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Abstract: We consider a class of time-periodic switched systems, which
are obtained as a perturbation of a planar autonomous reversible system
by a periodic forcing term. The model is motivated by an extension of
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1 Introduction

The present paper deals with the investigation of complex dynamics in a class of
time-periodic switched systems obtained as a perturbation of planar reversible sys-
tems which, in turn, are related to some classes of Rayleigh and Liénard equations.

The switched systems that we are going to consider are (piecewise) continuous
in time with isolated discrete switching events [49]. Actually, following Liberzon
[49, §1.1.2], we suppose that there is a finite set N = {1, . . . ,m} and, for every
j ∈ N , a locally Lipschitz continuous vector field Z⃗j : R2 → R2. To define a
switched system generated by the above family, a signal is introduced as a piecewise
constant surjective function σ : R → N which has a finite number of discontinuities,
called switched times, in any bounded time-intervals and takes a constant value on
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every interval between two consecutive switching times. Then, the switched system
generated by the above family is defined as

ζ̇(t) = Z⃗σ(t)(ζ(t)). (1.1)

In this article, we are interested in the case of time-periodic switched systems. Ac-
cordingly, from now on, by convention, we will assume that there are switched times

0 = τ0 < τ1 < . . . τm−1 < τm = T,

for some T > 0 such that

σ(t) = j for t ∈ [τj−1, τj [, ∀ j = 1, . . . ,m with m ≥ 2

and σ(t) is T -periodic. This means that at any time t, there is an active subsystem:
namely the system ζ̇ = Z⃗1(ζ) on the time-interval [0, τ1[, jumping to the system
ζ̇ = Z⃗2(ζ) on the time-interval [τ1, τ2[, and so on, with all the alternation between
these systems repeating in a T -periodic fashion. For m = 2, the system switches
between only two subsystems in a period. This is the minimal situation for a periodic
switched system; although very simple, this case is already suitable to produce rich
dynamics as we will illustrate with some examples in this article.

Professor Bacciotti achieved very important contributions in the development
of the theory of switched systems (see [9, 10, 11, 12, 13, 14, 15]). In particular,
he deeply investigated the problem of stability for these systems, which is of great
significance for the applications to control theory (see [2, 22]), when the single active
subsystems are linear, and with special emphasis to the case of periodic switching
signals. In this context, it may be worth to observe that even the apparently simpler
case of only two linear planar systems which are activated alternatively in a periodic
manner, exhibits interesting phenomena [11].

In [13] it is claimed that: “In spite of their apparent simplicity, switched systems
may exhibit a very complicated dynamical behavior”. We fully agree with this point
of view and, indeed, it is the aim of this paper to show how very simple time-periodic
switched systems may exhibit a very complex, namely “chaotic”, behavior.

In order to focus our analysis to some specific situations and also following our
recent work [59], we will consider switched systems determined by subsystems that
are time-reversible, which, in our applications, will consists of planar autonomous
systems which present a mirror symmetry with respect to the x-axis or the y-axis.
More in detail, we will confine ourselves to the case of Liénard or Rayleigh type
subsystems. To support the above claim by Andrea Bacciotti in [13], we will show,
by rather natural examples, that the presence of only two subsystems alternating in
a periodic fashion may produce very complicated dynamics.
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Before proceeding further, we need to introduce in a precise manner the concept
of “chaos” that we are considering in the present work.

In spite of the huge and still growing literature involving the concept of chaos
from the theoretical or the applied point of view, there are various competing techni-
cal definitions which have been considered by different authors, such as: transitivity
and sensitive dependence on initial conditions [8, 35, 42, 83], horseshoe structure
[71, 72], positivity of the maximal Lyapunov exponent [3, 62], positive topological
entropy [1, 23, 21, 32], chaos according to Li-Yorke [47] (see also [19, 41]), or ac-
cording to Devaney [31] (see also [16, 70]), or in the sense of Block and Coppel [20],
just to mention a few well-known instances. A list of some different definitions and
their comparison can be found in [7, 39, 52, 63]. Other aspects which are related
to measure theoretic concepts, such as existence of invariant measures, ergodicity
or mixing, although connected to the above definitions, will be not considered here
(see, for instance, [82] for more information). Whatever definition of chaos one has
in mind, it is a general agreement [31, 57, 72] to consider as a paradigmatic example
the Bernoulli shift automorphism σ : Σm → Σm on the set Σm := {0, . . . ,m − 1}Z
of two-sided sequences on an alphabet {0, . . . ,m − 1} of m ≥ 2 symbols (with the
discrete topology), defined as σ(s) = s′, where s′ = (si+1)i∈Z for s = (si)i∈Z . The
set Σm, with the product topology, is a compact metrizable space with distance
d(s1, s2) =

∑
i∈Z δ(s

1
i , s

2
i )/2

|i|+1, where δ(a, b) = 0 for a = b and δ(a, b) = 1 for
a ̸= b. The shift map σ has all the properties usually attributed to the concept
of chaos, like transitivity (a dense orbit), periodic points of arbitrarily large pe-
riods which constitute a dense set in Σm, uncountable many non-periodic points,
sensitive dependence on initial conditions, positive topological entropy [1]. The cel-
ebrated Smale’s horseshoe [71, 72, 73] provides a geometric framework according to
which a diffeomorphism ψ has a compact invariant set I such that ψ|Λ is conjugate
to a Bernoulli shift (see also [57, Ch. III]). This means that (for some m ≥ 2) there
exists a continuous and bijective map h : I → Σm such that the diagram

I I

Σm Σm

-ψ

?

h

?

h

-
σ

commutes and, therefore, ψ|I has the same properties as σ on Σm. In concrete
examples coming from the applications, it is often difficult to prove the conjugation
to a Bernoulli shift as in the case of the original Smale’s horseshoe. This leads to
a weaker concept of chaos, by assuming the continuous map h (in the commutative
diagram) to be surjective. In this case, we say that ψ is semiconjugate to the
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Bernoulli shift or, following [24], that ψ has a horseshoe factor. In this setting, the
following definition of chaos will be applied.

