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Summary. Grapevine Trunk Diseases (GTDs) are major threats in Mediterranean
countries, causing economic losses due to reduced grape yields and long-term vine
productivity, as well as death of grapevines. A survey was conducted in Piedmont
(Northern Italy) during 2021-2022 to investigate the species diversity and distribution
of GTD pathogens in this important Italian wine region. Morphological and multi-
locus phylogenetic analyses (based on ITS, tefl, tub2, act and rpb2) identified species
of Botryosphaeriaceae at high frequency, including Botryosphaeria dothidea, Diplodia
mutila, Diplodia seriata and Neofusicoccum parvum. Other pathogens commonly asso-
ciated with GTDs, including Eutypa lata, Fomitiporia mediterranea and Phaeomoniella
chlamydospora, were also isolated. Less commonly isolated species included Neocu-
curbitaria juglandicola, Paraconiothyrium brasiliense, Seimatosporium vitis-viniferae
and Truncatella angustata. Pathogenicity tests with two representative isolates of each
species were carried out using one-year-old potted grapevine cuttings (‘Barbera’). All
isolates (except N. juglandicola) caused brown wood necrotic vascular discolourations
on inoculated plants and were successfully re-isolated. Effects of temperature on colony
growth were also assessed. For all tested isolates there was no growth at 5°C, only four
isolates (Botryosphaeriaceae) grew at 35°C, and optimum growth temperatures were
between 20 and 25°C. This is the first record of Paraconiothyrium brasiliense and Neo-
cucurbitaria juglandicola associated with symptomatic grapevines in Italy.

Keywords. Botryosphaeria dieback, Neofusicoccum, Neocucurbitaria juglandicola,
pathogenicity, Grapevine Trunk Diseases.
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INTRODUCTION

Grapevine (Vitis vinifera L.) is an important culti-
vated crop, with a worldwide vineyard area of 6.73 mil-
lion ha (FAOSTAT, 2021), mainly grown for wine and
table grape production. Reports have increased of dis-
eases caused by grapevine trunk diseases (GTDs) asso-
ciated fungi causing severe economic and yield losses as
a result of reduced grape quality and early plant death.
Grapevine trunk diseases are severely destructive in
Europe and Mediterranean countries (Guerin-Dubrana
et al., 2019), representing major threats to vineyard pro-
ductivity.

Several factors, including climate change and rapid
expansion and industrialization of viticulture, are relat-
ed to increased incidence and severity of GTDs (Grani-
ti et al., 2000; Surico et al., 2004). Up to 133 pathogens
belonging to nine families have been associated with
GTDs (Luque et al., 2009; Carlucci et al., 2015; Gramaje
et al., 2018; Mondello et al., 2018). These xylem-colo-
nizing fungi are predominantly found in the grapevine
framework (spurs, cordons and trunk), but also in root
(Gramaje et al., 2018).

Symptoms of GTDs vary among the different diseas-
es, and include sectorial wood necroses (cankers), black-
brown streaking (discolourations or blackening of xylem
vessels), central brown-red discolouration, and white rot,
while external symptoms include leaf necrosis and chlo-
rosis with typical tiger-stripes, reduced vine vigour and
stunted growth, dieback of shoots and leaf drop (apo-
plexy). These symptoms generally lead to death of affect-
ed vines, caused by the Esca complex of diseases, decline
and dieback or stunted shoots growth, including witch’s
broom symptoms, as in Eutypa dieback (Mugnai et al.,
1999; Luque et al., 2009; Urbez-Torres, 2011; Bertsch et al.,
2013; Carlucci et al., 2015; Gramaje et al., 2018; Mondello
et al., 2018; Billones-Baaijens and Savocchia, 2019; Guerin-
Dubrana et al., 2019; Reis et al., 2019; Claverie ef al., 2020).

Grapevine trunk diseases are associated with differ-
ent vascular xylem-colonizing pathogenic fungi. Phaeo-
moniella chlamydospora and several Phaeoacremonium
spp. are responsible for Petri disease and Esca complex,
the major GTDs reported in all European and Mediter-
ranean countries. Fomitiporia mediterranea, in the same
areas, is the most common lignin-degrading Basidiomy-
cete fungus responsible for white rot (Surico et al., 2004).
Different dieback diseases such as Botryosphaeria die-
back, Diaporthe dieback and Eutypa dieback are asso-
ciated with different species of related fungal families
(Claverie et al., 2020).

Fungi in the Botryosphaeriaceae have cosmopoli-
tan distribution, and have been associated with many
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host plants (Urbez-Torres, 2011; Carlucci et al., 2015;
Guarnaccia et al., 2022). Several species are reported to
be plant pathogens while others are endophytes or sap-
rophytes of annual or perennial plants. Over the last
decade, interest in species in Botryosphaeriaceae has
increased, due to importance of Botryosphaeria dieback
of grapevines, where at least 26 species have been asso-
ciated with this disease (Urbez-Torres, 2011; Carlucci et
al., 2015; Gramaje et al., 2018; Arkam et al., 2021). Bot-
ryosphaeria dieback, has been associated with differ-
ent fungal genera, including Botryosphaeria, Diplodia,
Dothiorella, Lasiodiplodia, Neofusicoccum, Neoscytalidi-
um, Phaeobotryosphaeria and Spencermartinsia (Yang et
al., 2017; Gramaje et al., 2018). Typical symptoms occur
on grapevine trunk and shoot wood, and include wedge-
shaped cankers, dark V-shaped wood necroses, and
elongated black lesions in vessels. Vascular streaking,
foliar discolouration, bud necrosis and severe decline
can cause death of plants (Urbez-Torres, 2011; Billones-
Baaijens and Savocchia, 2019; Urbez-Torres et al., 2020).
Botryosphaeria dieback symptoms can discontinue
but are commonly observed on mature vineyards (> 8
years), but have also been reported on 3- to 5-years-old
vines (Urbez-Torres et al., 2008). All GTDs pathogens
can cause asymptomatic infections as latent pathogens
(Gonzalez and Tello, 2011; Bruez et al., 2014).

