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Chapter 1

Introduction and structure of the thesis

Let G be a finite group, F a field and n a natural number. A representation of G is an
homomorphism p : G — GL,(F) from G to the group GL,,(F) of invertible linear maps over an
F-vector space of dimension n. Such an homomorphism transfers the structure of G to a group
of matrices, which can be investigated using linear algebra tools.

The study of the properties of a finite group can be quite challenging, but it can be simplified
if we have more manageable instruments. This is the purpose of defining representations.

A representation of a finite group G defines a module for the group algebra FG. Actually,
there is a one-to-one correspondence between representations and modules, and it is equivalent
studying ones rather than the others. Dealing with modules is expecially useful when the field
F has positive characteristic. Indeed, basic instruments of ring theory are easier to handle than
modular linear algebra.

In the case of F being the field of complex numbers C, instead, we can associate to a repre-
sentation p of G its ordinary character. This is defined as the map from G to C that maps an
element g of G to the trace of the matrix p(g). Hence the simplification is clear: we are dealing
with maps G — C, so we do not even need the linear algebra.

A character is irreducible if it comes from a representation (or a module) that is the simplest
we can build. The idea is that every character is made by combination of smaller pieces, which
are the irreducible character.

We refer to Chapter 2 for a formal definition, but to be more precise we can say that every
ordinary character of a finite group can be uniquely expressed as a sum of irreducible charac-
ters. This is a consequence of Maschke’s theorem (Theorem 2.1.2). Hence we can restrict our
investigation to the set of all irreducible characters of G, denoted by Irr(G).

One of the main reasons for studying characters is that many structural properties of a group
can be stated in terms of its characters. For instance, we know that a finite group is abelian if
and only if every irreducible character is linear (i.e. those of degree one). Another example is
the It6-Michler theorem [40, 58|. This asserts that a Sylow p-subgroup P of a finite group G
is abelian and normal in G if, and only if, the character degree x(1) is coprime to p for every
irreducible character x € Irr(G). We refer the reader to [37] for an extensive dissertation on the
topic and many other examples.

We remark that sometimes properties that can be inferred from characters can be proved
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using classical group theory. Usually, however, a character theory proof uses clearer and more
direct arguments.

We are mainly interested in this thesis in the representation theory of symmetric groups.

Let n be a natural number. The symmetric group, denoted &,, is the group of permutations
of n elements. Symmetric groups appear in many branches of mathematics and are central in
finite group theory. Cayley’s theorem is just one of many examples. It says that every finite
group can be embedded into &,, for an appropriate choice of the natural number n. Moreover,
the symmetric groups provide evidence for some important conjectures, as the Alperin Weight
conjecture and the McKay conjecture (see Section 3.2.1 below).

The representation theory of &, is studied through its relation with the partitions of n.
These are decreagsing sequences of natural numbers whose sum is n.

We can associate to each partition A of n an FS,-module S*. We call this module Specht
module and its construction is independent of the choice of the field F.

When F = C, the Specht modules form a complete set of non-isomorphic simple CS,,-
modules. Hence we can associate to each of them an ordinary irreducible character of the
symmetric group. Therefore we have a bijection from Irr(&,,) and the set of the partitions of n.
This correspondence allows us to explicitly compute, for instance, the degree of an irreducible
character or its restriction to smaller subgroups of &,. In Chapter 2, we describe in full details
some of these useful combinatorial tools.

In general, we can detect properties of a finite group using information about its ’local’
subgroups, such as the Sylow p-subgroups. This interplay was one of the key ingredient to
obtain the Classification of Finite Simple Groups and many other classical results. For instance,
the It6-Michler theorem mentioned above and the Brauer’s Height Zero conjecture. The latter
has been proved in [56] and it is an important example of the so-called local-global conjectures.
We refer the reader to [54] or [62] for detailed account.

In this thesis we focus on the relationship between the ordinary characters of the symmetric
groups and those of their Sylow p-subgroups.

Let G be a finite group and P be a Sylow p-subgroup of G. To link the two sets Irr(G) and
Irr(P), we want to describe the restriction of an irreducible character x of G to P. We denote
this restriction by le. The Sylow branching coefficient Zéf is the multiplicity of an irreducible
character ¢ of P as a constituent of le. Hence describing the restriction of a character to a
Sylow p-subgroup means computing all the Sylow branching coefficients.

In Chapter 3 we collect the results obtained in the study of Sylow branching coefficients,
with focus on the case of G being a symmetric group.

Let P, be a Sylow p-subgroup of the symmetric group &,. In [24] and |25] the authors
studied the linear constituents of the restriction Xan’ for x € Irr(&,,). Few results have been
obtained instead for the description of higher-degree constituents.

In Chapter 4 we study the set of all the irreducible characters of &,, which admit a con-
stituent of degree greater than one in their restriction to P,. More precisely, for every natural
number k we define the set

ij ={x € rr(&,,) | le admits an irreducible constituent of degree pk}.



The first main result of this thesis is:
We completely describe the set QF for every choice of n, k € N and an odd prime p.
We will see that QF has a regular structure given by the combinatorics of the partitions of n.

The situation for p = 2 is more complicated. Hence we need to focus our attention on the
irreducible characters labelled by the so-called hook partitions. The first result in Chapter 5 is:

We explicitly compute some specific Sylow branching coefficients
for hook partitions when p = 2.

After that, we study the set A¥ of all the hook characters of &,, which admit a constituent
of degree 2¥ in their restriction to a Sylow 2-subgroup. (So, A¥ is the intersection of QF and the
set of all irreducible characters of &,, labelled by a hook partition.)

The structure of A¥ is not as nice as the one of QF. However, another result of this chapter
is:

We describe the set AE for every choice of n, k € N and p = 2.

In Chapter 6 we turn to study the modular representation theory of symmetric groups. This
means that [ is a field of positive characteristic. As we already mentioned, in this setting we
investigate families of FG,-modules. For instance, one of these family is the one of the Specht
modules.

We start the chapter with a short survey on the wertices of indecomposable modules. These
are important invariants that help to understand the structure of the modules.

Then, considering some trivial source modules, we study Scott modules and Young modules.
The latter are the indecomposable summands of the so-called Young permutation modules. We
relate these two families of modules and we obtain the last main result of this thesis:

We determine which Young modules are isomorphic to a Scott module.






Chapter 2

Preliminaries

In this chapter we summarize some results that will be useful throught this thesis.

2.1 Basics on representation theory of finite groups

We suppose that the reader is familiar with some basic ring theory. If not, we refer to the first
chapters of [44] and [37] for a brief collection of the needed basics, but also for a more extended
dissertation about the representation theory that we are about to present.

Some definitions and results in this chapter could have been stated in a more general setting.
However the aim of this thesis is the study of finite groups, hence we specialize only in the case
of a group algebra.

Definition 2.1.1. Let F be a field and let G be a finite group. The vector space consisting
in the formal sums {}_ . a49 | ag € F} with the product of the group extended linearly is an
F-algebra. This is the group algebra of G over the field F, and it is denoted FG.

Note that G is an F-basis of FG.

An FG-module is a finite dimensional F-vector space M for which it is uniquely defined
FG x M — M that maps every (x,m) € FG x M to an element zm € M. Also the followings
hold for all x,y € FG, m,n € M and a € F:

x(m+n)=xzm+zn, (xr+y)m=axm+ym,

(zy)m = z(ym), (ax)m = a(zm)=z(am), 1lm =m.

The trivial FG-module is denoted by Fg or simply F. FG itself is an FG-module under
multiplication and it is called the regular module.

If M is an FG-module and N C M is an FG-invariant subspace, then N is a submodule of
M. Let M be a nonzero FG-module, then M is simple if its only submodules are 0 and M. M
is indecomposable if it cannot be written as a direct sum of two non-zero submodules.

Theorem 2.1.2 (Maschke’s theorem). Let G be a finite group and F be a field whose character-
istic does not divide the order of G. Then every FG-module decomposes in an essentially unique
way as the direct sum of its simple submodules.
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This applies in particular in characteristic zero, and it reduces representation theory to the
study of simple FG-modules. When this is not possible, we usually restrict to consider the
indecomposable modules.

Let M,(F) be the algebra of n x n matrices over the field F. A representation of FG is an
algebra homomorphism % : FG — M, (F). The integer n is the degree of Z.

Two representations Z, .7 of degree n are similar if there exists a nonsingular n X n matrix
P, such that Z(z) = P~1.%(z)P for all x € FG. Similarity is an equivalence relation among
representations.

Representations are a different ways of looking at modules. Indeed, there is a natural one-
to-one correspondence between isomorphism classes of FG-modules and similarity classes of
representations of FG. If a € FG and M is an FG-module, we let apy : M — M be the
M-endomorphism defined as m — am. Let M be an FG-module and choose an F-basis for M
such that R(a) is the matrix of ap; with respect to this basis, then R is a representation. If
instead R is a representation of degree n , let V be the n-dimensional row vector space over F.
Define av := R(a)v for every v € V,a € FG: this gives a structure of FG-module to V. Since a
module isomorphism corresponds to a nonsingular matrix for every chosen basis, then isomorphic
FG-modules correspond to similar representations.

If M is an FG-module and U C M is a proper non-zero submodule of M, choose a basis by
for U of dimension m and extend it to bps, a basis of M. Reorder by; so that the last m vectors
are by. Let Z be the representation of FG corresponding to M with respect to bys and let .7
be the representation of FG corresponding to U. Then, for a € FG,

#a=("" i)

We say that #Z is reducible if it can be represented in this form, it is irreducible otherwise.
Therefore irreducible representations correspond to simple modules.

Let GL(n,F) be the general linear group of nonsingular n x n matrices over the field F.

Definition 2.1.3. Let F be a field and G a group. Then an F-representation of G is a group
homomorphism R : G — GL(n,F) for some integer n.

A representation of FG determines an F-representation of G by restriction. Conversely, an
F-representation of G determines a representation of FG by linear extension.

Definition 2.1.4. Let R be an F-representation of G. Then the F-character x of G afforded by
R is the function given by x(g) = trR(g), where tr denotes the trace of a matrix.

Notice that characters are constant on the conjugacy classes of a group. Moreover, similar
representations afford equal character.

We say that a character is irreducible if it is afforded by an irreducible representations.

We want to remark the deep connections between modules, representations and characters:
isomorphism classes of FG-modules corresponds to similarity classes of representations, and they
corresponds to the same character. Also, if the starting module is simple, the representation and
the afforded character are irreducible.
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Ordinary representation theory

If F is the field of complex numbers C, a C-character is called an ordinary character. We
denote by Char(G) the set of the ordinary characters of a finite group G, and by Irr(G) the set
of its irreducible characters

We say that x(1) is the degree of the character y. It is actually the degree of a representation
that affors y, and also the dimension of the corresponding FG-module. We denote by cd(G) the
set of the character degree of the irreducible character of G: ¢d(G) ={ x(1) | x € Irr(G) }.

Characters of degree one are called linear characters. The set of the linear characters of G is
denoted by Lin(G). Notice that linear characters are irreducible.

The character that corresponds to the trivial module Cg is the function with constant value
1 on G. It is denoted 14 and it is called t¢rivial character.

Notice that the sum of characters is a character: let R and S be two representations of G
that afford the characters x and ¢ respectively. Then the rapresentation T' of G defined as

T(g) = (R(()g) S?g))

for all g € G, is the one that affords y 4+ ¢ as character. Also, if R and S correspond to the
CG-modules U and V respectively, then the representation T' corresponds to the direct sum
UaV.

Since the characteristic of C is zero, it does not divide the order of any group. Hence by
Maschke’s theorem 2.1.2, every CG-module decomposes as the direct sum of simple modules.
Then characters decompose as the sum of irreducible characters. If x = Zcf)elrr(G) neo is a
character of G, then those ¢ with ng > 0 are called the constituents of x.

We call regular character the one afforded by a representation corresponding to the regular
FG-module. This is the sum of all the irreducible characters of G taken with their multiplicities.

We will need later to describe the irreducible characters of direct products.

Let G = H x K and let ¢ and ¢ be characters of H and K, respectively. Define x = ¢ x ¢
by x(hk) = ¢(h)(k) for h € H and k € K.

This definition gives actually a character y of G. Moreover,

Irr(G) ={ ¢ x| pelr(H), Yelr(K)}.

This argument can be iterated for the direct products of arbitrary many finite groups.
Definition 2.1.5. Let x, ¢ be characters of G. Then

1 _
X, 6] = al QEZG x(9)6(9)

is the inner product of x and ¢ in G.

We sometimes write [x, ¢|¢ instead [x, ¢] if we need to stress that y, ¢ € Char(G).

We collect here some basic properties of the inner product:
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L [x, ] = [¢. x];
[cix1 + cax2, @] = c1]x1, @] + c2[x2, &];
3. [¢,¢] > 0 unless ¢ = 0;

Mo

4. x is irreducible if and only if [x, x] = 1.

Irr(G) is an orthonormal basis for Char(G), hence we have a method for expressing an
arbitrary character in terms of the irreducible ones: let ¢ € Char(G), then

6= > [0]0.

0elrr(G)

Let H be a subgroup of the finite group G. We would like to relate their representation
theory.

CH is asubset of CG. If M is a CG-module, then M is also a CH-module since the properties
of the definitions hold for all elements in G, hence certainly hold for the elements in H. We write
the corresponding CH module as MiH, and call it the restriction of M to H. The character of
the restriction is obtained from the character y of M by evaluating it on the elements of H only.
We write this character of H as XlH'

If instead we have information on the representations of H and we want to say something
about the representations of G, the process is more complicated than the previous one. For any
subset X of CG, we write X(CG) for the subspace of CG which is spanned by all the elements
gx with ¢ € X, g € G. That is,

X(CG) =(gz |z € X, g€ G).

X (CQ) is then a submodule of CG.

Now CH is a subset of CG. Let U be a CH-submodule of CH, and let UTG denote the
CG-module U(CG). Then UTG is called the CG-module induced from U.

If ¢ is the character that corresponds to U, then the character that corresponds to UTG is

denoted by (bTG and is called the character induced from ¢.
Let ¢ be a character of H. Define the function ¢> :G — C by

9(9) = {O otherwise.

The values of the induced character gﬁTG are given by
G 1 Lo
(¢T )(g) = TH| Z P(y 193/)
[H] 4=

for all g € G.
We collect here some properties of the restriction and the induction that will be useful later.
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Lemma 2.1.6. Let x be a character of G and ¢ be a character of H < G.

_lél

1. The degree x| ,,(1) is equal to x(1), while (qﬁTG)(l) = 1A (1).

2. The restriction of an irreducible character is not necessarely irreducible. The same holds
for the induction.

3. Let K < H < G and let 0 € Char(K). Then x| ,; |, = x|, and GTHTG = GTG.

Restriction and induction can be considered as dual operations in the sense of the Frobenius
reciprocity.

Theorem 2.1.7 (The Frobenius reciprocity). Let H < G. Let x be a character of G and let ¢
be a character of H. Then

619 Xa = [0, x| 4lu-

Suppose now that N is a normal subgroup of a finite group G. Let § € Irr(N) and g € G.
We define the conjugate character 9 : N — C by 69(m) = 6(g~'mg). This definition gives a
character of N. Hence by this action G permutes the irreducible characters of N, while N acts
trivially.

Clifford theory relates the representation theory of a finite group and one of its normal
subgroups. We state here Clifford theorem and we refer the reader to [37, Chapter 6| for the
modular version of this theorem and its many important consequences.

Theorem 2.1.8 (Clifford theorem, [37, (6.2)]). Let N be a normal subgroup of a finite group G
and let x € Irr(G). Let 0 be an irreducible constituent of X»LN and suppose 0 = 61,60s,...,0; are
distinct conjugates of 0 in G. Then

t
XlN = ezeia
i=1
where e = [XlN’H}N‘

Let F be a field. We end this section describing an important family of FG-modules.

Let M be an FG-module and suppose that G € FG acts on M permuting an F-basis B of M.
Then M is called an FG-permutation module. The value of its associated permutation character
xongeGisx(g)=[{beB|bW =0}

Denote by Gy, the stabilizer of the element m € M under the action of G. If G acts
transitively on the F-basis B of M, then the permutation character of the action is lngG.

2.2 The representation theory of the symmetric groups

In this section we collect some main results about representation theory of the symmetric
groups. We refer the reader to [42] and [65] for more details and examples about the items that
we will briefly introduce here.
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2.2.1 Combinatorics of partitions

We let € (n) be the set of compositions of n, i.e. the set consisting of all the finite sequences
a = (ay,as,...,a,) such that a; is a non-negative integer for all ¢ € [1, z] and such that a; +
-+« 4+ a, =n. The a; are known as the parts of a.

If A\ € €(n) has strictly positive and non-increasingly ordered parts, we say that \ is a
partition of n. We denote by &?(n) the set of partitions of n.

We sometimes write A - n or |A| = n to say A € Z(n).

We remark that the set &2(0) consists of only one element, that is the empty partition.

Let A = (A1,..., ;) € Z(n). The length of X\ is the number of parts of A (i.e. k), often
written [(\). For convenience, we may use exponents to indicate multiplicities of parts; the
meaning should always be clear from context. For instance, (2,1,1,1) = (2;13), while (p¥) could
denote a single part of size p* or (p,...,p) where the part p appears k times, and we interpret
this based on context by specifying (p¥) € 2(p") or (p*) € P (kp) respectively.

We define \; for A € #(n) and i € N as follows:

) - {the i-th part of A, if i <I(\);
1 T

0, otherwise.

Let & = UpenZ?(n) be the set of all partitions. Let a € N, A\, u € &2. The scalar multipli-
cation and the sum of two partitions are defined as follows:
aX = (aA1,ady, ..., aN);
At = (A4 g1, A+ 2, Ak F k),

where k = max { (), () }.
The dominance ordering on &2 is a partial order defined by

,u:(,ul,...,,uk)ﬂ)\:(Al,...,)\k)<:>z,ui§2)\i for every m € [1, k],

i=1 =1

where again k = max { [(u),{(\) }. We use here the same notation as in [42, Definition 3.2|.
The Young diagram [A] is an array of boxes, left aligned, having A; boxes in the j-th row for
all j € [1,1(\)]. For example,
[ ]

is the Young diagram of the partition (4,2, 1).

Given a partition A, its conjugate partition is the partition X’ whose Young diagram is obtained
by reflecting [\] through the main diagonal y = —z. In the example above, A" = (3,2,1,1).

A X-tableau t is an assignment of the numbers { 1,2,...,n } to the boxes of [\] such that no
number appears twice. We will denote by #(7, j) the number assigned to the box of ¢ in row ¢
and column j. The symmetric group &,, acts naturally on the set of A-tableaux by permuting
the entries within the boxes. We denote the action of o € &,, on the A-tableaux ¢ by o(t).
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We say that a A-tableau is standard when it has the entries of each row ordered increasingly
from left to right and the entries of each column ordered increasingly from top to bottom.

We conclude this section by defining a special subclass of partitions of a natural number n that
we will consider extensively in the rest of the thesis, in particular in Chapter 5. Let 0 < k < n
andlet A\ = (n—k,1,...,1) = (n—k,1¥) € 2(n). Then \is called a hook or hook partition, since
its Young diagram [A] has the shape of a hook. We denote by 5 (n) = { A € #(n) | A is a hook }
the set of hook partitions of n.

2.2.2 Specht modules

We turn now to a brief summary of the theory of Specht modules, that will allow us to
explicitly describe the irreducible characters of &,,. We refer the reader to [42, Section 4] for
further details.

Let F be a field. Given a partition A = (A1,...,A\x) of n we denote by &) the subgroup of
G,, defined by

6)\:6)\1 Xoee XG,\k.

G, is the Young subgroup of G,, associated to the partition .

We say that two A-tableaux t and u are row-equivalent if the entries in each row of ¢ are
the same as the entries in the corresponding row of u. It is easy to see that this defines an
equivalence relation on the set of A-tableaux. We will denote by {t} the row-equivalence class of
t and we will say that {t} is a A-tabloid.

The symmetric group &, acts naturally on the set of A-tabloids: let {¢} be a A-tabloid
and o € &, then o({t}) = {o(t)}. Therefore we can define M* to be the F&,-permutation

module generated as a vector space by the set of all A-tabloids. The module M? is called Young
n!

Hi>1()‘i)!.

Since &,, acts transitively on the set of A-tabloids and since the stabilizer in &,, of a fixed
A-tabloid {t¢} is isomorphic to the Young subgroup &y, we have the following important isomor-
phism of F&,,-modules:

permutation module and it has dimension equal to

M* = Fg, T, for all A € 2(n),

where Fg, denotes the trivial F&-module.

Given any A-tableau ¢ we denote by C(t) the column stabilizer of ¢, namely the subgroup of
G, that fixes the columns of ¢ setwise. The A-polytabloid corresponding to the A-tableau ¢ is
the following element of M*:

e= Y sgn(g){t}y.

geC(t)

The Specht module S is the submodule of M* linearly generated by the polytabloids.

We will say that e; is a standard A-polytabloid if ¢ is a standard A-tableau. The Standard
Basis Theorem proved by James in [42, Theorem 8.4] says that the standard A-polytabloids form
a basis for S*. In particular, the dimension of the Specht module S? is independent of the ground
field, and equals the number of standard A-tableaux.
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When considered over a field of characteristic zero, for instance the field of the complex
number C, the family of Specht modules {S* | A € 2 (n)} is a complete set of non-isomorphic
simple CS,,-modules. For every partition A of n we denote by x* the ordinary character afforded

by S

We say that a partition A of n is p-regular if it has at most p — 1 parts of any given size. The
following is an important result of G.D. James:

Theorem 2.2.1. Let A € Z(n) and let F be a field with positive characteristic p.
S)\
Set D/\ = m Then, D)\ 18 NON-2eT0 7rf and ()nly Zf)\ 18 p‘mg“la"r-

Moreover, {D* | \ € 2 (n) p-regular} is a complete set of non-isomorphic simple FS,,-modules.

Here (S*)* = {2 € M* | (z,s) = 0 for every s € S* }, where (-, ) is the unique bilinear form
on M? for which ({t;}, {t2}) = 1if {t1} = {t2} and ({t1}, {t2}) = 0if {t1} # {t2}.
We refer the reader to [42, Chapter 11| for more details.

Young modules

We have already constructed the Young permutation modules M?*, for \ a partition of n. A
natural question is how we can decompose these modules into indecomposable summands, the
so-called Young modules.

A first complete parametrization can be found in the work of James in [43], Klyachko in [48]
and Grabmeier in [32]. While their original description was based on Schur algebras, Erdmann
in [14] described completely the Young modules using only the representation theory of the
symmetric groups. (The proof of Lemma 3 of [14] contains some errors. A correction to that
proof was later given by Erdmann and Schroll in [15]).

In order to state Erdmann’s result we need to introduce the following definition.

Let A be a partition of a natural number n. We say that \ is a p-restricted partition if the
conjugate partition is p-regular. Moreover notice that if a partition A is not p-restricted, then
there exist a unique natural number 7y and unique p-restricted partitions A(0), A(1),..., (7)),
such that

A=) Am)p™ (2.1)
m=0

The above expression (2.1) is called p-adic expansion of \.

For instance, consider the partition A = (9,1) of the natural number 10 and p = 3. This is a
3-regular partition, but it is not 3-restricted since ' = (2,1%). We want to determine the 3-adic
expansion of \: A = A(0) + 3\(1) + 9A(2) + ---. Drawing the Young diagram of A we can see
that the only partition that can be placed three times is (2):

[ [1]1]2]2]3]3]

Therefore A(1) = (2), and if we remove from the Young diagram of A three copies of (2) what
remains is A(0) = (3,1), as we can see in the diagram above. Both (2) and (3,1) are 3-restricted
partitions, then (9,1) = (3,1) + 3(2) is the 3-adic expansion of A.
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For each m € {0,1,...,k}, A(m) is a partition of a certain natural number which will be
denoted as 7, (i.e. A\(m) F ry,).

Theorem 2.2.2 (|14, Theorems 1 and 2|). There is a set of indecomposable FS,,-modules Y
one for each partition p of n, such that the following hold for every A F n.

(1) M? is isomorphic to a direct sum of Young modules Y* with ;1> X\ and with Y appearing
exactly once.

(2) YA YH if and only if X = p.
(3) Y is projective if and only if X is p-restricted.

(4) Let \ be not p-restricted and suppose that X = Zﬁz:O A(m)p™ s the p-adic expansion
of \. Consider p(\) to be the partition of n which has ry, parts equal to p™ for every
m e {0,1,...,k}. Then Y has vertex a Sylow p-subgroup of S,

We refer to Section 2.4 for the definition of vertex of an indecomposable module.

