¢1 and co so that c1 is the largest possible value

according to the constraints, i.e. ¢; = min(3(p— M) —¢,€), and co = max(3(p— M) —2¢,0).

Put in other words, if 26 < 3n — 3M < 3¢, then co = ¢ = € and co = 3 — 3M — 2£. If

€ < 3 —3M < 26, at time T/3 we determine both c¢1 and co, depending on the current
surplus so that

gl — (c1+¢c2)T/3 = MT +£T/3.

We stress that because c1 + co must be deterministic, we immediately get that cz is Fr/3
measurable. That means, once cy is found, then co is also determined, so that the constraint

on the distribution is satisfied. Moreover, the value 3(i— M) —& is the biggest possible choice
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for c1. The deterministic strategy ¢* = (co, c1,c2) where

¢ = min(€, 3(1 — M)),
¢; = max (min(&,3(z — M) — €),0), (2.5)
cs =max(3(p — M) — 2£,0),

fulfils all necessary conditions.
Next, we show that we cannot find a different, possibly stochastic, strategy with a higher
expected discounted dividends value, meaning that the optimal strategy is indeed deterministic.
Let ¢* = (¢, i, c5) be the strategy in and let ¢ = (Co, C1,C2) € A(z) be an arbitrary
admissible strategy, i.e. such that &, € [0,&] for m = 0,1,2, and X% ~ N (zo + MT,8°T).
Then, there ezist two random variables dy,dy such that Eldy + da] = ¢ — éo > 0, because

c; 15 the largest possible dividend rate, and ¢1 = ¢} + d1, ¢ = ¢ + da. It holds that

Ve(eo) = (1 — e~ F) + (1=~ F)e T Efer + cpe ™
=V (550) - (CS - 5(])(1 - 6_%) + (1 — e—%)e—%E[dl + dge_%}

=V () — (1 — e~ F) (E[d1 Y dy] — e FE[d) + dge—%]) ,

where in the last equality we have used the fact that (c§ — ¢) = E[d1 + da].
If Elds] < 0, then, E[cj] > E[éa] > 0, hence, necessarily c5 = 3(i — M) — 2 > 0 and

¢ =cy =¢&. Since ¢y + ¢ + ¢35 = ¢ + E[¢1] + E[éa], we get that ¢y + E[¢1] > ¢ + E[cf] = 2¢
leading to a contradiction. Then, it must hold that E[d2] > 0. Now we have two cases:

i. if Bldi] < —e "T/3R[dy), then it is immediate that E[dy + da] — ef%E[d1 —l—dzef%] >0
which leads to V€ < V¢ ;

ii. if E[di] > —e "T/3E[dy], we get that
rT rT rT
CS —¢o =E[dy +do] > E[d] +dae” 3] > e 3 E[d] +dae 3],
which implies that Ve <ye,

We conclude observing that if E[da] > 0 then the inequality is strict and the strategy (¢}, ¢}, ¢5),
is optimal. If E[ds] = 0 we get that either Eld;] > 0, in which case the inequality is strict

again, or E[dy] = 0, which corresponds to the case where ¢ = c.
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The above example provides the argument for computing the optimal dividend strategy

in an n-period framework.

Proposition 2.3. Let n be the number of sub-periods in the interval [0, T] and let

k:=min{m >0: n(p— M) < (m+1)&}.

Then, an optimal strategy c* = (c§,c},...,c;_1) is given by
cg=-=c 1=,
¢ = (- M) - st (2.6)
Cop1 = =Cp 1 =0

Proof. Firstly, we assume that x = n — 1; then, obviously, the optimal is to distribute
dividends at maximum speed £ in all periods, except the last one where an update is needed
for admissible reasons, i.e. the optimal strategy is (¢, ...,{,n(ip — M) — (n — 1)§).

Let now k < n — 1 and let ¢ = (¢, ..., ¢p—1) be an admissible strategy. Like in Example
there exist dy, ..., d,_1 such that &, = ¢, +d, form € {1,...,n—1} and 3" E[d,,] =

¢y — o > 0. Then we have that
V(o) =V (x0) — (c§ — o)L —e /M) + (L= e T/M) Y " e T/ E[dy,] .

We note that since ¢, = &, for all m < x — 1, and ¢}, = 0, for all m > k + 1, it must hold
dpm <0, for m <k —1and d,, >0, for m > x4+ 1.

Now we observe that, the function t — Y7 """ E[d,,] is decreasing, and hence
it attains its maximum at t = 0, i.e. Y7 Eldy] > S Y TS E[d,,] . Therefore, we

conclude that

n—1 n—1 n—1
cg—co=Y Eldn]>e > Eldn] >e 0 Y W Eldn) .
m=1 m=1 m=1

The strict inequality holds true if there is at least one m with E[d,,] # 0. If instead E[d,,] = 0,
for all m = 1,...,n — 1, then strategies ¢ and c* coincide, i.e. in particular d,,, = 0 almost

surely for all m = 0,...,n — 1. This leads to V¢ < V¢ if & # c*. O

Remark 2.1 (Continuous time). This procedure allows extending the setting to continuous

time.
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We denote by A () the set of admissible strategies, consisting of the F-adapted processes
c = {c,t € [0,T]} with 0 < ¢ < &, for every t € [0,T] and X§ from normally
distributed with mean xo + MT and variance 6*T. Letting n — oo in the n-period models,
the optimal strategies as given in converge to a deterministic strategy in continuous

time:

S

. [e st<T A
= {0 st > T AL
where t* = (i — M)T/E. We assume t* < T.

Let ¢ = {é,t € [0,T]} be an admissible strategy and define ds := ¢s — ci. Since we
would like to achieve the same final distribution with strategies ¢* and ¢, it must hold that
E[f, ds] = 0.

Moreover, it is clear that ds <0 for s <t*, ds > 0 for s > t*. As for the n-period models

we get

T T
Ve(x0) :Exo[ / e_rsésds} =V (o) +Ex0[ / e—”dsds]
0 0
=V (20) + ¢ " By [ / ' e_r(s_t*)dsds]
0
<V (20) + e " By [ / ! dsds} = V< (x0) .
0

A strict inequality holds true if E[ds] # 0, for all s € T, where T C [0,T] is a Lebesgue
measurable non-zero set.
Therefore, in continuous time it is optimal to pay on the mazimal rate as long as possible,

and to pay nothing afterwards.

Notice, that we have only considered the case of dividend rates. However, it is also possible
to allow for lump sum payments. Then, because r > 0, it is clear that one should pay the
amount (g — M)T directly at the beginning of the period, in both discrete and continuous
time settings.

Taking into account the upper bound £ on the admissible dividend rates guarantees to
avoid a lump sum payment at the initial time. Indeed, from the point of view of shareholders,
it could be more attractive to get dividends over the whole period [0, T]. We point out that

the value of ¢ is a management decision: in our framework it has to be small enough to
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distribute dividends over the whole period and, at the same time, large enough to achieve

the target distribution.

2.3 Dividends minimizing the ruin probability

It is evident that paying dividends increases the probability of ruin and in many settings
the optimal dividend strategy even leads to a certain ruin. Therefore, we now focus on the
objective to minimize the probability of ruin, rather than maximize the cumulative dividends.

We consider the same framework like in Section with a surplus, after dividends,
described by equation . We recall that the set of achievable target means is given by
p—& < M < [, thanks to Lemma [2.1] Moreover, by Proposition the set of admissible
strategies A(;,) is the set of all strategies ¢ = (co, . .., cs—1), where 221;11 ¢m is Fo-measurable,
and co + Y7 e = n(a — M).

The goal of the insurance company is to minimize the ruin probability, which is given by

mlnP[Ogl?éTXt < 0] (2.7)

over all admissible dividend strategies ¢ € A).

We start by addressing Problem (2.7)) in a two-period framework, like in Section [2.2]

2.3.1 A 2-period model

In the case n = 2, we denote by A(y) the set of admissible strategies, as in Section .
From Corollary we know that all admissible strategies are of the form ¢ = (co,¢1)
with ¢g,c1 € [0,€] deterministic and ¢y + ¢; = 2( — M). We target to minimize the ruin
probability in the time interval [0, 77, i.e.

=P | inf X°<0
p(c, xo) [Ogth P < } ,

over all ¢ € A(z). We observe that the probability of ruin is closely linked to the initial capital
xg. Thus, differently than in Section the dependence on the initial capital xg is crucial
in this setting.
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Proposition 2.4. Let c = (¢, c1) and € = (&, ¢1) be two admissible strategies, i.e. X¢, X ~

N(xog+ MT, 52T), We assume that co > ¢o. Then, ¢ is better than c, in the sense that

p(é, l’o) < p(C, xO)'

Proof. We first observe that at time 7', both strategies ¢ and ¢ lead to the same distribution
of the final surplus, i.e. X$, XS ~ N (2o + MT,*T). Then, we have

inf XC— {x0+ f—co)s + W, if s < 3
0<t<T o+ (B—co)T+aWs+ (n—c1)(s— %), ifse (LT,
xo+ (L — co)s + aWs, if s < %,
0<S<T {xo +is+co(s —T)+oWs—2(n— M)(s— %), ifse (T,
¢o — o) it s < %,
0<s<T{ (co—co)(s—T), ifse(L,T],
< 0<1?£TXt '
Therefore, for all xg > 0 we get that p(c,xg) > p(€, xo). O

We note that, in a two-period setting, a strategy with a smaller dividend rate at the
beginning leads to a smaller probability of ruin: this means that c¢g should be chosen as the
smallest possible value in order to minimize the ruin probability. Taking into account the

constraints related to a final gaussian distribution, we get the following result.

Corollary 2.4.1. In a two-period framework, the ruin minimizing dividend strategy is c* =

(¢§,cr) where

{ca = max(2(fi — M) — £,0) ,
¢; = min(€,2(i — M)) .

2.3.2 An n-period model

The extension to n-periods is obtained by replicating the reasoning of Proposition and

Corollary
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Proposition 2.5. Let k:= min{m > 0: n(z— M) < (m+1){}. Then, the ruin minimizing

dividend strategy ¢ = (co, ..., cn—1) fulfils

Cne1= .. =Cpg =&,
et = nlfi— M) — k¢ |
o= ... =Cp—k—2 = 0.

Remark 2.2 (Continuous time). Letting n — oo will produce the following optimal strategy:
we define t* as the time that realises (i — M)T = &t*. Then, the optimal dividend rate is

=0 forall0<t<t*andc, =¢& fort>t*.

To summarize, we point out that the strategy minimizing the ruin probability is deter-
ministic, like in the dividend maximization problem discussed in Section Moreover, by
Proposition [2.5] we obtain that the dividend strategy leading to the minimal ruin probability
starts with low payments in the very beginning and increases approaching the time horizon.
This way of distributing dividends is exactly the opposite way that leads to a maximization
of the expected discounted dividend payments. Indeed, the strategy minimizing the ruin
probability is also the strategy that minimizes the value of expected discounted dividends,

as it is reasonable.

2.4 Reinsurance with a target terminal distribution

In this section, we analyze the behavior of an insurance company who buys reinsurance for a
certain branch of their business or a pool of insured claims, changing the setting of Sections
and

We consider a probability space (€2, F, P) and a fixed time horizon T'. Let Z be a random
variable representing a claim size having positive finite first and second moments denoted
by E[Z] = p1 and E[Z?] = pug, respectively. We assume that the surplus of the insurance
company is described by a Brownian motion with drift, approximating a Cramer-Lundberg
model like, e.g., in Schmidli [88], p. 226]. Thus, for every ¢ € [0,T1], the surplus at time ¢ is
given by

Xy = x0 + AT put + /AW

where x is the initial capital whereas X, 7 > 0 represent the claims arrival intensity and the

insurance safety loading, respectively. Here, W = {W}, ¢ € [0,T]} is a Brownian motion. We
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also define by F = {F;, ¢ € [0, 7]} the natural filtration of the Brownian motion W, under
the usual hypotheses. In order to reduce future risks, the insurance company is allowed
to buy proportional reinsurance with retention level A € [0,1]. This means that part of
the losses will be covered by a reinsurance company and only the reminder is paid by the
insurance company, specifically A is the percentage of claims which are not covered by the
reinsurance. We note that the retention level is exactly equal to one minus the protection
level, i.e. A = 1—0, where O represents the protection level. We agsume that the reinsurance
premium is calculated via the expected value principle, that is the reinsurance premium rate
b is given by
b(A) = (1+6%) (A — E[s(Z, A)).

where dr > 0 denotes the reinsurance safety loading and s(Z, A) = (1 — A)Z is the so-called
self-insurance function which is proportional to the claim size in our setting. Moreover, we
use the same calculation principle for computing the price of the insurance policy: thus, the

insurance premium rate a given by
a=(1+6)\u.

Then, the premium rate that remains to the insurer (i.e. the difference between the insurance

premium and the reinsurance premium) is
C(A) = )\(1 + 5R)E[8(Z7 A)] - )‘Nl (5R - 51)7

with ¢(0) < 0; see, e.g. [88, Ch. 2.2| for more details.

Under a reinsurance strategy A = {Ay, t € [0,T]}, the surplus is given by
XA =20+ Mu /Ot(aRAS — (6% — 61))ds + \/E/Ot AydWy |
for every t € [0, T]. Next, for all ¢ € [0,T], we denote by
thA = XtA — o,

the net value of collective at time ¢, i.e. the part of the surplus that only accounts for insurance
premia, reinsurance premia and claims.
The objective of the insurance company is collect enough premia to buy reinsurance and

to pay the occurring claims. To achieve such level of sustainability the target of the insurance
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is to choose a reinsurance strategy such that at time T the distribution of the net collective
is normal with mean MT and variance 62T, for some M,§ > 0. To gain some intuition on
the choice of mean and variance parameters, we may interpret M as a (small) positive target
gain while § is fixed to fulfil P[-X2 > (] < 1 — & for some given ¢ > 0 and & € (0,1). The
latter is a condition on the VaR at the confidence level & (for instance & = 99.5%, according
to Solvency II requirements). E] This can be interpreted as the required capital ensuring
the system’s solvency. Aiming at XTA ~ N(MT,6%T) as a target distribution is justified,
for instance, by the existence of the closed form formulas for the VaR or ES for Gaussian
random variables, which can be easily calculated. Indeed, denoting by L the terminal loss

at time 7', we immediately get that
VaRs(Ly) = —MT + 6VTd ()

and

ESs(Ly) = —MT + 5@@7

—
for & € (0,1), where ¢ and ® indicate the density and the cumulative distribution function
of the standard normal, respectively.

Our next step is to define the set of possible controls leading to the target distribution.
We let A denote the set of strategies A = {Ay, t € [0,T]} with A, € [0,1], for all ¢ € [0,T7,
that are F-adapted and such that X? ~ N (MT,5T).

In particular, we notice that deterministic controls make the terminal distribution of the

net collective Gaussian, as we see in the following Example.

Example 2.2 (Deterministic controls). In this ezample we deal with a deterministc retention
level and we use the notation A(t) in place of Ay just to emphasize theis deterministic nature
of the strategy. Let A = {A(t), t € [0,T]} be a continuous deterministic reinsurance strategy,
with A(t) € [0,1], for all t € [0,T]. Then A is an admissible control if the following two

conditions hold:
M [ (ORA(s) — (687 — 6T))ds = MT,
A2 fOT A(s)?ds = 6°T .