Among Fungi commonly associated with GTDs, sev-
eral recent studies have highlighted the association of oth-
er wood-degrading fungi with symptomatic plants (Rai-
mondo et al., 2019; Bekris et al., 2021). Numerous fungi
belonging to Neopestalotipsis, Truncatella, Seimatospori-
um and Sporocadus have recently been reported as part of
the grapevine microbiome, while their roles as causes of
symptoms need to be clarified (Maharachchikumbura et
al., 2017; Geiger et al., 2022; Vanga et al., 2022).

With more than 718,000 ha of wine and table grape-
vines (O.LV, data 2022, https://www.oiv.int/it/what-
we-do/country-report?oiv), Italy is leading grapevine
production worldwide and represent the fourth largest
vineyard acreage after Spain, France and China. Among
all Italian regions, Piedmont (Northern Italy, with the
Langhe area included in UNESCO’s World Heritage
list), is a renowned wine production region. In the last
30 years, incidence of GTDs has increased in all Italian
regions, and several fungi have been reported associated
with grapevines showing various symptoms (Surico et
al., 2000; Guerin-Dubrana et al., 2019). Since the 1990s,
studies have reported high disease incidence and mor-
tality of plants in the first year of planting. The Esca
complex, including apoplexy, is frequent and widespread
in all grape growing Italian regions (Guerin-Dubrana
et al., 2019), and reaches high incidence in climatical-
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ly favourable seasons, up to 80% in mature vineyards
(Romanazzi et al., 2009).

Botryosphaeria dieback associated with different
pathogens, including Diplodia seriata, Neofusicoccum
parvum and Lasiodiplodia theobromae, was reported in
Apulia, Marche, Molise, Tuscany, Sardinia and Sicily
(Burruano et al., 2008; Romanazzi et al., 2009; Spagnolo
et al., 2014; Carlucci et al., 2015; Linaldeddu et al., 2015;
Mondello et al., 2020), but no investigations have been
carried out in Piedmont. Due to limited information on
distribution of GTD related pathogens in Piedmont, the
present research aims were: 1) to investigate the species
diversity and distribution of GTD pathogens in Pied-
mont, focusing on canker agents and wood-degrading
fungi associated with dead cordons, independently from
detected foliar symptoms; 2) to characterize obtained
isolates; and 3) to test representative isolates for patho-
genicity to healthy grapevine plants.

MATERIALS AND METHODS
Field sampling and isolation of fungi

Surveys were carried out from July 2021 to Novem-
ber 2022, in five vineyards in the Alba and Alessandria
areas of Piedmont, Northern Italy. Wood samples were
collected from necrotic cordons, and from trunk por-
tions of declining vines of 12 different grapevine culti-

vars (Table 1). Sampled vines were aged between 10 and
25 years, and showed dieback symptoms, including foliar
discolourations, dieback and internal dark V-shaped
wood necroses. The sampling method was destructive;
vines were cut and transverse sections of the affected
trunk and branches of each plant were examined to
check for wood necroses. Each sample was reduced into
small fragments, including the necrotic zone, and was
sterilized in a sodium hypochlorite solution (1%) for
1 min and then rinsed in sterilized distilled water for
30 sec. Excess water was removed using sterilized filter
paper. The wood samples were cut into small pieces from
the margins of the necrotic zones. Five wood fragments
from each sample were plated onto the surface of Potato
Dextrose Agar (PDA, Merck) in a Petri plate, supple-
mented with streptomycin sulphate (25 ppm L, PDA-
S), and incubated at 25 + 1°C. After 5 d the plates were
examined. From the margins of resulting fungal colo-
nies, single hyphal tips were cut and placed on new PDA
plates, to obtain pure cultures.

DNA extraction, polymerase chain reaction (PCR) amplifi-
cation, and sequencing

For recurring fungal colonies, mycelium from each
10-d-old pure culture on PDA was scraped and col-
lected into a 2 mL capacity centrifuge tube. Total DNA
was extracted directly from fresh mycelium using the

Table 1. Information on the vineyards surveyed and sampled in Piedmont, with respective fungi from different grapevine cultivars.

Vineyard No.

Isolated fungi

plants Botryosphaeriaceae

Grapevine cultivar Location sampled spp. N. juglandicola  P. brasiliense S. vitis T. angustata
Alba rossa Carpeneto (AL) 2 + - - + _
Barbera Dogliani (CN) 2 + - + + +
Castiglione Falletto (CN) 3 + - - - -
Fubine (AL) 3 + - - + _
Cabernet Fubine (AL) 2 + - - _ _
Cortese Carpeneto (AL) 2 + - - . -
Erbaluce Carpeneto (AL) 2 - - - . B
Grignolino Carpeneto (AL) 1 + - - - .
Merlot Fubine (AL) 2 + - - - _
Moscato Carpeneto (AL) 2 + - - - .
Nebbiolo Dogliani (CN) 3 + - - - +
Monforte d’Alba (CN) 2 + + + - -
Rossese bianco  Monforte d’Alba (CN) 1 + - - - _
Fubine (AL) 1 + - - - -
Sauvignon blanc  Carpeneto (AL) 2 - - - - i
Timorasso Carpeneto (AL) 2 - - - -
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E.Z.N.A." Fungal DNA Mini Kit (Omega Bio-Tek), fol-
lowing the manufacturer’s instructions. DNA amplifi-
cation and sequencing of different loci were carried out
to achieve species identification. Botryosphaeriaceae-like
isolates were characterized through DNA amplifica-
tion and sequencing of the partial translation elongation
factor-la (tefl) gene, using the primers EF1-728F and
EF1-986R (Carbone and Kohn, 1999). For the remain-
ing isolates, the nuclear ribosomal internal transcribed
spacer (ITS) region was amplified using universal prim-
ers ITS1 and ITS4 (White et al., 1990), while the prim-
ers T1 and Bt2b (Glass and Donaldson, 1995; O’Donnell
and Cigelnik, 1997), fRPB2-5f and fRPB2-7cr (Liu et al.,
1999), and ACT512f and ACT783r (Carbone and Kohn,
1999), were used to amplify, respectively, genes for par-
tial beta-tubulin (tub2), the fragment of the RNA poly-
merase II subunit 2 (rpb2), and y-actin (act). The PCR
reactions and conditions adopted for all the loci were
described in the above respective cited studies. Polymer-
ase chain reaction assays were carried out in a final 25
uL volume, using a Taqg DNA polymerase kit (Qiagen)
and 25 ng of DNA. Five microliters of each PCR reac-
tion product were analyzed by electrophoresis at 100V in
a 1% agarose (VWR Life Science AMRESCO® biochemi-
cals) gel stained with GelRed™ in 1x Tris-acetate-EDTA
(TAE) bufter (40 mM Tris-acetate and 1 mM EDTA; pH
8.0). Amplified PCR fragments were sequenced by Euro-
fins Genomics Service (Cologne). Obtained sequences
were trimmed in Geneious v. 11.1.5 (Auckland, New
Zealand), and the blast function of NCBI’s GenBank
nucleotide database was used to determine the closest
relatives of the studied isolates.