Definition 1.1. Let ψ : D(⊂ dom(ψ) ⊂ R2) → ψ(D) ⊂ R2 be a homeomorphism.
We say that ψ induces chaotic dynamics on m symbols in the set D if there arem ≥ 2
(nonempty) pairwise disjoint compact sets H0, . . . ,Hm−1 ⊂ D such that, for each
itinerary (Hsi)i∈Z with Hsi ∈ {H0, . . . ,Hm−1} there exists a two-sided sequence of
points wi ∈ Hsi with wi+1 = ψ(wi), ∀ i ∈ Z and, moreover, we can take the sequence
(wi)i∈Z to be k-periodic if (Hsi)i∈Z if k-periodic.

This is the so-called chaotic dynamics in the coin-tossing sense (see [39, 73]) as,
for m = 2, it can be interpreted as follows: given a sequence of heads ≡ 0 and
tails ≡ 1, like . . . 000101 . . . , there is at least a point w which, under the action
of the deterministic law ψ, at the i-th step, will be in H0 or in H1 according to
the preassigned sequence (si)i∈Z ∈ {0, 1}Z of heads and tails. In other word, the
map ψ, along with its iterates can reproduce any possible outcome of a coin-flipping
experiment. This is the essence of deterministic chaos, according to Smale [73, p.42]:
Guessing whether heads or tails is the outcome of a coin toss is the paradigm of pure
chance. On the other hand it is a deterministic process that governs the whole
motion of a real coin, and hence the result, heads or tails, depends only on very
subtle factors of the initiation of the toss. This is “sensitive dependence on initial
conditions.” Definition 1.1 puts also a special emphasis on the periodic sequences, a
fact that in other definitions of chaos, like [37, 38], is not always guaranteed. It has
been proved in [55] that the presence of chaotic dynamics according to Definition
1.1 implies the existence of a compact invariant set I ⊂ H0∪· · ·∪Hm for the map ψ
such that the set of periodic points of ψ is dense in I and also ψ|I is semiconjugate
to the Bernoulli shift on m symbols; moreover, the inverse image h−1(s) of any
k-periodic sequence s ∈ Σm contains a k-periodic point of ψ (this holds for every
positive integer k). In this manner, our definition of chaotic dynamics turns out to
be equivalent to other ones considered in the literature, like those in [25, 46, 84].

The plan of the paper is now the following. In Section 2 we recall some basic facts
about reversible planar systems and propose a simple model of Rayleigh-Liénard
type equations with symmetries, which appears to be new in the literature. Then,
in Section 3 we prove the presence of chaotic-like dynamics (according to Defini-
tion 1.1) for a simple class of switched systems with symmetries. This is achieved
as an application of our recent abstract result in [59]. Notice that Definition 1.1
guarantees the existence of periodic points of any order. Hence, when applied to
the Poincaré map associated with the considered ODE system, we have not only a
rigorous proof of the chaotic dynamics, but we also obtain the existence of infinitely
many subharmonic solutions of any order. We will also show some numerical simu-
lations giving evidence of our theoretical findings. All the numerical simulations in
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the article have been performed using Maple mathematical software [85].

2 Reversible planar systems and their periodic pertur-
bations

The presence and importance of time-reversal symmetry was recognized in the early
days of dynamical systems by Birkhoff. He utilized it in his study of the restricted
three-body problem in classical mechanics. This quotation, borrowed from [45], is
used as a starting point and a motivation for this section, where we wish to briefly
introduce a class of differential systems which plays an important role, not only in
the area of dynamical systems [4, 69], but also for its applications in different areas
of classical and modern Physics: the reversible systems.

Let us consider a planar autonomous system of the form®
ẋ = X0(x, y)

ẏ = Y0(x, y)
(2.1)

having an equilibrium point at the origin, that is X0(0, 0) = Y0(0, 0) = 0.We assume
that the vector field Z⃗0 := (X0, Y0) : R2 → R2 is locally Lipschitz continuous. This
ensures the uniqueness of the solutions for the associated initial value problems,
not only for system (2.1), but also for the associated periodically perturbed non-
autonomous equation ®

ẋ = X0(x, y)

ẏ = Y0(x, y)
+ e(t), (2.2)

with e(t) = (e1(t), e2(t)) a T -periodic perturbation that we assume to be piecewise
continuous. The same remarks also extend to other more general perturbation of
(2.1), like ®

ẋ = X(t, x, y)

ẏ = Y (t, x, y)
(2.3)

with X,Y locally Lipschitz continuous in (x, y) and continuous (or piecewise con-
tinuous) in t. Specific forms for (X,Y ) related to (X0, Y0) will be discussed in the
applications of Section 3.

Following [4, 5, 30] (see also [45, 69]), we say that the system (2.1) is time-
reversible (or simply reversible), if there exists a transformation R : R2 → R2 of the
phase space, which is an involution (i.e., with R2 = Id) that reverses the direction
of time along the solution-operator (Poincaré map). More precisely, if we denote by
ϕ0(t, z) the solution of (2.1) with (x(0), y(0)) = z, the hypothesis of time-reversibility
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can be expressed by the relation

(R ◦ ϕ0)(t, z) = ϕ0(−t, Rz), (2.4)

as illustrated in Figure 1 where the involution is the reflection with respect to the
x-axis.

Figure 1: Example of time-reversibility in a planar system. The trajectories move around
the origin in clockwise turns. The point z in the upper half-plane (second quadrant) is
shifted clockwise to the right (first quadrant) to a new point ϕ0(t, z) after some t > 0.
The symmetric Rz of the point z, in the lower half-plane (third quadrant) moving back
counterclockwise to the time −t ends at the symmetric position of ϕ0(t, z), (in the fourth
quadrant) so that we have ϕ0(−t, Rz) = R(ϕ0(t, z)).

Reversible systems share some similar features with the Hamiltonian ones, al-
though there are also some important differences. According to [65], “nonconser-
vative reversible differential equations can display Hamiltonian-like behaviour near
their symmetric cycles as well as behaviour typical of dissipative and expansive
systems near their asymmetric cycles. This hybrid nature makes them interesting
models in which to study within a single system the differences and crossover be-
tween conservative and dissipative behaviour”. The surveys of Roberts and Quispel
[65] and of Lamb and Roberts [45] explore these issues also from the historical devel-
opment of this subject. Another important aspect related to the study of reversible
planar systems is intimately linked to the theory of centers, dating back to the
classical works of Poincaré (see [28, 29, 67] and the references therein).

