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SUMMARY 

Under fast viewing conditions, the visual system extracts salient and simplified representations of 

complex visual scenes. Eye movements optimize such visual analysis through the dynamic sampling 

of the most informative and salient regions in the scene. However, the definition of saliency, as well 

as its role in natural active vision, is still a matter of discussion. The present thesis is based on a recent 

constrained maximum-entropy model of early vision (Del Viva et al., 2013), that deals with the 

problem of the extraction of biologically relevant information from a large flux of input data in the 

shortest possible time for survival purposes. According to this model, the visual system produces an 

early saliency map of a visual scene selecting a limited number of local features, based on criteria of 

maximal entropy coupled with strict limitations on computational resources. The model, applied to 

natural images, extracts a set of optimal-information carrier features as candidate “salient” features. 

The present thesis includes four different studies, which aim to assess the visual saliency of these 

optimally informative visual features, adding further evidence that confirms the predictions of the 

reference model. Particularly, we are interested in understanding the role of optimal visual features 

in the creation of a bottom-up saliency map that the oculomotor system could use to drive eye 

movements toward potentially relevant locations, therefore, ultimately, in their contribution to image 

reconstruction. In our experiments, the results obtained with optimal features are compared to those 

obtained with other features that do not meet the optimality criteria requested by the model, therefore 

discarded and considered non-optimal. Considering that luminance contrast has a central role in 

determining saliency in fast vision, we also compare the effects induced by optimal versus non-

optimal features to those obtained with features of different luminance.  

Before describing our experiments, in Chapter 1, the main properties of visual analysis with some 

notes about eye movements are described. Then the limitations of our visual system and the resulting 

need for data reduction in fast vision are discussed. Finally, Chapter 1 is mostly dedicated to the 

presentation of the reference model of early vision, with an extensive discussion of the main 

computational and behavioral results found in previous works.  

After that, each chapter is dedicated to the presentation of a study. Although all the studies share the 

same final objective, each one has its own rationale and a specific research question to answer. 

Chapter 2 presents the literature about the saliency map, and then describes our Study 1 involving 

perceptual and eye movement tasks. In this study, optimal features were presented in isolation, to 

investigate whether they are considered visually more salient than other non-optimal features, even 
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in the absence of any meaningful global arrangement and semantic context. In Chapter 3, the topic of 

cover and overt attention has been summarized, and then Study 2 is presented, in which we implicitly 

tested the bottom-up saliency driven by optimal features by engaging participants in covert attentional 

and gaze-orienting cued tasks without explicitly requiring them to pay attention to stimulus saliency. 

Chapter 4 firstly discusses some saccades' properties and how visual distractors influence their 

trajectories. Then Study 3 is presented, in which we compared the effects on saccades trajectories 

produced by optimal vs. non-optimal features used as distractors in a saccadic task, considering the 

magnitude of curvature as a measure of feature saliency. Finally, Chapter 5 described the problem of 

occluded objects in real scenes and how our visual system can recognize the whole image based only 

on little fragmented information. Our Study 4 presented here, explore whether optimal features also 

play a significant role in more natural settings, investigating the contribution of optimal local 

information contained in a few visible fragments to image discrimination in fast vision. Chapter 6 is 

finally dedicated to the discussion of the results obtained in our studies. 

Overall, the results show that optimal features are considered visually salient, they can automatically 

attract attention, they interfere with the path of saccades, and they partially contribute to image 

discrimination. On the other end, non-optimal features do not produce the same effects. These 

findings suggest that optimally informative local features get preferential treatment during fast image 

analysis and automatically guide attention and eye movements to create a bottom-up saliency map.  

Note that, according to the reference model, optimal features represent a compromise between the 

amount of information they carry about the visual scene and the cost for the system to process them; 

whereas non-optimal features used in our experiments are individually the most informative, but their 

use also implies large computational costs. Our findings then suggest that not only the amount of 

information but also the need of saving computational resources takes a significant role in shaping 

what the visual system considers to be salient. 

Very interestingly, all the effects found with optimal features are similar to those obtained with high-

luminance features, suggesting that the saliency determined by information maximization criteria 

produces effects comparable to those due to luminance-based saliency. 

Let me also mention that, in our studies, we employ some novel paradigms that may be useful tools 

to test the relative saliency of different stimuli in future research. 

To conclude, the findings presented in this thesis suggest that visual saliency may be derived naturally 

in a system that, under the pressure of fast visual analysis, operates maximum information 

transmission under computational limitation constraints, as predicted by the reference model.
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1. INTRODUCTION 

1.1 Visual analysis 

1.1.1 The visual system: from retinal processes to cortical structures  

Human visual perception is an active process that can be defined as the ability to receive and interpret 

the information that our eyes capture. Visual processing begins in the retina, the innermost light-

sensitive layer at the back of the eye, consisting of several layers of interconnected neurons (Figure 

1A; Baylor, 1987; Mayer & Dowling, 1988). Photoreceptors, located in the outermost layer, absorb 

light and convert it into a neural signal, an essential process known as phototransduction (for a review, 

see Luo et al., 2008). There are two main types of photoreceptor cells, each differently contributing 

to the formation of the visual image. Rods are very sensitive to low-luminance levels as well as to 

luminance variations, allowing good vision in dim conditions (scotopic vision), but they are not 

sensitive to color and present a low spatial resolution. Cones are much less sensitive to light and only 

function in bright conditions (photopic vision), have a high spatial resolution, and are responsible for 

the perception of color. Primates have only one type of rod but three kinds of cone photoreceptors, 

distinguished by the range of wavelengths to which they respond: the L (long-wave), M (medium-

wave), and S (short-wave) cones. The rods constitute the majority of the receptors in our retina, and 

they are mainly concentrated in the periphery, while the density of cones peaks in the center of the 

retina (fovea) and rapidly decreases away from it (Figure 1B; Rodieck, 1998). 

 

Figure 1. Neurons in the human retina. (A) Representation of retinal layers. Figure adapted from 
(Cavaletti & Marmiroli, 2009). (B) Distribution of photoreceptors in the retina. Distribution of 
rods and cones plotted as a function of the distance from the center of the fovea. Figure adapted from 
(Østerberg, 1937). 
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Photoreceptors signals are synaptically transmitted to bipolar cells, which in turn connect to ganglion 

cells in the innermost layer. The site where axons of ganglion cells converge is devoid of 

photoreceptors and thus corresponds to a blind spot in the visual field of each eye. In addition to this 

vertical pathway, the retinal circuit includes many lateral connections provided by horizontal cells 

and amacrine cells (Figure 1A; Cavaletti & Marmiroli, 2009). 

Retinal ganglion cells are the output neurons of the retina, and their axons form the optic nerve from 

which the central geniculo-cortical pathway starts (Figure 2; Ferster & Lindström, 1983; Garey & 

Powell, 1971; Spatz, 1979). The optic nerve extends to a midline crossing point, the optic chiasm. 

Beyond the chiasm fibers from the temporal hemiretinas proceed to the ipsilateral hemisphere; fibers 

from the nasal hemiretinas cross to the contralateral hemisphere. This partial decussation of fibers 

ensures that all the information about each hemifield is processed in the visual cortex of the 

contralateral hemisphere.  

 
Figure 2. Geniculo-cortical pathway. Visual pathway from the retina to the primary visual cortex. 

Axons then join in the optic tract that extends to the lateral geniculate nucleus (LGN) of the thalamus, 

consisting of six layers, each receiving input from either the ipsilateral or the contralateral eye. The 

inner two layers are magnocellular layers (M-cells), while the outer four layers are parvocellular 

layers (P-cells) (Kaplan et al., 1990; Valberg & Lee, 1992). M-cells are larger and have a faster 

conduction speed than P-cells (Maunsell et al., 1999), and they respond best to achromatic stimuli of 

low spatial and high temporal frequencies, whereas P-cells respond best to chromatic stimuli of high 

spatial and low temporal frequencies (Davis et al., 2006). The LGN neurons then project through the 

optic radiation to the primary visual cortex (V1), located in the occipital lobe. 
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1.1.1.1 Properties of the primary visual cortex 

V1 has a very well-defined map of the spatial information in vision (retinotopic map; Holmes, 1918). 

The topography of visual input is largely conserved along the ascending projections, while it is not 

so for the metric relationships. Namely, two close regions in the visual scene are projected to close 

areas in the visual cortices, though their distance is transformed depending on their eccentricity with 

respect to the fovea: the projection of the foveal area is magnified with respect to the peripheral areas 

(cortical magnification; Cowey & Rolls, 1974; Daniel & Whitteridge, 1961; Slotnick et al., 2001). 

The primary visual cortex is divided into six functionally distinct layers, of which the IV receives 

most of the visual input from the LGN (Douglas & Martin, 2007; Rockel et al., 1980; Shepherd, 

2004). M- and P-cells of the LGN send information to different sublayers of layer IV. The 

parvocellular pathway allows the perception of fine details, colors, and large changes in brightness. 

The magnocellular pathway carries information about large, fast things (low spatial frequency, high 

temporal frequency), it is colorblind and seems to be crucial for movement analysis (Nassi & 

Callaway, 2009; Pokorny, 2011). 

The signals from the two eyes are kept separate in layer 4, whereas below and above this layer, most 

cells receive information from both eyes (Hubel & Wiesel, 1962, 1968). These binocular neurons 

integrate the signals from both the right and left eyes and create the perception of depth, contributing 

to the creation of stereopsis from binocular disparity (Qian, 1997; Scholl et al., 2013). 

A main characteristic of the visual cortex is its organization into columns of specialized neurons: cells 

with similar functional properties, such as orientation selectivity and ocular dominance, are located 

close together in columns (Hubel & Wiesel, 1959, 1962, 1963). 

V1 sends its main output to a set of higher-order visual areas (V2, V3, V4, V5), also organized as 

neural maps of the visual field (Felleman & Van Essen, 1991; Hubel & Wiesel, 1965; Maunsell & 

Newsome, 1987). Then, cortical processing of visual information continues mainly through two 

major pathways (Goodale & Milner, 1992); a ventral pathway toward the temporal lobe carries 

information about what the stimulus is, a dorsal pathway into the parietal lobe (and then to the frontal 

lobes) carries information about where the stimulus is, information that is critical for guiding 

movement. 
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1.1.1.2 Receptive fields along the visual pathway 

In the visual system, a neuron’s receptive field represents a small window on visual space. Receptive 

field properties change from layer to layer along the visual pathway (Figure 3; Nassi & Callaway, 

2009).  

The receptive fields of retinal ganglion cells have a center-surround organization (on-center and off-

center; Figure 3A – left panel; Kuffler, 1953), leading to high sensitivity to borders (for a review 

see, Kim et al., 2021). Neurons in the lateral geniculate nucleus have similar receptive fields. These 

cells respond optimally to an appropriately placed spot of light of just the right size (Figura 3A– 

right panel). 

Receptive field changes in the primary visual cortex, having an elongated structure (Hubel & Wiesel, 

1959, 1962, 1968; Hubel, 1982). This structure holds an important mechanism in the brain’s analysis 

of visual form. Indeed, the key property of these neurons is the selectivity for the orientation of 

contours. Hubel and Wiesel classified V1 cells into simple and complex cells (Hubel & Wiesel, 1959, 

1962). The receptive fields of simple cells, receiving afferents from various LGN cells (Movshon et 

al., 1978b), are subdivided into antagonistic regions separated by parallel straight lines (Figure 3B – 

left panel). The optimal stimulus, either a bar or edge, was easily predictable from the geometry of 

the receptive field, so a stationary line stimulus worked optimally when its boundaries coincided with 

the boundaries of the subdivisions for this cell type (Figure 3B – right panel). Complex cells have 

linear receptive fields with specific orientation axes too, but their receptive fields are larger and do 

not have well-defined excitatory and inhibitory zones (Figure 3C – left panel), so the exact location 

of the stimulus does not appear essential. It has been suggested that complex cells are built up from 

many simple cells (Hubel & Wiesel, 1962; Movshon et al., 1978a). Some complex cells are also 

direction-selective, in the sense that they respond only when the stimulus moves in one specific 

direction (Figure 3C – right panel). In V1, the different cortical cells that receive their afferents 

from the same point of the retina have similar receptive fields but different orientation axes. In this 

way, for each point of the retina, all the orientation axes are presented in the cortex. 

The size of a receptive field varies both according to its eccentricity (its position relative to the fovea) 

and the position of neurons along the visual pathway (Kandel et al., 2013; Nassi & Callaway, 2009). 

Receptive fields with the same eccentricity are relatively small at early levels in visual processing 

and become progressively larger at higher levels. The size of the receptive field is expressed in terms 

of degrees of visual angle (the entire visual field covers nearly 180°). In the early stages of visual 

processing, the receptive fields near the fovea are the smallest. The receptive fields for retinal 
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ganglion cells that monitor portions of the fovea subtend approximately 0.1°, whereas those in the 

visual periphery reach up to 10°. V1 neurons are commonly <1° in the fovea, while neurons in the 

peripheral field representation of some extrastriate visual areas may have receptive fields >100° 

(Smith et al., 2001; Zeki, 1978). 

 

Figure 3. Receptive fields from the retina to V1. (A) Receptive fields of retinal ganglion cells 
and LGN cells. Left panel: Circular receptive fields characterized by a central inhibitory (center-off) 
or excitatory (center-on) zone. Right panel: activation of an on-center cell when a spot of light is 
turned on in its different region. Figure adapted from (Kim et al., 2021). (B) Receptive fields of 
simple V1 cells. Left panel: simple cell’s receptive fields built in the cortex by collecting responses 
from LGN cells. Right panel: activation of a simple cell receptive with excitatory (light grey) and 
inhibitory sub-regions (dark grey). The horizontal lines indicate the onset and offset of stimulation; 
the vertical lines indicate nerve impulses. Figure adapted from (Hubel, 1982). (C) Receptive fields 
of V1 complex cells. Left panel: complex cell’s receptive fields built from many simple cells. Right 
panel: complex cells are not fussy about the stimulus position, as long as it falls somewhere inside 
the receptive field, and some respond to specific motion direction. Figure adapted from (Hubel, 1982). 
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1.1.2 Visuo-oculomotor system and eye movements 

For the purpose of this thesis, it is also important to mention that some subsidiary projections of visual 

information, separate from the main ascending thalamocortical pathway, also exist. Among these, the 

retinotectal pathway (Figure 4), passing through the Superior Colliculus (SC), in the midbrain, is 

particularly relevant for active vision (for a review, see Munoz & Everling, 2004). Indeed, the SC 

plays a major role in the initiation and control of eye movements, and it is traditionally associated 

with reflexive orienting behaviors. This view, which has been increasingly debated recently (Hall & 

Moschovakis, 2003), is supported by the observation that the SC in humans receives direct visual 

input from the retina and directly projects to the brainstem reticular formation that in turn controls 

the oculomotor motor-neurons, completing a subcortical independent loop (Sadun et al., 1986). This 

pathway continues to the pontine formation in the brain stem and then to the extraocular motor nuclei. 

SC also receives information from other cortical areas, particularly the primary visual cortex, the 

posterior parietal cortex and frontal eye fields (Cerkevich et al., 2014; Glimcher, 2001; Lock et al., 

2003; Munoz & Everling, 2004; Schiller, 1984). The cortical input from V1 to SC could be functional 

to the creation of the visual saliency map. Indeed, as will be discussed in the following chapters, 

recent data support the hypothesis that, in primates, V1 creates a saliency map from visual input and 

then the exogenous guidance of attention is realized by the SC, which can select the most salient 

location as the target of a gaze shift (Zhaoping, 2002, 2016). 

 

Figure 4. Brain saccadic network. Figure adapted from (Munoz & Everling, 2004). 
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Humans and non-human primates explore their visual surroundings by means of rapid shifts of eye-

gaze, or saccades, in order to align the higher acuity region of the retina with regions of interest in 

the scene. Therefore, the nature and the quality of the visual information in input depend crucially on 

the direction of our gaze. In turn, the mechanisms that orient the eyes in space rely on visual input as 

well as on higher-level cognitive factors (e.g., the intention to look for something in particular). The 

decision of when and where to make a saccade is behaviorally important and is usually made in the 

cerebral cortex. Such intimate interaction between a highly sophisticated visual system and an 

efficient oculomotor system has evolved, for primates, into the unique skills of active vision. 

When we explore a new visual scene, or when some changes occur at a given location of our visual 

field, it is of primary importance to select a maximally informative visual stimulus as the target for 

the next saccade. Maximization of the rate of incoming visual information is intuitively a main 

principle to drive efficient oculomotor control (Najemnik & Geisler, 2005, 2008). Trying to achieve 

this goal by simply increasing the rate of eye movements would not be an efficient strategy, though, 

since useless or wrong saccades have a cost. In fact, only poor visual information can be acquired 

during a saccade, due to the phenomenon of saccadic suppression. The accurate selection of the target 

for gaze re-direction is therefore crucial for vision. In other terms, in ecological situations, an 

important decision has to be taken regarding the relevance of a particular visual stimulus among many 

others in the scene. 

In the next introductory paragraphs, we will discuss the problem of which parts of the visual scene 

have to be prioritized for fast and efficient image reconstruction in the brain, which is the starting 

point of this thesis. 

1.2 Fast vision: visual system limitations and the need for data reduction 

The visual system needs to analyze the visual scene efficiently in a short time – in the order of ten 

milliseconds – as fast image recognition is crucial for survival (Hare, 1973). A huge amount of 

information from the external world is potentially available, at any moment, to the visual system, thus 

the latter needs to quickly extract the most relevant elements for initiating adaptive behaviors. In fact, 

rapid and reliable detection of visual stimuli is essential for triggering autonomic responses to emotive 

stimuli and for orienting towards interesting or potentially dangerous stimuli (Hare, 1973). Previous 

studies demonstrated that the speed of visual processing is very high; about 100 ms for animals and 

face processing (Kirchner & Thorpe, 2006), and only 30 ms for images showing affective contents 

(Whalen et al., 1998). 
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The amount of information that needs to be processed in that limited amount of time is significant. It 

has been estimated that the capacity of transmission of photoreceptors in the retina is about 20 Gb/s 

for each eye, and it drastically decreases at the level of optic nerve fibers (about 4 Gb/s) with a final 

neural ratio of nearly 124:1 (Echeverri, 2006). 

These data must be joined with the limits on the brain’s capacity to process visual information. A 

considerable amount of energy is indeed required to create an accurate representation of the visual 

scene in the shortest possible time (Lennie, 2003; Levy & Baxter, 1996) largely due to the rate at 

which neurons produce spikes (Attwell & Laughlin, 2001). All this evidence highlights the existence 

of an early information bottleneck (Atick, 1992). 

Therefore, it is widely believed that the visual system operates a strong data reduction at an early 

stage of processing (Attneave, 1954; Barlow, 1961), by creating a compact summary of the most 

relevant information in the input. These relevant features can be then handled by further levels of 

processing.  

1.3 Some models of early visual processing 

Early models of fast vision describe the initial stages of visual information processing as the 

extraction of a ”sketch” based on a limited number of ‘‘salient” features’ (Marr, 1982; Morgan, 2011). 

Sketches, containing a drastically reduced amount of information, are then simplified but informative 

representations of visual scenes. 

Past models of efficient coding of information in early vision were based on reducing redundancy 

(Atick, 1992; Barlow, 1961; Olshausen & Field, 1996, 2004). In the visual system, the images that 

fall upon the retina when viewing the natural world have a relatively regular statistical structure, 

which arises from the contiguous structure of objects and surfaces in the environment (Simoncelli & 

Olshausen, 2001; Simoncelli, 2003). Field (1987) has shown that the receptive field properties of 

simple-cells in primary visual cortex (V1) are well suited to this structure, in that they produce sparse 

representations (Field, 1987). Based on these findings, Olshausen and Field proposed that a coding 

strategy that maximizes sparseness is sufficient to account for all properties of receptive fields of 

simple cells in mammalian primary visual cortex (Olshausen & Field, 1996, 2004). They showed that 

a learning algorithm that attempts to find sparse linear codes for natural scenes will develop a 

complete family of localized, oriented, bandpass receptive fields (Figure 5). The resulting sparse 

image code provides an efficient representation for later stages of processing because it possesses a 

higher degree of statistical independence among its outputs. 
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Figure 5. Sparse coding of natural images (Olshausen & Field, 1996, 2004). On the left is 
represented a set of receptive fields that are learned by maximizing sparseness in the output of a 
neural network. Each patch shows the receptive field of a model neuron within a 12x12 pixel image 
patch. The network was trained on approximately half a million image patches extracted from whole 
images of natural scenes. The receptive fields that emerge from training are spatially localized, 
oriented, and bandpass (i.e., selective to a spatial structure at a particular scale), similar to cortical 
simple cells. On the right is represented an example image patch and its encoding by the sparse coding 
network. The bar chart directly above the image patch shows the pixel values contained in the patch. 
These input activities are transformed into a much sparser representation in the output of the network, 
shown in the bar chart at the top. The value of an output unit corresponds (roughly) to the degree of 
similarity between its receptive field and the input image. As the receptive fields are matched to the 
structures that typically occur in natural scenes, an image can usually be fully represented using a 
small number of active units. Figure retrieved from (Olshausen & Field, 2004). 

This model, as well as other model based on efficient coding of information by reducing redundancy 

(Atick, 1992; Barlow, 1961; Olshausen & Field, 1996), take an approach based on preserving the 

majority of the available information and do not lead to large reduction factors, with the extraction 

of few salient features.  

On the other end, other models of visual feature extraction are not focused on data reduction, whereas 

they are generally based on the a-posteriori knowledge of specific physiological details (Marr & 

Hildreth, 1980; Morrone & Burr, 1988; Watt & Morgan, 1983). 

For example, Marr and Hildreth (1980) proposed a theory of edge detection starting from the evidence 

that changes in natural images occur over a wide range of scales, thus any single filter can be 

simultaneously optimal at all scales. A way of dealing separately with the changes occurring at 

different scales is taking local averages of the image at various resolutions and then detecting the 
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changes in intensity that occur at each one. Therefore, to realize this idea, they first choose as the 

optimal filter a Gaussian filter, localized in the spatial domain and with limited bandwidth in the 

frequency domain. The first step in this model is to filter the image with an appropriate Gaussian 

filter (Figure 6A and 6B). Secondly, to detect the intensity changes, authors considered that, 

wherever an intensity change occurs, there will be a corresponding peak in the first directional 

derivative, or equivalently, a zero-crossing in the second directional derivative of intensity. Therefore, 

the task of detecting these changes can be reduced to that of finding the zero-crossings of the second 

derivative D2 of intensity, in the appropriate direction by means of the Laplacian Ñ2 operator, which 

allows for finding the edges of the image (Figure 6C and 6D). To detect changes at all scales, it is 

necessary only to add other channels, and to carry out the same computation in each. Intensity changes 

in images arise from surface discontinuities, reflections, or illumination boundaries, and all these 

objects have the property of being spatially localized. For this reason, the zero-crossing segments of 

the different channels do not appear to be independent, and rules can be deduced to combine them in 

an image description. In particular, to combine information from different channels, it is essential to 

ensure that the zero-crossings from independent channels of similar size coincide (spatial coincidence 

assumption). If this were not the case, they would probably be due to distinct physical surfaces or 

phenomena. Therefore, coincidence of zero-crossings across scales provides the basis for a schematic 

description of the image (the “primal sketch”). It follows that the minimum number of channels 

required is two, and that, assuming that the two channels are reasonably separated in the frequency 

domain, and their zero-crossings agree, they can be taken to indicate the presence of a border in the 

image. 

 

Figure 6. Example of edge detection from Marr and Hildreth model (1980). The image in (A) 
has been filtered in (B) with the Ñ2G filter (zero is intermediate grey), then in (C) positive values are 
shown with white and negative with black, and finally in (D) only zero-crossing segments appear. 
Figure adapted from (Marr & Hildreth, 1980). 
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A critique of this model has been raised by Morrone and Burr (1988), arguing that it is designed to 

detect edges, not lines, even though these are salient features too. The authors claimed that the 

requirement for the coincidence of zero-crossings across scales eliminates the inappropriate marking 

of lines, which occur at different positions at different scales, but can also eliminate real edges under 

certain conditions. One example is when two edges occur nearby: zero-crossings at larger scales will 

occur midway between the edges. Their model of feature detection is defined “phase-dependent 

energy model” (Morrone & Burr, 1988) and it is based on the evidence showing that visual detectors 

in V1 have even- and odd-symmetric receptive fields (Hubel, 1982; see Figure 3B). The authors 

started from a new definition of lines and edges which consider their local Fourier representation 

(Morrone & Burr, 1988). They suggested that the points in a waveform that have unique perceptual 

significance as “lines” and “edges” are the points where the Fourier components of the waveform 

come into phase with each other. The basic operators of the model are pairs of filters of equal 

amplitude spectra but orthogonal in phase: one filter type has an even-symmetric line-spread function 

(i.e., a Fourier phase spectrum of 0 – cosine phase), the other an odd-symmetric line-spread function. 

(i.e., a Fourier phase spectrum of π /2 – sine phase). A useful property of lines and edges is that they 

occur at points of the waveform where the arrival phases of the Fourier components are maximally 

similar. The authors then suggested that the visual system could locate features of interest by 

searching for maxima of local energy. The local energy function locates the position of image 

features, both edges and lines, but gives no information about the type of feature. To identify the 

feature type, the system has to evaluate the value of the average arrival phase at that point, which 

determines the nature of the feature: values near zero correspond to a line, and values near π /2 

correspond to an edge (i.e., a response from filters with even-symmetric fields will signal a line; a 

response from filters with odd-symmetric fields will signal an edge). If both filter types respond at 

the peak of local energy, both edges and lines are seen, either simultaneously or alternating in time. 

The model was tested with a series of images and shown to predict well the position of perceived 

features and the organization of the images. 

Overall, these type of models successfully describes how the visual system extracts salient features 

but they are based on the a-posteriori knowledge of specific physiological details, rather than on 

considerations of information compression efficiency (Marr & Hildreth, 1980; Morrone & Burr, 

1988; Watt & Morgan, 1983), therefore they have a reduced predictive power. 
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In the next paragraph, I’ll present a recent model of early visual feature extraction, aimed at 

significantly reducing information through the selection of salient features (Del Viva et al., 2013) 

without assuming the known properties of underlying physiological mechanisms. 

1.4 Constrained-maximum entropy model of early visual features extraction 

1.4.1 The assumptions of the reference model 

The reference model of this thesis has been formulated by Del Viva, Punzi, and Benedetti in 2013 

(Del Viva et al., 2013). It stems from the problem discussed in the previous paragraphs that can be 

summarized as follow: the extraction of biologically-relevant information from a large flux of input 

data in the shortest possible time for survival purposes. 

The need for extracting a small amount of ‘‘relevant’’ information from a large input flux of data is 

not unique to vision (Ristori & Punzi, 2010; Smith & Lewicki, 2006), although vision may be one of 

the fields where the requirements are particularly severe. The model can be indeed applied not only 

to vision but to any information processing system (natural or artificial) that has to reduce input 

information within precise computational constraints while transmitting into the output as much 

information as possible. Only the application of the model to vision will be discussed in this thesis. 

The model is based on some very general assumptions and aimed explicitly at reducing information 

through the selection of salient features (Figure 7A). First, the model assumes that, at an early stage, 

the reduction of the huge input data flow is achieved by filtering only those pieces of input data 

matching a reference set of features, disregarding any other information (pattern matching). Second, 

there is only a fixed number of visual features that the system can recognize in input (limited 

capacity). Third, the model imposes a tight upper bound on the total amount of data that can be 

produced as output to be transmitted to the next stages of processing (fixed output bandwidth). 

Finally, the system is optimized to preserve the maximum amount of information (maximum entropy 

output).  
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Figure 7. The reference model of data reduction by Del Viva et al. (2013). (A) Schematic 
representation of the information filter proposed by the reference model. The visual system acts 
as a filter that recognizes and selects the meaningful features of the input, dropping all the remaining 
information. The number of recognizable features in the input is limited and the information in the 
input has to be transmitted to the next processing stages with minimal energy consumption. The 
system must be optimized to produce the maximum entropy output. (B) Entropy yield per unit cost 
plotted as a function of the probability of occurrence in the input of each feature. Green curve: 
limited storage and unlimited bandwidth (N=100, W=∞); Blue curve: limited bandwidth and 
unlimited pattern storage capacity (W=0.001, N=∞); Red curve: limited bandwidth and storage (N = 
100, W = 0.001). Parameter values and the vertical scale are arbitrarily chosen for illustration. Figure 
retrieved from (Del Viva et al., 2013). 

The authors specified that the model is purely functional, and do not concern with the details of how 

this computation is implemented. The functionality of this abstract pattern-filtering model is 

completely defined by its reference set of features. This also means that the model discussion does 

not need to be concerned with the specific computation used in their recognition, nor with its 

localization within any specific anatomical structure.  

In order to test the prediction of the model, the reference set of visual features must be determined 

precisely. One problem is that the number of possible a-priori choices for the reference set of visual 

features is very large. As already discussed, possible approaches, often used in developing similar 

models in the literature, are based on known properties of neuron receptive fields, or on considerations 

of performance in the reconstruction of visual scenes (Marr & Hildreth, 1980; Morrone & Burr, 

1988). The authors choose instead a different approach, focusing only on the requirement that the set 

of features must be information-efficient. That is, they assumed that the system is optimal from the 

point of view of delivering the maximum amount of information to the following processing stages. 

Therefore, they choose the feature set producing the largest amount of entropy allowed by the given 

limitations of the system. 
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Adopting the principle of maximum entropy as a measure of optimization together with the imposed 

strict limitations to the computing resources of the system, allowed them to completely determine the 

choice of the feature set from the knowledge of the statistical properties of the input data.  

In the next paragraphs, the derivation of the general model function will be described in detail. 

