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TO THE EDITOR:
Myelodysplastic syndromes (MDS) include a heterogenous group of
clonal hematopoietic neoplasms characterized by dysplastic mor-
phologic changes in one or more hematopoietic lineages in the
bone marrow and/or peripheral blood, various degrees of
cytopenias and a risk of progression to acute myeloid leukemia
(AML) [1]. The World Health Organization (WHO) classification of
Hematolymphoid Tumors has been used widely for pathological
reporting, clinical decision-making, clinical trial eligibility, drug labels,
and disease registry reporting across the world. With advances in
diagnostic techniques such as molecular testing, and the increased
understanding of the close link between the genetic landscape of
MDS, disease biology, and phenotype, a revised classification
incorporating these disease aspects was published in 2022 as part
of the 5th edition of the WHO classification of diseases [1-4].
Concurrently, an International Consensus Classification (ICC) of
myeloid neoplasms and acute leukemia, which also incorporates
clinical, histopathologic and molecular data for myeloid and
lymphoid malignancies, including MDS, was published in 2022 [5].
In this commentary, we compare and contrast specific aspects
of the WHO 2022 and ICC classification, highlight their implica-
tions and concerns for routine clinical care and in clinical research
in MDS, and provide potential solutions to overcome these
challenges (Table 1). The International Consortium for MDS
(icMDS); a panel of international experts with a focus on preclinical
and clinical MDS research including basic scientists, medical
oncologist/hematologists, and pathologists convened in the 1st
international workshop on MDS, which was held in Miami, FL in
June 2022. This manuscript was drafted by a core group with
iterative review by all authors.

ABANDONING THE ARBITRARY 20% BLAST THRESHOLD—
MDS/AML AS A NOVEL DISEASE ENTITY IN ICC BUT NOT WHO
2022

While there is a strong consensus for many of the definitions
proposed by the ICC and WHO 2022, for example, the requirement
of =10% dysplasia in at least one lineage, there are several
important and consequential differences (Table 2) [3, 5]. One
notable and clinically relevant difference between both proposals
is the creation of a novel entity of “MDS/AML” in the ICC, which is

applied to patients with 10-19% blasts in the peripheral blood
and/or bone marrow in the absence of AML-defining recurrent
genetic abnormalities [5]. The creation of this novel category by
the ICC is supported by a growing body of evidence showing that
the prognosis of patients with oligoblastic (20-30% blasts) AML
and patients with the WHO category of MDS-increased blast 2
(which is eliminated from the ICC) is comparable [5-7]. The lack of
survival difference for patients with 10-19% vs. >20% blasts in the
original International Prognostic Scoring System (IPSS) and its
Revised version (IPSS-R) lends some support to this change as well
[8, 9]. However, the recently published molecular IPSS (IPSS-M)
demonstrates that blast count differences within the MDS/AML
overlap range retain a clinically relevant prognostic impact [10].
This suggests that a bone marrow blast count cut-off of 20% may
remain relevant and blast percentage could be considered as a
continuum rather than a specific cut-off, which is the goal of the
MDS/AML definition. We, however, agree with abandoning these
arbitrary thresholds in specific AML-defining molecular subgroups
in line with both classifications [3, 5].

This continuum of disease presentations is also reflected by
patients with higher-risk MDS and oligoblastic AML being
occasionally enrolled in the same clinical trials and the off-label
use of therapeutic regimens approved for AML such as azacitidine/
venetoclax or liposomal cytarabine/daunorubicin for the treatment
of MDS patients [11-13]. While the novel MDS/AML overlap
category could formalize the enrolment of patients to either MDS
or AML trials, it is critical to emphasize that treatment decisions
should involve a multidimensional assessment of the patient’s
clinical history, symptom burden, suitability for treatment and the
cytogenetic and molecular characteristics of the disease. As such,
additional stratification within large, phase 3 studies may be needed
to appropriately assess these nuanced differences. Based on
consideration of these factors, some patients may be more suited
for “MDS-type” and others for “AML-type” therapy. For example,
given that the median age of MDS patients is nearly a decade older
than that of AML patients at diagnosis, differences in bone marrow
reserve and a patient’s ability to tolerate various treatment
intensities need to be carefully considered as demonstrated by
the recent azacitidine + venetoclax trials [13-15].

