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Abstract. Tourism management assumes an important role in the context of Smart Cities. In this 

work, we used thermal cameras for the development of an Object Detection solution in pedestrian 

areas. The solution is capable to classify people, bikes, and strollers, and count people in Real-

Time, in hot squares where relevant number of people pass by, by using telephoto and wide-angle 

thermal cameras. To this end, the solution exploited the FASTER-R-CNN and the YOLOv5 with a 

set of tuning approaches for improving the precision and the flexibility with respect to solutions at 

the state-of-the-art. Both top-down and bottom-up training adaptation approaches have been 

assessed by demonstrating that the bottom-up approach can provide the best results. The results 

overcome the state-of-the-art in terms of performance for relevant number of people in the scene 

(removing the limitation of the state-of-the-art solutions that were limited to provide good 

precision up to 10 people) and flexibility for different camera lens and resolutions. The resulting 

model is also capable to produce results in Real-Time on industrial PC of mid-level, and it has 

been enforced to work directly on thermal cameras. The proposed solution has been developed and 

validated in the context of Herit-Data EC project and using the Snap4City platform for the final 

collection of data results and publication of monitoring dashboards.   

Keywords: smart city, tourism management, multiclass object detection, crowd 

people counting, tracking, thermal cameras, YOLO, Faster-R-CNN. 

I. Introduction 

Tourism is, without doubt, a vital component for many cities, however, managing 

it is a difficult task and many problems such as overcrowded situations can get in 

the way and lead to reduce the appreciation of the touristic site experience. 

Thanks to the development of modern cities there are plenty of possible solutions 

in the context of Smart Cities based on the use of Big Data and IoT Devices 

(Internet of Things) to acquire useful information on the city conditions/context, 

and tourists’ behaviour in the city. People detection and counting are among the 
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most interesting features for monitoring tourists and security in hot destinations 

and sites of interest around the world, as in malls, stadiums, theatres, etc., to 

provide support at decision makers. The people counting can be strongly useful 

for detecting critical conditions (early warning), for security and cleaning 

activities. The detection and counting of people is a value for the cultural sites 

management, and the adopted solutions have to respect the GDPR (General Data 

Protection Regulation) [1] and privacy in general. 

Italy is one of the countries in which a large number of hot destinations are 

present, such as: Florence, Venice, Rome, Milan, etc. In some cases, the 

municipalities have adopted limitations on the number of people presences in the 

major city squares and areas, in order to maintain acceptable, the quality of 

experience and services for all the categories of city users, and thus also for the 

tourists. The limitations are typically imposed by tripod gates, tickets, and other 

physical/invasive solutions which reduce the free people flows and may provoke 

difficulties for evacuations. In order to detect and count the number of people in 

specific areas of interest there are nonintrusive solutions based on different 

technologies. For example, IoT sensors-based solutions as PaxCounters (Wi-Fi 

sniffers [2], Laser counting, infrared counters, etc. [3]) are widely used and for 

some scenarios, like the major squares, they could be of difficult usage since they 

have limited range capabilities. In controlled conditions, such as fairs, festivals, 

museums, etc., the usage of wearable tags, which can be assigned to a significant 

number of the attendees, can be a viable solution to understand how they move, 

how much they stay in each room, etc. On the other hands, these solutions are 

invasive and quite expensive.  

Alternative solutions are based on video cameras which allow to detect, classify, 

count and track people [4] by Computer Vision and artificial intelligence, AI. This 

is a field in which AI analyze visual data and provide support to make decisions 

providing hints on scene understanding of the environment and the situation [5]. 

Governments and companies are investing in security networks hundreds of 

millions more surveillance cameras are watching the world according to the report 

from industry researcher IHS Markit [6]. Most of these solutions have strong 

applications in the context of security and surveillance in which the GDPR aspects 

are relaxed. On the contrary, in the context of on-street people counting, RGB 
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cameras are not appreciated by the municipality for their difficulties in passing 

GDPR compliance assessment.  

An emerging compromise consists in the usage of thermal cameras for the 

detection and counting people. Thermal cameras are much more acceptable for 

on-road counting since they do not allow to perform face recognition at 

resolutions in which the RGB cameras can do it. Thermal cameras are typically 

more expensive than RGB cameras, while for the people counting, they have the 

advantage to be (i) non-invasive privacy compliant, and (ii) capable to work well 

in lack of illumination. For thermal cameras, there are object detection algorithms 

that could be used to elaborate the video stream images to detect the presence of 

particular classes of objects, and their position in the image [7], [8], [9]. These 

algorithms can be tuned to detect particular classes of objects, while they present 

some limitations regarding the capability of counting as discussed in next 

subsection.  

For these reasons, we focused on thermal camera usage for people detection and 

counting.  

I.A Related works 

In the context of people flow analysis for tourism management, the Multiclass 

Object Detection and People Counting are fundamental tasks to provide support to 

decision makers. In most cases, the task is solved by using Computer Vision 

techniques by using colour images. They are problematic for the privacy, and the 

procedure for their GDPR approval is not trivial. The related work discussed on 

this section is grounded on thermal camera and it is summarized in Table I. 

The Multiclass Object Detection aims to determine the bounding boxes of the 

elements in an image and their classification. For this problem, Computer Vision 

solutions at the state-of-the-art are primarily based on RGB images [10], [11], 

[12], [13], or on thermal images, and in some cases using both colour and thermal 

data [14]. 
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Table I Related works comparison for Object Detection via thermal cameras. 

In more details, Jia, Zhu et al., presented the LLVIP dataset in [7] which contains 

street images in RGB and thermal formats that can be used for different purposes. 

In [7], the authors reported a section relevant to the problem of Pedestrian 

Authors Task Image 

Type 

Dataset Model Results Range 

Jia et al., 

2021 [7] 

Pedestrian 

Detection 

RGB 

and 

Thermal 

LLVIP YOLOv5 mAP_0.5 0.9650 
 

< 10 people per 

image 

Krišto et 

al., 2020 

[8] 

Person 

Detection 

Thermal UNIRIT

ID 

YOLOv3 mAP_0.5 0,9793 
 

< 10 people per 

image 

Kowalsk

i et al., 

2021 [9] 

Boat and 

People 

Object 

Detection 

Thermal Elblag 

and Bug 

rivers in 

Poland 

Faster R-

CNN with 

ResNet10

1 

DR_0.7 0.83 
 

1 or 2 people 

per image 

Goel et 

al., 2021 

[15] 

Pedestrian 

Detection 

Thermal Thermal 

OSU 

Pedestri

an 

dataset 

 

Faster R-

CNN 

Accuracy 0.9238 

Precision 0.8932 

Racall 0.9124 
 

< 10 people per 

image 

Dai et 

al., 2021  

[16] 

