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Abstract
In this paper, we study how synchronization and state estimation are related in the context of elementary cellular automata.

We first characterize the geometric properties of the synchronization error between two replicas of a 1D elementary cellular

automata following Wolfram’s rule 18. We propose a simple approach to statistically model the transient phase of the

spreading of the synchronization error. We finally present a way to utilize our model of the error spreading to place mobile

sensors in order to improve the overall replica synchronization in the case in which the initial error is small.

Keywords Cellular automata � Synchronization � Observation � Mobile sensors

1 Introduction

In control theory, the process of monitoring physical sys-

tems which are distributed in space is based on the con-

struction of a state estimate from measurements and the

dynamics of the system. The measurements can potentially

come from mobile sensors. The problem of positioning

these sensors is crucial to make the estimate the state of the

system possible. This state estimation problem is widely

studied by classical control theory (Kalman 1963; Sarachik

and Kreindler 1965) and it follows from the verification of

observability, a notion that ensures that the sensors are well

placed. This notion of observability can be applied to

cellular automata (CA) (El Yacoubi et al. 2021; Plénet

et al. 2022; Dridi et al. 2019) (and by extension to Boolean

networks Zhu et al. (2018), which can be seen as a gen-

eralization of CA) but its evaluation has proven to be

extremely complicated when one deals with non-linear CA

Plénet et al. (2022).

In this paper we apply the concept of master–slave or

drive-response synchronization Pecora and Carroll

(1990, 2015) to the problem of controlling cellular auto-

mata. The master–slave synchronization problem consists

in studying two replicas of a system, which evolve fol-

lowing the same rule but starting from different initial

conditions. One of these replicas is the master, which can

also be thought as the ‘‘real’’ or experimental system upon

which local observations are made. The goal is to have the

slave replica, which in general is simulated on a computer,

synchronized with the master. In this way, one can use the

replica to perform measurements which are impossible to

be performed on the master system, or as a way of fore-

casting the master’s future dynamics. This approach is

most interesting when the dynamics of the system is

chaotic, so that they never synchronize spontaneously, i.e.,

the difference in their states (error) remains always finite.

The master–slave synchronization consists in imposing the

state of local variables objects of measurements to the

corresponding state variables of the slave system, i.e.,

establishing a unidirectional local coupling between the

two replicas.

In the case of CA, the state of some cells of the master

replica are copied to these same cells of the slave one. The
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laurent.lefevre@lcis.grenoble-inp.fr
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coupling between the two replicas can be implemented on a

a single cell Dogaru et al. (2009), on a fixed set of cells

Urıas et al. (1998), or on randomly chosen cells at each

time step Bagnoli and Rechtman (1999). In the first case,

Dogaru et al. showed that a strong condition regarding the

chaoticity of the system is needed to synchronize the driver

and the replica. In the second case, Urı́as et al. proposed a

necessary and sufficient condition concerning the cell

position to ensure the synchronization of linear elementary

cellular automata. Finally, Bagnoli and Rechtman proposed

a statistical approach to synchronization, defining a critical

probability p[ pc that ensures synchronization. The

problem of synchronization of two CA can also be seen as

a state estimation problem. Indeed, the driver can be seen

as the system to be observed, the replica as the state esti-

mator and the synchronized cells as sensors. For the pur-

pose of monitoring physical systems, the conditions on the

system imposed by Dogaru et al. (choaticity) and by Urı́as

et al. (linearity) make it difficult to apply their schemes to

this type of system. The approach of Bagnoli and Recht-

man, on the contrary, is not based on a specific type of

system. Moreover, it allows to include the notion of mobile

sensor on choice of synchronized cells, which can be ran-

dom, as in the original paper, or targeted based on error

measurement, as done for intance in Ref Bagnoli and

Rechtman (2018) for probabilistic cellular automata.

The main objective of this paper is to exploit the syn-

chronizion of CA as a state estimator for the observation of

distributed parameter system with spatio-temporal

dynamics. We focus on synchronization with a small initial

error because in some physical system monitoring, only a

small portion of the system is unknown. For example,

when monitoring the spreading of forest fires, the topology

of the forest is known but the ignition points are unknown.

Throughout this article, we focus on a single elementary

rule that exhibits spatio-temporal dynamics so that the

obtained results may be transferred to other CA and in

particular to physical systems. Therefore, we chose to

study the elementary rule 18 because it is the smallest

chaotic, symmetric, and nonlinear rule Wolfram (1984).