In [57, Ch. V], J. Moser considered the case of linear involutions (in particular,
reflections). As observed in [65], when the transformation R is linear, the reversibil-
ity condition (2.4) can be equivalently expressed in terms of the vector field Z⃗0

as
R ◦ Z⃗0 = −Z⃗0 ◦R.

This, in turn, allows to find some simple symmetry conditions on the vector field Z⃗0

when we are interested in planar systems where the orbits have a mirror symmetry
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with respect to horizontal or vertical axes. According to Roberto Conti [29, §12] we
will say that system (2.2) is reversible with respect to a straight line ℓ through the
origin if it is invariant with respect to reflection about ℓ and a reversion of time t.
Centers and symmetries with respect to a line were considered also in [81] in the
case of X0(x, y) = y + q(x, y) and Y0(x, y) = −x − p(x, y) for p and q polynomials.
For these systems general conditions were obtained by Conti in [29] (see also [67]
and the references therein). This topic is discussed in the classical book of Sansone
and Conti [68], as well.

Elementary calculations show that (2.2) is reversible with respect to the y-axis
if and only if

X0(−x, y) = X0(x, y), −Y0(−x, y) = Y0(x, y) (2.5)

and, analogously, the system is reversible with respect to the x-axis if and only if

−X0(x,−y) = X0(x, y), Y0(x,−y) = Y0(x, y). (2.6)

When we apply these results to the Liénard equation

ẍ+ f(x)ẋ+ g(x) = 0,

written as the equivalent system in the Liénard plane

ẋ = y − F (x), ẏ = −g(x),

(for F (x) :=
∫ x
0 f(s) ds) we obtain, according to (2.5), the mirror symmetry of the

orbits with respect to the y-axis for F even and g odd. Periodic perturbations of
these reversible Liénard systems were considered in [56] for g(x) = x and F (x) = ax2

and in [59] for more general choices of F and g.
On the other hand, it is natural to exploit the symmetry with respect to the

x-axis in the phase-plane given by (2.6) for the quadratic Liénard equation (cf.
[40, 43, 66])

ẍ+ f(x)ẋ2 + g(x) = 0, (2.7)

or for the Rayleigh equation

ẍ+ f(ẋ) + g(x) = 0. (2.8)

Equation (2.7) takes the form of system

ẋ = y, ẏ = −f(x)y2 − g(x). (2.9)

Hence, we have always symmetry with respect to the x-axis, independently on the
conditions on f and g. On the other hand, equation (2.8) takes the equivalent form

ẋ = y, ẏ = −f(y)− g(x). (2.10)
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Hence, we have symmetry with respect to the x-axis, provided that f is even.
Figure 2 shows two examples for (2.9) and (2.10) exhibiting trajectories which are
symmetric with respect to the x-axis.

Figure 2: The left panel shows the phase-portrait of the quadratic Liénard system (2.9) for
f(x) = x2 − x − 1 and g(x) = x3 + 2x2 + 2x. Note that f(x) and g(x) have no particular
symmetry. Nevertheless the trajectories present a mirror symmetry with respect to the
x-axis, due to the presence of y2 in (2.9). In this example the origin is a local center.
The solutions of the initial problem x(0) = x0, y(0) = 0 with x0 ≳ 1.79355 blow-up very
quickly, both in backward and in forward time. Also if we take f(x) = x2 − x + 1, so that
f(x) > 0, ∀x, we have a local center at the origin, but again the solutions of the initial
problem x(0) = x0, y(0) = 0 with x0 ≳ 0.36963 blow-up very quickly, both in backward and
in forward time.
The right panel shows a phase-portrait associated with one of the simplest examples of
Rayleigh equation, namely ẍ + λ|ẋ| + Ax = 0, with λ > 0, A > 0. This model was studied
in [78] and reconsidered by Omari in [58] in the framework of the theory of upper and lower
solutions (see also [36]). It is interesting to notice that the origin is a global center (as in
figure) if and only if 4A > λ2. In this case, the center is isochronous with all the orbits having
common period T = 4π√

4A−λ2
. The present simulation is obtained for λ = 1 and A = 3/2.

Motivated by the examples (2.9) and (2.10), we will focus our attention to a
special class of reversible systems of the form

(S)

®
ẋ = h(y)

ẏ = −λf(x, y)− g(x),

where, from now on, we assume that λ > 0 is a real parameter, g, h : R → R and
f : R × R → R are locally Lipschitz continuous functions satisfying the following
conditions

(gsign) ∃ x0 : g(x0) = 0, g(x)(x− x0) > 0, ∀x ̸= x0,

(hsign) h(0) = 0, h strictly increasing, h(−y) = −h(y), ∀ y ∈ R,
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(feven) f(x,−y) = f(x, y), f(x, 0) = 0, ∀x ∈ R.

As a consequence of the fact that h is odd and f is even with respect to y, we
have that system (S) is reversible with respect to the x-axis. Moreover, the above
assumptions on g, h, f imply that the point Q := (x0, 0) is the unique equilibrium
point of system (S) 1 In this context, it will be also useful to recall [68, Theorem 15,
p.95], (from the book of Sansone-Conti) where conditions for an equilibrium point
to be a center are obtained in case of (2.6).

The classification of singularities for reversible planar vector fields has been
performed by Teixeira in [76] (see also [17] and the references therein). In [44],
Labouriau and Sovrano proved the existence of chaotic dynamics (in a setting anal-
ogous to the one considered in our work [59]), for some switched systems which
are periodic perturbations of reversible autonomous systems with a symmetry with
respect to y = 0. Our aim now is to continue study of [44, 59] in this direction, with
reference to the periodic perturbations of system (S). We believe that this prob-
lem has its own interest, as it includes as special cases equations (2.9) and (2.10).
Moreover, the choice of the function h allows us to consider some ϕ-Laplacian type
Liénard and Rayleigh equations, about which we recall now some basic facts.

In [50], Manásevich and S. Sȩdziwy studied the problem of existence and unique-
ness of limit cycles for the p-Laplacian Liénard equation

d

dt
(ϕp(ẋ)) + λf(x)ϕp(ẋ) + g(x) = 0, (2.11)

where ϕp(s) = |s|p−2s (with ϕp(0) = 0) and p > 1. Equation (2.11) can be written
as an equivalent planar system of the form

ẋ = ϕq(y), ẏ = −λf(x)y − g(x),

where ϕq(ξ) = ϕ−1
p (ξ), with q > 1 being the Hölder conjugate of p > 1.