Phylogenetic analyses

To give an overview of isolated genera, an initial
phylogenetic analysis was conducted with sequences of
the partial translation elongation factor-la (tefl) gene
for Botryosphaeriaceae-like isolates, and with the nucle-
ar ribosomal internal transcribed spacer (ITS) gene for
other isolates. Subsequently, a subset of representative
isolates was then selected based on the previous results,
to distinguish the isolates at species level. A multilocus
phylogenetic analysis was conducted using the follow-
ing locus combinations: ITS and tefl for members of
Botryosphaeriaceae (Pintos et al., 2018; Guarnaccia et
al., 2020); ITS, tub2 and act were amplified for Paraco-
niothyrium (Verkley et al., 2004); ITS, tub2 and rpb2 for
Neocucurbitaria (Jaklitsch et al., 2018); and ITS, tub2
and tefl for isolates related to the family Sporocadaceae
including the genera Truncatella and Seimatosporium
(Raimondo et al., 2019). Isolate sequences, including ref-
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erences downloaded from GenBank, were aligned with
the software MAFFT v. 7 online server (http://maftt.
cbre.jp/alignment/server/index.html) (Katoh and Stand-
ley, 2013), and were then manually adjusted in MEGA
v.7 (Kumar et al., 2016). Multi-locus analyses, based on
Maximum Parsimony (MP) were performed using Phy-
logenetic Analysis Using Parsimony (PAUP) v. 4.0b10
(Cummings, 2004), while MrModeltest v. 2.3 (Nylander,
2004) and MrBayes v. 3.2.5 (Ronquist and Huelsenbeck,
2003) were used for the Bayesian Inference (BI) analyses.
The best nucleotide substitution model for each gene was
estimated using MrModeltest. Based on obtained results
for optimal setting criteria for each locus, Bls were per-
formed using the Markov Chain Monte Carlo (MCMC)
method. Four simultaneous Markov Chains were run for
1,000,000 generations starting from a random tree topol-
ogy. Trees were saved each 1000 generation, while pre-
burn and heating parameters were set, respectively, to
0.25 and 0.2. Based on burn-in fraction, the remaining
trees were used to calculate the majority rule consensus
tree and posterior probability (PP). The analyses stopped
once the average standard deviation of split frequencies
fell below 0.01. For Maximum Parsimony, phylogenetic
relationships were estimated using the heuristic search
option with 100 random addition sequences. Tree bisec-
tion reconnection (TBR) was used with branch swap-
ping option as “best trees”; characters were treated as
equally weighted, and gaps as fifth base. Parsimony and
the bootstrap analyses were based on 1,000 replications,
and tree lengths (TL), consistency indices (CI), retention
indices (RI) and rescaled consistence indices (RC) were
calculated. Resulting trees were visualized with FigTree
version 1.4.4 (Page, 1996). Sequences generated in this
study were deposited in GenBank (Table 2).

Morphological analyses

Two isolates of each species identified using molecu-
lar analyses were selected for the morphological obser-
vation. Mycelium plugs (each 6 mm diam.) were taken
from each 10-d-old fungal colony growing on PDA and
were transferred to Petri dishes containing different
media. To enhance sexual sporulation or conidium pro-
duction, for Botryosphaeriaceae-like isolates, 2% water
agar supplemented with sterile pine needles (Pine Needle
Agar or PNA, Smith et al., 1996) was used, with incu-
bation at 25°C under near-UV light (Crous et al., 2006).
For Neocucurbitaria, malt extract agar (MEA) and PDA
were used, with incubation at 20°C and alternating light-
dark periods (Jaklitsch et al., 2018). Corn meal agar
(CMA), oat agar (OA) and MEA were used for Paraconi-
othyrium, incubated at 25°C under UV light. PDA, MEA
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fungal agents characterization and pathogenicity

Grapevine dieback in Piedmont
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Figure 1. Grapevine trunk disease symptoms observed in Pied-
mont. A. Symptoms attributed to Botryosphaeria dieback on a
grapevine shoots, with complete branches dissection, drying, and
fall of affected leaves. B. Cross section of a cordon with internal
necrotic wood cankers (wedge-shaped) characteristic of Botry-
osphaeria dieback.

and OA, with incubation at 25°C in dark, were used for
Seimatosporium isolates (Kanetis et al., 2022). For Trun-
catella isolates, CMA and MEA were used, and colonies
were incubated at 21°C with alternating light-dark peri-
ods (Liu et al., 2019).