1.4.2 The selection function 

Let pi be the probability that a given portion of the input data matches a specific pattern i, out of a set 

Q of mutually exclusive patterns, such that S pi = 1, when i runs over all Q. The pattern-recognition 

system can be thought of as an array of N pattern-matching elements, each of them capable of 

recognizing the occurrence of the single pattern i, providing a single output bit, that signals the 

presence of the pattern in the input. This system would produce, on average, an information output 

equal to -pilog(pi) – that is, it is a source of entropy -pilog(pi). Neglecting correlations, the total 

entropy of the system is simply SNi -pilog(pi). In absence of other constraints, maximization of the 

total entropy would be attained by simply including all possible patterns. This solution would imply 

transferring to the output the whole information in the original input, with just a change of format.  

The key to a meaningful answer is the explicit inclusion of the limitations of the system. Let’s assume 

that the system can recognize up to a maximum number N of distinct patterns; to obtain the maximum 

entropy output under this constraint, patterns should be chosen to maximize the function -pilog(pi). 

This is a large probability, and in practice, it is likely to lead to selecting the patterns with the highest 

probability of occurrence in the input (see green line in Figure 7B).  

However, the output flux of the system is also bounded, due to bandwidth limitations, and the choice 

of the most probable patterns could quickly exceed this limit. On the other end, if the system would 

have limited bandwidth but unlimited pattern storage capacity, the pattern selected would be the rarest 

(see blue line in Figure 7B). 

In order to account for both constraints, a “worst-case” cost has been associated to each pattern, 

defined as the larger of the “storage cost” 1/N and the “bandwidth cost” pi/W, where W is the 

maximum allowed total rate of pattern acceptance, S pi < W. Therefore, an entropy yield per unit 

cost is given for each pattern by:  

 f ( p) =  
- p  log( p)

max(1 / N ,  p /W )
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The optimal performance of the filtering system is then attained by choosing the set of patterns such 

that f(pi)>c, where c is determined by the computational limitations: òf(p)>c
d(p)dp <N and 

òf(p)>c
pd(p)dp <W, where d(p) is the density of patterns having the probability of occurrence p, 

normalized to the total number Ntot of patterns in Q. The quantity òf(p)>c
pd(p)dp is the average 

fraction of image elements that match successfully and get preserved in the output - its inverse is the 

compression factor achieved by the filtering algorithm. 

It is then obtained an unambiguous and general heuristic recipe to determine the set of optimal 

patterns that a generic pattern-filtering system should use in order to achieve maximum information 

preservation under the given constraints. 

As can be seen in Figure 7B (red curve), the function f(p) presents a rather sharp maximum; the set 

of optimal features will be thus concentrated in a limited range of values of p around the maximum 

of f(p), which occurs at p =W/N; it will therefore depend on both available storage size and bandwidth.  

1.4.3 Extraction of optimal visual features from natural image statistics 

To apply the model to vision, authors considered the simplest possible set Q of base features, defined 

as all possible configurations of 3*3 square pixel matrices in black-and-white images (1-bit depth). 

The reduction of input images to only two levels is a corollary of the central idea of compression by 

pattern filtering proposed by the model (Del Viva et al., 2013): the number of possible patterns, 

assumed to be a limited resource, increases exponentially with the number of allowed levels (that is 

2n*N where n is the number of bits and N the number of pixels) – and so does the amount of computing 

needed to calculate them. Therefore, using a large number of grey levels in the model would be not 

only unpractical but also would defeat its very purpose of saving computational resources. For the 

same reason, the authors chose to implement the model by defining as a feature a 3x3-pixel image 

partition.  

A public database of 560 calibrated natural pictures has been used (Olmos & Kingdom, 2004), and 

each image (768x576 pixel) was digitized to 1-bit luminance (black/white), by setting the threshold 

at its median luminance value (see Figure 8A; for more examples see Figure 9A). The probability 

distribution of all the 3x3 pixel patterns has been calculated and then the set of optimal features has 

been identified following the model function (Figure 8B). For the extraction of a set of optimal 

1
Ntot

1
Ntot
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features, algorithm parameters were N=50 and W=0.05 (Figure 8C). These parameters were chosen 

based on the consideration that the algorithm relies on the idea of a strong compression at the 

minimum possible computational price. Thus, they considered as a reasonable upper bound to N a 

value of 10% of all possible distinct patterns and picked 50 features over the total 512 distinct features 

possible in the basic 3*3 model; and they considered a compression factor of at least 20 setting 

W=0.05 as a constraint. This set of features (Figure 8C) has been used as the optimal features set in 

the experiments described in the following chapters.  

In the figure below, other sets of features used in the original work are also shown (Figure 8D, Figure 

8E, and Figure 8F). In the experiments carried out in our studies and described in the following 

chapters, the set of features shown in Figure 8E was also used. Indeed, these 50 specific features have 

been used as non-optimal features and compared to optimal features with many different paradigms. 

This set included the features with the lowest probability in the statistical distribution of all possible 

features, those that are discarded by the constrained-maximum entropy model due to large storage 

occupation. 

By looking at Figure 8, it turns out that about 70% of the optimal features (Figure 8C) selected by the 

algorithm can be classified as edges, bars, or end-stops, of various orientations as found in primary 

visual areas (Hubel, 1982; Hubel & Wiesel, 1968, 1962, 1959; see Figure 3B). Others are 

interpretable as corner detectors. Conversely, most of the non-optimal features discarded by the 

model selection have either an irregular structure resembling visual noise (Figure 8E), or uniform 

luminance (Figure 8F), with lower resemblance to known visual features. Thus, the biologically 

plausible structure of the features seems to derive from very general principles of information 

maximization and computational limitations. 
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Figure 8. Visual features extraction from natural images. (A) Example of images. One example 
of an original 256 grey-levels image (Olmos & Kingdom, 2004) digitized into black and white. (B) 
Selection of optimal features. The histogram shows the probability distribution of the 512 possible 
3x3 1-bit pixel patterns. The curves are the model selection functions for W=0.05 and two different 
values of N - green: N= 50 (optimal features in (C)), blue: N= 15 (optimal features in (D)). Green and 
blue histograms are the probability distributions of corresponding selected patterns. Cyan and yellow 
histograms are the distributions of low-probability patterns. (C-D) Optimal features. Visualization 
of 50 and 15 optimal features (3X3-pixels) selected by the model function (green and blue curves in 
(B)). (E) Non-optimal features. Visualization of 50 non-optimal features (corresponding to cyan 
histogram in (B)). These features are those with the lowest probability of occurrence. (F) Highest-
probability features. Visualization of the four features with the highest probability of occurrence. 
Figure adapted from (Del Viva et al., 2013). 

1.4.4 Human contrast sensitivity to optimal features 

To obtain direct evidence that the human visual system assigns a privileged role to model-predicted 

optimal features in image-reconstruction processing, the authors first performed psychophysical 

measurements of contrast sensitivities for the detection of single isolated 3X3 pixel features.  

Human contrast sensitivity was measured for all possible 1-bit 3X3 pixel features, scanning the entire 

range of probabilities found in natural images, with a 2IFC procedure. In each trial, participants were 

required to indicate the interval containing the feature (n = 3, trials = 300). The contrast of the features 

was randomly chosen from trial to trial within a set of predetermined values in the range 0.01 to 0.22. 

In this experiment such small features subtended about 6X6 min of arc, allowing to target early visual 

processing stages. These are very likely the anatomical substrate of the hypothesized filter because 

data compression must be done very early in the visual stream to be effective. Although early visual 
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structures comprise multiple cell types, with different receptive field sizes (Nassi & Callaway, 2009), 

here, for simplicity, a single small scale is considered. However, this small scale is consistent with 

receptive field sizes found in human V1, which are about 15’ in the fovea (Smith et al., 2001) and 

become progressively larger with eccentricity and through the hierarchy of visual areas (Zeki, 1978). 

The results showed that observers’ contrast sensitivity peaks within a limited probability range, 

corresponding to the probability of occurrence of optimal features, in agreement with the predictions 

of the model. 

The authors also specified that these results are not simply a consequence of the band-pass behavior 

of the human contrast sensitivity as a function of spatial frequency. They claimed that, although there 

is a mild correlation between the probability of features occurrence and their spatial frequency 

content, for which the rarer patterns contain on average more of the higher spatial frequencies, there 

is a significant overlap of spatial frequency content between the patterns over the whole range of 

probability. Also, at any rate, the spatial frequency of all features is comprised between 9 cycles/deg 

and 27 cycles/deg, while the maximum sensitivity lies at about 7 cycles/deg in their illumination 

conditions. Therefore, the spatial frequency spectrum lies entirely above the frequency of maximum 

human sensitivity. Spatial frequency sensitivity considerations would instead predict a low-pass 

behavior, resulting in an increasing function with probability, which is very different from what has 

been observed. 

For the purposes of the studies presented in the next chapters, in which optimal (Figure 8C) and non-

optimal (Figure 8E) features are used individually as stimuli, we performed a quantitative analysis of 

the differences in spectral properties between the two sets (see Supplementary Material). 

1.4.5 Discrimination of images based on sketches 

The model not only predicts enhanced sensitivity to optimal features, that was verified, but also 

predicts that early visual processing utilizes only the parts of the images that match the reference set 

of optimal features to create a compressed but informative internal representation of the scene. To 

test this prediction, the authors created sketches from the images, by keeping only those features of 

the binarized image matching one of the features of the reference set (Figure 8C), blanking all other 

parts. Sketches were prepared from the same images database used in determining the reference 

features set (Figure 9A, 9B). These sketches represent the prediction of the output of the early visual 

processing stage that the model trying to simulate (Figure 9C).  
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Figure 9. Examples of images and their sketches obtained with optimal features. (A) Full-color 
images. Natural images from the reference database (Olmos & Kingdom, 2004). (B) Digitized 
images. Digitized versions of images in (A). (C) Sketches. Sketches obtained from the images in (B), 
using the optimal features set of Figure 8C. Figure adapted from (Del Viva et al., 2013). 

By a close inspection of the sketches obtained with the optimal features sets clearly emerged that they 

retain most of the salient features of originals, in spite of a substantial reduction of information (Figure 

9C).  

To quantify this qualitative observation, the authors measured the effectiveness of these sketches in 

allowing human observers to identify natural images under fast viewing conditions. If the early visual 

system really selects only those specific optimal features for its processing, then the sketches should 

elicit nearly the same response as complete images. Specifically, these “salient” sketches were used 

as stimuli in a discrimination experiment (2AFC paradigm), where they were shown for only 20 ms, 

in order to probe the early stages of visual analysis (Thorpe et al., 1996). The stimulus was followed 

by a random noise mask (500 ms); the backward masking paradigm is used to prevent iconic memory 

and interrupt further analysis of briefly presented stimuli by neural structures (Enns & Lollo, 2000; 

Herzog, 2016; Macknik & Martinez-Conde, 2004). Subsequently, two digitized images were 

presented side-by-side for 700 ms, one of them being the unfiltered image corresponding to the 

sketch, and the other a distractor, randomly selected from the dataset (Figure 10A). The observers 

were asked to identify the correct match between the sketch and the original image. As a control, the 

full image with 256 grey levels instead of the sketch was shown for 20 ms (Figure 10B), and the 

same image and a distractor, also with 256 grey levels, were shown in the task. Other sketches 
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obtained varying the model function parameters were also used in this task: sketches built based on 

alternative, non-optimal features sets, and sketches obtained with different parameter values for 

bandwidth and number of reference features. 

The results of the discrimination task are reported in Figure 10E. All observers were able to identify 

the original images from which the optimal sketches were extracted with extremely high accuracy 

(green bars). Even more important, performance was comparable to measurements obtained in the 

control experiment using the fully detailed original images in place of their sketches (red bars). 

Participants reported that they could not tell whether originals or sketches had been shown to them in 

these fast presentations. Similar results were obtained by using optimal sketches obtained with 

different model parameters (Figure 10A and Figure 10C; green vs blue bars).  

Instead, the ability of observers to identify original images based on alternative sketches, built based 

on non-optimal features sets, was much worse than with optimal sketches even if both have the same 

information (yellow bars vs. blue bars). However, distributions of the number of points found in the 

two sets of sketches (Figure 10C and Figure 10D), taken over the whole image database have 

different average values: ~14000 for the alternative set and ~24000 for the set predicted by the model 

(Figure 10F). Therefore, an additional test has been performed to exclude that the observed 

difference in average performance might be due to the difference in the average number of visible 

points. For each experimental trial, authors reweighted in the final average the data taken with the 

pattern set predicted by the model by a factor equal to the ratio of the probability distributions of the 

two sets. In this way, the density distribution of the optimal features is forced to match that of the 

non-optimal rarer features, and any possible dependence of the result on the density of the image gets 

equalized between the two sets. The results show that the reweighting procedure has no significant 

effect, only shifting the results by less than one standard deviation (Figure 10E, striped-blu bars). To 

further investigate the issue, authors replotted the data splitting the trials into different sets, according 

to classes defined by the number of points in the sketches (Figure 10G). The difference in 

discrimination performance between the two sets is present over the whole range: even densely-

populated sketches made of non-optimal features are less visible than those from the standard set 

confirming that the number of displayed points plays no measurable role in the measurements. 
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Figure 10. Images discrimination based on sketches obtained from different features sets. (A) 
Representation of the experimental procedure (2AFC). The sketch in (A) is obtained from the optimal 
features set of Figure 8C. The corresponding compression factor is 40, and its information content is 
9.8% of the original. (B) Original 256 grey-levels image. (C) Sketch obtained from the optimal 
features set of Figure 8D. The corresponding compression factor is 67 and its information content is 
5.5% of the original. (D) Sketch obtained from the 244 low-probability patterns set (Figure 8E shows 
a sub-sample); information (5.5 %) and compression (factor 90) are similar to (C). (E) Results of the 
discrimination task. Percentage of correct discrimination for sketches obtained as in (A), (C), (D) 
(green, blue, yellow bars respectively) and 256 grey-levels images as controls (red bars), for four 
observers. The striped-blue bars represent results obtained from the same dataset shown in blue, after 
reweighting the data to match the distribution of the number of patterns of the yellow dataset. Each 
data point represents 300 trials. The black dashed line indicates chance performance. Error bars are 
SD. (F) Distributions of the number of points found in the two sets in (C) and (D). (G) Percentages 
of correct discrimination plotted as a function of the number of matched patterns, for the same data 
as in Figure 10C and 10D. Figure adapted from (Del Viva et al., 2013). 

Overall, the results of this psychophysics experiment support the prediction of the model, for which 

the features identified in natural images through constrained-maximum entropy criteria carry most of 

the information that the visual system needs for image discrimination under fast viewing conditions. 
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1.4.6 Effect of local features 

The results discussed so far show that in fast vision it is sufficient to see very few details to 

discriminate images, provided that these few features are “the right ones”. In the sketches, optimal 

features turn out to be arranged along objects’ contours (Figure 11A) rather than being scattered 

throughout the image, and the spatial structure of the features belonging to a particular contour 

corresponds to the nature and orientation of the contour. The discrimination power provided by the 

sketches could be due either to the specific local features used in the sketch or to their global spatial 

arrangement in the images; this issue has been investigated in a further experiment (Del Viva et al., 

2016). The contribution of individual local optimal features, located along with objects’ contours 

(global features), has been studied by replacing them with non-optimal carriers of information, 

keeping their localization along the contours unchanged. That is, for example, small local vertical 

edges in a vertical contour were replaced with different non-optimal local features (Figure 11B). The 

results of a discrimination task showed that the disruption of these optimal local cues causes a 

decrease in image recognizability, despite its global structure was preserved (Figure 11C).  

 

Figure 11. Contribution of local optimal features. (A) Sketch obtained by filtering the image with 
optimal features in Figure 8C. All the optimal features are positioned along image contours, as shown 
in the inset. (B) Sketch obtained by replacing the optimal features with non-optimal features. The 
spatial structure of the features along the contours does not correspond to the orientation of the 
contour, as shown in the inset. (C) Discrimination of sketches obtained with optimal features (left 
bars) and of sketches where optimal features were replaced by randomly chosen non-optimal features 
(right bars). Colors represent different observers. Figure adapted from (Del Viva et al., 2016). 
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1.4.7 Chromatic information and feature detection in fast visual analysis 

As discussed so far, the visual system is able to recognize a scene based on a sketch made of very 

simple features; an open question is the role played by color in this process. Indeed, sketches have 

been most often represented and discussed only with monochromatic information (Del Viva et al., 

2013; Marr, 1982), whereas natural scenes have extensive chromatic content that is a rich source of 

potentially useful information (Párraga et al., 1998). In a further study, Del Viva and colleagues (Del 

Viva et al., 2016) approached this question from the perspective of optimal information processing 

by a system endowed with limited computational resources. 

Several past studies have explored the mechanisms of fast vision at different scales and stimulus 

durations, finding that both coarse and fine spatial information are simultaneously used in fast 

categorization of images (Oliva & Schyns, 1997b; Schyns & Oliva, 1999). Some of these models 

build a bottom-up saliency map, based on concurrent simultaneous processing of color with other 

modalities at multiple spatial scales, that is used to drive visual attention to potentially interesting 

image locations (Itti et al., 1998; Itti & Koch, 2001; Parkhurst et al., 2002; Torralba, 2003). In the 

first step of these models, visual input is decomposed into sets of different topographic feature maps 

(color, motion, orientation, etc.) at various scales. Within each map, spatial locations compete for 

saliency, and subsequently, these conspicuity single-modality maps are summed into a single master 

saliency map. Each of these parallel processes requires a certain amount of computing power; 

however, the required amount varies greatly amongst scales and modalities, and implementation 

details might not be necessarily the same for each of them. Computational limitations are expected to 

play the most important role in determining the features analyzed at the finest visible spatial scales, 

even more so for color. This is a direct consequence of the properties of the Fourier transform, where 

the information content is proportional to the square of spatial frequency. 

While other studies have explored the role of color in fast vision either in complete images (Delorme 

et al., 2000; Gegenfurtner & Rieger, 2000) or at coarse spatial scale (Oliva & Schyns, 2000), it is not 

clear that there is any role of color at the finer scales. For this reason, the authors use their model, 

which is focused on computational cost, as a tool to explore the question of the potential role of fine-

scale, information-rich color features in a context of competition among various types of available 

information for use by a limited capacity resource. Particularly, they evaluated the relative merits of 

luminance and color information as carriers of information in sketches of natural images, prepared 

under equal computational constraints, and measured the corresponding discrimination performance 

on human observers (Del Viva et al., 2016). 
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1.4.7.1 Discrimination of images based on luminance and color sketches 

Natural images were selected from the same public database used in the previous experiment (Olmos 

& Kingdom, 2004; Figure 12A) and digitized to 1 or 2 bits. As already stated before, the need for 

such strong reduction of levels is a corollary of the central idea of compression by pattern filtering. 

This issue is even more severe for color information, which carries three times more bits than an 

achromatic luminance image. Therefore, using a larger number of levels in the model is not only 

unpractical but defeats its very purpose of saving computational resources. Also, it must be 

considered that this does not amount to an important limitation for applications within the field of 

fast vision: the frequency of neuronal discharge is indeed limited to ~500Hz, which means that in 20 

ms only a very small number of spikes (~3-4) can physically be transmitted over each individual 

axon. Considering that the authors use pretty small features (6’X6’, close to the resolution limit), this 

means that a very limited number of spikes are available to encode the intensity level of each signal. 

Even under ideal conditions, this very fact already limits the available information to very few bits. 

The extraction of visual filters and preparation of sketches followed a similar procedure as in the 

previous experiment (see Figure 12 for the case of 1-bit digitization; see Figure 13 for the case of 2-

bit digitization). Then sketches containing just one bit of luminance (Figure 12B and 12D) were 

compared to 1-bit color information sketches (Figure 12C and 12E). Computations revealed that the 

average information preserved in the image set by the pure-luminance filters is greater than that 

preserved by pure-color filters (Figure 12F). Since the same output capacity constraint was imposed 

in both conditions, color features turn out to be less effective in conveying information than 

luminance features when a strong compression is imposed.  

To test how this difference in information content reflects in the visual discriminability of the images, 

a psychophysical study of image discrimination (2AFC) was performed based on these sketches. The 

results showed that 1-bit gray-scale sketches yielded very good discriminability of the original 

images. Color-only (equiluminant) sketches, on the other hand, yielded far worse discrimination than 

luminance-only sketches, consistent with chance performance, hence failing to show any evidence 

that the observers were able to use color-only information for a fast discrimination task (Figure 12G). 

Note that these results cannot be explained only by the lower average information content of color 

sketches. Figure 12F indeed shows that the distribution of information content of the two types of 

sketches, although different on average, is largely overlapping. By separating into classes images 

having the same information content, clearly emerged that the response of the human visual system 

to the two types of sketches is completely different, even when they are compared on the basis of 
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equivalent information content. Indeed, for color sketches, the discriminability is compatible with 

chance level, independently of the information content; for luminance-based sketches, the 

discriminability is constantly above chance over the whole range (Figure 12H). 

 

Figure 12. 1-bit digitization: visual filters, sketches, and image discrimination performance. (A) 
Examples of RGB images. (B) 1-bit luminance features. Features obtained after digitizing to 1 bit 
the luminance (L+M) coordinate. (C) 1-bit color features. Features obtained after digitizing to one 
bit the l (L/(L+M)) coordinate. (D) Two gray-levels luminance sketches. Sketches obtained with 
the features in (b). (E) Color-only sketches. Sketches obtained with the features in (c). (F) 
Information content of 1-bit sketches. Distributions of the information content of the 1-bit color 
(orange) and luminance (gray) sketches. (G) Discrimination of images based on luminance and 
color sketches. Percentage of correct discrimination with 1-bit luminance-only sketches (2 gray-
levels bars) vs. 1-bit equiluminant sketches (2 red/green-levels bars). (H) Discrimination as a 
function of sketches information content. Percentage of correct discrimination plotted as a function 
of the information content of the color only and luminance sketches, for the same data as in (G). 
Figure adapted from (Del Viva et al., 2016). 

All of the above observations are compatible with the visual system having made a well-defined 

choice in favor of using luminance-based features and ignoring color-based features, when 

considering fine spatial scales. These behavioral results are consistent with a human visual system 

that, under the pressure for optimization to use limited resources, follows the maximum-entropy 

principle. Maximum entropy, together with natural image statistics, dictates that luminance 

information is the privileged vehicle for quick image discrimination, at the expense of other potential 

sources of information.  
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This, however, does not exclude the possibility of color information being an important 

complementary source in addition to luminance information. To test for this possibility, a further 

experiment compared images constructed with 2 bits (4 levels) of luminance-only information 

(Figure 13A and 13C) with images constructed with 1 luminance bit and an additional color bit (2 

bits in all) (Figure 13B and 13D). In spite of the fact that the compression requirements of the 

bottleneck were the same in both of these conditions, the entropy in the output sketches was, again, 

very different for the two conditions: luminance-only sketches contained, on average, 2.3 times more 

information than color plus luminance sketches. Corresponding psychophysical results showed that 

the addition of 1 color bit to the luminance bit did not lead to a reliable increase in performance over 

the use of 1 luminance bit alone (Figure 13E). 

Overall, these results suggest a strong preference for luminance-based features over color-based 

features under fast visual analysis. In sum, this study suggests that the computational limitations of 

the visual system have led to a system that at the finest spatial scales relies mostly on luminance, 

rather than color, for fast visual discrimination. 

 

Figure 13. 2-bit digitization: visual filters, sketches, and image discrimination performance. (A) 
2-bit luminance features. Features obtained after digitizing to 2 bit the luminance coordinate. (B) 1-
bit luminance + 1-bit color features. Features obtained after digitizing to 1 bit both l (L/(L+M)) and 
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luminance (L+M) coordinates. (C) Four gray-levels luminance sketches. Sketches obtained with 
the features in (a). (D) Color-only sketches. Sketches obtained with the features in (b). (E) 
Discrimination of images based on luminance and color sketches. Percentage of correct 
discrimination with 2-bit luminance-only sketches (4 gray-levels bars) vs. 1-bit luminance + 1 bit 
color sketches (4 red/green-levels bars). Figure adapted from (Del Viva et al., 2016). 

1.4.8 Considerations of model implementation  

A model of visual compression with the ambition of a realistic description of human vision must 

allow for practical updating following changes in external conditions. Indeed, considering the 

plasticity of the visual systems, one might expect that the algorithms employed by the visual system 

should not only be economical to execute but also reasonably economical to set up and update when 

adapting to varying external or internal conditions. Most of the algorithms in this area have instead 

no concerns about computing power needed, which is related to how much time does it take to get to 

the solution, about when and how the solution is calculated, which is related to implementation issues, 

and how and when it can be updated. The authors thus wondered whether the visual system has made 

a choice that is maybe suboptimal from the point of view of the run-time performance but leads to 

easier and more efficient updates and improvement.  

The optimality condition that is imposed by their model to the set of features, can be indeed 

formulated as a case of a class of well-known problems that go under the name of "knapsack 

problems". These problems admit exact numerical solutions, that in the general case are rather 

expensive to compute, as well as simpler approximate solutions, that are slightly less optimal, as the 

one that has been heuristically adopted their model. For this reason, in a preliminary study (Del Viva 

et al., 2017) they compared an exact solution to this class of optimization problems with the heuristic 

solution consisting in their model. First, they applied these two approaches to the extraction of 

optimal visual features obtaining similar but nonetheless clearly distinguishable solutions, raising the 

interesting question of which of the two better describes the actual performance of fast vision in 

human subjects. To this purpose, they compared human performance in image discrimination after 

fast presentation of sketches based on the two solutions (exact and heuristic) with psychophysical 

experiments, similar to those described before (see paragraph 1.4.5. and figure 10A). They found 

evidence that the actual performance of human vision agrees with the simpler approximate solution 

rather than the mathematical optimum. While the latter is slightly better from the point of view of 

computational efficiency of the image analysis, its evaluation requires a complex algorithm, that is 

not well suitable for calculation within the brain, and it needs to be re-calculated in case of changing 
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in external conditions. On the other end, the heuristic approximate algorithm is computable and much 

easier to evaluate and update even if it provides a slightly less optimal, solution.  

Interestingly, this experimental result thus suggests that plasticity is correlated to the existence of 

specific filters and receptive fields in the visual system. 

1.4.9 Final considerations of the predictive power of the reference model 

Overall, the constrained-maximum entropy model presented here, when applied to visual images is 

able to extract basic primitives such as edges and bars. These elements constitute the basis of edge-

detection, allowing to capture important changes in properties of the world, which is one of the main 

goals of vision. Many computational models of early vision have been proposed, aimed at attaining 

the best performance in detecting objects contours by using biologically plausible elements, based on 

a-posteriori knowledge of physiological details (Marr & Hildreth, 1980; Morrone & Burr, 1988; Watt 

& Morgan, 1983). Because this function in the model was obtained without assuming any known 

biological detail, the first relevant finding of this work is that the edge-detection functionality in itself 

follows directly from very general principles, as the optimal solution for fast processing, when dealing 

with an information bottleneck and limited computational resources (Del Viva et al., 2013). 

As discussed above, Olshausen and Field succeeded in deriving biologically plausible basis functions 

for visual representations, based on considerations of information efficiency (Olshausen & Field, 

1996). Their work aims explicitly at reproducing the original luminance map as closely as possible, 

based on fitting with a minimum chi-square criterion, and utilizes a number of free parameters to 

achieve the best results. It can be described as aiming for an “almost-lossless” compression. In the 

reference model, instead, the authors aim at strong information compression and entropy 

maximization with no regards to the fidelity of reproduction: the limitations of the system lead to the 

selection of a very restricted number of salient features, all the other features available in the imput 

are discarded (lossy compression). The predictive power of the model however is very strong and is 

confirmed by the fact that the model output, even with extreme lossy compression (sketches could 

reach 10% of the originals, compressing data by a factor of 40) and in fast viewing conditions is easily 

recognizable by human observers, although the accuracy of the raw luminance map is worse than that 

obtained in Olshausen and Field (1996). 

Past computational studies of features extraction argued that the visual system devotes resources to 

the detection of features of natural images in proportion to the probability of feature occurrence 

(Geisler et al., 2001; Simoncelli & Olshausen, 2001). Results here, on the other hand, show that 
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principles of computational efficiency led to a somewhat different algorithm: resources are devoted 

to features with an intermediate probability of occurrence (see Figure 8B). Discarding the most 

probable input configurations is necessary to fit within the bandwidth limitations of the next 

processing stage. As an example, the most common visual patterns, uniform luminance patches, 

which are inefficient to encode, are automatically rejected by the model. 

The application of the model to color images evidenced that when the system’s limitations are taken 

into account, the most effective strategy is to ignore fine-scale color features and devote most of the 

bandwidth to gray-scale information. Confirmation of these predictions comes from psychophysics 

measurements of fast-viewing discrimination of natural scenes. These behavioral results are 

consistent with a human visual system that, under the pressure for optimization to use limited 

resources, follows the maximum-entropy principle and uses only some of the information available 

in the input. 

Although it has not been discussed in this thesis, it is worth mentioning that there exists at least one 

concrete example of a successful implementation of this general model to data compression in 

electronic devices. Given that recognizing the presence of a certain set of discrete input patterns is 

within the typical capability of a neural network (Hopfield, 1982), it is also not hard to conceive that 

the present model can be implemented in a neural network as well. 

1.5 Objective of the thesis: assessing visual saliency of optimally informative 
visual features 
To summarize, this thesis is based on a recent constrained maximum-entropy model of early vision 

which, applied to natural images, allows the extraction of a limited number of optimal features, 

considered to be "salient” in fast visual analysis. The current work aims at adding further evidence 

that confirms the predictions of the reference model.  