The novel MDS/AML disease entity could also have important
implications from a health system and payer perspective as the
use of novel therapies approved in AML could be adopted for
patients with MDS/AML as well. Although the WHO 2022
continues to distinguish MDS and AML based on a 20% blast
threshold, the definition of MDS with increased blasts (MDS-IB2) is
essentially equivalent to the MDS/AML definition in ICC [3, 5.
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Table 1.

WHO 2016 [1]

MDS with single lineage dysplasia
(MDS-SLD)

MDS with multi-lineage dysplasia
(MDS-MLD)

MDS with ring sideroblasts

+ With single lineage dysplasia (MDS-
RS-SLD)

» With multi-lineage dysplasia
(MDS-RS-MLD)

MDS with isolated del(5q)

MDS unclassifiable
Not included

MDS excess blasts-1 (MDS-EB1; 5-9%
bone marrow blasts)

MDS excess blasts-2 (MDS-EB2; 10-19%
bone marrow or peripheral blood
blasts or Auer rods)

AML-defining genetics®

AML (=20% bone marrow and
peripheral blood blasts)

Not included

Not included
Not included
Not included

®This would have been classified as MDS-unclassifiable (MDS-U) in the WHO 2016 classification.

WHO 2022 [3]

Not included

MDS with low blasts (MDS-LB) < 5% BM and
<2% PB

MDS with low blasts (MDS-LB) < 5% BM and
<2% PB

MDS with low blasts and mutated SF3B7 or
MDS with ring sideroblasts (if > 15% RS and
SF3B1 wild-type)

MDS with low blasts and isolated 5q deletion
(MDS-5q)

Not included
Not included

MDS with increased blasts-1 (MDS-IB1; 5-9%
bone marrow and/or 2-4% peripheral blood
blasts)

MDS with increased blasts-2 (MDS-IB2;
10-19% bone marrow or 5-19% peripheral
blood blasts or Auer rods)

AML-defining genetics independent of bone
marrow and peripheral blood blast count
AML (220% bone marrow and peripheral
blood blasts)

MDS with biallelic TP53 inactivation

(Two or more TP53 mutations, or 1 mutation

with evidence of TP53 copy number loss
or cnLOH)

MDS, hypoplastic (MDS-h)
MDS with fibrosis (MDS-f)
Clonal hematopoiesis (CHIP, CCUS)®

Comparison of MDS subtype definitions in WHO 2016, WHO 2022, and ICC classification of MDS.

ICC [5]

MDS, not otherwise specified with single lineage
dysplasia (MDS, NOS-SLD)

MDS, not otherwise specified with multi-lineage
dysplasia (MDS, NOS-MLD)

MDS with mutated SF3B1

MDS with del(5q)

Not included

MDS, not otherwise specified without dysplasia (e.g.,
monosomy 7/del(7q))?

MDS excess blasts (5-9% bone marrow and/or 2-9%
peripheral blood blasts)

MDS/AML (10-19% bone marrow or peripheral
blood blasts)

AML-defining genetics with >10% bone marrow and
peripheral blood blasts

AML (>20% bone marrow and peripheral blood
blasts)

MDS with mutated TP53

(Multi-hit TP53 mutation, or TP53 mutation

(VAF > 10%) and loss of 17p) and MDS/AML with
mutated TP53 (Any somatic TP53 mutation

(VAF > 10%)