Effects of temperature on fungal colony radial growth

To investigate the effect of temperature on the colony
radial growth of selected fungal isolates (Table 2), each
isolate was grown on PDA amended with streptomycin
sulphate (25 ppm L) for 7 d in the dark at 25°C. Myce-
lium plugs were taken from the margins of 10-d-old colo-
nies using a cork borer (0.6 cm diam.) and were placed
upside down at the centers of 9 cm diam. Petri dishes,
each containing 10 mL of PDA-S medium. All plates were
then incubated for 7 d at 5, 10, 15, 20, 25, 30 or 35°C, and
each isolate was tested using seven replicate plates per
temperature. Following incubation, the Petri plates were
examined without being opened, and the mean colony
diameters (minus the diameter of the initial inoculation
plugs) of each growing mycelial colony were measured in
two perpendicular directions at the end of the 4th and
7th day. Radial growth rates (mm d!) were calculated for
each temperature. The variations in mycelium growth
rates at different temperatures were analyzed using the
generalized Analytics Beta model (Lopez-Moral et al.,
2017). Based on this analysis, optimum growth tempera-
ture and the corresponding maximum growth rate were
calculated for each isolate. Box-Cox transformation was
applied to optimum growth temperature data. To sat-
isty ANOVA assumptions, normality and homogeneity

Greta Dardani et alii

of variance were evaluated with, respectively, Shapiro-
Wilk and Levene’s tests. One-way ANOVA was carried
out, followed by Tukey’s test for evaluation of statistically
significance differences between means (at P < 0.05), as
both ANOVA assumptions were satisfied for the growth
rate data. Welch’s ANOVA was performed on optimum
growth temperature data because only the normal-
ity assumption was satisfied. Statistical differences (P <
0.05) were analyzed with the Games-Howell post hoc test.
All statistical analyses were carried out using R (https://
www.R-project.org/).

Pathogenicity tests

Fifteen representative isolates from seven identi-
fied fungal species were used to inoculate one-year-old
potted ‘Barbera’ grapevine cuttings grafted on K5BB
rootstock (Table 2). Ten plants were inoculated with
each isolate. The inoculations were carried out in May
2022. Cuttings were inoculated above the grafting point
by forming a slit (1.0-1.5 cm long) using a sterile scal-
pel as described by Carlucci et al. (2015) and Bezerra
et al. (2021). Agar plugs (6 mm diam.) were taken from
10-d-old fungal cultures grown on PDA and plugs
were placed with mycelium in contact with plant tis-
sues, under the stem bark. Each inoculated wound was
wrapped with wet sterile cotton wool soaked in steri-
lized distilled water and was then sealed firmly with
Parafilm® (American National Can) to maintain high
humidity at the inoculation point. Control plants were
inoculated with sterile agar plugs. Inoculated plants
were the placed in a greenhouse at 25 + 3°C, from May
to November 2022. After 180 d. from inoculation, the
plants were examined after bark removal and lengths of
any visible necrotic wood lesions were measured from
the inoculation points. Small tissue pieces (0.5 cm) from
the necrotic area were placed on PDA supplemented
with streptomycin sulphate (25 ppm L), and incu-
bated at 25 + 1°C. To fulfil Koch’s postulates, resulting
colonies were identified based on their morphologi-
cal characteristics. Data of necrotic lesion lengths were
subjected to statistical analysis. Shapiro-Wilk (W) tests
were used to determine if the data followed normal dis-
tributions. Levene’s tests were carried out to assess the
homogeneity of the variances of the dataset. A Welch’s
ANOVA was performed because the dataset was nor-
mally distributed, but data were not homoscedastic.
The Games-Howell post hoc test was used to evaluate
statistically significant differences among mean lesion
lengths caused by the different fungal isolates (at P <
0.05). All statistical analyses were carried out using R
(https://www.R-project.org/).
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RESULTS

Sampling, isolation and morphological identification of iso-
lates

In sampled vineyards, more than 30% of the plants
showed Botryosphaeria dieback related symptoms.
Approximately 5-10% of plants showed decline with
severe dieback and death. Sampled grapevines showed
typical dieback symptoms, primarily associated with
Botryosphaeria dieback, such as defoliation and wedge-
shaped cankers of internal wood tissues and dark streak-
ing of wood.

A total of 248 fungal isolates were obtained from a
total of 32 symptomatic vines of 12 cultivars. The first
screen and identification of isolates was based on their
morphological and cultural characteristics. A group of
isolates identified as Botryosphaeriaceae-like showed
high isolation frequency (80 isolates, 37% of total iso-
lates obtained) compared with other common GTDs
fungi, such as P. chlamydospora (38 isolates), E. lata
(5 isolates) and F. mediterranea (12 isolates) that were
occasionally present.

Other less frequently isolated genera were also
detected using morphological characteristics, including
Diaporthe (5 isolates), Kalmusia (3 isolates), Neocucurbi-
taria (2 isolates), Paraconiothyrium (3 isolates), Seimato-
sporium (7 isolates), and Truncatella (4 isolates) species.
Some common saprophytes, not considered to be associ-
ated with observed symptoms, were also isolated, includ-
ing Alternaria, Epicoccum, Cladosporium, and Dydimella
spp. Table 1 shows details of the fungal species isolated
from each vineyard surveyed in Piedmont.

Phylogenetic analyses

The multi-locus analyses conducted on all isolates
confirmed the genera obtained with the initial phyloge-
netic analysis of the tefl and ITS regions. The combined
locus analysis of Botryosphaeriaceae-like isolates con-
sisted of 35 sequences and Lecanosticta acicola, which
was chosen as the outgroup. A total of 995 characters
(ITS: 1-660 and tefl: 666-995) were included in the phy-
logenetic analyses of Botryosphaeriaceae-like isolates. A
total of 1405 characters (ITS, 1-628; tub2, 633-1123; tefl,
1128-1405) were included in the Paraconiothyrium analy-
ses where, for a total of 15 sequences, Alloconiothyrium
aptrootii was chosen as the outgroup. For Neocucurbi-
taria, Pseudopyrenochaeta lycopersici was chosen as out-
group, and a total of 1810 characters (ITS, 1-507; tub2,
511-896; rpb2, 901-1810) were included in the phylogenet-
ic analyses performed with 16 sequences. The combined

phylogenetic session for Seimatosporium and Truncatella
had a total of 1823 characters (ITS, 1-579; tefl, 583-1071;
tub2, 1076-1823) with 25 sequences. Discosia artocreas
was chosen as the outgroup. For each session, a tree was
created based on a maximum of 1000 equally most parsi-
monious trees. Bootstrap support values for all MP trees
obtained are shown in Figures 2, 3, 4 and 5.