As pointed out in [50], the same analysis can be extended to the ϕ-Laplacian Liénard
equation

d

dt
(ϕ(ẋ)) + λf(x)ϕ(ẋ) + g(x) = 0, (2.12)

where ϕ : R → R is an odd increasing homeomorphism with ϕ(0) = 0. In this case,
equation (2.12) can be written as an equivalent planar system of the form

ẋ = h(y), ẏ = −λf(x)y − g(x),

1Since we study systems with mirror symmetry with respect to the x-axis, there is no substantial
difference from having the equilibrium point at the origin or at a point Q0 on the x-axis.
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with h := ϕ−1. The same point of view has been also followed in [33, 74].

On the other hand, equations like

d

dt
(ϕ(ẋ)) + λf(x)ẋ+ g(x) = 0, (2.13)

where, as above, ϕ : R → R is an odd increasing homeomorphism with ϕ(0) = 0,
can be written as an equivalent planar system of the form

ẋ = h(y), ẏ = −λf(x)h(y)− g(x),

with h := ϕ−1. This second point of view was followed in [53] and in [48].

An unifying point of view was adopted by Pérez-González, Torregrosa and Torres
in [61] (see also [26, 27], for recent contributions in this direction), where a general
equation (with also a nonlinear differential operator) of the form

d

dt
(ϕ(ẋ)) + λf0(x)f1(ẋ) + g(x) = 0, (2.14)

was considered. Clearly, this model includes both the Liénard and Rayleigh equa-
tions, as well as (2.12) and (2.13). If we denote, as before, by h the inverse of ϕ,
now we can consider the equivalent system

(Sa,b)

®
ẋ = h(y)

ẏ = −λa(x)b(y)− g(x),

for a(x) := f0(x) and b(y) := f1(h(y)). Note that system (Sa,b) fits in the class
of equation (S) for f(x, y) := a(x)b(y). In this case, hypothesis (feven) is satisfied
provided that b is an even function with b(0) = 0.
As a final remark regarding these kind of equations, we observe that system (Sa,b)
(as well as (S)) covers also the case of a scalar Liénard or Rayleigh equation with rel-
ativistic acceleration. Studies about the existence of limit cycles for these equations
initiated in [61] and [53]. In this case, assuming by convention the speed of light
in vacuum c = 1, the differential (relativistic acceleration) operator takes the form
d
dt

Ä
ẋ√
1−ẋ2

ä
and hence ϕ(s) = s√

1−s2 in equation (2.14). In this case ϕ : (−1, 1) → R
is an odd increasing homeomorphism and h : R → (−1, 1) ⊂ R (the inverse of ϕ),
defined by

h(ξ) =
ξ√

1 + ξ2
, (2.15)

is an odd increasing map with h(0) = 0, so that hypothesis (hsign) is satisfied.

The following result holds.



Switched Liénard/Rayleigh Systems 11

Lemma 2.1. Assume (gsign), (hsign) and (feven). Suppose that

g0 := lim inf
s→x0

g(s)

s− x0
> 0 (2.16)

and

h0 := lim inf
s→0

h(s)

s
> 0 (2.17)

hold. Then there is λ∗ > 0 such that, for each λ ∈ (0, λ∗) the equilibrium point
Q = (x0, 0) is a (local) center for system (S).

Proof. Without loss of generality, we deliver the proof in the case x0 = 0, namely
when the unique equilibrium point is the origin. The hypothesis for f being locally
Lipschitzian with f(x, 0) ≡ 0 implies that there exist constants f0 > 0 and δ0 > 0
such that

|f(x, y)| ≤ f0|y|, ∀ (x, y) : |x| ≤ δ0, |y| ≤ δ0 . (2.18)

Let θ(t, z0) be the angular coordinate associated with the solution of system (S) with
initial point z0 ̸= 0 = (0, 0). By the uniqueness of the solutions to the initial value
problems associated to (S) we know that θ is well defined on its maximal interval
of existence. By the sign conditions on the vector field we know that the solutions
move from left to right in the upper half-plane and from right to left in the lower
half-plane. Moreover,

− d

dt
θ(t) =

ydx− xdy

x2 + y2
=
h(y)y + λf(x, y)x+ g(x)x

x2 + y2
,

for (x, y) = (x(t), y(t)) = (x(t, z0), y(t, z0)) the solution of (S) with (x(0), y(0)) =
z0 ̸= 0. For any ε > 0 and sufficiently small, let δε ∈ (0, δ0) be such that g(s)s ≥
(g0 − ε)s2 and h(s)s ≥ (h0 − ε)s2 for all |s| ≤ δε. Hence,

−θ̇(t) ≥ (h0 − ε)y(t)2 − λf0|x(t)||y(t)|+ (g0 − ε)x(t)2

x(t)2 + y(t)2
,

as long as |x(t)| ≤ δε and |y(t)| ≤ δε.
If we assume that

λ2f20 < 4g0h0 , (2.19)

then, for ε > 0 sufficiently small, the matrix Mε :=

Å
g0 − ε λf0/2
λf0/2 h0 − ε

ã
is positive

definite. Hence, there exists η = ηε > 0 such that −θ̇(t) ≥ η. And therefore,
|θ(t)− θ(0)| ≥ ηt for all t > 0 such that |x(t)| ≤ δε and |y(t)| ≤ δε on [0, t].

Suppose now t > τ∗ := π/η. This means that the solution starting at a point
(x0, 0) with x0 < 0 will meet again the x-axis at a first point (x(τ), 0) with x(τ) > 0
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for some time τ ∈ (0, τ∗]. By the mirror symmetry of the trajectories with respect to
the x-axis, we conclude that the orbit starting at the point P0 = (0, x0) with x0 < 0
is closed. Of course, all the above argument is valid provided that the solution
departing from P0 lies in the neighborhood of the origin [−δε, δε]2 during the time-
interval [0, τ∗]. But, since the trivial one (x, y) ≡ (0, 0) is a solution of system (S),
an elementary continuity argument guarantees that our previous ansatz is correct
provided that we choose P0 sufficiently close to the origin.

Finally, it is trivial to observe that condition (2.19) is satisfied provided that

λ < λ∗ :=
2
√
g0h0
f0

. (2.20)

We have thus proved that if (2.20) holds, then all the solutions of (S) starting
from a point P0 ̸= 0 in a neighborhood of the origin are closed and hence the origin
is a (local) center.