Our objective is to assess the visual saliency of these optimally informative visual features with a 

specific interest in testing their role in guiding eye movements. To this purpose, we conducted 

different studies on human observers, using psychophysical and eye movements paradigms, to answer 

the following questions: 
 

1. Are optimal features significantly more salient than others even in the lack of any clues coming 

from global structure? To answer this question, in Study 1, optimal and non-optimal features were 

presented in isolation, in the absence of any meaningful global arrangement and semantic context, 
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and observers were explicitly asked to choose the most salient stimulus with perceptual and eye 

movement tasks. 

 

2. Are optimal features able to automatically attract covert and overt attention? We address this 

question in Study 2, in which we implicitly tested the relative saliency of optimal and non-optimal 

features by using them as attentional cues in perceptual and oculomotor tasks, without explicitly 

requiring observers to pay attention to stimulus saliency. 
 

3. Can optimal features influence the path of a saccade toward a target? To assess this, in Study 3, 

we compared the effects on saccades trajectories produced by optimal vs. non-optimal features 

used as distractors in a saccadic task, considering the magnitude of curvature as a measure of 

feature saliency. 
 

4. Optimal local information contributes to successful image discrimination? To test this, Study 4 

compared the relative contribution of global elements and optimal local features embedded in a 

few visible image fragments to image discrimination in fast vision, designing a more ecological 

task to explore whether optimal features also play a significant role in natural settings. 

A key point of this work is also the comparison between the saliency determined by information 

maximization criteria to luminance-based saliency, achieved by comparing the effects induced by 

optimal versus non-optimal features to those obtained with features of different luminance. 

In the following chapters, for each study, the relevant literature and the rationale of the experimental 

hypothesis are presented, then the methods and the results are described, followed by a discussion 

about the contribution of each study to the final objective of this thesis. 
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2. STUDY 1: EARLY VISUAL SALIENCY BASED ON ISOLATED 
OPTIMAL FEATURES 

2.1 Theoretical background and rationale 

As broadly discussed in the introduction, a considerable amount of energy is indeed required to create 

an accurate representation of the visual scene in the shortest possible time (Attwell & Laughlin, 2001; 

Echeverri, 2006; Lennie, 2003), and, for this reason, the visual system is likely to operate a strong 

data reduction at an early stage of processing (Attneave, 1954; Barlow, 1961; Olshausen & Field, 

1996), by creating a compact summary of the relevant features (Marr, 1982; Morgan, 2011).  

While the existence of this early visual summary is rarely put into question, the principles driving the 

saliency of features, and the relative weight of local (Zhaoping, 2002; Xilin Zhang et al., 2012) and 

global cues in this process (Itti et al., 1998; Oliva, 2005; Oliva & Schyns, 1997b), are still subject to 

intense debate. The saliency of a visual stimulus depends on several physical properties (typically 

luminance, color, orientation of isoluminant contours - edges) and it scales with the degree of 

dissimilarity of each property (e.g., luminance) with regard to the statistics of that property in the 

surround (e.g., the stimulus luminance vs. the background luminance, or the stimulus orientation 

compared to the orientation of the neighboring elements (see for instance, Nothdurft, 1993; Treisman, 

1985). However, a stimulus’ saliency can often also be appreciated with isolated stimuli. 

Furthermore, the saliency related to each individual visual property of a single stimulus is typically 

combined into a global percept of stimulus saliency and different stimuli, defined by different 

conspicuous properties (e.g., a red square among green square and a tilted line among horizontal 

lines) can be compared and eventually empirically matched in terms of saliency (Nothdurft, 2000). 

Several models have been proposed to quantitatively estimate the two-dimensional saliency 

distribution in a visual scene (the bottom-up saliency map). When considering more ecological 

conditions for vision, like during visual search with complex natural scenes, estimating the saliency 

of each part of the scene becomes much more difficult. Higher-level factors, such as object 

segmentation, semantic processing, and behavioral goals, do actually contribute, together with the 

physical properties, to define the relative conspicuity of the scene’s regions (for a review, see Fecteau 

& Munoz, 2006; Itti & Borji, 2013). Models of eye guidance have tried to predict where people fixate 

in visual scenes and to relate these locations to visual saliency. Some studies have suggested that eye 

movements are mainly driven by regions with maximal feature contrast (Garcia-Diaz et al., 2012; Itti 

& Baldi, 2009; Itti & Koch, 2000, 2001). Concurrently, in presence of multiple features, objects, and 
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information cues, the pattern of ocular fixations in a complex natural scene is often used as the 

operational definition of the saliency map of the scene (Itti & Borji, 2013). Finally, the specific task 

at hand does also play an important role and for instance, it has been shown that eye movements 

statistics in humans are consistent with an optimal search strategy that gather maximal information 

across the scene to successfully achieve the task (Bruce & Tsotsos, 2005; Garcia-Diaz et al., 2012; 

Najemnik & Geisler, 2005, 2008). 

The idea that the saliency of visual features is based on the amount of information (Shannon, 1948) 

they carry about the visual scene has been proposed by the reference model described in Chapter 1 

(Del Viva et al., 2013). 

Here we ask whether the optimal features identified in past experiments (Del Viva et al., 2013) are 

perceived as salient outside the context of the global image structure to which they belong (sketches). 

We address this question through a saliency discrimination task between optimal and non-optimal 

features, by explicitly asking the participants to choose the stimulus which stands out or automatically 

grabs their attention, through either a hand-button press or a saccadic orienting response (Castellotti 

et al., 2021). This way of measuring saliency is not based on an automatic response, unlike in the 

majority of studies (e.g., Donk & van Zoest, 2008; Zhaoping & May, 2007), but it requires an explicit 

behavioral choice, as previously used, for example when preference does not depend on the intensity 

of a single low-level property of the stimulus – e.g., contrast, luminance, color (e.g., Nothdurft, 2000; 

Nothdurft, 1993a). This is the case of our stimuli, which do not differ for the low-level properties 

usually defining visual saliency, but for the internal spatial arrangement of black-and-white pixels 

(see Figures 8C and 8E). These differences derive from the process of constrained-entropy 

maximization of the statistics of visual scenes, required by early input data reduction (Del Viva et al., 

2013). Thus, the saliency preference for isolated optimal features, even though asked explicitly, is 

not obvious. 

Specifically, we conducted four psychophysics and one eye-movement experiment to determine the 

degree of saliency given by optimal features, compared to non-optimal features. In Experiment 1, to 

assess the minimal number of optimal features able to trigger a saliency discrimination, the preference 

for optimal vs. non-optimal features was measured as a function of their number. Experiment 2 was 

designed to assess how many optimal features surrounded by a group of non-optimal features 

(“signal-to-noise ratio”, SNR) are necessary to consider them more salient. This is a more ecological 

condition than that in Experiment 1 because in natural images optimal features (edges and lines) are 

always surrounded by others that do not define object contours and are therefore considered as noise, 
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according to our model. Visual saliency is strongly dependent on luminance contrast (Treisman, 

1985), whose analysis involves early visual processing starting from the retina. It is therefore 

particularly important to study its effect in determining saliency in fast vision. We studied the effect 

of contrast in Experiments 3 and 4. In Experiment 3, the preference for optimal vs. non-optimal 

features was measured as a function of the contrast of both, to measure the lowest contrast needed to 

still choose the optimal features as the more salient. In Experiment 4, the preference for the optimal 

features was measured as a function of their contrast relative to non-optimal features, to measure the 

minimal contrast optimal features must have to be considered as salient as non-optimal features. We 

can consider this value as the contrast equivalent to the saliency given by the spatial structure of 

optimal features. Finally, the preference for optimal features as a function of their number relative to 

non-optimal features (SNR), was also measured with saccadic eye movements. In this work, eye 

movements are not used as an operational definition of saliency (e.g., Itti & Borji, 2013), but as an 

alternative modality to the psychophysics response. We argue that the dynamic and metric properties 

of gaze-orienting responses might provide additional insight on the saliency-based capture exerted 

by optimal features. 

2.2 Aim of the study 

In Study 1 (Castellotti et al., 2021), for the first time, optimal features were presented in isolation, to 

investigate whether they are considered visually more salient than other non-optimal features, even 

in the absence of any meaningful global arrangement (contour, line, etc.) and semantic context 

(sketch). 

2.3 Materials and methods 

2.3.1 Psychophysics experiments 

2.3.1.1 Participants 

The condition with one feature in Experiment 1 was tested on 20 observers (13 women, mean age = 

27 ± 2 years). Five other different observers (3 women, mean age = 23 ± 3 years) participated in the 

other conditions of Experiment 1, and Experiments 2, 3, and 4. All observers had normal or corrected 

to normal visual acuity and no history of visual or neurological disorders. Observers were unaware 

of the aim of the experiments and gave written informed consent before the experiments. 
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2.3.1.2 Apparatus and set-up 

All stimuli were programmed on an ACER computer running Windows 7 with Matlab 2016b, using 

the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997), and 

displayed on a gamma-corrected CRT Silicon Graphics monitor with 1280 x 960 pixels resolution at 

120 Hz refresh rate. The whole display (38.5 x 29.5 cm) subtended 38.5° x 29.5° of visual angle at a 

viewing distance of 57 cm. All experiments were carried out in a dark room, with no lighting other 

than the display screen. Ad hoc software in Mathematica (Wolfram Inc.) was used for the extraction 

of stimuli, curve fitting, and statistical analysis. Participants’ manual responses were provided on a 

standard Dell keyboard. 

2.3.1.3 Stimuli 

Stimuli were two compounds of a certain number of small features, subtending 1.5 deg of visual angle 

at 57 cm distance (1.56 x 1.56 cm) and located horizontally at 3 deg eccentricity, right and left of the 

center of the screen. Each compound comprised several 3x3 pixels features, subtending 0.12 deg at 

57 cm distance (0.12 x 0.12 cm) each. They were randomly selected with replacement (at each trial) 

from a set of 50 black and white optimal features (Figure 8C) selected according to the constrained 

maximum-entropy model, already used to build the sketches in previous experiments (Del Viva et 

al., 2013), and from a set of 50 black and white non-optimal features (Figure 8D), with the lowest 

probability of occurrence in the statistical distribution of all possible 3x3 pixel black and white 

features. We chose these non-optimal features as a control for saliency because the difference 

between optimal and non-optimal features is given only by their internal black-and-white pixel 

arrangement, and they do not differ, on average, in luminance and spatial frequency content (see 

Supplementary Material). The positions of the features within each compound were assigned 

randomly at each trial and were set such that the distance between neighboring features had to be 

about 3 pixels in each direction. Random selection and random position of features in the stimulus 

ensured that saliency was provided only by individual features rather than by their global 

arrangement. The left/right position of each compound was also varied randomly from trial to trial. 

Luminance white: 35 cd/m2; luminance black: 1 cd/m2; luminance grey background: 12 cd/m2.  

2.3.1.4 Procedure 

In all experiments, participants were asked to choose which of the two compounds presented on each 

side of the screen was the most salient, in a 2AFC procedure. Participants were sitting in a dark room 

at 57 cm distance from the monitor. Each trial started with the presentation of a grey display for 800 
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ms, during which observers were asked to fixate a cross in the center of the screen. The compound 

stimuli were then shown for 26 ms on a grey background. After the stimulus presentation, participants 

indicated the more salient compound by pressing a computer key. There was no time limit for the 

response (Figure 14A). All data for each participant were collected in one single session of about 

one hour, divided into four blocks (one block/experiment).  

In Experiment 1 the preference for a compound of optimal features (target) with respect to a 

compound of non-optimal features (distractor) was measured as a function of the number of features 

presented. The luminance contrast was 100% in all trials. Considering these features are very small 

and are presented for a very short time, the minimal number of optimal features that triggers a 

consistent preference based on saliency becomes very important. For this reason, in a preliminary 

phase, a single feature was presented on each side, to check for the possible presence of an effect 

even in this limit condition. A total of 200 trials/observers were run. 20 observers participated just in 

this measurement. Then, five different observers completed the experiment to assess the number of 

features that produce maximal saliency discrimination. Three, five, seven, and ten features in each 

compound were presented to these five observers. Target and distractor always had the same number 

of features, varying from trial to trial according to a constant-stimuli procedure. A total of 1200 trials 

per observer were run (Figure 14B). 

In Experiment 2 the saliency-based preferential choice was measured as a function of the relative 

number of optimal vs. non-optimal features in the same compound. The target included a total of 10 

optimal and non-optimal features in variable proportions (variable signal to noise ratio, SNR). The 

distractor included 10 non-optimal features. The luminance contrast (100%) and the total number of 

features in each compound (10) were kept constant in all trials. The SNR was either 0.1, or 0.4, or 

0.6 or 1 (corresponding to 1, 4, 6, or 10 optimal features in the target compound), and this number 

was set randomly from trial to trial according to a constant stimuli procedure. A total of 1200 trials 

per observer were run (Figure 14C).  

In Experiment 3, the strength of the saliency-based preferential choice was measured as a function of 

the contrast of both optimal features (target compound) and non-optimal features (distractor 

compound). In this experiment, the number of features in the two compounds was kept constant at 

10. Contrast for both target and distractor was set at 0.15, 0.2, 0.25, 0.3, 0.5 and the value was set 

randomly from trial to trial according to a constant stimuli procedure. Participants were asked to press 

a computer key to indicate the more salient compound. A total of 500 trials per observer were run 

(Figure 14D).  
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In Experiment 4, the preference for optimal features (target compound) was measured as a function 

of their contrast relative to the contrast of non-optimal features (distractor compound). That is, in half 

of the trials, the contrast of the target was varied while the contrast of the distractor was kept constant 

at 100%. The contrast of the target for which the observers could not tell anymore which compound 

was more salient can be considered as 1-the contrast value equivalent to the saliency of our features. 

In the other half of the trials, the contrast of the target was kept constant at 100% while the contrast 

of the distractor was varied. These “catch trials” were used to avoid contrast cues that could bias the 

observers’ choice. All these trials were randomized. The number of features in the two compounds 

was the same (10) in all trials. Contrast values in the varying compound were 0.65, 0.70, 0.75, 0.80, 

0.85, 0.90, 0.95, 1, set randomly from trial to trial according to a constant stimuli procedure. A total 

of 800 trials per observer were run (Figure 14E). 

 

Figure 14. Study 1 – Psychophysics experiments: procedure and conditions. (A) Schematic 
representation of one trial. During stimulus presentation two compounds, target (deemed salient), 
and distractor (not salient), were presented randomly left/right. The two black circles (not visible in 
the real display) represent the location of target and distractor, shown below in (B), (C), (D), and (E) 
for each experimental condition. In (B), (C), (D), (E), the target is always on the right. (B) Examples 
of stimuli for Experiment 1. Upper panel: target with 1 optimal feature vs. distractor with 1 non-
optimal feature. Lower panel: target with 7 optimal features vs. distractor with 7 non-optimal features. 
(C) Examples of stimuli for Experiment 2. Upper panel: target with 1 optimal feature plus 9 non-
optimal features (SNR = 10%) vs. distractor with 10 non-optimal features. Lower panel: target with 
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6 optimal features plus 4 non-optimal features (SNR = 60%) vs distractor with 10 non-optimal 
features. Red arrows indicate optimal features. (D) Examples of stimuli for Experiment 3. Upper 
panel: target with 10 optimal features vs. distractor with 10 non-optimal features (contrast of both = 
50%). Lower panel: target with 10 optimal features vs. distractor with 10 non-optimal features 
(contrast of both = 20%). (E) Examples of stimuli for Experiment 4. Upper panel: target with 10 
optimal features (contrast = 80%) vs. distractor with 10 non-optimal features (contrast = 100%). 
Lower panel: target with 10 optimal features (contrast = 65%) vs. distractor with 10 non-optimal 
features (contrast = 100%). Compounds and features are oversized for illustration purposes. The 
target-distractor compounds position in the trials is randomized. Figure retrieved from (Castellotti et 
al., 2021). 

2.3.1.5 Data processing 

In Experiments 1 and 2, for each participant and condition, the probability of choosing the target 

(with binomial standard errors) has been calculated for each compound condition. In Experiments 3 

and 4, for each participant and condition, a 2-parameters (position and slope) Maximum Likelihood 

fit was performed off-line with data obtained in all sessions, based on an ERF (sigmoid) psychometric 

function. Psychometric functions run from 0.5 to 1 in Experiment 3 and thresholds were defined as 

the target contrast yielding 75% correct discrimination. In Experiment 4, psychometric functions run 

from 0 to 1, and thresholds were defined as the target contrast yielding 50% correct discrimination. 

The goodness of fit was determined from the difference in log-Likelihood between the fit, and an 

ideal fit describing all points exactly. This is used to obtain a p-value under the chi-square 

approximation (Wilks’ theorem). 

2.3.2 Eye movements experiment 

2.3.2.1 Participants 

Seven observers (3 women, mean age = 30.1 ± 8 years) participated in the eye movements task and 

the psychophysical control experiment. All observers had normal or corrected to normal visual acuity 

and no history of visual or neurological disorders. 

2.3.2.2 Apparatus and set-up 

All stimuli were programmed on a MacPro computer running OS 10.6.8 with Matlab 2016b, using 

the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997), and the Eyelink 

Toolbox extensions (Cornelissen et al., 2002), and displayed on a Samsung SyncMaster 2233 LED-

monitor with 1680 × 1050 pixels resolution at 120 Hz refresh rate. The whole display (47.2 x 29.5 



Chapter 2 

 40 

cm) subtended about 47° x 29° of visual angle at a viewing distance of 57.3 cm. All experiments were 

carried out in a dark room, with no lighting other than the display screen. Eye movements were 

recorded using an Eyelink 1000 video-based eye tracker (sampling rate 1 kHz). The viewing was 

binocular, but only the right eye was tracked. A chin and forehead rest stabilized the head.  

2.3.2.3 Stimuli 

Stimuli were two compounds of 10 features each. The target compound comprised a variable number 

of optimal features (1, 4, 6, or 10) and non-optimal features; the distractor comprised only non-

optimal features, analogously to the psychophysics Experiment 2. For the eye movements 

experiment, the target and distractor compound-pair could appear randomly at 5 different locations, 

with target and distractor arranged symmetrically with respect to the vertical meridian and their 

respective position (right or left) randomly switched across trials (Figure 15). If we consider the 

compound on the right-hand side, its position was defined by an angle of 0°, ±45°, or ±70° with 

respect to the horizontal midline (Figure 15B). In the following, we will refer to these angles to 

indicate the position of the compound pair. Angles were randomly alternated in the presentation 

sequence to maximally reduce motor preparation for the saccade and to assess possible spatial 

anisotropies of the optimal features-based saliency. Both compounds were displayed at a larger 

eccentricity (5°) than the one used in the psychophysical experiments (3°), in order to elicit goal-

directed saccades, clearly aiming outside the perifoveal region (Figure 15B). To compensate for the 

larger eccentricity, all the stimuli were slightly larger than in Experiment 2. Compounds subtended 

1.8 x 1.8 deg (nearly 1.8 x 1.8 cm) and individual features about 10 x 10 min of arc (0.17 x 0.17 cm) 

at 57.3 cm viewing distance. Each feature was defined by a 6 x 6 white and black pixels patch. 

Positions of features within each compound were randomly assigned at each trial, ensuring a distance 

of about 6 pixels in each direction between neighboring features. White pixels had a luminance of 82 

cd/m2; black pixels: < 2 cd/m2; and the luminance of the grey background was about 42 cd/m2.  

2.3.2.4 Procedure 

After a fixation period of random duration between 500 and 800 ms, the target-distractor pair was 

presented for 26 ms (three frames). Then, two placeholders were displayed for 800 ms at the 

compound-pair location. The placeholders ensured that observers could program a relatively accurate 

visually-guided saccade even once the compounds have disappeared. Observers were asked to move 

their gaze towards the location where they saw the “most salient stimulus”, in a 2AFC choice-saccade 

task (Figure 15A). 800 trials were collected for each observer. 
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Figure 15. Study 1 – Eye movements experiment: procedure. (A) Schematic representation of 
one trial. After a random-duration fixation period, one compound comprising a variable proportion 
(SNR) of optimal features (target), and a compound with non-optimal features (distractor), were 
presented to the right or left, at different angles, for 26 ms. Then, two placeholders were shown at the 
target and distractor locations for 800 ms. In this example, target SNR = 60%. (B) Target and 
distractor possible locations. The two compounds could be presented randomly at one of 5 different 
locations (0°, ±45°, ±70°) as defined in the text, illustrated by different colors, at 5 deg eccentricity. 
Figure retrieved from (Castellotti et al., 2021). 

Since experimental conditions are different from the psychophysics Experiment 2, as a control, we 

repeated the psychophysical measurements with these observers, stimuli, and setup. As in the 

psychophysics Experiment 2, the saliency-based preferential choice for the optimal features was 

measured as a function of their number relative to the total number of features (optimal and non-

optimal, always equal to 10) in the same compound (SNR). In this control experiment, only the 

condition where the target and distractor were presented on the horizontal axis was tested and a total 

of 400 trials/observer were run. 

2.3.2.5 Data processing 

Ad hoc software in Matlab and Mathematica (Wolfram Inc.) was used for extraction of oculomotor 

parameters and statistical analysis. Recorded horizontal and vertical gaze positions were low-pass 

filtered using a Butterworth (acausal) filter of order 2 with a 30-Hz cutoff frequency and then 

numerically differentiated to obtain velocity measurements. We used an automatic conjoint 

acceleration and velocity threshold method to detect saccades (see for instance Damasse et al., 2018), 

and we visually inspected all oculomotor traces to exclude aberrant trials. We excluded from the 
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analysis saccades with latencies below 140 ms, considered anticipatory and not guided by visual 

information in this type of choice-saccade tasks (e.g., Walker et al., 1997), and very late saccades, 

above 500 ms (less than 6% of the first detected saccades overall). Visual inspection of individual 

latency histograms confirmed that saccades with latency below 140 ms and above 500 ms did not 

belong to the principal mode of the distribution. When a small anticipatory saccade was detected 

(amplitude below 3 deg), the second saccade was used instead for the analysis (less than 2% of total).  

For each saccade, we estimated latency, amplitude, endpoint position, and the distance between the 

eye position endpoint and the center of the target (or distractor) compound. Saccades ending within 

1.5 deg of either target or distractor were classified as “valid”, and respectively labeled “To-target” 

(correct) or “To-distractor” (erroneous). All the other saccades, landing farther than 1.5 deg from the 

compound, were considered as invalid, and labeled “Quasi-Target” or “Quasi-Distractor” when they 

brought the gaze in the same hemifield of the target or the distractor respectively. The choice of the 

1.5° distance criterion was motivated, on one hand, by the requirement that the validity-surrounds 

would not overlap between the two compounds in the 70° (uppermost) and -70° (lowermost position) 

conditions. On the other hand, this criterion distance is reasonable for a target-compound with a side 

of approximately the same size. 

2.4 Results 

2.4.1 Psychophysics experiments 

Results of Experiment 1 show that all observers found the target compound to be much more salient 

than the distractor. Even a single tiny optimal feature was chosen with probability = 0.71 ± 0.01 over 

its alternative by 20 observers (Figure 16). Probability of choosing the target as more salient increases 

with the number of features presented up to 10 features, where probability saturates for all observers. 

This number was used in all the following experiments. 
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Figure 16. Study 1 – Psychophysics Experiment 1: probability of selecting the target as a 
function of the number of features. Colored symbols represent data from 5 individual observers. 
Black symbols represent data from 20 different individual observers, tested in this condition only. 
Errors of individual dots are binomial standard deviations. The dashed line indicates the guessing 
level for this task (0.5 probability). Figure adapted from (Castellotti et al., 2021). 

Results of Experiment 2 show that even when optimal features are intermixed with non-optimal 

features in the same compound, observers still indicate this compound as more salient than the 

alternative. The probability increases with SNR. A compound with a single optimal feature 

surrounded by nine non-optimal features is sufficient to lead observers to consider this stimulus as 

more salient than the other with probability = 0.64 ± 0.02 (z = 6, p < 0.001) (Figure 17). 

 

Figure 17. Study 1 – Psychophysics Experiment 2: probability of selecting the target as a 
function of SNR. Data from individual observers. The dashed line indicates the guessing level for 
this task (0.5 probability). Target SNR could be 0.1, 0.4, 0.6, or 1 (corresponding to 1, 4, 6, or 10 
optimal features in the target compound out of 10 total features). Figure adapted from (Castellotti et 
al., 2021). 

Results of Experiment 3 show that the lowest contrast needed to still choose the optimal features as 

the more salient is 0.23 ± 0.0006. This is the weighted average of the thresholds from maximum 

likelihood fits of individual data (Figure 18). 
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Figure 18. Study 1 – Psychophysics Experiment 3: probability of selecting the target as a 
function of contrast of both target and distractor. Data from individual observers. The line is the 
ML best fit. Individual thresholds are given by contrast values corresponding to 75% level 
performance and are respectively 0.21 ± 0.007, 0.35 ± 0.88, 0.30 ± 0.02, 0.20 ± 0.02, 0.32 ± 0.02. 
The dashed line indicates the guessing level for this task (0.5 probability). Figure adapted from 
(Castellotti et al., 2021). 

Results Experiment 4 show that when the contrast of non-optimal features is lowered, all observers 

always deemed the compound of optimal features (kept at 100% contrast) the most salient one. 

Conversely, when the contrast of non-optimal features was kept at 100% and that of optimal features 

was lowered, they still considered them as more salient, but with a decreasing probability as the 

contrast decreased. The average contrast value for which the contrast of optimal features balances the 

saliency of the non-optimal features is 0.63 ± 0.004 (weighted average of individual thresholds) 

(Figure 19). 

 

Figure 19. Study 1 – Psychophysics Experiment 4: probability of selecting the target as a 
function of relative contrast of target or distractor. Data from individual observers. Filled 
symbols: the contrast of the target is varied. Open symbols: the contrast of the distractor is varied. 
The line is the ML best fit. Individual thresholds are given by contrast values corresponding to 50% 
level performance and are respectively 0.65 ± 0.01, 0.62 ± 0.006, 0.62 ± 0.01, 0.61 ± 0.01, 0.67 ± 
0.01. Figure adapted from (Castellotti et al., 2021). 

2.4.2 Eye movement experiment 

Figure 20 shows probabilities for the first correct saccade and psychophysical choice of the same 

observers, as a function of the relative number of optimal vs. non-optimal features in the compound 
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(SNR), when the target and distractor compounds were presented on the horizontal axis (0/180°). 

Both psychophysical and eye movements data confirm the results of Experiment 2, although with a 

smaller set of data and at a slightly larger eccentricity (5° instead of 3°). 

That is, even when in the same compound optimal features are intermixed with non-optimal features, 

observers consider this compound as more salient than the other comprising only non-optimal 

features, and they do so with a probability that increases with SNR. A compound with just one optimal 

feature surrounded by nine non-optimal features is sufficient to lead observers to consider this 

stimulus as more salient than the other one with probability 0.65 ± 0.02 for psychophysics (z = 3.66, 

p < 0.001), and to orient the gaze toward it with probability 0.65 ± 0.03 for saccadic choice (z = 1.75, 

p < 0.05). 

 

Figure 20. Study 1 – Eye movements experiment: probability of selecting the target as a function 
of SNR at angle 0°. Black circles: psychophysical results (button-press); green circles: eye 
movements results. Data from individual observers (weighted means with their errors). The dashed 
line indicates the guessing level for this task (0.5 probability). Figure retrieved from (Castellotti et 
al., 2021). 

When all directions tested are considered ( -70°, -45°, 0°, 45°, 70°), the average probability for the 

choice saccade to land in the vicinity of the target compound also increases with SNR (Figure 21A). 

The average performance depends on angles: compared to angle 0°, performance is lower for the 

upper quadrant, both for +45° (z = -2.19, p < 0.05) and +70° angles (z = -5.20, p < 0.001). The 

performance for the lower quadrant does not differ from 0°, either for -45° (z = 0.09, p > 0.5) and -

70° angles (z = -1.20, p > 0.05). 
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We evaluated the mean latency of saccades that were correctly oriented toward the salient compound, 

as a function of the SNR and for each different angle of presentation. Figure 21B shows a strong 

difference of the saccadic latency across angles, with latencies being much shorter for eye movements 

directed toward the upper hemifield and in particular to the uppermost target-distractor compound 

location (angle +70°). A mixed-effects linear regression analysis of mean saccade latency (with SNR, 

angle, and choice-accuracy – to-Target vs to-Distractor saccades – as fixed-effects, and the same 

factors per observer as random-effects) revealed that only the angle but neither SNR nor choice-

accuracy did significantly influence latency (mean regression slope = -0.46; standard error = 0.08; t 

= -5.63; p < 0.01). 

 

Figure 21. Study 1 – Eye movements experiment: correct saccades and their latency as a 
function of SNR at different angles. (A) Average probability of correct saccades. Data are pooled 
across observers (weighted means with their errors). The dashed line indicates the guessing level for 
this task (0.5 probability). (B) Average latency of correct saccades. Averages are taken over all 
correct trials (classified as “to-the-target”) and all observers (weighted means with their errors). 
Figure retrieved from (Castellotti et al., 2021). 

Figure 22 shows the landing point of all saccades of all observers for the lowest (Figure 22A) and 

highest (Figure 22B) stimulus saliency conditions. To better visualize saccadic accuracy and 

precision, data have been flipped and pooled as though the target compounds were always on the 

right hemifield and the distractor compounds were always on the left hemifield. Saccades are 

categorized as valid, “to-Target” (correct), or “to-Distractor” (erroneous), when they land at a 

distance lower than 1.5°, respectively from the target or distractor (filled circles in Figure 22). 