Multiclass 

Object 

Detection  

Thermal  CTIR, 

KAIST 

TIRNet dataset mAP_0.5 

CTIR 0.7485 

KAIST 0.5993 
 

CTIR: 31035 

people in 11938 

images 

KAIST: 86.2K 

people in 95K 

images 

Kera et 

al., 2022 

[17] 

Object 

Detection 

Thermal FLIR-

ADAS 

EfficientN

et + 

BiFPN 

FLIR-ADAS 

mAP_0.5 0.773 
 

FLIR-ADAS: 

28151 people in 

10288 images 

Munir et 

al., 2021 

[18] 

Multiclass 

Object 

Detection 

RGB 

and 

Thermal  

FLIR-

ADAS, 

KAIST 

 

SSTN  dataset mAP_0.5 

FLIR-

ADAS 

0.7757 

KAIST 0.7322 
 

FLIR-ADAS: 

28151 people in 

10288 images 

KAIST: 86.2K 

people in 95K 

images 

Li et al., 

2021 

[19] 

Multiclass 

Object 

Detection 

Thermal FLIR-

ADAS, 

KAIST 

 

YOLOv5 dataset mAP_0.5 

FLIR-

ADAS 

0.835 

KAIST 0.983 
 

FLIR-ADAS: 

28151 people in 

10288 images 

KAIST: 86.2K 

people in 95K 

images 
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Detection. They fine-tuned the pre-trained YOLOv5 model [20] on COCO dataset 

[21] using the thermal data from LLVIP. The solution achieved a mean Average 

Precision (mAP) at the Intersection over Union (IoU) threshold of 0.5 (mAP_0.5) 

of 0.965 on the thermal images compared to the 0.908 of the corresponding RGB 

images. For person detection and surveillance, thermal cameras have been 

proposed by Krišto et al. [8], taking into account also the effect of weather 

conditions. In that context, a custom dataset has been created with video acquired 

during the winter in different weather conditions (clear weather, rain, fog), during 

the night, and for different distances from the camera (ranging from 30 m to 215 

m, using YOLOv3). This solution achieved a mAP_0.5 of 0.87. In [22], a 

YOLOv3 model was trained to detect both Human and NonHuman objects (e.g., 

dogs) in thermal images. In this case, they achieved a mAP_0.5 score of 0.9798, 

confirming the possibility of using the solution for the automatic monitoring of 

protected objects and areas. Kowalsky et at., in [9], compared different state-of-

the-art Object Detection models to detect people and inflatable boats from a 

distance of 50-200 meters using thermal images. The best model in terms of 

performance was Faster R-CNN (Region based Convolutional Neural Network) 

with ResNet101. On the other hand, in terms of processing time, YOLOv3 was 

significantly faster and achieved a Detection Rate (DR) with an IoU threshold set 

at 0.7 (DR_0.7) of 65%. Goel et al., focused on the problem of pedestrian 

detection [15]. The dataset used was the Thermal OSU Pedestrian Dataset from 

OTCBVS Benchmark Database [23]. The best results achieved were obtained by 

using a Faster R-CNN, demonstrating the validity of the solution in multiple 

illumination conditions depending on the weather (Dense Cloudy, Light Rain, 

Partly Cloudy, Haze, Sunny). Multiclass Object Detection has an important role in 

advanced driver assistance systems (ADAS) and autonomous driving applications. 

In [16], Dai et al., proposed TIRNet a deep neural network architecture based on 

convolutional layers to detect cars, pedestrians, cyclists, buses and trucks. Overall, 

the mAP_0.5 over all the classes for the proposed dataset achieved 0.7485 and, 

considering only the pedestrian class, mAP_0.5 = 0.8047. On the KAIST dataset 

[24] the TIRNet achieved a mAP_0.5 = 0.5993. Other works on Multiclass Object 

Detection in autonomous driving are Kera et al., [17] and Munir et al., [18], in 

which the authors used a self-supervised technique to learn enhanced feature 

representation using unlabelled data and a multi-scale encoder-decoder 



 6 

transformer network that used these enhanced features embedding to develop a 

robust thermal image object detector. In this latter case, the proposed approach 

achieved over all the classes on the KAIST dataset a mAP_0.5 = 0.7322 and on 

the FLIR-ADAS dataset [25] mAP_0.5 = 0.7757. Kera et al., [17], proposed an 

EfficientNet solution with a weighted bidirectional feature pyramid network, 

achieving a mAP_0.5 = 0.773 on the FLIR-ADAS. Li et al., [19], based their 

solution on YOLOv5, thus improving the state-of-the-art performance for the 

problem of Object Detection in the two datasets FLIR-ADAS and KAIST, 

achieving a mAP_0.5 of 0.835 and 0.983, respectively. 

When the goal is just counting people in the scene there are many approaches at 

the state-of-the-art ([26], [27], [28], [29]) but primarily detection-based 

approaches are widely used. These systems first detect people on the images and 

then count their numbers as in [30]. These systems are in most cases based on 

classifiers trained on the whole body or on a part of the body (for example the 

head, which resulted to be in most cases less precise than body detection). An 

example, is based on YOLOv3 classifier as presented in [31], obtaining a 

classification accuracy of 96.1% on the INRIA dataset [32] (uncrowded urban 

contexts) and 82.1% on the ShanghaiTech dataset [33] (urban contexts with some 

crowded scenes). Detection-based approaches can be used for people counting and 

are also widely used at the state-of-the-art for tracking systems as in [34], [35], 

[36], [37], [38]. 

I.B Article aims and contributions 

In this paper, we focused on the problems of people detection and counting in 

cultural heritage locations that are crowded with tourists such as: Florence in 

Italy, Valencia in Spain, Pont du Gard in France, Dubrovnik in Croatia, etc. They 

are locations in which specific city squares (located in strictly pedestrian areas) 

attract high number of tourists almost at any time of the day. Therefore, the 

proposed solution addressed the problems of people detection (classification) and 

counting, comparing and overcome the state-of-the-art solutions on three main 

goals and providing higher: 



 7 

• precision for detection and counting in crowded conditions, detection to 

identify/count: people, bikes/motorbikes, strollers/carts;  

• flexibility in terms of counting range in which the relevant precision can 

be obtained, over the 10 people which is a limitation of the state-of-the-art 

solutions as highlighted in the paper; 

• flexibility in terms of counting precision by using different kinds of lenses 

for thermal cameras: from telephoto to wide-angle. 

The proposed solution exploited the YOLOv5 [20] and LLVIP [7] with a set of 

tuning approaches for improving the precision and the flexibility of the previous 

solutions at the state-of-the-art. To this end, we explored both top-down and 

bottom-up training adaptation approaches, demonstrating that the bottom-up 

approach can provide the best results according to the above-mentioned objectives 

of performance and flexibility.  