Going back to the previous example, we have that (9,1) F 10 is not 3-restricted and its 3-adic
expansion is (9,1) = (3,1) 4+ 3(2). We are then in the case of part (4) of the above theorem.
We have ro = 4 and r; = 2. Hence p()\) has 4 parts equal to 3° and 2 parts equal to 3!, that
is p(A) = (3,3,1,1,1,1) = (3%,1%). Therefore &,(,) = (&3)** x (61)*! = &3 x S3. A Sylow
3-subgroup of &3 x &3 is then C5 x (5, and this is a vertex of y O,

Consider a decomposition of M?* into a direct sum of Young modules, as in part (1) of the
previous theorem. We can notice that the Young module Y is the summand containing S*.

2.2.3 Ordinary irreducible characters of the symmetric groups

From the discussion in Section 2.2.2, the set of the ordinary irreducible characters of the
symmetric group &,, is naturally in bijection with &?(n). More precisely,

rr(G,) = {X* [ A€ 2(n) }.

Here we want to collect some tools that we will use in the following chapters.

The hook length formula

The hook length formula is a closed combinatorial formula which gives the degree of an
irreducible character. Notice that the degree of x*, for A a partition of n, is the dimension of
the corresponding Specht module S*.

We need to introduce a bit of notation in order to state the related theorem. Let b be a box
of the Young diagram [A] of \. We denote by Hy, the hook on b, namely the subset of boxes of
[A] lying either to the right (namely the arm) or below b (namely the leg), including b itself. We
define the hook length hy to be the number of boxes in Hp.
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For instance, let A = (4,2,1) and b = (1,2) € [\]. Hp is the subset of the boxes filled by a bullet
in the diagram below:

ofefe]
Hence hy = 4. -
Theorem 2.2.3 (Hook length formula, [18, Theorem 1]). Let X be a partition of n, then
N n!
X'(1) =77
Hbe[,\] hy

For example, let A = (4,2,1). Filling each box b of the Young diagram [\] with the corre-
sponding hook length hj, we obtain

412[1]
1 .

‘Hwa

Hence the degree of x*21) is o = 35.

The Murnagham-Nakayama rule

The Murnagham-Nakayam rule is a recursive formula to compute a single entry in the char-
acter table of &,,. This rule is described and proved in [42, Chapter 21].

We call skew-hook a connected part of the rim of [A] that can be removed to leave the diagram
of a partition. There is a natural one-to-one correspondence between the hooks of [\] and the
skew-hooks of [A]: the skew-hook that has initial box in the i-th row and final one in the j-th
column corresponds to the hook Hp, with b the (i,7) box of [A]. We call hook length (resp. leg
length) of the skew-hook, the hook length (resp. leg length) of the associated hook.

For example, let A = (4, 3,2). The skew-hook made by the boxes filled with a bullet in the
first diagram below corresponds to H( 5), represented in the second diagram:

..[H ...[.

They have hook length equal 5 and leg length equal 2.

Theorem 2.2.4 (Murnagham-Nakayama rule). Let A\ € & (n). Let mp € S,, where p is an
r-cycle and 7 is a perrmutation of the remaining n — r numbers.

LetV={vePn—r)| [N\ is a skew r-hook }. Let sy(v) denotes the leg length of [\]\ [V],

veV. Then
Xrp) =D (1) ().
vev

If the set V is empty, the value of x*(mp) is zero.

For instance, let A = (4, 3,2), p a 5-cycle and 7 a 2-cycle. Then V = {(2,1,1)}, since the only
5-hook is H(; 7). Hence M) = (=125 (1) = xLD (7). Now the only 2-hook in (2,1, 1)
is H(y 1). Therefore, if we apply again the Murnagham-Nakayama rule and then the hook length
formula, we have

o) = X () = ()P () = -1,
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The Littlewood-Richardson rule

Let m,n € N with m < n. Given x* x x” € Irr(&,, X &,_,), the decomposition into
irreducible constituents of the induction

M xxX) 1% = Y0 LR )
AeZ(n)

is described by the Littlewood-Richardson rule (see [42, Chapter 16]). Here the natural numbers

LA\, v) are called Littlewood-Richardson coefficients.
To be more precise, we need to introduce some notation. By a skew shape v we mean a set
difference of Young diagrams [A\ u| for some partitions A and g with [u] C [A], and |y| = |A|—|p/|-

=

Definition 2.2.5. Let n € N. Let A = (A1,...,A¢) F n and let € = (c1,...,¢,) be a sequence
of positive integers. We say that € is of weight X\ if [{i € [1,n]|¢; =j }| = A, for all j € [1,k].
We say that an element ¢; of ¢ is good if ¢; =1 or if j > 1 and

HielLj—1le=c¢-1}>Hielj-1]|c=¢}
Finally, we say that the sequence € is good if c; is good for every j € [1,n].

Theorem 2.2.6 (Littlewood-Richardson rule). Let m,n € N with m < n. Let p = m and
vEn—m. Then

O X X)) 1o e, = Zéﬁ%’(/\; )
AFn

where LA (N\; u,v) equals the number of ways to replace the nodes of [\~ p] by natural numbers
such that

(i) the sequence obtained by reading the numbers from right to left, top to bottom is a good
sequence of weight v;

(#1) the numbers are non-decreasing (weakly increasing) left to right along rows; and
(iii) the numbers are strictly increasing down columns.

Remark 2.2.7. With the same notation as the above theorem, by Frobenius reciprocity we have
. _ o v Sn A _ m v A
3%(/\”“” V) - [<X XX ) X :|6n o [X XX (X ) leXanm}Gmenim ’

Given (ni,...,n;) € €(n), A € P(n) and pu; € F(n;) for all j € [1,k], LAZN; pa,- .., 1k)
denotes the multiplicity of x* as an irreducible constituent of (x*1 x --- x X“k)Ts”. Here YV
denotes the Young subgroup &,, x &,, X --- x &,, of &,. This multiplicity is computed as an
iterated Littlewood-Richardson coefficient.

The following lemma describes the behavior of the first parts of the partitions involved in a
non-zero Littlewood-Richardson coefficient.

Lemma 2.2.8. If ZZ(\;p1, ..., ux) 7 0 then A\ < Z?:l(ﬂj)l'
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Proof. We proceed by induction on k > 2.

Let k = 2. Since LZ(\; 1, 12) # 0, we can fix a way to label the nodes of [\ \ p;] such
that the conditions (i),(ii) and (iii) of Theorem 2.2.6 are satisfied. The first element of a good
sequence is necessarely 1, and this has to be the entry of the last box of the first row by part
(i) of the previous theorem. Hence, all the boxes in the first row of [\ \ p1] must be filled with
the number 1, by part (ii). Since the number of boxes filled by 1 equals (u2); and there may be
other 1s other than the ones in the first row, we have that (u2); > A\ — (1)1

Let now k > 2. One of the properties of the restriction of characters says that

A A
X l6n1x6n2><~--><6nk =X l6n1><6n_n1l6n1><6n2><--~><6nk'

Suppose that v is a partition of n — n; such that both ZZ(\; p1,v) and LRZ(v; pe, ..., pi) are
not zero. Then we have L2 (\; u1, po, - .., ux) # 0, and by inductive hyphotesis

E

M < ()14 < () + Z(Mj)L
=2

O]

To conclude this section, we introduce the last combinatorial objects that we will need in
the next chapters. We define %, (t) as the set of those partitions of n whose Young diagram fits
inside a t x t square grid, i.e. for n,t € N, we set

B(t):={re Pn)| A\ <t I(\) <t}

Notice that £, (t) is closed under taking conjugate of partitions.

Let for instance n = 4 and ¢t = 3. The Young diagram of (4) has four boxes in the first row,
so it does not fits inside a 3 x 3 grid. Hence (4) ¢ Z4(3). Instead, (3,1) has three boxes in the
first row and only one in the second, therefore (3,1) € %4(3)

For (ni,...,n;) € €(n) and A; C P (n;) for all j € [1,k], let A; x Ay % --- % Ay, be the set of

[+l

(G}
all the constituents of (! x --- x y**) TG‘ xS
75 K

as each u; vary over A;. In other words:

Ay *xAg k- x A :={ A€ P(n) | LZ\;p1,...,ux) >0, for some g € Ay,...,u € Ag }.

It is easy to check that x is both commutative and associative.
The following lemma shows that boxes behave well with respect to the x operator. This is
[25, Proposition 3.2].

Lemma 2.2.9. Let n,n',t,t' € N be such that 3 <t <n and %/ <t' <n'. Then

B (t) * B (V') = B (t+1).
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2.3 Wreath products

Here we fix the notation for characters of wreath products. For more details see [45, Chapter
4]. Let G be a finite group and let H be a subgroup of &,,. We denote by G*" the direct
product of n copies of G. The natural action of &,, on the direct factors of G*™ induces an
action of &,, (and therefore of H < &,,) via automorphisms of G*", giving the wreath product
G H:=G"" x H.

We refer to G*™ as the base group of the wreath product G H. We denote the elements of
Gl H by (g1,...,9n;h) for g; € Gand h € H. Let V be a CG-module and suppose it affords the
character ¢. We let V" := V @ --- @ V (n copies) be the corresponding CG*™-module. The
left action of G H on V®" defined by linearly extending

(9153 gnih) 101 @ - @V = G1Up-1(1) @ @ GnVp—1(n)5

turns V" into a C(G'? H)-module, which we denote by V& We denote by ¢ the character
afforded by the C(GtH )-module V®" For any character ¢ of H, we let 1 also denote its inflation
to GUH and let 27 (¢;v) := ¢ -1 be the character of G H obtained as the product of ¢ and .

The base group G*™ is normal in G! H. Hence we can describe the connections between the
irreducible characters of G H and the ones of base group using Clifford theory, in particular
Theorem 2.1.8.

The irreducible characters of GU H are of two types. The first one is the one described above:
2 (p;1) where ¢ € Irr(G), ¢*™ := ¢ X -+ X ¢ is the corresponding irreducible character of
G*™ and v € Irr(H). This character has degree ¢(1)™1(1) and its restriction to the base group
is ¥(1)¢*™. Indeed, we are using Theorem 2.1.8 noticing that the action of conjugation by an
element of G H is trivial on ¢*".

The other type of irreducible character of Gt H is o = (¢p1 X -+ X ¢p,) TGZH, where ¢1,...,¢n
are irreducible characters of G not all equal. ¢ has degree equal to |H|¢1(1) - - ¢p(1), and using
again Clifford theorem we have

0] oxn = Z bo(1) X+ X Po(n)-

oeH

Indeed, G H acts on ¢ X - -+ X ¢, by changing their order according to the permutations that
belongs to H.

If H = C) is a cyclic group of prime order p, every ¢ € Irr(G 1 Cp) is either of the form

(i) v=0¢1 XX ¢p glxi”, where ¢1,...¢, € Irr(G) are not all equal; or

(ii) o = Z'(¢;0) for some ¢ € Irr(G) and 6 € Irr(Cp).

We want to record a result that will be useful later in this thesis.
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Lemma 2.3.1 ([45, Lemma 4.3.9]). Let n € N. Let H < &,, and G be finite groups. Lel
¢ € Irr(G) and ¢ € Irr(H). Then for all g1,...,9, € G and h € H,

c(h)

2 (¢:0) (g1, g0 h) =[] & (9. - 901050y - ‘gh—liﬂ(ji)) ~p(h),

i=1

where c¢(h) is the number of disjoint cycles in h, l; is the length of the it" cycle, and for each 1,
ji is some fized element in the it" cycle.

For instance, if n =8 and h = (1,3,7,2)(5,8,6)(4), then
Z(d59) (91, - - -, 98: h) = #(92979391) B (969895 ) H(9a) - (D).

2.3.1 Sylow subgroups of G,

We describe here the Sylow subgroups of a symmetric group and briefly their irreducible
characters.

Let P, denote a Sylow p-subgroup of &,,. Clearly P is the trivial group while P, = C,, is
cyclic of order p generated by the a p-cycle of &,. If £ > 2, then

Py = (Py-1)" x Py = Pp-1 1P, = P,1-- -1 P, (k-fold wreath product).

We will usually write the elements of Py as o = (01,...,0p;7) where 01,...,0, € Py-1 and
m € P,. o is identified with the element of &,, defined as follows: if j € [1,p¥] is such that
§ =b+p*1(a—1), for some a € [1,p] and some b € [1,p*1] then o(j) := 04 (b) +p*~L(n(a)—1).
Via this identification, a Sylow p-subgroup P is generated by the elements g1,...,9p, € Gn,

where
pjfl

g = H (d,d+p L d+2p7 " ...d+ (p—1)p' "), for j € [L,k]. (2.2)
d=1

Let n = >!_, a;p* be the p-adic expansion of n. Then P, = prk‘fl X prk,;” X - X prk‘jT.

Notice that sometimes we will use the p-adic expansion n = Ele p"i, whereng > -+ > ng >
0. In this case P, = Pyni X - - X Pyn;. This second notation for the p-adic expansion of a natural
number is useful when we do not want to consider the various exponents to be distinct.

Example 2.3.2. Suppose that p = 3. Then Ps = (g1), Py = (g1,92) and Por = (g1, g2, g3),
where

g1 = (15273)7

g2 = (1,4,7)(2,5,8)(3,6,9),

g5 = (1,10,19)(2,11,20)(3,12,21) - - - (9, 18, 27).

Moreover, P51 = P35 X P3 X Py X Py X Poy.
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We refer the reader to [45, Chapter 4] or to [64] for more details.

We denote {¢o, ¢1,...,¢p—1} = Irr(Pp), where ¢¢ is the trivial character of P,. Using the
facts on representations of wreath products highlighted above, it is easy to observe that linear
characters of P are naturally labelled by elements of [0,p —1] Xk 1In fact, setting 2" (t) = ¢y for
every t € [0, p—1] and given (j1,...,j%) € [0, p—1]**, we recursively define 2 (j1, ..., jx_1,Jk) €
Lin(Ppk) as %(jl, e ajk‘—l?jk}) = %(3{(]1, e ,jk_l); ¢]k)

For example, for any prime p and for every natural number k, the trivial character of Py is
always 27(0,0,...,0).

Notice that an irreducible character of P, can be only of the form (i1 x --- x wp)TPP"
where 11, ..., 1), € Irr(P,r-1) are not all equal, or of the form 27(¢); ¢;) with ¢ € Irr(P,r-1) and
i€ [l,p—1].

We will need later to be able to compute the value of an irreducible character of P, of the
type Z'(a; 8) on a fixed element (q1,...,qp;m) € Ppr. To do this, we can use Lemma 2.3.1 in
the case G = Py and H = P, < &,,. Nofice that m € P, is either 1 or a single p—cycle. Hence
if m # 1, with the same notation as the one of the lemma, ¢(7) = 1 and [; = p. Then we can fix
71 = 1 and we obtain

2 (a;8)(qus - 4 ™) = @ (@1 Gr1(1) -+ Grrr1(1)) - B(7).

Otherwise, if 7 = 1 then 27 (a; 8)(q1,---,qp; 1) = [[L_; a(qy). Indeed, ¢(1) = p, I, = 1 for every
v and (1) = 1 because it is a linear character of P,,.
We summarize this fact in the following remark.

Remark 2.3.3. Let 2'(a; 8) € Irr(Pyr) and (g1, - - -, qp; ) € Pye. Then

p

CQp—1(1) " " Qr—p+1 . ), lfﬂ' ]_7
2 (a; B8)(q1, - g ) = @ (g1 Gy dreriin)) - B(T) | #
w1 (qv), if m=1.

The last technical tool that we will need is a method to evaluate an irreducible character of
the Sylow p-subgroup Py on a pF-cycle. This is proved in [28, Lemma 3.11]:

Lemma 2.3.4. Let k be a positive integer. There exists a p*-cycle g € P such that the following
hold:

(i) 0(g) is a p-th root of unity for every linear character 0 of P

(i) x(g) = 0 for all x € Irr(Pyr) such that p divides x(1).

A pFcycle g € P, that satisfies this lemma can be constructed recursively as follows: let
h € Py-1 be a p*~l-cycle and o € P, such that o # 1, then g = (h,1,...,1;0). Notice that this
element does not lie in the base group (P,x-1)*?, hence every character properly induced from
the base group vanishes on g.

For instance, let p = 3 and let 0 = (1,2, ) € P;. Then g = ((1,2,3),1,1;(1,2,3)) is a 9-cycle
in Py, indeed g = (1,2,3)(1,4,7)(2,5,8)(3,6,9) = (1,4,7,2,5,8,3,6,9).
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For k € N, the normaliser of a Sylow p-subgroup of & is Nka (Ppr) = Py x H, where
H = (Cp_1)**. More generally, if n = >__, a;p" is the p-adic expansion of n, then Ng, (P,) =
N1 1Sy, X -+ X Ny 1S, , where N; := ngki (Py;) for every i € [1,7].

We now turn to an explicit presentation of the normalizer of a Sylow subgroup. In order to
better understand this technical description we refer the reader to Example 2.3.5 below. Consider

the specific Sylow p-subgroup P, of &, generated by gi1,g2,...,gk, defined in (2.2). Then
(k) (k) (k) ()

a presentation for Nka (Ppr) is (Ppr, 07,09 ,... 0, ), where the elements o;”" are defined
recursively as follows.

Let P, = (g1) and 0\") = (c1,¢a, ..., ¢p-1) € Sym({1,2,...,p}) be a (p—1)-cycle in Ng, ({g1))
having p as a fixed point and such that Ng,({g1)) = (g1) » <0§1)>. For any integer m, let 7, € &,

be the permutation i — i + m with numbers modulo p*. For 1 < j < k, set

p—1
(k) _ (k=1)
Uj = HTz‘p’“l -Uj 'T_ipk—l
=0

and
k — —
Ul(c ) = | | T—4° (Clpk 1,62pn 1,...,Cp—1pk 1) * Ty

(k) (k)
J

with numbers modulo p*. By construction, each o, is a product of (p — 1)-cycles, and the o
commute for all j for each fixed n.

Let A\ be a permutation of a certain symmetric group &,, and ¢ € N. The power A’ is naturally
defined as the permutation obtained by applying i times A. By definition, we have that 7 = 1
and for 0 <1 <p—1, 1 = g,i = gk_(p_l and T_; k-1 = gi_i. Hence for 1 < j < k, we can

(k)

rewrite o 5 as

p—1 i
k) (k—1)\ 9%
o =11 ("j ) -
i=0
By a discussion in the proof of [64, Proposition 1.5], we can consider ngk (P, ) as a subgroup
of Nepk_l(Ppkfl) ! Ns,(Pp). Its elements can be written as (ny,...,np;u) with ny,...,n, €

Ne ., (Ppr-1) and p € Ng,(P,). We need also that n; =n; ( mod P-1) for every 4, j.
*) became o*) = (O’Z(kil), .. .,a(kfl); 1) for i € [1,k — 1], and

In this view, the generators o, i i
U](j) =(1,...,1; ng)).

The base group of Nkaq (Ppe-1) U Ns, (Pp) can be considered to be a subgroup of Sy x Sz x
-+ x S,, where S; is a symmetric group of p*~! elements for each i € [1,p]. More precisely, for
every i € [1,p] we let S; = Sym{1 + ipF~1, 2 4 apF~1 ... p+ipF1}.

To determine which is the element of Nka (Ppk) < G, that corresponds to (N1, ... np; ),
we can then consider each n; as a permutation in S;, and p as a permutation of the indices of
S1 xSy x --- xS, i.e. as a permutation of the various components of this product.

To better understand this idea and the technical topics just discussed, we see an example.
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Example 2.3.5. Suppose that p = 3. We have Ng,(P3) = <P3,0§1)> with Ugl) =(1,2).

Now Ne, (Py) = (Py, 0.2, 0}, Recall from Example 2.3.2 that g, = (1,4,7)(2,5,8)(3,6,9).
We know that Ng,(Py) < Ng,(P3)! Ng,(P3), and the base group of the latter wreath product is
(Ng,(P3))*®. This can be considered as a subgroup of Sym{1,2, 3} x Sym{4, 5, 6} x Sym{7,8,9}.

We have that 052) = (agl),ag),a&l); 1) =((1,2),(1,2),(1,2);1). Then the first component
(1,2) € Sym{1,2,3}, the second one belongs to Sym{4,5,6} so it is (1,2)9 = (4,5), and the
last one belongs to Sym{7,8,9} so it is (1,2)9% = (7,8). Therefore 09) is the product of these
permutations:

o = (1,2)(4,5)(7,8).

The other generators, 052), is the transposition between the first and the second components,
i.e. between Sym{1,2,3} and Sym{4,5,6}. Hence

o) = (1,4)(2,5)(3,6).

We can do the same thing to compute the generators of Ng,,(Pe7) = <P27,0’§3),O'é3)70'§3)>.
We have Ng,.(Po7) < Ng,(P9) ! Ng,(Ps) and its base group can be considered as a subgroup of
Sym{1,2,...,9} x Sym{10,11,...,18} x Sym{19,20, ...,27}. Hence o\¥ is the product of o\*

for each of these components, and the same holds for 053):

o = (1,2)(4,5)(7,8) - (10, 11)(13,14)(16, 17) - (19, 20)(22, 23)(25, 26),
o = (1,4)(2,5)(3,6) - (10,13)(11,14)(12, 15) - (19, 22)(20, 23)(21, 24).

Finally, 0:(,,3) is the transposition between Sym{1,2,...,9} and Sym{10,11,...,18}:
o = (1,10)(2,11)(3,12)(4, 13)(5, 14)(6, 15)(7, 16)(8, 17)(9, 18).

Notice that Ne, (P51) = Ng, (Pg) 162 x Ng, (Pg) 163 X Ng,, (P27).

We are now ready to prove the following fact, that we will need to prove Lemma 4.1.4. This
will be fundamental in Chapter 4.

Lemma 2.3.6. Let p be an odd prime, let n € N and let H be a complement of Pyn in Ne . (Ppn).
There are no non-trivial elements of Pyn that are centralized by H, i.e. H acts faithfully on Pyn.

Proof. We proceed by induction on n. If n =1 then H = C,_; and H < Aut(P,), since H acts
on P, by conjugation. Hence H = Aut(FP,), since Aut(P,) = Cp_1. If we suppose that there
exists g € P, which is centralized by H, then g has to be a fixed point for every element in
Aut(P,). Therefore g has to be the identity element.

If n > 2 then it is sufficient to prove the lemma for a fixed Sylow p-subgroup. In fact, if
P,Q € Syl,(&,n) then there exists s € G,n such that Q = P°. Hence Ng . (Q) = s ' Ng . (P)s.
In particular, if Hp and Hg are the complements of P and @ respectively in Ng , (P) and
Ng,. (Q), then Hg = (Hp)*. Therefore, suppose that 1 # a € Q is not centralized by h € Hg.
Then there exist b € P and b’ € Hp such that a = b* and h = (h')*. Hence

a=0b"#a" = )" = p"* if and only if b # b"'.
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We consider the specific Sylow p-subgroup P,» of Gyn generated by g1, g2, ..., gn defined in

(2.2). Hence a presentation for Ng ,, (Fpn) is (Ppn, agn), oén), e 07(1”)).

Let H,, = <Uln), aén), e aﬁ”)y This is a complement of Pyn in Ng (Ppn). Notice that H,_q =
H(n,)l = (UYL)) X - X (a,(f,)l) C Hy,.

n
Recall that the elements of Pyn = Pyn-1 0 P, can be written in a unique way as x =
(w1, 22,...,7p;y), where x; € Py for every i € [1,p], and y € P,
Fix 1 # o € Pyn. There are two cases: if y = 1 then there exists ¢ € [1,p] such that z; # 1.
By the inductive hypothesis there exists h; € H,_1 such that :pi“ # x;. Let h:= H?;é(hi)ggl €

H(n) C H,,. We have

n—1

zh = (x}l”,...,:vl-”

h; _hi h;.
LT Ty 1) #

i+1

. . (1) (n)
If y # 1, then y cannot be centralized by H; = <0§1)>. In particular, y"ll # y. Hence 77 =

(1)
T N ;Y01 x.
( 051)(1.)7 ) 051)(p)’y )7& o . .
This shows that for every non-trivial element x of P,» there exists an element in H,, that

does not centralize z.
O

We remark that Lemma 2.3.6 is equivalent to say that Cg . (Ppn) = Z(Fpn), for any n € N.
This Lemma does not work for p = 2. In that case, Neg,, (Pon) = Pon for every n € N. Hence H
is trivial.

The presentations of Ppn and Ng ,, (Ppn) described in this section are the ones used in [22].

2.4 Background on modular representation theory

Let G be a finite group and F be a field of characteristic p > 0. Recall that the group algebra
FG itself is an FG-module under multiplication, and it is called the regular module.

An FG-module is a free module if it is isomorphic to a finite direct sum of copies of the
regular module FG. An FG-module is a projective module if it is a direct summand of a free
module.

Let H < G; an FG-module U is called relatively H-projective if it is a direct summand of
(UlH) TG. This is a generalization of the projectivity, indeed a module is relatively 1-projective
if and only if it is projective.