To analyze the precision of landing positions for valid saccades, we calculated the absolute distance 

of landing position of correct and erroneous saccades from the compounds. At SNR 0.1, the mean 
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absolute distance (± SEM) from the target compound of correct saccades was not significantly 

different from the distance of erroneous saccades from the distractor compound (respectively 0.74 ± 

0.03° and 0.76 ± 0.03°; Paired Samples 1-tailed t-test, t(6) = 0.93, p > 0.05). At SNR 1, the distance 

from the target of correct saccades was instead significantly smaller than the distance of erroneous 

saccades from the distractor (respectively 0.59 ± 0.05° and 0.99° ± 0.09°; t(6) = 4.19, p < 0.01). At 

SNR 1 correct saccades landed closer to the target than at SNR 0.1 (t(6) = -4.22, p < 0.01), whereas 

erroneous saccades at SNR 1 landed further away from the distractor than at SNR 0.1 (t(6) = 2.4, p 

< 0.05). To investigate whether these differences could be explained by an “attraction” exerted by 

optimal features, we also analyzed the landing position along the horizontal axis, that is the presence 

of left-right biases in the saccade’s directions. Landing errors of correct and erroneous saccades were 

computed as the difference between the horizontal component of the estimated eye position at the 

end of the saccade and the position of the center of the nearby target or distractor compound. 

According to our convention (see caption of Figure 22), for to-Target saccades, a landing error 

compatible with zero corresponds to a saccade landing precisely on the target center; a negative 

landing error corresponds to a saccade landing closer to the screen vertical midline with respect to 

the target center (thus in the direction of the distractor on the horizontal axis), whereas a positive 

landing error corresponds to a saccade landing further away from the screen vertical midline (beyond 

the target on the horizontal axis). The opposite relation holds for to-Distractor saccades. At SNR = 

0.1 (Figure 22A) the mean landing error for saccades to-Target (-0.09° ± 0.002) is significantly 

different from 0 (One Sample 2-tailed t-test, t(6) = -4.80, p < 0.01). The mean landing error for 

saccades to-Distractor (0.19° ± 0.07) is significantly different from 0 as well (t(6) = 5.06, p < 0.1). 

Thus, with low-saliency compounds, both to-Target, and to-Distractor saccades land nearer to the 

screen vertical midline. However, the absolute value of the landing error of to-Distractor saccades is 

larger than that of to-Target saccades (Paired Samples 1-tailed t-test, t(6) = 3.004, p < 0.05), 

suggesting that to-Distractor saccades are less precise than to-Target saccades and that they tend to 

land shorter from the distractor and relatively closer to the salient compound on the opposite side. At 

SNR = 1 (Figure 22B) the mean landing error for to-Target saccades (-0.03° ± 0.1) is not significantly 

different from 0 (t(6) = -0.67, p > 0.5), whereas the mean landing error for to-Distractor saccades 

(0.28° ± 0.1) is significantly different from 0 (t(6) = 3.89, p < 0.01), again significantly greater than 

that of to-Target saccades (t(6) = 3.63, p < 0.01). Thus, when the target compound is very salient, to-

Target saccades are precise and land very close to the compound center, whereas to-Distractor 

saccades are less precise and tend to fall short of the distractor, revealing a bias for the saccade landing 

position toward the salient compound. In addition, when SNR increases from 0.1 to 1, the landing 
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error for saccades to-Distractor move further away from the distractor compound and relatively 

closer to the target compound (t(6) = -2.39, p < 0.05), whereas to-Target saccades land closer and 

closer to the center of the target compound (t(6) = -2.21, p < 0.05). When analyzed independently for 

different angles, the precision of valid to-Target saccades does also provide different results. The 

mean landing error (± SEM) for the 70° angle is quite large: -0.48° ± 0.05 at SNR =0.1 and -0.46° ± 

0.04 at SNR = 1. In contrast, saccades are much more precise at 0° angle, with a landing error 

compatible with 0° within our uncertainty (-0.03° ± 0.04 at SNR 0.1; 0.01° ± 0.04 at SNR 1).  

To assess the attraction of optimal features independently on the criterion we choose for validity, we 

also analyzed the behavior of invalid saccades landing farther than 1.5° from either target (“Quasi-

Target”) or distractor (“Quasi-Distractor”), for the two extreme SNR values, 0.1 and 1 (empty circles 

in Figure 22). First, in order to measure saccade accuracy, the ratios of “Quasi-Target”/“to-Target” 

and “Quasi-Distractor”/“to-Distractor” saccades were compared. When considering all saccades 

independently of the angle, the “Quasi-Distractor”/“to-Distractor” ratio is larger than “Quasi-

Target”/“to-Target”, both for the lowest (Binomial test, 18% vs. 11%, p = 0.004) and highest (18% 

vs. 9%, p = 0.0004) SNR values. This result suggests that when saccades are directed on the side of 

the distractor, the probability to meet the 1.5° criterion from the goal is lower, compared to saccades 

directed on the side of the salient compound. When different angles are considered separately, the 

landing position at 0° is the most accurate, with a low ratio of “Quasi-Target”/“to-Target” (3% at 

SNR = 0.1 and 1% at SNR = 1), becoming progressively less accurate moving further away from 0° 

(see Table 1). Then the horizontal landing position with respect to the vertical midline of the screen 

of these invalid saccades was analyzed, to detect possible biases due to saliency. At SNR = 0.1 (Figure 

22A), the absolute horizontal landing position of “Quasi-Target” and “Quasi-Distractor” saccades are 

statistically compatible (t(6) = 0.32, p > 0.5). In contrast, at SNR = 1 (Figure 22B) Quasi-Distractor 

saccades land away from their goal and closer to the center of the screen compared to Quasi-Target 

saccades (t(6) = 2.06, p < 0.05). In addition, when SNR increases from 0.1 to 1, there is a significant 

shift of the mean landing position of Quasi-Distractor saccades (t(6) = -2.55, p < 0.05) away from the 

Distractor in the direction of the Target, and a significant shift of Quasi-Target saccades in the 

direction of the target (t(6) = -3.62, p < 0.05). Therefore, similarly to valid saccades, invalid saccades 

tend also to be relatively biased away from the distractor and further toward the salient compound 

when saliency increases, pointing to the general validity of these effects, regardless of the specific 

criterion for saccade validity. 
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Table 1. Study 1 – Eye movements experiment. Ratios of “Quasi-Target”/“to-Target” and 
“Quasi-Distractor”/“to-Distractor” saccades. 

  SNR 0.1 SNR 1 

Angle -70° -45° 0° +45° +70° -70° -45° 0° +45° +70° 

Quasi-Target 12.9% 10.5% 3.3% 7.8% 22.6% 11.9% 6.8% 1.5% 11.0% 15.8% 

Quasi-Distractor 26.7% 19.6% 4.3% 18.0% 22.2% 23.5% 17.4% 5.0% 22.5% 23.0% 

 

Figure 22. Study 1 – Eye movements experiment: landing positions of correct and erroneous 
saccades for SNR 0.1 and SNR 1. (A) SNR 0.1. (B) SNR 1. For our convention, the center of the 
screen corresponds to a horizontal component of 0; the target compound (black squares) is always on 
the right hemifield, and the distractor is always on the left hemifield (grey squares). Filled circles: 
valid saccades (within 1.5°); empty circles: invalid saccades. Red: angle +70°; blue: angle +45°; 
green: angle 0°; violet: angle -45°; orange: angle -70°. Figure retrieved from (Castellotti et al., 2021). 

Finally, we analyzed whether the integration of visual information across time influences the selection 

of salient features for saccade orientation. If this were true, we would expect the choice performance 

to vary as a function of saccade latency. A general principle of perceptual decision-making models is 

that the percentage of correct choices is an increasing function of the response reaction time (Ratcliff 

& McKoon, 2008).  
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Figure 23 shows, for the two angles that most differ for performance and latency (0° and 70°) and 

the two extreme SNR values (0.1 and 1), the pooled probability for a saccade to land at the target 

compound depending on its latency. Latencies were divided into “fast” and “slow” depending on 

whether they were below or above the individual median latency respectively. Our results highlight 

some variability across angles and SNR values. When the target-distractor compound pair is hardly 

discriminable (SNR = 0.1) and is displayed in the upper hemifield (70° angle), longer-latency 

saccades lead to better performance compared to short-latency ones (z = -2.4 p = 0.0081). The 

opposite is true at 0° angle, with a significant decrease of performance for longer-latency saccades (z 

= 2.12, p = 0.017), pointing in this case to a disadvantage for target selection performance with 

prolonged integration of visual information in time. See the Discussion section for a possible 

explanation for this surprising result. With highly salient target compounds (SNR = 1) saccade latency 

does not have a systematic effect on the choice performance at either 0° or 70° angle, in agreement 

with the idea that feature-based selection is a fast mechanism that does not benefit from a long 

temporal integration. 

 

Figure 23. Study 1 – Eye movements experiment: probability of saccades towards the target as 
a function of latency, at angles 0° and 70°. (A) Probability of saccades towards the target for 
SNR 0.1. (B) Probability of saccades towards the target for SNR 1. Data are pooled across 
observers (weighted means with errors). “Fast” and “slow” saccades are determined, participant by 
participant, based on whether they were below or above the individual median latency respectively. 
Green circles: angle 0°; red circles: angle 70°. The dashed line indicates the guessing level (0.5 
probability). Figure retrieved from (Castellotti et al., 2021). 
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2.5 Discussion 

In this work (Castellotti et al., 2021), we found that a specific set of local features, originally identified 

based on constrained-entropy maximization criteria (Del Viva et al., 2013), are selected as more 

salient than others even in the absence of any global arrangement, both in psychophysical and 

oculomotor tasks. In past works, the role of those features in early vision had already been shown, 

but their involvement in saliency determination is evidenced here for the first time. 

Psychophysical results show that few optimal isolated features are perceived as more salient than the 

non-optimal features by all participants. Their saliency scales with their luminance-contrast and 

number when presented alone, and with SNR when surrounded by non-optimal features. Optimal 

features are so prominent that just one of them can trigger a preferential choice, after having been 

seen for only 26 ms., both when it is presented alone and when is surrounded by 9 non-optimal 

features. Luminance contrast values are often considered as a reference for saliency comparisons 

between stimulus dimensions (Nothdurft, 2000; Nothdurft, 1993b, 1993a). Ten optimal features are 

still preferred when their luminance-contrast is 65% than that of non-optimal features. That is, the 

saliency instantiated by these specific features, is equivalent to the saliency instantiated by non-

optimal features with a luminance contrast increased by 35%.  

The same pattern of results was obtained in the eye movements experiment. Observers preferentially 

direct their saccades to the compound including optimal features (target), with a probability that 

increases with the proportion of optimal features. We did not find evidence, instead, of a systematic 

reduction of saccade latency with increasing SNR. This is somewhat unexpected considering that the 

most widespread models of perceptual decisions assume that response latency is inversely 

proportional to the rate of accumulation of noisy sensory information (Ratcliff & McKoon, 2008), 

which in turn is directly proportional to the sensory SNR.  

When analyzing saliency discrimination performance as a function of saccadic latency, we first 

observed different effects depending on the angle of presentation of the target-distractor compounds 

pair and on the SNR. The clear up-down anisotropy found in oculomotor data is arguably connected 

with stimulus saliency, but still deserves a brief discussion and future investigations. Saccades 

oriented to the upper visual field had a dramatically reduced latency with respect to the lower visual 

field, even more pronounced than in previous studies (e.g., Honda & Findlay, 1992). The increased 

latency for horizontal compared to upward vertical saccades found here might be due to the bilateral 

presentation of the target-distractor pair, which is known to maximize the Remote Distractor Effect 

on saccades latency (Benson, 2008; Walker et al., 1997). These phenomena have been attributed to 
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purely oculomotor properties, rather than to visual processing mechanisms (Honda & Findlay, 1992; 

Walker et al., 1997), coherently with the relative independence, in our data, of the latency on SNR. 

Finally, the lower performance in the upper hemifield probably reflects the superiority of perceptual 

discrimination in the lower visual field (see for example Talgar & Carrasco, 2002).  

Overall, under reasonable conditions of visibility (high SNR), postponing the response execution (i.e., 

increasing the time for integration of sensory evidence) does not seem to help to further improve the 

selectivity for salient features. Previous studies have reported that short-latency saccades were more 

strongly affected by salient distractors than slower saccades, suggesting that target selection based on 

saliency (instantiated by luminance or orientation-contrast) could be facilitated for early saccades 

(Donk & van Zoest, 2008). A similar fast capture exerted by salient features could explain, in our 

study, the relative independence of discrimination accuracy upon saccadic latency. More generally, 

the independence of saccadic latency on SNR is consistent with a fast bottom-up mechanism for 

saliency extraction, like the one proposed by Del Viva and colleagues (Del Viva et al., 2013), rather 

than a slower and detailed processing of sensory information. 

Saccadic precision instead depends strongly on SNR: the higher the SNR the more precise are the 

saccades directed to the target. Saccades directed to the distractor are instead less precise and further 

biased in the direction of the target with increasing SNR. This attraction bias toward the salient 

compound is independent on the validity criterion of saccades chosen in this study. 

All together, these results point to a rapid orientation of saccades towards the salient information 

provided by optimal features. 

The visual system is capable of detecting very quickly potentially dangerous or very interesting 

stimuli to activate emotive or fight-or-flight autonomic responses essential for survival (Morris et al., 

1999). This analysis does not need, and probably does not use, detailed visual information but needs 

fast and reliable processing of relevant elements (LeDoux, 1996; Öhman et al., 2001; Perrinet & 

Bednar, 2015). This processing could take advantage of a quick inspection of different small regions 

distributed over the image, each providing enough information about the whole scene. For this reason, 

it could use a constrained maximum-entropy approach to extract a saliency map, that the oculomotor 

system could use to drive eye movements toward potentially relevant locations (Garcia-Diaz et al., 

2012; Itti & Baldi, 2009; Itti & Koch, 2000, 2001; Najemnik & Geisler, 2005, 2008; Schütz et al., 

2012; Tatler & Melcher, 2007). 

Such rapid and optimal selection of information, devoid of detailed fine-scale color or luminance 

information (Del Viva et al., 2016), could be sufficient per se to provide salient locations in first 
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viewed scenes that could be followed, only at those locations, by a more detailed analysis. This would 

require a much larger computational power and may be only possible if performed more slowly and/or 

on a reduced part of the image. Our hypothesis does not exclude other rapid simultaneous processing 

of large-scale visual properties, that do not need such compression (e.g., Gegenfurtner & Rieger, 

2000).  

To conclude, the results presented in this study confirmed that local visual saliency can be determined 

by the amount of information that local features carry about the visual scene weighed with their 

processing costs for the system, as predicted by the reference model (Del Viva et al., 2013). They 

also suggest that these salient features participate early in the visual reconstruction process that must 

be, at least partly, initiated at the local level. 

In this study, saliency has been tested by explicitly asking participants to choose between two 

different stimuli. At this point, we wondered whether optimal features can rapidly and automatically 

attract the subject’s attention in attentional tasks, in which “saliency” is implicitly manipulated rather 

than explicitly cued. 
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3. STUDY 2: INFORMATION‐OPTIMAL LOCAL FEATURES 
AUTOMATICALLY ATTRACT COVERT AND OVERT 

ATTENTION 

3.1 Theoretical background and rationale 

Visual attention is used to prioritize significant objects in a complex visual environment (Bergen & 

Julesz, 1983; Hikosaka et al., 1996; Nakayama & Mackeben, 1989; Treisman & Gelade, 1980). 

Selective visual processes can be set in place automatically and very quickly, as proven by the 

intrinsic saliency of some visual stimuli which obtain priority processing (exogenous attention). A 

salient stimulus automatically pops out of a visual scene, suggesting that saliency is computed pre-

attentively across the entire visual field. This bottom-up saliency is largely independent of the nature 

of the specific task at hand, it operates very rapidly and is primarily driven by the nature of the stimuli, 

although it can be influenced by contextual effects of the visual surroundings (e.g., figure–ground). 

Other types of attentional selective processes can be driven in a top-down manner and influenced by 

task-dependent cues requiring a voluntary ‘effort’ and cognitive strategic processes (endogenous 

attention); for example, an instruction like ‘look for the red horizontal target’. Both mechanisms can 

operate in parallel, although their characteristic time courses are different (for a review, see Carrasco, 

2011). 

As already discussed in the introduction of the Study 1, the principles driving the bottom-up saliency 

of visual features are still subject of intense debate. Most models proposed for the estimation of the 

bottom-up saliency map rely on the empirical observation of neurons’ biological properties and 

generally define a-priori the dimensions along which a stimulus’ saliency can vary (luminance, edge 

orientation, etc.). Some approaches compute the local maxima of the contrast of these dimensions 

with respect to the surround to identify salient features (Nothdurft, 1993b; Treisman, 1985). Eye 

tracking models, on the other end, have tried to relate visual saliency to the locations where fixations 

occur (Garcia-Diaz et al., 2012; Itti & Koch, 2000, 2001). In fact, in the presence of multiple 

information cues in a complex natural scene, the pattern of ocular fixations is often used as an 

operational definition of the saliency map of the scene (Itti & Borji, 2013). 

Here, instead of considering the saliency map as consisting of known elements as addressed in 

previous studies (luminance, color, etc.), we adopt a different point of view following the approach 

for efficient extraction of visual features (Del Viva et al., 2013).  
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In Study 1, we have already shown that participants, when explicitly asked to choose the most salient 

stimulus, preferred optimal features, even when their number or contrast was lower than non-optimal 

features (Castellotti et al., 2021). 

In the present work, we implicitly tested the relative saliency of optimal and non-optimal features by 

using them as cues in perceptual and oculomotor attentional tasks (Castellotti et al., 2022). 

Although the vast majority of spatially-cued attention-orienting tasks (Posner paradigm; Posner, 

1980) have used a single cue (for a review, see Carrasco, 2011), in our work, we designed a novel 

spatial-cueing task, in which two brief peripheral bilateral cues are presented before the target. Few 

studies have previously proven the efficacy of dual cues of different saliency (in terms of luminance 

contrast) in the automatic capture of attention toward the most salient one (Kean & Lambert, 2003; 

Zhao et al., 2012). Here we use one optimal feature (deemed salient cue) and one non-optimal feature 

(deemed non-salient cue), which may preferentially attract the observer’s attention and eye 

movements to one location instead of another. Contrast-based saliency of cues was tested as a control 

for the saliency determined by the specific spatial structure of optimal features. That is, in the control 

condition, the saliency of the cues was manipulated through their relative contrast, presenting one 

high-luminance (deemed salient) and one low-luminance feature (deemed non-salient) as attentional 

cues (Kean & Lambert, 2003). 

We measured covert attention and gaze-orienting performance with two different tasks in two 

experiments. The covert-attention task required to identify the orientation of a gabor presented with 

different contrasts in positions that were cued by an optimal or non-optimal feature. Exploiting the 

fact that attention automatically shifts to salient stimuli (Nothdurft, 2002; Theeuwes, 2010; Theeuwes 

& van der Burg, 2008), and that contrast sensitivity of stimuli presented in attended locations 

improves (Carrasco, 2006), if optimal features are actually salient and able to automatically capture 

our attention, we expect lower contrast thresholds for targets presented in the position cued by one of 

them (“saliency cueing effect” in valid trials; Carrasco, 2011; Posner, 1980). On the contrary, if the 

participants’ covert attention is captured on the opposite side of the target (invalid trials), the contrast 

threshold for the target discrimination should increase.  

The gaze-orienting task only required making a saccade toward a visual target. Given that attentional 

capture to a specific location precede (Deubel & Schneider, 1996; Montagnini & Castet, 2007) and 

facilitate a subsequent saccadic gaze shift to that location (Kowler et al., 1995; Montagnini & Castet, 

2007; Theeuwes & Godijn, 2001), if optimal features are actually salient and capture our attention, 

we expect that saccades latencies will decrease towards targets presented in the position cued by one 
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of them (valid trials). On the contrary, if the participants’ attention is captured on the opposite side 

of the target (invalid trials), the target-directed saccadic latencies will increase. In addition, since 

salient stimuli can elicit automatic short-latency saccades (Ludwig et al., 2004), we might observe an 

automatic fast attraction of gaze (overt attention) exerted by our salient cues, irrespective to the target 

shown. 

In both experiments, cueing features are presented for few milliseconds to probe early visual stages, 

implicated by the reference model. 

In both tasks, the cue validity (i.e., the percentage of cases in which the target is presented in the 

position cued by the salient feature) could be 80% or 50%. The comparison between these two validity 

conditions, may help disentangling the nature of the attentional processes at play, since a facilitation 

effect based purely on exogenous attention, hence guided only by the stimulus properties and not 

willfully monitored (Theeuwes, 1991), should not increase with cue validity (Giordano et al., 2009; 

Jonides, 1998; Posner et al., 1982). On the other hand, if some cognitive strategic process is at play, 

we might expect an increased facilitation in valid trials when cue validity is 80%, compared to when 

the salient cue is uninformative about the target position (cue validity 50%; for a review, see Carrasco, 

2011). 

3.2 Aim of the study 

In Study 2 (Castellotti et al., 2022), we aim to study the bottom-up saliency driven by optimal features 

without explicitly requiring the participants to pay attention to stimulus saliency. We implicitly tested 

the relative saliency of optimal and non-optimal features by engaging participants in carrying out 

covert attentional and gaze-orienting tasks, whose performance might be influenced by the saliency 

of the task-irrelevant presented features. 

3.3 Materials and methods 

3.3.1 Covert-attention experiment 

3.3.1.1 Participants 

Sixteen young naïve adults (10 women, mean age = 27.8 ± 2.3 years) took part in the experiment. 

Eye movements were monitored on five of them in a separate control session. Written informed 

consent was obtained from all participants.  
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3.3.1.2 Apparatus and set-up 

Participants were tested individually in a dark room. Stimuli were presented through an ACER 

computer (Windows 7) using the Psychophysics Toolbox extensions for Matlab (Brainard, 

1997). The experiment was displayed on a 120-Hz gamma-corrected CRT Silicon Graphics 

monitor (1024x768 pixel), subtending 38.5° x 29.5° of visual angle at a viewing distance of 57 

cm. To control correct fixation, the left eye position was recorded with an EyeLink 1000 system 

(SR research - 500 Hz). 

3.3.1.3 Stimuli and conditions 

In both experimental and control conditions, stimuli preceding the target consisted of two small cues 

(arrays of 9 x 9 pixels, 0.3 degrees), which could be equally salient (neutral trials) or one more salient 

than the other (non-neutral trials). 

In the experimental condition, cues saliency was based on the spatial arrangement of their black 

(luminance 4 cd/m2) and white (44 cd/m2) pixels. Two types of cues were used: optimal features and 

non-optimal features, as identified by the reference constrained maximum-entropy model (Del Viva 

et al., 2013). At each trial, the optimal feature, used as “salient cue”, was randomly extracted from 

the set of 50 features selected as the best information-carriers (Figure 8C); whereas the non-optimal 

feature, used as “non-salient cue”, was extracted from a set of 50 features selected amongst those 

with the lowest probability of occurrence in the statistical distribution of all possible features (Figure 

8E). Neutral trials (Figure 24A – left panel) consisted of the presentation of two non-optimal 

features, deemed as two equally non-salient cues. In non-neutral trials (Figure 24A – right panel), 

one optimal and one non-optimal feature were presented, that is one cue deemed as more salient than 

the other according to the reference model. A comparison between the saliency of these two types of 

features was already assessed in the previous study where observers preferred one optimal feature to 

a non-optimal in 70% of cases and ten optimal features were still preferred when their luminance-

contrast was only 65% than that of ten non-optimal features (Castellotti et al., 2021). 

In the control condition, the saliency of the cues was exploited through their relative luminance 

contrast. Neutral trials (Figure 24B – left panel) consisted of the presentation of two identical grey 

features with equal luminance (20 cd/m2), slightly higher than that of the background, and therefore 

equally non-salient cues. In non-neutral trials (Figure 24B – right panel), one high-luminance and 

one low-luminance feature were presented, that is one salient and one non-salient cue based on their 

different luminance. To compare the effect of different cue types on equal grounds, in the control 
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condition the luminance values were set to 20 cd/m2 and 23 cd/m2. These values produce a contrast 

corresponding to the “equivalent contrast” found to match the saliency difference between optimal 

and non-optimal features (Castellotti et al., 2021). 

 

Figure 24. Study 2 – Stimuli and conditions. (A) Experimental condition. Left panel: - Example 
of neutral trial. Two non-optimal features, considered equally non-salient by the reference model, 
used as baseline for the experimental condition. Right panel – Example of non-neutral trial. One 
optimal (left) and one non-optimal (right) feature, one more salient than the other according to the 
reference model. (B) Control condition. Left panel: - Neutral trial. Two cues with the same 
luminance contrast, considered equally salient, used as baseline for the control condition. Right panel 
– Example of non-neutral trial. Two cues with different luminance contrasts, one being considered 
more salient than the other based on their luminance. Features are shown oversized for illustration 
purposes. The cue stimuli and conditions used in the covert attention and gaze-orienting tasks were 
the same. Figure adapted from (Castellotti et al., 2022). 

3.3.1.4 Procedure 

Each trial (Figure 25) started with the presentation of a grey display (16 cd/m2) with a central fixation 

point, followed by two peripheral cues, bilaterally presented at 5° of eccentricity. After 150 ms of 

SOA, a tilted gabor appeared at the same location of one of the two cues. The task instructions, given 

to the participants at the beginning of the experimental session by the experimenter, required them to 

discriminate the orientation of the gabor (i.e., clockwise or anticlockwise, communicated by a button 

press) while maintaining fixation. Eight different gabor contrasts, in the range between 0.01 and 0.09, 

were tested, presented in random order according to a constant stimuli procedure. The contrast values 

were slightly different across observers based on preliminary rough estimates of individual 

thresholds. Reaction times were also measured. 
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Figure 25. Study 2 – Covert-attention task: procedure. Example of non-neutral trial of the 
experimental condition, in which the optimal feature (the one on the right) precedes the target 
presentation (valid trial). Target is a ±20°-tilted gabor (40 pixels large, 1.5 cm diameter, spatial 
frequency of 2 cycles per degree, sigma of 5.7, phase of 0.5π). Cues and targets are shown oversized 
for illustration purposes. Figure adapted from (Castellotti et al., 2022). 

In both experimental and control conditions, 224 neutral and 500 non-neutral trials were presented. 

In neutral trials, the two cues were equally salient and uninformative about the position of the 

following target. Non-neutral trials could be “valid trials” or “invalid trials”, based on the position of 

the (deemed) salient cue with respect to the following target. In valid trials, the salient cue (optimal 

feature or high-luminance cue) was presented at the same location of the target, whereas, in the invalid 

trials, the salient cue was presented on the opposite side of the gabor, which therefore appeared after 

the non-salient cue (non-optimal feature or low-luminance cue).  

The percentage of cases in which the target was presented in the position cued by the salient feature 

was defined as “cue validity”. 250 non-neutral trials have 50% cue validity (125 valid trials and 125 

invalid) and the other 250 trials have 80% cue validity (200 valid trials and 50 invalid). 

Data for each participant were collected in two sessions, one for each cue validity, performed in 

random order across participants. In each session, participants performed one block of neutral trials 

and two blocks of non-neutral trials, one for the experimental and one for the control condition, 

presented in random order. Each participant performed 1448 trials in total. 
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A subset of participants performed an additional separate session with one block of neutral trials and 

one block of non-neutral trials with 80% cue validity while their eye movements were recorded. This 

session allowed us to control that the results obtained in the main covert-attention task were not due 

to uncontrolled saccades toward the salient cue, which could potentially reduce the perceptual 

threshold by reducing the distance of the gabor from the fovea.  

3.3.1.5 Data processing 

Percent correct data were fitted (MLE) with a cumulative Gaussian error function. For each 

participant, condition (experimental and control), cue validity (50% and 80%), and trial type (neutral, 

valid, and invalid) thresholds were calculated as the target contrasts yielding 80% correct responses. 

Thresholds for neutral trials of each condition were used as baseline for non-neutral trials. That is, 

they were subtracted from those obtained in valid and invalid trials, and the result divided by them to 

provide a measure of the percentage increase or decrease of contrast thresholds in non-neutral trials. 

In the control session, we considered a saccade execution any shift of gaze position further than 2 

degrees from the fixation point. 

3.3.2 Gaze-orienting experiment 

3.3.2.1 Participants 

Sixteen naïve young adults (11 women, mean age = 27.6 ± 1.9 years) participated in the experiment. 

Written informed consent was obtained from all participants (all different from those of the covert-

attention experiment). The local ethics committee (Comité d’éthique d’Aix-Marseille Université, ref: 

2014-12-3-05) approved the experimental paradigm, which complied with the Declaration of 

Helsinki. 

3.3.2.2 Apparatus and set-up 

Each participant was tested individually in a dark room. Stimuli were presented through a MacPro 

computer (OS 10.6.8), using the Psychophysics Toolbox (Brainard, 1997) and the Eyelink Toolbox 

extensions (Cornelissen et al., 2002) for Matlab. The experiment was displayed on a 120-Hz CRS 

Display++ LCD monitor (1920×1080 pixel), subtending 70x40 degrees at a viewing distance of 57 

cm. Participants’ viewing was binocular, but only the right eye was recorded by an Eyelink 1000 

video-based eye tracker (1 kHz). The observers’ head was stabilized with a chin- and forehead rest. 
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3.3.2.3 Stimuli and conditions 

Cue stimuli and conditions were the same as in the covert-attention experiment (Figure 24).  

3.3.2.4 Procedure 

Each trial (Figure 26) started with the presentation of a grey display (16 cd/m2), with a central fixation 

point, followed by two peripheral cues, bilaterally presented at 5° of eccentricity. After 150 ms of 

SOA, the target appeared on the left or on the right of the center, in the same location of one of the 

two cues. At the beginning of the experimental session, participants were instructed to make a saccade 

towards the target as quickly as possible. The following trial started only after participants resumed 

fixation.  

 

Figure 26. Study 2 – Gaze-orienting task: procedure. Example of non-neutral trial of the 
experimental condition, in which the optimal feature (the one on the right) is presented on the opposite 
side of the saccadic target (invalid trial). Target is a circular white placeholder, 100% contrast, 9 
pixels large (0.3 cm diameter). Cues and targets are shown oversized for illustration purposes. Figure 
adapted from (Castellotti et al., 2022). 