In the Botryosphaeriaceae-like analyses, two iso-
lates (CVG15777 and CVG1753) clustered with D. seriata
reference strains, and isolates CVG1582 and CVGI1615
clustered with B. dothidea strains. Isolates CVG1588
and CVG1731 were grouped with Neof. parvum, and iso-
lates CVG1739 and CVG1714 clustered with D. mutila
reference strains. For Paraconiothyrium, both strains
clustered with reference strains of P. brasiliense. In the
phylogenetic tree from the Trunmcatella and Seimato-
sporium analysis, two isolates (CVG1601, CVG1631) were
identified as T. angustata, and two isolates (CVG168l,
CVG1682) were grouped with S. vitis-viniferae reference
strains. Isolate CVG1779 of Neocucurbitaria clustered in
the Neoc. juglandicola clade. The recommended evolu-
tionary model, unique site patterns, number of genera-
tions, and tree produced and sampled for each partition
of the Bayesian analyses are reported in Table 3, as well
as other parameters produced by MB analyses, including
tree lengths, consistency, retention, and rescaled consist-
ency indices. Data obtained from the multi-locus analy-
ses carried out on the 15 selected representative isolates
gave four Botryosphaeriaceae species, including B. doth-
idea, D. mutila, D. seriata and Neof. parvum. Among
other less frequently isolated taxa, Neocucurbitaria jug-
landicola, P. brasiliense, S. vitis-viniferae and T. angus-
tata were identified.

Morphology

Morphological observations were performed for
all the selected species. Colonies characteristic, includ-
ing edges shape, colony front and reverse color, myce-
lia appearance and conidia morphology of B. dothidea,
D. mutila, D. seriata and Neof. parvum were congruent
with previous descriptions of species belonging to Bot-
ryosphaeriaceae family (Phillips et al. 2013). Different
conidia were observed (cylindrical to fusiform, hyaline
to dark brown) and all isolate showed fast growth myce-
lia, becoming dark with age starting from the center,
spreading to the whole colony.

Colonies of Neoc. juglandicola on PDA and MEA
showed slow growth with uneven margins. Colony
upper surfaces were brown to dark brown with dense
zonate mycelium. Pycnidia appeared as dots, which were
numerous and centrally located. Reverse colony sides
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Figure 2. Phylogenetic tree for Botryosphaeriaceae, resulting from a Bayesian analysis of the combined ITS, tefl and tub2 sequence align-
ment. Bayesian posterior probabilities (PP) and Maximum likelihood bootstrap support values (ML-BS) are indicated at the nodes (PP/
ML-BS). Ex-type strains are indicated in bold font, and species are delimited with coloured blocks. Isolates collected in the present study are
indicated in red font. The tree was rooted to Lecanosticta acicola (LNPV252).

were dark brown. Conidia, produced on PDA measured line, and ellipsoid with rounded apices. Based on mor-
2.0-3.1 x 1.3-1.5 pm, mean (+ S.D) = 2.5 + 0.5 x 1.4 £  phological features, colonies had similar characteristic to
0.1 pm, and were unicellular with smooth surfaces, hya-  those reported by Jaklitsch et al. (2018).
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Pseudopyrenochaeta lycopersici

Cucurbitaria berberidis

Massarina eburnea

Allocucurbitaria botulispora

Parafenestella pseudoplatani

Neocucurbitaria hakeae

N. cava
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N. acanthocladae
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N. rhamni

N. rhamnicola

N. ribicola
CBS 142403 N. acerina
CBS 142791 N. irregularis

Figure 3. Phylogenetic tree of Neocucurbitaria sp., resulting from a Bayesian analysis of the combined ITS, tub2 and rpb2 sequence align-
ment. Bayesian posterior probabilities (PP) and Maximum likelihood bootstrap support values (ML-BS) are indicated at the nodes (PP/ML-
BS). Ex-type strains are indicated in bold font, and species are delimited with coloured blocks. The isolate collected in the present study is
indicated in red font. The tree was rooted to Pseudopyrenochaeta lycopersici (CBS 306.65).
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Alloconiothyrium aptrootii

Paraconiothyrium africanum

Paraconiothyrium hawaiiense

Paraconiothyrium cyclothyrioides

Paraconiothyrium fuckelii

Paraphaeosphaeria minitans

Paraphaeosphaeria neglecta

Paraphaeosphaeria sporulosa

Paraconiothyrium variabile

Paraconiothyrium hakeae

Paraconiothyrium brasiliense

Figure 4. Phylogenetic tree of Paraconiothyrium sp. resulting from a Bayesian analysis of the combined ITS, tefl and act sequence align-
ment. Bayesian posterior probabilities (PP) and Maximum likelihood bootstrap support values (ML-BS) are indicated at the nodes (PP/ML-
BS). Ex-type strains are indicated in bold font and species are delimited with coloured blocks. Strains collected in this study are indicated in

red. The tree was rooted to Alloconiothyrium aptrootii (CBS 980.95).
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Figure 5. Phylogenetic tree of Seimatosporium sp. and Truncatella sp. resulting from a Bayesian analysis of the combined ITS, tefI and tub2
sequence alignment. Bayesian posterior probabilities (PP) and Maximum likelihood bootstrap support values (ML-BS) are indicated at the
nodes (PP/ML-BS). Ex-type isolates are indicated in bold font and species are delimited with coloured blocks. Isolates collected in the pre-
sent study are indicated in red font. The tree was rooted to Discosia artocreas (CBS 124848).
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Table 3. Parsimony and Bayesian parameters for each phylogenetic analysis to identify different fungi.