The vertex of an indecomposable FG-module M is an important invariant of M. It was first
defined by J.A. Green in [33]. It is an essentially unique subgroup of G which measures the
(relative) projectivity of M. More precisely: if @ < G is minimal with respect to the condition
that M is relatively Q-projective, than @ is called a wvertexr of M. Hence the closer @) is to the
identity, the nearer M is to being projective.

The vertices of an indecomposable module form a G-conjugacy class of p-subgroups of G.
They are an invariant of the isomorphism class of M. Clearly M has trivial vertex if p does not
divide |G|. For every p-subgroup @ of G, there are indecomposable FG-modules with vertex Q.
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An indecomposable @Q-module S is called a source of M if M is a summand of STG. It is
known that S is unique up to conjugation in Ng(Q). This is [1, Theorem 4 Section 9].
These are useful results that can be found in [33]:

Theorem 2.4.1. Let M be an indecomposable FG-module and let P € Syl,(G) containing a
vertex @ of M. Then
[P 5 Q) | dime(M).

Obvious consequence is:

Corollary 2.4.2. If M has dimension prime to p, then the vertices of M are the Sylow p-
subgroups of G.
In particular, the trivial module has Sylows p-vertices.

Following is a special case of Green’s indecomposibility theorem:

Lemma 2.4.3. If P is a p-group and Q < P then the permutation module IFQTP 1s indecompos-
able, and has vertex Q).

Classical costructions such as the Brauer homomorphism help us to investigate the structure
of the vertices of the indecomposable modules, while others such as the Green and the Broué
correspondences gives us a way to relate the global theory of a finite group to the theory of its
local subgroup. We do not want to record all these constructions and results here because they
are beyond what we need to understand the main contents of this thesis. We refer the reader to
[1], [3] and [61] for most of the results used for the computations that we will find in Chapter 6.

We would like to mention a particular class of FG-modules for which the results mentioned
above give some more information than usual.

Definition 2.4.4. An FG-module M is said to be a p-permutation module if whenever P is a
p-subgroup of G, there exists an F-basis % of M whose elements are permuted by P. In this
case we say that % is a p-permutation basis of M, and we write M = ().

Notice that if M has a p-permutation basis with respect to a Sylow p-subgroup, then M is a
p-permutation module.
The following is a characterization of the p-permutation modules.

Proposition 2.4.5 (|3, (0.4)]). Let M be an indecomposable FG-module. Then M is a p-
permutation module if and only if one of the following holds:

(i) there exists H < G such that M is isomorphic to a summand of ]FHTG;
(1) M has a trivial source.

We are interested in this kind of modules especially for the study of the Young permutation
FG&,,-modules and their indecomposable summands, the Young modules. See Section 2.2.2 for
definitions.
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2.4.1 Block theory

We would like to end this section with a brief recall about the theory of blocks, in particular
for the case of G,,. For an extensive dissertation on blocks for finite groups we refer to |1, Section
13].

Each algebra has a unique decomposition into a direct sum of subalgebras, each of which
is indecomposable as an algebra. Let F be a field of characteristic p and G be a finite group.
Consider the unique decomposition of FG given by FG = A; + --- + A,. Then the subalgebras
Ay, ..., A, are called blocks of FG.

If M is an FG-module, A;M = M and A;M = 0 for all j, j # 4, then we say that M
lies in the block A;. If M is an FG-module then M has a unique direct sum decomposition
M = M; + -+ + M, where M, lies in the block A;.

Each simple FG-module has to lie in a single block. Hence we can interpret blocks as a
partition of the set of the irreducible characters of G.

We can now regard FG as a F[G x G|-module setting a(g1,g2) = glaggl for every a € FG,
91,92 € G. Therefore FG has a unique decomposition into the direct sum of simple F[G x G]-
modules, the summands are the blocks of FG.

Theorem 2.4.6 (|1, Theorem 4 Section 13]). If B is a p-block of FG, then B has vertez, as an
F[G x G]-module, of the form §(D) ={ (d,d) | d € D}, where D is a p-subgroup of G.

The vertices of a p-block B form a conjugacy class of p-subgroup of G called the defect groups
of G.

Blocks of 6,

We refer the reader to [65, Section 3 and 11] for a detailed description of the p-blocks of
symmetric groups and some more examples and properties.

Let now A be a partition of n. The p-core A,y of A is a partition which is obtained by A, and
which has no hooks length divisible by p. More precisely, if in the Young diagram [A] there is a
hook of length a multiple of p, we remove the boxes of the corresponding skew-hook. We obtain
the diagram of a new partition [\']. We proceed in the same way until the partition obtained
has no hooks of length divisible by p. This is the p-core A¢,y. It does not depend on the way
hooks were removed.

The p-weight of X is the number of p-hooks that are removed to go from A to Ay,. It is
denoted by w,(A). So we have

ML= [Ag)| + pwp(N).

For instance, let p = 3 and A = (5,2,1) be a partition of 8. We can remove first H; 3) and
then H s 1), because they both have legth 3. What we obtain is:

ofefe] — — [

This is the Young diagram of A, that is (2). Since we removed two 3-hooks, w3(A) = 2.
Indeed, [A| =8 = |Ag)| + 3wz(\) =2+ 3-2.
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A result still referred to as the Nakayama’s Conjecture states that the p-blocks of &,, are
labelled by pairs (v, w) such that v is a p-core partition and |y| 4+ pw = n. Moreover, the Specht
module S lies in the block B(~,w) if and only if A has p-core « and p-weight w.

We can rephrase this result looking at blocks as subsets of Irr(S,,). Again,eEach p-block is
labelled by a pair (v, w) such that v is a p-core partition and |y| + pw = n. That means: let
A\, i € P(n), then xlambda lies in the same p-block as x* if and only if Ap) = H(p)-

Proposition 2.4.7 (|65, Proposition 11.3]). The defect group of a p-block of weight w of &,, is
a Sylow p-subgroup of Sp.

For example, consider p = 3 and n = 4. A partition of 4 can only have 3-weight zero or one.
We have three 3-blocks:

B((1),1) = { xW,x"),x22
B((37 1)70) = {X(g’l) } ,
B((2,1,1),0) = { x(2,1,1) }.

Notice that these actually form a partition of Irr(Sy).

Moreover, we have that a defect group of B((1),1) is isomorphic to a Sylow 3-subgroup of
G3, hence it is the cyclic group C3. A defect group for the other two blocks has to be trivial,
since it has to be a Sylow 3-subgroup of &y.






Chapter 3

Sylow branching coefficients: a survey

In the introduction, we briefly mentioned the importance of the connection between the
irreducible characters of a group and those of its Sylow p-subgroups. Here we make this more
precise.

A famous result in the character theory of finite groups is the Ito-Michler theorem [40, 58].
This asserts that a Sylow p-subgroup P of a finite group G is abelian and normal in G if, and
only if, the character degree x(1) is coprime to p for every irreducible character y € Irr(G).

A challenge for the last few decades has been to separate the two conditions in this theo-
rem.The commutativity of P is characterized by Brauer’s height zero conjecture, proved in [56],
while the normality has been studied in [55]. In particular, one of the main theorem of this
last paper says that a Sylow p-subgroup P of G is normal in G if and only if all irreducible
constituents of the permutation character 1 pTG have degree coprime to p. This result has been
refined recently in [27].

On the other side of the spectrum, in [63] it is shown that the character ]lpTG controls the
property of a Sylow p-subgroup to be self-normalizing. More precisely, when p is an odd prime,
P = Ng(P) if and only if 1 is the only contituent of ]lpTG having degree coprime to p.

This highlights the importance of studying the permutation character 1 pTG, and more gen-
erally, of the so-called Sylow branching coefficients. These have already been defined in the
introduction, but we want to state here the definition formally.

Definition 3.0.1. Let p be a prime number and let P be a Sylow p-subgroup of a finite group
G. Let x € Irr(G) and ¢ € Irr(P) be irreducible characters of G and P, respectively. The
corresponding Sylow branching coefficient Zg is defined as the multiplicity of ¢ as an irreducible

constituent of le, the restriction of x to P.
Recall that Frobenius reciprocity theorem tells us that Z¥ = [¢, x| plp = [gszG, Xla, for any
x € Irr(G), ¢ € Irr(P).

We want to focus in this chapter recalling known results reached in the study of Sylow
branching coefficients. Our contribution to the topic is recorded in Chapters 4 and 5.

31



32 CHAPTER 3. SYLOW BRANCHING COEFFICIENTS: A SURVEY

A main observation about the restriction of a character to a Sylow can be found in [2].
Suppose that the order of a finite group G is divisible by p™, but not by p"*!. If an irreducible
character y € Irr(G) has degree divisible by p", it vanishes on all elements of G of order divisible
by p. This implies:

Theorem 3.0.2. Let x € Irr(G) have degree divisible by p", where p™ the highest power of p that
divides |G|. Let P € Syl,(G). Then, le is a multiple of the regular character of P.

In 28] the authors focused on the irreducible characters x € Irr(G) that have degree divisible
by p. Suppose P € Sylp(G), they conjectured that if Xip has a linear constituent, then le
has at least p different linear constituents.

In the same paper, this conjecture has been proved to hold for p-solvable groups and for the
symmetric ones (Theorem 3.1.2 below). In [21] it has been proved for the alternating groups.
Moreover, in [29] they studied the blockwise version of this conjecture.

Notice that for the p-solvable case, the statement is actually quite stronger.

Theorem 3.0.3 ([28, Theorem BJ). Let G be a p-solvable group, P € Syl,(G) and let x € Irr(G)
be a character of degree divisible by p. If le contains a linear constituent X\, then there exists

a subgroup U < P of index p such that le contains the character ()\lU) TP.

Notice that the character ()\lU) TP is not irreducible, since A is one of its irreducible con-
stituents. Therefore there are p different constituents, and we also know that they are the
character (A ,) TP.

The previous theorem has been also generalized in [67] in the case when P is a p-subgroup
of G and we are not considering only linear characters.

3.1 The symmetric group case

Let us focus now on the case of the symmetric groups. We start by recording a couple of
theorems proved in [28] that will be generalized in Chapter 4. In this section p is a prime.

Theorem 3.1.1 (|28, Theorem 3.1]). Let x € Irr(S,,) and let P, be a Sylow p-subgroup of S,,.
Then le has a linear consituent.

Notice that this theorem does not holds for a general finite group, but it is a special feature
of the symmetric groups. For instance, if G is a p-group and x € Irr(G) is not linear, then
P € Syl,(G) is the whole group P = G and le = x is not linear.

Theorem 3.1.2 (|28, Theorem Al). Suppose that n is a positive integer and let P, € Syl,(&,,).
If x € Irr(&,,) has degree divisible by p, then the restriction le has at least p different linear
constituents.

The authors, in [28], also noticed that the number of linear constituents of the character
le tends to be very large, but there are arbitrarly large integers n for which this number is
exactly p.
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The problems that the results in [28] leave open are the description of the linear constituents
of which they claim the existence, and the computation of their Sylow branching coefficients.

The explicit computation of Sylow branching coefficients has been done only for few special
cases. However, there are deeper results concerning their positivity in [24] and [25].

In [24], the authors determines all irreducible constituents of the permutation character

]1P,,,T6", where p is an odd prime.

Theorem 3.1.3 ([24, Theorem A]). Let p be an odd prime, let n be a natural number and let
A€ P(n). Then x* is not an irreducible constituent of IlpnTG" if and only if n = p* for some
keNand X € { (p* —1,1),(2, lpk_Q) }, or p =3 and X is one of the following partitions:

(2,2), (3,2,1), (5,4),(2%,1),(4,3,2),(3%,2,1), (5,5),(2%).

This theorem shows that, apart from the few exceptions arising for small symmetric groups
at the prime 3, given any natural number n € N which is not a power of p, the restriction to
P, of any irreducible character of &,, has the trivial character 1p, as a constituent. Hence the
positivity of ZJ)l(Pn is completely described for odd primes.

Notice that this does not hold if p = 2. For instance, the sign representation of &, restrict
irreducibly and non-trivially to a Sylow 2-subgroup of &,,.

When p is odd, a similar description of the permutation character exists also for the alter-
nating groups case. This is [24, Theorem C].

In [25], the work of [24] has been largely extended by considering the entire set Lin(P,) of
linear characters of P,. In particular, for any linear character ¢ of P, they studied the set Q(¢)
consisting of all those irreducible characters x of G,, such that Z;f = 0.

Fix a prime p > 5, let n € N and P, € Syl,(&,). Let ¢ be any linear character of P,.
Recalling that the set Irr(&,,) of ordinary irreducible characters of &,, is naturally in bijection
with the set Z2(n) of partitions of n, we may view Q(¢) as a subset of &?(n); in other words, we
set

o) ={re P(n)| 23 #0},

where, for simplicity, we used the symbol Zd’} to denote Z;S‘A.
Let m(¢) and M(¢) be the integers defined as follows:

m(¢) :=max{t € N| B,(t) C Q) } and M(¢) :=min{t e N|Q(¢) C B,(t) }.

In [25, Theorem B], m(¢) and M (¢) are explicitly computed for any linear character ¢ of P,
and p > 5. This gives a very precise description of (¢) for all ¢ € Lin(P,). In fact:

PBn(m(9)) € Q) S Bn(M(0)),

and the values m(¢) and M (¢) are closed to each other for all ¢ € Lin(P,).

Notice that for the prime 3 the set 2(1p,) has already been described in [24].

The paper [25] concludes with an asymptotic result. Namely, almost all x € Irr(&,,) share
the following property: Z;‘ # 0 for all ¢ € Lin(P,). More precisely:
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Theorem 3.1.4 (|25, Theorem C]). Let p > 5 be a prime and n € N. Let §,, be the intersection
of all the sets Q(p) where ¢ is free to run among the elements of Lin(P,). Then

lim [2n| =
n—oo | P(n)]

So far the recorded results on Sylow branching coefficients hold for p an odd prime. Usually,
when p = 2 the situation is completely different. For instance, Q(¢) is no longer closed under
conjugation in general, and there is not a conjecture for the structure of the sets Q(¢), where
¢ is a linear character of a Sylow 2-subgroup of &,,. Indeed, it is still an open problem for the
prime 2 to determine Q(1p,).

By this time, probably the reader has already noticed that there are not many results con-
cerning constituents of the restriction le that are not linear. We were able to say something
about this topic. We refer to Chapters 4 and 5 for our results.

3.2 The case p=2 for G,

From Section 3.1, it can be noticed a fracture between the knowledge accumulated on Sylow
branching coefficients for the symmetric groups at odd primes and the lack of information on
this topic when the prime p is equal to 2. For instance, as we already pointed out, the irreducible
constituents of the permutation character ]lpnTG" are completely described for odd primes, but
are far from being understood when p = 2.

We collect below some computations of Sylow branching coefficients for p = 2 that can be
done for specific type of characters. Our contribution on the study of this case is the subject of
Chapter 5.

3.2.1 On the McKay bijection

Some results concerning linear constituents of the restriction of an irreducible character to a
Sylow 2-subgroup has been obtained while studying the McKay conjecture. This is one of the
most important among the local-global conjectures mentioned in the introduction, because many
other conjectures and research topics arise from it.

J. McKay [53| originally formulated his conjecture only for G a simple group and for the
prime p = 2, We would like to state it in full generality here:

Conjecture 3.2.1 (McKay, 1972). Let G be a finite group and p be a prime. Let P be a Sylow
p-subgroup of G. Then
[Trry (G)| = [Tty (N (P))],

where Irry denotes the subset of those ordinary irreducible characters of G of degree coprime to
p, and Ng(P) denotes the normaliser of P.

This conjecture holds for all finite groups of odd order at all primes p ([36]), for symmetric
and general linear groups (|64]), and for every finite group for the primes 2 and 3 ([57] and [68]),
where the reduction to simple groups in [38] is used.
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If G is the symmetric group &,,, p = 2 and P, is a Sylow 2-subgroup, then Ng_(P,) is actually
P,,. Hence the restriction of irreducible characters to Sylow 2-subgroups was studied also for its
connection to the McKay conjecture. We can find some results on the topic in [39] and [20].
The achievements in the latter paper were fundamental in [23] to construct a canonical bijection
between Irro/ (S,,) and Irry (Py,) for any natural number n and P, € Syl,(&,,). Furthermore, they
were used to prove the more general theorems in [28] that we already recorded in the previous
section.

More precisely, in [20, Theorem 1.2] is proved that for every x € Irr(S,,) its restriction to a
Sylow 2-subgroup P, contains a linear constituent. Moreover, if n is a power of 2 and y has odd
degree, this linear constituent is unique.

By [20, Lemma 3.1] we know that the irreducible characters of odd degree of G4 are exactly
those labelled by hook partitions of 2¥. Recall that we denote by .%(n) the set of hook partitions
of the natural number n. Having said that, we would like to record here [20, Theorem 1.1].

Theorem 3.2.2. Letn € N and let A € J(2%). Then XAlP . admils a unique linear constituent.
2

Such a constituent appears with multiplicity 1.

In Theorem 3.2.3 below we identify this unique constituent by describing the associated
{0, 1}-sequence that characterizes linear characters of Pyx. We refer to Section 2.3.1 for the
description of the irreducible characters of the Sylow 2-subgroups.

The previous theorem was also made explicit in Proposition 3.2.4 and 3.2.5 of [50]. His result
use the canonical basis of the Specht modules labelled by hook partitions.

From now on we will adopt the following notation. Given z € Z, we let [z] € {0,1} be such
that z = [z] mod 2.

Theorem 3.2.3. Let k € N and let A = (28 — 2,1%) € 52(2F) where x = ;2% + ap_12F1 +
-+ ap2° is its binary expansion. The unique linear constituent of X/\lp 18

2 ([ag + ak—1], [ag—1 + ax—2a], ..., [a1 + ag)) .
Proof. We proceed by induction on k. If k = 1 then A € {(2),(1%)}. If A = (2) then z = 0 =
0-2140-2° [a; +ag) = [0+ 0] =0 and X<2>lp2 = ¢. Similarly, X<12>lpz = ¢1. Let now k > 2
and \ = (2k —x, 1"”). We denote by L) the unique linear constituent of X/\ip L as prescribed
2
by Theorem 3.2.2. By the Littlewood-Richardson rule, we have

— ) )

A
X ‘Legkz—l XS k-1

8

z, if x is even, . . . _
where y = {2 and A is the sum of irreducible constituents of the form ¢ x 1,

-1 . .
=, if xis odd,

for some ¢,1 € Irr(Gor-1) with ¢ # . It follows that Ly = 2~ (L(Qk_l,y 1y);q§a), for some

a € {0,1}. In order to find a, we consider a 2F-cycle g € Py. Since Py = Pou—1 ! P> we can
choose g = (h,1;7), where h € Pyi—1 is a 28 1-cycle and v € Py is a 2-cycle. Using Lemma 2.3.4
and Remark 2.3.3, we have that

\(9) = La(9) = Lg-1y 0y () - @alr) = X781 () - x @m0 (),
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The Murnaghan-Nakayama rule [45, 2.4.7] implies that (—1)* = (=1)Y(—1)%. It follows that

{O, if z = y mod 2,
o =

1, otherwise.

Since z = a2 4+ -+ + ag2® is the binary expansion of z € [O,Qk — 1], then y = a2 1 +

-+ a12Y is the binary expansion of y € [0,2’%_1 — 1]. Hence, a = [a; + ap] and we have
Ly=% (L(Qk,l_y71y); ¢[a1+a0]>. Using the binary expansion of y and the inductive hypothesis
we conclude the proof. O

This result is used in Section 5.1 to compute a large family of Sylow branching coefficients.
In particular, in Theorem 5.1.4 we calculate Z;‘ for all x € Irr(&,,) labelled by a hook partition
and all ¢ € Lin(P,). This is a wide generalization of Theorem 3.2.2.

3.2.2 About the permutation character 1p, TG"

We end this chapter collecting some results about ZX for x an irreducible character of &,,.
In [51] it has been proved that, when p = 2, the probablhty that the Sylow branching
coefficient fop is zero tends to zero as n tends to infinity. More precisely:

n

Theorem 3.2.4 (|51, Theorem B|). For n a natural number, let P, denote a Sylow 2-subgroup
of the symmetric group S,. Then almost all irreducible characters x of S, have positive Sylow
branching coefficient foP . That 1s,

[{xenm(&.) |2y, >0}
R0 rr(S,0))]

Furthermore, in [51, Section 3] we can also find some explicit computations of fo;n for
partitions A of various ’special’ shapes.

To ease the notation, we denote by Z* the Sylow branching coefficient ZX . In general, the
strategy used in this paper is similar to the one used in our main results later they congsider the
case when \ € 22(2%) and they induct on k, before considering the case of general n € N. The
results follow from a combination of elementary applications of the Littlewood-Richardson rule,
Mackey’s theorem and known results on character restrictions for symmetric groups.

Lemma 3.2.5 ([51, Lemma 3.1]). Let A be any partition of n. If all parts of \ are even, then
Z* > 0.

Lemma 3.2.6 ([51, Lemma 3.2|). Let n € N and A € &(n). If n is even and [(\) > 5, then
Z* =0. If n is odd and [(\) > %H, then Z* = 0.

The bound on the number of parts of A cannot be improved. For instance, from the lemma
below we see that A = (2,2,...,2,¢) € 2(n) where € € { 0,1} satisfies Z* = 1 and [(\) = % if
n is even, respectively [(\) = ”TH if n is odd.
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Lemma 3.2.7 ([51, Lemma 3.4]). Let \ be a partition with at most two columns. Then Z* =0
unless A = (2,2,...,2,¢) where e € { 0,1}, in which case Z* = 1.

Lemma 3.2.8 (|51, Lemma 3.6]). Let k € N>o. If A = (28 —4,2,1772) € 22(2F) with 2 < i <

2k — 2, then Z* = (ij)

3.3 Further research

In this section we collect some ideas for further research.

Let P, be the Sylow p-subgroup of the symmetric group &,,. Let A be a partition of n, and
x> the associated irreducible character of &,,.

As we have seen in the previous sections, we are far from a good understanding of the
complete description of the decomposition into irreducible constituents of the restriction X/\an‘
In Chapters 4 and 5 we have made some progress, separating the analysis of the case of an odd
prime p and the case when p = 2.

When p is odd, we are now able to determine if there exists ¢ € Irr(P,) of degree p* among
the constituents of X)‘ipn. This is the content of Theorems 4.3.1 and 4.3.3.

What is still unknown is which are the irreducible constituents of fixed degree (higher than 1)
that appear in the decomposition of the restriction. Also, we do not have an explicit formula for
the exact values of the Sylow branching coefficients. This problem remains open for constituents
of any degree (including 1).

When p = 2, we are now able to understand if there exists ¢ € Irr(P,) of degree 2¥ among
the constituents of X/\an’ only if X is an hook partition. This is Theorem 5.2.11. It is natural
to wonder what happens if A is not a hook partition. This seems very difficult when p = 2. For
instance we do not even know the constituents of ]lpnTG" in this case, as we already observed.

These seem to be the natural directions of the research on the Sylow branching coefficients.
We believe that the combinatorial tools that led us to prove the main results in this thesis can
also help to answer some of these open questions.

Let ¢ be an irreducible character of P,. Frobenius reciprocity tells us that the Sylow Branch-
ing Coefficient of ¢ in x* is [X/\lp 0l =[x, QOTB"]. Hence the problem of studying the decom-

position of X)\an can be replaced by the studying of the induction @TG".

In this perspective, the main result of [26] shows that two linear characters of P, have the
same induction to &,, if and only if they are Ng, (P,)-conjugate. We tried to generalize this
result in the case of higher-degree characters. However, we discovered that this does not hold.
In fact S. Law and G. Navarro found several families of counterexamples.

Thereby, there are two different directions that the research on this topic can take. The first
one is to try to find subgroups H < &,, with the property that two irreducible character of P,
of fixed degree have the same induction to &,, if and only if they have the same induction to H.
This is similar to the result in [26], since two irreducible characters of P, are Ng, (P,)-conjugate
exactly when they have the same induction to Ng, (P,). Roughly speaking, the question is: if
two irreducible characters of P, have the same induction to &,,, did they already have the same
induction to a smaller subgroup H such that P, < H < &,7
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The second direction for the research is trying to understand what we usually call the excep-
tion pairs, i.e. the pair of irreducible characters of P, that have the same induction to &,, but are
not Ng, (P,)-conjugate. As previously mentioned S. Law and G. Navarro found several families
of exception pairs, but can we find them all? In joint work with S. Law, we have already been
able to describe the action of the normalizer on the irreducible characters of P,, but it remains to
find a characterization of the characters with the same induction to the whole symmetric group
S,. We are trying to adapt the ideas used in [26] for linear characters, to attack the general
situation of non-linear ones.

Our previous work had started from the attempt to generalize Theorem 3.1.1. However,
in the same paper [28], also Theorem 3.1.2 seems to worth of some attention. This theorem
tells us that if p divides the degree of an irreducible character x of &,,, then Xan has p linear
constituents.