If x0 ̸= 0, then we have only to translate the same argument, taking as the
origin of the polar coordinate system the equilibrium point Q = (x0, 0) and using

the formula −θ̇ = ydx−(x−x0)dy
(x−x0)2+y2 for the angular derivative.

Remark 2.2. The assumption that the matrix Mε is positive definite implies the
condition that the origin be a focus or a center for the comparison linear system

ẋ = h0y, ẏ = ±λf0y − g0x.

Hence, the conclusion of the proof in Lemma 2.1 can be also achieved by invoking a
classical result [68, Theorem 15, p.95], from the book of Sansone-Conti.

We also observe that condition (2.19) is sharp. Indeed, if we apply it to the
symmetric Rayleigh system

ẍ+ λ|ẋ|+Ax = 0, (2.21)

we find that the origin is a center if λ2 < 4A. The same condition was proved in
[78] to be necessary and sufficient for the existence of a center to (2.21).

In general, we cannot give global information about the phase-portrait of system
(S) without imposing quite specific conditions on the functions h, g, f. Indeed, under
the only assumptions of Lemma 2.1, we cannot prevent the existence of separatrices
and regions of the plane like in [79, 80] where the trajectories become unbounded
once they are entered. Moreover, without some specific growth assumptions of
f(x, y) with respect to the y-variable, the global continuability of the solutions is
not guaranteed. However, as we will see in the two examples in Section 3, taking
as h the inverse of the nonlinearity associated to the relativistic acceleration, in
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some cases helps to have the solutions globally defined and also to provide natural
conditions for the equilibrium to be a global center.

We suppose now that we have a switched system with two subsystems (S1) and
(S2) where the functions in

(Si)

®
ẋ = hi(y)

ẏ = −λifi(x, y)− gi(x),

satisfy the basic assumptions (hsign), (gsign) and (feven), previously introduced. We
also suppose that both the equilibrium points Q1 = (x01, 0) and Q2 = (x02, 0) are
centers. Then we can construct two annular regions A1 and A2 around Q1 and Q2,
respectively, which are filled by periodic orbits. Since the trajectories of the two
systems have mirror symmetry with respect to the x-axis, we have that also A1 and
A2 are symmetric with respect to the line y = 0. To be more specific, assume that
Ai has the orbits Γ

in
i and Γout

i as inner and outer boundary, respectively. We denote
by

τ ini and τouti

the periods of the orbits Γin
i and Γout

i , respectively.
Furthermore, we denote by (c−i , 0) and (c+i , 0) the two points of intersection of Γin

i

with the x-axis and by (d−i , 0) and (d+i , 0) the two points of intersection of Γout
i with

the x-axis, so that
d−i < c−i < x0i < c+i < d+i .

By construction, Ai ∩ {(x, y) : y = 0} =
(
[d−i , c

−
i ]× {0}

)
∪
(
[c+i , d

+
i ]× {0}

)
.

Similarly, we denote by (x0i , h
−
i ) and (x0i , h

+
i ) the two points of intersection of Γin

i with
the vertical line x = x0i and by (x0i , k

−
i ) and (x0i , k

+
i ) the two points of intersection

of Γout
i with the line x = x0i , so that

k−i < h−i < 0 < h+i < k+i , and, by symmetry, h−i = −h+i , k
−
i = −k+i .

By construction, Ai ∩ {(x, y) : x = x0i , y ≥ 0} = {x0i } × [h−i , k
−
i ].

Any of the sets

[d−i , c
−
i ]× {0}, [c+i , d

+
i ]× {0}, {x0i } × [h−i , k

−
i ]

will be called a ray of the annulus Ai . Moreover, we also denote by I(Ai) the inner
region of Ai, namely the bounded open component of R2 \ Γin

i and by E(Ai) the
outer region of Ai, namely the unbounded open component of R2 \ Γout

i . Following
[59], we say that the two annuli A1 and A2 are topologically linked if there exist two
rays r1 and r2 of A1 and A2, respectively, such that

r1 ⊂ I(A2) and r2 ⊂ I(A1) .
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As proved in [59, Proposition 3.1] if two annuli are topologically linked, there are
also parts of A1 in the exterior of A2 and vice-versa. Possible examples of linked
annuli in case of systems (Si) are described in Figure 3.

Figure 3: The left panel shows two linked annuli which are obtained by the switched sub-
systems ẋ = h(y), ẏ = −|h(y)| − 2x + {e1, e2} for e1 = −1 (left annulus) and e2 = 6 (right
annulus). The right panel shows two linked annuli which are obtained by the switched

subsystems ẋ = h(y), ẏ = − x3

1+x2 (h(y))
2 − {A1, A2}x for A1 = 10 (annulus elongated ver-

tically) and A2 = 0.1 (annulus elongated horizontally). In both the cases h(y) is defined
as in (2.15), so that the systems correspond to the equations with relativistic acceleration
d
dt

Ä
ẋ√

1−ẋ2

ä
+ |ẋ| + Ax = e(t) (Rayleigh-type) and d

dt

Ä
ẋ√

1−ẋ2

ä
+ x3

1+x2 (ẋ)
2 + A(t)x = 0

(quadratic Liénard-type), respectively.

In this setting, the following result holds for the T -periodic switched system
which activates (S1) for an interval of time-length T1 and (S2) for an interval of time-
length T2, with T1 + T2 = T. In other words, we have a planar system of the form
(1.1) having (S1) and (S2) as subsystems and such that 0 = τ0 < τ1 = T1 < τ2 = T ,
with τ2 − τ1 = T2 .

Theorem 2.3. Suppose that A1 and A2 be two annular regions filled by periodic
orbits of the systems (S1) and (S2), respectively. Assume that:

(LC) A1 and A2 are topologically linked (Linked Condition)

(TC) τ in1 ̸= τout1 and τ in2 ̸= τout2 (Twist Condition)

Then, for every pair (k, ℓ) of positive integers with m := k × ℓ ≥ 2, there are
T ∗
1 = T ∗

1 (k) > 0 and T ∗
2 = T ∗

2 (ℓ) > 0 such that for any T1 > T ∗
1 and T2 > T ∗

2 the
Poincaré map associated with switched system (1.1) induces chaotic dynamics on
m-symbols on a set D ⊂ A1 ∩ A2 .