Parsimony analysis

Bayesian analysis

Locus(i)

Species

Rescaled
consistence

Parsimony
Informative Tree length

Unique

Consistency Retention

Constant  Variable

Total

Generation Generated Sampled

Evolutionary

index

index

site . . .
ran trees trees sites sites sites

pattern

model

index

sites

0.946 0.744

0.787

SYM+G 242 1140000 2282 1712 1395 763 263 369

ITS

Botryosphaeraceae

242
121
145
148
334

HKY+I+G
GTR+G

tef1

tub2

ITS
tefl
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Colonies of P. brasiliense on MEA were white-gray,
had regular margins with rapid growth and darker aerial
mycelium in the centre. Reverse colony sides were light
brown-honey to light yellow amber. On OA the colo-
nies were light gray, each with a darker area. On CMA
the colonies were white, with mycelium development in
the centres showing concentric and radiating patterns.
Conidia were cylindrical to ellipsoid with rounded api-
ces, and measured 2.5-4.4 x 1.3-2.8 pm, mean (+ S.D) =
3.3+ 0.9 x 1.9 £ 0.7 pum. They were hyaline and unicellu-
lar, with smooth walls, and granular contents. Based on
morphological features, colonies had similar characteris-
tic to those reported by Kanetis et al. (2022).

Colonies of S. vitis-viniferae on PDA and MEA had
entire edges and were light brown to reddish with wooly
aerial mycelium with smooth whitish margins. On OA
the colonies were slightly to light brown with off-white
wooly margins. Conidia were fusiform, each with three
septa, and were constricted at each septum, measuring
15.8-22.7 x 4.2-6.1 pm, mean (+ S.D) = 18.9 £ 3.5 x 5.1
* 1.0 pm. The conidia were pale to dark brown, and each
basal cell had an appendage while the apical cell had a
rounded apex.

Colonies of T. angustata on PDA had entire edges,
had pale gray to white fuzzy mycelium from above and
grayish to white on the reverse sides, and were fast-
growing. Black pycnidia were observed at the centre of
each colony after 7 d. On MEA the colonies had entire
edges, and grew slowly, with cottony white to light
brown mycelia. Conidia were fusiform (17.5-19.7 x 6.1-
7.3 um, mean (+ S.D) = 18.6 £ 1.1 X 6.7 = 0.6 um), most-
ly with three cells and were transversally septate without
septal constrictions, and with truncate bases and several
appendices. Based on morphological features of colonies
and conidia, isolates studied have similar characteristic
to those reported by Raimondo et al. (2019).

Effects of temperature on fungal growth

None of the tested isolates grew at 5°C, growth
was slow between 10 to 15°C, and was optimum at 20
to 25°C. Four isolates, CVG1577 (D. seriata), CVG1582
(B. dothidea), CVG1588 (Neof. parvum) and CVG1741
(D. mutila), grew at 35°C. A generalized Analytics Beta
model was used to describe the relationship between
mycelial growth and selected temperatures (Figure 7)
and optimum growth temperature, and the correspond-
ing maximum growth rates were calculated. Coefficients
of determination (R?) for the Analytics Beta model
ranged between 0.88 and 0.99. Analysis of variance
(ANOVA) was carried out on data of mycelial growth
rates and optimum growth temperatures.
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Figure 6. Mean necrosis lengths (mm) in grapevine stems resulting from inoculations with different fungi. A Games-Howell post hoc test
was performed and means accompanied by different letters are significantly different (P < 0.05).

Statistically significant differences (P < 0.05)
obtained with Games-Howell post hoc tests for opti-
mum growth temperatures and Tukey’s test for myceli-
al growth rates are shown in Figure 8. Among the Bot-
ryosphaeriaceae species, optimum mean growth tem-
peratures ranged from 23.2°C for D. seriata and 23.9°C
for D. mutila, to 25.5°C for Neof. parvum and 27.3°C
for B. dothidea. Neocucurbitaria juglandicola did not
grow 35°C. At the respective optimum temperatures,
D. mutila grew the most rapidly at 10.9 mm d, fol-
lowed by D. seriata (10.5 mm d!), B. dothidea (10.0 mm
d!) and Neof. parvum (8.7 mm d!). Mean optimum
temperatures for mycelial growth were 24.8°C for S.
vitis-viniferae and 24.6°C for Neoc. juglandicola. Both
the species showed slow growth at, respectively, 0.83-
and 0.54-mm d!. Maximum growth for T. angustata
(3.8 mm d!) was obtained at 20.8°C and for P brasil-
iense (1.69 mm d!) was at 22.8°C. Based on maximum
growth rates, Botryosphaeriaceae isolates had the fast-
est growth rate (>8 mm d!), followed by T. angustata
and P. brasiliense (< 5 mm d'). Seimatosporium vitis-
viniferae and Neoc. juglandicola had the slowest growth
rates (< 1 mm d).