2VaR is "the maximum loss that is not exceeded with a given high probability": it is simply a quantile
that estimates how much a company might lose with a given probability level. In particular, ¢ represents the
loss that the insurer can bear with at most probability 1 — a&.
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To make an example, A(t) = ﬁ is an admissible control for constants A,C which

satisfy

/T A A <A+CT)_MT+AM1(5R—5I)T
0

A qs=21
Atrcs oo\ A 2o, ’

/T A? ds:é<1— A ):62T
0 (A+Cs)? C A+CT Ao

We wish to investigate the question which admissible reinsurance strategy minimizes ruin
probability, if the ruin-checks are due at discrete deterministic points in time. In the sequel
we restrict to the case where reinsurance strategies can be updated only at deterministic time
points, which represent some apriori fixed checking dates, for instance all the four months
or all the six months. In particular, we focus on the two period model, i.e. n = 2, due
to a technical reason. Indeed, reinsurance controls affect both the drift and the volatility.
Therefore, in this case, a pathwise comparison is not possible anymore, and the problem
must be addressed with different techniques. In the case n = 2, we are still able to obtain
an explicit solution with probabilistic methods. However, the problem becomes immediately
more complicated when we increase the number of periods (see Section , even if we

restrict to deterministic strategies.

2.4.1 Admissible strategies in a 2-period model

We denote the set of admissible strategies by Ay, specifying, like before, the number of
strategy updates up to time 7. An admissible strategy is a pair A = (Ag, A1), where Ag
is Fo-measurable and A is Fr/p-measurable. In this setting the retention level is updated

only once, at time 7'/2. Hence, at time T the net surplus satisfies

_ A 08T
XA = “1T(A0 + A1) = A (08 — 6T + /A DoWa g + v/ Az (W — W)

_ T T
= X?;é + Alg)\/ildR — )\/Ll((SR — 51)5 + +\/ )\/LQAl(WT — WT/Q) ,
where X?/Oz = /\,u1(5RA0 —oR + 51)% + VA2 Ao Wrya.

A precise characterization of admissible strategies is contained in the lemma below where

we show that they are deterministic.

Lemma 2.2. The set A consists of all strategies A = (Ao, A1) where Ag, Ay are both
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Fo-measurable, taking values in [0,1], and satisfying the following two conditions:

M + Ay (5% — 1)

A :2 _Aa
1 AO ' 2.8
. (2.8)
A2 =" _A2.
1 Mo 0

Proof. Recall that for any normally distributed random variable Y with mean MT and
variance 027, the moment generating function is given by E [ecy] = eCMTJr%CQ‘sQT, for all
¢ € R. Let WT/2 = W — Wr/o; then Wr /o and WT/Q are independent. Since A is chosen so
that XA ~ N (MT,8%T), it holds that

E[egxqé} _ €CMT+%CQ(52T7

for all { € R. Now, we let Q be a probability measure equivalent to P, with the Radon-

Nikodym derivative
dQ

—~ 2
VA2 AWy jo— S A2 AL
dP '

=e
Fr

Using the independence of WT/2 and Wr /o and the change of measure we get that

_ [ oA =
CMT+3C22T _ E[eCXﬂ —F ecXT/OQ+T')\N1(5RA15R+5I)€+<VA#2A1WT/2:|

2 2 ~
— (O (DodR—6R16T)T /24 212200 B [eo\m(6RA1—6R+5I)%+C\/7)\MQA1WT/2}

CQMQAgT

— 6()#1(A05R75R+51)T/2+ 1 EQ

2
|:€C)\p1(5RA1deltaR+51)€+%Au2Af§:|

— Ra T
eT’)\/H(SRAO%*T)\Ml(5R*51)TEQ |:6T\/)\M2AOW:£+T\/>\M2AIW72‘+7‘/\M15 Aq 2:|
A2
_ er)\y16RA0%+T2)\u270%7TAM1(6R761)TEQ [er/\uléRAngr%r?)\ugA%%} ’

for all ¢ € R. This can be simplified to

2 C2ApgART
EQ[60\#1(6RA175R+51)§+%/\;L2A§%] — CMT (A1 (Ag8R —55487) T 45 (2627 —=—3=0=

Deriving the above expression with respect to ¢ and letting ( = 0, we observe that all
moments of Aj correspond to the moments of a normal distribution, meaning that the
moment generating function of A; (written as a power series whose coefficients are the

moments) corresponds to that of a normal distribution. Therefore, we conclude

M + Ay (67 — o7) 262 B A2>
0 .

A~ 2 — Ny, —
N ( Au16% % Mo
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However, this is impossible because A; can attain values only in [0,1] P-a.s. (hence also

Q-a.s.). As a result, A; must be constant. O

It is evident that not all arbitrary values of M and § are reachable, since Ag, Ay can take

values only in the interval [0, 1]. In the next lemma we specify the ranges of M and §.

Lemma 2.3. If there exist Ao, A1 € [0,1] such that condition (2.8) holds, then the target

mean M and the variance 6 > 0 satisfy:

0<M <A \ud,
R sI\\ 2 2 R s\ 2
M+ A (6 0") M < 1) < mind2 M+ A (6 ) 1t 29
A6 A1t = Apg Aot

Proof. From conditions (2.8) and the fact that Ay, A; take values in [0, 1], we get that
0 < M < Mud6! and that % < 1. Using again the conditions in (2.8)) and substituting the

value of A; into the second equation, we get that Ag must solve

0.

2A% — 44

M+ Nu(8% —o") (M 4 A (8" 8 220
A6 A6 A

Imposing the existence of a real solution leads to

0 (M4 A (6" 8T) 2
Ape — A oF '

Then, using the fact that Ag must take non-negative values, leads to the bound:

52 . M+ A\ (6% — 61)\?
iz _mm{Z( Ay oF ) 1

O]

Notice that the condition 87 < §f excludes arbitrage opportnities. As a consequence, in
order to ensure the existence of a solution at least for the case ¢/ = 6%, we must have that

2 2 . .
)\572 > (Au%) , which is guaranteed by ([2.9).

Lemma 2.3 prompts a clear trade-off between increasing profits and reducing risks. This
is due to the fact that a reinsurance strategy controls both the mean and the volatility. We
observe that increasing the retention level makes the mean larger and the same happens for

the volatility. This means that in our reinsurance framework, the mean and the volatility of

the surplus process move into the same direction, leading to interesting consequences for the
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ruin probability. Indeed, a greater retention level would make the drift of the net collective
larger, meaning that it potentially can provide a good return pushing the surplus away from
zero; however, at the same time, it increases the riskiness by making the volatility larger.
For example, considering the parameters p; = 0.22; up = 0.05;67 = 0.3;6% = 0.35;\ = 2,
M =0.08 < 0.132, we get that the admissible values of § vary in the range [0.2094,0.2962].
This means that, if an insurance company aims at getting an expected gain of 8% at the end
of the observation period, it has to account for a relatively large risk of at least 21%.

We can write the range for  as

2 2
M — Ay 6! 52 , M — Ay 6!
1+ —F— ] <—X<K 2(1+ ———— 1z.
( " App 6% =g o " App0F ’
From this expression it is more clear that if the target return is close to Ap16’, the variance

62 is approximately Apo, which corresponds to the case where no reinsurance is bought.

2.4.2 Ruin probabilities in a 2-period model

For the case n = 2, there are only two admissible retention levels, i.e. the pairs of strategies
satistying Conditions are of the type (Ag, A1) and (Aq, Ap).

We assume that g and T are the regulatory inspection dates and we investigate the
survival probabilities at these dates. Specifically, we choose a reinsurance strategy in such a
way the probability of having a positive surplus at both dates is maximized.

We now give a definition of ruin within this reinsurance setting. We say that the ruin
occurs if the insurance company showcases a negative surplus at any of the time points T/2

or T'. Then, an equivalent formulation of the problem is:
Find a reinsurance strategy that minimizes the ruin probability.

In mathematical terms, the problem is formulated as follows. Let A = (Ap, Ay) and
A = (A1, Ag) be the two admissible strategies. Without loss of generality, we assume that

Ag < Aj. For each strategy we define the corresponding survival probabilities:

p(A) =P [X;%/Q >0, XA > 0} :

p(A) =P [XTA/Q >0, XA > 0} .
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Our aim is to decide which of these two probabilities, p(A) or p(A), is the largest. This
means to decide which of the two admissible strategies is better according to this criterion.

We provide a numerical example where we get that it is convenient to reinsure less in the
first period. In table we illustrate survival probability for different values of §7 < 6% so
that M and 6 are achievable for T =1, A = 2, 1 = 0.22, 1o = 0.05,6% = 0.35, M = 0.05,6 =

0.2. The last two columns suggest that p(A) > p(A). Our empirical intuition is formally
proved by next Proposition [2.6]

5 Ay Ay P(Ao, A1) | P(A1,Ap)
0.25 0.4448 0.7760 0.4088 0.5117
0.26 0.3339 0.8298 0.3772 0.5372
0.27 0.2468 0.8597 0.3485 0.5561
0.28 0.1715 0.8778 0.3154 0.5720
0.29 0.1038 0.8884 0.2637 0.5857
0.3 0.0416 0.8935 0.1254 0.5967

Table 2.1: Admissible strategies and survival probabilities for different values of §7 < §%.

Proposition 2.6. Let Ay < Aj. Then the strategy (A1,Ao) is better than the strategy

(Ag, A1), i.e. p(A) > p(A).

Proof. We first will derive an alternative representation for p(A) and p(A). Let W =

{W;, t >0} and W = {W;, t >0} be two independent Brownian motions and denote

Xiyg = M (871 = 8) = ") T/2 + V/ Mz AW
Xpg = A (6%(1 = A) = 6") T/2 + /Ao AW .

Then, the survival probabilities can be rewritten as

p(A) =P [X7Y, > 0, X7, + X7, > 0] 10
p(A) =P [X5), > 0, X2, + X2, > 0] | '

having set WT /2 = Wr — Wr/3. The advantage of this representation stands in the fact that

for every A € [0,1], XTA/Q and X%Q are independent. We observe that there exist standard
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Brownian motions W and W such that
VA Do Wi 4 /Mg A Wi = /Ao (A2 + AW
VA AW, + /A Do Wy = /Ao (A2 + AW}
for all t € [0,T]. We now let
VY = A" (Ao + Ar)t — 20 (67 — 67)t + \/ Ao (A3 + AW,

Vi = A0 (Ao + Ar) — 221 (6% — 6T)t + ([ Ao (A + AW,

for all ¢ € [0,T]. Due to equations in ([2.11)) we get that for all ¢t € [0,T], Y? = V! =
2Mt + v/262Wy; hence they are identically distributed.

(2.11)

Next, we write X%OQ and X?/lz in terms of YYQ/Q and YT1/2. Since X’?/Oz and X’?/lz are

normally distributed, we have that

TR _ 0 g0 - Cov()??/oz,YTo/Q) B Var[)??/%] B Apia A2
T L Var(Yp,) — Var[Yp,] — 20*
% A
A oyl g B COU(X?/B,Y%/Q) B Var[XT/12] C AmpA? ,
T2 = 1T/ T Var[Y:}/Q] B Var[Y,_,l/z] 252 P

where YTO /2 and Z°, qu /2 and Z! are independent, since they are all normally distributed
and COU(Y:(F)/Q, 70) = Cov(YTl/Q, Z') = 0. Expectations and variances of Z° and Z! are given

by

E[2°] = B[X7Y, — V2] = Au(67 g — 67 + 6T)T/2 — 20MT /2,
E[Z'] = E[Xp), — 1Y)l = Mu(6R A1 — 6%+ 61)T/2 — 29MT/2 = —E[2°],

(2.12)
Var[Z°] = A\ A3T /2 — 2p%52T /2 = 26%pyT/2 ,

Var|ZY] = M A2T /2 — 2726%T/2 = 26%ypT/2 .

Using Fubini’s theorem and the fact that E[Z1] = —E[Z°], we get

A ] A
p(A) =P [Y;?/Q > 0, Yp,, >0 =P [p > —Yp, Yo, > 0}

]E[ZO]
_/Oo 1- & VT Fro (y)d
= ; 621T ng/Qy Y,
P

~ Z1 ] Zl
p(A) =P [Y%/Q + Pk 0, Y7/, >0 =P [7 > =Yg, Yo > 0}

. 2l
=/0 1o | ) ) e )y,

\JO2LT T/2
il
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where ® is the standard normal distribution, fy%)/Q(y) = fYT1/2(y) are the densities of the
random variables YC,Q /2 and Y7} /2, respectively.

Since ® is increasing, we consider the crucial quantities

E[z°] E[z°]
— vt
20 = ——=—= and 2zj:=
522 T 52T
p 2 ]

We have the following two cases:

a. Firstly, we assume that E[Z%) < 0, with E[Z°] from (2.12)). Since 1-2p = % ()\5—:2 — A%) =
2 A2
%% > 0, it holds that zg > z; for all y > 0. Then, we can immediately conclude,
that p(A) < p(A) and hence the strategy A = (A1, Ag) is better than the strategy

A = (Ag, Ay).

b. Next, we assume that E[Z°] > 0, with E[Z°] from (2.12). Note that since Ay < Ay
and Ag, Ay € [0, 1], then either Ag = A; = 1, in which case there is nothing to prove
since A and A are equal, or it cannot hold that Ay = 1. The latter implies that there
always exists an y* € (0,400) such that for y < y*, it holds that zp < 21, and the
opposite holds true for y > y*; see, e.g. the right panel in Figure [2.1]

Now, we consider the functions 6/ — Ag(6') and 6 — A(67), for 67 € [0,6%]. We

know that

M — My (8% = 67) 12 I\2 62
d Ag(d A(67) =2—

Ao(01) + A1 (61) =2

meaning that Aj(67) + A(6) = F& > 0 and AG(87)Ag(67) + AL (61)A(67) = 0.
Consequently, since Ag < Ay, we get that Aj(67) > 0 and Aj(67) < 0. This means

that Ag is decreasing with respect to 6/ and A is increasing. Taking 6/ = §f, we note

that, for any a € [0, 1], it holds that

_ A —
XP = AN ud® + /Wi = EXEI ;
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for every t € [0,T]. Using this fact, equations (2.10) and Ag < Ay, we get

_ _ . ~ An
p(A):P[XAO >07XA0 +XA1:| :].:)[_.X—Al >0770XA0

oA
T/2 /2 T A7)0 T/2 AT/ + X70)

T/2

_ A2 _ .
A 0 vA A
— P[XT/12 >0, A—%XT;Q + XT/O2}

oA AL A
<P [XT/12 >0, Xp ) + XT/OQ]

=p(A),

which proves the statement in case 6/ = §%. Now, we let A(67) and A(67) be, respec-
tively, the strategies (Ag, A1) and (Ay, Ag) corresponding to 6 € (0,6%). We assume
that there is a 6! € (0,6%) such that p(A(67)) > p(A(d')). Then, by the intermediate
value theorem, there exists a 8'" € (67,6%) such that p(A(67")) = p(A(6'7)). We
suppose that A(67") # A(6'"). Let X be a random variable, independent of Z' and
70 with X ~ N (MT, 5°T).