Proof. Our result is basically a version of [51, Theorem 4.1], with the improvement
obtained in [59], where a more general notion of linked annuli was introduced. In
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[51] the result is stated for the planar Hamiltonian system

ż = J∇H(z) + e1,2(t)

which is a periodic switched system having ż = J∇H(z) + e1 and ż = J∇H(z) + e2

as subsystems. Here J denotes the symplectic matrix

Å
0 −1
1 0

ã
and H : R2 → R is

a continuously differentiable Hamiltonian function. In [51, Theorem 4.1] the (LC)
condition is slightly more restrictive that ours (but, as already observed, a proper
generalization was obtained in [59]). In any case, the assumption in [51] is that
there are two annular regions linked together and each one filled by the periodic
orbits of one (respectively) of the autonomous subsystems. In our case, we have the
same geometry obtained by means of two reversible systems as in [59] instead of
two Hamiltonian systems. Since the theorems in [51, 59] are of topological nature
and do not depend on a particular Hamiltonian structure, we have that the results
in the above cited articles apply to our situation and hence our theorem follows.
We also observe that essentially the same proof lead to [59, Theorem 1.1] where
we considered another type of switched reversible systems with mirror symmetry
with respect to the y-axis. Accordingly, we refer the reader to [59] for the missing
details.

Remark 2.4. The minimal lengths T ∗
1 and T ∗

2 of the intervals in which each of the
subsystems (S1) and (S2) is active can be estimated from the gaps ∆1 := |τout1 −τ in1 |
and ∆2 := |τout2 − τ in2 |. Typically, the smaller are ∆1 and ∆2, the larger T ∗

1 and T ∗
2

are needed to be.

Remark 2.5. We have stated Theorem 2.3 for a switched system which has (S1) and
(S2) as subsystems. This choice is made in view of the examples that we are going
to present in Section 3. It is clear that any switched system having two subsystems
satisfying (LC) and (TC) is suitable for the application of Theorem 2.3.

Remark 2.6. As observed in previous articles (see for instance [60] where a detailed
discussion on this aspect was performed), the result expressed by Theorem 2.3 is
stable under small perturbation of the coefficients in the L1-norm on [0, T ].

3 Some examples

In this section we present two new examples of application of our method to period-
ically switched reversible systems. Previous examples have been recently obtained
for some particular switching-type reversible systems in [44, 59]. Here we focus our
attention to the case in which the second order differential operator is replaced by a
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relativistic acceleration, a research topic which has received a great deal of interest
in the last decade [18, 53, 77]. To show the effectiveness of our method, we will
present two examples, the first one for a Rayleigh-type equation and the second one
for a Liénard-type equation with a quadratic term in the derivative (as considered
in [66]).

As a first example, we consider the periodically forced equation

d

dt

Å
ẋ√

1− ẋ2

ã
+ λ|ẋ|+Ax = e(t) (3.1)

which is the analogous of the case studied in [78], but with a relativistic acceleration.
Here we assume λ > 0 and A > 0 and e : R → R is a T -periodic function.

As a second example, we consider

d

dt

Å
ẋ√

1− ẋ2

ã
+ λφ(x)ẋ2 +A(t)x = 0, (3.2)

where λ > 0, φ : R → R is a locally Lipschitz continuous function and A : R → R is
a T -periodic function with A(t) > 0 for all t.

For equation (3.1) we suppose that e(t) is a stepwise function of the form

e(t) =

®
e1, for 0 ≤ t < T1

e2, for T1 ≤ t < T1 + T2 = T,
(3.3)

with e1 ̸= e2 .

Analogously, for (3.2) we suppose that A(t) is a stepwise function of the form

A(t) =

®
A1, for 0 ≤ t < T1

A2, for T1 ≤ t < T1 + T2 = T,
(3.4)

with A1 ̸= A2 and A1, A2 ∈ R+
0 = (0,+∞). In this manner, for both equations we

enter in the setting of the periodic switched systems with two active subsystems.

Let us start now with the analysis of equation (3.1), with e(t) as in (3.3). If we
set

y :=
ẋ√

1− ẋ2
, ẋ = h(y) :=

y√
1 + y2

, (3.5)

we can write equation (3.1) as an equivalent switched system (S1)-(S2), with

(Si)

®
ẋ = h(y)

ẏ = −λ|h(y)| −Ax+ ei,
i = 1, 2.
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Each of these subsystems has a unique equilibrium point Qi = (x0i , 0) with x
0
i =

ei
A .

The change of variables x → x + x0i , y → y moves the equilibrium point Qi to the
origin. Therefore, we can study the system®

ẋ = h(y)

ẏ = −λ|h(y)| −Ax
(3.6)

as a universal model for both (S1) and (S2). The vector field in system (3.6) is
globally Lipschitz. Thus the solutions are globally defined in time. It is immediate
to check that we enter in the setting of Lemma 2.1 with h0 = 1, g0 = A. Moreover,
f0 = 1. Then we have that the origin is a local center of (3.6) provided that

λ < 2
√
A (3.7)

(as in [78]). Actually a stronger result holds. Indeed we have the following.

Proposition 3.1. Under condition (3.7), the origin is a global center for system
(3.6).

Proof. We argue as in the proof of Lemma 2.1. Passing to the polar coordinates we
find that

−θ̇ = h(y)y + λ|h(y)|x+Ax2

x2 + y2
≥ h(y)y − λ|h(y)||x|+Ax2

x2 + y2
. (3.8)

We can consider the numerator in the above expression as a quadratic form with

associated symmetric matrix given by M (x, y) :=

(
A λh(y)2y

λh(y)2y
h(y)
y

)
. Now, since

det(M (x, y)) =
h(y)

4y

Å
4A− h(y)

y
λ2
ã
≥ h(y)

4y
(4A− λ2) ≥ δR > 0,

for each y in a compact interval [−R,R], arguing similarly as in the proof of Lemma
2.1, we can conclude that the trajectories starting from a point P0 = (x0, 0) with
x0 < 0 enter the upper half-plane and then hit again the x-axis at a point (x1, 0)
with x1 > 0.