Pathogenicity tests

The fungal isolates used for pathogenicity tests
caused brown necroses and vascular discolourations in
the wood of inoculated grapevines, 180 d after inocula-
tion. No lesions were observed on inoculation control
plants. Neocucurbitaria juglandicola (CVG 1779) was
not re-isolated from necrotic areas in the wood, while
all the other respective inoculated fungi were success-
fully re-isolated from the grapevine plants, fulfilling
Koch’s postulates. Re-isolated identifications were con-
firmed through morphological and molecular analy-
ses (partial tub gene sequencing) while frequencies of
re-isolations of inoculated species ranged from 80%
and 90%. A Shapiro-Wilk (W) test was used for data of
necrotic lesion lengths on the inoculated plants to deter-
mine if they followed normal distributions with W =
0.9807 (P-value = 0.07556). Levene’s test showed that
the homogeneity of variance was not significant for the
dataset (P = 0.001825). Because data were normally dis-
tributed but not homoscedastic, a Welch’s ANOVA was
performed. This showed that statistically significant dif-
ferences occurred among the inoculated fungi (P= 3.167¢-
15). Results of the Games-Howell post hoc test to evalu-
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Figure 8. Mean maximum growth rates (A) at respective optimum growth temperature (B) for eight fungi, Vertical bars indicate standard
errors. Means in each histogram accompanied by different letters are significantly different (P = 0.05).
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ate differences among mean lesion lengths are shown in
Figure 6. The longest necrotic lesions were produced by
Neof. parvum (mean length = 178.8 mm). Aggressive-
ness of the other Botryosphaeriaceae was also confirmed:
these strains produced variable vessel discolouration,
with mean lesion lengths of 147.5 mm from D. seriata,
94.6 mm from B. dothidea, and 86.6 mm from D. mutila.
Paraconiothyrium brasiliense and S. vitis-viniferae each
showed similar aggressiveness compared to the Botry-
osphaeriaceae isolates, with, respectively, mean lesion
lengths of 134.8 mm and 145.0 mm. Neocucurbitaria jug-
landicola (mean lesion length = 84.4 mm) and T. angus-
tata (mean lesion length = 103.4 mm) were the least
aggressive among the non-reported GTD pathogens.

DISCUSSION

This study has characterized the different fungal
species associated with dieback symptoms observed
in representative vineyards in Piedmont, Italy. Some
of these fungi are already known to be associated with
diseases such as the Esca complex or Botryosphaeria
dieback. Among all isolates collected, most were Bot-
ryosphaeriaceae, with B. dothidea, D. seriata, D. mutila
and Neof. parvum identified through morphological
characterization and confirmed by multi-locus phylo-
genetic analyses. No Lasiodiplodia isolates were found,
which may be result because of these fungi is more
prevalent in tropical and sub-tropical climatic regions.
In Italy, Lasiodiplodia was only reported in Sicily (Bur-
ruano et al., 2008). Other pathogens commonly associ-
ated with the Esca complex, were sporadically recovered,
including Fomitiporia mediterranea and Phaeomoniella
chlamydospora. No isolates of Phaeoacremonium spp.
were detected, which is another pathogen commonly
associated with the Esca complex (Essakhi et al., 2008).
Eutypa lata, the Eutypa dieback pathogen was also
occasionally isolated. The pathogens commonly associ-
ated with the various symptoms observed on sampled
grapevines were successfully isolated. The wedge-shape
cankers, typically caused by Botryosphaeriaceae-like
fungi or Eutypa infection, were the most common wood
symptoms, but Esca-complex associated symptoms were
also observed.

Some species less frequently isolated from affected
grapevine wood were detected. These included Neoc. jug-
landicola, P. brasiliense, S. vitis-viniferae and T. angusta-
ta. For some of these isolates, association with grapevine
woody tissues had been reported previously (Elena et al.,
2018; Raimondo et al., 2019), and their respective patho-
genicity related to GTDs was confirmed.
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In different countries, including China (Yan et
al., 2013), Iran (Arzanlou et al., 2012), Portugal (Phil-
lips, 2002), Spain (Urbez-Torres et al., 2006), Turkey
(Akgul et al., 2014), France (Larignon et al., 2001), and
the United States of America (Urbez-Torres and Gubler,
2009; Trouillas et al., 2010). Botryosphaeria dothidea
has been described as one of the species associated with
typical V-shaped necrotic wood lesions and brown dis-
colouration of the xylem vessels. In Italy, B. dothidea
was reported on grapevine in the southern and central
regions, on which its pathogenicity was confirmed (Car-
lucci et al., 2009). The two B. dothidea strains used in
the present study produced dark streaks on inoculated
cuttings, similar to those previously reported.

Diplodia seriata is known to be widespread in
Europe, as it was described associated with symptomatic
grapevine in Spain (Martin and Cobos, 2007), Portu-
gal (Rego et al., 2009), France (Larignon et al., 2001),
Turkey (Akgul et al., 2014) and Croatia (Kaliterna and
Milicevi¢, 2014). Reported as either pathogenic or sap-
rophytic in different hosts, pathogenicity trials con-
ducted by Taylor et al. (2005) and Carlucci et al. (2015)
confirmed its role in causing necrotic wood lesions on
V. vinifera. Based on the present results, isolates of D.
seriata produced longer lesions than those caused by D.
mutila and B. dothidea, confirming the variability in vir-
ulence among different isolates (Elena et al., 2015).

While D. seriata has been reported to be associated
with grapevine in different Italian regions, including
Apulia (Pollastro et al., 2000) and Tuscany (Spagnolo et
al., 2011). However, D. mutila has already been reported
associated with Vitis vinifera in Hungary (Lehoczky,
1974; Kovacs et al., 2017), Spain, California, and Chile
(Morales et al., 2012; Diaz et al., 2013) and with grape-
vine canker and dieback in Italy (Carlucci et al. 2015). In
the present study, D. mutila produced wood discoloura-
tions after artificial inoculations, so the association with
symptomatic grapevine in Italy was confirmed.

Furthermore, pathogenicity trials carried out in
the present study showed Neof. parvum to be the most
virulent species producing the longest necrotic lesions.
This result is similar to those of Billones-Baaijens et al.
(2013) and Urbez-Torres and Gubler (2009), who, after
pathogenicity trials conducted in, respectively, New Zea-
land and California, reported Neof. parvum as one of
the most aggressive species associated with Botryospha-
eria dieback. In Italy, Carlucci et al. (2015) came to the
same conclusion after testing its pathogenicity on two
grapevine cultivars. Neofusicoccum parvum was usually
reported as an aggressive wood pathogen, able to infect
many hosts. This fungus was also described in associa-
tion with Botryosphaeria dieback symptoms on grape-
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vine in France (Larignon et al., 2015), Algeria (Berraf-
Tebbal et al., 2014), Spain (Luque et al., 2009), Portugal
(Phillips, 2002), and Turkey (Akgul et al., 2014). Like-
wise, it was isolated from symptomatic grapevines in the
Italian regions of Apulia and Tuscany (Carlucci et al.,
2009; Spagnolo et al., 2011).