0=p(A@")) —p(AG"))

=P X+2'>0X>0-P['X+2°>0,X >0

Z1 - A
=P [max <—,0> < X < max <—I,O>} >0.
¥ 0

The last inequality follows from the fact that X, Z! and Z° are normally distributed.
Hence, this contradiction yields that A(677) = A(6'"). However, since it holds that
A} > 0and A} < 0, for Ag < Ay, that means Ag(87) > Ag(677) and A (67) < A1(677),
contradicting A(6'") = A(677).

As a consequence, we can conclude that A = (Ag, Ay) is always better than A = (Aq, Ag).
O

In the following, we discuss the situations where E[Z°] < 0 (case a of the proof above),

deriving sufficient conditions for this expected value to be negative.

Lemma 2.4. If

&' M 6% _2M
He < 5 and e > —,
12 0 12 62

then E[Z°] < 0, with E[Z°] given in (2.12).

(2.13)
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. . . . o )\MQA(Q)
Proof. By expression in (2.12)), if we substitute p = 5%, we observe that E[Z] < 0 reduces

to

A2 AF
T

MT + Mg (6% A — 68 4+ 61T <0, (2.14)

for all Ag € [0, 1]. To show that (2.14) holds for all Ag € [0, 1], we consider the function

FA) = 2B, SEA — 5B 4 61
(&) = =220 + )

This function is concave and has a maximum at A* = ’gfjg; > 0. We note that F(0) <0
and that F(1) = —42 M + 1,67, which is negative if the first of condition in (2.13) holds true.
Moreover, under the second condition in (2.13]), we also get that A* > 1, which guarantees

that E[Z] < 0. 0

Let us briefly comment on the conditions ([2.13]) from an economic point of view. Rewriting

them as p167 < ]‘g’f and g 6% > 2]\(;[2“2, we immediately get that the reinsurance is costly

and the income from the insurance premia is low. Therefore, by Proposition [2.6] we could
say that if reinsurance is expensive and the insurance is cheap, it is optimal, in terms of
survival probability, to reinsure more claims in the second part of the trading interval. In
other words, under conditions , choosing a bigger retention level in the first period has
the advantage that a larger drift can drive the surplus away from zero and hence it minimizes
the ruin at times 7'/2 and T.

To better understand the different cases (i.e. E[Zy] < 0 and E[Zy] > 0), we let

E[Z°

fYO (y)a
21-p T/2
\/6 - T

—yt E[2°
- fY1 (y>7

\J 02T e

[

Go(y)=|1-9¢

—

Gily)=|1-¢

for all y > 0, so that

p(A) = /0 T Golydy,  p(A) = /O " Gu(y)dy.

Figure represents the densities of the survival probability (i.e. Go(y) and Gi(y))
relative to the strategy A = (Ag, A1) (blue line) and the strategy A(Aq, Ag) (red line),

under given parameters.
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Figure 2.1: Survival density under the case E[Z°] < 0 (left panel), and under E[Z°] > 0
(right panel).

The left panel corresponds to the case where conditions hold, i.e., insurance is cheap
and reinsurance is expensive. Here, the survival probability of the strategy A dominates that
of the strategy A, for all values of y. Instead, in the right panel, there exist a level y* > 0
(small) at which these two densities curves switch. However the area under the curve Gy in

the set {y > y*} largely compensates that in the set {y < y*}. We point out that such point

2E[Z°]

T—2p - We notice that

y* only exists in case E[Z°] > 0; in particular it corresponds to y* =
such compensation of areas always applies, thanks to natural bounds on the value of 67, such
as 0 < 61 < R, Hence, also when insurance premium is large and reinsurance is not too

expensive, p(A) > p(A) holds true, see Proposition .

2.4.3 The penalization problem

Now, we face the following situation: the insurance company may decide to update or not the
reinsurance contract at time 7'/2. If the contract is updated, the company will pay a penalty
amounting to PT at time T'/2, with P > 0. In case of no changes, no penalty will be applied.
The strategies corresponding to these two different scenarios are chosen to achieve a Gaussian
distribution at time T with the same target variance 62T If the insurance company does not
modify the retention level at time 7'/2, then the mean of the terminal net collective is M'T,
uniquely determined by the condition on the target variance, with M’ > 0. Otherwise (that
is the case when the reinsurance strategy is modified in the middle of the trading period at

T/2), the final expected wealth will be M such that 0 < M < M.
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Next, we show that considering such kind of penalization, it is more preferable to change
the strategy at time 7'/2, even with a smaller expected mean, when the objective is to
minimize ruin probability.

We assume that M = M’ — P. Let A = (A, A) be the strategy where the insurer decides
to make no changes at time 7/2 and let A = (Ag, A1) and A = (A1, Ag) be the admissible
strategy where the insurer switches, with Ag < A;. We know, by Proposition [2.6] that

strategy A is better than A. The survival probability of strategy A is given by
p(A)=P|X5, >0, X£>0].
We let Y = )_(74. Then we get that Y ~ N(M'T, §2T) and we observe that

A

XT/2: Y+Z,

DN | =

where

Z~N (Am(aRA —oft 4 5’)% - M’%, ia%) .

Since random variables Y and Z are independent, we get

R . o o —y — 2E[Z]
pA:[22>—Y,Y>0}:/ 1—o | 22200 ) £ (y)dy.
Next, for the strategy A the survival probability is given by:
E[Z!]

&)= [ [1-0 AR B P
p = - o\Yy)ay,
PT 5227 Y

where Z1 ~ N (A1 (68A1 — 68 4 61)T/2 — 2y(M' — P)T/2,~(1 — ~)6?T), like in the proof
of Proposition If no penalization is involved (i.e. P = 0), there is a unique strategy, A,
that leads to the desired distribution for the net collective. Otherwise, considering a penalty
for updating a reinsurance strategy (i.e. P > 0), the strategy A has a survival probability
that is always smaller than the survival probability of the optimal strategy A and larger

than that of A, i.e. p(A) < p(A) < p(A), as shown in Figure

2.4.4 A 3-period model

As mentioned above, increasing the number of periods adds to the complexity of the problem.

Here, the form of the survival probability does not allow deriving conditions that guarantee a
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Figure 2.2: Survival probabilities under penalization. Red line corresponds to the survival
probability of the strategy A, blue line to that of A and the dashed line to that of the
constant strategy A.

clear dominance of one strategy over the others. In addition, the computational time increases
with the number of periods. To better explain the difficulties that arise when n > 2, we
briefly consider the case n = 3 and provide some intuition on how to deal with more than
two updates.

Now, the admissible strategies are not necessarily deterministic and the optimal strategy
may even not exist. However we still restrict to deterministic strategies A = (Ag, A1, Ag).
Then, in this example, it holds that

M + Apuq (6% — oT)
)\,ul(SR ’

Ag+A1+Ay=3

AF+AT+AF=—o)
0 1 iz

Ao, A1, Ag € 0,1],

which means that there are infinitely many combinations of (Ag, A1, Ag) that lead to the
target distribution. In particular, admissible triplets build (a part of) a circle as shown in
Figure 2.3] In order to choose the ruin-minimizing strategy, we look at survival probability

p(A) =P [ X2 >0, X530 >0, XA >0
3

3
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Figure 2.3: Admissible deterministic strategies for n = 3 and parameters T = 1;u; =
0.15; e = 0.06; A = 1; 6% = 0.35; 67 = 0.2; M = 0.02;6 = 0.2;.

We define auxiliary random variables ¢°, ¢! such that
0 R R si\L 2
¢ ~N <)\/,L1(6 Ag— 06" +6 )§ — MpoT, po(1 — pp)d T> ,
T
paC’ + ¢~ N (—M15RA23 + A (6% = 00T + (1 = p1)MT, pi(1 - p1)52T) ,

which are correlated. Then, we have that

0 0 1
p(A) =P [C > X2, P TC —XA XA > 0]
Po 1
00 0 0 1
+
=/Iﬂ<>%mcc>4h@®,
0 £o P1

where Y ~ N (MT,§?T) and fy (y) is the corresponding density.

We perform a numerical experiment in order to investigate the survival probability after
choosing the retention level Ag for the first part of the time interval. In Figure [2.4] we plot
the survival probability with respect to the first component Ay of the reinsurance strategy. It
is clear that, once Ag is chosen, there are only two possible choices for Ay and As. Suppose
that, for instance Ay > Asy. Thus, for a fixed Ag, the possible strategies are (Ag, A1, Ag)
and (Ap, A1, Ag). Figure shows that the survival probability is maximized by taking

the largest available value of Ag in the beginning and then choosing a retention level in the
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Figure 2.4: Survival probabilities as functions of the first component Ag of the reinsurance
strategy (Ao, A1, Ag).

second period which is greater than that one in the last time interval. Hence, the combination
that leads to the higher value of survival probability is the sorted one, i.e. (Ag, Ay, Ag) with
Ag > A1 > Ag. This means that the insurance company increases the reinsurance coverage
over time, especially shortly before the last checking date, hence acting in a risk averse way.

We conclude the section by showing that the sorted sequence of retention levels A =

(Ag, A1, A) leads to a bigger survival probability than the "unsorted" sequence A =
(A, Ao, Ay), ie. p(A) > p(A) In other words, any unsorted triplet will be overperformed
by a sorted one, in terms of survival probability and thus also in terms of ruin probability.
To prove this fact mathematically, we denote by p™(-) the survival probability of a strategy,

where zq is the initial capital. Then,

. o lea (D0, A) = (Ao, A1,A0) _ X0
p(A)=P [XT/% >0, Xy 57 >0, X7 > 0} =E {][Xﬁ/oyo p T3 (A1, A))

XAO x ~
>E |[Tgag o P 73 ((A2,A1)) | =p™(A),

T/3

where the inequality follows from the case n = 2.



Chapter 3

Indifference pricing of pure endowments in a regime-
switching market model

In this chapter we still consider an insurance company whose purpose is to maximize its
profit but now our attention is focused on the problem of evaluating life insurance policies.
Specifically, we study indifference pricing of mortality contingent claims in a stochastic-
factor model for an insurance company endowed with exponential utility preferences. We
propose a modeling framework where the hazard rate is described by an observable general
diffusion process and the risky asset price evolves as a jump diffusion process affected by
a continuous time finite state Markov chain representing regimes of the economy. Using
the actuarial principle of equivalent utility, we characterize the indifference price for a pure
endowment contract and provide its probabilistic representation. The indifference price has
been determined by solving an equation involving two value functions, resulting from the
stochastic control problems with and without insurance liabilities. As a consequence, we
show that the price that makes the insurance company indifferent, in terms of expected
utility, between not selling and selling the policy for that premium now and paying the
benefits at maturity, is linked to a classical solution of a specific linear PDE with a proper
terminal condition; it means that the indifference price solves a suitable final value problem.

The chapter is organized as follows. We introduce the indifference pricing approach in in-
surance in Section by referring to the existing literature. Then, in Section [3.2] we describe
the Markov-modulated financial-insurance market model. The pricing problem formulation
via utility indifference pricing can be found in Section In Section we apply the clas-
sical approach based on the HJB equation to the resulting stochastic control problems and

provide the Verification Theorems and describe the optimal investment strategies. The char-
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acterization of the indifference price of the pure endowment policy and a brief discussion on
the indifference price for a portfolio of pure endowments and also for a term life insurance
policy is given in Section Last but not least, in Section by performing some numer-
ical experiments in case of a two-state Markov chain, we detect some interesting features of

the indifference price, the optimal investment strategies and the value functions.

3.1 Indifference pricing in insurance

The evaluation of dynamic risks has been a fundamental issue in financial markets. One
successful pricing technique consists of constructing a portfolio that accurately replicates the
payoff of the product, whether it is a financial derivative, an insurance policy and so on.
This traditional risk-neutral evaluation eliminates completely the risk but fails whenever the
market is incomplete, namely whenever the market involves stochastic volatilities or random
jumps as in our case. In case of incomplete market, various alternative pricing mechanisms
have been developed, such as the superreplication (see e.g. Leland [70], Schweizer [90]), the
local variance minimization via the instantaneous Sharpe ratio (see e.g. Bayraktar et al.
[L1], Delong [44]), the local risk-minimization in a partial information framework (see e.g.
Ceci et al. [24] 25 26]) and so called wtility indifference pricing method. The latter relies
heavily on risk preferences that are described by utility functions. Indeed, the indifference
seller’s price is defined at the level where the issuer of the contract is indifferent (in terms of
expected utility) between entering the market on its own, or selling the claim and entering
the market with the collected premium. In other words, the compensation at which the issuer
is indifferent between the two alternative opportunities yields her/his indifference price which
therefore can be determined by solving an equation involving two value functions, resulting
from the stochastic control problems with and without incorporating the claim. Thus, this
approach seems the most natural one, since it focuses more on the company preferences
than on the market equilibrium. In the literature, the utility indifference pricing method
was initially proposed by Hodges and Neuberger [64] for the valuation of European calls in
the presence of transaction costs. After being refined and extended by Davis et al. [4]], the
methodology has gained much attention in the literature on pricing and hedging contingent

claims, see e.g. Henderson and Hobson [59] for a survey. The indifference pricing approach
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has become a popular method for evaluating financial derivatives in incomplete markets and
has been successfully applied to price insurance contracts in e.g. Young and Zariphopoulou
[102], Moore and Young [80], Ludkovski and Young [76], Delong [43], Eichler et al. [48], Liang
and Lu [71], Ceci et al. [27]. Precisely, [102] obtain explicit results for an exponential utility
function by solving the HJB equation in a market driven by a geometric Brownian motion
when the insurance risk is independent of the financial risk. This independence vashishes in
Moore and Young [80] where a more general framework is studied considering a equity-linked
pure endowment, namely an insurance policy whose payment amount is a function of the
underlying risky asset. Ludkovski and Young [76] investigate pricing of pure endowments
and life annuities in a fully stochastic model since they assume both stochastic interest
rates and stochastic hazard rates governing the population mortality. Always considering a
stochastic mortality rate, Delong [43] address the pricing and hedging problem for a group of
life insurance liabilities in the presence of systematic mortality risks in a market model driven
by a Levy process. In Eichler et al. [48], the authors analyze the valuation of catastrophe
derivatives, while in Liang and Lu [71] they investigate the pricing problem for life insurance
policies with equity-indexed life contingent payments, in a financial market charcaterized
by shot-noise effects in the stock prices. Finally, results on the valuation of pure endowment
policies under partial information via backward stochastic differential equations can be found
in Ceci et al. [27]. It is worth noting that the indifference pricing approch is widely used also
in non-life insurance, for instance to evaluate insurance-linked securities, see e.g. Liu et al.
[72].