Again, there are a couple of natural ways to generalize it. The first one is to trying to
understand what happens when the chosen prime p does not divide the degree of the character.
The second one is to focus on non-linear characters of the Sylow subgroup. Our question is:
can we find a natural number [, such that if p*|x(1) then there exist at least p irreducible
constituents of Xan of degree p*?



Chapter 4

Non-linear Sylow branching coefficients
for G,

Let n € N, let p be a prime and let P, be a fixed Sylow p-subgroup of &,,. We would like to
say something about the higher-degree constituents of the restriction of a character to P,. As
we have seen in the previous chapter, the study about the linear ones has gone quite far, while
almost nothing has been said to date about the other constituents.

To be more precise, the main question studied in this chapter is the following. Given k € N,
which and how many irreducible characters of &, admit a constituent of degree pF in their
restriction to P,? More formally, we let Irri(P,) denote the set consisting of all the irreducible
characters of P, of degree p*, and we focus our attention on the subset of Irr(&,,) defined by

QF .= {x e (&) | [len, ¢] # 0, for some ¢ € Irri(Py,)}. (4.1)

As we already mentioned in Section 3.1, Theorem 3.1.1 proves that the restriction to P, of
any irreducible character of &, admits a linear constituent. In other words, Q0 = Irr(&,,). This
result was improved (for odd primes) in [25] where, for every linear character ¢ of P,, the authors
classify those irreducible characters y of &, such that ¢ appears as an irreducible constituent of
len'

In this chapter we largely extend the result obtained in [28] mentioned above, since, for any
odd prime number p, we are able to describe the set QF, for any k € N. Surprisingly enough,
these sets possess a quite regular structure.

This chapter includes substantial material taken from [30].

To describe the set QfL, we first find out which are the possible £ among which we can choose,
i.e. which are the possible degree for an irreducible character of the Sylow subgroup P,. This is
Lemma 4.1.3.

The study of sz is then divided into two cases: the first one is the prime power case, that is
when n is a power of the prime p, and the second one is when n is an arbitrary natural number.

Suppose that n = p' for a fixed natural number ¢. We know that Pyt = P10 By, and its
base group is (Pptq)Xp. The idea is to work by induction on ¢. Hence, if A is a partition of

pt, we restrict x* to (6pt—1> P using the Littlewood-Richardson rule. Then we restrict again to

39
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the base group of the Sylow subgroup using the inductive case covering ¢t — 1. We have now two
cases: either the character obtained is the product of distinct irreducible characters of Py-1, or
it is the product of p times the same character. Clifford theory tells us what happens when we
induct the character to the Sylow subgroup P, as we have seen in Section 2.3.1. By Frobenius
reciprocity we know that this is equivalent to restrict x* directly to the Sylow subgroup. Indeed,

X l(Gpt—l)Xp> J/(Ppi_1)xp> T ?* has the same irreducible constituents of y let' This is the

main idea beyond the proof of the main results of this chapter for the prime power case. In
Lemma 4.1.4 we prove that there are enough irreducible consituents of any fixed degree to be
able to work by induction; Theorem 4.2.2 says that the partitions in the set Q’;t have Young
diagram that fits in a fixed grid; finally Theorem 4.2.6 gives us the exact dimension of this grid.

We are able now to describe the case of an arbitrary natural number n, considering its p-adic
expansion n = Zle p™ with ny > -+ > n; > 0. Indeed, we can restrict an irreducible character
of &, to Gpn1 X - -+ x Gpny using the Littlewood-Richardson rule. Then we can restrict again to
P, = Pym X --- X Ppyn using the knowledge obtained by the study of the prime power case. The
main results are Theorem 4.3.1 and Theorem 4.3.3.

4.1 Preliminary results

In this section we start collecting some results that will be used to prove our main theorems
in the second part of this chapter. From now on, unless otherwise stated, p denotes an odd
prime.

Let n € N and let n = 2221 p"i be its p-adic expansion, where nqy > ng > --- > n; > 0.
Notice that n; can be equal to n;41.

We define the integer a, as follows. For powers of p we set

k—1
%, for k > 2.

alzap:Oandapk:

For general n = 25:1 P, we set ap = 25:1 apni .
We will show in Lemma 4.1.3 that p®» is the greatest degree of an irreducible character of

P,.

Note 4.1.1. Let v(m) be the highest power of p dividing m, m € Z, and let |¢] be the largest
integer smaller than ¢, ¢ € Q. It is interesting to note that

e ((2])

The proof of this equality is quite technical. We include it for the sake of completeness.

Proof. First we can prove it for the powers of p: if n =1 then [7] =0, and v([7]!) = v(1) =
0 = a1, by definition. We claim that for & > 1, a k1 = (p* —1)/(p—1) = v(|p*]) = v(p").

We have that pF! = pF . (p*~1 —1)---2-1, and every number in [1,p* — 1] can be written as
ap_1p* 71 4+ 4 a1p + ag with a; € [0,p — 1] for every i € [0,k — 1]. Since we want to consider
the highest power of p dividing these numbers, we can suppose ag = 0.
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Now, the numbers that are divisible by at most p are the ones for which a; # 0.Hence these
are (p — 1)p*~2 numbers, each of them giving 1 as contribution to the calculation of v. The
ones that are divisible at most by p? are the one for which a; = 0 and ay # 0. Hence these are
(p— 1)p*~?

We can continue with this argument for every power of p till we reach p*~1. Recall that we
are counting only the numbers in [1,p*~! — 1] and forgetting the initial p*. Hence we have

numbers that give 2 as contribution.

k-1 k—1
y(pk!) =k+ Z(p — 1)pk717i i=k+(p—1) [Z jpk—1—i
i—1 i—1

We can now change the internal variable form ¢ to j =k — 1 —1:

k—2 k—2 k—2
v =k+(p—1) |> (k=1-5)p | =k+(@-DkY_p —(p-1)> (+1)p.
§=0 §=0 §=0
: s k=2 5 _ pF7l-1
The second equality holds by splitting the summand. Now, we know that Ej:[)p] = 1

Thus we can simplify the first part of the equation by

k—2

k—i—(p—l)k‘ij:k—i-(p—l)k(

J=0

pkfl -1

o ) =k+ kPt —1)=kpt L.

About the second summand, we can notice that (j + 1)p’ = 4 (27+1)|,—,, where by 4L f(z)[,—,
we denote the derivative of the function f(x) in x, valued in p. Since the summand is finite, the
derivative and the summand itself commute. What we have is then

k—2 ' k—2 d ‘ d k—2 '
GH0r =3 (@ amy) = o (S0t ) lasy
=0 =0 =0
_d far -1 e, = H = Dp* ' = (* - 1)
de \ z—1 )"P (p—1)2 )

The above equation thus becames

I/(pk!) — k?pk_l o (p . 1) <k(p - 1)pk71 — (pk — 1))

(p—1)?
k k
-1 -1
:k?pk_l—kpk_1+];?_1 :];_1 :Oépk-+1.

This conclude the proof of the p-power case.
Let now n be a natural number with n = 22:1177“7 ny > -+ > ng > 0, its p-adic ex-

pansion. By the definition of «, and the previous computation, we have o, = 22:1 Qpni =

Sty v((p™hY). We claim that v ([2]1) = S0, v((p™h)).
This can be proved by applying iteratively the following fact: for n > m,

v((p" +p™)) =v(p") +v™).
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This is true because (p" +p™)! = (p" +p™)(p" +p™ — 1)~ (p" + 1)p"(p" — 1) --- 1, thus the
contribution of the numbers in [p™ + 1,p" + p™] to the calculation of v is given only by what is
added to p™, since m < n. These contributions are exactly the factors of p™!. About the last serie
of numbers, i.e. the ones in [1, p"], these are simply the factors of p™!. Hence the contribution of
the two parts to v is exactly v(p™!) + v(p™). O

As mentioned before, Trry(P,) = {6 € Trr(P,) | 0(1) = p¥} denotes the set of irreducible
character of P, of degree p*. In the following lemma we give a lower bound for the size of
this set. The lower bound given is far from being best possible, but it will be sufficient for our
purposes.

Lemma 4.1.2. Let k,t € N be such that p* € cd(P,t). Then |Irr(Pyt)| > p.

Proof. We proceed by induction on ¢. If ¢ = 1 then we know that the statement holds as
Irr(P,) = Irrg(P,) has size p. As we have seen in Section 2.3.1, the elements of Irr(P,) are
denoted by ¢o, ¢1,...,¢p—1, where we conventionally set ¢g to be the trivial character. Let
t > 2, and let ¢ € Irrg(Py). If op = 27(0; ¢;) for some 0 € Irrg(Py-1) and i € [0,p — 1], then
Z(0; ¢;) € Irry,(Pye) for all j € [0, p—1]. Hence |Irry(Pye)| > p. Otherwise ¢ = (61 x- - XHP)TPI”’
where 01,...,0, € Irr(P,-1) are not all equal. If there exists x € [1,p] such that 61(1) # 0,(1)
then we define ny,...,n, € Irrg(P,) as follows. For any j € [1,p] we let
Py

= (1) x 02 x - x0p) "7,
where 71,72, ...,7, are p distinct irreducible characters of Py-1 of degree 61(1). These exist by
the inductive hypothesis. On the other hand, if 6;(1) = 0,(1) for all = € [1,p] then we let

m = (T2 X X Ty X Tl)TPpt, and nj = (71 X -+ X 71 X Tj)TPPt, for all 5 € [2,p].

As before, here we chose 71,72,...,7, to be p distinct irreducible characters of P,—1 of degree
61(1). These exist by the inductive hypothesis. In both cases n1,...,1n, are p distinct elements
of Irry(P,). Hence |Irry(Py)| > p. O

The next result is significant. It shows that P, has irreducible characters of each degree
17p7p27"'7pan'

Lemma 4.1.3. Let n € N. Then cd(P,) = {p* | k € [0, ay]}.

Proof. Let us first suppose that n = p’ is a power of p and proceed by induction on t. The
case t = 1 is trivial, since P, is cyclic and oy, = 0. If £ > 2, notice that o, = 1 + pag—1. Let
k€ [0,ap — 1], and let ¢ < aye-1 and 7 € [0,p — 1] be such that k = gp+r. If r = 0, by the
inductive hypothesis there exists ¢ € Irr(P,-1) such that ¢(1) = p?. Hence for any 1 € Irr(Fp),
2 (¢;4) € Irr(Pye) has degree p*. If r > 0, then ¢ < api-1. By the inductive hypothesis, there
exist ¢1,...,¢p € Irr(Py-1) such that ¢;(1) = p?tt for every i € [1,7], and ¢;(1) = p? for every
jE€[r+1,pl. Hence (¢1 X -+ X ¢p X Ppp1 X -+ X qbp)TPPt € Irr(P,) has degree p*. Finally, let

k = a,. By the inductive hypothesis and by Lemma 4.1.2, there exist ¢1,...,¢, € Irr(Py-1)
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not all equal and such that ¢;(1) = p®»'~* for all i € [1, p] Hence (¢1 X -+ X qﬁp)PPt € Irr(Py)

has degree p*. This concludes the proof in the case n = pt, for t € N.
The case where n is not a power of p follows easily. Indeed, if n = Zzzl p™ is the p-adic
expansion of n, where nqy > ng > --- >n; >0, then P, = Pyny X Ppyna X -+ X Ppny. O

Let n, k € N. Tt useful to think of QF as a subset of £2(n) instead of Irr(&,,). More precisely,
for A € 2 (n), we will sometimes write A € QF instead of x* € QF.

The following is an important ingredient when proving statements by induction. For an
odd prime p let x be a non-linear character of &, and suppose that Xan has an irreducible

constituent of degree p*. Then it has at least two distinct irreducible constituents.

Lemma 4.1.4. Let n € N such that p < n and let X\ € QF < {(n), (1)} for some k € [0, a,].
Then there are at least two distinct irreducible constituents of (x) lp of degree p*.

Proof. Let us first suppose that n = p’, and let us set P = P, and N = NGpt (Pyt). We observe
that the only N-invariant irreducible character of P is the trivial one. To show this, we let
Irr g (P) denote the set of K-invariant irreducible characters of P, for any K < N. Let H be
a p/-complement of P in N. Clearly Irry(P) = Irrgz(P). On the other hand, by Lemma 2.3.6
we know that there are no non-trivial elements of P that are centralized by H. Hence the set
Cp(H) = {x € P | 2" = 2, forall h € H} consists of the only identity element. Using the
Glauberman correspondence [37, Theorem 13.1], we get that |Irry(P)| = |Irr(Cp(H))| = 1. It
follows that Irrn(P) = {1p}, as claimed.

Since A ¢ {(n),(1™)}, by [25, Lemma 4.3] we know that (X’\)lp necessarily admits a non-
trivial linear constituent (direct computations show that this holds also in the case (p,n,\) =
(3,9,(3,3,3)), which is not covered by the lemma). It follows that for any k € N such that
A 6 QF we can find a non-trivial § € Irrg(P) such that 6 is a constituent of ( lp Since
x* is N-invariant we deduce that every N-conjugate of 6 is a constituent of y*. The statement
follows. Recalling the structure of P, described in Section 2.3.1, we observe that the case where
n is not a prime power is an easy consequence of the prime power case. O

Definition 4.1.5. Let G be a finite group and let H be a p-subgroup of G. Given a character
of G, we let cd(GlH) be the set of degrees of the irreducible constituents of HlH. Moreover, we
let i (0) be the non-negative integer defined as follows:

On(0) = max{k e N | p* cd(0] )}

We refer the reader to Section 2.2.3 for the definition of the Littlewood-Richardson coefficients
LR N1, .., V).

Proposition 4.1.6. Let n € N and let Y = (&,n-1)"P < Gpn be such that B <Y, where

B = (Pyn-1)*? is the base group of Pyn. Let X\ € Byn(p™ —1). Then

op,n (x") = 1+ max{0p(x"* x --- x X"?) | x"* x --- x x"® € Ier(Y) and LR\, v1, .. .,vp) # 0}.

Proof. Let M = 14+max{0p(x"* x---xx"?) | x"* x---xx"? € Irr(Y') and LZ(\; 11, ...,1vp) # 0}.
Let pi1, ..., pp € P(p"1) be such that LRZ(\; 1, ..., pp) #0and M = 1+ (x* x -+ - x x*»).
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Since A ¢ {(n), (1")}, we can assume that p1,. .., u, are not all in {(p" 1), (17"7)}. Moreover,
let ¢ be an irreducible constituent of (x*1 x- - ~xx“?’)lB such that ¢(1) = pM~!. By Lemma 4.1.4,

we can take ¢ = ¢1 X - - X ¢p with ¢1,..., ¢, € Irr(P,n-1) not all equal. Hence ngPpn € Irr(Pyn),
it has degree p™ and [(XA)ip, ,quPpn} # 0. Thus pM € Cd((X)\)lp, ).
pVL pVL
Now suppose for a contradiction that there exists an integer N > M such that p
cd((XA)lP ). Then there exists ¢ € Irr(Pyn) such that [(X/\)lp ,(p} # 0 and p(1) = pV.
p" p"

Let ¢1 x -+ X ¢, be an irreducible constituent of gplB. Hence there exist pq,...,u, € 2(prh
such that ZZ(\;p1, ..., pp) # 0 and [gf)l X oo X p, (XH X - X XMP)J/B] =# 0. We have that

N ¢

M>(9B(X’L1X"'XX“”)ZN—1,

since the degree of ¢1 x --- X ¢, is either p or pV~1. Hence M < N < M + 1, which is a
contradiction. O

Proposition 4.1.7. Let n be a natural number and let n = Zle P be the p-adic expansion of
n, where ng >ng > --->ng > 0. Let Y = Gy X Gpna X -+ - X Gpny be such that P, <Y < G,
and let A be a partition of n. Then

Op, (x*) = max{dp, (X! x -+ x xM") [ XM x - x XM € Iie(Y) and LR - ) # 0}
Proof. Since P, = Pyni X Pyna X -+- X Pyny <Y, the statement follows. O
We refer the reader to the end of Section 2.2.3 for the definition of the x operator.

Lemma 4.1.8. Let n € Nxo, let k € [2,apn] and let (ai,...,ap) € €(k — 1) be such that
a; € [0,ayn-1], for alli € [1,p]. Then

al as ap k
Qpn_l * Qpn_l * ek Qpn_l C Q.

Proof. To ease the notation we let ¢ = p"~1. If X € Qg+ Qg2 % %", by definition there exists
an irreducible constituent x*! x - - - x y#» of (X/\)l(eq)w such that p; € Qg for all i € [1, p]. Hence
for every i € [1,p| there exists an irreducible constituent ¢; of (Xm)lpq such that ¢;(1) = p*.
Since k > 2, there exists j € [1,p] such that a; > 1. Hence p; ¢ {(¢), (19)}. Thus, by Lemma

4.1.4 we can assume that ¢1,..., ¢, are not all equal. It follows that (¢ x - -+ x gbp)TPpn is an
irreducible constituent of (X’\)lp of degree equal to p*. Hence \ € Ql]jn. O
pn

Lemma 4.1.9. Let n € N>o and let n = 2321 p"i be its p-adic expansion, where ny > ng >
- >mny > 0. Let k € [1,ap] and let (a1,...,a:) € € (k) be such that a; € [0, apm], for all
i €[1,t]. Then
Q0L+ Q02, x - % QU C QP

Proof. Recall that P, =2 Pym X Ppna X -+ X Ppne and let A € Qphy « Q73 x -+ % Q7L By
definition, for every i € [1,¢] there exists ¢; € Irr(Ppni ) with ¢;(1) = p®, such that ¢1 x -+ X ¢
is an irreducible constituent of (X’\)lp of degree p*. Hence \ € Q’;n. O



4.2. THE PRIME POWER CASE 45

4.2 The prime power case

The aim of this section is to completely describe the sets Ql;n for all odd primes p, all natural
numbers n and all k£ € [0, apn]. We remind the reader that from Theorem 3.1.1, we know that
an = Byn(p"), for all n € N. Equivalently, every irreducible character of G,» admits a linear
constituent on restriction to a Sylow p-subgroup. This result will be used frequently, with no
further reference.

We start by analysing the cases where k& € {1,2}. In the next lemma we show that for
J = 1,2, every non-linear character of &,» affords an irreducible constituent of degree p’ on
restriction to a Sylow p-subgroup P,», as long as P, has an irreducible character of degree Pl

Lemma 4.2.1. Let n € N and k € [1,an] N {1,2}. Then Ql;jn = PBpn(p" —1).

Proof. Let k = 1. Then necessarily n > 2. By considering %pn (p" — 1) rather than Z,» (p"), we

are excluding the linear characters ") and X(lpn) of &,n. These two characters cannot have an

irreducible constituent of degree p in their restriction to P,». Hence we can observe that clearly

On the other hand, if A € Zyn (p" —1), then there exist 11 € HBpn—1 (p"~t—1)and pa,...,up €

P(p"~1) such that LR\, ..., 1p) # 0. Using Lemma 4.1.4 we deduce that (X" | p -
p

admits two distinct linear constituents. Therefore, there exists ¢1,...,¢, € Lin(FPpn-1) not
all equal and such that ¢; is a constituent of (X“i)lp o for all i € [1,p]. It follows that
p"T

(1 X -+ X qbp)TP”n is an irreducible constituent of (x*) |
A€ Q}?n and hence that Q}Dn =B (p" —1).

Let k = 2. Then necessarily n > 3. It is clear that Qf,n C Ay (p" — 1). On the other hand,
if A € Bpn (p" — 1), then there exist p1 € Byn—1(p"~ ' — 1) and pg, ..., pup € P(p" 1) such that
LREN; p, ..., 1tp) # 0. We can now argue exactly as above to deduce that (X/\)lp admits

pn

p,, of degree p. We conclude that
pn

an irreducible constituent 6 of the form 6 = (¢ x ¢1 X -+ X ¢p_1)TPpn, where v € Trry(Ppn-1)

and ¢1,...,¢p—1 € Lin(Pyn-1). Hence (1) = p?, XA € Q2. and therefore we have that 02, =
%pn (pn — 1) D

Lemma 4.2.1 is a special case of the following more general result.

Theorem 4.2.2. Let n € N and let k € [0,an]. Then there exists th € [#,pn] such that
Q];n = By (tE). Moreover, if k € [0, apn — 1], then tht! € {tk — 1 ¢k},

Proof. We proceed by induction on n. If n = 1, then o, = 0 and Qg = Z(p). fn>2 we
assume that the statement holds for n —1. If £ = 0 then an = By (p") and ¢ = p". Moreover,
by Lemma 4.2.1 we know that t. = p” — 1 =t — 1, as required. The case k = 1 is completely
treated by Lemma 4.2.1. In fact, we know that Qzl,n = Bpn(p" — 1) and that t2 = p" — 1 =t}
as required. We can now suppose that k > 2. We define

Lk —=1)={(1,--,Jp) €C(k—1) | ji € [0, pn-1] for all 4 € [1, p]}.
Moreover, we set

M =max {#, + -+ 87, | (j1,...,jp) € L(k—1) } .
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Notice that for any j € [0 apn-1], the value tJ _, is well-defined by induction as the integer such
that an = Bn-1(t,_,). We claim that M = tk. In other words, we want to prove that

Ok, = By(M). Let (ji,...,jp) € L(k —1) be such that M = £ | + - +* . By the
inductive hypothesis and by Lemmas 2.2.9 and 4.1.8, we have that

'%)p" (M) = Bpn—1 (tilfﬂ Kok e%pn—l (tszl) = Qg}l QJP

k
P n—1 pn— 1 C Qp"'

For the opposite inclusion, suppose for a contradiction that A € ngn N PBpn(M). Since p is
odd, we have that an is closed under conjugation of partitions. Hence we can assume that
A1 > M+1. Since A € QF,, there exists an irreducible constituent 6 of (x lP with 6(1) = p.

e If 0 = (¢1 x -+ X ¢p)] Bor with ¢1,...,¢p € Irr(Pyn-1) not all equal, then there exists
(1, - -+, Jp) € ZL(k — 1) such that ¢;(1) = p’i for all i € [1,p]. Then, for every i € [1,p] there ex-

SuCh that |:X/J'1 X oo X XAU‘P7 (XA)J,(G 1)><;D # 0
P

Hence using the inductive hypothesis, we have that u; € 9;2_1 = %pnq(tﬁ_l), for all 7 € [1, p].
Hence

ists an irreducible constituent x*i of (qbi)TGP’“1

M>t 4+t >N >M+1,

where the first inequality holds by definition of M and the second one by Lemma 2.2.8. This is

a contradiction. .

e On the other hand, if 6 = 2" (¢;1) for some ¢ € Irr(Pyn-1) and ¢ € Irr(F,), then, ¢(1) = pr
k

and there exist pi, ..., up € an,l such that ZZ(X\; p1, ..., up) # 0. Hence, using the inductive

hypothesis we have that
k *p k *p
ve (05" = (Bohn)”

Here we denoted by A*P the p—fold *-product A x---x A. By the inductive hypothesis we also
k k -1 -1
know that ¢”_, € {t —1,t7 } Using Lemma 2.2.8 we obtain that

»¥n—1

k

k

n 1
This is a contradiction. Notice that the last inequality above follows from the definition of M,
as (%,.. %,%— ) e ZL(k—1).

For k € [2, oapn — 1], what we have proved so far is summarised here.

Qb = By (1), with T = max { £, 4+, | (o) € 2(k—1) )
Q;}Tl = By (V), with V:max{tﬁl_l—i-“--i-tzp_l ‘ (hi,..., hp) Ef(k)}

Let (j1,...,Jp) € Z(k — 1) be such that T = tjl_l +- tff_l. Without loss of generality,
we can assume that j; < a,n-1. Then (j1 + 1, ja,...,7p) € £ (k). By the inductive hypothesis

+1
we know that t]1 € {t — 1,1%_1 } Hence

V>t]1+1+t-72 ++t‘;p71€{T*1,T} (42)
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On the other hand, let (hq,...,hy) € Z(k) be such that V = tzl_l +.. +tZ”_1. Since k > 2,
without loss of generality we can assume that Ay > 0. Then (hy — 1,ho,...,hy) € L(k —1).
Thus, as above:

Vo=t bty ST (4.3)

»"n—1

since t' e {4t — 1 ¢M 7 L Inequalities (4.2) and (4.3) imply that Ve {T —1,T}. O
{ q ply ;

We refer the reader to the second part of Example 4.2.8 for a description of the key steps of
the proof of Theorem 4.2.2 in a small concrete instance.

The following definitions may seem artificial but are crucial for determining the exact value
of t¥ for all n,k € N.

Definition 4.2.3. Let n € N>y and let = € [1,p" 2], We define the integers m, and £(n,z) as
follows:
me = min{m | z < p™ 2}, and {(n,x) =n —my + 1.