To make this argument a little more precise, observe also that the solution of
(3.6) starting at the point P0 enters the upper half-plane (as −g(x0) > 0 for x0 < 0)
with ẏ > 0 until the solution achieves its maximum in the y-component when it
crosses the part of the isocline x = − λ

A |h(y)| at some point (u1, y1) with x0 < u1 < 0
and y1 > 0. Then, as long as the solution remains in the upper half-plane, we have

0 < y(t) ≤ y1 and therefore h(y(t))/y(t) = 1/
√

1 + y(t)2 ≥ 1/
»

1 + y21 = c1 > 0.
This justifies the above assertions on the quadratic form.
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Symmetrically, the trajectories starting at a point (x0, 0) with x0 > 0 enter
the lower half-plane and then hit again the x-axis at a point (x1, 0) with x1 < 0.
This proves that, indeed, the origin is a global center for system (3.6) if (3.7) is
satisfied.

Now, the period of the small orbits is asymptotic to the period of the orbits of

ẋ = y, ẏ = −λ|y| −Ax,

which is

τ0 :=
4π√

4A− λ2
.

On the other hand, it is easy to show that, by virtue of the fact that h(y) is bounded,
the period of the large orbits tends to infinity. A visual interpretation of this occur-
rence is given in Figure 4.

Figure 4: The simulation shows the solutions of (3.6) with λ = 1 and A = 2 (the case of
a center, according to (3.7)) starting at the points (0, y0) with y0 = 5, 10, 15, 20, 25 and a
fixed time interval. The presence of a period gap between the smaller and larger orbits is
evident.

Remark 3.2. The result that we have obtained for (3.6) is sharp. Indeed, for
λ > 2

√
A we do not have a center anymore. However, due to fact that h(y)/y → 0

for y → ±∞, we have that the numerator in (3.8) is positive and bounded away from
zero on larger orbits. This implies that we can produce in any case an annular region
filled by periodic orbits (outside a bounded neighborhood of the origin). Figure 5
illustrates this situation.

At this point, for e1 ̸= e2, we can construct two linked annuli like in the left
panel of Figure 3 and, using the gap between the periods of the orbits, we can
apply Theorem 2.3 in order to prove rigorously the presence of complex dynamics
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Figure 5: The simulation shows the solutions of (3.6) with λ = 4 and A = 1. The origin
is no more a local center, due to the failure of condition (3.7) and a region at the left-hand
side of the origin filled by homoclinic solutions appears. However, larger orbits are periodic
and fill an open annulus around the origin (as shown in the left panel). Moreover, it is
possible to construct periodic annular regions with a twist condition at the boundary as
shown in the right panel where we consider periodic orbits starting at the points (0, y0) with
y0 = 1, 3, 6, 9, 12, 15, 18, 21 and a fixed time interval. The presence of a period gap between
the smaller and larger orbits is evident. This shows that it will be possible to apply Theorem
2.3 to (3.1) also when condition (3.7) is not satisfied.

associated with system (3.1), provided that the two switching times are sufficiently
large. Furthermore, according to Remark 2.6, we can obtain the same result for a
(possibly smooth) periodic forcing term e(t) which is close to a stepwise function in
the L1-norm. Figure 6 shows the Poincaré section for the periodically forced planar
system (equivalent to (3.1))®

ẋ = h(y)

ẏ = −λ|h(y)| −Ax+ e(t),
(3.9)

for λ = 1, A = 2 (so that condition (3.7) is satisfied) and for λ = 4, A = 1 (so that
condition (3.7) is not satisfied) and

e(t) = K tanh(n sin(ωt+ α)). (3.10)

The function tanh(nx) for n an integer sufficiently large provides a good approxi-
mation of sign(x) (see [34, 75]). Hence the function e(t) defined in (3.10) is close to
a stepwise periodic function in the L1-norm.
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(a) Poincaré section for the case λ = 1,
A = 2 (cf. left panel of Figure 3).

(b) Poincaré section for the case λ = 4,
A = 1 (cf. Figure 5).

Figure 6: The figures are obtained by considering 800 iterations of the Poincaré map for
(3.9) and starting from different initial points. The resulting points are spread in a rectangle
of size [−16, 15] × [−360, 370], starting from 15 initial points (left panel) and, respectively,
in a rectangle of size [−21, 18] × [−140, 250], starting from 16 initial points (right panel).
Accordingly, the aspect-ratio of both the figures is modified in order to put in better evidence
the resulting structure. The simulation has been performed for e(t) as in (3.10) with K = 3,
n = 6, ω = 0.05 and α = 0.5. Thus the period of the forcing term e(t) is T = 40π ∼ 125.66
which is reasonably large. The distribution of the points in the Poincaré section shows
the typical patterns of alternation of regions of stability/instability, including subharmonic
solutions of large order and island chains according to [6] (compare also with [64, Figure 1]
for a similar pattern emerging from a completely different equation). The presence of a rich
and complex structure is clear in both the examples.
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Coming to the second example, we study now equation (3.2), with A(t) > 0 as
in (3.4) and consider the equivalent switched system (S1)-(S2), with

(Si)

®
ẋ = h(y)

ẏ = −λφ(x)(h(y))2 −Aix
i = 1, 2.

Clearly, each of the subsystems (Si) fits in the class of type (Sa,b) with a(x) = φ(x)
and b(y) = (h(y))2. Then, for (x, y) in a neighborhood of the origin such that
|φ(x)| ≤ |φ(0)|+ 1 for |x| ≤ δ0 and y2 ≤ µ0|y| for |y| ≤ δ0 < 1 we have

|f(x, y)| = |φ(x)|h(y)2 ≤ (|φ(0)|+ 1)y2 ≤ (|φ(0)|+ 1)µ0|y| = κ0|y|,

for κ0 := (|φ(0)|+ 1)µ0. Hence, we can apply Lemma 2.1 with h0 = 1, g0 = Ai > 0
and (2.18) holds with f0 = κ0, and µ0 > 0 as small as we like provided that we take
δ0 sufficiently small (depending on µ0). In particular, for any fixed λ > 0 we can
tale µ0 and then κ0 so that λ2κ20 < 4min{A1, A2}, thus concluding that the origin
is a local center for system (Si) (for i = 1, 2).

The question if the local center is a global one is much more delicate and, to
simplify our analysis, we will suppose now that φ is bounded. In this case, discharg-
ing a multiplicative factor on the parameter λ, without loss of generality, we can
suppose that

(φbound) |φ(x)| ≤ 1, ∀x ∈ R.

Then, the following result holds, where A stands for A1 or A2.