In addition, the solution has been implemented to obtain Real-Time execution on 

(i) mid-level industrial PC capable to perform multiple Python stream processing 

(which allows to use the solution connected to any RTSP stream of thermal 

cameras), (ii) board of AXIS thermal cameras. The results from people detection 

processes can be used to track the number of objects of the specific classes of 

interest and can be integrated in monitoring dashboards that can be a useful tool 

for decision-makers. The proposed solution has been tested and validated for 

detecting people (pedestrians, bikes/motorbikes, strollers/carts) in strictly 

pedestrian areas which is the typical case in cultural cities in Europe. And 

particular in Piazza Della Signoria in Florence, Italy, the city hall square of 

Florence, Italy, which is a city that attracts about 15 million of tourists per year. 

The solutions have been developed and validated in the context of the Herit-Data 

Interreg European Commission project [39] which aims to identify innovative 

solutions to monitor and manage the impact of tourism on cultural and natural 

heritage sites, with the support of new Big Data technologies. The solution has 

been implemented by exploiting the Snap4City framework and platform which is 

100% open-source solution [https://www.snap4city.org], [40], [41]. 
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I.C Article Structure 

The paper is structured as follows. Section II describes the problem and data for 

the operating conditions, and thus the data which can be obtained by thermal 

cameras of different kinds. On these bases, an assessment of the state-of-the-art 

solutions (based on YOLO and Faster-R-CNN) has been performed to put in 

evidence the limitations identified which make them unsuitable to the goals 

identified in counting and classification. In Section III, the solution identified to 

enforce flexibility and capability of high precision counting in presence of high 

number of people is presented. Section IV presents the usage of a bottom-up 

training adaptation approach which additionally improved the precision and 

flexibility of the early YOLO with LLVIP training.  In Section V, the deployment 

architecture, which can be used to adopt the solution for Real-Time detection and 

counting of people, is described. Conclusions are drawn in Section VI.  

II. Problem and data definition 

As mentioned in the introduction, the main goal of the presented research was to 

detect and count people in real-time for tourism context. And, in particular, to 

detect and manage situations in which we may have up to 60-70 people in a single 

image. The state-of-the-art of thermal camera datasets and solutions have not yet 

addressed such a condition. For example, considering the most diffuse dataset of 

thermal images: LLVIP dataset [7] is limited to max 10 people, KAIST dataset 

provides a mean number of objects of 0.90 per image [41], CTIR dataset provides 

a mean number of objects of 2.59 per image [16], and FLIR-ADAS dataset a 

mean number of objects per image of 2.73 [25].  

Critical tourism conditions may present much higher numbers and, thus the 

counting solutions have to work with relevant precision in the range from 0 to 70. 

For example, in Piazza della Signoria square in Florence, Italy, we manually 

counted hundreds of people in total and 70 under the view of each single camera 

are a symptom of a crowded condition. While in the views reported in Figure 1, 

they are the most relevant portions of the square, we may have reasonably up to 

70 people. Over that number of people, a critical condition may be warned. The 
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squares need to be physically monitored for security reasons and for cleaning and 

assistance. In the specific case, the inception of large amount of people in the 

square may unexpectedly arrive from the two main directions observed (coming 

from Ponte Vecchio and Uffizi, respectively, for example). In Figure 2, the 

images of CAM51 and CAM52 labelled in Figure 1 are reported.  

 

Fig. 1 Cameras’ views of Piazza Della Signoria, Florence, Italy. 

   (a) 

(b) 

Fig. 2 Views of CAM51 (a) and CAM52 (b) Piazza Della Signoria, Florence, Italy.  
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The main goals have been to produce a solution which can: (i) perform people 

detection and counting with high precision in the range from 0 to 70, (ii) be 

applied to different thermal cameras without retraining (which would increase the 

cost too much), (iii) be adopted in real time on RTSP stream as well as directly on 

board of the camera (to produce detections and counting, providing the bounding 

box via MQTT messages).  

According to the above requirements, the first experiment has been to assess the 

best solution from the state-of-the-art on CAM51 and CAM52 scenarios and data. 

To this end, we taken into account  

(i) YOLOv5 based solution pre-trained with COCO dataset and fine-tuned 

with LLVIP dataset has been implemented as in [7]. The implementation 

has been based on the Ultralytics code [20] using the architecture 

YOLOv5s to compromise detection capability speed of execution and 

model weight in view of being installed on edge devices. 

(ii) Faster R-CNN pre-trained with ImageNet dataset [42] and fine-tuned with 

LLVIP dataset performed by us and presented in this paper (named 

FRCNN-LLVIP-Model). The Faster-R-CNN (in the following FRCNN) 

has been realized using the Detectron2 framework [43] specifically using 

the architecture X101-FPN.  

Therefore, the resulting models (named as YOLO-LLVIP-Model and FRCNN-

LLVIP-Model, respectively) have been assessed with respect to the original 

LLVIP validation dataset and also with respect to test datasets created from the 

videos acquired from CAM51 and CAM52. The results are reported in Table II. 

Please note that all the datasets adopted in this first case presented maximum 10 

people (since the LLVIP provides images with maximum 20 people a selection 

has been performed for the comparison) (a similar limitation for registered on 

COCO and ImageNet). More details on the used standard metrics for the 

comparison are reported in Section IV.A. From this early analysis, it resulted 

evident the reduction of performance of YOLO-LLVIP-Model and FRCNN-

LLVIP-Model in terms of mAP_0.5, and precision, passing from LLVIP 
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validation with respect to the two real cases of CAM51 and CAM52 (see Figure 

1).  

 

Trained Model and datasets precison recall mAP_0.5 mAP_0.5: 0.95 

YOLO-

LLVIP 

LLVIP Validation 

<=10 

0.953 0.930 0.959 0.698 

FRCNN--

LLVIP 

LLVIP Validation 

<=10 

0.971 0.944 0.964 0.606 

      

 

YOLO-

LLVIP 

CAM51 Test <=10 0.931 0.870 0.908 0.471 

CAM52 Test <=10 0.944 0.515 0.737 0.383 

 

FRCNN--

LLVIP 

 

CAM51 Test <=10 0.841 0.751 0.775 0.338 

CAM52 Test <=10 0.858 0.626 0.701 0.323 

Table II People detection results on YOLO-LLVIP-Model, FRCNN-LLVIP-Model 

All solutions at the state-of-the-art are providing results for less than 10 people 

[7], [8], [9], [15], and this is also evident from the data sets as described at the 

beginning of Section III. Therefore, a second experiment was conducted to assess 

the quality of the above presented solutions (pretrained and fine-tuned with the 

same LLVIP) as a function of the people which are present in the image using 

CAM51 and CAM52 test data sets. The results for the second experiment are 

reported in Table III. Thus, we observed that, when the number of people is 

greater than 10, growing and relevant errors are experienced. Both YOLO-

LLVIP-Model and FRCNN-LLVIP-Model provide a worst mAP_0.5 when the 

number of people per image is greater than 50 wrt to <=10 case. Both models 

seem to work better for CAM51, rather than for CAM52 test set (see their 

description in the following). 