We prove that Zg:f {(n,z) = apn in Lemma 4.2.4 below. For z € [1,p" 2] we let

z—1 T
> ln, i)+ 1> Un, j)
j=1 j=1

We observe that {A1, Aa,..., A2} is a partition of [1,ape] and that |A;| = £(n,z) for all
x € [1,p"2]. We refer the reader to Example 4.2.8 for a description of these objects in a specific
setting.

For the convenience of the reader we give a more informal explanation of Definition 4.2.3
above. For fixed n > 2, we define an increasing sequence 0 = ap < a1 < ag < -+ < ayn-2 = Qpn
as follows. First a; = n— 1. Then a; —a;—1 = n—2, for i = 2,...,p. Next a; — a;—1 =
n—3, fori =p+1,p+2,...,p?>. Continue in this manner, we find that a; — a;_1 = 1, for
i=p" 34 1,...,p" 2 Now set A; := (a;_1,a;], for i = 1,...,p" 2. Then {A1, A, ... Apn—2}
is clearly a partition of [1,p" 2.

Lemma 4.2.4. With the notation in Definition 4.2.3, we have that Zi:f lUn,z) = oyn.
Proof. 1f n =2, then £(2,1) =1 = a,2. Let n > 3 and i € [0,n — 3], then for every
z € [pt+1,p ], my =i+ 3 and £(n,z) =n — i — 2. Hence

n 2 i+1

n—3 p n—3
Zﬁnx—ﬁnl +Z Z =(n-1)+ Zpi(p—l)(n—i—2)
1=0 g=pi+1 =0

—(n—1)—(n—2)+(ipi[(n—z‘—n—(n—i—z)])+p”2[n—(n—3)—2}

n—3
— ]. + (sz> +pn_2 = Oépn.
i=1
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The following technical lemma will be useful to prove Theorem 4.2.6.

Lemma 4.2.5. Let n € N> 2. If x = pa+r, for somer € [0,p— 1] and a € N, then

p-Zf(n—l,j)+r-€(n—1,a+l):ZZ(n,j)—l.

=1

Proof. Notice that £(n,1) =n —1and if y € [2,p], {(n,y) =n — 2. Thus

p
> U(n,y) =pln—1,1) + 1.

y=1
Moreover, for j € N we have that

Jjp+p

Zﬁny =plin—1,7+1).
y=jp+1

This follows by observing that ¢(n,y) =¢(n— 1,7+ 1), for all y € [jp+ 1,jp + p].
Using these facts, we deduce that

p a—1 jp+p
any :Zﬁnj —i—Z Z l(n,y) +Z€nap+z
J=1 Jj=1 Jj=ly=jp+l1
a—1
:1+p€(n—1,1)+pZ€(n—1,j+1)+r€(n—1,a+1).
j=1

Following is one of our key results.

Theorem 4.2.6. Let n > 2, k € [1,apn] and let © € [1,p" 2] be such that k € A,. Then

Proof. We proceed by induction on n: if n = 2 then a,2 = 1 and necessarily k = 1 as Ay = {1}.
By Lemma 4.2.1, we have that 91192 = B2 (p? —1), as required. If n > 3, we proceed by induction

on the parameter = € [1,p" 2. For x = 1, we want to show that for every k € A1 = [1,4(n,1)]
we have that an = PBpn(p" — 1). Using Theorem 4.2.2 and Lemma 4.2.1, we know that

QY C Ok C QL. = By (p" — 1),

Hence, it is enough to show that Qf)(nn’l) = Bpn(p™ — 1). Since €(n,1) = ¢(n—1,1) + 1, we use
Lemma 4.1.8, the inductive hypothesis on n and Theorem 3.1.1, to deduce that

Q) o QY (0,) T = B (" — 1) % (B ()
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Using Lemma 2.2.9 we conclude that %y (p” — 1) C Qﬁ&n’l)
Q.
Let us now suppose that z > 2 and that k € A,. To ease the notation, for any y € [1,p

we let fu(y) = >4, €(n,5). With this notation we have that A, = [fu(z — 1) + 1, fu(2)]-

Using Theorem 4.2.2 and arguing exactly as above, we observe that in order to show that
Q];n = PByn (p" — ), it is enough to prove that

and therefore that Zn (p" — 1) =

n72]

(1) ng(x_l)'i'l = Py (p" — x) and that (2) ng(m) = By (p" — ).

To prove (1), we start by observing that by the inductive hypothesis we know that the
statement holds for any j € A;_1. In particular we have that Qgﬁ(x_l) = B (p" — (xr—1)). By
Theorem 4.2.2 it follows that Qiﬁ(ﬁfl)ﬂ = By (T), for some T € {p" —z,p" — (z — 1)}. It is
therefore enough to show that A = (p" — (z — 1),z —1) ¢ Qgﬁ(x_l)ﬂ. Let pi1,...,pup € 2(p" 1)
be such that ZLZ(X\;p1, ..., p1p) # 0. By Lemma 2.2.8 for every i € [1,p], there exists a; € N
such that (p;)1 = p"~! — a; and such that 2521 a; < x — 1. In particular, for every i € [1, p| we
have that

(i € By (p" ' — ;) N Bpnr(p" = (@i + 1)) = ijﬁj(ai) ~ Qiﬁj(ai)ﬂ,

where the equality is guaranteed by the inductive hypothesis on n.
Let B = (Ppn—l)xp be the base group of Py» and let Y = (Gyn-1)*P < &pn be such that
B<Y.Letn=x"x---xxt €Irr(Y) and let x —1 = ap+r, for some a € Nand r € [0,p—1].

We observe that

o) = 3 foal) = 2D dn- 1

j=1i=1

IA

D - (Zﬁ(n—l,j))+r-€(n—1,a+l)
j=1
z—1

= > Un,j) =1 = folw—1)—1.

j=1

Here, the inequality follows immediately by observing that £(n — 1,s) > ¢(n — 1,s 4+ 1) for all
s € N. On the other hand, the third equality holds by Lemma 4.2.5. Using Proposition 4.1.6,
we deduce that dp,, (x*) < falz —1). Tt follows that \ ¢ Qgﬁ(xfl)ﬂ, as desired.

To prove (2), we recall that by (1) above we have that Qgﬁ(m_l)—i_l = By (p" — ). Hence,

Theorem 4.2.2 implies that Qgﬁ(w) C Byn(p" — x). On the other hand, writing = ap + r for
some a € N and r € [0,p — 1], and using Lemma 4.2.5, we have that:

Fa@) ol (S0 fn—1,9)) +rb(n—1,a+1)
Qp'VL — Qpn J

(anfl(aﬂ))*?“ « (Qpnfl(a))*p—r

n—1 n—1

V)
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= (B (p" ' = (a+1)" * (Bpur(p" ' —a))"
= Bpn(p" — ).

Here the first inclusion follows from Lemma 4.1.8. The second equality holds by the inductive
hypothesis. Finally, the last equality is given by Lemma 2.2.9. The proof is complete. O

In the following corollary we collect a number of facts useful to have a better understanding
of the structure of the sets Q’;n for all n € N and all k € [0, ayn].

Corollary 4.2.7. Letn € N and let 1 <k <t < ayn. The following hold.
(i) Byn(p" —p"2) = Q" C Qb C Ok,
Y n = {n of, and only if, there exists x € |1,p"*| such that k,t € A,.
"Q’; Qé'dl'h ' 1,pn—2 h that k,t € A
(iii) Given x € [1,p" 2] we have that [{k € [L,apn] | Q. = B(p" — 2)}| = U(n, z).

Proof. Recalling that |A,| = ¢(n,x) for every = € [1,p" 2], (i), (i) and (iii) follow immediately
by Theorem 4.2.6. O

Table 4.1: Let p = 3. According to Theorem 4.2.6, the structure of Q’;n is recorded in the entry
corresponding to row k and column n.

Q’;n n=1 n=2 n=3 n=4
k=0 | %5(3) | %$52(3?) B3 (33) PBia(3h)
k=1 0 B2 (32 — 1) | Bs3(33 — 1) | Ba(3 = 1)
k=2 0 0 Bz (33 —1) | Baa(3* — 1)
k=3 0 0 Bs3(3% —2) | Ba(3 - 1)
k=4 0 0 PBs3(33 — 3) | Bsa(3% —2)
k=5 0 0 0 PBsa (3 — 2)
k=6 0 0 0 PBsa (3 — 3)
k= 0 0 0 PBsa (3 — 3)
k=38 0 0 0 PBsa (34 — 4)
k=9 0 0 0 PB4 (3* —5)
k=10 0 0 0 PBsa (3% — 6)
k=11 0 0 0 Bsa (31 = 17)
k=12 0 0 0 PBsa(3* — 8)
k=13 0 0 0 PBsa (31— 9)
k=14 0 0 0 0

Example 4.2.8. Let p = 3 and fix n = 4. Following the notation introduced in Definition 4.2.3,
we have 3472 = 9 and £(4,1) = 3, £(4,2) = £(4,3) =2, £(4,4) = --- = £(4,9) = 1. Hence

Ar={1,2,3), Ap=1{4,5}, Ay ={6,7}, Ay=1{8), A5=1{9),...,Ag={13}.



4.3. ARBITRARY NATURAL NUMBERS 51

Observe that { Aj,...,Ag } is a partition of [1, ag4] = [1,13], as required. Using Theorem 4.2.6,

we have a complete description of Q§4, for all k£ € [1,13]. In particular, we have

Qé4 — Q§4 — Qg4 — %34 (34 - 1), Q§4 — 924 — %34 (34 - 2), Qg4 — Q’§4 — %34 (34 - 3),

05 = B3 (3 —4), Q3 = B3 (31— 5),..., 051 = B3 (3" - 9).

These sets are recorded in the fourth column of Table 4.1.

We use the second part of this example to illustrate a key step of the proof of Theorem 4.2.2.
Let n = k = 4. Theorem 4.2.2 tells us that Q3, = %s(t}), therefore we wish to compute ¢}.
Following the notation introduced in the proof of Theorem 4.2.2 we have that

3(3) = {(jl,jZ,ji&) € %(3) | Ji € [07a33] = [074}, for all i € [173]} = {(33070)7 (23 13())’ (1’ 1, 1)}

Working by induction we can assume that we know the values té for every j € [0,4]. This can
be comfortably read off the third column of Table 4.1. We set

M =max{t]+1]+13,63 +t5 + 3,63 +t§+t5 } =max{3'—2,3" 231 -3} =3 -2

We conclude that t4 = M = 3% — 2.

4.3 Arbitrary natural numbers

The aim of this section is to complete our investigation by extending Theorem 4.2.6 to any
arbitrary natural number. In order to do this, we first extend Theorem 4.2.2. We recall that p
is a fixed odd prime.

Theorem 4.3.1. Letn € N and let k € [0, a,]. There exists T € [1,n] such that QF = %,(TF).
Moreover, TF € {Tk —1,TF}, for all k € [0, a,, — 1].

Proof. We proceed by induction on n € N. If n = 1, then necessarily k = 0 and Q) = %;(1).
Ifn>2letn= 25:1 p™ be the p-adic expansion of n, with n; > --- > n; > 0. By Theorem
4.2.2, for every i € [1,] and every d; € [0, pn], there exists t% € [p;i + 1,p™] such that
0%, = By (14

i

). Similarly to the procedure used to prove Theorem 4.2.2, we define

(k) ={(1,....7¢) € €(k) | ji € [0, apn:] for all i € [1,¢]}.
Moreover, we set

t
M= max{ otk (dy, ... di) € 7 (k) }
i=1
We claim that QF = %, (M).
Let (di,...,d;) € # (k) be such that M = >'_, t% . Then using Lemma 2.2.9, Theorem
4.2.2 and Lemma 4.1.8 we have that

Bn(M) = By (133) %% Byne (15) = Qghy +-- % O, C QL
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Suppose now for a contradiction that A € QF < 2,(M). Without loss of generality we can
assume that Ay > M + 1. Let ¢ = ¢1 X -+ X ¢y be an irreducible constituent of ( lp with

¢i(1) = p% for every i € [1,t] and Y.i_, d; = k. Observe that (di,...,d;) € #( ) For every
i€ [1,t], let p; € P(p™) be such that [(x*) an , 0i] # 0 and such that x#* x -+ x x** is an

irreducible constituent of (x lY Here Y = Gpni X -+ - X Gpny < G, is chosen so that P, <Y.
Thus by Theorem 4.2.6, u; € ng = Bpni ( nz) for every i € [1,t]. Hence,

t
NE By (t0) oo By (1) = B (Zt%> .
i=1
By Lemma 2.2.8 and our assumptions, we have that
t
M+1<M <) <M,
i=1

which is a contradiction.
In summary, for k € [0, a;, — 1] the following holds:

¢
QF = 2, (M), where M = max{ Zt;ﬁ_

i=1

(dl,...,dt)E/(k‘)}, and

t
QFL = ,(T), where T = max { Zt{%
i=1

(fly---;ft)E/(k—i-l)}.

Let (di,...,d;) € # (k) be such that M = 3%, t%i . Since k < o, — 1, there exists i € [1,¢] such
that d; < apni —1. Hence (dy,...,di—1,di+1,dit1,...,dy) € 7 (k+1) and tdivt e fydi —1,¢di 1
by Theorem 4.2.2. Thus,

— :_1+th <td gt gt g g <

On the other hand, let (f1,...,f;) € #(k+ 1) be such that T = S}, t{{z Without loss of
generality we can assume that f; > 1. Then (f1 — 1, f2,..., fi) € # (k) and by Theorem 4.2.2,

tfl € {tfl g, tfl 1}. Hence
t
T=> th <th™'+tf2 4+t <M.

It follows that T'= M or T'= M — 1. This concludes the proof. O

Theorem 4.3.1 shows that for every n € N and k € [0, o] there exists an integer, denoted by
TF, such that QF = %,,(TF). In order to prove our main result, i.e. to precisely compute the value
TT’f for all n € N and k € [0, o], we start by fixing some notation that will be kept throughout
this section. We remark that for n < p* we have that P, is abelian and that Q2 = 22(n). For
this reason we focus on the case n > p?.
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Notation 4.3.2. Let n > p? be a natural number and let n = Zlep”i be the p-adic expansion
of n, where nqy > mng > --- >ny > 0. Let Z := {(i,y) | i € [1,¢], and y € [1,p"2]}. Using
Definition 4.2.3, we can associate to every (i,y) € Z the integer £(n;,y).

We define a total order > on Z as follows. Given (i,y) and (j, z) in Z we say that (i,y)> (7, 2)
if and only if one of the following hold:

(i) £(ni,y) > £(ny, ), or
(ii) £(ni,y) =4€(n;,z) and i < j, or
(iii) 4(ns,y) =4€(nj,z) and i =j and y < z.

Let N := L%J and notice that N = |#|. Let ¢ : Z — [1, N] be the bijection mapping
(i,y) — x if and only if the pair (i,y) is the z-th greatest element in the totally ordered set
(Z,>). We use this bijection to relabel the integers ¢(n;,y), for all (i,y) € Z. In particular, we
let £(z) := £(ni,y) if ¢((i,y)) = =. Recalling Definition 4.2.3, we observe that the definition of >
implies that ¢(1) > £(2) > --- > £(N).

Finally, for any a € [1, N] we let F, (o) = Y a1 {(a) and Ay = {F,(a—1)+1, F,(«)}]. We
observe that {A1, Ag,..., An} is a partition of [1, ] (this follows easily from Lemma 4.2.4).
We refer the reader to Example 4.3.6 for an explicit description of these objects in a concrete

case.

Theorem 4.3.3. Let n € Ny,2 and k € [1,a,]. Let x € [1,N] be such that k € A;. Then
QOF = B, (n —x).

Proof. As in Notation 4.3.2, let n = 2221 p™ be the p-adic expansion of n, where ny > no >
-+ >mny > 0. We proceed by induction on z. If x = 1 then k € A; = [1,4(1)] = [1,4(n1,1)],
because ¢((n1,1)) = 1. By Theorem 4.2.6 we know that Q’;nl = By (p™ — 1). Moreover,
Q% = By (p™) for all m € N. Thus, using first Lemma 4.1.9 and then Lemma 2.2.9, we deduce
that

Ok o Q';nl *ang R *ant = Byr1 (P — 1) x Bpra (p™?) * -+ - x Bpri (p™) = B (n — 1).

Since (n) ¢ QF, we conclude that QF = %, (n — 1), as desired. Let us now set 2 > 2 and assume
that the statement holds for any s € A,_1 = [F,(x — 1) + 1, F,,(x)]. From Theorem 4.3.1 we
know that

an(x—l)-%-l C Qﬁ C an(a:)7

hence it is enough to show that:
(1) QEn@=D+ — 5 (n — z), and that (2) Q@) = B, (n - 2).

Here F,(y) = ?;:1 £(j), exactly as explained in Notation 4.3.2.
To prove (1), we first notice that Q=) - PBn(n — (x — 1)) by the inductive hypothesis.

Hence, Theorem 4.3.1 implies that Q5" "D+ = By (T), for some T € {n —z,n — (x — 1)}.
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Therefore it suffices to prove that A= (n— (z — 1),z — 1) ¢ QEEDF e {G1,Ga,...,G¢}
be the partition of [1,z — 1] defined by

Gi={yel,z—1]| ¢ (y) = (i, 2), for some z € [1,p" 2]}, for all i € [1,1].

To ease the notation we let g; = |G| for all ¢ € [1,¢], and we remark that g1 +go+---+g: = x— 1.

Let Y = Gpni X Gpnz X --- X Gpny be a Young subgroup of &,, containing P,. For every
i € [1,t] let pu* € P (p") be such that LZ(\;ut, ..., ut) # 0. Then Lemma 2.2.8 implies that
there exist a1, aqo,...,a; € Z such that

¢
(u')y = p™ — (g; + a;) for all i € [1,t], and such that Zai <0.
i=1

In particular, using Theorem 4.2.6 we have that for every i € [1,¢],
w' € Byni (p — (gi + ai)) N Bpri (P — (g: +a; +1)) = Qin;(g LREN ang(g o)L

Recycling the notation used in the proof of Theorem 4.2.6, here fi,(a) := > %_; £(m, j). It follows
that

 eita Yyeq, Uy) + 30 Unig)if a; 20,
appni (XN ) = Z e(nﬂj) =
= Ype W) = X0 o Uni5) if a; < 0.

Hence, letting x = X“l X X”Z X - X X“t, we have that

t t o gita t 9i
8Pn(X):Z ZZ(y)—I—E—F, where E = Z Z l(n;, j), and F = Z Z l(ng, j).
i=1 yeG; i=>10j=gi+1 i:<10j=gi+ai
a; a;

We claim that F — F' < 0. To see this, we notice that the definition of the set G; implies
that ¢((i,y)) >« — 1 for all y > g; + 1. On the other hand, for the same reasons, we have that
#((j,2)) <x—1forall z < g;. Therefore every summand ¢(n;, y) appearing in E is smaller than
or equal to any summand £(n;, z) appearing in F. Since Zgzl a; < 0 we have that E — F <0,
as desired. Using Proposition 4.1.7 we conclude that

t r—1
Op, (M) <D ) =D ty) =Fp(z —1) < Fp(z — 1) + 1.
i=1 yeqG; y=1

Hence \ ¢ QF @D and therefore Q5D = PBn(n — x) as required.

To prove (2) we observe that the equality (1) shown above implies that Qb ¢ PBn(n—x),
by Theorem 4.3.1. To show that the opposite inclusion holds we use an idea that is similar to
the one used to prove (1). In particular, we let {Hy, Ha, ..., H;} be the partition of [1, 2| defined
by

H;={yel,z] | ¢~ (y) = (i,2), for some z € [1,p" 2]}, for all i € [1,1].
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To ease the notation we let h; = |H;| for all ¢ € [1,¢], and we remark that hy +ho + -+ hy = x.
We also introduce the following notation. For each i € [1,¢], we let

hi

yeH, Jj=1

We observe that (I'1,T'g,...,Ty) € €(F,(z)) and that I'; € [0, apni], for all © € [1,¢]. We can
now use Lemma 4.1.9, Theorem 4.2.6 and Lemma 2.2.9 (in this order) to deduce that

Q) 2 Qgﬁl *911;32*' ' '*Qgﬁt = Byr1 (P —h1)x Bz (P —ha )%+ - - *x Bpra (p™ =) = B (n—2).

We obtain that Q5" = PBrn(n — x), and the proof is concluded. O

As we have done for the prime power case in Corollary 4.2.7, we record some facts to un-
derstand better the set QF for every n € N and k € [0, a,]. Keeping the notation introduced in
4.3.2, we recall that N = L%J

Corollary 4.3.4. Letn € N and n = Z;le"i its p-adic expansion, where ng > ng > -+ >
ng > 0. Let 1 <k <t <ay. The following hold.

(i) Bn(n—N)=Qpm C QO C Q.
(i) QF = Qt if, and only if, there exists x € [1, N] such that k,t € A,.
(iii) Given x € [1, N] we have that | { k € [1,,] | QF = B, (n—2) }| =Ll(z).
Proof. Since |A;| = ¢(x) for every x € [1,N], (i), (ii) and (iii) hold by Theorem 4.3.3. O
A second consequence of Theorem 4.3.3 is the following asymptotic result.
Corollary 4.3.5. Let Q, = (1, QF, where k runs over [0, ay,). Then

n’

lim ‘Qn‘
n—oo [Z(n)]

Proof. There are various combinatorial methods to prove this corollary. We use instead a result
of Erdgs and Lehner [16, (1.4)] which guarantees that, given a function f(n) that diverges as
n tends to infinity, then for all but o(]#?(n)|) partitions A of n, the quantities A\; and I(\)
lie between /n - (105" + f(n)) where d is a constant. By Theorem 4.3.3, we observe that

Q, = Q% = B(n— N), where N = L%J Since n — N > n/2, the statement follows. O

Example 4.3.6. Let p = 3 and n = 3% + 32 + 3. Following Notation 4.3.2, we have n; =
3, ng =2and n3 = 1. Hence Z = { (1,1),(1,2),(1,3),(2,1) }, since [1,3"372] = (). Observe that
|#| = 4 = | %|. Using Definition 4.2.3, we can see that £(3,1) = 2, £(3,2) = £(3,3) = 1 and
£(2,1) = 1. Hence, the definition of the total order > on % implies that (1,1)>(1,2)>(1,3)>(2,1).
Thus ¢(1) =2, £(2) =4(3) =4(4) =1 and

A1:{172}a A2:{3}7 A3:{4}7 A4:{5}
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Notice that { Ay,...,As } is a partition of [1, ] = [1,5], as required. Moreover by Theorem
4.3.3 we have QL = Q2 = ZB,(n — 1), Q3 = B,(n —2), U = B,(n—3), Q0 = B,(n—4).

Using the notation of Theorem 4.3.1, the above computation gives that T2 = n—1. Following
the proof of Theorem 4.3.1, we can compute 72 in a different way. We have

/(2) = { (j17j27j3) € %(2) ‘,71 € [074]7 j2 € [07 1]7 j3 S {0}}: { (27070)7(17170)}'

Hence M = max {t3+1) +t},t5+¢3+10 } =max{n—-1,n—2} =n—1 Thus 77 = M =
n — 1, as expected. Notice that ng = 1 does not contribute at all to the computations. In fact in
Z there are no elements of the form (3,y), y € N. Furthermore, by looking at the third column
of Table 4.2, we can see that TV = Tﬁff3 — 3 for every k € N. A second example of this fact can
be found by observing that the first two columns of Table 4.2 are equal.

Table 4.2: Let p = 3. According to Theorem 4.3.3, the structure of QF is recorded in the entry
corresponding to row k and column n.

QF |n=3+3|n=2-3+3|[n=32+3|n=3+3|n=3%+3
k=1 | B,(n—1) | HBp(n—1) PBp(n—1) | Bp(n—1) | Bp(n—1)
k=2 | Bo(n—-1) | HBp(n—1) PBp(n—1) | Bp(n—1) | Bp(n—1)
k=3 | B.(n—2) | HBp(n—2) PBn(n—2) | Bp(n—2) | Bp(n—1)
k=4 | Bnin—3) | Bn(n-—3) PBpn—3) | Buin—-2) | Bnln—2)
k=5 0 0 Br(n—4) | Bp(n—3) | Buln-—2)
k=6 0 0 0 Bn(n—4) | Bn(n—23)
k=T 0 0 0 PBp(n—>5) | Bnlin—3)
k=38 0 0 0 Br(n—6) | Bp(n—4)
k=9 0 0 0 0 B (n —4)
k=10 0 0 0 0 Pn(n —5)
k=11 0 0 0 0 PBrn(n —6)
k=12 0 0 0 0 Pn(n —7)
k=13 0 0 0 0 B (n —8)
k=14 0 0 0 0 Bn(n —9)
k=15 0 0 0 0 By (n — 10)
k=16 0 0 0 0 B (n —11)
k=17 0 0 0 0 Bn(n —12)
k=18 0 0 0 0 0

Remark 4.3.7. This chapter treats the case of odd primes. When p = 2, linear constituents of
the restriction to Sylow 2-subgroups of odd degree characters of &,, were studied in [20], as we
mentioned in Section 3.2.1. Despite this, the object of our study seems to be particularly difficult
when p = 2. For instance, we immediately notice in this case that the set Q) = {(3,1),(2,1,1)}
and therefore is not of the form %4(T), for any T' € {1,2,3,4}. This shows that the main
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theorems of the present chapter do not hold for the prime 2. Even if this irregularity might
disappear for larger natural numbers, more serious obstacles arise in this setting. For example,
Lemma 4.1.4 above asserts that the restriction to P, of every non-linear irreducible character of
&, cannot admit a unique irreducible constituent of a certain degree. This is a crucial ingredient
in the proofs of our main results. Unfortunately, this is plainly false when the prime is 2. For
instance, if A = (2" — 1,1) then (X)\)len admits a unique constituent of degree 2*, for all
ke{0,1,...,n—1}.
The study of p = 2 case will be the subject of next chapter.