In Sect. 2 we start by studying the differences in syn-

chronization performances as a function of the initial

synchronization error. Then, in Sect. 3, we model the

spreading of the initial error within the CA using basic

geometry. We proceed by presenting an improvement of

the synchronization algorithm for systems with a small

initial error in Sect. 4. Finally, an application to mobile

detectors is presented in Sect. 5. Conclusions are drawn in

the last section.

2 Influence of initial error
on synchronization

In order to study the impact of the initial error on the

synchronization performance, we need to define the syn-

chronization method but also to express it in terms of the

initial error. For this purpose, we chose the definition

proposed by Bagnoli and Rechtman (1999) which expres-

ses the synchronization of two 1D CA of N cells: the driver

x and the replica y. The synchronization of y with x is done

by copying the state of some cells of x in the matching cells

in y, at each time step. The diagonal matrix P indicates

which cells of the CA are coupled. A value of 1 in this

matrix indicates that the corresponding cells are coupled.

The state variables evolve as:

xtþ1 ¼ f ðxtÞ;
ytþ1 ¼ ðI � PÞ � f ðytÞ � P � f ðxtÞ;

�
ð1Þ

where � indicates the sum modulo two (exclusive or), to be

performed cell by cell.

The synchronization error et is the difference between xt
and yt, and �t the normalized mean value of et. Since we are

studying the influence of the initial error, we initialize x0
and e0 randomly and set y0 ¼ x0 � e0. We denote by e the

proportion of cells in y0 that are different from cells in x0,

in percentage:

et ¼ xt � yt

�t ¼
1

N
�
X

i
e
ðiÞ
t

(
ð2Þ

The position of the coupled cells are determined randomly

at each time step with a probability p, called the control

strength. In Bagnoli and Rechtman (1999), Bagnoli and

Rechtman discuss the notion of critical control strength pc
(determined statistically or estimated analytically using the

maximum Lyapunov exponent), which guarantees that the

asymptotic synchronization is complete employing a ran-

dom synchronization.

This critical parameter ensures, for a state estimator, that

the estimated state correctly corresponds to the state of the

observed system, after a long enough time T. In Sect. 4, we

present an improvement of this synchronization algorithm

in order to reduce the critical control strength needed for

synchronization.

To better visualize the impact of control strength on

synchronization performance, we present on Fig. 1a the

mean synchronization error and the synchronization rate as

a function of control strength for T ¼ 750. On Fig. 1b we

represent the mean synchronization time necessary to
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synchronize the replica on the driver. The critical control

strength at which the slave replica synchronizes in all cases

is pc ¼ 0:26. Starting from this value, the slave replica

asymptotically synchronizes with the driver. If the control

strength is increased, the time required to reach synchro-

nization decreases.

Figure 2 shows the mean synchronization error �t as a

function of time for different values of the initial error �0.

These results were obtained by taking the mean of the

synchronization error �t over 500 simulations for the ele-

mentary rule 18 with 500 cells and a control strength

p ¼ 0:1. The initial configuration x0 was randomly ini-

tialized at each simulation, the same for the initialy un-

synchronized cells in the replica y0.

The size of the initial error has a clear impact on the

performances of synchronization. Its first influence is on

the speed of convergence towards the asymptote. Indeed,

the 10% curve seems to converge faster than the 20% and

100% curves which converges earlier than the 1% and

0.2% curves. The second effect of the initial error is on the

value of the asymptote when the error is small enough. For

sufficiently large errors, all simulations converge towards

the same asymptote value, around 0.23. But if �0 is

sufficiently small, the reached asymptote is lower than this

‘‘generic’’ one.

To understand the difference in value between the two

asymptotes, we studied the evolution of the error as a

function of time for the particular case of a single cell of

initial error (e0 ¼ 0:2%). As we can see on Fig. 3, there are

two very different kinds of evolution of the synchroniza-

tion error et. On one hand, in Fig. 3a, the error spreads until

it covers the whole CA and reaches the asymptotic non-

zero value. On the other hand, in the very specific case

depicted on Fig. 3b, the synchronization quickly becomes

total and the error reaches zero. Therefore, when we

average these two cases, which we did for Fig. 2, we obtain

a lower asymptotic value than the generic case will give.

For the remaining of the study, we chose to dissociate the

two cases and to not consider the quick total synchro-

nization cases when we study the asymptotic value.

To characterize the influence of the initial error �0 on the

ability of the synchronized CA to be considered as a state

estimate, we will only consider the mean of the asymptotic

value of the synchronization error. Figure 4 represents this

mean asymptotic synchronization error as a function of the

initial error. First, if we consider only the asymptotic

(a) synchronization error (continuous) and
rate (dashed)

(b) Mean synchronization time

Fig. 1 Evolution of the

synchronization error, rate and

time, as a function of control

strength p for the elementary

CA rule 18 with 500 cells
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synchronization (without special cases of early complete

synchronization), the value of the asymptote does not

depend on the initial error. Secondly, the value from which

the mean error with and without total synchronization

becomes different depends on the strength of the control p:

the stronger the control, the larger the chances of total

synchronization.