In both experimental and control conditions, 200 neutral and 500 non-neutral trials were presented. 

250 non-neutral trials have 50% cue validity, the other 250 trials have 80% cue validity.  

Data were collected in two sessions, one for each cue validity. In each session, 100 neutral trials and 

250 non-neutral trials for each condition were tested. Each participant performed 1400 trials in total. 
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3.3.2.5 Data processing 

Oculomotor parameters were extracted by using ad hoc software in Matlab. Recorded horizontal and 

vertical gaze positions were low-pass filtered with a Butterworth (acausal) filter of order 2 with a 30-

Hz cutoff frequency and then numerically differentiated to obtain velocity measurements. An 

automatic conjoint acceleration and velocity threshold method was used to detect saccades (Damasse 

et al., 2018). Aberrant trials, without recorded saccades (e.g., due to a long blink), were excluded 

(less than 3% of all saccades). 

In each trial, we considered a “regular saccade” the first detected saccade with a latency (with respect 

to target onset) longer than 80 ms (Carpenter, 1988; Fischer & Ramsperger, 1984) and shorter than 

500 ms (~95% of the first detected saccades overall), and an amplitude larger than 2 degrees (40% of 

the entire eccentricity). For each regular saccade, we estimated latency and direction. Each regular 

saccade was labeled as “correct” if directed to the target or as “erroneous” if directed towards the 

opposite side of the target. The mean latencies of correct saccades calculated in neutral trials of each 

condition were used as baseline for non-neutral trials. That is, they were subtracted by the latency 

values obtained in valid and invalid trials, and the result divided by them, yielding to a measure of 

the percentage increase or decrease of saccadic latencies. The percentage of saccade direction errors 

relative to the total number of saccades in each condition was also measured. 

Trials’ inspection revealed a consistent number of saccades faster than 80 ms. These values are 

considered too fast to be due to the onset of the target (Carpenter, 1988) and are probably generated 

by the presentation of the cues. Therefore, saccades with latency shorter than 80 ms and longer than 

-70 ms (with respect to the target onset, corresponding to a latency of 80 ms with respect to cue onset), 

and amplitude of at least 1 degree (a widely used arbitrary threshold-amplitude to exclude fixational 

microsaccades (Otero-Millan et al., 2008), were categorized as “anticipatory saccades”, potentially 

elicited by the cue. In most cases, an anticipatory saccade preceded a regular saccade, which 

continued in the same direction or reversed direction to reach the target. The percentage of 

anticipatory saccades over the total number of saccades in each condition was measured. Since not 

all participants performed anticipatory saccades, weighted averages were computed, taking into 

account their number in each condition, and percentages over the number of anticipatory saccades in 

non-neutral trials were calculated to estimate their preferential direction. 



Chapter 3 

 65 

3.4 Results 

3.4.1 Covert-attention experiment 

Contrast thresholds 

The performance of one participant for valid, invalid, and neutral trials in the experimental condition 

is shown in Figure 27A, as an example. At the lowest contrast, performance is at chance-level and 

then increases with target contrast in all trial types. However, performance is higher in valid trials 

than in neutral trials. Invalid trials have the lowest performance. 

Contrast thresholds averaged over 16 participants are reported in Figure 27B (experimental 

condition) and 26C (control condition). In the experimental condition, average gabor’ contrast 

thresholds for blocks with 50% cue validity are 0.045 ± 0.004 (SEM), 0.042 ± 0.004, and 0.048 ± 

0.004 for neutral, valid, and invalid trials, respectively. For blocks with 80% cue validity average 

thresholds are 0.047 ± 0.004, 0.044 ± 0.004, and 0.051 ± 0.004 for neutral, valid, and invalid trials, 

respectively. Average percentage threshold changes in valid and invalid trials compared to baseline 

values for the experimental condition are reported in Figure 27D. Contrast thresholds with respect to 

baseline decrease in valid trials and increase in invalid trials, both for 50% (-6.19 ± 2% and +5.24 ± 

2.5%, respectively) and 80% cue validity (-4.81 ± 2.2% and +10.72 ± 2.8%, respectively). 

Results for the luminance control condition are very similar: averaged target contrast thresholds for 

50% cue validity are 0.044 ± 0.004, 0.041 ± 0.005, and 0.048 ± 0.005 in neutral, valid and invalid 

trials, respectively. Average contrast thresholds for 80% cue validity are 0.045 ± 0.004, 0.042 ± 0.004 

and 0.049 ± 0.004 in neutral, valid and invalid trials, respectively. Average relative threshold changes 

in the control condition are reported in Figure 27E. As in the experimental condition, percentage 

contrast thresholds with respect to baseline decrease in valid trials and increase in invalid trials, both 

for 50% (-6.41 ± 2.3% and +8.69 ± 2.1%, respectively) and 80% cue validity (-6.80 ± 2.4% and 

+10.39 ± 2.2%, respectively). Although the differences between means are small, three-ways 

ANOVA analysis – with factors: condition (two levels: experimental vs. control), trial type (three 

levels: neutral, vs. valid, vs. invalid), and cue validity (two levels: 50% vs. 80%) – evidences a 

significant main effect of type of trial (F(2, 30) = 67.53, p < 0.001, η2 = 0.03 – small effect size) but 

no effect of either condition (F(1,15) = 1.03, p = 0.3, η2 = 0.002) or cue validity (F(1,15) = 1.84, p = 

0.19, η2 = 0.001) on the perceptual threshold. No interactions between the three factors have been 

found. Pairwise comparisons t-tests (with Bonferroni corrections), performed to assess significant 

differences between the means of different trial types are reported in the caption of Figure 27. 
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Figure 27. Study 2 – Covert-attention experiment: contrast thresholds in valid, invalid, and 
neutral trials. (A) Example of correct responses as a function of target contrast for one 
participant. Performance obtained in the experimental condition with 80% cue validity. Data are 
obtained from 224 neutral trials, 200 valid trials, and 50 invalid trials. Filled circles represent the 
proportion of times in which the participant correctly discriminated the gabor orientation presented 
with a specific contrast. The curves represent cumulative Gaussian error fits of the data. The vertical 
lines represent the contrast values yielding 80% correct responses (dashed line). (B) Experimental 
condition. Group average contrast thresholds in neutral (grey), valid (red), and invalid (blue) trials. 
Post-hoc t-tests (Bonferroni correction) show a significant difference between valid vs. invalid trials 
for 50% cue validity (t(2) = 5.12, p < 0.001). They show also significant differences between valid 
vs. invalid trials (t(2) = 6.05, p < 0.001), and invalid vs. neutral trials (t(2) = -4.07, p = 0.002) for 
80% cue validity. (C) Control condition. Group average contrast thresholds in neutral (grey), valid 
(red), and invalid (blue) trials. Post-hoc t-tests (Bonferroni correction) show a significant difference 
between valid vs. invalid trials (t(2) = 6.52, p < 0.001), and invalid vs neutral trials (t(2) = -3.73, p = 
0.006) for 50% cue validity. They also show significant differences between valid vs. invalid trials 
(t(2) = 6.26, p < 0.001), and invalid vs. neutral trials (t(2) = -3.64, p = 0.009) for 80% cue validity. 
Asterisks mark statistically significant pairwise comparisons across trial types: **p < 0.01, ***p < 
0.001. Error bars are SEM. (D) Experimental condition. Group average threshold changes in valid 
(red) and invalid (blue) trials compared to the baseline (grey line, neutral trials with two non-optimal 
features). (E) Control condition. Group average threshold changes in valid and invalid trials 
compared to the baseline (neutral trials with two identical low-luminance grey features). Figure 
retrieved from (Castellotti et al., 2022). 
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Average contrast thresholds changes of participants in the 50% cue validity condition were not 

statistically different depending on whether this condition was performed before or after the 80% cue 

validity condition (Independent t-test – experimental condition: valid: t(14) = -0.32, p = 0.7, invalid: 

t(14) = 0.47, p = 0.6; control condition: valid: t(14) = -0.67, p = 0.5, invalid: t(14) = -0.60, p = 0.6), 

thus arguing against a prominent role for sessions’ order. 

Reaction times analysis showed no differences between valid and invalid trials; indeed, in all types 

of trials, conditions and cue validities, average reaction times are very long (~600ms). 

In the additional session of the experimental condition with 80% cue validity, in which observers’ 

fixation was monitored, contrast thresholds change was -5.46 ± 2.7% in valid trials and +10.7 ± 2.7% 

in invalid trials, comparable to those obtained in the first participation without fixation control 

(respectively: -5.6 ± 2.8%, +13.4 ± 4.6%). On average, only one or two saccades over 474 trials were 

detected in these observers.  

3.4.2 Gaze-orienting experiment 

Saccadic latencies 

Latencies of regular saccades directed to the target (correct) differ across different types of trials. 

Saccadic latencies averaged over 16 participants are reported in Figure 28A (experimental condition) 

and 28B (control condition).  

In the experimental condition, for 50% cue validity, average latencies are 167 ± 5.9 ms (SEM), 161 

± 5.7 ms, and 174 ± 6.7 ms in neutral, valid and invalid trials, respectively. Average latencies for 

80% cue validity are 162 ± 5.3 ms, 155 ± 5.6 ms, and 171 ± 6.1 ms in neutral, valid and invalid trials, 

respectively. The average latency changes in valid and invalid trials relative to baseline values are 

reported in Figure 28C. Percentage latencies changes relative to baseline decrease in valid trials and 

increase in invalid trials, both for 50% (-3.5 ± 1% and +3.7 ± 2%, respectively) and 80% cue validity 

(-4.1 ± 1% and +5.5 ± 2%, relatively). 

Results of the luminance control condition are comparable to those of the experimental condition. 

The mean saccadic latency is 163 ± 6.6ms in neutral trials, 155 ± 6.4ms in valid trials, and 176 ± 

7.5ms in invalid trials, for blocks with 50% cue validity. For blocks with 80% cue validity mean 

saccadic latency is 158 ± 5.5ms in neutral trials, 150 ± 5.4ms in valid trials, and 168 ± 7.2ms in invalid 

trials. Average percentage latency changes are reported in Figure 28D. Percentage latencies with 

respect to baseline decrease in valid trials and increase in invalid trials (50% cue validity: -4.9 ± 1% 
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and +7.4 ± 1%, respectively; 80% cue validity: -5.5 ± 1% and +6.20 ± 1%, respectively). Also in this 

case, results for blocks with 50% cue validity are similar to those obtained for 80% cue validity. 

Three-ways ANOVA analysis – with factors: condition (two levels: experimental vs. control), trial 

types (three levels: neutral, vs. valid, vs. invalid), and cue validity (two levels: 50% vs. 80%) – 

evidences a significant main effect of types of trial (F(2,30) = 34.11, p < 0.001, η2 = 0.08 – small 

effect size) but no effect of either condition (F(1,15) = 2.3, p = 0.15, η2 = 0.005) or cue validity 

(F(1,15) = 2.69, p = 0.12, η2 = 0.01) on saccadic latency. No interactions between the three factors 

have been found. Pairwise comparisons t-tests (with Bonferroni corrections), performed to assess 

significant differences between the means of the different trial types, are reported in the caption of 

Figure 27.  

 

Figure 28. Study 2 – Gaze-orienting experiment: saccadic latencies in neutral, valid, and invalid 
trials. (A) Experimental condition. Group average latencies in neutral (grey), valid (red), and 
invalid (blue) trials. Post-hoc t-tests (Bonferroni correction) show a significant difference between 
valid vs. invalid trials for 50% (t(2) = 3.99, p = 0.008) and 80% cue validity (t(2) = 5.21, p < 0.001). 
(B) Control condition. Group average latencies in neutral (grey), valid (red), and invalid (blue) trials. 
Post-hoc t-tests (Bonferroni correction) show significant differences between valid vs. invalid trials 
(t(2) = 6.72, p < 0.001), and invalid vs. neutral trials (shown with a line near the baseline; t(2) = -
4.05, p = 0.007) for 50% cue validity. They also show a significant difference between valid vs. 
invalid trials (t(2) = 6.16, p < 0.001) for 80% cue validity. Asterisks mark statistically significant 
pairwise comparisons across trial types: **p < 0.01, ***p < 0.001. Error bars are SEM. (C) 
Experimental condition. Group average latencies changes in valid (red) and invalid (blue) trials 
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compared to the baseline (grey line, neutral trials with two non-optimal features). (D) Control 
condition. Group average latencies changes in valid and invalid trials compared to the baseline 
(neutral trials with two identical low-luminance grey features). Figure retrieved from (Castellotti et 
al., 2022). 

A possible effect of sessions’ order does not seem very likely. Indeed, averaged saccadic latency 

changes in the 50% cue validity condition did not change significantly if the participants had first 

performed the session with 80% cue validity or the other way around (Independent t-test – 

experimental condition: valid: t(14) = 1.07, p = 0.3, invalid: t(14) = 0.76, p = 0.4; control condition: 

valid: t(14) = 0.50, p = 0.6, invalid: t(14) = 0.37, p = 0.7). 

Saccadic direction errors  

In the gaze-orienting task, although participants were instructed to make an accurate saccade towards 

the visual target, there was a small proportion of trials in which the participants moved their eyes 

towards the opposite side of the target (erroneous saccades). Independently on the condition and the 

cue validity, a small percentage of direction errors relative to the total number of saccades is present 

in all trial types, even in neutral trials, in which the cues preceding the target were equally salient. 

Interestingly, the proportion of erroneous saccades decreases in valid trials and increases in the 

invalid ones with respect to neutrals (baseline) (Figure 29). Specifically, in the experimental 

condition with 50% cue validity (Figure 29A, left), there are, on average, 2.2 ± 0.8% (SEM) 

erroneous saccades in neutral trials, and only 0.4 ± 0.1% in valid trials. Instead, in invalid trials, there 

are 4.3 ± 0.7% direction errors. Similarly, in trials with 80% cue validity (Figure 29A, right), there 

are 2.9 ± 1.1%, 1.1 ± 0.5%, and 7.1 ± 0.5% errors in neutral, valid and invalid trials, respectively.  

The same pattern of results holds for the control condition. In trials with 50% cue validity (Figure 

29B, left), there are 2 ± 0.9%, 0.2 ± 0.1% and 5.3 ± 1% direction errors in neutral, valid and invalid 

trials, respectively. In trials with 80% cue validity (Figure 29B, right), there are 2.7 ± 0.8%, 0.8 ± 

0.3%, and 6 ± 1.3 %, direction errors in neutral, valid and invalid trials, respectively. 

Friedman non-parametric test (for binomial distributed data) confirms that there is an effect of trial 

type and that the proportion of direction errors is significantly higher in invalid trials compared to 

valid ones (χ2(11) = 78.08, p < 0.001, W = 0.3). Pairwise comparisons with Conover post-hoc tests 

(with Bonferroni corrections), performed to assess significant differences between the means of the 

different trial types, are reported in the caption of Figure 29. 
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Figure 29. Study 2 – Gaze-orienting experiment: percentage of saccadic direction errors in 
neutral, valid, and invalid trials. (A) Experimental condition. Post-hoc Conover tests (Bonferroni 
corrections) show that the percentage of saccades direction errors in valid trials (red) is lower than 
that in invalid trials (blue) for 50% (t(11) = 4.05, p < 0.01) and 80% cue validity (t(11) = 4.02, p < 
0.01). (B) Control condition. Post-hoc Conover tests (Bonferroni correction) show that the 
percentage of saccades direction errors in valid trials is lower than that in invalid trials for 50% (t(11) 
= 5.02, p < 0.001) and 80% cue validity (t(11) = 3.56, p < 0.05). Asterisks mark statistically significant 
pairwise comparisons across trial types: *p < 0.05; **p < 0.01; ***p < 0.001. Error bars are SEM. 
Figure retrieved from (Castellotti et al., 2022). 

Anticipatory saccades 

As shown in Figure 30, in each condition (experimental and control) and cue validity (50% and 80%), 

there is a high percentage of anticipatory saccades with respect to the total number of saccades, that 

is very early saccades with respect to stimulus onset. Statistical analyses, reported in the caption of 

Figure 30, show that the percentage of anticipatory saccades changes across trial types. Not 

surprisingly, the number of anticipatory saccades is always higher in non-neutral trials (i.e., valid and 

invalid trials) compared to neutral trials (percentages reported over each vertical bar in Figure 30). 

No differences across experimental and control conditions emerge. In the experimental condition 

there are slightly more anticipatory saccades for 80% than 50% cue validity, whereas there are no 

differences across cue validities for the control condition. 

Anticipatory saccades in non-neutral trials clearly show a preferential direction. In the experimental 

condition, they are mainly directed to the optimal feature, with no difference between cue validities. 

A similar percentage of preferential direction is obtained in non-neutral trials of the control condition, 

where anticipatory saccades are mainly directed to the high-luminance feature, again not depending 

on cue validity. 



Chapter 3 

 71 

 

Figure 30. Study 2 – Gaze-orienting experiment: percentage and direction of anticipatory 
saccades in neutral and non-neutral trials. Percentages shown above bars are computed over the 
total number of saccades. Percentages shown on the sides of green/black and yellow/black bars are 
computed over the number of anticipatory saccades done in non-neutral trials and represent the 
preferential direction towards which these saccades are directed. Binomial data were considered as 
normally distributed due to the numerosity of observations for each trial type (>30). (A) 
Experimental condition. The percentage of anticipatory saccades in non-neutral trials (green/black 
bars) is higher than that in neutral (grey bars), for 50% (left panel; z = 2.33, p = 0.009) and 80% cue 
validity (right panel; z = 2.70, p = 0.003). Anticipatory saccades in non-neutral trials are preferentially 
directed to the optimal feature (green) compared to the non-optimal one (black) (50% cue validity – 
z = 11.27, p < 0.001; 80% cue validity – z = 12.57, p < 0.001). (B) Control condition. The percentage 
of anticipatory saccades in non-neutral trials (yellow-black bars) is higher than that in neutral (grey 
bars), for 50% (left panel; z = 3.42, p < 0.001) and 80% cue validity (right panel; z = 3.30, p < 0.001). 
Anticipatory saccades in non-neutral trials are preferentially directed to the high-luminance feature 
(yellow) compared to the low-luminance one (black) (50% cue validity: z = 14.39, p < 0.001; 80% 
cue validity: z = 13.22, p < 0.001). Asterisks mark statistically significant pairwise comparisons 
across trial types: **p < 0.01, ***p < 0.001. Error bars are SEM. Figure retrieved from (Castellotti et 
al., 2022). 
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3.5 Discussion 

In the present study, we tested the automatic capture exerted by a specific set of local features deemed 

salient, originally identified as optimal information carriers based on constrained-entropy 

maximization criteria (Del Viva et al., 2013). Differently to the Study 1 (Castellotti et al., 2021), here, 

the optimal features saliency is implicitly addressed by measuring participants’ performance in 

perceptual and oculomotor dual-cueing attentional tasks where they are used as cues. 

Results of the covert-attention task show that when the target is cued by an optimal feature its contrast 

threshold decreases, while when the target is presented on the opposite side of the optimal cue its 

contrast threshold increases. Since contrast sensitivity improves at attended locations (Carrasco, 

2006), the effect found here could be attributed to the attentional capture of optimal features towards 

the location where they are shown, being more salient than the others. Since this effect is not due to 

eye movements to the target, it can be attributed to covert attention. 

The saliency-based capture of optimal features is also seen in the overt response in the gaze-orienting 

task. First, latencies of regular saccades towards the target decrease when cued by optimal features. 

As the dynamics of ocular movements is known to be influenced by attentional factors (Kowler et 

al., 1995; Montagnini & Castet, 2007), this can be seen as indication that optimal features are 

perceived as a potentially salient stimulus to be analyzed. Saccades directed to the target cued by non-

optimal feature are slower, probably because the system had already allocated attention and was ready 

to direct the gaze on the opposite side and has therefore to re-allocate its resources. 

The attentional capture exerted by the optimal features is also reflected in the number of errors in 

saccade direction. We find that some regular saccades were not directed to the target, despite task 

requirements. When the target is cued by an optimal feature very few errors occur, compared to when 

the position of the optimal cue and the target do not match. This indicates that an optimal feature 

attracts the participant's attention overtly, triggering a saccade to a location, that in some trials does 

not allow a correction based on the target location, resulting in the gaze landing on the opposite side 

of the target.  

Finally, anticipatory saccades, which are considered too fast to be due to the onset of the target and 

are probably generated by the presentation of the cues (Carpenter, 1988), are more numerous when 

the two cues differ in saliency (non-neutral trials with an optimal and a non-optimal cue) rather than 

when they are equally salient (neutral trials, two non-optimal cues). This fast oculomotor response 

might be due to an imbalance of mutual inhibition between neural populations representing the two 
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locations, possibly occurring in the superior colliculus (Goffart et al., 2012). Moreover, in non-neutral 

trials, anticipatory saccades are mainly directed to the side where the optimal feature is presented, 

providing further support for the fast, automatic attraction exerted by the optimal features. 

Overall, the results of our experiments reveal the presence of a “saliency-based cueing effect”, in 

which the participants' covert and overt attention is attracted by the optimal features. That is, optimal 

features result to be used as salient attentional cues by our visual system. 

In both tasks and conditions, there is no evidence of an increase of the attention-grabbing effect with 

cue validity. This is in agreement with most other studies, showing that, unlike endogenous attention, 

exogenous attention is automatic and unaffected by cue validity (Carrasco, 2011; Giordano et al., 

2009); that is, attention capture by optimal features’ seems to be automatic and guided by the 

exogenous properties of the features. However, the peripherical cue position and the brevity of the 

SOA may have precluded an emergence of endogenous effects, which are usually manipulated by 

central cues and need more time to occur compared to exogenous effects (Carrasco, 2011; Giordano 

et al., 2009; Müller & Rabbitt, 1989; Wright & Ward, 1994). Kean and colleagues (2003) have found 

a somewhat counterintuitive effect, whereby attention is captured by the most salient cue only when 

the cues are irrelevant to task (i.e., cue validity 50%), but not when they indicate the critical location 

for attentional allocation to the target (i.e., cue validity 80%) (Kean & Lambert, 2003). However, 

their participants were informed of the contingent relationship between the bright cue and the target 

location, and expectancy has been shown to attenuate the automatic attention capture (Lambert et al., 

1987). Our participants were completely unaware of the cues’ predictivity (or non-predictivity) 

relative to the goal location, so attention capture is not expected to decrease.  

The vast majority of the studies investigating spatial-cueing effects on automatic capture of attention 

have used a single peripheral cue (for a review, see Carrasco, 2011; Chica et al., 2014). Here instead 

we chose to present two simultaneous peripheral cues, with either the same or different assumed 

saliency, to test the power of the model-predicted optimal features in an implicit competition to attract 

the participants’ attention. To our knowledge, only one other study has used this dual-cue paradigm 

to study gaze-orienting task with luminance-based cues (Kean & Lambert, 2003). This dual cues 

saliency manipulation is also directly comparable with that used in Study 1 (Castellotti et al., 2021), 

where participants could discriminate between the saliency of two stimuli, very similar to those used 

here, but, unlike here, were explicitly asked to do so. Given our result, such a double spatial-cueing 

paradigm may be a useful general tool to test the saliency of two stimuli, also ontologically different 

from each other, by directly comparing their ability to capture attention. Note however that, the 
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latency advantage found here is similar to that elicited by a single uninformative cue versus a non-

cued target location (Briand et al., 2000; Danziger & Kingstone, 1999; Tepin & Dark, 1992), under 

comparable experimental conditions and at short SOAs. These findings seem to suggest that the more 

salient of two peripheral cues elicits an attention-capturing effect of a similar magnitude to that of a 

single peripheral stimulus (Kean & Lambert, 2003). 

Very interestingly, in both tasks, all the effects found with optimal vs. non-optimal features are 

comparable to those obtained with cues of different luminance. This suggests that the saliency 

provided by optimal features is comparable to that of high-luminance cues, if compared on equal 

grounds (see paragraph 3.3.1.3). Had we used a larger luminance difference between the lighter and 

the darker cues, we might have obtained a more pronounced saliency effect than with our optimal 

features, but the saliency would have not been comparable. Note that the saccadic latency advantage 

for the locations cued by high-luminance with respect to low-luminance features is comparable to 

that obtained by Kean et al. (2003) (Kean & Lambert, 2003). 

Our findings confirm that the set of optimal features identified by that reference model are indeed 

more salient than others also when used as implicit spatial cues in covert and overt attention tasks. 

We argue that the saliency map provided by these features seem thus to be used to automatically 

guide attention and eye movements towards informative locations.  

To further analyzed optimal features saliency and eye movement properties, we followed the 

literature showing that salient features influence the path of saccades, usually inducing saccadic 

curvature toward or away from their location (for reviews see Walker & McSorley, 2008; Van 

der Stigchel, 2010). In the next study, we then tested whether the presentation of an optimal feature 

along with a target interferes in a quick and automatic manner with the ongoing oculomotor 

programming of the target-directed saccade. 

 



 

 

  



 

 

 
 
 

 
Chapter 4 

 
Study 3: Saccadic trajectories deviate 

toward or away from optimally 

informative visual features 

 



Chapter 4 

 77 

4. STUDY 3: SACCADIC TRAJECTORIES DEVIATE TOWARD 
OR AWAY FROM OPTIMALLY INFORMATIVE VISUAL 

FEATURES 

4.1 Theoretical background and rationale 

As demonstrated by classic studies on eye movements, the trajectory taken by the eye to reach a target 

position does not follow a straight line between the saccade starting and ending point (Sheliga et al., 

1994; Yarbus, 1967). In recent years, a consistent number of studies demonstrated that the magnitude 

and direction of this natural saccadic curvature can be modulated by the presence of a competing 

distractor stimulus presented along with the saccade target. Indeed, visual distractors may cause a 

deviation either toward (attraction) or away from (repulsion) their location (for reviews see Walker 

& McSorley, 2008; Van der Stigchel, 2010). 

Factors determining the direction of the curvature are still under investigation. Some studies 

suggested that the spatial distance between target and distractor modulates the curvature. For 

example, saccade trajectories tended to deviate toward the distractor location when this was presented 

close to the target, whereas trajectories deviated away from the distractor when presented closer to 

fixation (Van der Stigchel et al., 2007a). Differences also emerged based on target and distractor 

location predictability: when their location was unpredictable, trajectories deviated toward 

distractors, whereas, with predictable locations, saccades deviated away from distractors (Walker et 

al., 2006). 

Besides the role of spatial position, some studies have also shown that the temporal distance between 

distractor presentation and saccade onset influences its trajectory. When target and distractors were 

presented simultaneously, shorter-latency saccades (less than ~200 ms) deviated toward distractors, 

whereas longer-latency saccades deviated away from distractors (McSorley et al., 2006; Theeuwes & 

Godijn, 2004; Van Zoest et al., 2004; Walker et al., 2006; Walker & McSorley, 2008).  

Jonikatis and Belopolsky (2014) induced oculomotor competition by briefly presenting a task-

irrelevant distractor (50 ms) at different times during the peri-saccadic epoch (from -400 to +600 ms 

from saccade onset). They found that the distractor offset time relative to saccade onset (DSOA) 

influenced the amplitude of the curvature; the deviation away was maximal when the distractor-to-

saccade onset asynchrony was long and decreased as DSOA became shorter (Jonikaitis & Belopolsky, 

2014).  
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Distractor stimuli can also influence saccades’ endpoint position. Indeed, when a distractor is 

presented in close spatial proximity to a target, saccades tend to land in between the two objects rather 

than on the target – the so-called “Global effect” (Coren and Hoenig, 1972; Findlay, 1982; 

Wollenberg et al., 2018). 

Finally, the effects of a distractor are also reflected in the temporal properties of saccades. Indeed, 

distractors positioned at a remote location from the target evoke longer saccade latencies as compared 

to distractors close to a target (i.e., “Remote Distractor Effect,” RDE; Godijn & Theeuwes, 2002; 

Walker et al., 1997, 1995). Further studies also found that a distractor presented before the target 

reduces the saccadic latency, contrary to a distractor presented after the target which delays saccades 

latency (Ross & Ross, 1980), differently depending on whether it is in the same hemifield as the 

target and near or far from the fovea (Casteau & Vitu-Thibault, 2012; Walker et al., 1997). 

It has been speculated that all these effects may be attributed to inhibitory processes occurring in the 

oculomotor system in situations where observers have to make a fast and accurate eye movement to 

a target while ignoring a competing distractor. Hence, the directional deviation of the saccade 

trajectory away or toward the distractor location would reflect the outcome of this competition. If the 

distractor location is only weakly inhibited the saccade trajectory will deviate toward the distractor 

before heading to the target (Heeman et al., 2016; Van der Stigchel, 2010; Van der Stigchel et al., 

2006, 2007b), whereas strong inhibition will cause deviation away from the distractor (Doyle & 

Walker, 2001; Tipper et al., 2001, 1997; Van der Stigchel et al., 2007b, 2006).  