4.4 Relation to the alternating groups

We conclude this chapter by describing the analogue of the set QF for the alternating groups.
The standard reference for the representation theory of alternating groups is [45, Chapter 2.5].
Since 2, is a normal subgroup of the symmetric group &,,, the description of Irr(2A) is given by
the application of Clifford theory.

Let n € N. Let X\ be a partition of n and )\ its conjugate partition. Recall that we denote
by x* the irreducible character of &,, labelled by A. If A # X then the restriction (X’\)imn is

an irreducible character of the alternating group 2(,,. Otherwise, if A = X then (X/\)lQl splits

into two irreducible constituents that we will denote by goj\r and @) . If we are not considering
the trivial case n < p, by [45, Theorem 2.5.7| it follows in particular that (gpj\')g = @), where
g € Ng,, (P,) \ 2. All the irreducible characters of 2, are of one of these two forms.

If p is an odd prime then P, <, and so P, € Syl,(2,) = Syl,(&,). We would like to
study the set of the irreducible characters of 2, that have an irreducible constituent of fixed
degree in the restriction to P,. Let k € N be such that p* € cd(P,). Denote

Iy = {X € Irr(2y) | [len, ¢] # 0, for some ¢ € Irry(P,) } '

It A # N, ((X/\)lm e = (X’\)lp . Hence, the irreducible character (X’\)l% has the
same constituents of (X/\)lp when restricted to P,. That means: if A # )\ and A € QF then

(M) g, €10
Suppose now A = X € QF. Let § be an irreducible constituent of (X’\)lp of degree p*. We

have (X)\)iPn — ((X)\)lmn)an = (‘Pj\r)lpn + (SOX)iPn' Therefore, without loss of generality we
can suppose that [(gp}f)lp ,9} # 0. Hence

0 [()]p.0] = [((e) ] )7, 0]
= (@715 0] = [ L), 00]

Thus apj, ¥y € I'¥ . since 69 is an irreducible character of P, of the same degree as 6.
The argument above leads us to state this theorem.

Theorem 4.4.1. Let p be an odd prime, n € N and p* € cd(P,). Then

Fﬁ:{@ﬂl%’A#A%ﬂﬁ}u{w;wg\A:XeQﬁ}






Chapter 5

Sylow branching coefficients for p = 2

As we already discussed in Chapter 3, there is gap of knowledge between Sylow branching
coefficients at odd primes and when the prime p is equal to 2.

The aim of this chapter is to advance in the study of Sylow branching coefficients at the
prime 2. Our results are taken from [31].

From now on we fix p = 2 and we let P, be a Sylow 2-subgroup of &,,. In particular, here
we focus on irreducible characters labelled by hook partitions 7 (n). We denote this subset of
Irr(&,,) by It (S5,).

In this setting we are able to compute the Sylow branching coefficients Z;f for all x €
Irr,r(6,) and all ¢ € Lin(P,). This is Theorem 5.1.4, and its proof requires some technical
lemmas that use extensively the Littlewood-Richardson rule.

We then focus on higher degree constituents in Section 5.2. Here we study again the set
QF but restricting it to the hook partitions in the set. More precisely for any k € N such that
2k ¢ cd(P,), we will study Ak = QF N J#(n). We proceed in a similar way to what has been
done in Chapter 4: we first explicit which are the possible degrees for an irreducible character
of P, in Proposition 5.2.3, then we divide the study of A¥ into the case when n is a power of 2
and the case when n is an arbitrary natural number.

The substancial difference from the case of an odd prime is that we need to prove that the sets
Afl are one inside the other (Theorem 5.2.5). This is no more a consequence of the description
of the sets. Moreover, we cannot prove separately from the main theorems that we have enough
irreducible constituents of the same degree to go on with the induction. In the odd prime case
this was Lemma 4.1.4, while in this section this result is included as part (2) of both the Theorems
5.2.10 and 5.2.11.

The combinatorial arguments used in this chapter are similar to the ones used before.

5.1 Computing linear Sylow branching coefficients

The goal of this section is to explicitly compute the Sylow branching coefficients Z;f for all
X € Irry(6,) and all ¢ € Lin(P,). This generalizes Theorem 3.2.2 to any arbitrary natural
number.

29
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The following lemma says that if we restrict an hook character of &, to a Young subgroup
Ga, = (n1,...,n¢) € €(n), we obtain a sum of products of hook characters of G,,.

Lemma 5.1.1. Let a = (n1,...,n) € €(n) and h € S (n). Let \j € P (n;) for all i € [1,¢t]. If
LA (hy A, ..., ) #0 then \; € 7 (n;) for all i € [1,1].

Proof. This is a direct consequence of the Littlewood-Richardson rule. O

In lemma below we explicitly compute the Littlewood-Richardson coefficient of the restriction
of an hook character.

Lemma 5.1.2. Let a = (n1,...,n) € €(n) and h = (n — x,1%) € F(n). For each i € [1,t] let
hi = (ni — xi,1%) € A (n;), for some x; € [0,n; — 1]. Finally, let y = x — > i, x;. Then

LA(h;hy,. .. h) = (t;1>.

Proof. We proceed by induction on ¢t. If ¢ = 2, by Littlewood-Richardson rule we have that
LX(h;hi,he) = 0, unless x1+x2 € {x—1,2z}NN. In such cases we have that £Z(h; h1, ha) = 1.
These facts agree with the desired statement as ¢t —1 = 1. Let us now suppose that ¢ > 3 and let
Ky = (no+--+ne—(z—21), 15721, Ky = (no+---+n—(z—21—1), 127971 € S (nao+- - -+ny).
Using the Littlewood-Richardson rule we observe that £%(h;hy,6) = 0, unless 6 € {K;, Ka}.
Moreover, L% (h;h1, K1) = L% (h;h1,K2) = 1. By the inductive hypothesis we know that
LR (Kiyha, ... hy) = (tf) and LX%(Ka;ha,... hy) = (2121) Then, we can conclude that

eav-()-()-()

We give an example of the computation of the Littlewood-Richardson coefficient L% (\; i, v)
in the case A\ € #(2") and u,v € s2(2"1). This case will be repeatedly used in the following
section.

Example 5.1.3. Let n > 1 and A = (2" — z,1%) € J(2"), where z € [1,2"]. We would like to
restrict x* to Y := Ggn-1 X Ggn-1. Using the Littlewood-Richardson rule we find the following
decomposition:

O]

z—1
X)\J/Y — X(2n71_x71z) X X(anl) =+ ZX(Qnil_yvly) X (X(anl_(x_yxlzfy) —+ X(Qnil_(x_y_l)vlziyil)) .
y=0

(2m71—a,1%) o (2

Notice the symmetry of this decomposition: if x "Ti=b,1Y) appears as an irreducible

constituent, then also (2" —01") x 2"
Let = (277! —¢,1%) and v = (27! — 2,17). Define
Vi={(2,0) }U{(y,z —y), (g x—y—1) |y [0,z —1] }.

XX
—a.1%) appears, and with the same multiplicity.

We find
1, if(t,2) eV,

0, otherwise.

LR p,v) = {
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Now we are able to explicitly compute the Sylow branching coefficients Z;f for x € Irr (&)

and ¢ € Lin(P,). Let n € Nand let n = 2¥1 4. .42k be its binary expansion. Given ¢ € Lin(P,),

there exist unique (hy, ..., h) € J (k1) x H (ko) x- - -x (ki) such that ¢ = Ly, x---x Ly,. Here

for all 4 € [1,t], Ly, denotes the only linear constituent of Xhilp L0 a8 described by Theorems
274

3.2.2 and 3.2.3. In this case, we denote ¢ by ¢(hi, ..., h).

Theorem 5.1.4. Let n € N and let ki > --- > k; > 0 be such that n = 251 4 ... 4 2k Let
z € [0,n —1] and let h = (n — x,1%) € S (n). For each i € [1,1] let z; € [0,2% — 1] and set
hi = (2% — 2;,1%). Finally let y = x — Ele x;. Then

X" 0, )] = (t - 1).

Y

Proof. For each i € [1,t] we let n; = 2. Set a = (ny,...,n;) € P(n) and let Y = &, be such
that P, <Y. Let 2 = J(n1) x ' (na) x -+ x #(ng) and ¢ = ¢(hy,...,h). From Lemma
5.1.1 we know that

My = D LR, )M X x XM,
(Al,...,)\t)eﬁf
By Theorem 3.2.2, [(xM x -+ x X)‘f)lpn,@ = 0 unless (A1,...,A¢) = (h1,...,he). In the

latter case we have [(x" x--- x x")| , ,¢] = 1. These observations, together with Lemma 5.1.2
imply that '
t—1
(M) g0 = (M) ) ] o @) = LR s ) = ( , )
O

This theorem gives in particular [28, Theorem 3.1], for every natural number n and every
hook partition h € (n), the restriction Xhlp has a linear constituent.

We conclude this section with a result that will prove to be useful in the second part of
the chapter. Note tnhat x2"~LD has degree 2" — 1 = Z;é 2% There is a corresponding
decomposition of y(2 *1’1)lp .

Lemma 5.1.5. Let n € N, A\ = (2" —1,1). Then X)\lp = ZZ;(% O, where Oy € Irr(Pan) has
degree 2F for k € [0,n — 1].

Proof. We proceed by induction on n. If n = 1 then A\ = (12) and X)\lpz = ¢1, as desired. If
n > 2, by the Littlewood-Richardson rule we have

n—1 n—1 n—1 n—1_ n—1_ n—1
Xwezn,lxegnfl = X(? ) « X(2 ) +X(2 ) % X(2 L1 4 X(2 L1) o X@ )

However, X(Qnil)lpyhl = 1p,, , and by the inductive hypothesis, X(Znil_l’l)lenfl - Z?;OQ Vi,

where 1p; € Irr(Pyn—1) and t;(1) = 2. Notice also that ¢y # L(gn-1y = 1p,, ,. Hence

n—2

X/\lP2n_1><P2n—1 = <]lP2n—1 X ]lPQn—l) + Z (HPQn_l X i +1hi ¥ ]lPQn—1) :
=0
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P271,

Therefore X/\lPQn =L+ Z?;OQ (]lp2n71 X wi) T . The proof is then concluded by observing

that Ly(1) = 2° and that (Lp,_, x ¢;) ™" (1) = 27! for every i € [0,n — 2]. O

Remark 5.1.6. The characters 0, € Irr(Pan), for every k € [0,n — 1], have been explicitly
determined in the proof of the lemma above. We have indeed a recurcive description: 6y =

2°(0,...,0,1) and 6, = (ﬂp2n_1 X 1/%—1) TPQH, where X(2"71—171)lp = S E b
on—

5.2 On non-linear Sylow branching coefficients

In Sections 3.2.1 and 5.1 we completely described the linear constituents of the Sylow restric-
tion of irreducible characters labelled by hook partitions. The aim of this section is to continue
our investigation by focusing on irreducible constituents of higher degree, mimicking what have
been done in Chapter 4. More precisely for any k € N such that 2¥ € cd(P,), we will study the
structure of the set A¥ defined as follows:

AF = QF Nz (n)
= { A€ AH(n) ‘ X/\lp has an irreducible constituent of degree 2" } .

Recall from Section 2.2.3 the definition of the set B, (t) = { A€ Z(n) | 1 <t, I(N\) <t}
In order to ease the notation, from now on given n,t € N such that ¢t < n we will let $,(t) be
the subset of hook partitions #(n) defined by

9 (t) == B(t) N (n),

i.e. all hook partitions (n —1,1') of n with n —t <[ < t.
It is an important and easy observation that the sets A¥ and §,,(¢) are closed under conjugation
of partitions.

We start the section with a short example. On one hand this will help the reader understand
the behavior of the sets A for small values of n. On the other hand this will serve as base case
of some of the later induction arguments.

Example 5.2.1. Here we compute Afl whenever n is a small power of 2. More precisely we will
restrict our attention to the cases n € {2,4,8}.

If n = 2 then there is not much to say as G = P,. We just recall the notation introduced in
Section 2.3 and write Irr(Py) = { ¢o, ¢1 } where ¢y is the trivial character of P;.

Let now n = 4. Then Py = (3 Cy admits four linear characters 2 (4,7), for ¢,5 € {0, 1}
and a unique irreducible character ¢ of degree 2. In particular, ¢ = (¢o X ¢1) TP“. It follows
that cd(Py) = {1,2}, hence we will be interested in computing the sets A} and A}. In order to
do this we are going to study the restriction to P, of those irreducible characters of &4 that are
labelled by partitions contained in the set 2#(4) = {(4), (3,1), (2,12), (1*)}. Tt is not difficult to
see that:

X, =1p, = 270,00 and x*V |, =27(0,1) +¢.

Since the sets A and A} are closed under conjugation of partitions, we conclude that

A} = 2(4) = H1(4), and Aj = {(3,1),(2,1%)} = H4(3) = 2/(4) \ {(4), 1)}
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Finally, let us consider the case where n = 8. Here Py = (Py x Py) x P» = Py P5. Since
the base group P4 x Py is naturally a subgroup of an appropriately chosen Young subgroup
Y 2 64 x 64 of &g, our strategy is to restrict irreducible characters of &g to Y, to inductively
deduce information on their restriction to Py x P, and finally to obtain results on their restriction
to Pg. Consider for instance A = (6,12) and let x = x*. Using the Littlewood-Richardson rule
we know that ) x X(2’12) is an irreducible constituent of le. Using this, together with the
calculations we have done for the case n = 4 (inductive step) we deduce that 27(0,0) x ¢ is
an irreducible constituent of x|, . We conclude that (27(0,0) x cp)TPg is an irreducible

constituent (of degree 4) of Xipg' This shows that (6,1%) € AZ. With completely similar
arguments we obtain that

AS = $5(8) and that A} = A2 = 9H3(7) = 2(8) \ {(8), (1%)}.
This is all we need to compute since cd(Pg) = {1,2,4}.

From now on we will denote by f3, the maximal integer k such that 2% is the degree of an
irreducible character of P,. This is formally defined and explained in the following Definition
5.2.2 and Proposition 5.2.3.

Definition 5.2.2. For any natural number ¢ we define the integer Sy as follows. We set
Br=Pp2=0, Bs=1and By =272+ 273 1 for every t > 3.

Notice in particular that Syt = 2891 + 1, for any ¢ > 4. Let now n € N, and n = )., 2™ be
its binary expansion. We define 3, := >\ Boni.

Proposition 5.2.3. Givenn € N, we have that cd(P,) = { 2J | j €10, 5] } Moreover, if n > 8,
then |{0 € Irr(P,) | (1) = 2%} > 3.

Proof. Suppose first of all that n = 2! is a power of 2. We proceed by induction on t. If
t € {1,2,3}, the proposition holds as we can see in Example 5.2.1. Let us now fix ¢ > 4 and
recall that Byt = 209:-1 + 1. Let k € [0, Bot — 1] and let g € [0, age—1], r € {0,1} be such that
k = 2q + r. Suppose first that » = 0, by the inductive hypothesis there exists ¢ € Irr(Pyi-1)
such that ¢(1) = 29. Hence for every ¢ € Irr(P), 2 (¢;%) € Irr(Py) has degree 2F. If instead
r =1, then ¢ < By-1. If ¢ = 0 then k = 1, and |Lin(Py:)| = 2! > 2. Hence we can choose
L, L' € Lin(Py), L # L' and (L x L’)Tp2t is an irreducible character of degree 2 = 2%, If
1 < ¢ < Byi-1, by the inductive hypothesis there exist ¢,1) € Irr(Py-1) such that ¢(1) = 2971,
(1) = 29+L. Hence (¢ x 1/1)TP2t € Irr(Py) and it has degree 2¥. If k = By, by the inductive
hypothesis there exist 11, ¥y and 3 distinct irreducible characters of Py—1 of degree 282t-1.
Since Byt = 285:-1 + 1 we obtain that (11 X 19) TPQt, (1 X 13) szt, (11 X 13) TPQt € Trr(Py)
are three distinct irreducible characters of degree 2%t .

Suppose now that n € N is arbitrary and let n = ;| 2" with ny > --- > n, > 0, be its
binary expansion. From Section 2.3 we know that P, = Pani X -+ X Pon, and therefore that
Irr(P,) = {1 X -+ X ¢r | ¢ € Irr(Poni), i =1,...,7}. Using this together with the informa-
tion obtained above in the 2-power case, we easily obtain that c¢d(P,) = { 2 | J €10, 8] } and
that [{0 € Irr(P,) | 6(1) = 267} > 3, for any n > 8. O
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Recall that in Section 3.1 we denoted the Sylow branching coefficient corresponding to the
A
characters x* € Irr(&,,) and ¢ € Irr(P,) as Z(;‘ (instead of Z} ).

We begin by giving some precise information concerning Sylow branching coefficients Zq);,
where ¢ is a degree 2 irreducible character of P,. In order to do this, we introduce the following
notation. For A = (2" — z,1%) € J£(2") with = € [0,2™ — 1], we define aF € N as follows:

ay = | {QS € Irr(Pon) | (1) = 2 and Zqi‘ # 0} |.
Our first result will be used in the proof of the main theorems of this section.
Lemma 5.2.4. Letn > 2 and A = (2" — z,1%) € 7 (2"). Then o} = min{z,2" — 1 — z}.

Proof. Recall that Pon = B x P, for some B < Gan such that B =2 Pya—1 X Pyn—1. Let
Y = Ggn-1 X Gyn-1 < Sgn be chosen such that B < Y. Let ¢ € Irr(Pyn) be such that
¢(1) = 2. Then ¢ = (L x L) | =", for some Ly, Ly € Lin(Pyn1) such that Ly # Ly. In
particular, we have that Z(;‘ # 0 if and only if [X)‘lB,Ll X Lg] # 0. Using this observation
together with the Littlewood-Richardson rule and Theorem 3.2.2, we deduce that Z(; # 0 if
and only if [XAly7X1 X XQ] # 0 where x; is the unique character in Irr,r(Sgn-1) such that

[XilPQn_l ; Lz} 7 0.
Let us first suppose that x < 2" — 1 — z, in other words = € [O, on—1 _ 1]. If x = 0, then
A= (2") and aY = 0. Otherwise using the Littlewood-Richardson rule we have

X/\ly :ZX(Qn—l—y,ly) % |:X(2n_l_(z_y)’1x_y) n X(Qn_l_(z_y_l)’lm_y_l):|

v=0 (5.1)

—|—Z [X(Qnil_(a“_y)alziy) + X(gnil_(x_y—l)vlziyil)} X X(Qnil_yyly)
y=0
where m = |x/2]. From Equation (5.1) we can see that there are exactly x distinct unordered
pairs (1, p2) € S(2" 1) x (2"~ 1) such that uy # pe and such that [X)‘ly,x‘“ x xH2] # 0.
Using the observations discussed at the start of the proof we deduce that ai, = x.

If £ > 2" — 1 —x then we are in the case x € [2"*1, 2" — 1] and we consider )\, the conjugate
partition of A\. We observe that N = (x+ 1, 1271_‘”_1) and 0 < 2" —x —1 < 21 — 1. Since

X/\,lpzn = X)\J/Pzn : X(12 )len" we deduce that a® = a2" =71 = 2" — x — 1, as desired. O

Using this lemma we can notice that af # 0 if and only if = ¢ {0,2" — 1}, that is A ¢
2"), 12")}. We deduce that 45 = H9n (27 — 1) for every natural number n > 2.
2

We are now ready to state and prove one of the main results of this section. This theorem
tells us that if an hook character has an irreducible constituent of degree 2% in its restriction to
P, then it has also an irreducible constituent of degree 2¢, for every ¢ < k.

Theorem 5.2.5. Let n € N. For every I,k € [0, 3,] such that ¢ <k, we have

AP C AL,
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Proof. Suppose first that n = 2¢, for some ¢t € N. Clearly, it is enough to show that
Aé} C Agfl, for every k € [1, Bat].

We proceed by induction on ¢t > 2. If ¢ = 2, then the statement holds by direct computation
(see Example 5.2.1). Let t > 3 and let A\ € A’;t. By definition there exists an irreducible
constituent 6 of X’\lpt of degree 2F. If § = 27(v;a) with ¢ € Trr(Py-1), (1) = 22 and

2
a € Lin(P,), then there exist pu, v € #(2!71) such that L% (\; i, v) # 0 and 9 is a constituent of
E
both X“lpzt_l and X”lpzt_l. In particular p,v € AJ,_,. If % > 1, using the inductive hypothesis

k_
for % and then for %— 1, we have that u € A;t,?. Therefore there exists an irreducible constituent
Y of X”ipt . of degree 252, Hence we have that (¢ x w)TP2t is an irreducible constituent
e
of X/\lp, of degree 28! and we conclude that \ € Agt_l. Otherwise, if g =1 then £ = 2 and
ot

A ¢ {(2"),(1%)}. Hence A € H9:(2" — 1). By Lemma 5.2.4 we know that §5:(2f — 1) = A, Tt
follows that A € A5 ' = AL

Suppose now that 6 = (6 x 60) TPQt with 61,0y € Irr(Pyi-1), 01 # 0o and 61(1) = 2", 65(1) =
2"2 where hy + hy = k — 1. Then there exist p1,us € (2171) such that LZ(\; py, pa) # 0
and 0 (respectively 62) is an irreducible constituent of x| Py (respectively x*2 | P21_1)‘ In

particular, p; € Ab L for i = 1,2. Suppose hy = hy = ®51 .= h. If h = 0 then k£ = 1 and

2t-1 2
we know that A € Agt = %’é’f_l by Theorem 5.1.4. If h > 0 then by induction we have that

1 € Agt_l - Agt__ll. Hence there exists an irreducible constituent ¢ of y*1 lp - of degree 2"~1
.

Therefore (1) x 62) szt is an irreducible constituent of X)\‘I/PQt of degree 2¥~1 and so A € Agt_l.

If instead hy # ho, we can suppose without loss of generality that h; > ho. In particular
hy > 1, so we can use the inductive hypothesis and we have u; € Agtl__ll. Hence there exists an

irreducible constituent ¢ of x#! lP . of degree 2M =1, If ¢) # 05 then considering (v x 92)TP2t we
e

deduce that \ € Agt_l, since 03(1) = 2"2 and hy+he = k—1.. If instead ¢ = 65 then in particular
ho = h1 — 1. Suppose ho > 0 and use the inductive hypothesis. We have us € Agf,l C Ag‘ffll.

Hence there exists 1)’ € Trr(Py:—1) such that [@b’, X2 lp ) J #0and ¢/(1) = 2"~1. We conclude
.
that \ € Agt_l since (01 x w’)TP2t is an irreducible constituent of X/\lPQt of degree 281 If hy = 0

then k£ = 2 and arguing as before, using Lemma 5.2.4, we deduce that A € A%t = A];fl.

Let now n € N and let n = ) ' ;2™ be its binary expansion. Let X\ € A% then there
exists ¢ € Irr(P,) such that [(;S, XAan} # 0 and ¢(1) = 2%, By the structure of the irreducible
characters of P, in section 2.3, ¢ = ¢1 X -+ X ¢, with ¢; € Irr(Pani ) and ¢;(1) = 27¢ for every
i=1,...,r, where j; + -+ + j, = k. Therefore for every i = 1,...,r there exists p; € J(2™)
such that ¢; is an irreducible constituent of X’”lPQni and LA\ py ... pr) 0. Let £ < k and
for every i = 1,...,r let d; € [0, agni], d; < j; such that dy + - - - + d, = £. By previous case, for
everyi=1,...,r, u; € A‘;ini - Ag;”;i. Hence there exists an irreducible constituent v; of Xmlpw
of degree 2% . Therefore ¢y X - - - x 1), is an irreducible constituent of X)\lpn of degree 2¢, and so

e AL O
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We introduce here a combinatorial operation between hook partitions that is very similar to
the * operation described before Lemma 2.2.9.