Here, according to [37], we investigate the indifference pricing problem of pure endowment
contracts for an insurance company in a financial market where the risky asset price dynam-
ics exhibits jumps and is affected by regime changes, when the hazard rate governing the
population mortality is stochastic. A pure endowment is a life insurance policy which pays a
fixed amount to the policyholder at maturity if and only if she/he survives the term. To the
best of our knowledge, indifference pricing of life-insurance liabilities in a Markov-modulated
framework accounting for a market behavior affected by long-term macroeconomic conditions
and possible jumps in the risky asset price dynamics and stochastic hazard rate, is taken up

for the first time.
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3.2 Setting

We consider a complete probability space (2, F,P) endowed with a filtration G = {G,;, t €
[0, 71}, satisfying the usual conditions of completeness and right continuity, where T > 0 is

a fixed, finite time horizon. Specifically, the filtration G is given by
G=FVF,

where the filtration F = {F;, ¢ € [0, 7]} models the information flow in the financial market
and F! = {F/, t € [0,T]} contains information about the lifetime of the individual insured.
We assume that the subfiltrations F and F! are independent.

To describe some possible structural changes in economic conditions, we introduce an
irreducible and continuous time Markov chain Y = {Y;, ¢t € [0, 7]} with finite state space

£ =1{1,2,...,K}, whose transition probabilities satisfy
P(Yiise = j|Y: = i) = qijot + o(0t), i # j; P(Yiyse = i|Ye = i) = 1 + qu:6t + 0(61),

when dt — 0, where for each ¢ € £ we have

K

gij >0 foreachi#j and ¢ = —Z%‘j-
j=1

Here, Y; represents the regime of the economy at time ¢, and K the number of regimes. Let
Q = (Qij)ij=1,..,k denote the generating Q-matrix of the Markov chain Y. It is convenient
to represent Y as a stochastic integral with respect to a Poisson random measure. Following
the description of Basak et al. [I0], for i, j € £, with i # j, we denote by A;; the consecutive
(with respect to the lexicographic ordering on &£ x &) left-closed right-open intervals of the
real line, each having length ¢;; and define a function h : £ x R — RE by embedding
{1,2,...,K} into R (identifying i with e; € RX), as follows
h(i, ) = { j—i, ifze Ay

0, otherwise.

Then, we get
t
Y=Y, +/ / h(Y,—,z)P(dv,dz), te[0,T], (3.1)
o JRr



117

where the integration is over the interval (0,¢] and P(dt¢,dz,) is a Poisson random measure
with intensity m(dz)dt, with m(dz) being the Lebesgue measure on R. Let P(dt,dz) be the
compensated Poisson random measure, i.e. P(dt,dz) = P(dt,dz) — m(dz)dt.

In this setting, we consider a financial market consisting of a locally risk-free money
market account and one stock as a risky asset. The price process S° = {S?, t € [0,T]} of

the locally risk-free asset is described by
ds? =rSPdt, S0 =1,

where r is a positive constant denoting the risk-less interest rate. The risky asset price
process S = {S;, t € [0, T]} evolves over time according to the following Markov-modulated

dynamics

dS = S {u(t, Y2)dt + o (t, Y2)dW; + K1 (t,Y;—)AN} — K (t,Y;—)dNE}, So=s>0.

(3.2)
Here, W° = {W;, t € [0,T]} is a standard Brownian motion independent of ¥ and N! =
{N}, t €[0,7]} and N2 = {N?, t € [0,T]} are independent Poisson processes defined on
(Q, F,P;F). Furthermore, we suppose that N', N? are independent of W and Y and that
the F-intensities of N! and N? are positive deterministic functions ©; : [0,7] — (0, +0c0)
and ©9 : [0,7] — (0, +00), respectively. The coefficients p : [0,T] x € — (0, +00) and
0:[0,T] x &€ — (0,400) are measurable functions which model the appreciation rate and

the volatility of the stock, respectively, such that wu(t,i) > r, for all (¢,7) € [0,7] x € and
T
/ (u(t,Yy) + 0%(t,Yy)) dt < oo P-as.. (3.3)
0

Moreover, K1 : [0,T] x & — (0,+00) and Ky : [0,7] x & — (0,+00) are measurable
functions such that K;(t,7) > 0,1 = 1,2, and Ks(t,i) < 1, for every (¢,4) € [0,T] x €. From
and it is clear that the pair (S,Y) is an (F, P)-Markov process. We observe that
the stock price S is described by a jump diffusion process where the appreciation rate and
the volatility depend on a Markov chain representing the regimes of the economy. Taking a
mixture of continuous and jump processes for the stock price dates back to Merton [77] and
it can also be found in more recent papers, see e.g. Ceci and Gerardi [23] and Xiao and Zhao

[L00]. This financial market model is actually reasonable, since recent research provides strong
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empirical evidence of jumps in stock prices, see e.g. Jawadi et al. [68]. Moreover, the risky
asset behavior could be also affected by long-term macroeconomic conditions that should
be included in the framework and represented by another stochastic process. Therefore, the
presence of an exogenous term affecting the stock price makes the model even more realistic.
This stochastic factor may represent some environmental conditions, social circumstances,
economic crisis or natural phenomena, that can have a considerable impact on financial
returns. The economic effects of catastrophic events, climate changes and pandemics, as
for instance the COVID-19, on the financial market are recently analyzed, see, e.g., Baek
et al. [7], Just and Echaust [69], Tesselaar et al. [93], Wang et al. [99]. Here, we address
this modeling issue by assuming that all these exogenous events are aggregated to create
different regimes, as e.g. in Sotomayor and Cadenillas [92], Altay et al. [3], Cretarola and

Figa-Talamanca [36].

Remark 3.1. By the Doléans-Dade exponential formula, condition Ky(t,i) < 1 allows us to
write

Sy =selt, te|o,T],

where the logreturn process L = {Ly, t € [0,T)} is given by

1
dL, = (u(t,lﬁ)—iag(t,l/}))dt+a(t,Yt)thS—i—ln(1+K1(t,Yt,))dNt1+ln(1—K2(t,Yt,))de,

with L() =0.
Proposition 3.1. If we assume that

T

/ (K1 (t,Y,-)01(t) + K3(t,Y,-)Os(t)) dt < 00 P-a.s., (3.4)

0

then the process S is an F-semimartingale with decomposition
Sp=s+ AP + M7,

where A% = {A?, t € [0,T)} defined as

A9 = [0 (. Yoo + K001 0) + K, Yo )0s(0)
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is an R-valued process with finite variation paths and A5 = 0, while M® = {M?, t € [0, T}

given by

t t t
ME:/ Sva(v,yv)dwf+/ Sv_Kl(v,n_){ng—el(v)dv}—/ Sy K (v, Y, ) {dN2 -0 (v)dv}
0 0 0

is an F-local martingale with My = 0.
Proof. Conditions and imply that the process R® = {R}, t € [0, T]} defined as
R} = /Ot (1(v, Yo)dv + o (v, Yo )dWS + K1(v, Yo—)AN,} — Ka(v, Y,_)dN?)
is an F-semimartingale. Noting that
dS; = S;_dR?,
we can conclude the proof. O

Now, we consider an individual to be insured and a stochastic model for the mortality
of the equivalent age cohort of the population. We assume that the hazard rate (or force of
mortality) is governed by a diffusion process, i.e. we describe the mortality intensity as a

stochastic process A = { ), t € [0,7T]} that is given by the following SDE
dAr = Cu(t, A)Adt + Ga(t, A)AdWE, Ao = A > 0. (3.5)

Here, WA = {W/, t € [0,T]} is an additional standard Brownian motion on (Q, F, P;F/).
Moreover, (1 : [0,7] x R — R and (2 : [0,7] x R — R are two measurable functions

such that a unique positive strong solution to (3.5)) exists and the following conditions hold

T T
E [/ ]Cl(t,)\t))\tldt—i—/ Cg(t,)\t)Q/\?dt] < o0, (3.6)
0 0
sup E [Af] < 0. (3.7)
te[0,7

These conditions are satisfied if, for instance, the coefficients of the SDE fulfill the
classical Lipschitz and sublinear growth conditions, see e.g. Gihman and Skorohod [54]. We
observe that, the mortality rate of the insured is generally different from that of its age co-
hort. However, to keep the framework tractable we consider individuals subjected to the same

stochastic hazard rate, as e.g. in Ludkovski and Young [76]. We point out that we are not
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the first to consider stochastic mortality rates, see e.g. Milevsky and Promislow [78], Dahl
[38], Dahl and Meller [39], Biffis [15], Ludkovski and Young [76]. Indeed, empirical evi-
dence suggests that wars, medical breakthroughs, developments in healthcare and improved
lifestyles combine to affect human mortality in a fluctuating and unpredictable manner. The
uncertainty given by minuscule and continuous movements of the mortality intensity is usu-
ally represented by a Brownian motion, see [20] for an overview. As a consequence, it seems
reagsonable to require that in our setting the exogenous stochastic factor, representing long-
term environmental changes, does not affect the mortality intensity; therefore the insurance
market remains independent of the financial market.

Let 7 be a non negative random variable on (2, 7, P) which represents the remaining
lifetime of the given individual of the reference population with mortality rate A. Denote by
D ={Dy, t € [0,T]} the death indicator process associated to 7 by setting Dy := 1<, for

every t € [0,T]. We assume that D is an F/-adapted process independent of A.

3.3 The indifference pricing problem formulation

Now, we assume that the insurance company writes a unit-linked life insurance policy, which
is a long term insurance contract whose payoff depends on the insured remaining lifetime
and on the underlying stock. In particular, we consider a pure endowment contract with
maturity of T years, which yields a fixed sum of money if the policyholder is still alive at

that time. Then, the associated payoff is given by the random variable
Gr = Klp-p = K(1 - Dr), (3.8)

where K is a positive constant. The goal is to evaluate the pure endowment policy with
payoff given by in the Markov-modulated model outlined above. Since the financial
market consists of two primary securities and several sources of random shocks due to mor-
tality events and structural changes in economic conditions, it turns out to be incomplete.
Therefore, we apply the indifference pricing approach assuming that the insurance company

preferences towards the risk are described by an exponential utility function of the form

u(z) =—e 7", xR,
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where 7 is a positive parameter which measures the absolute risk aversion. In the underlying
financial market, the insurance company starts out with an initial wealth xy, and then
proceeds to trade dynamically among the locally risk-free asset and the risky asset, following
a self-financing strategy. Let IT = {II;, ¢t € [0,7]} be the total amount of wealth invested
in the stock, with the remainder of wealth in the money market account. Thereby, Wy — Il
will be the capital invested in the risk-free asset at time t. The insurance company is also
allowed to short-sell and to borrow/lend any infinitesimal amount, so that II; € R, for each
t € [0,T]. Precisely, given an initial wealth zy > 0, the insurance company wealth process

{X]' t €[0,T]} associated to a given strategy II evolves over time as

ds, ds?
dx' =11, —" + (x —11,) =+
t tSt— + ( t t) St()

= (P X 10 (u(t, Vi) — 1)) dt + o (t, V) dWS + 10, (Kl(t, Y, )ANE — Ko(t, Y;_)dNt2>,

(3.9)

with X' =20 > 0.
Remark 3.2. [t can be checked that the solution to the SDE (3.9)) is given by

t t
x = xllem + / eI (u(s, Ys) — r)ds + / eI ,o (s, Ye)dWS
. 0 0 (3.10)
+ / e”(t’s)HS<K1(s,Y9_)stl —KQ(S,YS_)de),
0

with X(l]I =x9 > 0.

In order to characterize the indifference price of the pure endowment, we introduce two
optimal investment problems: one related to an insurance company that does not issue the
mortality-contingent claim and the other one to a company who sells the policy. We start by

defining the class of admissible strategies.

Definition 3.1. An admissible strategy is a self-financing portfolio identified by an R-valued
G-predictable process II = {Il;, t € [0,T]} such that

5| [ "L (. v~ i) <

T
E [/ H%aQ(t,Y;)dt] < 00,
0
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E [/OT ITL,| (Kl(t,yt,)@l(t) + Kg(t,Yt)@Q(t))dt] < . (3.11)

We denote by A the set of G-admissible strategies. Whenever the controls are restricted to

the time interval [t,T], we will use the notation A.
Now, we assume that the following assumptions are in force throughout the chapter.

Assumption 3.1.
(i) There exist three positive constants My, My and Ms such that

©1(t) < My, Oq(t) <My, Ki(t,i) < Ms, for every (t,i) € [0,T] x €.

(i) There is a constant My > 0 such that % < My, for every (t,i) € [0,T] x &.

In this way, we consider securities not too risky, in every market regime. Indeed, the
random jumps in the stock have restrictions in terms of intensities and coefficients, just as
the Sharpe ratio is bounded, in order to avoid extreme peaks in price dynamics.

In particular, Assumption [3.1fi) provides a sufficient condition for a strategy II to be

admissible, as shown in the next result.

Proposition 3.2. Let IT = {II;, ¢t € [0,T]} be a G-predictable strategy with values in R.

Assume there exists a square-integrable function n:[0,T] x € — (0,+00) such that
IIL| <n(t,Y:), te€[0,T], P—a.s. (3.12)

and
T
/0 n(s,i) ((u(s,i) —r) +n(s, i)0'2(8,’i)) ds < o0, Viect. (3.13)

Then, 11 is an admissible strategy, i.e. I1 € A.

Proof. We note that by , we have
T
E [ / L] ((u(s,Ys) — 7) + Ieo™ (s, Ys)) ds]
0
T
<E [ [ Y2 (Y2 = )+ (s, Vo5, 0) ds}

T
< max / n(s,i) ((u(s, i) — 1) +n(s,9)0%(s,4)) ds < oco.
0

i=1,....K
Finally, in view of Assumption [3.1f(i), condition (3.11) is satisfied and this concludes the
proof. O
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We consider the case where the insurance company simply invests its wealth in the

financial market, without writing the insurance derivative. Then, the goal is the following.

Problem 3.1. To mazimize the expected utility of its terminal wealth, i.e. to solve

sup }E{ - 6_7X¥} .
ITeA

Let (¢,z,i) € [0,T] x R x £. In a dynamic framework, we define the corresponding value
function V by

V(t,z,i) := ;g}z Etz, [ - e—'ijl:I(t,:v):|7 (3.14)
t

where E; ;. ; denotes the conditional expectation given X[ = x and Y; = i, and {X(t,2), s €
[t,T]} stands for the solution to equation (3.9) with initial condition X! = z. Note that,
since the coefficients u, o, K1 and K5 only depend on ¢ and ¢, it is possible to absorb the
stock price in the wealth and therefore to remove the variable corresponding to S.

Now, we suppose that the insurance company invests its wealth in the market, also issuing
a pure endowment contract with payoff given in . In this case, the goal of the insurance

company is the following.
Problem 3.2. To mazimize the expected utility of its terminal wealth, i.e. to solve

sup E[ _ 6*7(X¥*GT)} ,
e A

where G is defined in (3.8).

Let (t,z,\,4) € [0,T] x R x (0, +00) x €. We define the corresponding value function V'
as

V(t,x,)\,i) = ;gﬁ Et,x,)x,i _ Q_V(Xg(tvw)—GT) , (3_15)

where [E; ;5 ; denotes the conditional expectation given XtH =x, M =Xand Y; =i and we

implicitly condition on G; = K.