YOLO-LLVIP-Model 

Test dataset 

precison recall mAP_0.5 mAP_0.5: 0.95 

CAM51 

<=10 0.931 0.870 0.908 0.471 

>10&<=25 0.933 0.731 0.842 0.439 

>25&<=50 0.887 0.492 0.706 0.387 

>50&<=75 0.836 0.348 0.602 0.299 

> 75&<=97 0.820 0.274 0.544 0.230 

CAM52 
<=10 0.944 0.515 0.737 0.383 

>10&<=25 0.771 0.255 0.508 0.264 



 12 

>25&<=50 0.501 0.099 0.291 0.114 

>50&<=75 0.388 0.061 0.201 0.075 

> 75&<=79 0.296 0.031 0.158 0.048 

FRCNN-LLVIP-Model 

Test dataset 

precison recall mAP_0.5 mAP_0.5: 0.95 

CAM51 

<=10 0.841 0.751 0.775 0.338 

>10&<=25 0.905 0.789 0.821 0.389 

>25&<=50 0.884 0.642 0.696 0.308 

>50&<=75 0.854 0.534 0.593 0.236 

> 75&<=97 0.882 0.504 0.601 0.239 

CAM52 

<=10 0.858 0.626 0.701 0.323 

>10&<=25 0.698 0.414 0.429 0.165 

>25&<=50 0.462 0.192 0.182 0.053 

>50&<=75 0.374 0.114 0.116 0.031 

> 75&<=79 0.285 0.068 0.614 0.014 

Table III People detection results on YOLO-LLVIP-Model, FRCNN-LLVIP-Model 

 

The above-presented experiments demonstrated the limited capability of YOLO-

LLVIP-Model and FRCNN-LLVIP-Model in addressing the problems of people 

detection (classification) and counting with the aim of providing: 

• high precision for detection and counting in crowded conditions;  

• high flexibility in terms of counting range in which a reasonable precision 

can be obtained; 

• high flexibility in terms of counting precision using different thermal 

cameras from telephoto to wide-angle without retraining the model. 

For this reason, the approach of transfer learning was not viable to solve the 

problem and we decided to perform an additional fine tuning and training. Thus, 

to create a new data set for training and validation to overcome the problems 

detected and verified as described above.  
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II.A – Flexible people detection dataset of thermal images 

In order to generate data for training, a number of video sequences have been 

taken and manually classified. For the labelling, the Yolo_Label tool [44] has 

been used. It creates a .txt file for each image containing for each object in the 

image:  <object-class><x_center> <y_center> <width> <height>. The <object-

class> for the object detection/ classification has been assigned as follows: 0-

green for people, 1-blue for bikes/motorbikes and 2-red for strollers/carts (please 

note that the sum of these classes is the number of counted people in the image). 

See the example of Figure 3 for CAM51, in which 71 people, 1 bike and 2 

strollers have been labeled. Regarding CAM52, the frames were rectified by 

removing the wide-angle lens distortion. Subsequently, the images were labelled. 

 

 

Fig 3. Example of Object Detection, CAM51. 

 

In order to build the thermal image training data sets, and to evaluate the machine 

learning models and solutions as a function of the number of detected/classified 

people, the images have been labeled according to the number of people and their 

classification. Typically, the images of the data set have been also grouped 

according to the number of people included: <=10, >10 and <=25, >25 and <=50, 

>50 and <=75, >75. The maximum number of people in the scene is for CAM51, 

97 people and 79 for CAM52. Table IV shows the number of images and the 

number of people, bikes and strollers within the different datasets. All the images 
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are positive examples, in the sense that all images contain at least one object. In 

addition, to train the multi-category detection "person", "bike" and "stroller" a 

minimum of 7% of images containing each category were selected. Regarding the 

test datasets the images from the two thermal cameras have been labeled 

considering only the people in the scenes, for the cases where on the bike there 

was a person it was considered and also on the strollers. 

  

Thermal Dataset #  images  # objects with 

class specification 

# tot 

labels 

LLVIP training 12025 people 33648 33648 

LLVIP validation 3463 people 7931 7931 

CAM51 training 178 people 5210, strollers 78, 

bikes 115 

5403 

CAM51 validation 44 people 1175, strollers 13, 

bikes 35 

1223 

CAM52 training 175 people 4472, strollers 59, 

bikes 39 

4750 

CAM52 validation 44 people 1357, strollers 13, 

bikes 20 

1390 

CAM51 

 

test <=10 25 People, strollers, bikes 112 

test >10&<=25 25 People, strollers, bikes 474 

test  >25&<=50 25 People, strollers, bikes 957 

test  >50&<=75 25 People, strollers, bikes 1649 

test > 75 &<=97 25 People, strollers, bikes 2057 

CAM52 

test <=10 25 People, strollers, bikes 130 

test  >10&<=25 25 People, strollers, bikes 329 

test  >25&<=50 25 People, strollers, bikes 780 

test  >50&<=75 25 People, strollers, bikes 1348 

test > 75 &<=79 25 People, strollers, bikes 1911 

Table IV Dataset Description 

II.B Metrics 

In order to evaluate the results of the trained models, the following metrics have 

been used. IoU metric in Object Detection evaluates the degree of overlap 

between the ground truth (gt) and prediction (pd): 

 

Fixed  IoU threshold and defining 

• TP = True Positive 

• FP = False Positive  
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• FN = False Negative  

• TN= True Negative  

Other metrics are: 

•  

•  

• AP is the area under precision-recall curve  evaluated by using  IoU 

threshold. 

 

• mAP, mean Average Precision is the average of AP values over all classes. 

 

 

III. Enforcing flexibility in the model 

This section reports the process to realize a model addressing the problems of 

people detection (classification) and counting providing requirements of: 

R1) high precision for detection to identify people, bikes/motorbikes, 

strollers/carts and counting in crowded conditions; 

R2) high flexibility in terms of counting range in which a relevant precision can 

be obtained; 

R3) high flexibility in terms of counting precision using different thermal cameras 

from telephoto to wide-angle without retraining the model. 

R4) real time computation capabilities on stream and on board of TV Cameras. 