The fundamental point for our current study is that a larger saccade deviation either away or toward 

a distractor implies a stronger influence of the distractor (e.g., as obtained with larger, or brighter 

distractors – Deuble et al., 1984; Findlay, 1982). In other words, more salient distractors yield more 

pronounced competition, that in turn leads to stronger attraction and requires greater inhibition, 

inducing overall greater saccadic curvature. This interpretation has been broadly used to explain a 

variety of findings. For example, it has been speculated that distractors that share visual similarities 

with the saccade target produce greater trajectory deviation than dissimilar distractors because they 

are more behaviorally salient for the visuomotor system engaged in that particular saccadic task 

(Ludwig & Gilchrist, 2003). A similar speculation based on a broad definition of saliency has been 

proposed for distractors closer to fixation vs. distractors far from fixation (Van der Stigchel et al., 

2007a), for bimodal distractors vs. unimodal ones (Heeman et al., 2016), and for abrupt onset vs. color 

singleton distractors (Godijn & Theeuwes, 2004).  
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Recent studies specifically tested distractor saliency effects on saccade curvature. Jonikaitis and 

Belopolsky (2014) used a double saccade task and manipulated the salience of the distractor presented 

before the first saccade by adjusting its luminance. They observed that the degree of curvature of the 

second saccade away from the distractor increased when the distractor’s luminance increased, 

suggesting that information about the distractor’s salience was also transferred across saccades 

(Jonikaitis & Belopolsky, 2014). This saliency effect was later reproduced across different sensory 

modalities (Szinte et al., 2020). Van Zoest et al. (2012) modified the distractor salience in terms of 

orientation contrast relative to the surrounding stimuli. Their results revealed that saccades deviated 

toward the irrelevant distractor and this deviation was stronger for more salient distractors, with a 

stronger effect on the shortest saccade latencies (Van Zoest et al., 2012). Finally, Tudge and 

colleagues (2018) exploited the assumption of the relation between distractor saliency and saccade 

deviation to estimate the saliency of stimuli defined by combinations of different features with respect 

to single-feature stimuli (Tudge et al., 2018). Many studies also found that distractors with task-

relevant features produce deviations in saccade trajectories, showing that the visuo-oculomotor 

system is not just sensitive to low-level saliency, but also to high-level manipulations of distractors’ 

saliency (Kehoe et al., 2021; Kehoe, Aybulut, et al., 2018; Kehoe, Rahimi, et al., 2018; Van Der 

Stigchel et al., 2011; Van der Stigchel et al., 2009). As an example, Hickey and van Zoest (2012) 

found that saccade trajectories are influenced by reward-associated distractors, demonstrating top-

down, task-dependent influences on saccadic curvature (Hickey & Van Zoest, 2012). 

Building-up on these findings, in the present study (Castellotti et al., 2023a), we compare the effects 

on saccades trajectories produced by optimal vs. non-optimal features used as distractors, considering 

the magnitude of curvature as a measure of feature saliency. We expected that, if optimal features are 

indeed more salient, their presence will interfere in a quick and automatic manner with the ongoing 

oculomotor programming, and they will induce a larger saccadic curvature. As a control for this 

saliency effect, we compared it with the saccadic curvature induced by high-luminous vs. low-

luminous distractors. In order to characterize the time course of the saliency effect, we also 

investigated changes in saccade trajectory deviations at different DSOA and we looked at the possible 

effects of distractors’ saliency on endpoint position and saccade latency. 

4.2 Aim of the study 

In Study 3 (Castellotti et al., 2023a), we further tested the saliency predictions of the constrained 

maximum-entropy model by using optimal and non-optimal features as distracting stimuli in a 
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saccadic task and measuring the resulting saccadic curvature. This approach allowed us to study the 

low-level, automatic integration of these optimal features in fast visuo-oculomotor processes, along 

with its dynamics. 

4.3 Materials and methods 

4.3.1 Participants 

Twenty-three healthy volunteers participated in the present study (aged 22–34 years, M = 26.48, SD 

=3.07, fourteen females and nine males). 

4.3.2 Apparatus and set-up 

Each participant was tested individually in a dark room. Stimuli presentation was controlled by a 

MacPro computer (OS 10.6.8), using the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 

2007; Pelli, 1997) and the Eyelink Toolbox extensions (Cornelissen et al., 2002) for Matlab. The 

experiment was displayed on a 120 Hz CRS Display++ LCD monitor (1920 by 1080 pixel), 

subtending 70 by 40 degrees at a viewing distance of 57 cm. Participants’ viewing was binocular, but 

only the right eye was recorded by an Eyelink 1000 video-based eye tracker (1 kHz). The observers’ 

head was stabilized with a chin- and forehead rest. 

4.3.3 Stimuli and conditions 

Trials were distributed across three different conditions: baseline (200 trials), experimental (400 

trials), and luminance-control (400 trials) condition. Trials’ order was randomized. In the baseline 

condition, no distractor was presented. The experimental and luminance-control conditions differ for 

the visual distractor stimuli used in the task: in each condition, the distractor could be high salient 

(200 trials) or low salient (200 trials). In the experimental condition, distractors’ saliency differs based 

on the spatial arrangement of their black (greyscale value = 50; luminance 4 cd/m2) and white 

(greyscale value = 250; 44 cd/m2) pixels, whereas, in the control condition, distractor saliency was 

based on their luminance contrast with respect to the background. 

Specifically, in the experimental condition, two types of distractors were used: optimal features and 

non-optimal features, as identified by the reference constrained maximum-entropy model (Del Viva 

et al., 2013). At each trial, the optimal feature, assumed to be a “high salient distractor,” was randomly 

extracted from a set of 50 features selected as the best information carriers (Figure 8C; average 
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greyscale value = 151; Weber contrast = 0.19; RMS contrast: M = 1.2, SD = 0.1, range [0.98 1.3]); 

whereas the non-optimal feature, used as a “low salient distractor,” was extracted from the set of 50 

features selected amongst those with the lowest probability of occurrence in the statistical distribution 

of all possible features (Figure 8E; average greyscale value = 149, Weber contrast = 0.18; RMS 

contrast: M = 1.2, SD = 0.05, range [1.0 1.3]), and thus classified as poorly informative by the model. 

On average, then optimal and non-optimal features do not differ in their contrast properties and spatial 

frequency content (see Supplementary Material). The theoretical range of the unidimensional 

spatial frequency for our 9 x 9 pixels features is comprised between 1.67 and 5 cycles/deg for both 

sets. 

In the luminance-control condition, the distractor stimulus could be a grey uniform square with low 

luminance contrast with respect to the background (20 cd/m2; greyscale value = 150; Weber/RMS 

contrast = 0.18; SD = 0), or a white uniform square with high luminance contrast (23 cd/m2; greyscale 

value = 173; Weber/RMS contrast = 0.36, SD = 0). The luminance values of the control distractor 

stimuli were purposely chosen to compare their effect with the effect induced by the distractor used 

in the experimental condition. Indeed, these values produce a contrast corresponding to the 

“equivalent contrast” found to match the saliency difference between optimal and non-optimal 

features (Castellotti et al., 2021). 

4.3.4 Procedure 

At the beginning of the experimental session, a standard nine-point gaze-calibration routine was run 

and possibly repeated to ensure good quality of the eye movement recordings. The whole task (and 

the calibration) was presented on a grey display background (16 cd/m2). See Figure 31A for an 

illustration of a trial. Each trial started with the presentation of a white central fixation point 

(44 cd/m2) for a variable duration, uniformly distributed in the range between 400–800 ms, followed 

by the target (white ring, 18 pixels large, 0.6 °) shown for 700 ms at 7° eccentricity on the vertical 

meridian, above or below the initial fixation. A small distractor stimulus (arrays of 9 × 9 pixels, 0.3 °, 

see Stimuli section for details) could randomly appear for 25 ms on the right or on the left, halfway 

from the target (3.5° vertically and horizontally from fixation), with a variable delay with respect to 

target onset (Distractor-to-Target Onset Asynchrony - DTOA from -150 to +50 ms). See Figure 31B 

for an illustration of the display sequence. Observers were instructed to make a fast and accurate 

saccade toward the target. The following trial started only after participants resumed fixation. Each 

participant performed 1000 trials in total, in a single session with a small pause every 100 trials. 
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Figure 31. Study 3 – Procedure, stimuli, and DSOA distribution. (A) Example of a trial. 
Durations of the different stimuli are reported under each panel. In this example, the distractor is 
presented as an empty square (9x9 pixels) and had a negative DTOA (presented before the target), 
and the target is presented 7° above the fixation. (B) Display sequence. Fixation point disappears as 
soon as the target appears. The time 0 refers to the target onset. Relative to target onset, the distractor 
could appear from 150 ms before the target to 100 ms after the target (DTOA = Distractor to Target 
onset asynchrony). The time distance between the distractor offset and the saccade onset (yellow 
arrow) is the distractor offset-to-saccade onset asynchrony (DSOA). (C) DSOA distribution for 
each distractor condition. Data are binned every 20ms. Figure retrieved from (Castellotti et al., 
2023a). 

Task characteristics were chosen to maximize the possibility of observing curvature effects. First, we 

instructed only vertical saccadic eye movements because curvature effects are more pronounced for 

vertical than for horizontal saccades (Jonikaitis & Belopolsky, 2014; Walker & McSorley, 2008). 

Second, the target could only appear at two possible locations, because it has been found that 
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predictable target locations make inhibitory mechanisms more pronounced in the target selection 

process (Van der Stigchel et al., 2006; Walker et al., 2006). Also, utilizing different DTOA produce 

saccades starting at different times to the distractor (distractor offset-to-saccade onset asynchrony - 

DSOA) and allows us to analyze the temporal dynamics of the distractor’s effects on the saccade 

programming. 

4.3.5 Data processing and statistical analysis 

Data about saccades were stored and analyzed offline with MATLAB routines (The MathWorks, 

Inc.). Recorded horizontal and vertical gaze positions were low-pass filtered with a Butterworth 

(acausal) filter of order 2 with a 30 Hz cutoff frequency and then numerically differentiated to obtain 

velocity measurements. An automatic conjoint acceleration and velocity threshold method was used 

to detect saccades (Krauzlis & Miles, 1996). 

For each trial, the first saccade after target onset was analyzed. Trials without recorded saccades (e.g., 

due to a long blink), saccades starting further than 2° from the fixation point, saccades landing further 

than 2° from the target, and saccades with latency lower than 80 ms or longer than 500 ms (with 

respect to target onset), were excluded (~15% of all saccades). 

For each correct saccade, we extracted its latency, starting point, landing position, and curvature. To 

obtain the latter, we first smoothened the gaze position trajectory by computing the mean horizontal 

position for each 0.2° spatial bin on the vertical axis. By doing this, a unique pair (xi, yi) was obtained 

for each bin between the y-position of the fixation and of the target location, removing a possible 

ambiguity in the definition of the saccadic curvature. Then, we normalized each trace by subtracting 

the mean trajectory (horizontal and vertical eye position) obtained in the trials without distractors 

(baseline condition), separately for upward and downward saccades. This normalization ensured that 

any deviation of the saccade trajectory in response to a distractor was not due to the idiosyncratic 

curvature of the saccade trajectory of individual participants. Normalized y-coordinates were rotated 

to direct all saccades upward and, finally, normalized x-coordinates were inverted for trials in which 

distractors were presented counterclockwise (i.e., to the left) relatively to the target direction. This 

way, positive and negative values represent coordinates and curvature angles that were directed either 

toward or away from the distractor’s head-centered position, respectively. With these coordinates we 

then determined the saccade curvature angle for each trial, that is, the median of the angular deviations 

of each sample gaze-position point from a straight line connecting the starting and ending point of 
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the saccade. The saccade endpoint deviation was defined as the angular distance between the saccade 

endpoint and the target in degrees.  

For each saccade, we calculated the DSOA, which is the distractor offset-to-saccade onset asynchrony 

in milliseconds. 

The time course of saccadic curvature, latency, landing point, and starting position as a function of 

the DSOA has been analyzed with the SMART procedure, a smoothing method for the analysis of 

response time courses (van Leeuwen et al., 2019). Data were analyzed at a 1-ms resolution and 

smoothed with a Gaussian kernel of 10 ms width. 1000 permutations were run for every test. We set 

the significance level as p < 0.01. Time courses for each distractor condition have been compared 

with each other, and each condition has been compared with the baseline condition. Data have been 

compared in the DSOA window between -340 ms and -20 ms. This interval has been chosen by 

looking at the distribution of DSOA across all trials (Figure 31C) and selecting the 20 ms bins which 

included at least 40 saccades for each distractor condition. For each comparison, we report the time 

window of the significant cluster, the average of smoothed Gaussian data and 95% confidence 

interval within each significant cluster. 

To produce figures of average saccade trajectories for each distractor condition (Figure 32C and 

32D), we averaged the normalized trajectories of all participants and estimated their standard error of 

the mean (SEM). Since each participant’s trajectory may have different starting/ending point 

(therefore different lengths in the y-coordinates), only y-coordinates including at least fifteen 

participants (i.e., fifteen x-coordinates) were considered. This process led to final average trajectories 

having the central part populated by all participants, and the outermost parts containing only some 

participants (with a minimum of 15 participants). 

4.4 Results 

Here, our interest is measuring the effect of a distractor on the saccade trajectory assuming that its 

representation will be further inhibited with a longer delay between the distractor and the saccade. 

For this reason, we considered the temporal distance between the distractor presentation and the 

saccade onset (DSOA) as the relevant variable for the direction of the saccade’s deviation 

(Figure 31B). Previous works on the effect of a distractor on saccadic trajectory have considered the 

saccadic latency as the independent variable because the target and the distractor were usually 

presented simultaneously, so latency and DSOA were the same (Theeuwes and Godijn, 2004; Van 

der Stigchel, 2010; Van Zoest et al., 2012; Walker et al., 2006; Walker & McSorley, 2008). Saccade 
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distribution for each distractor type across the DSOA time course (bins of 20ms) is reported in Figure 

31C. In the following analyses, we considered the DSOA values between -340ms and -20ms, the 

interval in which there are a reasonable number of saccades to reconstruct the time course (20-ms 

bins including at least 40 saccades for each distractor condition). 

First, we analyzed saccadic curvature as a function of the DSOA with the SMART procedure 

(Figure 32), a smoothing method designed for the analysis of response time courses that retains high 

temporal resolution with no need to define time bins (van Leeuwen et al., 2019). All saccades’ 

trajectories shown in the following graphs are flipped so that the target is always in the upper field 

and the distractor is always on the right; namely, negative curvature indicates deviation away from 

the distractor (“repulsion”), whereas positive curvature indicates deviation toward the distractor 

(“attraction”). 

Saccades time courses for non-optimal vs. optimal features, and for low-luminance vs high-luminance 

features, are reported in Figure 32A and 32B, respectively. Common across all conditions is that, at 

large negative DSOA, the presentation of all distractors induced a negative deviation, significantly 

different from the natural deviation measured in the condition without a distractor (baseline 

condition). Around DSOA of -200 ms the deviation away decreases, until becoming significantly 

positive after -150 ms. After reaching the peak around -120 ms, the curvature begins to decrease. 

After -100 ms, the curvature becomes compatible with zero for the low-salient distractors (non-

optimal and low-luminance features) and slightly negative for the high-salient distractors (optimal 

and high-luminance features). All significant DSOA time windows between all types of distractors 

conditions vs. the no-distractor baseline condition are reported in the caption of Figure 32. 

Time courses for each distractor condition have been compared with each other. For each comparison, 

we report the time window of the significant cluster (ms), the average of smoothed Gaussian data and 

95% confidence interval within each significant cluster (p < 0.01). 

Comparing the curvature induced by the two types of distractors of the experimental condition 

(Figure 32A), we observed that, at large negative DSOA ([-267, -204] ms), optimal features induce 

a larger deviation away from their location than that induced by non-optimal features (-1.55° vs. -

0.89° ± 0.2°). At intermediate DSOA ([-180, -161] ms) optimal features induce less deviation away 

than non-optimal (-0.39° vs. -0.97° ± 0.2°) and, finally, at short DSOA ([-111, -102] ms) they produce 

a larger deviation toward their position than that induced by non-optimal features (2.05° vs. 1.54° ± 

0.2°). 
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Similar results emerged in the luminance-control condition (Figure 32B). Indeed, at long DSOA ([-

283, -265] ms and [-248, -217] ms), high-luminance distractors induce a stronger repulsion than that 

induced by low-luminance distractors (-1.38° vs. -0.8° ± 0.1 and -1.19° vs. -0.49° ± 0.2°), whereas, 

at shorter DSOA ([-154, -125] ms), high-luminance distractors induce a stronger attraction than low-

luminance distractors (1.10° vs. 0.48° ± 0.2°). 

Overall, these results indicate that high-salient features, such as very bright features as well as 

optimally informative features, induce a larger curvature in the saccade trajectory than that induced 

by lower salient distractors (less bright or less optimal), and this holds both when the curvature is 

toward and away from the distractor. 

Some differences also emerged by comparing the curvature induced by distractors of the experimental 

vs. control conditions (not reported in the figure). Indeed, at long DSOA, the deviation away is larger 

for non-optimal vs. low-luminance features ([-324, -303] ms: -1.4° vs. -0.33° ± 0.3°), as well as for 

optimal vs. high-luminance features ([-263, -245] ms: -1.8° vs. -1.1° ± 0.23°). Also, at short DSOA, 

the deviation toward is larger for non-optimal vs. low-luminance features ([-138, -121] ms: -2° vs. 2° 

± 0.3°), as for optimal vs. high-luminance features ([-127, -118] ms: -2.3° vs. 1.8° ± 0.3°). Therefore, 

both repulsion and attraction effects are more pronounced in the presence of experimental distractors 

than uniform-luminance distractors. 

Examples of average saccades trajectories in the trials with non-optimal vs. optimal features, and low-

luminance vs. high-luminance features, within two significant time windows found with the SMART 

procedure, are reported in Figure 32C and 32D, respectively. Data shown in panels C and D are 

saccades trajectory averaged across participants with shaded areas representing the standard error of 

the mean (SE). 
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Figure 32. Study 3 – Saccadic curvature. (A-B) Curvature time course as a function of DSOA 
(SMART analysis) for optimal (red) vs. non-optimal (pink) features (A), and for high-luminance 
(blue) vs. low-luminance (cyan) features (B). Shaded areas around the curves: 95% confidence 
interval (van Leeuwen et al., 2019). Colorful shaded rectangles: time intervals with significantly 
different curvature induced by high-salient vs. low-salient distractors (p < 0.01; light-red: optimal vs. 
non-optimal features; light-blue: high vs. low-luminance features). Solid parts of lines: time windows 
(ms) with curvature significantly different from zero (p < 0.01; baseline vs. non-optimal features: [-
336, -247] ms, [-229, -169] ms, [-146, -93] ms; baseline vs. optimal features: [-302, -176] ms, [-145, 
-92] ms, [-72, -43] ms; baseline vs. low-luminance features: [-340, -336] ms, [-285, -248] ms, [-214, 
-166] ms, [-134, -102] ms; baseline vs. high-luminance features: [-340, -33] ms, [-298, -174] ms, [-
147, -90] ms, [-70, -57] ms). Dashed parts of lines: curvature compatible with zero. (C) Experimental 
condition - Average trajectories. Left panel: saccades with DSOA between -267 ms and -204 ms 
showing deviation away from the distractor; right panel: saccades with DSOA between -111 ms and 
-102 ms showing deviation toward the distractor. (D) Luminance-control condition - Average 
trajectories. Left panel: saccades with DSOA between -248 ms and -217 ms showing deviation away 
from the distractor; right panel: saccades with DSOA between -154 ms and -125 ms showing 
deviation toward the distractor. Errors are SE across participants. Figure retrieved from (Castellotti 
et al., 2023a). 

The latency of saccades was also analyzed as a function of DSOA (from -340 ms to -20 ms) with the 

SMART procedure (Figure 33A). The average latency of saccades in the trials with no distractor is 

184.5 ± 2.8 ms (SEM across participants) (horizontal black line in Figure 33A). Common across all 

trials with a distractor is that the saccadic latency is longer at the longest DSOA (< -250 ms), and 

shorter at the shortest DSOA (> -250 ms) compared to the baseline latency. All significant DSOA 

time windows between all types of distractors conditions vs. the no-distractor baseline condition are 

reported in the caption of Figure 33A. 

No significant differences were detected when comparing the latency time courses obtained with 

high-salient vs. low-salient distractors in both experimental and control conditions. Instead, some 

differences emerged between the two conditions. Indeed, there are some time windows (ms) where 

the latency (ms) for low-luminance distractors is shorter than for non-optimal features ([-313, -280] 

ms: 197 vs. 205 ± 2 ms; [-238, -214] ms: 181 vs. 188 ± 2 ms) and optimal features ([-308, -284] ms: 

196 vs. 203 ± 2 ms; [-98, -91] ms: 167 vs. 171 ± 1 ms). In the same way, with saccade preparation 

for high-luminance distractors is more delayed than for non-optimal features ([-300, -294] ms: 197 

vs. 205 ± 2 ms; [-236, -210] ms: 181 vs. 188 ± 1 ms) and optimal features ([-306, -292] ms: 199 vs. 

205 ± 1 ms; [-223, -216] ms: 181 vs. 186 ± 1 ms). This result suggests that saccadic latency is not 

sensitive to the degree of saliency (either when considering differences in luminance or in amount of 
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information), rather it seems to be influenced by other distractors characteristics. See the Discussion 

section for possible explanations of this result. 

Finally, the landing point of saccades was also analyzed as a function of DSOA (from -340 ms to -

20 ms) with the SMART procedure (Figure 33B and 33C). Saccades in trials with no distractor, and 

a target positioned at 7° upward, on the vertical meridian, land on average at 0.2° ± 0.1° on the x-axis 

(black horizontal solid line in Figure 33B), and at 6.8° ± 0.13° on the y-axis (black horizontal solid 

line in Figure 33C). Thus, when performing a saccade toward the target, the baseline landing point 

is in a position slightly lower right than the actual target position (dashed horizontal black lines in 

Figure 33B and 33C). Landing x- position of saccades for any type of distractor is compatible with 

the baseline position until around -200 ms. Then, we observed a significant shift in the opposite 

direction of the distractors (negative landing X-point) for about 100 ms, and finally a shift toward the 

distractor (positive landing X-point) between -100 ms and -50 ms (Figure 33B). Landing y-position 

for all types of distractors is compatible with the baseline position across almost all DSOA times, 

with a small tendency of shifting downward (below the target) at the shortest DSOA (significant only 

for the high-luminance distractor in a very small time-window; Figure 33C). All significant DSOA 

time windows between all types of distractors conditions vs. the no-distractor baseline condition are 

reported in the caption of Figure 33. 

Comparing the landing point time courses obtained with high-salient vs. low-salient distractors in 

both experimental and control conditions, we could observe that the landing position does not change 

with distractor saliency, neither in the horizontal (Figure 33B) nor in the vertical dimension (Figure 

33C). Also, no differences emerged between experimental and control distractors. 

We finally analyzed starting X- and Y-positions of saccades (not shown in the figure), finding that 

they do not differ across distractor conditions nor with DSOA. They are always compatible with the 

average baseline starting positions (x = -0.01° ± 0.1°, y = 0.1° ± 0.02°) found in the no-distractor 

condition. 
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Figure 33. Study 3 – Latency and landing point. (A) Latency. Latency time course as a function 
of DSOA (SMART analysis) for optimal features (red), non-optimal features (pink), high-luminance 
features (blue), and low-luminance features (cyan). Shaded areas around the curves: 95% confidence 
intervals (van Leeuwen et al., 2019). Solid parts of lines: time windows (ms) with latency 
significantly different from baseline (p < 0.01; baseline vs. non-optimal features: [-340, -281] ms, [-
128, -21] ms; baseline vs. optimal features: [-340, -280] ms, [-124, -21] ms; baseline vs. low-
luminance features: [-340, -291] ms, [-122, -21] ms; baseline vs. high-luminance features: [-340, -
290] ms, [-124, -21] ms). Dashed parts of lines: latency compatible with baseline. Colorful shaded 
rectangles: time intervals with significantly different latency with experimental vs. luminance-control 
distractors (color legend in the figure). (B-C) Landing point. Landing X- (A) and Y-position (B) 
time course as a function of DSOA (SMART analysis) for optimal features (red), non-optimal 
features (pink), high-luminance features (blue), and low-luminance features (cyan). Shaded areas: 
95% confidence interval (van Leeuwen et al., 2019). Solid parts of lines: time windows (ms) with 
landing X- and Y-positions significantly different from baseline (p < 0.01). (A) baseline vs. non-
optimal features: [-87, -132] ms, [-86, -54] ms; baseline vs. optimal features: [-191, -123] ms, [-100, 
-79] ms, [-58, -45] ms; baseline vs. low-luminance features: [-187, -132] ms, [-101, -89] ms; baseline 
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vs. high-luminance features: [-174, -125] ms, [-93, -85] ms, [-70, -57] ms. (B) baseline vs. high-
luminance features: [-91, -72] ms. Dashed parts of lines: landing X- and Y-positions compatible with 
baseline. Figure retrieved from (Castellotti et al., 2023a). 

4.5 Discussion 

In the present study, we compared the saliency of some local features, originally identified as optimal 

or non-optimal information carriers based on constrained-entropy maximization criteria (Del Viva et 

al., 2013). To do this, we presented these features as distractors in a simple saccadic task and used 

the saccadic curvature as a measure of their relative saliency. Our main objective was to investigate 

whether the saliency provided by features’ optimality, which is already known to induce an automatic 

attentional attraction (Castellotti et al., 2021, 2022), also occurs so rapidly that it can influence the 

trajectory of a planned saccade. For our main goal, the saccadic curvature has been merely used as a 

mean to quantify the model-predicted visual saliency. However, this study may also serve to better 

characterize the temporal factors modulating the saccadic curvature and shed some light on the 

saccadic programming dynamics in presence of distracting stimuli. 

Our main result is that the saccadic curvature induced by optimal features is larger than that produced 

by non-optimal ones, suggesting that optimal features act as highly salient distractors which strongly 

compete with the target location in the oculomotor centers. The results obtained in the luminance-

control condition, in which we compared the deviation induced by distractors with high or low 

luminance contrast, also support our main hypothesis. Indeed, high-luminance features induce a 

larger deviation than low-luminance features, and the amplitude of the deviation is comparable to that 

found with optimal features. This suggests that the interference on saccade programming produced 

by differences in features’ optimality is as powerful as that produced by luminance-based saliency. 

Note that all types of distractors, also non-optimal and low-luminance features, evoke some degree 

of curvature compared to the condition where no distractor is presented. This confirms the general 

finding that the path of target-oriented saccades is influenced by visual competing distractors even if 

they are task-irrelevant and low visually salient (for reviews see Walker & McSorley, 2008; Van 

der Stigchel, 2010). 

Interesting results also emerged by the inspection of the time courses of saccade trajectory deviations. 

Indeed, we found that the saccadic curvature direction changes as a function of the temporal distance 

between the saccade onset and the distractor offset. In both experimental and luminance-control 

conditions, saccades starting at least 200/150 ms after the distractor tend to deviate away from it, 
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whereas when the temporal interval between distractor offset and saccade onset is small saccades 

curve toward the distractor location. When comparing the saliency effect within the experimental and 

within the control condition, one can observe a small relative shift of the time intervals with a 

significantly different curvature for the more salient stimuli as compared to the less salient ones. For 

instance, optimal features induce a significantly larger curvature toward the distractor, compared to 

non-optimal features already for DSOAs around -100ms, whereas the difference between high-

luminance and low-luminance distractors becomes significant only if the distractor is presented more 

than 125ms before saccade onset. Yet, the qualitative agreement of the time course of saliency effect 

across experimental and control conditions is apparent. Further studies will be needed to precisely 

investigate possible quantitative differences between optimal feature-based and luminance-based 

saliency in more detail. 

When considering the relationship between curvature and saccadic latency, our results confirm 

previous findings, showing a trend for long latency saccades to have larger deviations away from 

distractors than fast saccades (McSorley et al., 2006; Theeuwes & Godijn, 2004; Walker & McSorley, 

2008). 

Results also show that our experimental distractors, both optimal and non-optimal, evoke larger 

deviations than those induced by our control uniform-luminance distractors. Similarly, saccadic 

latency increases more with optimal and non-optimal features than with uniform-luminance 

distractors. There are some possible explanations for these results, which would deserve further 

investigation. First, our experimental stimuli have an internal structure, not present in the control 

stimuli. Thus we could speculate that these results are related to recent findings about saccade-

contingent neuronal activity in the superior colliculus being tuned to the spatial frequencies of a visual 

stimulus (Buonocore & Hafed, 2021). In addition, our findings could also be explained by 

experimental features’ internal contrast. Indeed, optimal and non-optimal features, although having 

the same average luminance contrast with respect to the background as the control features (Weber 

contrast), they have a higher internal luminance contrast compared to them (RMS contrast). Finally, 

since optimal and non-optimal distractors are more complex than the simple uniform-luminance 

distractors, the perceptual load needed for their analysis could be higher than that required by the 

control stimuli (Lavie et al., 2014), thus influencing saccadic curvature and latency. 

More in general, in our study, we found an increase of saccadic latency with all distractors at long 

DSOA. This is in line with previous studies, showing that the presentation of a competing stimulus 

along with the target delays saccade onset (Remote distractor effects; Walker et al., 2006). However, 
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we did not find an increase nor a decrease of saccadic latency in the presence of a high salient 

distractor compared to low salient distractors. The absence of any interference in the temporal domain 

may be the result of the low uncertainty about target locations: the target was always presented 

directly above or below fixation and so participants were potentially able to prepare an eye movement 

in advance to these two relevant target locations (Heeman et al., 2016).  

We did not find any differences in saccades’ endpoint positions across different distractor types and 

saliency levels. This result could be somehow unexpected, since prior research found distractor-

saliency effects on endpoint deviations (e.g., Kehoe et al., 2021; Van Der Stigchel et al., 2011). The 

discrepancy between our results and the previous ones may be related to the fact that shifts in saccades 

ending points toward the distractor are usually found in specific conditions of spatial proximity 

between target and distractor (Global effect; Coren and Hoenig, 1972; Findlay, 1982; Wollenberg et 

al., 2018), and high uncertainty about their position (Coëffé & O’regan, 1987; Walker et al., 2006). 

In our paradigm, these factors were not optimized for observing the Global effect, and this might 

explain why the saccadic landing point does not change with the distractor condition. When analyzing 

the landing point time course as a function of DSOA, we found that the landing point of saccades 

starting way after the distractor is compatible with the natural landing point of saccades when no 

distractor is presented. Instead, saccades starting shortly after the distractor offset landed in a position 

shifted from the baseline. We can speculate that the effect on the saccadic landing point could be 

simply a sort of automatic “over correction” after the initial deviation caused by the distractor. 