Not included
Not included
Pre-malignant clonal cytopenias and CCUS®

IT’AML-deﬁning genetic abnormalities: Acute promyelocytic leukemia (APL) with t(15;17)(q24.1;921.2)/PML::RARA; APL with other RARA rearrangements; AML
with t(8;21)(q22;922.1)/RUNX1::RUNX1T1; AML with inv(16)(p13.1922) or t(16;16)(p13.1;q22)/CBFB:MYH11; AML with t(9;11)(p21.3;q23.3)/MLLT3:KMT2A; AML with
other KMT2A rearrangements; AML with t(6;9)(p22.3;q34.1)/DEK::NUP214; AML with inv(3)(q21.3926.2) or t(3;3)(q21.3;q26.2)/GATA2; MECOM(EVI1); AML with
other MECOM rearrangements; AML with other rare recurring translocations; AML with mutated NPM1; AML with in-frame bZIP CEBPA mutations (ICC only);

AML with RBM15:MRTFA fusion (WHO only); AML with NUP98-rearrangement (WHO only).
“cytopenias are defined as follows: hemoglobin <13 g/dL in males and <12 g/dL in females for anemia, absolute neutrophil count <1.8 x 10%/L for leukopenia,

and platelets <150 x 10%/L for thrombocytopenia.

The WHO classification discussed the pros and cons of merging
MDS-IB2 with AML and adopting a 10% blast cut-off to create the
MDS/AML category, but ultimately it was decided to retain the
term MDS-IB2 arguing that lowering the blast cut-off to 10%
would replace one arbitrary cut-off with another, and may
introduce the risk of overtreatment in some patients and
potentially excess toxicity [3]. That said, the counter-argument is
that the definition MDS/AML does not mandate that the patient
must receive AML-type therapy, merely that they are able to, if
deemed appropriate by their physician. In fact, the WHO 2022
definition explicitly notes that MDS-IB2 can be considered as an
AML-equivalent and that treatment decisions as well as clinical
trial enrollment should be individualized based on patient and
disease characteristics [3].

While MDS-IB2 can be regarded as AML-equivalent or AML-in
evolution for therapeutic considerations and from a clinical trial
design perspective when appropriate, it is important to note that
most of the data supporting the MDS/AML category were derived
from patients treated with intensive chemotherapy or HMA
monotherapy alone [6]. These criteria remain to be prospectively
evaluated whether this assertion still holds true in an era of novel
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combination therapies. To this end, the recent trial of APR-246 in
combination with azacitidine showed an overall response rate
(ORR) of 62% and 33% in MDS and AML patients, respectively [16].
Additionally, the CR rates were numerically higher in the MDS
patients (47% vs 17%)[16]. Here, differences in ORR and CR rate
could be related to differences in the response criteria used for
AML vs MDS rather than in biology of response to novel agents
(see below for additional discussion regarding differences in
response criteria) [16]. Similar results have been reported for the
combination of the anti-CD47 antibody magrolimab + azacitidine
in higher-risk MDS and oligoblastic AML [12]. Therefore, if patients
are enrolled on the basis of MDS/AML to AML trials, investigators
should consider stratifying outcomes for patients with 10-19%
and =20% blasts, until sufficient information is available regarding
the long-term clinical outcome with new drugs.

One potential difference between MDS and AML that trans-
cends an arbitrary blast cut-off is the relative disease stability in
MDS compared to most cases of frank AML. In contrast to most
AML patients, MDS patients can present with relatively stable
blood counts for 2-4 months, which was also a component of the
International Working Group for Prognosis in MDS classification
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for the IPSS and IPSS-R [8, 9]. This issue is important in
demonstrating biologic differences between MDS and AML, which
is also reflected in the differing therapeutic responses in these
entities. Such differences point to the transitional nature of MDS
with its important features for discerning the evolutionary
potential of relatively indolent to aggressive stages of myeloid
diseases. Thus, blood count stability could be informative in
influencing management for patients across the spectrum of MDS-
IB2, MDS/AML and oligoblastic AML.