Proposition 3.3. Assume (φbound). Then, for h as in (3.5), the origin is a global
center for the system

ẋ = h(y), ẏ = −λφ(x)(h(y))2 −Ax, (3.11)

for every λ > 0 and A > 0.

Proof. First of all, we observe that the solutions of system (3.11) are globally defined
in time. This follows from standard results from the theory of ODEs, as h(y) and
φ(x) are bounded and g(x) = Ax is globally Lipschitz. Next, arguing like in Lemma
2.1 and Proposition 3.1 we pass to the polar coordinates and we obtain

−θ̇ = h(y)y + λφ(x)h(y)2x+Ax2

x2 + y2
≥ h(y)y − λ|h(y)||x|+Ax2

x2 + y2
. (3.12)

In fact, the inequality follows from (φbound) and by the fact that |h(y)| ≤ 1 and
therefore h(y)2 ≤ |h(y)|.
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Thus,from (3.12) we get the same lower bound for −θ̇ as in (3.8) and from now
on we just can repeat the argument in the proof of Proposition 3.1 and conclude
that there all the large orbits are closed.

Now we are in the following situation. We have a small orbit, say γ1, passing
through a point P1 = (x1, 0) with x1 < 0 such that for every P0 = (x0, 0) with
x1 ≤ x0 < 0 the trajectory of system (3.11) passing through P0 is closed (in fact, we
know that the origin is a local center). We also have a large orbit, say γ2, passing
through a point P2 = (x2, 0) with x2 < x1 < 0 such that for every P0 = (x0, 0) with
x0 ≤ x2 < 0 the trajectory of system (3.11) passing through P0 is closed (this has
been just achieved in the first part of the proof). It remains to prove that also the
orbits between γ1 and γ2 are closed.
To this aim, let us consider now a point P0 = (x0, 0) with x2 < x0 < x1 < 0 and let
γ+(P0) be the positive semi-orbit of system (3.11) passing through P0. We claim that
γ+(P0) hits the positive x-axis at a point P ′

0 = (u0, 0) with u0 > 0. Once this claim

is proved, we have that the orbit path P̆0P ′
0 of γ+(P0), by reflection with respect to

x-axis, generates a closed orbit of system (3.11). To prove our claim, suppose, by
contradiction, that there is a point P0 as above such that γ+(P0) does not cross the
positive x-axis. This implies that γ+(P0) will remain in the upper half-plane between
γ1 and γ2; call D this region and observe that 0 ̸∈ D. The Poincaré-Bendixson theory
implies that in the simply connected region D there should be an equilibrium point
of (3.11), but this is impossible, as the only equilibrium point of the system is the
origin.

Hence, we have proved that any positive semi-orbit departing from a point P0 =
(x0, 0) with x0 < 0 is periodic. Symmetrically, the trajectories starting at a point
(x0, 0) with x0 > 0 enter the lower half-plane and then hit again the x-axis at a
point (x1, 0) with x1 < 0 and then are closed by the mirror symmetry with respect
to the x-axis.

In this manner we have verified that the origin is a global center for system
(3.11).

Now, in order to enter in the setting of Theorem 2.3 we just need to link together
two annular regions for systems (S1) and (S2) for A1 ̸= A2, like in the right panel
of Figure 3 and, using the gap between the periods of the orbits, we are able to
prove rigorously the presence of complex dynamics associated with system (3.2),
provided that the two switching times are sufficiently large. Furthermore, according
to Remark 2.6, we can obtain the same result for a (possibly smooth) periodic
positive weight function A(t) which is close to a stepwise function like the one in
(3.4) in the L1-norm. Figure 9 shows the Poincaré section for the periodically forced



Switched Liénard/Rayleigh Systems 23

planar system (equivalent to (3.2))®
ẋ = h(y)

ẏ = −λφ(x)h(y)2 −A(t)x,
(3.13)

where we have taken

φ(x) =
x2

x2 + 1
(3.14)

and
A(t) = 2

(
A+K tanh(n sin(ωt+ α))

)
. (3.15)

with the following parameters:

A = 10, K = 9.9, n = 6, ω = 1/10, T = 20π ∼ 62.832, α = 0. (3.16)

Note that with this choice A(t) is a smooth function close to a stepwise function
which jumps between the values A1 = 39.8 and A2 = 0.2. Figure 7 gives evidence of
the time-gap (twist condition) between smaller (faster) and larger orbits (slower),
while Figure 8 show how linked annuli can be easily constructed for different values
of the parameter A > 0.

Figure 7: The simulation shows the solutions of (3.11) with λ = 1 and A = 0.2 (left panel)
and those of the same system with λ = 1 and A = 39.8 (right panel). In both the cases the
initial points are of the form (0, y0) with y0 = 1, 2, 3, 4, 5, 6 and a fixed time interval. The
presence of a period gap between the smaller and larger orbits is evident. It is interesting
to observe also that the period of the orbits for A = 0.2 is notably larger than that for the
case A = 38.8. In fact in the former case, the simulation is made for the time-interval [0, 24],
while in the latter the time interval is [0, 1.3].
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Figure 8: The left panel shows the example of two linked annuli obtained with λ = 1
and φ(x) as in (3.14), for A1 = 38.8 and A2 = 0.2, respectively. The right panel shows a
numerical simulation of the solution of system (3.13) for the time interval [0, 400] and the
initial point P0 = (0, 7). The function A(t) is as in (3.15) with the choice of parameters as in
(3.16). The dynamical behavior is that of a trajectory which roughly oscillates between the
orbits of the (3.11) for A1 = 39.8 in almost half of the period (with very rapid oscillations)
and those of the same equation for A = 0.2 for almost the rest of the period (with very slow
oscillations).

Figure 9: The figures are obtained by considering 800 iterations of the Poincaré map for
(3.13) and starting from different initial points. The resulting points are spread in a rectangle
of size [−2.4, 3.7] × [−17, 16], starting from 16 initial points Accordingly, the aspect-ratio
of the figure is modified in order to put in better evidence the resulting structure. The
simulation has been performed for φ as in (3.14) and λ = 1. The weight function A(t)
is defined as in (3.15) with the parameters described in (3.16). The left panel shows the
whole picture for all the initial points, while the right panel is a zoom of the same figure,
by considering only the initial points which are near the origin. The emerging of a rich and
complex structure is evident.
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