 

Based on the results of the related works in the state-of-the-art the single-stage 

object detection YOLO architecture has been compared to the multi-stage object 

detection Faster-R-CNN with FPN architecture both in detection capability and 

execution speed. 

III.A. Case(i) for multiclass object detection 

In this Case (i), the selected architectures YOLO pretrained on COCO dataset and 

FRCNN pretrained on ImageNet dataset [42], have been fine-tuned for the 

problem of multiclass object detection of people, bikes and stroller using the 
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training datasets from CAM51 and CAM52 with the aim of choosing the best 

solution for the requirements R1, R2, R3.  

Starting from the YOLO architecture pretrained with COCO [7] has been fine-

tuned with the training sets of CAM51 and CAM52 (see Table IV), respectively, 

thus obtaining the so called: YOLO-CAM51-Model and YOLO-CAM52-Model. 

The training processes used an early stopping with patience set to 100 on the 

mAP_0.5 of the validation set.  

Also, the FASTER-R-CNN architecture pretrained with ImageNet [42] has been 

fine-tuned with the training sets of CAM51 and CAM52 (see Table IV), 

respectively, thus obtaining the so called: FRCNN-CAM51-Model and FRCNN-

CAM52-Model. The training processes used an early stopping with patience set to 

500 on the mAP_0.5 of the validation set. 

The results in terms of precision, recall, mAP_0.5, mAP_0.5:0.95 are reported in 

Table V. The results show that the models based on YOLO achieved better results 

compared to those based on FRCNN and overall, the validation dataset CAM51 

achieved better performance compared to the CAM52 in both the architectures 

tested. Please note that the CAM51 and CAM52 validation data sets include 

images for multiclass detection having a number of people in most cases higher 

than 10. 

 

model vs validation set precision recall mAP_0.5 mAP_0.5:0.95 

YOLO-CAM51-Model vs CAM51 

Validation set 

0.988 0.960 0.975 0.605 

YOLO-CAM52-Model vs CAM52 

validation set 

0.925 0.879 0.865 0.398 

FRCNN-CAM51- Model vs CAM51 

validation set 

0,7872 0,7769 0,7438 0,3367 

FRCNN-CAM52-Model vs CAM52 

validation set 

0,8113 0,8078 0.7794 0,3650 

Table V Multiclass object detection results in validation – YOLO vs FRCNN models. In bold the 

best results for each specific case. 

 

To better understand the results of the assessed models the confusion matrixes for 

the interested classes persons, bikes and strollers (and background) can be 

analyzed. In Figures 4 and 5, the confusion matrixes for the validations of 

CAM51/CAM52, for YOLO and FRCNN are reported, respectively. In both 
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validation cases, especially for the True Positives on the class Person, the YOLO 

based model architectures outperformed the FRCNN based models. 

 

(a) 

 (b) 

Fig. 4. Confusion Matrixes on the validation dataset of CAM51: (a) YOLO-CAM51-MODEL, 

(b) FRCNN-CAM51-MODEL 

 



 18 

(a) 

    (b) 

Fig 5.  confusion Matrixes on the validation dataset of CAM52: (a) YOLO-CAM52-MODEL, 

(b) FRCNN-CAM52-MODEL 

III.B. Case (i) for MonoClass object detection 

One of the key requirements of which this work is focused, R1, was to understand 

the performance of the developed models varying the number of people in the 

scenes. For this purpose, the models YOLO-CAM51-model, YOLO-CAM52-

model, FRCNN-CAM51-Model, FRCNN-CAM52-Model have been compared to 

assess the precision, as a function of a number of people detected with respect to 

the test sets reported in Table IV for CAM51/52.  

 

The results are reported in Table VI for the models fine-tuned with the CAM51 

training set, and in Table VII, for the models developed with the CAM52training 

set. As a result, the 4 models fine-tuned for the specific cameras achieve better 

results compared to those obtained by the YOLO-LLVIP-Model as reported in 
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Table III, as a function of the number of people in the scene. Please note that, the 

LLVIP dataset (used in models of Table III) contains images with a few people 

(<=10) and in this category LLVIP-Model achieved for the CAM51 test <=10 

dataset an mAP_0.5 of 0.908 (see Table III) compared wrt the 0.970 of YOLO-

CAM51-Model and 0.9232 for the FRCNN-CAM51-Model. Regarding the 

CAM52 test set <=10 the YOLO-LLVIP-Model achieved a mAP_0.5 of 0.737 

compared to the 0.975 of FRCNN-CAM52-Model and 0.962 of YOLO-CAM52-

Model. 

 

When considering scenes with more than 10 people (also in Tables VI and VII) 

the performances the new fine-tuned models outperform the YOLO-LLVIP-

Model of Table III. Therefore, the relevant level of flexibility has been enforced 

into the fine-tuned models with respect to the formed YOLO-LLVIP-Model and 

FRCNN-LLVIP-Model, respectively. In more details, according to Table VI, the 

most suitable architecture for flexible detection capabilities in terms of counting 

range for the CAM51 test sets is the YOLO-CAM51-Model. On the other hand, 

for CAM52 test set none of the model identified is capable to overcome the other 

in all cases. YOLO-CAM52-Model resulted to be better on 3 of 5 ranges of 

people counts, and FRCNN-CAM52-Model. As a final consideration, the YOLO-

CAM51-Model resulted to be the best compromise resulting the best model on 7 

over 10 cases of both CAM51 and CAM52 test sets.  

The mean value of mAP_0.5 over all cases for YOLO-CAM51-Model resulted to 

be 0,9271, while for FRCNN-CAM51-Model we recorded 0,8882.  

 

 

 Test dataset precision recall mAP_0.5 mAP_0.5: 0.95 

YOLO-

CAM51-

MODEL 

C

A

M

51 

<=10 0.972 0.938 0.970 0.891 

>10&<=25 0.969 0.932 0.964 0.881 

>25&<=50 0.961 0.934 0.963 0.863 

>50&<=75 0.966 0.885 0.939 0.832 

> 75&<=97 0.971 0.861 0.927 0.819 

C

A

M

52 

<=10 0.984 0.923 0.961 0.682 

>10&<=25 0.946 0.906 0.950 0.665 

>25&<=50 0.915 0.847 0.909 0.596 

>50&<=75 0.868 0.868 0.890 0.565 

> 75&<=79 0.858 0.706 0.798 0.462 

 Mean   0,9271  

FRCNN- C <=10 0,933 0,883 0,923 0,619 
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CAM51-