3 Modeling of the error spreading dynamics

In order to explain the dynamics of the evolution of the

synchronization error, we will study how the error propa-

gates within the CA as a function of the control strength.

To do so, we will start by studying the propagation of the

error with the simple case of a single erroneous cell, and

then generalize these results.

Typical error propagation dynamics from one erroneous

cell are depicted in Fig. 5. Clearly, the propagation is

limited by the ‘‘propagation cone’’ (triangle in 1D) of

defects: since the future value of a cell depends on that of

first neighbors, a defect can at most spread one cell at left

and right at a time, thus the ‘‘speed of light’’ is one for

elementary CA. We therefore adopted the triangle as a

simple geometric model for these dynamics. It appears that

the top angle of the triangle is inversely proportional to the

control strength p.

To describe how the synchronization error spreads, two

parameters will be used: the first being the aperture angle

of the propagation triangle, and the second being the shift

angle between the altitude and the median of the triangle.

Indeed, the median of the triangle seems to vary from one

simulation to another. Figure 6 describes the geometry

associated with these angles a and b which describe

respectively the aperture angle and the shift angle.

For the purpose of this article, we will not use directly

the a and b angles but their tangents, which represents

spread velocities and drifts (shift). We will simply call a
and b the velocities associated to the angles and not the

angles themselves. Therefore, the error spreading ratio a
represents the mean number of cells by which the triangle

base increases at each time step and error shift ratio b the

mean number of cell shift at each time step.

(a) Asymptotic Synchronization (b) Total Synchronization

Fig. 3 Evolution of the

synchronization error for

elementary rule 18 with 500

cells from a single cell error

(e0 ¼ 0:2%). The time is

represented on the vertical axis.

A black pixel is an erroneous

cell in the synchronized CA
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Fig. 4 The asymptotic value of

the mean synchronization error

as a function of initial error �0.
This was obtained by taking the

mean of the synchronization

error �t as a function of time

over 200 iterations. The

continuous lines consider only

the asymptotic synchronization

while the dashed lines include

both asymptotic and early total

synchronization

(a) p = 0.0 (b) p = 0.05 (c) p = 0.10 (d) p = 0.15

Fig. 5 Evolution of the error for

elementary rule 18 with 500

cells from a single erroneous

cell (e ¼ 0:2%). The time is

represented on the vertical axis
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We can calculate the mean value of the error spreading

ratio by measuring the area of the error at time T and divide

by current time to obtain the tangent of a. Figure 7

describes the evolution of the mean spreading ratio as a

function of the control strength. This one is a linear func-

tion of which we numerically obtained the relation a ¼
�8:23:pþ 1:93 using linear regression.

The error spreading ratio a has, for a given control

strength, a normal distribution whose mean is presented on

Fig. 7. The standard deviation related to a can be calcu-

lated in order to have a better representation of a. The error
shift ratio b also follows a normal distribution. Based on

these two parameters, we can express the width and the

center of the error at time T by c1 ¼ c0 þ b � T and

d ¼ a � T .

Proposition 1 The synchronization error �T can be esti-

mated from the parameter a as well as the value of the

asymptote c associated to the control strength p. Thus, the

synchronization error �T is defined by

�T ¼ c
N
�maxða � T ;NÞ

Indeed, a � T gives the width of the error in number of

cells. By dividing it by N, we obtain the normalized error

width and then multiplying by the asymptote c, the value of
�t when the error occurs on the whole CA, we obtain the

synchronization error �T .

Using the Proposition 1, we can make an example for

p ¼ 0:1. For this control strength, the error spreading ratio

a follows a normal distribution with mean 1.127 and

standard deviation 0.1376. On Fig. 8, the synchronization

error �T is displayed as well as the estimated error with an a
fixed at the mean, and an a following the normal distri-

bution. We quickly notice that the use of the normal dis-

tribution in the calculation of the error allows to explain the

rounded curve when the error approaches the asymptote.

However, the two theoretical curves have a difference with

the real curve which is explained by a faster increase of the

error during the first iterations which is caused by a higher

a as the error is not yet detected, and therefore controlled,

by the sensor.