Definition 5.2.6. Let n,m € Nand A C Z(n), B C Z(m).
AOB := (AxB)NJ(n+ m).
The following three lemmas are the analogue of Lemma 2.2.9, Lemma 4.1.8 and Lemma 4.1.9,
respectively.
Lemma 5.2.7. Let n,n',t,t' € N be such that 3 <t <n and %/ <t' <n'. Then
()0 (t) = Dy (E+ 1),
Proof. By definition, we have 9,,(t) C %4,(t) and 9,/ (t') C B,/ (t'). Hence
()0 (') C Br(t)O0 B (t') = (B (t) * B (') N A (n+ 1)
=Bpint+tYNAn+n')=9pt+1t),

where the second equality holds by Lemma 2.2.9. To prove the other inclusion it is enough to
show that %, (t)0%B, (t') C Hn(t)ONw (t'). Let X\ € By(t)OPB (t), then X € H#(n + n') and
there exist p € B, (t), p' € B (t') such that LZ(\;u, ') # 0. However by Lemma 5.1.1, u
and 1/ have to be hook partitions. Therefore u € 9,,(t), ¢’ € H,/(t') and X € 9, (t)0H,/(¢'). O

Lemma 5.2.8. Let n > 2 and i,j € [0, fon—1] be such that i # j. Then
, : it
A OA], 0 C AL
Proof. Let \ € Aén_loAgn,l. By definition A € J#(2") and there exist p € AL, ,, v € Agn,l
such that L2 (\;u,v) # 0. Hence there exist ¢,9 € Irr(Py.—1) such that {(b, X“lp 1] £ 0,
2n—

[¢,Xl’lp 1] # 0 and ¢(1) = 2¢, (1) = 27. Since i # j, we have that 0 = (¢ x ) TPQn €
27747 . .
Irr(Pyn). Moreover, §(1) = 2¢+7+1 and [H,X)‘lpw] # 0. It follows that \ € AZQ—Z]—H. O

Lemma 5.2.9. Let n € N and let n =", , 2" be its binary ezpansion. Suppose that for every
i=1,...,7, j; €0, Ban:] is such that j1 +---+ jr = k € [0, 3,]. Then

AL O ON, C AR

Proof. Let \ € Ag%lo---OAgﬁw. By definition, for every ¢ = 1,...,r there exists u; € Agini
such that ZZ(\; u1,...,pr) # 0. Hence there exists an irreducible constituent ¢; of X“ilp
2"

of degree 2Ji for every i = 1,...,r. Since P, = Pony X -+ X Ponr < Gony X -+ X Gonr < S,y it
follows that ¢ X - -+ X ¢, is an irreducible constituent of X)\lp of degree 2F. Hence A € Ak, [

We are now ready to state the second main result of the section. In particular, we are able
to show that the sets A¥ have a very regular structure. In Theorem 5.2.10 we first deal with
the case where n is a power of 2. Then in Theorem 5.2.11 we show that for any n € N and any
k € [0, 8] there exists T € N such that Ak = §,,(TF).

Notice that we are extending to p = 2 the notation for t¥ and T, defined in Theorems 4.2.2
and 4.3.1 respectively.
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Theorem 5.2.10. Let n € N and k € [0, Ban]. Then:
(1) there emists th € [2"71 +1,2"] such that A5, = $Hon (th);

(2) if k > 1, then for every A\ € $Hon(tF — 1), X)\lPQn has at least three distinct irreducible

constituents of degree 2F.

Proof. We proceed by induction on n. If n € {1,2} then the theorem holds (see Example 5.2.1).
For n > 3 we proceed by induction on k. By Theorem 3.2.2 we know that A9, = $2n(2") and
hence that t) = 2", If instead k = 1, by Lemma 5.2.4 we have that AL, = $21(2" — 1) and hence
that tL = 2" — 1. Suppose now that k = 2. We want to show that A3, = §on (2" — 1). We have
that

Hn (2" = 1) = Hyn1(2" 1) ONgn 1 (2771 — 1) = A1 OAS 1 C A3,

where the first equality holds by Lemma 5.2.7 and where the last inclusion holds by Lemma
5.2.8. On the other hand, we clearly have that A%, C ﬁgn(Q” — 1), because (27), (12") ¢ AZ..
To conclude, we need to show that for every A € ﬁgn( —1) = Hon (2" — 2), )\lp has

three distinct irreducible constituents of degree 22. If A\; < 2" — 2 then A € Sﬁgn (2" —-3) =
Hon-1(2771 — 3)0Nym-1(2"7 1), by Lemma 5.2.7. Hence there exist u € Hon-1(2""1 — 3) and
v € Hyn1(277 1) such that LZ(\;p,v) # 0. In particular, if y; = 2771 — 2 < 271 — 3 then
using Lemma 5.2.4, we deduce that there exist three distinct irreducible constituents 6,65 and
03 of XMlPQn_1 of degree 2. On the other hand, v € $yn-1(2"71) = Agn 1. Hence there exists a

linear constituent L of x|, . Therefore (61 x L) | P (0, x L) )1 P and (65 x L) TPW are
21—

three distinct irreducible contituents of X/\i Pon of degree 22. Consider now the case A\y = 2" — 2,

then LZ(\; (271 —1,1), (2"t = 1,1)) # 0 # LZ(\; (271 —2,1%), (27 1)). By Lemma 5.1.5,

we know that X(2n_1’1’1) has an irreducible consituent 6 of degree 2. Hence there exists

on—1
a € Irr(P») such that 27 (0;«) is an irreducible constituent of X)\lPQn of degree 4. Moreover,
2n—1-212) l

) admits two distinct irreducible constituents 1y
2’)1

and 1y of degree 2. We conclude that (wl X ]lp2n_1) TPQ", (1/12 X Ipon_l) TPQ" and 2 (6; ) are
three distinct irreducible constituents of X)\l Py of degree 22.

by Lemma 5.2.4 we know that !

Let us now suppose that k£ > 3. From now on we will denote w := % We define M € N as
follows.

M i=max {t,,_, +1}_, 28 | + 65, ‘ i,j,w € [0,Bpn], i+j=k—landizj},
where for h € [0, Bgn-1],
th_, is defined inductively such that A%, = Hgn1(t0_,);
)\n 1 — (tn 1 ]., ey 1) G 5277,71 (tzfl)’ and
0, if szfl lP has two distinct irreducible constituents of degree 2";
5]1 — on—1

el -1, if X/\Z—1 lP ) has a unique irreducible constituent of degree 2".
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We will now show that M = t£, or equivalently that AX, = Hon (M).
To show that A%, D (M), we need to split our discussion into three cases, depending on
the value M.

1. First, let us suppose that M = t;_l + ti_l, for some i,j € [0, Byn-1], i +j = k — 1 and
1 # j. We have

Hon (M) = Hgn1(th_1)OHgn-1(t]_1) = Ab 1 OAL,, C Ak,

respectively by Lemma 5.2.7, inductive hypothesis and Lemma 5.2.8. Moreover, since k >
3, without loss of generality we can assume that ¢ > 1. Hence Hon (M — 1) = Hon-1(t),_; —
1)<>5§Qn_1(tfl_1) by Lemma 5.2.7. If A € $on (M — 1), then there exist g € Hon—1(t,_; — 1)
and v € ﬁgn_l(tzhl) such that ZZ(\;pu,v) # 0. By the inductive hypothesis there

exist three distinct irreducible constituents 61, 6 and 63 of X“lp ) of degree 2¢, and by
2n—

definition there exists an irreducible constituent v of X”lp ) of degree 27. It follows that
2n—

(61 x w)TPZTL, (63 x @Z))TPQH and (03 x ¢)TP2" are three distinct irreducible constituents of
X/\ipw of degree 2.

2. For the second case we assume that d;)_; = 0 and M = 2¢t_,. In this setting we observe

that k& must be strictly greater than 3. In fact, if K = 3 then Example 5.2.1 and Lemma
5.2.4 show that M = 2tL | =2(2""! —1) = 2" — 2. On the other hand, by definition of M
we know that M =max {t)_, +¢2_,2" =2} =0 +¢2 =214+l —1=2"—1
and this is a contradiction. Hence we can assume that & > 3. Let A\ € $Hon(M). If

AL = M, then LR (A \Y Y 1) # 0. Recall that 6¥_; = 0 means that X’\zfllp

n—1»"‘n—1 on—1

has two distinct irreducible constituents 6; and 0y of degree 2. Hence (6; x HQ)TPQn is an
irreducible constituent of X/\l Pon of degree 2F and therefore A € A%,.

n—1»
M-t =¥ ;. In particular, u € Hon—1 (tﬁ_1 — 1). Since w = % > 1, by the inductive
hypothesis there exist three distinct irreducible constituents 1,1 and 3 of X”l P of
2n—

e <M < M, then L2 (X A7y, ) # 0 for some p € #2771, with py = M —17) <

degree 2%. Let 61 and 65 be as in the previous case, and suppose without loss of generality

Pyn Pyn Pyn
that Hl ¢ { Lf)g,wg } and that 92 75 1,[}1. Then (91 X ’l/JQ)T 2 s (01 X @Z)g)T *" and (92 X ¢1)T 2
are three distinct irreducible constituents of X)\len of degree 2% In particular, \ € A’gn.

Suppose now that 1 < A\ < ¢ ;, then we have
Mi1=2"4+1-X\>2"+1 -t  >2" 127!
k+1 k+1

="+ 1>¢2 +1>¢,7,.

Since X' € $n (M), from the previous case we deduce that X' € A%, and we conclude that
A € AL, as AL, is closed under conjugation of partitions.

3. Finally consider the case where 0y ; = —1 and M = 2t%_; — 1. Arguing exactly as

above we observe that £ > 3 and hence that w = % > 1. Moreover, in this case we
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have that - 1lp - has a unique irreducible constituent ¢ of degree 2%. Let us fix

A€ Hom(M). If )\1 = M, then LR (MAY_,pu) # 0, for some p € Hon—r (1Y) — 1),

Indeed $Hon (M) = Hon-1 (¢ nfl) Ofgn-1 (t¥_; — 1), by Lemma 5.2.7. Using the inductive

hypothesis on p, we have that there exist three distinct irreducible constituents 61, 6s and

03 of X“lp ) of degree 2%. Without loss of generality we can suppose that 1) £ 61, hence
on—

(1 x Hl)TPQ" is an irreducible constituent of X/\lPQn of degree 2¥. Therefore A € AL,.

If instead A\ < M, by Lemma 5.2.7 we have
>\ 6 ij’ll (M - ].) — ij'n,—l (tg—l - 1) <>~62n—1 (tg—l - 1) .
Hence there exist p, v € $gn-1 (t%_; — 1) such that L2(X; pu,v) # 0. By induction there

exist three distinct irreducible constituents 67,65 and 63 of X“l P and three distinct
on—

ones 01,09 and o3 of X”lp g all of them of degree 2. Without loss of generality
2n—

we can suppose that 6y ¢ {o92,03} and 0y # o3. Hence (61 x O'Q)TPQH,(Hl X ag)TPQn
and (6 x Ug)TPQ" are three distinct irreducible constituents of X/\lPQn of degree 2¥. In

particular, A € A%,

We claim next that A5, C $2:(M). To do this, suppose by contradiction that there exists
e Ak Hon (M) and without loss of generality suppose also that \; > M + 1. By definition

there exists ¢ € Irr(Psn) such that {X)\lpw»@b} # 0 and ¢(1) = 2*.
To prove the claim there are three cases to consider

k

Case 1. Suppose first that ¢ = 27 (¢, ) with ¢ € Irr(Pyn-1), ¥(1) = 22 and « € Lin(P). Hence
there exist p,v € (2" 1) such that LZ(\;u,v) # 0 and ¥ is both an irreducible
k

constituent of XMlPWq and of XVleff Therefore p,v € A;,l. By the inductive
hypothesis and by Theorem 5.2.5, we have

E kE_q kg
~62n—1 ( n 1> A‘227L 1 = A227L71 = 57-)2"_1 (tTQLl) :

k k
In particular, t2_; <t? | and this implies that

k

k k k

This inequality gives that $on <2tﬁl) C Hon(M). Since p,v € AJ,_; = Hon (@31)7 we
k

have \ € Hon-1 ( t2_ 1) OHon—1 ( 5—1)- Using Lemma 5.2.7 we conclude that

A S 37)27171 (ti 1> <>57J2n 1 ( ,; 1) ,57)271 <2t,2 1> g ﬁgn(M)

This is a contradiction as A\y > M + 1.
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Case 2. Suppose now that ¢ = (¢1 X qbg)TPQ", where ¢1,¢2 € Irr(Pyn-1) and ¢1 # ¢2. Then
there exist 1, us € (2" 1) such that LR (\; 1, p2) # 0 and ¢1 (respectively ¢q) is an
irreducible constituent of ju; | P (respectively po | P 1). We need to distinguish two

2n— 2n—

cases: the first one holds when ¢1(1) = 2° and ¢2(1) = 27 , with 4,5 € [0, Byn—1], i # j and
1+7 =k—1. In this case u; € Aén—l and pg € A%n_l. Hence, by the inductive hypothesis,
Lemma 5.2.7 and the definition of M we get that

)\ S Agn71 OAgn,1 — ﬁanl (t,zn_l) Of)gnfl (tiL—l) — .62n71 (tfz—l —|— ti—l) g S”_')Qn (M)
This is a contradiction as Ay > M + 1.

Case 3. Finally consider when ¢1 # ¢ but ¢1(1) = ¢2(1) = 2¥. In this setting we have that
p1, p2 € Ay, ;. By the inductive hypothesis AZ,_; = $on—1 (t,“l’_l).
In particular, (p1)1, (u2)1 < t¥_,. Hence we have

2ty S M+ 1< A < (1)1 + (p2)2 < 2t5 4, (5.2)

where the first relation holds by definition of M, the second one by assumption and the
third one by Lemma 2.2.8. Therefore (5.2) is a chain of equalities and in particular,
(1)1 = (p2)1 =t 4. Hence p; = p2 = A¥_;. Then 6Y_; = 0 since by assumption ¢; and
@2 are two distinct irreducible constituents of A;”_ll Py of degree 2. By definition,

M =max {t;,_, +1}_1,2t% | |i,j,w € [0,Bpn], i+j=k—Tlandi#;j}.
Since (5.2) is a chain of equalities we get M +1 = A\; = 2t’_; < M, which is a contradiction.
This proves the claim. O
We can now prove our main result in this chapter:
Theorem 5.2.11. Let n € N and k € [0, 8,]. Then:

(1) there exists T® € [1,n] such that AF = 6, (TF);

(2) if k > 1, for every A € H,(TF — 1), XAlp has three distinct irreducible constituents of
degree 2F.
Proof. We proceed by induction on n: if n = 1 then £ = 0 and the statement is obvious. Let

n>2andlet n =), ;2" be its binary expansion. By Theorem 5.2.10, for every i € [1,r] and
every d; € [0, Bani| there exists t;iii € [Q"i_l +1, 2"1'] such that Ag%i = $Hon; (t‘f;z) Define

M::max{tﬂ}l+-~+t¥; ji € [0, Boni] for every i € [1,r] and jy +---+j. =k }.

We want to prove that AR = 6,(M). Let j1 € [0,B2m],...,jr € [0, Banr] be such that M =
th + -+t . We have

(M) = Hona (1) -+ Ofgn, (H7) = A, © -~ OAL,, C AE,
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where the first equality holds by Lemma 5.2.7, the second by Theorem 5.2.10 and the inclusion
by Lemma 5.2.9.

To prove part (1) of the theorem it remains to show that A¥ C §,(M). Let A € AL
Then there exists an irreducible constituent ¢ of X/\an of degree 2F. The structure of P,
discussed in section 2.3 implies that ¢ = ¢1 X -+ X ¢, for some ¢; € Irr(Pyn;) for every
i € [1,7] such that ¢;(1) = 2/i and such that j; + --- + j. = k. Hence there exists y; € 52(2™)
with ¢; as an irreducible constituent of the restriction X“ilpw_ for every i € [1,r], such that
LRN; 1y, pr) # 0. In particular, by Theorem 5.2.10 there exists tiﬁl € [2"1'_1 +1, 27“] such
that p; € A%ini = §gn: (t11). Therefore by Lemma 5.2.7,

A E Homt (HL) O ONonr () =9y (L + -+ tI1) € H, (M),

where the last inclusion follows from the definition of M.

In order to prove statement (2), let us fix £ > 1. From the discussion above, we know that
AE = 6,(TF), where TF =t} + --- + t3 for suitable j; € [0, Ban1],...,jr € [0, Banr] such that
J1+ -+ jr =k Since k > 1, we can suppose without loss of generality that j; > 1. Let X €
Hn(TF —1). By Lemma 5.2.7, §,(Tf — 1) = Hom (# —1) O+ Ofiper (#,). Hence there exist
1 € Hom (tﬁl - 1) and p; € Hon (tf{l) for every i € [2,r] such that L2 (\; u1, pay ..., pr) # 0.
By definition there exists an irreducible constituent ; of x*¢ l p.,,. of degree 2Ji for every i € [2,7].

2"
By Theorem 5.2.10, there exist three distinct irreducible constituents ¢1, ¢ and ¢3 of lP )
27L

of degree 271. Therefore ¢y X g X -+ X Py, g X g X -+ X 1), and ¢3 X g X - -+ X 1, are three
distinct irreducible constituents of X’\l p of degree 2k, O
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We conclude this chapter by explicitly computing 7,>". By doing this, we manage to identify
those characters y € Irr_»(&,,) such that Xl p admits irreducible constituents of every possible
degree.

Definition 5.2.12. For n € N, define 7, € 27! +1,2"] by

nm=2 1=313="7T 17 =13, 5 =26, and
Tp =201 4 2n=2 L on=5 4 9n=6 for > 6.

Notice that 7, = 27,1 for any n > 7.
As usual, we start by studying the case where n is a power of 2.

Proposition 5.2.13. For every n € N, Tﬁ?n = T1,. Moreover, if n > 6 and \ € Agﬁ" then there
exist at least three distinct irreducible constituents of X)\len of degree 252

Proof. We proceed by induction on n. If n < 6 then the statement holds by direct computation.
The cases n € {1,2,3} has already been computed in Example 5.2.1. If n = 4, 852 = 5 and
an irreducible character of degree 25 is of the form (y x 4) TP24 with (1) = §(1) = 22. Hence
Ae Ay, if (XA)J«(‘BgXGg has a constituent g x po such that py,pus € A2 = $3(7). Then by
Littlewood-Richardson rule, we can see that this happens if \; € [4,13]. Thus Afs = H16(13).
Notice that (13,1%) has only two distinct irreducible constituents of degree 2° in its restriction to
Pys, say 01 and ;. We can argue in the same way for the case n = 5. Notice that A} = $5(26),
but if A = (26,1%) then its restriction to the Sylow subgroup P,s has a unique irreducible
constituent of maximum degree 2!, achieved by inducting 0; x 65 to Pys. Finally, let n = 6 and
A€ A(25). If A = (52,1'2) then there is x(261°) x (2619 in the restriction (X)\)l625><6257 but

this not gives an irreducible character of degree 256 = 223 Indeed, as we have seen in the previous
case, (X(%’IG))lP _ has a unique irreducible constituent of degree 2M. Hence, A2} = $96(51) and
2
51 = 254+ 2% + 21 + 20 a5 we wanted. Notice also that since (Xﬂ)ip . has at least three distinct
2

irreducible contituents of degree 2! for y € A%% \ { (26,1%), (7,1%%) }, then every \ € Agg has at
least three distinct irreducible constituents in the restriction to Pays.

Let now n > 7. We want to show that Agﬁ” = $on (7). Given \ € Agﬁ", there exists an
irreducible constituent ¢ of X/\an of degree 2%2" . As we have seen in the proof of Proposition

5.2.3, ¢ = (¢1 x ¢2)TP2n with @1, g2 € Irr(Pan-1), ¢1 # ¢2 and ¢1(1) = ¢2(1) = 2%2»-1. Hence,

there exists 1, o € (2" 1) such that LZ(\; u1, u2) # 0 and such that [Xmlp 1,@} #0
on—

for all ¢ € {1,2}. In particular, pi,us € Agﬁ’:l and by the inductive hypothesis we know that

Agﬁzl = $on-1(7n—1). Using these observations together with Lemma 5.2.7 we conclude that

A € 5271—1(7'“71)05{)2"—1(7'”71) = f'_')Qn (2’7’77471) = f)Qn (Tn)

In order to prove the other inclusion, we consider A € $on(7,). From Lemma 5.2.7 and the
inductive hypothesis, we know that

Fon(Tn) = Hon1 (T 1)ONgn-1 (T1) = Ap2 T OAD
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/Bgn—l

Therefore there exist p,v € A,2"," such that x* x x” | (x The inductive

A
)l’Ganl ngnfl ’
hypothesis implies that both X“l P and X”l P admit three distinct irreducible constituents
on— on—

of degree 227-1_ Denote by ¢1, ¢2, @3 those constituents of X“lp ) and by 1,9, 13 those
on—

constituents of XVlPanf If; ¢ {¢1, P2, p3} for some j € [1, 3], then (¢ xzpj)TPQ", (g2 xz/zj)TPQn
and (¢3 x wj)TPQ" are three distinct irreducible constituents of X)\len of degree 22" On the
other hand, if ¥; € {¢1, 2, ¢3} for all j € [1,3], then we can assume without loss of generality
that ¢; = 4; for all i € [1,3]. In this case we have that (¢; x 1/)2)TP2", (o x wg)TPQ" and
(3 X wl)TP2n are three distinct irreducible constituents of x* | P, Of degree 262 Moreover,
A€ A’g?f as desired. O

r

Proposition 5.2.14. If n € N and n =) _._, 2™ is its binary expansion, then b = D1 Ty

Proof. Arguing exactly as in the proof of Theorem 5.2.11, we have that

T
TPr = max{TJ + -+ T3 | ji € [0, Boni] for i € [1,7], and > ji = B}
=1

Since B, = > _;_; Pori, we deduce that T8 — Tffnl 4o T;?f"r. The statement now follows
from Proposition 5.2.13. O

Remark 5.2.15. By Theorems 5.2.5 and 5.2.11 we know that for every k& € [0, 3,] we have
ﬁn(Tf") = Ag" C Afl. From Proposition 5.2.14 we observe that the majority of the elements of
A (n) are contained in f)n(Tf"). This shows that the restriction to P, of most of the irreducible
characters labelled by hook partitions admit irreducible constituents of every possible degree.






Chapter 6

Vertices of FS,,-modules

Let F be a field and let &,, be the symmetric group on n elements. Let FG,, be the associated
group algebra. It is an open problem to determine the vertices of some important families of
F&,,-modules, for instance the Specht modules.

In this chapter we would like to collect some results on this topic. Notice that a previous
survey on vertices of simple modules has been made by S. Danz and B. Kiilshammer in [§|.

We dedicate the first section of this chapter to the vertices of Specht modules. First we
present a characterization of simple Specht modules: Theorem 6.1.1 for p = 2 and Theorem 6.1.2
for p odd. Then we completely describe the vertices of simple Specht modules in Theorems 6.1.3
and 6.1.4. To do this we define pairs of partitions and signed Young modules.

After that we show a characterization of indecomposable Specht module (Theorem 6.1.5).
In this case we do not have a generic description of the vertices. However we describe a lower
bound in Theorem 6.1.8 and we explicitely compute few special cases.

We then turn to Section 6.2 in which we collect the results about vertices of simple modules
D?. There are some special cases for which the computation has been done, in particular for a
simple module labelled by a hook partition.

We include some results concerning trivial source Specht modules in the last section, right
before turning to the definition of a Scott module. Finally we are able to say something about
the decomposition of a permutation module M?* into Young modules. Indeed, only one of these
indecomposable summand is isomorphic to a Scott module. It is the the main result of this
chapter to determine which one. This is Theorem 6.3.7.

Recall that Fg denotes the trivial FG-module when G is a finite group.

6.1 Vertices of Specht modules

The first family of F&,,-modules that we consider are the Specht modules. Recall that if A
is a partition of n, S* is the associated Specht module.

The knowledge that we obtain about the vertices of a Specht module is deeper if the module
is simple. Therefore we split this section into two parts: the first one focuses on simple Specht
modules, and the second one on indecomposable Specht modules.

6]
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In Section 2.2.2 we have seen that if F has characteristic zero, {S* | A € Z(n)} is a set of
representatives for the isomorphism classes of simple F&,,-modules. Hence from now on, we will
consider F to be a field of positive characteristic p.

6.1.1 Simple Specht modules

A characterization of simple Specht modules in the case p = 2 is given by G.D. James and
A. Mathas in [46].