Solving the issue of harmonizing trial eligibility criteria,
however, begets a problem with response criteria, the selection
of which (i.e, MDS criteria or AML criteria) is likely to be
heterogeneous between investigators and study sponsors.
Whether AML or MDS response criteria (i.e., monitoring measur-
able residual disease [MRD] or hematologic improvement) should
be applied to these patients is unclear, but standardization is
necessary: Application of AML (ELN 2017 and ELN 2022) and MDS
response criteria (IWG 2006/2018 criteria) can lead to substantially
different results, as demonstrated by a prospective study of CPX-
351 in MDS patients treated with liposomal cytarabine/daunor-
ubicin [11, 17-19]. Furthermore, the revised ELN 2022 AML
response criteria introduce a novel response category of CR with
partial hematologic recovery (CRh) and how it applies in this
context warrants further studies [19]. Limited retrospective data
suggest that CRh is also associated with improved OS in MDS
patients treated with HMA [20].

An additional challenge is the emphasis on an assessment of
MRD by flow cytometry or molecular methods in AML response
criteria, which is substantially more challenging to standardize,

criteria (e.g., should MDS IWG or AML ELN

response criteria be applied)
challenge for areas with limited access to

reliance on genetic features present a
NGS testing.

TP53 LOH) and costly

- standardization of assays required
treatment decisions
treatment decisions

and costly
- standardization of assays required

- additional prospective validation needed

- thresholds remain arbitrary

- decrease cross-trial comparison if discrepant
- De-emphasis of morphology and increased
- NGS studies not universally available (e.g.,

- prospective validation needed if used for

- prospective validation needed if used for

- NGS studies not universally available

Potential disadvantages

alignment with prognostic models (e.g.,
IPSS-M) and more potential to impact
treatment decisions.

- emphasis that MDS is clonal and neoplastic
ICD codes (reimbursement, outcomes

features into diagnosis, with better
research)

and oligoblastic AML
interobserver variability

- highlights importance of genetic features
standardized definitions

clinical practice
- May better reflect natural history of HR-MDS

and trials
- could become foundation for inclusion in

criteria
- incorporates more individualized prognostic

- more flexibility for trial enrollment and

- less emphasis on dysplasia reduces

- could enable targeted research due to

- more reproducible than histopathologic

- standardization of definitions for clinical use

Potential benefits

multi-hit, variant allele fraction [VAF] >40%, and/or complex
karyotype). In accordance with this, two recent studies showed
similar outcomes of such patients across MDS-EB and AML without
further stratification of outcomes based on allelic status or VAF
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Table 2.
MDS
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[24, 25]. This serves as a call to action for additional studies
validating surrogates of TP53 mutation with cn-LOH, such as a
high TP53 mutation burden (inferred by VAF) in specific clinical
settings.

Additional differences between the ICC and WHO 2022 exist in
the definition of AML-defining or recurrent genetic abnormalities
either independent of blast count (WHO 2022) or subject to
a=10% blast threshold (ICC) [3, 5]. These recommendations
emphasize the importance of delivering potentially curative
treatment with intensive chemotherapy + /— allogeneic hemato-
poietic cell transplant in this setting. While many of these genetic
abnormalities are rare, patients with NPMT mutations represent a
key subgroup that will be better recognized as a clear AML entity
in both of the revised classifications [3, 5]. How these changes are
adopted in routine clinical practice remains to be seen, as patients
with  NPMT1 mutations without increased bone marrow or
peripheral blood blast counts could be eligible for either intensive
induction chemotherapy or azacitidine/venetoclax. Although
prospective data is lacking to prove that earlier treatment will
translate into more favorable outcomes, compared to treatment at
the time of clinically manifest AML with >20% blasts, both
classifications increase awareness of this patient population and
their enrolment into AML clinical trials.