This method allows us to simply represent the propa-

gation of the error in the case where a single cell is erro-

neous in the initial configuration. If we consider two or

more erroneous cells then the modeling becomes more

complex. Indeed, the two errors propagate independently

until they collide, in this case we must consider that the

errors merge in a single (larger) source of error. Thus,

considering that the collision takes place at time t1, we can

consider that the error spreading ratio a is expressed as

aðtÞ ¼
a0 þ a1 if t� t1;
ða0 � b0 þ a1 þ b1Þ

2
if t� t1:

(

The time t1 of the collision depends on the initial distance

between the two initial errors, whose probability distribu-

tion depends on the boundary conditions used. Moreover,Fig. 6 Schematic of the theoretical spread of the synchronization

error from a single initial error cell
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since each of these initial errors is subject to the total and

quick synchronization (probability s), the model must

include, with probability 2sð1� sÞ, a propagation with

only one initial error, as illustrated in Fig. 6. With more

than two erroneous cells, the operation is the same but it is

necessary to take into account several collisions at different

times.

4 Optimization of algorithm for a single
erroneous cell

If we consider that the synchronized cellular automaton has

only a few errors at initialization, then it is possible to

adapt the synchronization algorithm so as to concentrate

the sensors only on the area that contains errors. To do this,

we must first identify the areas that possibly contain errors

and then distribute the sensors over those.

To identify the error area, a sensor must fisrt detect an

error. Then, with a method similar to the one shown in

Fig. 6, it is possible to backpropagate the error measured at

time t to obtain the possible error area ê0 at time 0 which

could lead to the initial error. Propagating an error from

this initial estimate, we can obtain the possible current

error area êt. Figure 9 represents the backpropagation of

the error with a ratio amax which corresponds to a ratio a
large enough to include all (or a large part) of the possible

spread ratios. The maximum ratio is 2 because it is not

possible for the error to spread to more than one cell on

each side (this results from the size of the neighbourhood)

but if the strength of the control p is strong enough, amax
can be chosen smaller. As a follows a normal distribution,

a ratio amax ¼ amean þ 3r encompasses 99:9% of the pos-

sible spreading ratios.

As new errors are detected, the initial error area can be

refined using the intersection of all the initial error areas of

all the errors detected by the sensors. In this way, it is

possible to reduce the size of the error zone at time t but

also to locate the position of the initial error.

Now that error area can be estimated, it remains to

position the sensors. The method consists in placing the

sensors only in the area where the error could be present.

The number of sensors will remain the same but the control

strength (the sensor density) of the error area will increase

proportionally to the smallness of the error area resulting in

a lower critical control strength pc as shown in Fig. 10. The

control strength in the error area is described by:

perror ¼ p � N
�̂t
: ð3Þ

As shown in Fig. 10, the optimized synchronization

performs better than the usual one with a critical control

strength pc at 0.05 instead of 0.21. However, when the

control is too weak, the difference between the two is

negligible because the first error cell is detected too late by

the sensors and therefore the optimized control strength

perror is not sufficient to synchronize the two systems.

In Fig. 11, we have compared these two synchronization

methods on other elementary rules belonging to different

classes Wolfram (1984). The results obtained are lower

bounds because the error spreading ratio used for the

backpropagation is amax ¼ 2, smaller values according to
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with the error spreading ratio
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Fig. 9 Schematic of the backpropagation of the synchronization error

to find the initial error area ê0
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the distribution of probability could have been chosen to

further increase the performances. Overall, the optimized

synchronization performs better but the difference between

the two seems to depend on the class. Class 2 CA (pre-

sented by Wolfram as ‘‘filters’’) seem to exhibit lower error

propagation coefficients a than class 3 and 4 CA. Without

control, a is 0.048 for rule 37, 0.54 for rule 110 and 1.9 for

rule 126. However, a systematic study on elementary CA

would be necessary to confirm this conjecture.

It is also important to note that the performance of this

optimized synchronizationmethod depends on the sizeN of the

CA. Indeed, as the propagation of the initial error is indepen-

dent of the CA size as long as it has not covered the whole CA,

then êt does not depend on N. Therefore, from Eq. (3), we can

see that to ensure a constant perror then p can decrease as

N grows. However, we need a control strength p large enough

to measure an error cell before the error has propagated too

significantly. In Fig. 12, this effect was highlighted by com-

paring the synchronization performance for several CA sizes. It

appears that a lower critical control strength is achieved when

the size of theCAgrows. This is due to the focusing of a greater

number of synchronized cells on an area with a similar size.

5 Mobile sensors synchronization

In a context of physical system observation, random syn-

chronization can be seen as mobile sensors that jump

between each measurement point, but it is rather rare that

such mobile sensors cannot measure the cells between the

two positions. Therefore, we propose a new

(a) Mean synchronization error (b) Mean synchronization time

Fig. 10 Evolution of the mean

synchronization error (a) and

time (b) as a function of control

strength for a single cell error
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Fig. 11 Evolution of the mean synchronization error as a function of

control strength p for a single cell error for different rules. From left

to right: rule 37 class 2; rule 110 class 4; and rule 126 class 3.