MODEL 

A

M

51 

>10&<=25 0,940 0,922 0,958 0,628 

>25&<=50 0,929 0,892 0,914 0,576 

>50&<=75 0,898 0,780 0,861 0,484 

> 75&<=97 0,904 0,772 0,814 0,430 

C

A

M

52 

<=10 0,968 0,961 0,967 0,574 

>10&<=25 0,966 0,943 0,952 0,558 

>25&<=50 0,914 0,876 0,896 0,509 

>50&<=75 0,909 0,835 0,881 0,502 

> 75&<=79 0,885 0,712 0,716 0,377 

 mean   0,8882  

Table VI People detection results for YOLO-CAM51-MODEL and FRCNN-CAM51- Model 

 

 Test dataset precision recall mAP_0.5 mAP_0.5: 

0.95 

YOLO-

CAM52-

MODEL 

C

A

M

51 

<=10 0.988 0.878 0.931 0.667 

>10&<=25 0.966 0.831 0.907 0.664 

>25&<=50 0.960 0.703 0.840 0.595 

>50&<=75 0.957 0.610 0.789 0.517 

> 75&<=97 0.951 0.579 0.770 0.466 

C

A

M

52 

<=10 0.976 0.938 0.962 0.853 

>10&<=25 0.977 0.924 0.958 0.821 

>25&<=50 0.975 0.841 0.914 0.781 

>50&<=75 0.976 0.770 0.879 0.744 

> 75&<=79 0.963 0.601 0.786 0.656 

 mean   0,8736  

FRCNN-

CAM52-

MODEL 

C

A

M

51 

<=10 0,917 0,893 0,920 0,536 

>10&<=25 0,880 0,874 0,944 0,627 

>25&<=50 0,871 0,778 0,817 0,403 

>50&<=75 0,834 0,644 0,645 0,272 

> 75&<=97 0,703 0,489 0,533 0,183 

C

A

M

52 

<=10 0,984 0,977 0,975 0,500 

>10&<=25 0,935 0,924 0,969 0,536 

>25&<=50 0,881 0,860 0,879 0,425 

>50&<=75 0,867 0,810 0,819 0,384 

> 75&<=79 0,884 0,653 0,688 0,317 

 mean   0,8189  

Table VII YOLO-CAM52MODEL and FRCNN-CAM52- Model 

 

Moreover, according to R4 we performed an assessment on the basis of the 

execution time (see Table VIII). The CPU computations have been performed on 

8 core XEON at 2.3 GHz, while the deep learning solution have been executed on 

GPU as NVIDIA Quadro GV100 with 32GByte Ram, which has 5120 CUDA 
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Cores, FP64 perf as 7.4 TFLOPS. The YOLO-CAM51-Model is capable of real-

time detections up to 112 frames per second using the GPU in the worst case 

evaluated (>75&<97 detection test set) compared to the 8 frames of the FRCNN-

CAM51-MODEL. 

 

Models assessment in execution CAM51:  <= 10 CAM51:  >75 & <= 97 

tot 25 

execution (s) 

Mean 1 

frame (s) 

tot 25 

execution (s) 

Mean 1 

frame (s) 

FRCNN-CAM51-MODEL 
CPU 41,5088 1,6603 42,9870 1,7194 

GPU 2,8147 0,1125 2,8459 0,1138 

YOLO-CAM51-MODEL 
CPU 0,9264 0,0371 0,9676 0,0387 

GPU 0,2084 0,0083 0,2225 0,0089 

Table VIII Performance analysis 

 

According to the above reported requirements R1-R4 the most suitable 

architecture resulted to be YOLO with its derived models for fine tuning. For this 

reason, they have been further developed by combining the training sets available 

and tested with also a bottom-up layer wise domain adaptation as reported in the 

following section.  

III.C. Case (ii) for MonoClass object detection 

With the aim of adding mode flexibility to the model, according to the above 

results, two new approaches have been produced: Case (ii)a, and Case (ii)b.  

The Case (ii)a has been obtained by starting from YOLO-Model and performing a 

fine-tuning using both CAM51-training set and CAM52-training set (see Table 

IV). The results are reported in Table IX in which the produced YOLO-CAM51-

52-Model has been assessed against the test datasets of both cameras. According 

to the mAP the combination of training sets did not improve the results obtained 

for CAM51, while it improved those resulted for CAM52. Especially the mAP_05 

improved for all the ranges   except the range of (50-75] people with a mAP_0.5 

of 0.878 compared with the CAM52 model of 0.879.  The mean value of mAP_05 

over all ranges resulted to be 0.91. 

 

Test dataset precision recall mAP_0.5 mAP_0.5:0.95 

CAM51 

<=10 0.916 0.786 0.876 0.702 

>10&<=25 0.934 0.907 0.946 0.745 

>25&<=50 0.945 0.875 0.929 0.719 

>50&<=75 0.949 0.816 0.897 0.674 
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> 75&<=97 0.937 0.824 0.898 0.660 

CAM52 

<=10 0.984 0.977 0.985 0.696 

>10&<=25 0.975 0.954 0.971 0.653 

>25&<=50 0.909 0.874 0.915 0.608 

>50&<=75 0.885 0.843 0.878 0.560 

> 75&<=79 0.891 0.692 0.805 0.495 

 mean   0,910  

Table IX Case (II)A: People detection results on YOLO-CAM51-52- Model 

 

The Case (ii)b has been created by starting from YOLO-Model and performing a 

fine-tuning by using three training sets: CAM51-Training, CAM52-Training, and 

LLVIP-Training (see Table V). The results are reported in Table X in which the 

produced YOLO-CAM51-52-LLVIP-Model has been assessed against the test 

datasets for each class of people counting. As a result, the YOLO-CAM51-52-

LLVIP-Model provided a valid solution to the problem of people detection and 

achieved comparable results as the specific model trained on the LLVIP 

achieving/confirming a mAP_0.5 of 0.96, a non-reduction of performance on the 

LLVIP case. The mean value of mAP_0.5 on all cases resulted to be 0.9278, while 

it has been of 0,9247 taking into account only the results of test set coming from 

the CAM51/52.  

 

Test dataset precision recall mAP_0.5 mAP_0.05:0.95 

LLVIP <=10 0.959 0.928 0.959 0.690 

CAM51 

<=10 0.944 0.902 0.964 0.742 

>10&<=25 0.923 0.956 0.969 0.751 

>25&<=50 0.927 0.907 0.943 0.706 

>50&<=75 0.926 0.846 0.910 0.655 

> 75&<=97 0.918 0.864 0.915 0.626 

CAM52 

<=10 0.984 0.954 0.974 0.686 

>10&<=25 0.99 0.927 0.963 0.687 

>25&<=50 0.946 0.852 0.910 0.628 

>50&<=75 0.903 0.846 0.895 0.588 

> 75&<=79 0.906 0.678 0.804 0.515 

 Mean of cam51/51   0,9247  

 Mean on all   0.9278  

Table X Case (II)b: People detection results on YOLO-CAM51-52-LLVIP- Model 

 

On the test datasets of CAM51 and CAM52 the results are comparable and, in 

some cases, also better than the specific model as in the case with <=10 people on 

CAM52 the combined model achieves a mAP_0.5 of 0.974 and the specific one 
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0.962. The results with a crowded situation in our case study are also valid and 

especially when there are more than 75 people in Piazza Della Signoria the 

combined model achieves better mAP_0.5 scores for the CAM52 (with a 

mAP_0.5 of 0.804 with respect to the 0.786 of the specific model). Thus, some 

improvements in the flexibility among different cameras have been obtained with 

results of Table X, and at the expense of the best results obtained for CAM51 

case, Table VI.  