Remark 3.3. We note that the control 11 = 0 is admissible and such that
Ktz [6_7X%(t’x)} < 00,

for each (t,x,i) € [0,T] x R x &.

E, . »; [B—WX%(t,x)fGT)} < o0,
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Jor each (t,x, i) € [0,T] x R x (0,4+00) x . This implies that
esssup E [_e—vXﬂ > —o00, esssuplkE [—e_V(Xg_GT)} > —o0, P—a.s., tel0,T],
IIc A e A;

and as a consequence that

sup E [—e_WXﬂ > —o0, supkE [—e_V(X;[_GT)} > —00.
e A IIe A

3.4 The optimal investment problems

In this section, we solve the two optimization problems introduced in Section[3.3] Specifically,
applying the classical stochastic control approach based on the HJB equation, we characterize

the optimal investment strategies and provide verification results for the value functions V'

and V given in (3.14) and (3.15]), respectively.

3.4.1 The pure investment problem

Here, we consider the case where the insurance company simply invests in the underlying
financial market, without underwriting any claims. Thus the corresponding value function
V is given by (3.14).

Firstly, we see that the financial model has a Markovian structure, i.e. the couple (X', Y)
is a (G, P) Markov process. After introducing a suitable class of functions, we compute its
infinitesimal generator. Let £ denote the Markov generator of (XY, associated with a

constant control II € R, and let D(£!) denote the domain of this generator, for each i € £.

Definition 3.2. The set D(LY) denotes the class of functions f(,-,i) € C1([0,T]) x C*(R),

for each i € £, such that for every constant Il € R, we have

E[/OT (a(v,n)ngi(v,xﬂm)de} < o0, (3.16)

and

E[/T/\f(v,XE,YU_Jrh(YU_,z))—f(v,X}},x,_)\m(dz)du < oo, (3.17)
0 R

T
EUO |f (v, X[+ TIK (v, Y,-), Yon)) — f(v, Xo1, Y,0) | ©1(v)dv| < oo,

T
E UO |f (v, XoL — TIK (v, Y,-), Yoo)) — f(v, XoL, Yoo )| ©2(v)dv| < oo.
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Lemma 3.1. Let f € D(Z?). For any constant strategy 11 € R, the stochastic process

(XM Y) is a Markov couple with infinitesimal generator given by

LIf(t,x,0)
2
— %:(t, z,4) + [rw+ (u(t, i) — r)II] g‘;(t, 1) + %UQ(t, i)H28—x];(t, x,i) + Zqijf(t, z,7)
je€
+O1(O){V(t,x + K (t,1),i) — V(t,2,9) } + O2(t){V (t,x — IIK>(¢,4),i) — V(t,2,1) }.

(3.18)

Proof. In view of (3.9) and (3.1)), by applying It6’s formula to the stochastic process f (¢, X1, Y;),

we have
t
F6 X YE) = £, X5, Y0) + [ 27 X Yi)du o+ m
0
where

t
mg = My +/ HUO'(U,XU)Z‘}C(U,XE,YU)(].WE-F
T

0
+/ / {f(v, X Yo + h(Yoo, 2)) — f(v, XN, Y,0) }P(dv, dz)
07K (3.19)
+/0 {f(vvxll;_lf + HvKl(Uyyv—)yyv—)) - f(U7X££7Y;J—)}{sz} - el(v)dv}

+ /Ot{f(v,x}} — I, K5(v,Y,y-),Y,)) — fo, XiL, Yo ) H{dNZ — O2(v)dv}.

We only need to prove that the process m = {my, t € [0,T]} is a (G, P)-martingale. Accord-
ing to the Ito integral theory, by (3.16)), the first integral in is well-defined and turns
out to be a (G, P)-martingale. Furthermore, due to (3.17)), we have that also the jump terms
in are (G, P)-martingales, (see e.g. [40, Theorem 26.12(2)| and [19, Lemma L3, Ch.II]
for further details about the martingale property related to a Poisson random measure and

a Poisson process, respectively). ]

Next, let us consider the HIB equation with final condition that the value function V is
expected to solve, if sufficiently smooth:

! (3.20)

supper LV (¢, 2,i) =0,  Y(t,z,i) € [0,T) x R x &,
V(T,z,i) = —e %, V(x,i) € R x €,

where £}! denotes the Markov generator of (X', Y) associated with a constant control IT € R,

given by (B15).
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Remark 3.4. Since the pair (X,Y) is a Markov process, any Markovian control is of the
form T, = T1(t, X[1,Y;). The generator L f(t, x,i) associated to a general Markovian strategy
can be easily obtained by replacing I1 with T1(t, z,4) in (3.18).

Now, we conjecture a solution to equation (3.20). Due to the exponential form of the

boundary condition, it is natural to guess that the solution of the above HJB equation also has

p(t, ),

with (t,2,47) € [0,T] x R x &, for a suitable function ¢, which is motivated by the following

. . - . _ r(T—t
an exponential structure. Therefore, we consider the ansatz V (¢, z,1) = —e %€ =0

result.

Proposition 3.3. Assume that there ezists a unique function ¢(-,1), for each i € &, solution

to the following Cauchy problem:

%f(t,i) = H(t,p(t,1)), te€0,7), (3.21)
QO(Tvi) =1,
where
H(t7 gp(t, Z)) = - Z Sp(ta j)Qij - Qp(t7 2) I_IIIEI% @H(tv i)? (3'22)
JjeE

with the function W : [0, T] x & — R defined by

\I'H(t, Z) _ ’)/BT(T_t) (M(tv ’L) _ ’I“)H + %’7262T(T_t)0'2(t, ’L)H2 + ®l(t) (e—VHKl(t,i)er(T—i) @ 123)

+ Oy(t) (MDY )

Then, the function

— r(T—t)

Vit,2,i) = —e "ot i), (3.24)

solves the HJB problem given in (3.20)).

Proof. From the expression ({3.24]), we can easily verify that the original HJB problem given

in (3.20) reads as follows

0 . . : H(T— ‘ . 1 o opr— ‘ ‘
a—f(t, i) + Z o(t,j)ai; + 1_1{2%{ —ye" TV (L, i) (u(t, i) — r)IT+ 57262 (T o(t, )02 (t, i)I1?
jee

+ o(t, 60y (£) (e MEETTT ) 4 oo(t, 1)@ () (TR 1)} —0, tel0,T),
(3.25)
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with final condition ¢(T,i) = 1, for all i € £. Thus, if we define the function ¥ by means

of expression ([3.23), equation (3.25)) can be written as

890 . . N e — 1T .
E(t’ i) + JEZ; o(t,7)qij + o(t, 1) ﬁrggll’ (t,7) =0.

Moreover, the terminal condition in (3.20) implies that ¢(7,7) = 1, for each i € £. Hence,
we find out the problem (3.21]). O

The previous result suggests to focus on the minimization of the function (3.23)), that is

the aim of the next subsection.

Optimal investment strategy without the insurance derivative

In order to characterize the optimal portfolio for a company that does not write the life
insurance derivative, we study the following minimization problem

inf (¢, 4 2
[nf (t,1), (3.26)

where the function ¥ is introduced in (3.23).

Proposition 3.4. The following equation

o2 (t,1)ye" IO — (u(t, i) — )
(3.27)

r(T—t)

=K (t7 j)@l (t)efal'[lﬁ(t,i)e ~ K, (t7 Z.)@2 (t)e,YHKQ(t’i)er(T—f,) '

admits at least a solution TL(t, i) in R for any (t,7) € [0,T] x € and the minimization problem

(3-26) has a unique solution IT*(t,i) = II(t,4), for all (t,i) € [0,T] x &.

Proof. Firstly, we observe that W!(t,i) is continuous with respect to II € R, for every
(t,i) € [0,7] x £ and has continuous first and second order derivatives with respect to
IT € R, which are respectively given by

ow!t
oIl

r(T—t)

(t,1) = —ae" T D (u(t,i) — r) + o2 (t, i)y T — ye" T K (t,)01 (t)e M (e

r(T—t)

+ ae" T Ky (t,1)O ()20,
9ol

) (AC y r(d— - — i)er(T—t)
W(t’l) — 22 (T t)O'Q(t,Z) 4 A2 (T t)Kf(t,z)@l(t)e ALK (t0)

r(T—t)

+ 72627*(T—t) K22 (t, Z)@Q (t)eVHK2(t7i)€ .
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Note that these derivatives are well defined and the second order derivative is strictly positive,

02l -
ie. W(t, i) > 0, for every (t,i) € [0,T] x &; therefore, the function W (¢,4) is strictly
convex in IT € R. Moreover, it is easy to check that, for any (¢,7) € [0,T] x £, we have
vl
li —(t, 1
TN
while
I
i (B8 = e
28 ~
As a consequence, being 8—H(t, i) a continuous function in II € R, there exists II(¢,7) € R
owl
such that a—ﬂ(t,i) = 0, for every (t,7) € [0,T] x &, that is, (3.27) is satisfied. Since the

function W' (¢,4) is strictly convex, the stationary point ﬁ(t,i) € R is unique and provides

the unique minimizer IT1*(¢,4) = II(¢,4) on R. O

Remark 3.5. We point out that the optimal portfolio strategy 1I* evolves over time and
changes according to the different economic regimes. This is due to the fact that IT* solves
equation and thus it depends on time and on the Markov chain. Moreover, observing
, we also note that IT* does not depend on wealth, as usually happens when the investor’s

preferences are described by a utility function of exponential type.

In the next result, we pick out the range in which the optimal investment strategy varies,

even though we do not know it explicitly.

Proposition 3.5 (Properties of IT*). The following condition is satisfied

ln M(tvi)_r N
< My ) <TT*(t,0) < w(t, i) —r+ MsM

’ye"(T—t) 0-2(15’ i)’ye”(T—t)

min ¢ 0,

for all (t,i) € [0,T] x &, where My, My, M3 > O are the constants limiting the functions

O1, 09, K1, respectively introduced in Assumption 3.1

Proof. By Proposition (we omit the dependence in IT* on (¢,1)), we get the upper limit
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and the lower limit for IT*. If IT* is non-negative, we have

0= o (t, i)ye" T — (u(t,i) — ) — Ki(t,1)01 (£)e M HrEDer 0
+ Ko(t,§) @y (t) e Kaltie Y
> o2(t,i)ye" T — (u(t,i) — 1) — K, (t,i)@1(t)e_VH*Kl(t’i)eT(Tft)
> o2(t, i)ye" T — (u(t, i) —r) — MyMye T Ki(taer =0
> 0?(t,i)ye" T — (u(t, ) — r) — MM,
which implies

w(t, i) —r+ MsM;
o2(t,i)yer@—1

for all (¢,7) € [0,T] x €. Otherwise, if IT* is non-positive, we get

IT* (t,4) <

0= o2 (t, i)y T — (u(t,i) — 7) — Ky (t, )0 (1)e M Hr D
+ Kg(t, i)gz(t)ewH*KQ(t,z‘)er(wa
(u(t,i) —r) + Ka(t, Z')@2(t)efyH*Kg(t,i)er(Tft)

< —
< —(u(t,i) = r) = Mo,

that leads to
In (H(f}{/i[)*T)
% N s 2
Ir'(t, 1) = ~erT—0)

for all (¢,4) € [0,T] x &. O
Verification Theorem

Now, we are ready to state a verification result which ensures that the value function V is

the unique solution of the HJB problem ([3.20]).

Theorem 3.1 (Verification Theorem). Suppose that the Cauchy problem (3.21) admits a
classical solution ¢(-,i) € C*((0,T[) N C([0,T]), for each i € E. Then, the function V :
[0,7] x R x &€ — R defined by

= r(T—t)

V(t,x,i) = —e 77¢

o(t,1)

is the value function in (3.14). Consequently, the strategy 11} = 11*(¢,Y}:) described in Propo-

sition |3.4] 1s an optimal control.
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Proof. The proof uses similar arguments as in that of Theorem below for the problem
with the insurance derivative. Note that Problem [3.I]corresponds to a special case of Problem
choosing G = 0. Nevertheless, for the sake of clarity we trace the fundamental steps
of the proof. By Proposition , the function V (t,z,1) defined in equation solves the
HJB problem (3.20). Hence, for any (¢,z,i) € [0,7] x R x £, we have

LV (s, XI(t,2), Ys(t,1) <0, Vs [t,T), T € A, (3.28)

where we recall that {X!(t,z), s € [t,T]} and {Ys(t,i), s € [t,T]} denote the solutions
to equations (3.9) and (3.1) at time s € [¢,T], starting from (¢,z) € [0,7] x R and (¢,7) €
[0,T] x &, respectively. Clearly, V(-,-,i) € C%2([0,T] x R), for each i € £. In view of (3.9)),

by applying It6’s formula, we have
V(T, X2t ), Yr(t, i) = V(t,x,i) + /tTEPV(u, X(t, ), Yot,1))dv + My, (3.29)
where M = {M,, r € [t,T]} is the stochastic process given by
M, = / o (v Y)g‘_/( Xy ) ydws
/ / (V (0, XI Yoo + (Yo, 2)) = V(v, X1 Y, ) }P(dv, d2)

+/t (7 (0, X 4 LK (0, Yoo ), Yoo)) — V(0. X!, Yy ) H{AN] — 04 (v)dv)

+ /tT{V(v,XF_ — I, K5(v,Y,-),Y,2)) = V(v, X0, Yo ) H{dNZ — ©(v)dv}.
In order to prove that M is a (G, P)-local martingale, we use a localization argument, taking

o =inf{s € [t,T] | X!l < —n}, neN,

which defines a non-decreasing sequence of stopping times {7, }nen such that lim,,_ o 7, =

+00.
Therefore, taking the conditional expectation with respect to X' = 2 and Y; = i on both

sides of (3.29), with T" replaced by T' A 7, by (3.28) we obtain that
Et@,i [V(T N Tn, XYI_“I/\T,L (t> ZL'), YT/\Tn (tv Z))] < V(t7 z, i),

for every Il € Ay, t € [0,T A 7,], n € N. Now, we note that

er(TATn—t)

E[(V(T A7y, X3 (t,2), Yns, (£,1)))°] = E[e” 271 O(T N1y i)?] < 0.
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Consequently, {V (T A Tn,le:[/\Tn (t,),Yrar, (t,1)) Inen is a family of uniformly integrable
random variables. Hence, it converges almost surely. Since {7, },en is a bounded and non-
decreasing sequence of random times and P(|X}'| < +00) = 1, see (3.10), we can apply the

dominated convergence theorem and, taking the limit for n — 400, and we get

Eioi[V(T, X7 (4 2), Yr(t,i)] = m Eypi[V(T A 7oy XPar, (8,2), Yrar, (,1))]
n—r+00
< V(t,2,i),
for every II € A, t € [0,T]. As a byproduct, since IT*(¢,7) given in Proposition realizes
the infimum in (3.26)), we have that £V (¢,x,i) = 0 and, performing the computations

above, we get the equality

Et,x,i |: _ 67"/X1r“[ (tvx) = sup Et,x,i — eiﬂ/X]r“[(tvx) = V(t7 x, 1)7
Tle A,
that is, II} = II; (¢, ;) is an optimal control. O

Remark 3.6. We outline that it all boils down to solve ODEs. Indeed, thanks to Theorem|[3.1
the value function given by can be characterized as a transformation of the solution
@ to a certain system of ODEs with a particular terminal condition. As regards ezistence
and uniqueness of a solution to this specific Cauchy problem , we refer to Walter [97,
Theorem VII, Chapter II:6] or to Baran et al. [9, Section 6]. According to [97], if H given
n 1s a locally Lipschitz function with respect to the second variable, uniformly in t,
we get that there exists a unique solution ¢(t,i), for every t € [0,T), for all i € €. Requiring
that u, o, K1 and Ko are continuous functions is a sufficient condition for the reqularity
of function H and, as a consequence, the smoothness of p. Otherwise, can be seen
as a trivial case of the Cauchy problem faced by [9]. Supposing that u(-,i) and o(-,i) are
continuous functions in t € [0,T), for all i € &, ensures that infreg U (¢, 1) is bounded with

respect to the first variable and thus all required hypotheses are satisfied.