On a more general ground, distractor effects have been explained in terms of the programming of an 

oculomotor vector toward the target and distractor locations. The oculomotor system has to resolve 

the competition between these two vectors in order to determine the goal of the next eye movement 

(Meeter et al., 2010; Trappenberg et al., 2001). In this process, the vector programmed toward the 

distractor needs to be inhibited in order to avoid making an eye movement towards it rather than 

toward the instructed target (Rizzolatti et al., 1987; Sheliga et al., 1995). The intermediate layers of 

the superior colliculus (SC) are often implicated in oculomotor competition (Calvert, 2001; Chalupa 

& Rhoades, 1977; Finlay et al., 1978; Jay & Sparks, 1987, 1984) because they contain a large 

population of neurons with large overlapping motor fields that encode the saccadic displacement (Lee 

et al., 1988; Mcilwain, 1991) which can be regarded as forming a “motor map”. When the population 

of neurons encoding the target overlaps with a second population encoding the distractor, an error in 

the computation of the initial saccade direction may occur. The initial saccade deviation, either 

towards or away from a competing distractor, is thought to reflect the level of neural activity at the 
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distractor site around the time of saccade onset (McPeek et al., 2003). Therefore, when the 

competition is unresolved and there is strong activity at the distractor site, the saccade will deviate 

towards its location (Walker et al., 2006), coherently with our results obtained when saccades started 

too close in time to the distractor. In contrast, later in time, when the inhibition of distractor-related 

activity is achieved, saccades can even deviate away from it (Godijn & Theeuwes, 2004), as we found 

for saccades starting way after the distractor offset. It has been assumed that the stronger the inhibition 

required by the distractor, the larger the deviation away (Rizzolatti et al., 1987; Sheliga et al., 1995). 

This would explain why our high salient distractors induce a larger deviation away. 

Whereas spatiotemporal factors that relate local excitation at the distractor site in the SC to saccades 

curved toward distractors are well understood (McPeek, 2006; McPeek et al., 2003), the mechanisms 

responsible for saccades curved away from distractors are more controversial (Aizawa & Wurtz, 

1998; White et al., 2012; see also Wang et al., 2012; Wang & Theeuwes, 2014 for related models). 

Recently, based on behavioral measurements, Kehoe and Fallah (2017) proposed a model of 

activation and inhibition explaining both towards and away curvature. In particular, they modeled 

DSOA functions separately for saccades curved toward and away from distractors and suggested that 

a similar temporal process determined the magnitude of saccade curvatures in both contexts. Their 

behavioral and theoretical results are in line with our findings (Kehoe & Fallah, 2017). 

To summarize, our work extends and generalizes the notion that the saccadic curvature towards or 

away from a distractor increases with the saliency of the distractor presented in competition with the 

saccade target. In fact, we show that the relative saliency of optimal vs. non-optimal features predicted 

by the constrained maximum-entropy model is reflected in the magnitude of the saccadic curvature. 

Our findings also indicate that the saliency based on information maximization has a comparable 

effect to luminance-based saliency, as well as a similar time course.  

We conclude that the automatic capture exerted by optimally informative visual features results from 

early processes in the visual stream, such that it can interfere with the correct programming of fast, 

visually guided saccades. Finally, our study confirms that saccadic curvature can be used as an 

objective measure to quantify the relative saliency of a visual stimulus. 

All the studies presented so far involved non-ecological paradigms presenting single optimal features 

as stimuli to investigate their visual saliency. Our next objective was to design an experiment that 

tested the role of these features within more naturalistic stimuli and using an ecological task. We were 

also interested in assessing the strength of automatic attention capturing of these local features 

compared to global visual elements. To these purposes, in the last study describe below, we 
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considered a condition in which observers have to quickly explore an image based on a few fragments 

in order to discriminate it later, and we compared the relative contribution to image reconstruction of 

global and local information, given by optimal features, contained in those fragments. 
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5. STUDY 4: FAST DISCRIMINATION OF FRAGMENTARY 
IMAGES: THE ROLE OF LOCAL OPTIMAL INFORMATION 

5.1 Theoretical background and rationale 

In the real world, humans are constantly exposed to partially occluded objects, which the visual 

system must analyze and recognize very quickly for survival purposes. Thus, in real scenes, the visual 

system copes with the recognition of incomplete images, whose mechanisms are still not completely 

understood. Many studies have demonstrated that humans can successfully recognize fragmented 

images (Brown & Koch, 2000; Johnson & Olshausen, 2005; Murray et al., 2001; Tang et al., 2018; 

Ullman et al., 2016), but most of them focus on the rules to solve the occlusion and on how the system 

fills the missing information. Instead, here we are not interested in understanding the mechanisms 

through which the visual system binds the fragments into a whole image. We rather focus on the 

identification of the most relevant fragments to be analyzed and on the extraction of salient local 

features within these fragments. Hence, we focus on the low-level stages of this process. 

As already discussed in the previous chapters, to explain the mechanisms of information selection, 

several models of visual search employ the concept of saliency map, a two-dimensional map that 

encodes the saliency of the objects in the visual scene (Itti et al., 1998). For this study, it is particularly 

relevant the open question about the principles driving visual salience and the relative contribution 

of local (Zhaoping, 2002; Xukun Zhang et al., 2020) and global cues (Itti et al., 1998; Oliva and 

Schyns, 1997a). Global and local information are related to spatial frequency: low spatial frequencies 

carry information about the global contrast distribution whereas high spatial frequencies mainly 

provide fine information about local details (Blakemore & Campbell, 1969; Boeschoten et al., 2005; 

Kauffmann et al., 2014; Webster & de Valois, 1985). Nevertheless, several past studies have explored 

the mechanisms of fast vision at different scales and stimulus durations, finding that both coarse and 

fine spatial information are simultaneously used in fast image categorization (Oliva & Schyns, 1997b; 

Schyns & Oliva, 1999). 

In the present study (Castellotti et al., 2023b), we hypothesize that the perception of incomplete 

images in fast vision partly starts from the extraction of local high-frequency salient features 

contained in the visible image fragments. Salient features are the optimal features predicted by the 

reference model (Del Viva et al., 2013). 
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We explore whether these specific local features still play an important role in more natural settings, 

where all existing features are kept (optimal and non-optimal), but the overall available information 

is drastically reduced. For this purpose, we created images where only a few fragments are shown, 

and the remaining parts are covered by a grey mask. In this way, we obtain visual stimuli with the 

same properties as the original images, in which the features are spatially and structurally unaltered, 

but the overall available information is reduced. To find the essential information needed in order to 

discriminate a visual scene, we pushed the visual system to its limits: the stimuli had very few visible 

parts and short durations. Specifically, participants had to covertly attend to a few briefly presented 

small fragments (or just one fragment) of binarized images and then use them to discriminate the 

underlying image (target) from another (distractor).  

Observers could solve this task mainly by matching the position of black and white parts of the 

fragmented image and the target (global information), without the need to analyze the internal content 

of the fragments. If this were the case, we would expect the performance to depend on fragments 

contrast. On the other hand, performance could be related to the optimal information contained in the 

fragments, as predicted by the reference model. In this case, we would expect performance to depend 

on the number of local optimal features contained in the fragments. With multiple fragments covert 

attention could potentially be directed toward one of them; for this reason, we also measured 

discrimination by showing just a single fragment. This allowed us to correlate correct responses to 

the specific local information and contrast. 

We then repeated the same discrimination task randomly inverting the contrast of the target and/or 

the distractor image. The purpose of this manipulation is to reduce the contribution of global 

information, given by the position of black/white large areas, and bring out the contribution of high-

frequency components that could be masked by the prevalence of positional cues in original-contrast 

images. The response of complex cortical cells is more or less independent of contrast inversion, 

while it depends on the local spatial distribution of luminances (Baylis & Driver, 2001; Niell & 

Stryker, 2008). 

Before testing our main experimental hypothesis, we conducted two preliminary experiments to test 

the limits for discrimination of our fragmented digitized images, presented for a very short time, to 

probe the size and number of the fragments to be used in the main experiment. 
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5.2 Aim of the study 

In Study 4 (Castellotti et al., 2023b), we aim to show that local information, when derived from 

maximum-entropy optimization criteria coupled with strict computational limitations, contributes to 

fast image discrimination. To study this, we compare how much observers' performance relies on 

local high-frequency components and on low-frequency global cues in very challenging conditions 

for our visual system. 

5.3 Materials and methods 

5.3.1 Participants 

Twenty young volunteers took part in this study. Ten observers (mean age = 25.3 ± 1.8 years) 

participated in Preliminary experiment 1, and five of them (mean age = 25.2 ± 1.8 years) also 

participated in Preliminary experiment 2. Ten other observers (mean age = 26.5 ± 2.9 years), all 

different from those of the preliminary experiments, participated in the Main experiment. All 

observers had normal or corrected to normal vision and no history of visual or neurological disorders.  

5.3.2 Apparatus and set-up 

The apparatus and set-up were the same for the Preliminary and the Main experiments. All stimuli 

were programmed on an ACER computer running Windows 10 with Matlab 2018b, using the 

Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The experiment 

was displayed on a gamma-corrected CRT Silicon Graphics monitor (1152x864 pixels resolution, 

38.5x29.5 cm, 120 Hz refresh rate), subtending 38.5x29.5 degree of visual angle at a 57 cm viewing 

distance. All experiments were carried out in a completely dark room.  

5.3.3 Procedure and stimuli 

5.3.3.1 Preliminary experiment 1 

The experimental procedure is represented in Figure 34A. Each trial started with the presentation of 

a white fixation point (300 ms) on gray background (14 cd/m2) followed by the brief presentation (25 

ms) of one stimulus in the center of the screen. Stimuli were composed of a certain number of image 

fragments of different sizes, resulting in a kind of “covered” image, revealing only small visible parts 

to the observer (see the paragraphs below for stimuli details). Immediately after, a mask appeared for 

500ms, followed by two black-white images sequentially presented for 350ms each. One of the two 
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images corresponded to the fragmented “covered” image (target), while the other (distractor) was 

randomly extracted from the set of images used (see the paragraphs below for image details). At each 

trial, the target was randomly presented in the first or the second interval. Images in the task were 

randomly displaced diagonally by 10 pixels, either to the top-left, top-right, bottom-left, or bottom-

right, with respect to the position of the fragmented “covered” image. This spatial shift was 

introduced to avoid exact spatial matching between stimulus and target image. Observers were 

required to discriminate the target in a two-interval forced choice task (2IFC), by pressing a computer 

key. 

Stimuli were prepared starting from 327 1-bit black and white renditions of naturalistic images, 

extracted from the same public database (Olmos & Kingdom, 2004) used in the original work (Del 

Viva et al., 2013). Images’ size was 918x672 pixels, subtending 32.4x23.7° of visual angle at 57 cm. 

The luminance of white, black, and medium gray was 35 cd/m2, 1 cd/m2, and 12 cd/m2, respectively. 

In Preliminary experiment 1, we measured discrimination as a function of the image's visible area. 

Some examples of stimuli are reported in Figure 34B. We used the following stimulus 

configurations: the whole image as a control (100% visible area, see Figure 34B – first panels); a 

squared “frame” comprised between 4.8° and 8.8° of eccentricity (35.8% visible area, see Figure 

34B – second panels); ten image fragments revealing different fractions of image area: 7.5% (size of 

all fragments 2.4°x2.4°), 2% (size of all fragments 1.2°x1.2°), 0.47% (size of all fragments 0.6°x0.6°) 

and 0.12% (size of all fragments 0.3°x0.3°; see Figure 34B – third to sixth panels, respectively). In 

these cases, the rest of the image was covered by uniform grey pixels. For each area, image fragments 

were randomly selected from all possible combinations satisfying the following conditions: i) they 

had to be comprised in the 4.8°- 8.8° eccentricity frame (stimuli presented within this eccentricity are 

well visible even if observers have to maintain fixation in the center, as shown with other tasks; see 

for example, Larson & Loschky, 2009; Staugaard et al., 2016); ii) they had to be evenly distributed 

within the frame (three fragments on the top and bottom sides of the frame, and two fragments on 

each lateral side; iii) they could not overlap with each other. The chosen frame width guarantees that 

criteria ii) and iii) are met. For each image, five different fragments' configurations were created to 

minimize memory effects (see Figure 34C for an example), for a total of 1635 different stimuli for 

each area. A total of 3000 trials per observer were run (300 trials for the control and frame conditions 

and 600 trials for each other condition). Each specific image configuration in each condition has been 

shown on average 1.2 times to each participant, preventing the association of a specific configuration 

of fragments to a target. 
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Figure 34. Study 4 – Preliminary experiment 1: procedure and stimuli. (A) Representation of 
experimental paradigm. (B) Examples of stimuli. Examples of different stimuli configurations for 
three images. From left to right: the first image is the control stimulus, the second is the “frame” 
stimulus, and the others show 10 fragments of decreasing size (in order: 7.5%, 2%, 0.47%, and 
0.12%), positioned within the frame. (C) Examples of different fragments’ configurations for a 
specific image. Five different stimuli with ten 2.40°x2.40° fragments, covering 7.5% of the image 
area. Figure retrieved from (Castellotti et al., 2023b). 
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5.2.3.2 Preliminary experiment 2 

Preliminary experiment 2 followed the same procedure as Preliminary experiment 1 (see Figure 34A). 

We measured discrimination as a function of the number of fragments of different sizes covering two 

different visible fractions of image areas (2% and 7.5%). The fragments were still positioned in the 

4.8°-8.8° eccentricity frame. Some examples of stimuli are reported in Figure 35. For 2% of the area 

we used: three 2.4°x2.4° fragments (randomly distributed across the frame), ten 1.2°x1.2° fragments 

(three fragments located on the top and bottom sides of the frame, and two fragments on the left and 

right sides), and forty 0.6°x0.6° fragments (twelve fragments located in the upper and lower side, and 

eight fragments in the left and right sides; see Figure 35 – left side panels, from top to bottom 

respectively). For 7.5% of the area we used: ten 2.40°x2.40° fragments (three fragments located on 

the top and bottom sides of the frame, and two fragments on the left and right sides), forty 1.2°x1.2° 

fragments (twelve fragments located on the top and bottom sides of the frame, and eight fragments 

on the left and right sides), and one hundred and sixty 0.6°x0.6° fragments (forty fragments located 

in the top, bottom, left, and right part of the image frame) (see Figure 35 – right side panels, from 

top to bottom respectively). For each image, five different fragments' configurations were created, 

for a total of 1635 different stimuli for each area (see Figure 34C). A total of 3600 trials per observer 

were run (600 trials for each condition). Each specific image configuration in each condition has been 

shown on average 1.1 times to each participant. 

 

Figure 35. Study 4 – Preliminary experiment 2: stimuli. (A-C) Examples of stimuli. Examples 
of different stimuli configurations for three images. In the left columns, fragments revealed 2% of the 
image area, and in the right columns, fragments revealed 7.5% of the image area. Fragments' size in 
the images of each column decreases by fifty percent going from top to bottom; whereas fragments 
in the same row have the same size but vary in number. Figure retrieved from (Castellotti et al., 
2023b). 
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5.3.3.3 Main experiment 

The Main experiment follows the same procedure (2IFC) and used the same set of images (Olmos & 

Kingdom, 2004) as those of the Preliminary experiments 1 and 2, but participants were engaged in 

two different tasks: a task with original-contrast images and a task with randomly inverted-contrast 

images. In the first task, both the target and the distractor were digitized versions of the original 

images (as in Figure 34A). In the second task, in some randomly selected trials, the target and/or the 

distractor had their contrast inverted with respect to their original version (Figure 36A). Therefore, 

in some trials, both the target and the distractor could be presented with their original or inverted 

contrast, while, in other trials, only one of them could have inverted contrast. With this manipulation, 

we aim at reducing the probability of solving the task by matching the position of black and white 

spots in the fragments to those in the images (see Figure 37). Each image has been presented to each 

participant on average 37.7 times, either as a target or distractor. 

In both tasks, the same stimuli conditions were tested. Some examples of stimuli are reported in 

Figure 36B, C, D). Stimuli consisted of one or ten fragments (see Figure 36B, C, D – first and 

second columns, respectively) with different sizes: 2.4°x2.4° and 1.2°x1.2° (see Figure 36B, C, D 

– first and second rows, respectively). The total area revealed by these fragments was 0.2% and 

0.75% with one fragment, 2% and 7.5% with ten fragments. The characteristics of the stimuli 

(luminance, fragments distribution, and eccentricity) were the same as those used for Preliminary 

experiments 1 and 2. In the condition with 10 fragments, for each image, five different fragments' 

configurations were created, for a total of 1635 different stimuli for each area (Figure 34C). In the 

condition with 1 fragment four/five different configurations were created, for a total of 1144 and 1253 

different stimuli for 0.2% and 0.75% area, respectively (see Figure 36E). In the Main experiment, 

each observer performed 2400 trials in total: 1200 trials in the task with original-contrast images (300 

trials for each stimulus condition), and 1200 trials in the task with randomly inverted-contrast images 

(300 trials for each stimulus condition). Each specific image configuration in each condition has been 

shown on average 1.1 times to each participant. 
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Figure 36. Study 4 – Main experiment: procedure and stimuli. (A) Experimental paradigm. In 
the upper row is shown a trial where the distractor has inverted contrast and the target has its original. 
The two panels below indicate that target or distractor can have a contrast inverted with respect to 
those shown above. (B-D) Examples of different stimuli configurations for three images. Fragments 
in the images of each column are the same number but their size decreases by fifty percent from top 
to bottom; fragments in the images of each row have the same size but vary in number (one or ten). 
(E) Examples of different fragments’ configurations for a specific image. Four different stimuli with 
one 2.40°x2.40° fragment, covering 0.75% of the image area. Figure retrieved from (Castellotti et al., 
2023b). 
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Figure 37. Study 4 – Main experiment: examples of tasks with original and inverted contrast 
images. The upper panels show two examples of fragmented images. The lower left-side panels show 
the original-contrast images; the lower right-side panels show inverted-contrast images. In these 
examples, the position of fragments with large black or white parts (red/green circles) can be easily 
matched in the original contrast images. (A) Ten fragments (7.5% area). In the original-contrast 
image (left-side panel), observers can match the position of the almost all-white fragment presented 
in the upper-left part of the image and that of the almost all-black fragment presented in the lower 
part to discriminate the target. Instead, with the inverted-contrast image (right-side panel), this 
positional match cannot be done. (B) One fragment (0.75% area). In the original-contrast image 
(left-side panel), observers can match the position of the almost all-black fragment presented in the 
lower-right part of the image to discriminate the target. In the inverted-contrast image (right-side 
panel), observers cannot find the black spot in the lower-right part of the target. Figure retrieved from 
(Castellotti et al., 2023b). 

5.3.4 Data processing and statistical analysis 

In all experiments, we measured the percentage of correct responses of each observer in each 

condition of visible area. 

In Preliminary experiments 1 and 2, non-parametric one-way repeated-measures ANOVAs 

(Friedman’s tests) with Conover post hoc comparisons (Bonferroni correction) were used to test 

differences between averaged performances across conditions. In Preliminary experiment 1, we also 

performed a one-sample Wilcoxon signed-rank test to assess whether the averaged performance in 

the condition with the smallest visible image area was still above the chance level (i.e., statistically 

different from 50%). 

In the Main experiment, non-parametric two-way repeated-measures ANOVAs (Durbin tests) with 

Conover post hoc comparisons (Bonferroni correction) were used to test differences between average 

participants’ performances in each condition of visible area in the original vs. inverted contrast tasks. 
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In addition, all observers’ data were pooled together to calculate the performance as a function of 

fragments’ contrast and signal-to-noise ratio (SNR) in each condition of visible area. 

We calculated the Weber contrast of the fragment as follows: we first averaged the pixel values within 

the fragment (black = 0, white = 255), then this averaged value was subtracted from the background 

value (grey = 127), and finally the absolute value of the ratio between the result of the subtraction 

and the background was calculated. In the stimuli containing ten fragments, the average contrast of 

the fragments was considered. The performance was then analyzed as a function of Weber contrast 

(bins of 0.2 each). 

To quantify the saliency of each fragment we calculated the signal-to-noise ratio (SNR), that is the 

number of optimal features, predicted salient by the reference model, over the total number of 

features. Specifically, we considered a set of 50 optimal features, 3x3 pixel large (see Figure 8C), 

each subtending ~0.1°x0.1° of visual angle (about 12 c/deg spatial frequency). In the stimuli 

containing ten fragments, the average SNR of the fragments was considered. The performance was 

then analyzed as a function of SNR (bins of 0.05 each).  

For each SNR bin, we calculated the average contrast of fragments with the standard error. The 

Pearson linear-correlation coefficient between SNR and contrast was then calculated.  

Given the strong correlation between fragments’ contrast and SNR, to quantify their relative 

contribution to the performance, we created a new variable by subtracting, in each trial, the 

standardized values from each other (SNR – contrast). 

Data from all conditions of visible area (7.5%, 2%, 0.75%, 0.2%) were pooled together and GLMMs 

with a binomial error structure were performed. In the task with original contrast images, the model 

included three fixed factors: i) SNR-contrast difference (standardized); ii) target order presentation, 

to test whether the performance depended on the fact that the target was in the first vs. second interval; 

iii) image repetition number (i.e., the frequency of occurrence of each image as target or distractor), 

to control for possible effects of visual memory. Participants and stimuli were included as random 

effects. In the task with randomly inverted-contrast images an additional fixed factor was included: 

iiii) target contrast inversion, to test whether the performance changed in the trials where the target 

was presented with original or inverted contrast. 

We then compared (z-tests) the probability of correct responses (with binomial standard deviations) 

between the task with original-contrast images and the one with random contrast inversion. This was 
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done separately for the trials where the target had original contrast and for those where the target had 

inverted contrast. 

Finally, a GLMM was run in the task with randomly contrast-inverted images including only the trials 

where the target had original contrast. 

5.4 Results 

5.4.1 Preliminary experiment 1 

Performance in Preliminary experiment 1 averaged across participants is reported in Figure 38. As 

expected, the percentage of correct responses increases with the size of the image fragments (i.e., the 

amount of visible area of the image). On average, observers’ performance ranges from 55% for the 

smallest visible area to 83% when the full image is shown (100% area). Friedman’s test showed a 

main effect of the visible area (χ2(5) = 45.3, p < 0.001, W = 0.46). All Conover post hoc comparisons 

(Bonferroni correction) are reported in Table 2. 

The average performance obtained by showing the smallest image area also resulted statistically 

different from 50% (Z(9) = 55, p = 0.002), showing that observers are able to discriminate an image 

based on very little information. 

 

Figure 38. Study 4 – Preliminary experiment 1: performance as a function of images’ visible 
area. Performance averaged across participants with SE. Figure retrieved from (Castellotti et al., 
2023b). 
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Table 2. Study 4 – Preliminary experiment 1: Conover’s post-hoc comparisons (Bonferroni 
correction) across average performances for each area condition (3000 trials in total per observer: 300 
trials for 100% and 35.8% area conditions and 600 trials for each of other conditions). 

 Area 100% Area 35.8% Area 7.5% Area 2% Area 0.47% Area 0.12% 

Area 100% - t=0.9, p=1 t=2.4, p=0.2 t=3.5, p=0.01 t=4.6, p<0.001 t=5.2, p<0.001 

Area 35.8% - - t=1.5, p=1 t=2.6, p=0.21 t=3.6, p=0.01 t=4.4, p<0.001 

Area 7.5% - - - t=1.0, p=1 t=2.1, p=0.63 t=2.9, p=0.08 

Area 2% - - - - t=1.0, p=1 t=1.9, p=1 

Area 0.47% - - - - - t=0.8, p=1 

Area 0.12% - - - - - - 

5.4.2 Preliminary experiment 2 

In preliminary experiment 2, we compared the observers’ performance when the same amount of 

image area is revealed by showing a different number of fragments of different sizes. Performances 

are reported in Figure 39. For both areas tested (2% and 7.5%), the percentage of correct responses 

tends to be greater with few big fragments than with more small fragments even if none of the results 

are statistically significant. When the size of the patches remains constant but their number increases, 

thus revealing a bigger amount of image area to the observers, the performance slightly increases in 

all conditions, although not significantly. 

 
Figure 39. Study 4 – Preliminary experiment 2: performance as a function of the number and 
size of image fragments. Performance averaged across participants (n=5) with SE. Filled symbols 
indicate fragments revealing 2% of the area; empty symbols indicate fragments revealing 7.5% of the 
area. Symbols with the same shape indicate a different number of fragments of the same size. Figure 
retrieved from (Castellotti et al., 2023b). 
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5.4.3 Main experiment 

In the Main experiment, we first analyzed the percentage of correct discrimination in the two tasks. 

In the task with original-contrast images (Figure 40A), when ten fragments are presented, observers’ 

discrimination is 63.3% ± 1.8% (SE) for 2% area and 68.8% ± 2.5% for 7.5% area (Figure 40A – 

left panel). With one single fragment, the average observers’ performance is 60.7% ± 2% at 0.2% 

area and 64.3% ± 1.6% at 0.75% area (Figure 40A – right panel). In the task with randomly inverted-

contrast images (Figure 40B), with ten fragments discrimination performance is 61.1% ± 1.8% at 2% 

area and 66.7% ± 2.2% at 7.5% area (see Figure 40B – left panel). With one single fragment, the 

average observers’ performance is 58.3% ± 1.3% at 0.2% area and 63.6% ± 2.1% at 0.75% area 

(Figure 40B – right panel).  

 

Figure 40. Study 4 – Main experiment: performance for different areas and number of 
fragments. (A) Task with original-contrast images. (B) Task with randomly inverted-contrast 
images. Left panels: average performance (n = 10) for ten fragments (2% and 7.5% of area); Right 
panels: average performance (n = 10) for one fragment (0.2% and 0.75% of area). Errors are SE 
across participants. Observers performed 2400 trials in total (300 trials for each condition). Figure 
retrieved from (Castellotti et al., 2023b). 
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Durbin test between performances with original- vs. randomly inverted-contrast images confirmed 

the effect of visible area (χ2(1) = 9.2, p = 0.002, W = -20) but no statistical differences emerged across 

the two tasks (χ2(1) = 0.2, p = 0.61). This suggests that, even if in some trials of this task there is no 

correspondence between the contrast of the fragments and that of the target image, the overall 

performance is comparable to that obtained in the task with original-contrast images.  

We then investigated to what extent the performance depended on the saliency of the local high-

frequency features contained in the fragments presented (as predicted by the constrained maximum-

entropy model), or on the global luminance information (Weber contrast). Firstly, we calculated 

performance as a function of SNR and contrast separately. In the task with original contrast images, 

performance does not depend on SNR, and it does not seem to be related to fragments’ contrast as 

well, although there is a tendency to increase with contrast with multiple fragments (Figure 41A-B). 

Instead, in the task with randomly inverted-contrast images, the performance is higher for lower 

contrasts and decreases for higher contrasts, whereas it increases from lower to higher SNR (Figure 

41C-D). 

 

Figure 41. Study 4 – Performance as a function of fragments’ Weber contrast and SNR. (A) 
Task with original-contrast images with ten fragments. (B) Task with original-contrast images 
with one fragment. (C) Task with randomly inverted-contrast images with ten fragments. (D) 
Task with randomly inverted-contrast images with one fragment. Error bars are binomial 
standard deviations. Observers performed 1200 trials in total (300 trials for each stimulus condition). 
Figure retrieved from (Castellotti et al., 2023b). 

Note however that fragments’ contrast and SNR are negatively correlated (Figure 42; 7.5% area: r = 

-.63, p < 0.001; 2% area: r = -.72, p < 0.001; 0.75% area: r = -.60, p < 0.001; 0.2% area: r = -.69, p < 

0.001). This correlation depends on the nature of the fragments and the way the two variables have 

been calculated: fragments with lower contrast are those containing a higher number of optimal 

features (high SNR), because high SNR reflects into a textured stimulus, and averaging alternations 
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of many black and white pixels, leads to low Weber contrast. On the other end, fragments with higher 

contrast are those with large black/white parts and therefore contain a few optimal features (see 

Figure 43). Note that the maximum SNR in the case of ten fragments (0.2) is lower than for one 

fragment (0.3) because, being the contrast mediated across ten different parts, the probability of 

having fragments with large black and white parts (and consequently low SNR) is higher.  

 

Figure 42. Study 4 – Main experiment: fragments’ contrast vs. their SNR. (A) Ten fragments. 
Number of occurrences in each bin (from the first to the last bin) = 7.5% area: 345,1380,783,491; 2% 
area: 497,1202,857,444. (B) One fragment (bins of 0.05 each). Error bars are standard errors. 
Number of occurrences in each bin (from the first to the last bin) = 0.75% area: 
834,873,586,425,235,47; 2% area: 748,764,620,440, 308,120. Figure retrieved from (Castellotti et 
al., 2023b). 

 
Figure 43. Study 4 – Relationship between contrast and SNR in a fragment. Left panel: example 
of an almost totally white fragment, which has high contrast with respect to the background, but 
contains few optimal features (low SNR). Right panel: example of a fragment containing a textured 
internal structure, which has a contrast similar to the background (low contrast) but contains a high 
number of optimal features (high SNR). Figure retrieved from (Castellotti et al., 2023b). 

Since the correlations between SNR and contrast are quite high, in the following analysis we used the 

difference between standardized SNR and contrast, instead of considering them as two separate 
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variables. In this way, the contributions of SNR and contrast to the performance can be separated. 

Moreover, in a 2IFC task, the order of target presentation might affect the performance, as well as 

the frequency of occurrence of each image: repeated presentations of the same image as target or 

distractor might induce visual learning of the images. 