IV. Bottom-up layerwise domain adaptation 

With the aim of providing a solution that can preserve both flexibility in terms of 

range of people and camera kinds, an additional solution has been proposed. Kiew 

et al., in [45] performed an extensive assessment comparing top-down and 

bottom-up domain adaptation strategies on thermal images and proposed a 

bottom-up layer wise domain adaptation on YOLOv3 architecture, outperforming 

the best performing single-modality pedestrian detection results on the KAIST 

and the FLIR-ADAS dataset.  

In [45], domain adaptation attempted to exploit learned knowledge from a source 

domain (RGB images) in a new target related domain (thermal images). In our 

case, we performed fine-tuning process starting from a pre-trained model on 

COCO dataset (RGB images) using thermal images. Therefore, our approach of 

fine-tuning is a top-down domain adaptation on the thermal domain via back-

propagation where the supervision signal comes from the loss at the top of the 

network down to the new input distribution.  

On the other hand, the bottom-up layerwise domain adaptation is based on the 

hypothesis that fine-tuning slowly from the bottom of the network should preserve 

more knowledge from the original domain. 

Differently from [45], we applied the approach bottom-up layerwise domain 

adaptation fully on thermal data and on the YOLOv5 architecture, in which it has 

been realized considering the epoch i during the training process, freezing the 

layers 3i+1:N, where N is the total number of layers of the considered architecture 

(for YOLOv5s is 177). Therefore, at the starting epochs of the training process, 

the base layers are trainable, and the other upper part of the network is frozen. 

After every epoch, the 3i+1 layers are unfrozen until the entire network is fine-
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tuned. We applied this process on the YOLOv5 small architecture, which is made 

up of three main components: 

• The model backbone: CSPDarknet [46] that extracts features from the 

input image and is composed by Simplified Cross Stage Partial Bottleneck 

blocks C3 and a cascaded faster version of Spatial Pyramid Pooling Layer 

SPPF [47]. 

• The model neck: PANet [48] that elaborates feature pyramids to generalize 

objects in different scales.  

• The model head: YOLO-head that performs the final detection. 

The YOLOv5s is made up of 27 blocks with a total of 177 (N) layers and a total 

of 7.2M parameters. The YOLOv5s architecture is reported in Figure 6 and the 

bottom-up layerwise process is summarized graphically in Figure 7. 

 

 

Fig 6. Yolov5s architecture. 

 

We applied the bottom-up layerwise domain adaptation starting from the 

YOLOv5s pre-trained on COCO dataset first using only the single camera 

datasets, then using the combination of both camera datasets but the results did 

not improve the top-down fine-tuning reported in Section IV. Using the bottom-up 

layerwise domain adaptation on the union of LLVIP, CAM51 and CAM52 

training datasets we improved with respect of the top-down strategy. The results 
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for the multi-class object detection on the validation dataset (LLVIP + CAM51 + 

CAM52) are reported in Table XI, and the resulting bottom-up model called 

YOLO-CAM51-52-LLVIP-BLDA-Model. This model achieves a mAP_0.5 on 

the validation dataset made up of the union of LLVIP CAM51 CAM52 validation 

datasets of 0.966. 

 

 

Fig 7. Bottom-up layerwise domain adaptation. 

 

 

model precision recall mAP_0.5 mAP_0.5:0.95 

YOLO-CAM51-52-LLVIP 0.929 0.942 0.963 0.582 

YOLO-CAM51-52-LLVIP-BLDA 0.943 0.930 0.966 0.563 

Table XI Comparison of Multiclass object detection results in YOLO-CAM51-52-LLVIP-Model, 

and YOLO-CAM51-52-LLVIP-BLDA-Model 

 

To compare these results with respect to those of the Multiclass Object Detection 

reported in Section IV, the YOLO-CAM51-52-LLVIP-BLDA-Model has been 
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validated on the union of the validation datasets CAM51 and CAM52. The results 

in terms of confusion matrix are reported in Figure 8. 

 

 

Fig 8. Confusion Matrix validation YOLO-CAM51-52-LLVIP-BLDA-Model 

 

The YOLO-CAM51-52-LLVIP-BLDA-Model for the Multiclass Object Detection 

task achieves for the person class a percentage of True Positive detected objects of 

0.93, for the bike class 0.89 and detected all the strollers presented in the 

validation sets. Comparing these results using the specifics CAM51-Model and 

CAM52-Model on the respective validation datasets reported in Section IV, the 

percentage of True Positive detected objects for the person class improves with 

respect to the 0,895 of the specific models, for the stroller class achieves the same 

totality of detection on the validation datasets, and for the bike class achieves a 

slight less value of 0.89 compared to the 0.895 of using the specific camera 

models. So based on these results this one bottom-up model provides high 

flexibility for detection of people, bikes, strollers on different image types from 

telephoto to wide-angle cameras. 

 

When considering the analysis on the datasets with number of people in the 

image, the results in terms of precision, recall, mAP_0.5, mAP_0.5:0.95 are 

reported in Table XII. Considering the mAP_0.5 on the LLVIP validation dataset 

YOLO-CAM51-52-LLVIP-BLDA-Model achieves a value of 0.959 confirming 

the results of the YOLO-LLVIP-Model. When considering the test datasets of 
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CAM51 in the categories with number of people <=10 and >10&<=25 the YOLO-

CAM51-52-LLVIP-BLDA-Model achieves the best results over all the models 

proposed with respectively mAP_0.5 values of 0.979 and 0.974. Regarding the 

test datasets of CAM52 in all the categories from people <=10 up to 79 this model 

achieves the best results over all the models considered in this work. 