The next result provides the optimal investment portfolio strategy corresponding to Prob-

lem 3.1

Proposition 3.6. Assume existence and uniqueness of a classical solution to the the HJB

equation with final condition (3.20). Moreover, suppose that for all (t,i) € [0,T] x &,

o(t,i) >0 > 0. (3.30)
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Then, the process {I1*(t,1), t € [0,T]} characterized in Proposition [3.4] provides the optimal

inwvestment strateqy for Problem|3.1|

Proof. Let

N(tvi)_r
‘ln ( My )‘ pult, i) — v+ M3 M,
pyer(T—t) g2 (t, i)’yeT(T—t) ’

n(t,i) = max (t,1) € [0,T] x &.

We show that conditions and in Proposition are satisfied. By Proposi-
tion [3.5] we immediately have IT*(¢,Y;) < n(t,Y;) and II*(¢,Y;) > —n(t,Y:), for every
t € [0,T]. Moreover, by and Assumption we get condition (3.13). Then, the
process {II*(¢,7), t € [0,T]} is an admissible investment strategy and the statement follows

by applying the Verification Theorem and Proposition O

3.4.2 The investment problem with the insurance derivative

Now, we suppose that the insurance company, in addition to investing in financial securities,
can write a pure endowment contract, whose payoff is given in .

The following result guarantees that the financial-insurance model outlined in Section
has a Markovian structure, i.e. the vector process (X, A,Y) is a (G, P)-Markov-process.
Let £ denote the Markov generator of (X!, A, Y) associated with a constant control II € R

and let D(£LM) denote its domain.

Definition 3.3. The set D(L') denotes the class of functions f(-,-,-,i) € C1([0,T])x C?(R x

(0,400)), for each i € £, such that for every constant I1 € R, we have

T 8f 2
EUO (a(v,Yv)Ha—w(v,XE,/\v,K))) dfu} < o0, (3.31)

E[/T (Cg(v,)\v))\vg‘i(v,Xf,/\U,Yv))de} < o0,
0

and

E [/T/ |f(v,X11?,)\U,YU_+ h(Y,-, z)) — f(v,Xg,/\v,YL_)‘ m(dz)dv| < 00,(3.32)
0o JR

T
EU | £ (v, XL 4+ LK (0, Yoo ), Aw, Yoo )) — (v, XiL, Ay, Yoo )| ©1(v)do| < oo,
0

E UOT | £ (v, XoL — TIK (0, Yo ), A, Yo ) — f(0, Xob, Ay, Yoo )| ©2(v)dv | < oo.
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Lemma 3.2. The stochastic process (X', A,Y) is a Markov process on (Q, F,P;G), with
infinitesimal generator C? for all constant strategies I1 € R given by

of of 191

LUft, N 0) :E(t,w,/\,i) + [re + (u(t, ) —T)H]a—(t T, A1) + Gt M)A 8>\(t z,\, 1)
1 e 02 )
+502(t,z)1'[ e J;(t S A1)+ Cg(t )\))\26)\£(t T, A\, 1 +JZ€;qu (t,x, N, J)

+ 01 (O){V (t,z + 1K (¢,9), A, i) — V(t, 2, X, i)}

+ O:(t){V (t,x — IIK5(¢,i), A, 1) — V(t, 2, A\, i)},

for every i € £. The domain of the generator LI is D(LY), for eachi € €.

Proof. In view of (3.2), (3.5) and (3.9), by applying It6’s formula to the stochastic process
f(taXtH7 )\ta Y;f)a we have

t
X 0¥ = 0, X800, Y0) + [ 27, X0 A Yo+ o,
0

where

of

t
mt:mo+/ﬂvo(v,Y)a (v, XI X, Y, )dW? + /Cgv)\ (v XT N, Y,)dwA
0 xr

4 / t / (F (0, X A, Yoo b h(Yoes 2)) — Fo, X1 Ao, Vo) VP (dv, d2)
0 JR

+ /t{f(v,X}} + LK1 (v, Yoo ), Aoy Yoo )) — F(u, X0, Ay, Yoo ) H{AN,! — ©1(v)du}
0

+ / X~ K0, Yo ) s Xo)) = F0, X0 0, Yo H{AN? — @ (0)du)
’ (3.33)
We only need to prove that the process m = {my, t € [0,T]} is a (G, P)-martingale. By (3.31),
the first two integrals in are well-defined and turn out to be (G, P)-martingales. Fur-
thermore, due to , we have that also the jump terms in are (G, P)-martingales,
(see e.g. [40, Theorem 26.12(2)] and [19, Lemma L3, Ch.II| for further details about the
martingale property related to a Poisson random measure and a Poisson process, respec-

tively). O

Let us consider the HJB equation that the value function V is expected to solve, if

sufficiently smooth:

sup LIV (t, 2, M, 1) + AN(V (¢, 2,49) — V(t,z,\,8)) =0, (3.34)
IIeR
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for all (t,z,\,7) € [0,T) x R x (0,+00) x &, with the final condition

V(T,z, )\, i) = —e 1@=K), (3.35)

for all (z,A,i) € R x (0,+00) X &.

For the sake of clarity, we show how to obtain a formal derivation of the HJB equation
associated to the problem with the insurance derivative. A formal derivation of equa-
tion can be obtained by following Bjork [16 Section 19.3| and Fleming and Soner [51],
Section [11.7]. To this aim, we apply the Bellman’s dynamic programming principle that, in

this context, it is formulated as follows.

Proposition 3.7 (Bellman optimality principle). Let (¢,2, A, i) € [0,7] x R x (0, +00) x &.
Then, fort <t+h <T and Il € A;, we have

V(t, 2, A\ i) > Eygn [VE+ by X Mesn, Yin)] (3.36)

where V' is the value function introduced in (3.15). Moreover, equality holds in (3.36)) if, and
only if, the arbitrary control I1 on the interval [t,t + h| is optimal.

Firstly, we employ the Dynamic Programming Principle of Bellman. The idea is that if
the company follows the optimal strategy on [¢, T], her /his expected utility is at least as great
as if she/he invests arbitrarily on [t, ¢+ h[ and then optimally on [t + h, T, for h sufficiently
small such that ¢t + h < 7. In the application of the dynamic programming principle, we
must consider whether the policyholder survives from time ¢ until time ¢ 4+ h, as in Young
and Zariphopoulou [102], Moore and Young [80], Ludkovski and Young [76] and Young [101].
Consider an individual aged [, who is seeking to buy a pure endowment policy. For the rest
of this section, we write (1) to refer to this individual. For each h such that t + h < T, if the
individual (I+t) survives for another h years until time ¢+ h, which happens with probability
nPl+t, the insurance company still faces the endowment risk on the time interval [t+h, T]. In
this case, by , the maximum expected utility derived by investing optimally on [t+h, T
is V(t+h, X[1,, Aeqh, Yign). However, if the individual (I4¢) dies in [, 4 h], an event that
happens with probability jq;+¢, then the company is not longer at risk for the endowment

payout. Hence, by (3.14]), the maximum expected utility derived by investing optimally on



[t+h,T)is V(t+ h, X}%,, Yisn)-

From (3.36)), we have
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V(t,z, A\ i) > ppreBe g ni [V(t + h, X}lh, Atths Y%+h)} + w4+t 2 [‘_/(t + h, Xﬂh, Yt—&—h)]-

If we assume enough regularity conditions and appropriate integrability on the value functions

and their derivatives, by applying It6’s formula and conditioning on X' = x, \; = A and

Y: =1, we get
V(t7 Z, A7 Z) Z hpl—i-tv(ta x, )‘7 /L) +h QI+t‘7(t7 xZ, Z)

ot

r t+h aV aV
+n Ptz i / { - [TXH (1(v,Yy) — 1) Hv} 8dv}]
L/t x

[ [ ov 1 PV 1 0*V
+h Di+tEez i / {Cl(v,)\v)/\v + =0 (v, Y)II2 == + Cz( )Az}dv}
LJt

ox 2

r rt+h
+h Di+tEr 2 i / { Z V(v X11;-[a )\mj)qw}dv]
LJt

2 v ON?

je€
t+h
+h pl+tEt,LL‘,)\,i 61(”){‘/(1}7)(11)_[ + HUKI <U7Z.)7 A’U?va) - V(U7X11)_I7 )\’07 YU)}dU:l
LJt
t+h
+n Pit ez i {V v, X — I, Ka(v,1), Ay, ) — V (v, X s Av, Yy) }dv}
LJt
th oV ov
H
+n m—l—tEt,x,i _/t {875 =+ [TX ( (U7 Y;;) - T) Hv} &:}dv]
r rt+h 1 8 V
+hn QZ—i-tEt,ac,i _/t {20( Y )2H2 o2 + ZV v Xv ’])qv]}dl):|
r t+h -
+h @it xi {V v, X + I, K1 (v,1),Yy) — V(U,X};-[,Yv)}dv]
LJt
- t+h -
+1n @Bt 2 {V v, X — 11, K5 (v,1),1) — V(v,XE,YL)}dU].
LJt

To keep the formulas readable, in the integrals above we have suppressed the independent

variables (v, XII A, Y,) and (v, X! Y,) of the partial derivatives of V and V, respectively.

By subtracting pp;4+:V (¢, x, A, 7) from both sides of inequality and dividing both sides by h,

we obtain

hq;;tV(t,x, Ni) > MG )

t+h
+h D1tz [ /
¢

=

ot

{(W + [rxll + (ulo.Yo) -

)L | g‘;dv}]
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! ov 1 o’V 1 2?V
E i - v) AN ~o? Y H2 P
+hpl+t t,z,\,% _1 h Cl(v7)\ ))\ ENN + 20- ('U ) ’Ua 2 + CQ( ))\v aAQ }d'l}:|
r t+h 1
+h Ptz / 7 ZV(U X ; Avs )C]m}dv}
LJt ;

€&

<

t+h
+h D1t Eez i /
t

t+h
+h D1tz i /
t

t+h
+n Qi /
t

t+h
+n Qe e /
t

@ﬂv){V(v,X? + 1L, K1 (v,1), A, Ya) — V(v, X Ay, Yv)}}dv]

Q2 (){V (v, X3} — T, K (v,1), Ao, i) — V (v, X31, Ay, K,)}}dv]

QL —4 —4 = =

+ [rXE + (v, Yy) — 7)T0,] W}dv]

¥
&

o?V
Y)2H12’8 5 +ZV v Xv,j)qw}dv]

je&

S >

N | —
q
f\

+h Qet e

t+h
+hn Qe /
t

We observe that as h — 07, we have

(v){V (v, X4 L,K (v, 4),Y,) — V(U,XE,YU)}}dU]

—
iy
+
>
=
—N
@
[\V)
—~

V) {V (v, X} — T, Ko(v,4),4) — V(U,X}?,Yv)}}dv].

hql+t
i+t — 1, @4t — 0 and — At

for each t € [0, T]. Consequently, taking the limit as h — 07 yields

_ oV oV oV
0 >A(V(t,a,i) — V(t,2,\,9)) + v [ra + (u(t, i) — r)H}— + Gt DAST
PV o1 OV
+ H2 2( )a 2 + C2(t )\))\2 IN2 +ZV t €z, A j)qU

jee&
+O1(0){V(t,z + 1K (t,9), A, i) — V (¢, 2, N, 0)}
+ O2(t){V (t,x — IIK5(¢,i), A, i) — V(t, 2, A\, i)}
By the arbitrariness of the investment strategy II, the previous inequality holds for every

IT € A;. Finally, we note that along the optimum, we have

1% oV
5 e+ Gt A

+ 5 G ENN Sg +J§V (t, 2, A, §) i

0=\ (V(t,z,i)— V(t z,\, 1))

o?V
ox 2

+ sup |(p(t, i) — )Ha—v +3 L —o(t, i) 1>

ek Oz +01(E{VIt, @ + T (1,0), A, 6) = Vi, 2, A, 1)}

+ Ot {V (t,x — 1K (t,4), A, i) — V (¢, 2,X,9) } |,
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for every (t,z,\,i) € [0,T) X R x (0,400) x & and V(T,z,\,i) = —e@=K) for each
(z,A,1) € R x (0,+00) x &€, which coincides with (3.34).

Now, based on the nature of exponential utility, we guess that V can be traced back to
V, thanks to a function which does not depend on wealth; thus we introduce the following
ansatz

r(T—t)

V(t,z, A i) = =77 To(t1)¢(t, A), (3.37)

with (¢,2,\,4) € [0,T] x R x (0,400) x &, where ¢ solves (3.21)), while the function ¢ is
non-negative and does not depend on .

From (3.37)), replacing all the derivatives and performing some computations, the final

value problem (3.34)-(33.35) reduces to

d¢ d¢ 1 2% _
S BN+ QENATTEN) + SEENN T3 (5 A) = M A) = 1) =0, (3.38)
for all (¢,\) € [0,T) x (0,+00), and
&(T, \) = 7K, (3.39)

for every A > 0.
We observe that the PDE in is linear and a solution exists under suitable conditions
on model coefficients; see, e.g. Pham [86, Theorem5.3] or Colaneri and Frey |31, Theorem 1].
Clearly, if the function ¢ is a classical solution of the Cauchy problem , then
V(i) € CH22([0,T] x R x (0,400)), for each i € £ and we have that V(¢,z,\,i) =
—e*WeT(T_t)gJ(t, i)o(t, A) solves the original HIB equation given in (3.34)).
Now, we can state the verification result, which can be used to verify that the candidate

solution is indeed the value function in (3.15).

Theorem 3.2 (Verification Theorem). Let ¢(-,i) € C*((0,T)) N C([0,T]) and &(-,-) €
C1((0,T) x (0,400)) NC([0,T] x RT), for each i € &, be classical solutions of the Cauchy
problems and , respectively. Then, the function V : [0, T] xR x (0,4+00)xE — R
defined by is the value function in , Consequently, the strategy 11} = II*(t, X})

described in Proposition |5.4] is an optimal control.