Theorem 6.1.1. The Specht module S* is simple in characteristic 2 if and only if
(i) Ai — Nig1 = —1 mod 2mNi1=Ait2) for ll i > 1; or
(i) N; — Njy, = —1 mod 9Nt =Aiv2) for all i > 1; or
(115) X = (2,2).
Here, for an integer k, m(k) denote the least non-negative integer such that k < omik)

In the same paper, they conjectured a characterization of simple Specht modules for p > 3
that was subsequently proved by M. Fayers in [17] using also results by S. Lyle [52].

Theorem 6.1.2. Let p > 3. Then S* is simple if and only if in the Young diagram [)\] there are
no nodes (a,b), (a,y) and (z,b) such that

Vp(hiap)) >0, and
Up(hapy) # Vp(Miap) # Vp(Riay))-

Here vp,(h) denotes the highest power of p dividing a natural number h, while h(ap) is the
hoook-length of the node (a,b).

The partitions labelling the simple Specht modules of FG,, are usually called JM-partitions.
We denote by JM(n), the set of the JM-partitions of n, where p is the characteristic of the base
field F.

The vertices of simple Specht modules have been completely described, since every simple
Specht module is a signed Young module, by [34], and there is a complete characterization of
the vertices of the signed Young modules in [11]. The latter are a natural generalization of the
usual Young module that we defined in Section 2.2.2. We describe them next.

Let 222(n) be the set of all pairs (A | p) of partitions A,y such that [A| + |u| = n. We
allow A or u to be the empty partition (). For (\ | u) € 22(n), the signed Young permutation
FS,,-module is

Sn
M| p) = (IF@A @sgneu) Sy xS,

In the case when p = (), we obtain the usual Young permutation module, that is M* = M (\ |

).

Let (A | w),(a | B) € P2%(n). We say that (A | p) dominates (a | B) (and we write
(A | ) & (a | B)) if for every k > 1,
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(i)
k k
Z A > Zai, and
i=1 i=1
(i)
k k
Al + ZM > |af +Zﬂi-
i=1 i=1

This gives a partial order > on Z2(n), which is also called the dominance order.

The indecomposable signed Young modules have been defined in [11] inductively: for any
(X | pu) € 22%(n), M(X | pu) has an indecomposable direct summand Y (X | pu) appearing with
multiplicity 1, and the remaining indecomposable summands are isomorphic to indecomposable
summands of other signed permutation modules M (« | pB) such that (« | pB) > (A | pp).

More generally, for an arbitrary (o | 8) € 92%(n), the signed Young permutation module
M (| B) is isomorphic to a direct sum of some signed Young F&,,-modules Y (A | pu) such that
(A | pp) > (| B). Notice that if = (), we recover the usual Young module Y* = Y(\ | 0).

Let (A | pu) € 2%(n). Using the notation of the p-adic expansion from (2.1), set r =
max { 7,7, + 1 } and define the following composition of n:

B | pp) i= (1NO], pAOHIHOL R ry -1l

Theorem 6.1.3 ([10, Theorem 3.8 (b)]). Let (A | pu) € £%(n) and p = V(X | pu). Each Sylow
p-subgroup of &, is a vertex of the indecomposable signed Young module Y (X | pu). Moreover,
Y (X | pu) has trivial source.

Finally, by D.J. Hemmer [34] we know that every simple Specht module is isomorphic to a
signed Young module. More precisely:

Theorem 6.1.4 ([10, Theorem 5.1]). Let A\ € JM(n). The simple Specht FS,,-module S* is
isomorphic to Y (¢()\)), where the map ¢ : P(n) — P%(n) is defined by

¢(A) = (| pB),
where o = (N(0)) and pg = XN — N(0).

6.1.2 Indecomposable Specht modules

G.D. James, in [42, Corollary 13.18] showed that almost all Specht modules are indecompos-
able.

Theorem 6.1.5. Let F be a field of prime characteristic p and let A be a partition of n.
Ifp>2, orif p=2 and the parts of \ are distinct, then S* is indecomposable.

It remains to understand what happens when p = 2 and the parts of A are not distinct.
In [41, Example 1] it is shown that S®1*) is decomposable over a field of characteristic 2.
Moreover, in [60], Gwendolen Murphy gave necessary and sufficient conditions for the Specht



78 CHAPTER 6. VERTICES OF F&N-MODULES

module S@mH1-71") 5 be decomposable if p = 2. Hence she found infinitely many Specht
modules that are decomposable.

In [12] the authors describe a set of partitions that label Specht modules which are isomor-
phic to Young modules. So these Specht modules are indecomposable, for every characteristic.
Similar techniques were used in [13] to give decompositions of several types of Specht modules
in characteristic 2 as direct sums of indecomposable modules.

However, it is still an open question if there are other decomposable Specht modules yet to
be discovered.

The vertices of indecomposable Specht modules have only been found in a few special cases.
However, there is a general lower bound. More precisely M. Wildon proved in [70] that:

Theorem 6.1.6. Let )\ be a partition of n, let t be a A-tableau and denote by H(t) the group of
those permutations which stabilize the rows of t and also permutes the columns of equal length in
t.If the Specht module S, defined over a field of characteristic p, is indecomposable, then it has
a vertex containing a subgroup isomorphic to a Sylow p-subgroup of H(t).

Corollary 6.1.7. If the Specht module S*, defined over a field of characteristic p, is indecom-
posable, then it has a verter containing a Sylow p-subgroup of Sx,—x,-

In [19], E. Giannelli generalizes and improves the lower bound on the vertices given in The-
orem 6.1.6:

Theorem 6.1.8. Let n be a natural number and let IF be o field of prime characteristic p. Let X be
a partition of n and let t be a \-tableau. If the Specht module S* defined over F is indecomposable,
then each of its vertices contains a subgroup conjugate to a Sylow p-subgroup of H(t) x H(t'),
where t' denotes the transposed tableau of t.

In the case of hook partitions of a natural number n that is not divisible by p, this theorem
is enough to describe the vertices of the corresponding Specht modules.

Let A = (n — k,1%), p  n. The lower bound on the vertices of S* is attained. In fact, in
this case we have H(t) x H(t') = &) x &,,_j_1, hence by [69] we have that the vertex of S* is
conjugate to a Sylow p-subgroup of & X &,,_p_1.

In [19], E. Giannelli also determined the vertices of a certain family of Specht modules. Recall
the definitions of p-core and p-weight of a partition from Section 2.4.1..

Theorem 6.1.9. Let n be a natural number and let X = (m,x1,x2,...,2%) be a partition of n
such that the partition (x1,x2,...,2Tk) is a p-core partition of n —m. Denote by p and w the
p-core and the p-weight of \ respectively. Then the vertex of S* is equal to defect group of the
corresponding block B(p,w).
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6.2 All simple modules of FS,,

The vertices of a simple module D*, A a p-regular partition of n, have been completely
determined for n < 14 in [9]. Also, the vertices of all simple F&,-modules (n arbitrary) of
dimension d < 1000 have been established in [5].

There is no general description of the vertices of the simple F&,,-modules, not even conjec-
turally. However, there are some results for special situations, which are now outline.

Two-part partitions

S. Danz in [6] describes the vertices of D~ in the case where p > 2 and m < w. They
are either defect groups of the corresponding block or Sylow p-subgroups of the Young subgroup
Gh_om X G, X &, of G,,. Moreover, one can say precisely when the second alternative occurs.
The same result is true for arbitrary two-part partitions whenever p > 2 and n < 2p?. However,
not much is known about the vertices of D(~™™) in the case when p = 2.

Completely splittable modules

D?* is called completely splittable if the restriction of D* to &,, is semisimple for m =
1,...,n—1. A. Kleschev in [49] has given a combinatorial characterization of such modules: the
simple F&,,-module D? is completely splittable if and only if A\; — \; + k < p. It was shown in
[6] that the vertices of the completely splittable F'&,-modules are always defect groups of the
corresponding blocks. Such defect groups are known. See Proposition 2.4.7.

Hook partitions

If A= (n—r1"), for some r € {0,...,p— 1}, then X\ is called a p-regular hook partition of n.
Let F be a field of characteristic p > 0, and let n € N. The vertices of the simple F&,-module
D™=1") are known. Their exhaustive description is due to the collective work of several authors:
M.H. Peel in [66], M. Wildon in [69], J. Miiller and R. Zimmermann in [59], and S. Danz in [4]

and [7]. We summarize these results in the following theorem:

Theorem 6.2.1. Let F be a field of characteristic p > 0, and let n € N. Let further r €
{0,1,...,p— 1}, and let Q be a vertex of the simple FS,,-module Dn=r1"),

(a) If ptn then Q is &, -conjugate to a Sylow p-subgroup of Sp_r_1 X S,..
(b) Ifp=2,p|n and (n,r) # (4,1) then Q is a Sylow 2-subgroup of &,,.
(c) Ifp=2,n=4 and r =1 then Q is the unique Sylow 2-subgroup of Ay.

(d) If p> 2 and p | n then Q is a Sylow p-subgroup of S,,.
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6.3 Trivial source modules

As we have briefly seen in Section 2.4, we can say more about the vertices of p-permutation
module; i.e. the FG-modules that have trivial source.

We know that simple Specht modules have trivial source by Theorem 6.1.3. In addition, if
a Specht module is isomorphic to a Young module it also has trivial source. This holds by the
definition of the Young modules in Theorem 2.2.2.

If p > 3 and n < 3p, the vertex of a F&,-module could be the trivial subgroup, C,, or
Cp x Cp. From the discussion in the proof of Theorem 1 in [69], these cases can be determined
by considering the p-weight of the corresponding partition. First of all a Specht module corre-
sponding to a weight zero partition is projective, and therefore has a trivial vertex. If a partition
has weight one then the labelled Specht module has vertex (), and if a partition has weight two,
the corresponding Specht module has vertex Cp, x Cp.

In [35] there is a characterization of the Specht modules of trivial source corresponding to
partitions of weight one.

Theorem 6.3.1. Let p > 3 and let B be a weight one block of &,,. Order the partitions corre-
sponding to Specht modules in this block by the lexicographic order, A(p)<A(p—1)<---<A(1). The
Specht modules of this block with trivial source are exactly those corresponding to the partitions

(A2k+1)|k>0}.

In [47], Y. Jiang completely classified the trivial source Specht modules labelled by hook
partitions. When p > 2, he also classified the trivial source Specht modules labelled by two-part
partitions. Moreover, for p = 2 he proved a conjecture stated in [35].

More precisely, the following are the main results in [47]:

Theorem 6.3.2 ([47, Theorem A|). Let n and r be integers such that 0 < r < n. Then S™~71")
is a trivial source module if and only if the partition (n — r,1") falls into precisely one of the
following cases:

(i) (n—7,17) € IM(n),;
(ii)) p>3,n=p, 0<r<p—1and2|r;

(iii)) p=2,21n,r>1. r#n—2 n—1andn=2r+1 ( mod 2% ) where the integer L
satisfies 2171 < < 2L,

Theorem 6.3.3 (|47, Theorem B|). Letp > 2 and n,r be integer such thatn > 0 and 0 < 2r < n.
Then S="7) is a trivial source module if and only if the partition (n —r,r) € JM(n),.

Theorem 6.3.4 ([47, Theorem C|). Let p = 2 and n be an integer such that n > 4. Lel A be
a partition of n with 2-weight two and ky(\) be its 2-core. Then S* is a trivial source module if
and only if X falls into exactly one of the following cases:

(i) A € IM(n)g;
(i) X ¢ IM(n)2, S = YH and = ka(\) + (2,2).
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6.3.1 Other families of modules

In this chapter we consider some more families of trivial source FG&,,-modules. We already
talked about Young modules in Section 2.2.2, but there is another family that we would like to
define: the so-called Scott modules.

Let F be a field and G be a finite group. Given a subgroup H of G there exists a unique
indecomposable summand U of the permutation module IFHTG such that the trivial FG-module
is a submodule of U. This holds by Frobenius reciprocity theorem 2.1.7. We say that U is the
Scott module of G associated to H and we denote it by Sc(G, H).

The following summarizes the main properties of Scott modules (see |3, Theorems (2.1) and

(3.2)]):

Theorem 6.3.5. Let G be a finite group, H a subgroup of G and P € Syl,(H). Then the Scott
module Sc(G, P) is isomorphic to Sc(G, H) and is uniquely determined up to isomorphism among

the summands of IFHTG by either of the following properties:
(i) Fg is isomorphic to a submodule of Sc(G, P);
(ii) Fq is isomorphic to a quotient of Sc(G, P).
Moreover, Sc(G, P) has vertex P.
Notice that, by definition, Scott modules have trivial source.

When we consider symmetric groups, the most interesting permutation modules are the
Young permutation modules M = FGATG", for A a partition of n. Hence we know, by the
properties listed above, that one of the indecomposable summand of M? is the Scott module
Sc(&,,, Sy ). Since the indecomposable summands of a Young permutation module are the Young
modules (see Theorem 2.2.2), a natural question arises: which Young module Y#, > ), is iso-
morphic to the Scott module Sc(S,,, &5)7 This Young module Y# has to appear with multiplicity
one. The first to give an answer to this was J. Grabmeier in [32]. Here we give our answer to
this question.

Let A be a partition of n. We denote by Py a Sylow p-subgroup of the Young subgroup &,.
Notice that, if A and p are partitions of n such that Py, = P, then by the Theorem 6.3.5 we
have:

Sc(6y, 6)) = Sc(6y,, Py) = Sc(6y,, Py) = Sc(6,,6,,).
Therefore, for P a p-subgroup of &, we can define

APZI{AE:@(H)‘P/\gP}.

Then for every A\ € Ap, Sc(&,,, &)) = Sc(S,, P).

Denote by Ap the partition of n such that Sc(&,,, P) = Y P.
By the above argument, we necessarely have that \p > X for every A € Ap, and Y*P appears
with coefficient 1 in the decomposition of M* for every A € Ap. Notice also that Y*# cannot be

one of the indecomposable summand of M* if A ¢ Ap. For instance, for every natural number
n, Sc(Sy, P,) = y(n) o Fg, and Y (™ is always a Scott module.
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We would like to remark, before going on with our discussion, that if n < p then for every
A € P(n) we have Py = 1. Hence, A; = #(n) and the partition that dominates all the others
is (n). Then Sc(6,,6,) = Y™ = Fg | for every A € P (n), is the only Young module that is

isomorphic to a trivial Scott module.

Suppose that n = >""_ b;p', for some r > 0 and arbitrary non-negative integers by, ..., b,.
Let P = X;ZO(Ppi)bi. A partition A - n belongs to Ap if for every i € [0,p — 1], p’ occur in the
p-adic expansion of the parts of A exactly b; times.

Definition 6.3.6. Let d; be the residue of b; modulo p — 1 and set ¢; = Zilz Define Ap by
p

letting p’ occur in the p-adic expansion of the first ¢; parts with digit p — 1, and in part ¢; + 1
with digit d;. More formally, for j > 1

p—1, ifj<g

,
(Ap)j = Z:O‘MPZ with o j = § d;, ifj=c+1
=0 0, otherwise.
This definition gives a partition A\p € Ap. Indeed, for every j > 1, Popy, & Xi_o(Pryi)®,
since a;; < p — 1 by definition. Hence, Py, = P(/\p)1 X P(,\P)2 X oee. X ngo(Ppi)Z]zlai’j,

reordering the various factors. However, Zj>1 a;j = ¢i(p—1)+d; = b;. Therefore Py, = P and
S0 Ap € Ap.

Theorem 6.3.7. A\p dominates every partition in Ap. In particular Sc(&,,S,,) = YAP appears
with multiplicity 1 in the decomposition of M¥, for every p € Ap.

Proof. Let u € Ap. We have P, = P = X;ZO(Ppi)bi with b; € N and >|_,b;p’ = n. Hence
pi = >oi_gBi;p’ for every j > 1, for some 0 < ;; < p — 1 such that 2]21 Bi; = b; for every
ie0,r].

Now, Ap &> p if and only if for every x > 1,

x

DR =D =3 Bigp =>_ [ D By | P
=1

=0 j=1i=0 i=0 \ j=1

However 3; ; < p—1 for every possible choice of i and j. Hence Z;”:l < z(p—1). Moreover,
ijl Bij = b; for every i € [0,r], and Zle Bij < ijl Bij = b;. Therefore Z;C:l pi <

Si—omin{b, z(p — 1)}p".
By definition of a;;, we have that > 7_; a; ; = min{b;, x(p — 1)} for every i € [0,7]. Indeed,

rdi Zbi, if C; :0;

z p—1+4+d; =10, ife,; =1 (z>2);
Zai,j: 2p—=1)+d;=b;, ifc;=2(x>3);
j=1

(z(p — 1), if ¢; > .
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Finally:

3
8

Z Zaz,] p - Z az,]p - Z()\P)j
=1 =

]:1 =0 ]:1

Example 6.3.8. Consider the case n = p = 5. We have
(5)> (4,1)>(3,2) 2 (3,1,1) > (2,2,1) & (2,1,1,1) 2 (1,1,1,1,1).

Then P\ 2 P5,if A = (5), and Py = 1, otherwise. Hence Ap, = {(5)} and A1 = 2(5)\{(5)}-
Therefore we can have only two Young modules that are isomorphic to Scott modules: y () =~
Sc(G5, P5) and Y4 22 S¢(S5,1), since (4, 1) dominates all partitions except (5).

These information can help us to compute the decomposition of a Young permutation module
M? for some small cases.

If A = (5), we already know that M* =Y () = Fg_.

If A\ = (4,1), by Theorem 2.2.2 we have that M* = c¢Y®) @ Y*D for some ¢ > 0. However,
by the above computation we know that both Y®) and Y1 are Scott modules. If they both
appear with positive coefficient as summands of M?, then we will have two indecomposable
summand with the trivial FG&s-module as a submodule. By the argument at the beginning of
this section, this is impossible. Hence we have M®*1) = y(41),

If A = (3,2), the Young permutation module M* has dimension 10. Both the Young modules
Sc(Gs, Py) = YD and Y32 have dimension at least 5, since M®D = YA and since SG:2)
(that has dimension 5) is contained in Y (32). They both have to appear once in the decomposition
of M*. Hence necessarely Y32 has dimension exactly 5 and M®) = y*1) gy (3:2),

Notice that the knowledge of these decompositions gives us also a basis for some Young
modules. Since M* is generated by the A-tabloids, a basis for Y (%) is formed by the (4,1)-
tabloids. Also, since S©2) = V(32 we know that it is generated by the standard basis for the
Specht module S(2),

We know that both Scott and Young modules have trivial source. Moreover, for a partition
p of n, the vertex of Sc(&,,&,) is P, while the vertex of Y# is given by P, where p(u) is
defined in Theorem 2.2.2. If u € Ap we have just seen that Sc(&,,8,) =& Sc(&,, P) & Y7,
Hence we have P, = P = P, ), so p(Ap) € Ap.

The following lemmas show that there is only a possible choice for p(Ap) € Ap.

Lemma 6.3.9. For every P = xgzo(Ppi)bi, where b; > 0 and Y, bip' = n, there exists a
unique p € Ap whose parts are powers of p. This is the least dominant partition in Ap.

roof. € Ap, then pu; = S0, B;ip' for every j > 1, with 3;; < p — 1 for every 4,5 an
P If w € Ap, then u; o Bijp' £ > 1 h B < 1 fi d
2321 Bi; = b; for every i € [0,7]. Hence p has to be the partition of n defined by p; = p"™*
where j € {ZZ;BI)T T Dy k} and p; = p" if j < b,.

Let now r = S bi +y with y < b.—s1, s € [0, — 1]. By definition, >>7_, p; =
S bip'+yp" 5L Notice that y; > pjq1 for every j > 1, since y is a partition. In particular,

1=r—S§
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Bra1 > Bra > -+ and 2321 Br; = by. Then necessarely .1 > 1, and if 3, ; = 0 then §, ;41 = 0.

r—1

Therefore, le’.":l p; > byp". To realize b._1p we need at most other b,._1 "positions", so

br4by— —_ ; _s—
S g = bep” 4 beap™h And so on: 35y > L bt +yp Tt = 5
Therefore a generic partition u € Ap dominates p. O

Lemma 6.3.10. Let p € Ap as in the previous lemma. Then p = p(Ap).

Proof. We need to show that the definition of p in the previous lemma and the definition of
p(Ap) in Theorem 2.2.2 coincide.

Recall that (Ap); = >_I_, a; jp' for every j > 1. Define A(i); = oy ; for every possible choice
of i,j7. Then A(i) = (41,052, :3,...) = ((p — 1)%,d;) for every i € [0,7]. We claim that
Ap = >1_o A(i)p" is the p-adic expansion of A. If this is true, we have |A(i)| = ¢;(p—1)+d; = b;,
by definition of «; ;. Hence p(Ap) is exactly p.

To prove the claim we need to check that Ap = Y"I_ A(i)p’, but this is true. Hence it remains
only to check that for every i € [0, 7], A(i) is p-restricted. Notice that A(i)’ = ((¢;+1)%, cf_l_d").
By assumption, 0 < d; < p—1, hence p — 1 —d; < p—1 < p. Therefore \(i)’ is p-regular, and
A(7) is p-restricted. O

Let us recap what we have found so far: fix a set of partitions Ap and order its elements
with the dominance order. The maximal partition Ap is the one such that its corresponding
Young module Y7 is a Scott module, and the minimal partition p(Ap) is the one that describes
the vertex of this module, that is P = P,,). We refer to Example 6.3.12 for an explanatory
computation.

We conclude pointing out that every Young module labelled by a partition in Ap has vertex
P (not only the one that is isomorphic to a Scott module).

Proposition 6.3.11. For every u € Ap, Y* has vertez P.

Proof. Let p € Ap, then p; = >1_ Bi.;p" with B;; <p—1 and Ej21 Bi,; = b; for every possible
choice of 7, j. Let pu(i); = B, j for every 4,5. Then =3, , p(i)p’ is the p-adic expansion of p.
Indeed: for i € [0,7], I(u(i)) = k. Then (i) = (Bi1,...,Bik). ki =max{j > 1] Bi; > Bir}
and kj, = max{j > 1| B;; > Bix,_,} for every h, then pu(i)’ = (k%*, kfi’kl_ﬂi’k,kgi’kQ_Bi’kl,...).
However 1 < 8; ; < p— 1 for every 7,7, and ;1 > --- > 3, for every 4, imply that §; ; — B; j» <
(p—1)—1=p—2if 7/ > j. That means that u(i)’ is p-regular, and p(7) is p-restricted.

Now, let p(u) be the partition of n which has |u(i)| parts equal to p’. Since |u(i)| =
>_j>1Bij = b; for every i € [0,r], we have that p(u) coincide with p(Ap). Hence Y* has
vertex PP(M) = PP()\P) =~ P. ]

Example 6.3.12. Let p = 3 and n = 9. We partition the set £?(9) into five sets: Ap,,
ACgXCgXCg; ACgXCg) A05 and Al-
Let us focus for instance on C3. We have

Ao, =1{(5,2,2),(5,2,1%),(5,1%), (4,2,2,1), (4,2,1%), (4,1%),(3,2,2,2),
(3,2,2,1%),(3,2,1%),(3,1%)}.

Every partition in this set labels a Young module that has vertex Cs, by Proposition 6.3.11.
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The partition that dominates all the others in A¢, is (5,2,2), therefore Ao, = (5,2,2).
Indeed in the notation of Definition 6.3.6, C3 = (Ppo)6 X Py where 6 = by and 1 = b;. Hence,
cop=3,do=0and ¢; =0, d; =1. Then we can compute the parts of \cy:

ifj=1,ap1=2and a1 =1, 50 (Acy)1 = 5;
lf] =2 , Q02 = 2 and Q12 = 0, S0 ()\03)2 == 2;
if j=3 ,a03=2and a1 3=0, so (Ac;)3 =2 and the other parts are zero.

Thus we have that Y522) is a Scott module.

As we said in Lemma 6.3.9, there is a unique partition in Ac, whose parts are power of 3
and it is dominated by every other partition in the same set: p = (3, 19).
In the proof of this lemma we described a way to detect p: as in the above computation, r = 1
and by = 6, by = 1. Hence p1 =3 and p; =1 for j € [2,7], as we expected.
This construction coincide with the one of p(Ac,) that we have in Theorem 2.2.2, indeed the
3-adic expansion of (5,2,2) is (1) -3 4+ (2,2,2) - 3% and (1) € £(1), (2,2,2) € Z(6).
The vertex of (5,2,2) can be recovered also by p((5,2,2)) = (3,1°), because it is isomorphic to
a Sylow 3-subgroup of &3 16y = &3, hence to P3 = Cs.

There are exactly five Young modules that are Scott modules when p = 3 and n = 9, and
these are the ones labelled by Ap, = (9), Acsxcsxcs = (6,3), Acyxcs = (8,1), Acy = (5,2,2) and
A1 =(2,2,2,2,1).

Notice that Ap, = {(9)}, hence Ap, = p(Ap,) = (9) and the only Young module with vertex
Py is the trivial one. This happens whenever n is a power of p.
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