The association of Seimatosporium with grapevine
is known, as well as its wide distribution and ability to
colonize many hosts (Raimondo et al., 2019). Among
all Seimatosporium species, recent studies have reported
the association of S. vitis with GTD symptoms, where it
was isolated from necrotic tissues and dead cordons in
California (Lawrence et al., 2018) and Hungary (Vaczy,
2017). In Italy, S. vitis was the first Seimatosporium spe-
cies to be described in association with dead stem of V.
vinifera (Senanayake et al., 2015) and Camele and Mang
(2019) described it for the first time causing GTDs. In
2022, Kanetis et al. reported another species, S. vitis-
viniferae, associated with lesion and wood discoloura-
tion on grapevine. In Italy, Raimondo et al. (2019) test-
ed its pathogenicity, confirming its association with
GTD symptoms. This agrees with results in the present
study, which showed S. vitis-viniferae as causing wood
necroses after artificial inoculation, with similar sever-
ity to necroses caused by D. seriata. Truncatella genera,
which is phylogenetically close to Seimatosporium, has
been revised by Liu et al. (2019) and includes only one
species, T. angustata, while other Truncatella species
have been reallocated to other genera. Truncatella angus-
tata has been reported in association with grapevine,
isolated as an endophyte in Spain (Gonzalez and Tello,
2011) and Switzerland (Casieri et al., 2009). As a patho-
gen, the involvement of T. angustata with GTDs has
been demonstrated, isolation from symptomatic grape-
vines in France (Pintos et al., 2018) and Iran (Arzanlou
et al., 2013), and in pathogenicity tests (Urbez-Torres et
al., 2009). This fungus is considered an opportunistic
pathogen on grapevine which is not primarily involved
in GTDs. In Italy, T. augustata was first reported by
Raimondo et al. (2019), who after isolation from symp-
tomatic grapevines, confirmed its pathogenicity and
involvement in GTDs. In accordance with the above
studies, the present study confirmed its weak patho-
genicity on grapevine, causing necrotic discolourations
(mean length = 103.4 mm) after artificial inoculations.

Paraconiothyrium brasiliense was also less frequently
isolated from woody tissues, and the role of Paraconio-
thyrium spp. on grapevine requires clarification. Patho-
genicity on fruit trees and other woody hosts has been
demonstrated for different species (Damm et al., 2008),
while, P. brasiliense has been isolated from symptomat-
ic and non-symptomatic grapevine tissues from Spain

(Elena et al., 2018) and the United States of America
(DeKrey et al., 2022). In Italy, P. brasiliense was also
recently reported associated with dieback of apple trees
(Martino et al., 2023). Pathogenicity trials conducted in
the present study showed that P. brasiliense produced
wood streaking with similar lesion length (mean = 134.8
mm) to lesions produced by S. vitis-viniferae (mean =
145.0 mm), confirming pathogenicity of P. brasiliense
on grapevine. This study has demonstrated the role of
P. brasiliense as a weak woody pathogen, and this is the
first report of this fungus as a grapevine pathogen in
Italy. Neocucurbitaria juglandicola has also been identi-
fied in this study. Neocucurbitaria quercina was reported
from grapevine in the United States of America (DeKrey
et al., 2022), while Neoc. juglandicola has been report-
ed in association with Juglans regia and Quercus rubra
(Jaklitsch et al., 2018). In the present study, after artifi-
cial inoculations, necrotic discolouration was visible, but
it was not possible to re-isolate the fungus from necrotic
areas. The presence of Neoc. juglandicola demonstrates
its association with grapevine in Italy, while the patho-
genicity tests did not prove its virulence or its associa-
tion with GTDs. This is the first report of Neoc. juglan-
dicola associated with grapevine, however.

Optimum growth temperatures of tested isolates
ranged between a maximum of 27°C (for Neof. parvum)
to a minimum of 21°C (for T. angustata). The respective
virulences, assessed as lesion lengths, had no relation-
ships with optimum growth temperatures in cultures.
Several abiotic factors, including plant drought stress or
water excess after climate events, or increases in average
temperatures, can play roles in disease development, and
may influence pathogen wood colonization and viru-
lence. It is well known that global warming and climate
change can increase plant stress and generate favourable
conditions for the development of many diseases, includ-
ing grapevine trunk disease (Guarnaccia et al., 2023).

Several fungi, especially Botryosphaeriaceae, are
known to be able to switch from endophytic to patho-
genic behaviors as a result of triggers connected with
environmental stresses, such as drought, extreme tem-
peratures and nutrient deficits (Slippers and Wing-
field, 2007). These fungi may therefore benefit from the
ongoing global warming scenario. The high percentage
of isolation of these pathogens from vineyards located
in Piedmont suggests a shift of these fungi may also be
occurring in northern regions, as has occurred in Medi-
terranean areas. This expansion may be related to cli-
matic changes. Factors such as prolonged drought, high
summer temperatures, and changes in agronomic prac-
tices could favor development, spread, and pathogenicity
of these fungi.
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Results from the present study have demonstrated
the presence of well-known GTD pathogens in Pied-
mont, one of the most important wine-production
regions in Italy. The diversity and virulence of these
pathogens in Piedmont was previously unexplored.
Association of P. brasiliense and N. juglandicola with
grapevine wood in Italy has been reported for the first
time.

This first survey in Piedmont aimed to determine
the presence and distribution of Botryosphaeria dieback
pathogens, and to investigate the occurrence of other
fungi associated with symptomatic grapevines. Further
research is required to better clarify the distribution of
grapevine pathogens in Northern Italy, especially spe-
cies of Botryosphaeriaceae, and to determine which are
the GTDs pathogens present in this region and monitor
their possible shifts following climate changes.
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