Continuous line represents the optimized synchronization and dotted

line the usual synchronization

Fig. 12 Evolution of the mean synchronization error as a function of

size of the CA for the optimized synchronization
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synchronization method more suitable for the observation

of physical system by mobile sensors.

This method is a variant of the optimized method in

which once we have bounded the possible error zone êt we

place two mobile sensors at both ends of this zone. The

sensors will then gradually move towards each other such

that they travel across the entire error zone. The sensors

must be large enough, in terms of number of measured

cells, in order to act as a border for which the error cannot

leave the zone without being detected by a sensor.

Indeed, as depicted in Fig. 13a, if the mobile sensor is

composed of only one cell, then when moving, it may not

measure enough cells to block the propagation of the

synchronization error. In the case where the sensor is

composed of 2 cells then the synchronization error cannot

propagate beyond the sensor (see Fig. 13b). More gener-

ally, it is necessary that when the sensor moves there is a

cell in common between the two positions to be sure that

the propagation of the synchronization error of the first

unmeasured cell is measured at the next time step. As a

result, for a moving sensor composed of k cells, its moving

speed must be at most k � 1 cells per iteration.

One of the main advantage of this synchronization

method is that it is independent of the control strength.

Indeed, with at least two 2-cells mobile sensors then the

synchronization is ensured. Of course, if more sensor are

available or if the sensors are composed of more cells, then

the synchronization can be more efficient. Therefore, using

the mean synchronization error as a function of the control

strength is not relevant for this synchronization. Instead,

we focus on the synchronization time which will be

impacted by size and number of mobile sensors.

In Fig. 14, we compare the synchronization time for

different sizes of sensors on the elementary rule 18 with

500 cells. The control strength has an impact on the

detection of the first error cell and therefore on the time at

which the error area is first determined. The sooner the

detection of the error occur, the smaller the error area and

the smaller the synchronization time is. The synchroniza-

tion time decreases well with the increase in size, and

therefore speed, of the mobile sensors. However, the gap

between sizes decreases as the control strength increases.

This is because the error is detected sooner and therefore

the size of the error area is smaller. The optimized

Fig. 13 Example of a mobile

sensor with 1 or 2 cells. The

sensors are the blue ellipses, the

red cells represent the error

between the replica and the

driver and the green cells

represent the errors correctly

corrected by the sensors

Fig. 14 Evolution of the mean

synchronization error for the

optimized synchronization as a

function of size of the mobile

sensors
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synchronization performance is a lower bound for syn-

chronization time since, for some value of the control

strength, there will be as many sensors to place as cells in

the error area.

In this application, the synchronization is ensured by

two mechanisms: an error detection and an error synchro-

nization. This approach leads to a method of coordination

of mobile sensors. A related approach based on multi-agent

systems has been discussed in Plénet et al. (2020). In this

work, mobile sensors were used to monitor a 2-dimensional

forest fire model with fire detection by ‘‘explorers’’ and fire

propagation monitoring by ‘‘followers’’. The synchroniza-

tion method we just presented is more complicated to apply

to this forest fire model because the error area must be

circumscribed: the error area frontier shape being depen-

dent on the CA neighborhood, the forest fire has a square

shaped limit which is way larger than the two points

required for 1-dimensional CA. The number of sensors

needed to ensure the synchronization in the case of 2-di-

mensional CA is therefore much greater than with 1-di-

mensional CA.

6 Conclusion and perspectives

In this paper we studied how CA synchronization relates to

state estimation of distributed parameter system in the

context of Wolfram’s 18th rule. In order to understand how

a synchronized CA can be seen as an estimated state, we

studied the dynamics of the synchronization error spread-

ing. To do so we proposed a simple geometric model of

this propagation. Finally, we present a sensors placement

algorithm utilizing this geometric model in order to reduce

the synchronization error and improve the accuracy of the

synchronized CA as an estimate of the original CA repre-

senting the studied system. This optimized synchronization

has been studied in the case of different elementary rules of

classes 2, 3 and 4. The measured performance increase

compared to the usual synchronization is particularly

important in the case of classes 3 and 4.

In the future, we plan to extend this algorithm to that

case in which there is more than a single initial error cell.

Furthermore, a systematic study on the elementary auto-

mata rules could be carried out in order to refine the

algorithm of synchronization according to damage (error)

spreading dynamics.
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