 

Test dataset precison recall mAP_0.5 mAP_0.05: 0.95 

LLVIP <=10 0.960 0.917       0.959 0.683 

CAM 

51 

<=10 0.881 0.991 0.979 0.768 

>10&<=25 0.957        0.930       0.974       0.757 

>25&<=50 0.915        0.920      0.956       0.714 

>50&<=75 0.930       0.824       0.916       0.636 

> 75&<=97 0.892       0.849       0.923       0.603 

CAM 

52 

<=10 0.992       0.977       0.993       0.682 

>10&<=25 0.964 0.966        0.980 0.670 

>25&<=50 0.950       0.865        0.950       0.621 

>50&<=75 0.884       0.877       0.921       0.567 

> 75&<=79 0.879 0.754 0.851 0.493 

 Mean of cam51/52   0.9443  

 Mean on all   0.9456  

Table XII People detection results on YOLO-CAM51-52-LLVIP-BLDA-Model. In bold the best 

results wrt Table IX of CAM51-52-LLVIP-Model 

 

Therefore, on the basis of these results, the YOLO-CAM51-52-LLVIP-BLDA-

Model provides better results with respect to the YOLO-CAM51-52-LLVIP-

Model of Table XII, thus providing high flexibility with respect to the different 

number of people in the scenes, and also at the change of the camera resolution 

and lenses. The mean value of mAP_0.5 on all cases resulted to be 0.9456, while 

it has been of 0,9443 taking into account only the results of test set coming form 

the CAM51/52.  

V. Deployment architecture 

In compliance with GDPR rules, the system uses two thermal cameras CAM51 

(which is an AXIS Q1951-E), and CAM52 (AXIS Q1952-E). The Q1951-E has a 

telephoto 35mm camera lens with a horizontal field of view of 10.5° and F1.14 

with 768x576 pixels images. The Q1952-E has a wide-angle 10mm camera lens 

with a horizontal field of view of 63° and F1.17 with 640x480 pixels images but it 

has been positioned vertically. In order to process the images of the Q1952-E has 
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been applied a wide-angle correction using the undistortImage function of the 

Fisheye camera model of the OpenCV library [49]. The deployment of the 

solution can be performed in two manners, as reported in Figure 9.  

 

 

Fig 9. System Architecture for the two modalities of deployment: above on board at the TV CAM, 

below on an industrial PC connected to the camera via RTSP. Combinations of these cases are also 

viable. 

 

Firstly, the AXIS cameras are ARM7 architecture for which we developed an 

Application Plugin in C++ to execute the trained models. Therefore, in this case, 

we can state that the model execution is performed on Edge into the Application 

Plugin. The Application Plugin (see Figure 10) can show the results (image and 

related bounding boxes, and data below the image with the bounding box and the 

classification) on the web interface of the camera and produce MQTT messages 

with bounding box of detected people and their classifications. The MQTT 

messages can be sent outside to some MQTT broker as well on local Node-RED 

(with an internal Aedes MQTT broker) installed in the camera, on which 

Snap4City Library can be also installed to send data in protected manner to some 

server and create dashboards. In addition, via Node-RED it is possible to create 

some on CAM dashboard or collect data coming from multiple cameras to 

perform data aggregation, reasoning and providing higher level results to be sent 

on cloud via MQTT or other protocol.  
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The second possibility is based on a process in Python that receives the RTSP 

stream from one camera, executes the model for people detection, and save the 

detected bounding boxes directly on some local database (eventually it could even 

send the information via some protocol or rest Call). The execution is performed 

on Python program executing the training model on an NVIDIA T1000 4gb GPU. 

In this case, the model execution can process 8 frames per second, which is the 

number of frames produced by the thermal camera. On this appliance (industrial 

PC), a NODE-RED can be installed to get the data from the database and send 

them to Snap4City framework infrastructure via MQTT or NGSI V2 messages. 

 

 

Fig 10. Results Page of the Axis native App. 

 

In both cases, the data arrive on Snap4City, on which a number of IoT Devices 

have been used to receive data and visualize results in dashboards in Real-Time. 

Thus, Snap4City dashboards have been used to show the results as in Figure 11, 

which reports the trends of the number of people for a week for both cameras, and 

on which the drill down on time trend can be performed.  
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Fig 11. Monitoring Dashboard of people counting in Piazza Della Signoria, Florence 

 

V.A. Edge-device execution performance analysis 

Regarding the Application Plugin installed on the CAM51 the execution time has 

been assessed and tuned. In fact, the execution time also depends on the number 

of people detected. In Figure 12, the execution time as a function of the number of 

bounding boxes is reported. The analysis has been performed by processing the 

image data acquired from the 14/07/2022 to 19/07/2022 when the interval of 

boxes/people detected has been from 0 to 60. Based on these execution times 

starting from the base scenario (0 boxes) with an execution time of 9.174 seconds, 

the time increment for detecting a box is of about 0.077 seconds.  
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Fig 12. Mean Execution time based on the number of boxes detected on the native app installed on 

CAM51. 

6. Conclusions 

An important role for Smart Cities is played by Tourism management applications 

especially to study solutions for the quality of experience of tourists in crowded 

sites. In this work, we proposed the use of thermal cameras which are not invasive 

and respect the privacy in compliance with GDPR. In this paper, it has been 

proposed an approach that starts from the elaboration of the videos using state-of-

the-art Computer Vision Algorithms for multiclass object detection of people, 

bikes and strollers, and uses the results to create a monitoring dashboard. For the 

multiclass object detection task, YOLO has been used which performs single-shot 

object detection providing at the same time low computational time performances 

and good detection accuracy over all the considered classes. YOLO has been 

compared with and Faster-R-CNN and both pretrained and then fine-tuned with 

LLVIP with the aim of obtaining good flexibility of people detection in a range of 

people numbers. Since the results were not satisfactory, specific training sets have 

been produced for fine tuning obtaining betters results for YOLO wrt Faster-R-

CNN. We investigated a solution that could be flexible for cameras with different 

lenses from wide-angle to telephoto, taking also into account the number of 

objects in the scenes. We tested and compared a set of tuning approaches for 

improving the precision and flexibility of the previous solutions at the state-of-

the-art. To this end, we explored both top-down and bottom-up training adaptation 
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approaches, demonstrating that the bottom-up approach can provide the best 

results according to the above-mentioned objectives of performance and 

flexibility. Tuning the YOLOv5 architecture based on a bottom-up layerwise 

domain adaptation responded to the need for low computational time while 

achieving a mean mAP_0.5 on the object of the scene on the test datasets of 0.986 

for scenarios with less than 10 objects, and 0.9456 with mixed scenes with up to 

97 objects (see Table XII). Moreover, the solution has been tested in two possible 

deployment configurations: (i) an industrial PC with GPU that could provide 

Real-Time processing results and, (ii) a direct installation on the thermal camera 

(that is on edge) that can elaborate in the worst condition 2 frames per minute. 

The solution has been massively tested on Piazza Della Signoria, Florence, Italy, 

sending data to Snap4City platform and Dashboards. 
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