Proof. Let ¢ : [0,T] x £ — R be a function such that ¢(-,i) € C*((0,7)) N C([0,T]),
for each i € &, and suppose that it is a solution of the problem (3.21)). Moreover, let ¢ :
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[0,7] x (0,+00) —> (0,400) be a function such that ¢(-,-) € C'((0,T) x (0,+00)) N
C([O,T] x (0, +oo)), and suppose that it solves the problem (3.38). Now, taking V' defined
in , we have that V is a solution of the problem . This implies that, for every
(t,x,\,1) € [0,T] x R x (0,400) x &

LV (r, XI(t, 1), A (1, ), Vo1 )

+ Ar(t, N) (V(r, Xt 2),y,(t,49) = V(r, 2t 2), \o(t, )\),YT(t,i))) <0, reltT],
(3.40)

for all IT € Ay, where {\(¢,\), r € [t,T]} denotes the solution to equation (3.5 with initial
condition A\; = X and V is the value function of the pure investment problem given in ([3.14).
In view of (3.9), by applying It6’s formula, we have

V(T, X2 (t, ), A\p(t, N), Yr(t,4)) = V (£, \,4) + /TEPV(U,XE(t,x), Ao (t,N), Yy(t, i))dv

+ /T Aot A) (V (0, X0t 2), Yo (t,0) — Vv, XJH(E ), Ao(t, A), Ye(£,4))) dv + M,
(3.41)

where M = {M,, r € [t,T]} is the stochastic process given by
= [ M0 (0, Yo) 2 (0, X0 Ay, Y)W + / G, A)M 2 (0, X 2, Y, ) AW
t 8:17 t 8)\
+/ / {V (v, X5 X, Yoo + WY, 2)) = Vv, X Ay, Yor) }P(dv, d2)
t JR
[V 0 X T (0, Ye): A0 Yo)) = V(0. X A Yo HANY - €1(0)de)
t

+/ {V (v, X;L — L, Ko (v, Yy ), Ao, Yoo )) = Vi(v, Xo8, A, Yoo ) H{ANZ — ©2(v)dv}.
t

Now, we prove that M is a (G, P)-local martingale. Precisely, we need to show that

T ATn, v I 2
E[/t (U(U,YU)HU%(U,XU ,)\v,Yv)) dv] < o0,

T/\Tn 8‘/ - 2
]E|:/ (C2<U7)\U))\'Ua(v7xv 7AU7K))) d'l):| < 00,
t
for a suitable, non-decreasing sequence of stopping times {7, }nen such that lim 7, = +oo.
n—

+oo
Taking expression (3.37)) into account, we note that
ov

A — (L, (L, i)erT—0mer T,
. _ _aﬁ . —’Y.Ier(T*t)
a>\ (t;$7 )\;7/) - a)\ (t’ )\)sp(t7 Z)e .
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Let us define a sequence of random times {7, }nen by setting

Tn ‘— inf{S S [taT] | X;_[ < —-n, )\8 > n, (ZS(S?)\S) >n 8¢

,5(5,)\5) >n}, neN

Throughout the proof, we denote by C,, any constant depending on n € N. Consequently,
we get that

TN,
n v, q 2
E[/O (U(U,YU)HU%(U,XU ,AU,YU)> dv}
TATn (T 2
:E[/ o2 (0, V)T (760, Ao (v, Yy Jer (T Xer ) d”}
0
T
< C’nE[/ 02(U,Yv)Hgdv] < oo, VneN,
0

since II is admissible. Further, by (3.6) we have that
TAT,
n ) 2
Bl [ (o an G A v0) o)
TATn . 2
5| [ (@l e el Ve T )
0 X
T
< CnIE[/ @(v,Av)%dv} < oo, VYnéeN.
0

Furthermore, due to the boundedness of function V until time 7,,, we have that the stopped

process

TATn N
{/ / {V(U,X}},)\U,YU, +h(Yy,2)) — V(v,XE,A,,,YU,)}P(dv,dz), relt, T}}
t R

is a (G, P)-martingale (see e.g. [40, Theorem 26.12(2)]), for every n € N. Finally, even the

stopped processes

TNTn
{/ {V(v,X}}, + LK (v, Yoo ), Ay Yo ) = V (v, X0, /\U,Yv)}{d]\fy1 — O (v)dv}, r e [t,T]}
t

and

TN\Tn
{/ {V(v,X}}_ — I, K (v, Yy ), Ay, Yo ) — V (v, XJ1, /\U,YU)}{dNE — Oy(v)dv}, r € [t,T]}
t

are (G, P)-martingales, (see e.g. [19, Lemma L3, Ch.II]). Thus, the process {M,, r € [t,T]}

turns out to be a (G, P)-local martingale and {7, }ren is a localizing sequence for {M,., r €
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[t,T]}. Therefore, taking the conditional expectation of both sides of (3.41]) with respect to
X'=2, \y = X and Y; = i with T replaced by T A 7, by (3.40) we obtain that

Eroni[V(T ATy XPr (8,2), Aoams Yoam, (,4))] < V(E, 2, A, 4),

for every Il € Ay, t € [0,T A 1,], n € N. Now, we note that

E[(V(T A7y XE, (6 2), Mo, (6 0), Vs, (8,1))) ]

er(TATn—t)

=E [e_QVXIEIATn LP(T A Tny YTATn)2¢(T A Tn, AT/\7’n)2:| S 57

for a positive constant C. This means that {V(T A 7y, er“l/\rn (t,2), A\Tar, s YTAr, (6,1)) b nen is
a family of uniformly integrable random variables. Hence, it converges almost surely. Since
{7} nen is a bounded and non-decreasing sequence of random times and P (| X}T| < +00) = 1,
see , in view of , we can apply the dominated convergence theorem and, taking

the limit for n — 400, we get
Et,a:,/\,i [V(Tv qu(tv .%'), )\T(tv )‘)7 YT(ta Z))]
= dim Byoni [V(T AT X7, (6:2), Mo, (6 2), Yine, (£:9))]

n—-4o0o

S V(tv Z, /\7 Z)7
for every Il € A, t € [0,T]. By the terminal condition (3.35) and the previous inequality,

we get

Et,x,)\,i[_ 6_7(X¥(t’x)_f<)] < V(t,x, A\ i),

for every Il € A, t € [0,7T]. Finally, since the insurance payment does not depend on the
risky asset price, we have that IT*(¢,z, \,i) = II*(¢,4) given in Proposition yields that
LYVt z,\ i)+ /\(V(t,x,i) — V(t,x,)\,i)) = 0; then, if we apply the above arguments to
IT* and replacing E? with 5?*, we find the equality

sup Et%)\ﬂ-[— e_V(XirFI(t’x)_f{)] =V(t,z, A1),

e A

which implies that the process I1*(¢,Y;) is an optimal Markovian control. O

Remark 3.7. We observe that the optimal investment strategy 11*(t,Y;) turns out to be the
same as the pure investment problem. This result relies on the fact that the payoff of a pure

endowment treaty does not depend on the stock price process. In other words, the optimal
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portfolio for the investment problem with the insurance policy equals the strategy without
msurance risks when the insurance payment is independent of the risky asset price process.
This statement is the same as that provided in Delong [43] and Liang and Lu [71] when the

risky asset price dynamics is driven by a Lévy process and a shot-noise process, respectively.

3.5 The indifference price of the pure endowment

Now, we compute explicitly the indifference price for the pure endowment contract whose
payoff is given by (3.8) in the market model outlined in Section
Firstly, we provide the formal definition of the indifference price charged by an insurance

company which writes a pure endowment. Recall that V and V are the value functions

introduced in (3.14) and (3.15)), respectively.

Definition 3.4. Given X; = x, Ay = A and Y; = i, the indifference price process or reserva-
tion price process P = {P;, t € [0,T]} of the insurance company related to the pure endow-
ment contract is defined at any time t € [0,T] as the G-adapted process implicit solution to
the equation

Vt,z,i) =V (t,w+x+ Py, A\, 1). (3.42)

In other words, P is the price that makes the company indifferent, in terms of expected utility,
between not selling and selling the insurance policy for the price P now and paying the benefits

at maturity (provided the insured person be still alive).

In our framework, we obtain the following explicit characterization of the indifference

price process.

Proposition 3.8. Under the same hypotheses of Theorem for every t € [0,T], the
wndifference price of the insurance company related to the pure endowment with maturity T

1s given by 1 (¢< )\))
n (o(t,

Po= PNT) = = Tr,

(3.43)

for all (t,\) € [0,T] x (0,00), where the function ¢ solves the Cauchy problem (3.38]).

Proof. By Theorem and Theorem equation (3.42)) reads as

_ r(T—t) . _ r(T—t)
e Te (p(t,l) —e (z+Py)ve

o(t,1)p(t, A),
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and then
P = g1, 0),
from which, computing the logarithm of both members, we get (3.43). O

Remark 3.8. We briefly comment the expression achieved for the indifference price in ,
underlining the similarities and differences with results in the existing actuarial literature. It
is well known that an exponential utility function like uw(w) = —e=*", for w € R, implies
that the indifference price of a pure endowment depends on the risk aversion coefficient,
the interest rate and the logarithm of the function that links the two value functions and
is independent of wealth (see e.g. Young and Zariphopoulou [102], Young [101], Moore and
Young [80], Ludkovski and Young [76]). Here, the indifference price shares the same features.
Clearly, since we deal with a pure endowment policy for individuals subjected to a stochastic
hazard rate, in our framework the function ¢ that binds the investment problem with claim to
the pure investment problem depends on the mortality intensity, rather than the stock price
as in the case of equity-indexed policies. Therefore, the randomness effect introduced by the
stochastic hazard rate has a significant impact on the price, as in Ludkovski and Young [70].
Moreover, we notice that the current state of the market does not influence the reservation
price. This means that in our model, the regime of the economy does not affect directly the
indifference price of such type of insurance contracts but only the amount invested in the

financial assets.

Next, we show that under the indifference pricing principle, the premium solves a terminal

value problem.

Corollary 3.8.1. For every (t,\) € [0,T] x (0,+00) the indifference premium P(t,\;T)
satisfies the following PDE

P P
PPUNT) = 200X T) 4 Gl AT (1, 1. T)

1 2 2 a2P (T—t) 8P 2 )\ —P(t /\T) r(T—t)
- Tt NT) + e T 0T o ATy @0 g
+ 2<2 (t7 A)A {8A2 (t7 A’ ) + ,-)/e a)\ (t7 )\7 ) + ')/ﬁr(T_t) € )

with boundary condition P(T,\;T) = K, for each X € (0,00).

Proof. Tt follows from a straightforward combination of (3.38) and (3.43]). O
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Furthermore, we provide a probabilistic representation for the indifference price pro-
cess P, by a generalization of the Feynman-Kac formula. Indeed, if the function ¢ solves
the Cauchy problem ([3.38]), we can represent ¢ as an expectation via an extension of the

Feynman-Kac formula. More precisely, using the linear PDE for ¢ — 1, it is easy to see that
Bt A) — 1 =By [e ' Mo (7K _ 1)),

for every (t,A) € [0,T] x (0,+00). Thus, as a consequence, we have that
Bt A) =1+ (7K — 1By [e i 2],

where E; ) denotes the conditional expectation given A\, = A, for every (¢,A) € [0,7T] x
(0,+00). We outline that E; » [6_ 5 /\“d”} is the conditional probability that an individual
will survive until time T given that she/he is alive at time ¢. Hence, representing the function

¢ as
$(t, ) = VKR, y[em fi 2] 4 (1 —Eia[e AvC‘”]) = Eyx[e797],

for every (t,\) € [0,7] x (0,+00), the indifference price of the insurance company related to
a pure endowment contract can be written as

In (Et, A [eVGT] )
e @

Po=P(t,\T) =
for every (t,A) € [0,T] x (0, 4+00).

3.5.1 Indifference price for a portfolio of pure endowments

In this subsection, we evaluate a panel of insurance policies, extending the previous results.
Put another way, we no longer consider a single life insurance policy, we deal with a portfolio
consisting of pure endowments issued to a group of n € N individuals, who are all the same
age with indipendent and identically distributed times until death. We suppose that the loss
payable at the maturity T equals the amount K > 0, for each of the policyholders who have
not died yet. Thus, the value function is replaced by

V(n) (t7$7 )\7z) = sup Et,m,)\,z’ [ _ 677(){71:[70(7?)) ’
e AL (G)
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where Gg? ) = mK , with K > 0 constant, if there are exactly m individuals alive at time T’
out of the group of n insured individuals alive at time t. Analogously to (3.34)-(3.35), V(™
solves a final value problem, specifically it solves the following HJB equation

sup E?V(”) (t,z, A\ i) + n)\(V("_l)(t, x,1) — y ) (t,z, A, 2)) =0,

MR

for all (t,z,\,7) € [0,T) x R x (0,+00) x &, with the final condition

VO (T, 5, A, ) = —e—(e=nK),

for all (z,),i) € R x (0, +00) x &, in which V(© = V. Note that V(1) = V in (3.34). One
can easily shows that

VOt 2N 0) = V(t, 2, i)™ (¢, N),

where ¢(™ : [0, T] x (0, +00) — (0, +00) solves the linear PDE

g (n) o (n) 1 ) 262(;5(“) ) (n1) B
S ENHGENATT (G456 SS (5N -nA (6 N) = 6"V N)) =0,
(3.44)
for all (¢, \) € [0,T] x (0,+00), with final condition
¢M(T,A) = ek, (3.45)

for every A > 0, where ¢(©) = 1. Thus, the indifference price of n pure endowments P is

an implicit solution of the following equation
Vit,z,i) = VO (t,z+ P™, N0,

for every (t,z,\,i) € [0,T] x R x (0,+00) x &. Similarly to (3.43]), the reservation price of
the insurance company related to n pure endowment contracts is given by

m(¢wquD

() _ p(n) ;T =
Pt =P (t, A, 4 T) - ,},er(T*t) ’

for all (t,\,i) € [0,7] x (0,400) x &, where the function ¢(™ solves the Cauchy problem
(3.44)-(3.45).
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3.5.2 Indifference price for a term life insurance

Finally, we analyze the indifference price of another type of a mortality-contingent claim, the

so-called term life insurance that can be defined as follows.

Definition 3.5. A term life insurance contract with maturity T is a life insurance policy
where the amount is paid at time T if the policyholder dies before time T. The associated

payoff is given by the random variable
Gr = K1{<1y}, (3.46)
where K is a positive constant.