For the task with original contrast images, we then performed a GLMM with three fixed factors: 

SNR-contrast difference (standardized), target order presentation, and image repetition number. 

Participants and stimuli were included as random effects. The GLMM reveals no effect of the 

difference between standardized SNR and contrasts (χ²(1) = 0.24, p = 0.62), but a main effect of order 

(χ²(1) = 9.1, p = 0.002) and image repetition number (χ²(1) = 19.2, p < 0.001) emerged. 

Overall, these results indicate that, in the task with original-contrast images, the performance does 

not depend on SNR (as shown in Figure 44A), and it does not seem to be related to fragments’ 

contrast either (although there is a tendency to increase with contrast with multiple fragments; see 

Figure 41A-B). Given our hypotheses, we argue that in this condition observers do not rely on local 

cues and possibly use the position of black and white spots to solve the task. This hypothesis seems 

to be further supported by the fact that the performance is higher when the target is presented in the 

first interval of the 2IFC. Indeed, the match between the fragments and the corresponding image is 

easier if the target is temporally closer and its presentation is not interspersed with the appearance of 

the distractor. 

We then performed the same analysis in the task with randomly inverted-contrast images (Figure 

44B), used to reduce the contribution of positional global cues and to bring out the contribution of 

high-frequency optimal features (see Figure 37). 

In this task, an additional factor was included in the GLMM. Considering all visible area conditions 

(12000 trials in total), due to the random nature of inversion, the target contrast alone was inverted in 

24.5% of trials, the distractor contrast alone was inverted in 25.2% of trials, the contrast of both target 

and distractor was inverted in 22.8% of trials, and the contrast of both target and distractor was kept 

original in 27.4% of trials. In principle, these different target conditions could affect performance.  
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Figure 44. Study 4 – Main experiment: performance as a function of the difference between 
standardized SNR and contrast. (A) Task with original-contrast images. (B) Task with 
randomly inverted-contrast images. Data from all tested areas are pooled together. Errors are 
binomial standard deviation. Dashed lines represent chance level. Figure retrieved from (Castellotti 
et al., 2023b). 

The GLMM analysis was thus performed with four fixed factors (standardized SNR-contrast 

difference, target order presentation, image repetition number, and target contrast inversion) and two 

random effects: participants and stimuli. The analysis shows a significant effect of SNR-contrast 

difference (χ²(1) = 128.4, p < 0.001) on performance. Indeed, performance increases with this 

difference (Figure 44B), suggesting that SNR prevails over contrast in driving the performance. The 

target order factor is instead not statistically significant (χ²(1) = 0.07, p = 0.78), meaning that the 

performance does not change whether the target image is shown in the first or the second interval of 

the 2IFC task. These results confirm further our hypothesis that, in this condition, participants change 

their strategy: they do not rely on positional cues anymore, but rather they use local information, 

therefore target order does not affect the performance. Again, the analysis reveals an effect of the 

image repetition number (χ²(1) = 36.2, p < 0.001). The target contrast inversion factor is also 

statistically significant (χ²(3) = 45.5, p < 0.001). Indeed, the performance with original-contrast target 

(65% ± 0.006%) is higher than with inverted-contrast target (60% ± 0.006%). 

Interestingly, the performance in the task with randomly inverted-contrast images in the trials with 

original-contrast target is also higher than that obtained in the task with original-contrast images (63% 

± 0.004%; z = 2, p = 0.04), although these two conditions are exactly the same.  
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The GLMM analysis, including only the trials with original-contrast target of the task with randomly 

inverted-contrast images, reveals a main effect of the difference between SNR - contrast (χ²(1) = 33.9, 

p < 0.001; see Figure 45), and of image repetition number (χ²(1) = 18.4, p < 0.001), but there is no 

effect of target presentation order (χ²(1) = 0.31, p = 0.58). These results are compatible with those 

found when considering all trials, independently of target contrast inversion (see Figure 44B). On the 

other end, these results are different from those found in the task with original-contrast images (see 

Figure 44A), although these two conditions are exactly the same. See the Discussion section for the 

interpretation of these results.  

 

Figure 45. Study 4 – Main experiment: performance as a function of the difference between 
standardized SNR and contrast in trials with original-contrast targets in task with randomly 
inverted-contrast images. In the graph, data from all participants (n = 10) and area conditions (7.5%, 
2%, 0.75%, 0.2%) are pooled together (bins of 0.2 each - binomial standard deviations), considering 
only trials where the target was not contrast-inverted (6311 trials in total). Figure retrieved from 
(Castellotti et al., 2023b). 

5.5 Discussion 

In the present work, we investigated the visual system’s ability to quickly discriminate a scene, based 

on the salience of high-frequency local visual features. 

Over the years, different studies have argued that the selection of relevant local elements is based on 

the simultaneous processing of different visual properties at multiple spatial scales, then combined 
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into a single saliency map (Itti et al., 1998; Itti & Koch, 2001; Torralba, 2003). However, these models 

do not consider the amount of computing power required by each parallel process. Our reference 

model, instead, considers the system's computational costs. Considering the finest spatial scale as the 

most computationally demanding part of the processing and the need for fast analysis, the model 

applies a lossy data compression algorithm to images at a fine spatial scale (Del Viva et al., 2013). 

The result of this process is the extraction of a limited number of informative high-frequency visual 

features, that are used for fast image discrimination and to drive bottom-up attention (Castellotti et 

al., 2021, 2022). 

Before investigating their role in fast discrimination of fragmented images, often presented to the 

visual system due to occlusions, we showed that observers can discriminate an image presented only 

for 25ms even when it’s almost totally occluded. As expected, correct discrimination increases with 

the visible area, but is still possible with very little information (0.12%). These findings confirm that 

humans are very skilled in fast visual discrimination, as already broadly demonstrated (for a review, 

see Serre et al., 2007). Note however that we pushed the visual system’s capacity to its limit, by 

showing images for the minimum duration necessary for a visual stimulus to reach primary cortical 

visual structures (Grill-Spector et al., 2000; Kirchner & Thorpe, 2006) and by using a paradigm that 

is known to be challenging for the observers (i.e., 2IFC tasks lead to higher error than 2AFC, Jäkel 

& Wichmann, 2006); This might explain why observers did not reach top performance even when 

the full image is displayed (100% area). Despite this, the minimal percentage of visible area needed 

to perform the task is much lower (0.12%) than that found in previous studies. For example, Tang et 

al. (2018) conducted an experiment similar to ours, with occluded or partially visible images 

presented for different durations, finding that in 25 ms observers robustly recognized objects when 

they were rendered <15% visible (Tang et al., 2018). The higher performance with a smaller visible 

area found here could be explained by the different tasks involved: their participants had to choose 

the right association between the occluded content and five different label options, while ours 

discriminate between two images.  

We also investigated which factors mostly influence the correct discrimination of occluded pictures. 

That is, we studied whether, with the same amount of visible area, discrimination depends more on 

the number of visible fragments or on their size. Results show a slight (not significant) preference for 

a few large fragments, rather than for many small parts. This is somewhat unexpected. However, 

some have hypothesized that perceptual systems suffer from overload, so the higher the perceptual 

load of current information, the lower the ability to perceive additional information (Greene et al., 
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2017). Here a low number of fragments could produce a lower cognitive load (Nejati, 2021; Xing, 

2007), hence better performance. 

In the main experiment, we investigated the role of the high-frequency model-predicted optimal 

features in fragmented image discrimination by quantifying the saliency of the fragments as the ratio 

of optimal features over the total number of features they contain. That is, the question is whether 

observers focus on the local internal content of the fragments and use embedded optimal features to 

discriminate the target, or whether they covertly attend to the global contrast information (low 

frequency). Indeed, since we use black and white stimuli and a 2IFC discrimination task, observers 

could simply solve the task by matching the position of black and white parts of the fragmented image 

and the target, without the need to analyze the internal content of the patches.  

When low frequencies can be used to perform the task (original contrast), the performance does not 

depend on the number of optimal features contained in the fragments, rather there is a slight tendency 

to increase with fragments contrast (particularly when ten fragments are shown). These results 

suggest that in this condition observers do not use local information but possibly use the fragments’ 

global luminance distribution. This hypothesis is further supported by the evidence that, only in the 

task with original-contrast images, the performance increases if the target is shown in the first interval 

of the 2IFC task. Indeed, we can assume that the match between the position of the black and white 

parts of the fragmented image and the target is easier if the latter is temporally closer to the stimulus 

and there is no other image before it. 

A higher performance in the task with original-contrast images than in the task with random contrast 

inversion would be expected, since, in the former, positional cues can always be used. The fact that 

the performances in the two tasks are similar suggests that, when the contribution of global 

information is decreased (random inversion of contrast), observers rely on a different kind of 

information to discriminate the scene. In fact, we found that the probability of correct discrimination 

increases with the number of optimal features in the fragments, both with one and ten fragments, 

indicating that observers’ responses in the task with random inversion of contrast are based on the 

local content of the fragments. This change of strategy is further supported by the evidence that, in 

this condition, the performance does not depend on the target order of presentation. We argue that, 

since observers do not base their choice on positional cues, it doesn't matter anymore if the target is 

presented in the first or in the second interval. 

In the task with randomly inverted-contrast images in some trials the target still has the original 

contrast, therefore the global luminance structure of the fragments could still drive discrimination. 
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Interestingly, considering only these specific trials, the performance is even higher than that obtained 

in the task where only original-contrast images are used, even though the two conditions are exactly 

the same. More importantly, correct responses depend on the number of optimal features in the 

fragments, and they are independent of target order, unlike in the task with original-contrast images. 

These results confirm that the contrast manipulation we applied in this task can change the observers’ 

strategy. In this condition, participants seem to use both global and local information reaching a 

higher performance than when they rely only on global information. We, therefore, conclude that 

when less global information is available, local information plays a crucial role. 

Note that the set of optimal features comprises spatial structures with both contrast polarities; this 

could explain why the inversion of contrast does not affect discrimination based on local information. 

The insensitivity to contrast inversion (Baylis & Driver, 2001; Niell & Stryker, 2008) found in V1 

complex cells, together with the similarity of spatial structure between model-predicted optimal 

features and the bar and edge-like V1 receptive fields (Hubel & Wiesel, 1965; Figure 3B), strongly 

suggests that these cells represent the optimal way to transmit information in fast vision. This also 

highlights the strong predictive power of the constrained maximum-entropy model. 

Overall, our findings suggest that local and global analyses interact in fast image processing and that 

the contribution of the high-frequency optimal features significantly emerges when the visual system 

is tested in very challenging conditions. This means that local information, when derived from 

maximum-entropy optimization criteria coupled with strict computational limitations, allows fast 

image discrimination even when the information about the scene is drastically reduced. 

This fast local extraction of salient features must be operated very early in the visual pathway (Del 

Viva et al., 2013; Zhaoping, 2002), and integrated into a global percept at later visual stages. Indeed, 

in real scenes the visual system “goes beyond the information given" in a local region (Meng & Potter, 

2008) and fills in the missing information of occluded images by binding the visible image fragments 

(Bruno et al., 1997; Johnson & Olshausen, 2005; Meng & Potter, 2008). Also, in daily life, the a 

priori knowledge of the objects helps the visual system in image recognition (Pinto et al., 2015; Stein 

& Peelen, 2015). Long-term memory, which is capable of storing a massive number of details from 

the images (Brady et al., 2008), contributes as well. Visual learning effects also occurred in our 

experiment, since the performance is affected by repeated presentations of the same image. This 

indicates that participants might have become acquainted with image details, revealing that there are 

some memory effects at play. Studies of the mechanisms of recognition of incomplete images have 
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also developed information-statistical approaches, the concepts of the extraction of the signal from 

noise, and models of matched filtration (for a review, see Shelepin, Chikhman & Foreman, 2009). 

What cannot be ignored is the fact that while viewing a scene, humans make eye movements several 

times per second. Therefore, we have recently extended this study including eye movement recording 

in similar conditions, testing whether saccades are directed toward the most informative fragments to 

reconstruct the images (Del Viva et al., 2022). To study this, we briefly present a few small image 

fragments and invite participants to look at one fragment to later perform a discrimination task. Our 

preliminary results show that eye movements preferentially head toward fragments containing a 

larger number of optimal features, especially in the session with inverted-contrast images. In this 

condition, image discrimination is also more accurate when saccades are directed towards fragments 

containing a large number of optimal features. These preliminary results then confirm that optimal 

local features are used for image discrimination when global information is not fully available and 

suggest that they are preferential targets of eye movements because of their saliency.  

One could still wonder why in the task with randomly inverted-contrast images when using just one 

fragment the performance depends on fragment size (Figure 40D), even though the ratio of optimal 

features to the total is the same. Clearly, some other factors are at play here. A plausible explanation 

could be that here we have considered for saliency only the finest spatial scale, while these fragments 

contain edges and bars a lower scale (Callaway, 2005; DeYoe & Van Essen, 1988; Nassi & Callaway, 

2009), to the point that a single fragment could be considered as a single feature itself rather than a 

set of smaller features. Hypothetically, it would be interesting then to run the constrained maximum-

entropy model with larger feature sizes to study what kind of optimality emerges on larger scales, 

and if these new optimal features are present in large quantity in the fragments used for 

discrimination. The problem is that the need for such small feature size is a corollary of the central 

idea of compression proposed by Del Viva et al. (2013): the number of possible features, that we 

assume to be a limited resource, increases exponentially with the size of the feature itself and so the 

amount of computing needed to calculate them. For example, considering that a feature size of 1° 

(see paragraph 1.1.1.2) corresponds in our experiment to a 28x28 pixel feature, it would require 

sorting out 10236 possible 1-bit features. Clearly, a number that is not manageable by any natural or 

man-made device. To solve this problem then we have to hypothesize a general system, composed of 

many layers, in which an image is represented at a progressively large spatial scale, and in which 

each level feeds the next one, and the level of image reconstruction becomes progressively more 

complex. Such a framework matches the hierarchical architectures of ventral visual streams and has 
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been exploited by many models based on deep convolutional neural networks, attempting to mimic 

the multilayer processing of the visual system for image classification (e.g., Cichy et al., 2016, 2014; 

Eickenberg et al., 2017; Güçlü & van Gerven, 2015; Yamins et al., 2014). A future goal of this group 

of research is then to develop such a parallel model that extrapolates the idea of constrained 

maximum-entropy optimal feature selection to multiple layers. In this framework, the optimal 

features extracted at a given layer will be the only information feed to the next and therefore all the 

possible features in this higher layer are only combinations of the optimal features extracted in the 

layer below. In this way, it will be possible to reduce the information to a level that becomes 

computable and compliant with the idea of compression of the model and to extract optimal larger 

features. 
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6. GENERAL DISCUSSION AND CONCLUSIONS 

The studies presented in this thesis exploit a variety of experimental designs and techniques and each 

one has its own specific research question to answer. Besides, all the studies share the same final 

objective. Namely, they aim to assess whether the saliency of local visual features in fast vision can 

be determined by information maximization criteria coupled with the computational limitations of 

our visual system, as predicted by a recent model of early vision (Del Viva et al., 2013). 

This model simulates the first stages of visual processing where the demand for fast analysis of large 

amounts of data requires that the implicit constraints of a biological system with finite capacity cannot 

be ignored. Therefore, the model assumes that this early-stage filter is subjected to some 

computational limitations, formalized as limited storage and limited rate of transmission. Finally, it 

assumes that the system is optimized to preserve the maximum amount of information in the output. 

These assumptions lead to a unique procedure of image data reduction, extracting simplified sketches, 

that are input to further processing, created by retaining only a limited number of features that are 

optimal information carriers, dropping all the remaining information.  

Here we are interested in understanding the role of these local optimally informative visual features 

in the creation of a saliency map that the oculomotor system could use to drive eye movements toward 

potentially relevant locations, therefore, ultimately, in their contribution to image reconstruction. 

In our first study, optimal features turned out to be more salient than others, despite the lack of any 

clues coming from a global meaningful structure, suggesting that they get preferential treatment 

during fast image analysis. Also, peripheral fast visual processing of these informative local features 

seems able to guide gaze orientation (Castellotti et al., 2021). In the second study, we demonstrated 

that optimal features can rapidly and automatically attract the subject’s attention in covert and overt 

attentional tasks, in which “saliency” is implicitly manipulated rather than explicitly cued. That is, 

they are able to locally boost contrast sensitivity, reduce latencies of target-oriented saccades, 

decrease the number of saccadic direction errors, and increase anticipatory saccades at their locations, 

although observers are not required to pay attention to features saliency (Castellotti et al., 2022). The 

third study adds a new piece to our investigation, showing that optimal features interfere with the 

path of saccades toward a target acting as salient visual distractors (Castellotti et al., 2023a). This 

suggests that the visuo-oculomotor system rapidly and automatically processes optimally informative 

features while programming visually guided eye movements. The last study tried to test a more 

ecological condition by using occluded natural images and found that optimal local information also 
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plays a role in image reconstruction based on little information, as well as global visual elements 

(Castellotti et al., 2023b). 

On the other end, the results of our studies showed that other features, discarded by the model as non-

optimal features, do not produce the same effects as the optimal ones. Namely, they are not judged 

visually salient, they do not attract attention, and they do not induce saccadic curvature.  

Very interestingly, all the effects found with optimal vs. non-optimal features are comparable to those 

obtained with features of different luminance. The attention-grabbing effect and the saccadic 

curvature induced by optimal features are indeed the same as those found with high-luminance 

features, suggesting that the saliency provided by optimal features is comparable to that of high-

luminance stimuli, if compared on equal grounds. Therefore, visual saliency instantiated by specific 

spatial structures, determined by information maximization, is comparable to that of luminance-based 

saliency. 

Let me also mention that our studies, besides testing the predicting power of our reference model, 

employ some novel paradigms to investigate visual saliency that may be useful for other research. 

Indeed, in our second study, we used a rare double spatial-cueing paradigm, where two simultaneous 

peripheral cues, with either the same or different assumed saliency, are presented. In the third study, 

we exploit the phenomenon of saccadic curvature to compare the effects on saccades trajectories 

produced by different types of visual features used as distractors. Given the results found, we think 

that in the future such paradigms may be useful tools to test the relative saliency of two stimuli, even 

if ontologically different from each other, by directly comparing their ability to capture attention or 

the magnitude of deviation they induce in the saccade trajectory. 

Overall, the findings presented in this thesis point to a rapid orientation of saccades toward the salient 

information provided by features optimality. Humans can only fixate and extract detailed information 

from one small region of space at a time. This makes an efficient selection of relevant local features 

critical for visual processing and optimal behavior. Decades of work in vision science have argued 

for such dynamic selection to be based on multiple saliency maps (Itti et al., 1998; Itti and Koch, 

2001; Parkhurst et al., 2002; Torralba, 2003). The saliency of optimal features is independent of the 

global image context, leading to the speculation that they may play an important role within the multi-

scale analysis of saliency performed by the human visual system. 

The saliency map is not derived, in our case, from an algorithm trying to make sense of visual 

properties determined a-priori (e.g., color, motion, texture) competing at individual image locations. 

Our salient features are instead a consequence of both the early input data reduction and of the 
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frequency with which they occur in the input. Optimal and non-optimal features do not differ in low-

level properties, such as average luminance or spatial frequency. Therefore, it is worthwhile to reflect 

upon the properties that makes optimal features so much more significant, to the point of eliciting the 

same effects as if they had different luminance. According to the reference model adopted here (Del 

Viva et al., 2013), the visual system, to produce an early saliency map of a visual scene, extracts just 

a very limited salient features, based on criteria of maximal entropy within strict bounds on data 

output rate. Optimal features then represent a compromise between the amount of information they 

carry about the visual scene and the cost for the system to process them. On the other hand, the non-

optimal features used in our studies are individually the most informative, but do not meet 

computational limitations criteria (Del Viva et al., 2013). Therefore, the computational limitations do 

much more than simply limit the performance of the system; they seem to take a significant role, not 

only in compression, but also in shaping what the system selects as salient in the input.  

Several past studies have explored the mechanisms of fast vision at different scales and stimulus 

durations, finding that both coarse and fine spatial information are simultaneously used in fast 

categorization of images (Oliva & Schyns, 1997a; Schyns & Oliva, 1999). Some models build 

bottom-up saliency maps, based on simultaneous processing of different visual properties at multiple 

spatial scales that are then somehow combined into a single saliency-map (Itti & Koch, 2001). These 

models do not address the issue of the amount of computing power required by each of these parallel 

processes which varies greatly across scales and modalities. The reference model instead revolves 

entirely around the concept of computational costs. From this viewpoint, the finest usable spatial 

scale takes naturally a central role. In fact, as a consequence of the properties of the Fourier transform, 

the information content is proportional to the square of spatial frequency, making the finest scale by 

large the most computationally demanding part of the processing. Saliency extraction at this scale 

then, with strong reduction of information, becomes a pressing necessity, and one expects it to play 

an important role amongst all possible maps involved.  

There is still a debate on whether this fast bottom-up extraction of visual saliency map is based mainly 

on local (Zhaoping, 2002) or rather global clues (Itti et al., 1998; Oliva, 2005; Oliva & Schyns, 1997b; 

Torralba, 2003). The contribution of local analysis to the global percept of an image has been studied 

in a past work, within the framework of the present model, by replacing in a sketch the optimal 

features (typically located along within objects contours), with other features that are non-optimal 

carriers of information, keeping their localization in the image unchanged. The disruption of these 

optimal local cues causes a decrease in image recognizability, in spite of its global structure being 
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preserved (Del Viva et al., 2016; paragraph 1.4.6). Our current findings also suggest that image 

reconstruction processes use local information. While the existence of other mechanisms in addition 

to what is analyzed here has been proved beyond doubt, this new result allows establishing the 

existence of a bottom-up reference frame for the extraction of saliency that can efficiently drive the 

process. 

Many studies have proposed that bottom-up saliency maps are represented in early sensory cortices 

(Zhaoping, 2006; Zhaoping, 2019; Zhaoping & Zhe, 2015) and rely on specific sensory properties. 

Priority maps are instead less dependent on the detailed physical properties of the sensory input, and 

account for both the global properties of the scene, the behavioral goals and high cognitive 

information (as reviewed in Itti & Koch, 2001; Zelinsky & Bisley, 2015). They would rather be 

represented in higher cortical sensory areas (including parietal and prefrontal areas, Bisley & 

Goldberg, 2010; Thompson & Bichot, 2005), as well as in subcortical regions closer to the motor 

output, as the Superior Colliculus for saccade planning (Veale et al., 2017; White et al., 2017). Both 

earlier studies, supporting the view of saliency maps as represented in early visual cortex (Zhaoping, 

2006), and more recent works, suggesting the existence of a priority map in the superior colliculus 

(Veale et al., 2017; White et al., 2017), agree on the fast nature of such representations. The gaze 

could then be rapidly oriented toward the maximum-saliency locations highlighted by these maps 

(Garcia-Diaz et al., 2012; Itti & Baldi, 2009; Itti & Koch, 2000, 2001; Najemnik & Geisler, 2005, 

2008). 

The saliency map extracted by the constrained maximum-entropy algorithm, for efficient 

compression, must be created very early in the visual system, and several converging evidence 

indicates the primary visual cortex as the most likely candidate. First of all, optimal features are good 

approximations, within the limitations of a 3 x 3 grid, of the structure of some receptive fields of 

neurons found in primary visual areas (Hubel & Wiesel, 1965; Figure 3B). Such elongated edge- and 

bar-shaped structures haven’t been found in the thalamus and superior colliculus (DeAngelis et al., 

1995; Derrington & Webb, 2004; Drager & Hubel, 1975; Harutiunian Kozak et al., 1973; Kara et al., 

2002), although some studies found orientation selectivity in the superior colliculus (Ahmadlou & 

Heimel, 2015; De Franceschi & Solomon, 2018; Feinberg & Meister, 2015; Gale & Murphy, 2014; 

Wang et al., 2010). Then, optimal features extraction supports a fine-scale local analysis consistent 

with V1 (Hubel & Wiesel, 1962; Hubel & Wiesel, 1974; Lennie, 1998). V1 is also the most extended 

visual area (Lennie, 1998), with larger energy consumption (Lennie, 2003) and higher input/output 

neural ratio with respect to the retina and other extrastriate areas (Lennie, 1998), making it a good 
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candidate for the information bottleneck required by our model. Finally, V1 is involved in very fast 

visual analysis (Grill-Spector et al., 2000; Kirchner & Thorpe, 2006). All these observations are 

consistent with the idea, previously advanced, that the function of V1 is to create a “bottom-up 

saliency map” enabling a “lossy pre-attentive selection of information”, so that data rate can be further 

reduced for detailed processing (Zhaoping, 2006; Zhaoping, 2019; Zhaoping & May, 2007). 

Theoretically, V1 neurons can work together to filter information in a manner compatible with the 

reference model following a hierarchical multilayer processing. For example, cells selective to 

vertical bars in different points of the image are connected by lateral connections. Therefore, when 

one or more of these cells detect their preferred stimulus, a higher-order cell to which they are 

connected integrates this information detecting an extended vertical bar located in a wider region of 

the image. This means that raw input data are analyzed locally and then combined into more complex 

features at a lower spatial scale. Then, the characteristics and sizes of the receptive field found in V1 

indicate that the processing of higher-order visual areas (V2, V3, V4, V5) is necessary to create a rich 

representation of the visual scene in terms of structure, spatial position, and semantic meaning. 

Another important question is how the visual system could have developed to use the optimal pattern 

set. We can hypothesize that the model allows for easy algorithms for unsupervised learning. The 

optimal patterns have probabilities falling within a limited range; a system that is initially sensitive 

to a wide variety of patterns could converge towards optimality simply by discarding patterns that 

occur too rarely, or too frequently, in the input. This process might even happen during normal 

activity, allowing for continuous updating and adaptation to changing external conditions. We can 

hypothesize that the visual system follows a learning process updating optimal information following 

the changes in the image statistics. This means that modifying the visual environment would lead to 

modifications of the system’s mechanisms. Indeed, a key property of our brain is its plasticity and, 

unlike others, the reference model, given its heuristic nature, has the advantage of being adaptable to 

changes in the input allowing for this dynamic adaptation. In fact, to determine the set of patterns to 

be recognized in the input data, the model uses a heuristic approximate algorithm, that is easier to 

implement and adapt to changing situations compared to its exact version (Del Viva et al., 2017). It 

has been shown that a more efficient and exact version of the same algorithm would be less 

biologically-plausible and would require more complex computations that would change completely 

the structure of the underlying network in case of changing external and/or internal conditions. 

Besides, preliminary experiments show that the heuristic solution is a better predictor of human image 

discrimination than the exact one (Del Viva et al., 2017). At this point, it would be interesting to 

further investigate learning processes testing how they could be framed within this model approach.  
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Coming back to the main results, our findings indicate that the saliency map provided by the model-

predicted optimal features is used to automatically guide attention and eye movements toward 

informative locations and is comparable to that of luminance-based saliency. They also suggest that 

these salient features participate in the visual reconstruction process. 

To conclude, the findings presented in this thesis suggest that visual saliency may be derived naturally 

in a system that, under the pressure of fast visual analysis, operates maximum information 

transmission under computational limitation constraints, as predicted by the reference model (Del 

Viva et al., 2013). On this basis, we speculate that active vision is efficiently adapted to maximize 

information in natural visual scenes under specific processing constraints.  
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SUPPLEMENTARY MATERIAL 

To compare the spatial frequency content of our features, we computed the distance of the spatial 

frequency (SF) spectra (defined as the Euclidian distance of the vectors of Fourier components’ 

amplitude) within and between our two sets of stimuli (optimal and non-optimal features; Figure 8C 

and 8E). The spectra have been calculated after subtracting the mean value from each feature, to 

remove the irrelevant constant component. The spread of frequency spectra within a given set of 

features can be visualized by plotting a histogram of the above-defined distances, taken between all 

possible pairs within the set. First, the histogram of distances within the set of all possible 512 3x3 

binary features (excluding degenerate cases with distance < 10-4, due to symmetrical/negative 

features), shows that they are comprised in the range [0.3, 1.7] (Figure S1). 

 

Figure S1. Distances within the set of all possible features. Figure retrieved from (Castellotti et al., 
2023a). 

The histograms of inter-feature distances taken within the two (much smaller) sets of non-optimal 

and optimal features (Figure S2) indicate the diameter of the respective feature sets in the 9-

dimensional space of frequency spectra. The spread of frequency spectra within the set of non-optimal 

features [0, 1.2] is not much lower than the diameter of the entire feature space. For the optimal set 

of features, it is even the same as the whole space; all one can see is a slight tendency for lower values.  

These results show that the two sets of features do not occupy specific corners of the frequency 

spectrum but are rather spread over the entirety of the theoretically available space. 
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Figure S2. Distances within the set of non-optimal (A) and optimal features (B). Figure retrieved 
from (Castellotti et al., 2023a). 

Furthermore, it can be seen that the distribution of distances between all possible pairs of features, 

formed by picking one in each of the two sets (optimal vs. non-optimal), covers again the same [0.3, 

1.6] range (Figure S3). 

 

Figure S3. Distances between optimal and non-optimal feature sets. Figure retrieved from 
(Castellotti et al., 2023a). 

Also, comparing the means of individual components of the nine-dimensional spectra of the two sets, 

the resulting z-score was equal to or less than 1. 
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In sum, the two sets have spectra that do not differ by much more than the typical distances within 

each individual set, and they both extend over essentially the whole frequency space theoretically 

allowed for their size.  

Also, by looking at the closest non-optimal feature to each of our optimal features, it turns out that, 

for 48 out of our 50 optimal features there is at least one non-optimal feature at a distance of less than 

0.5 - that is less than the minimum distance between any pairs that can be formed between non-

optimal features themselves. 

In light of these results, the different effects of optimal vs. non-optimal features found in our studies 

cannot be explained by their spatial frequency content.
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