We determine the indifference price of a term life insurance policy whose payoff is given
by (3.46]) in the Markov-modulated model outlined in Section
The goal of the insurance company remains to maximize the expected utility of her/his

terminal wealth. Then, we consider the problem with the new kind of insurance derivative

sup E[ — er(ngf{)} .
IleA
Thus, the corresponding value function is given by
V(ta z, )\7 Z) ‘= sup Et,x)\,i |: - e_V(le:I_K):| ;
IIc A

for every (t,z,\,i) € [0,T] x R x (0,4+00) x £. Note that it is exactly the same defined in
(3.15), namely it equals the value function of the problem with the pure endowment. Thus,
proceeding as above, the HJB problem for V is given by

sup LIV (t,x, N, i) + )\(V(t, z— Ke 7T, i) —V(t,z, A, z)) =0,

TTeR

for all (t,z,\,i) € [0,T) x R x (0,400) x X, with final condition

V(T,z,\ i) = —e_W(m_K),

for all (x,\,i) € R x (0,+00) x &, where V is introduced in (3.14). Note that the HIB
equation corresponds to (3.34) with V (t,z,4) replaced by V(t,z — Ke "(T=% ), since the

insurance company has to pay the amount K at time T for the death of the policyholder
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—(T=1) at time t in order to cover this payout. One can

and so she/he needs to charge Ke
easily shows that

V(t,z, N i) = V(t,z,0)E(t, N),

where the function & : [0,7] x (0, +00) — (0, +00) solves the linear PDE

0 0 1 0 :
S (1N + G NAT(60) + LGN DS (1) = AR £t 0) =0, (3.47)

for all (¢, ) € [0,T] x (0,+00), with final condition
$(T,N) = %, (3.48)

for every A > 0. We note that this final value problem (3.47)-(3.48) is very similar to (3.38)-
(3.39)). Hence, the reservation price of the insurance company related to a term life contract

is given by

In (g(t, A))
et

for all (t,\,i) € [0,T] x (0,400) x &, where the function £ solves the Cauchy problem

E1D-(539).

P, =P(t,\4;T) =

3.6 Numerical experiment

In order to illustrate certain qualitative features of the model that are difficult to verify
analytically, we present some numerical results based on the theoretical framework developed
previously. In particular, we aim to investigate how the regime-switching and the stochastic
hazard rate affect the decisions of the insurance company, for both optimization problems,
with or without liabilities. Precisely, to analyze such dependency, we compute the optimal
investment strategy, the value functions and the indifference price for a pure endowment
policy, numerically.

To simplify the analysis, we provide a toy example with only two economic regimes: we
suppose that the Markov chain Y has only two states that can be interpreted as the ’good’
and 'bad’ economic regimes, respectively. For instance, the good regime could represent a
market in economic boom whereas the bad regime could be a market in economic recession
in which security prices are expected to fall. We also call these two regimes of the market

’bull” market and ’bear’ market, respectively.
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Let us make some assumptions and fix some parameter values. We start with the infinites-
imal generator of the 2-state Markov chain that describes the rate our Markov chain moves
between states: specifically g;; indicates the average of number of switches in an unit time,
from state 4 to j. Since empirical observations of the market suggest that it is more likely
to pass from a good economic state to a bad one than the opposite, we choose g2 > ¢o1; in
particular, we take gi2 = 0.2 and ¢o1 = 0.1.

For the sake of simplicity, we consider that functions u, o, K1 and K5 depend only on

the Markov chain. Thus, by (1.5]), the risky asset price dynamics is given by
dS; = S;_ {,uidt + O'ithS + KLidNtl — K27Z'dN152}7 So >0, i=1,2,

where p;, 0, K1; and Ko ; denote the expected rate of return, the volatility and the jump
coefficients in the i-th regime, for ¢ = 1,2. By way of example, we set the initial value of
the stock price to be Sp = 1 and the short-term interest rate to be r = 5%. As shown by
French et al. [52], the appreciation rate of the underlying risky asset is higher in a growing
economy, so we assume that puy > uo. Moreover, in each economic regime, the return of the
risky asset should be higher than that of the risk-free rate, as required also in our modeling
framework. Further, we suppose that volatility is lower in a good economy, i.e. 01 < o3,
because Hamilton and Gang [57] find that economic recessions represent the main factor
that drives fluctuations in the volatility of stock returns. Furthermore, let us assume that

ot g T K2 g " Indeed, according to French et al. [52], even though the expected market

g7 P
risk premium (defined as the expected return on the stock minus the risk-free interest rate)

is usually higher during a ’bear’ market than during a 'bull’ market, the volatility of the
stock offsets the effect of this quantity and, as a consequence, the ratio ’expected excess
return/return variance’ is greater when the economic conditions are good. Regarding the
jump terms, we consider two homogeneous Poisson processes N! and N? with constant
intensities @1 = 0.3 and O = 0.4. We observe, simulating trajectories of the stock price S,
that the higher are the values of function K7, the higher is the price. On the other hand, any
increase in the coefficient Ky leads to smaller prices for the risky stock. Moreover, we note
that large values of K» cause dizzying upward or downward peaks in the stock behavior over
time, even though the intensity ©- is tiny. Therefore, since in a market with good economic

conditions stock prices are rising or are expected to rise, we suppose that K11 > K2 and



Regime % o Ky | Ky
e1 (good) | 0.15 | 0.15 | 0.15 | 0.3
ez (bad) | 0.12 | 0.25 | 0.1 | 0.35

Table 3.1: Simulation market parameters.

K271 < K272.
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On the basis of all these considerations, we fix the parameter values as summarized in

Table B.11

Since the underlying market is a continuous time model, we need to discretize it by Monte

Carlo simulation. The time horizon is taken to be T' = 10 years and we discretize time with

a total of 1000 time steps (that means that we take into account about two updates of S

every workweek), each of width At = 15).

In order to get an idea of our model, we plot three trajectories of the risky asset S in

Figure We notice that the stock price exhibits jumps at switching times of the Markov

chain. Moreover, the risky asset price is greater during a ’bull market’ rather than during a

"bear’ market and it, as it is reasonable.

Stock S

-,

Time t

Figure 3.1: The effect of the regime-switching on the stock price S.

10

Markov chain X

Next, we compute the optimal investment strategy based on Proposition[3.4] The aim is to

investigate how it is sensitive to economic regimes during the trading period. In Figure|3.2| we
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plot the optimal dynamic portfolio given by (3.27)), as a function of time. We clearly note that

Optimal investment strategy I1*
o
Markov chain X

Time t

Figure 3.2: The effect of regime-switching on the optimal strategy II*.

when the market state changes, the company opts for a different investment portfolio, since
a regime switch leads to a sudden change in the optimal strategy. Further, we note that in a
good economy (namely when the stock price presents a high rate of return, small fluctuations
and a few peaks) the amount invested in the risky asset is always positive and increasing
with respect to time. Thus, when the good regime is in force, the amount invested in risky
asset grows up. Instead, if the market scenario is bad, the strategy is negative, meaning that
when the economic conditions are bad, the insurance company prefers to short-sell the risky
asset.

After that, we take into account a pure endowment policy and we investigate its indif-
ference price, studying the effect of the hazard rate over the years.

In this numerical example of our proposed model, we assume that the hazard rate follows
a mean-reverting Brownian Gompertz model, similar to the one proposed in Milevsky and

Promislow [78], i.e.

)\t = )\0661t+62Zt7 C1, C2, )\0 > 07

dZ;y = —mZidt + AWZ, Zy=0, m >0,

with ¢; = 0.083, co = 0.1, A\g = 0.01 and m = 0.5. Let us observe that this choice corresponds
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to (3-5)), considering (1 (¢, A) = ¢1 + mIn(Xg) + 3¢5 — mIn(A) + met and Go(t, A) = coA, for
all (¢, A). This model ensures that the hazard rate is kept positive and does not explode on
[0, T7], since it is an exponential function that depends on a stochastic factor Y with a mean
reversion behavior.

In this context, based on the results obtained above, we compute the indifference price
of an insurance company related to a pure endowment contract that pays K = 1 (without

loss of generality) if the policyholder is still alive after 10 years from purchaising the policy.

Thus, the payoff is easily given by the random variable

Gr =11y,

recalling that 7 represents the remaining lifetime of the insured.
Now, we briefly analyze the value function V related to the company that simply invests
her/his wealth in the market and the value function V related to the company who also

issues a pure endowment contract.

0 T ‘ — 0 aor—
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Figure 3.3: Optimal value at time 0 as a function of wealth when the economic regime is
i = 1 (solid line) or ¢ = 2 (dashed line). Left panel: the pure investment problem. Right
panel: the investment problem with the insurance contract.

Figure [3.3|illustrates the value functions V' (left panel) and V' (right panel) at time ¢ = 0,
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with respect to the initial wealth x, associated to the optimal strategy computed above, when
the market state is good (solid line) or bad (dashed line). The two panels are different but
exhibit a similar behavior: at the initial time, the optimal value functions are increasing with
respect to wealth, in both regimes. It is worth noting that values reached by functions V and
V are always higher in a ’bull’ market, as it is reasonable. Furthermore, we can outline that
regime-switching influences our market model and its effect is tangibile also for the optimal
value functions: different economic conditions imply different value functions. We highlight
that this gap becomes greater when the company, beyond investing in financial assets (risky
and not), also writes a life insurance contract.

We conclude this section, investigating the indifference price of a pure endowment policy,
in order to highlight the dependence of a life insurance contract on mortality force and time
to expiration. In view of the probabilistic representation provided above, the indifference

price charged by the insurance company is determined as

In (1 + (7 — B[ Mdv])

Pt = P(tv )‘7T) = ’)/ET(T_t)

: (3.49)

for every (¢,\) € [0,7] % (0, +00). Using the standard Monte Carlo technique (with parameter
M = 5000) to evaluate expectations with respect to the probability measure P, we employ
this formula.

From expression , we note that the price is a function of time and hazard rate. It is
easy to see that economic regimes do not affect the price which instead strongly depends on
the rigk aversion coefficient and the risk-free interest rate. In particular, it is easy to see that
the indifference price increases as risk aversion increases and, at the same time, it decreases
as long as the interest rate increases. Instead, the dependence on the mortality intensity A
is not explicit in the indifference price: thus we perform a sensitivity analysis in order to
analyze numerically the impact of the hazard rate on the price. First of all, we study the
effect of changing initial mortality rate on the indifference price charged at the beginning of

the trading period.
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Figure 3.4: The effect of the hazard rate on the indifference price at time ¢ = 0.

Figure [3.4] shows the behavior of the indifference price Py charged by the company at
the initial time ¢ = 0, with respect to the initial hazard rate Ag. We observe that when the
mortality intensity is low its premium is greater. In other words, larger force of mortality
decreases the indifference price, as it is reasonable to expect for such type of life insurance
treaties. This is consistent with common intuition as an endowment payout is less likely,
under an higher mortality rate.

Finally, we investigate the evolution of the indifference price over the time. For the sake
of simplicity, we assume a constant mortality rate (such as in some numerical experiments
of Moore and Young [80]). In this framework, we calculate the indifference premium related
to a pure endowment policy for our insurance company endowed with exponential utilities
preferences.

In Figure we plot the indifference price as a function of time to maturity, for three
different constant hazard rates: A = 0.01 (solid line), A = 0.05 (dashed line) and A = 0.1
(dot line).
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Figure 3.5: The effect of the hazard rate on the indifference price for several different deferral
periods.

It is evident that the higher is the hazard rate, the lower is the indifference price for
a pure endowment policy, whether the market is in a good regime or not; in other terms,
the price is more sensitive to variations of deferral periods, when the population mortality
intensity is more pronounced. Moreover, it is worth emphasizing that the indifference price is
a decreasing function of time of maturity, namely the premium is bigger for shorter deferral

periods, as usually happens.



Conclusions

This thesis addresses a few optimization problems related to insurance, analyzing three
different situations often faced by an insurance company.

Firstly, we use the forward performance criteria in the well known optimal investment and
reinsurance problem. Considering forward utilities to describe the behavior of an insurance
company allows for a significant flexibility in incorporating changing market opportunities
and agents’ attitudes in a dynamically consistent manner. Our setting allows for mutual de-
pendence between the insurance and the financial markets. We construct a class of forward
dynamic exponential utilities which are obtained by penalizing the standard utility function
with a stochastic process that accounts for the riskiness related to insurance claims which are
not covered by reinsurance, and the financial market, e.g. via the Sharpe ratio. Consequently,
we solve the corresponding utility maximization problem using the Bellman optimality prin-
ciple. We further characterize the corresponding optimal portfolio strategy and the optimal
level of proportional reinsurance. This approach allows us to obtain the value function in
closed form and consequently, to characterize explicitly the optimal portfolio strategy and
the reinsurance. Although the approach of forward utilities is, nowadays, well known in the
literature in the purely financial framework, the major contribution of this part of the thesis
is to extend the analysis to the reinsurance problem, which is not a trivial extension of the
existing literature, in particular in presence of a common factor process. Finally we discuss
a dynamic version of the certainty equivalence for forward performance criteria and provide
a comparison with the standard backward setting, along the optimal investment-reinsurance
strategies. This study of the optimal investment and reinsurance problem in the forward
setting can be completed by including stochastic risk tolerance as, e.g., in Zitkovic [67], and
by considering for example the pricing of the reinsurance contract under the indifference

pricing approach. This is left to future work.
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In our second problem, we consider other two standard optimization settings in actuarial
science, under the constraint that the terminal surplus at a deterministic and finite time
T follows a given distribution. This approach has the important advantage to being able
to compute risk measures which are typically based on the distribution of the surplus at
a future date, and hence to compute the capital required by, e.g. Solvency regulations. We
consider first the case where the reinsurance is allowed to pay dividends. Here the optimal
strategy depends on the objective function, that is either the value of expected discounted
dividends (to be maximized) or the ruin probability (to be minimized). In both cases the
main result states that the optimal strategy is decided at the initial time. We prove that
the optimal strategy in both cases should be decided at time zero and that the strategy
leading to the maximal discounted dividend value starts with high payments in the very
beginning and decreases approaching the time horizon, whereas the strategy minimizing
the ruin probability behaves in an opposite way. Since the dividend strategy acts solely on
the drift of the wealth, we can compare different strategies path by path and thus we can
consider updates at discrete points in time and continuously in time. Next, we analyze the
ruin minimization problem for a company that purchases a reinsurance contract for a pool
of insured or a branch of business and aims to achieve a target terminal distribution. Since
reinsurance controls affect both the drift and the volatility of the wealth process, a pathwise
comparison is not possible anymore and an optimal strategy may not even exists under
certain scenarios. In the two-period case, we are still able to obtain an explicit solution with
probabilistic methods. However, the problem becomes immediately more complicated when
we increase the number of periods, even if we restrict to deterministic strategies. We plan
to work on the n-period model for the reinsurance setting and we will also generalize to the
continuous time model, although the two period case is the most realistic from a practical
viewpoint, since reinsurance contracts are usually difficult to be updated before maturity.

The third project concerns the indifference pricing of mortality contingent claims in a
stochastic factor model accounting for a market behavior affected by long-term macroeco-
nomic conditions described by a continuous time Markov chain, possible jumps in the risky
asset price dynamics and stochastic hazard rate. We prove verification results for the value

functions of the problems with and without the insurance liability, via classical solutions to
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a linear PDE and a system of ODEs by applying the classical stochastic control approach
based on the HJB equation. In addition, we provide some characterizations of the indifference
price of a pure endowment: via a classical solution to a linear PDE, as the solution of a final
value problem and in terms of its probabilistic representation by means of an extension of
the Feynman-Kac formula. We also generalize these results, characterizing the indifference
price for a group of insurance contracts and for a term life insurance. Finally, we perform a
sensitivity analysis in case of a two-state Markov chain to highlight some interesting features
of the indifference price, e.g. under higher mortality, the indifference premium of such type of
contract is lower, as it is reasonable since an endowment payout is less likely in that circum-
stance. The evaluation of more complex insurance products, such as equity-linked policies,

possibly under different utility preferences, is left for future research.
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