However, to move towards a molecular definition of both MDS
and AML it is essential to ensure prompt access to standardized
molecular testing results, especially in resource-limited and
community-based treatment settings. If not readily available,
immunohistochemical studies for select molecular abnormalities
such as p53 and NPM1 have shown acceptable sensitivity and
specificity and can serve as an alternative in resource-limited
settings [28-30]. As treatment decisions are increasingly being
made based on these results with the approval of targeted
therapies, adequate and timely access to these results may allow
for an increasingly individualized care of MDS and AML patients.
With the majority of MDS patients receiving HMA being treated in
the community setting and variations in using next-generation
sequencing results for treatment decision-making [31, 32], efforts
to standardize practice patterns and increase access to molecular
testing globally will be increasingly important to fully adopt any
new genetically-based classification into real-world practice.

BLURRY BORDERS—CLONAL CYTOPENIAS, HYPOPLASTIC MDS
AND MDS WITH FIBROSIS

The implications of clonal hematopoiesis including an increased
risk for development of myeloid neoplasms as well as cardiovas-
cular events, chronic obstructive pulmonary disease, and all-cause
mortality have been increasingly appreciated over the last decade
[2, 33-36]. Both the ICC and the WHO 2022 define clonal
hematopoiesis (CH) as the presence of a somatic mutation
(VAF = 2%) or cytogenetic abnormalities associated with a myeloid
neoplasm in a patient not meeting the criteria for a myeloid
neoplasm [3, 5]. In the absence of morphologic dysplasia in the
bone marrow, patients with CH and cytopenias would now be
formally diagnosed with clonal cytopenia of undetermined
significance (CCUS) [3, 5]. Applying identical thresholds for the
definition of cytopenias and the degree of dysplasia (<10%) is an
important step forward that could facilitate the conduct of clinical
trials in patients with CCUS aiming to prevent or at least delay the
progression to a manifest myeloid neoplasm. The formal inclusion
of CCUS in the WHO 2022 could support the inclusion of a more
specific code in future iterations of the ICD and enable claims-
based research and higher quality epidemiologic data. Additional
studies on the natural history of CCUS considering variations
including type, number of alterations/mutations, clone size (VAF),
clonal evolution in the context of selection pressure, association
with inflammatory processes or solid tumors and treatment
thereof are also needed [37-41]. With the growing body of
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evidence demonstrating an association of CHIP and CCUS with
cardiovascular, cerebrovascular, and pulmonary diseases as well as
other aging-related diseases, the inclusion of CHIP and CCUS as
clearly defined disease entities in the WHO 2022 and ICC
definition will certainly have implications beyond the field of
myeloid malignancies [33, 36, 42]. For example, such a standar-
dized definition of CHIP and CCUS can enable prospective,
intervention studies to modify the risk of e.g., cardiovascular
events in patients with CHIP or patients with therapy-related or
pre-existing CHIP or CCUS undergoing chemotherapy [40, 43].

In contrast to the ICC definition, the WHO 2022 added
hypoplastic MDS (MDS-h) and MDS with fibrosis (MDS-f) as novel
disease entities[3]. These cases have long presented diagnostic
and management challenges, as the distinction from aplastic
anemia and primary myelofibrosis, respectively, can be sometimes
challenging (albeit, molecular testing offered some additional
diagnostic tools) [44-47]. It remains to be seen how useful
defining these new WHO MDS entities will be in clinical practice
although carefully defined hypoplastic MDS has been shown to
have a higher likelihood of response to immunosuppressive
therapy [48]. Similarly, how to best distinguish MDS-f from the
MDS/MPN overlap diseases remains to be seen [3, 49].

IMPLICATIONS FOR REGULATORY AND ADMINISTRATIVE
ASPECTS OF MDS

Formal and standardized classifications are the foundation for
epidemiologic assessments, outcomes research, health care
administration (e.g., reimbursement), and drug approval. While
the introduction of the MDS/AML category in ICC might foster
clinical trial enrolment and accelerate drug development in MDS
and AML, this reclassification does not solve the current
considerations for off-label use of AML therapies such as
azacitidine/venetoclax in MDS [5]. How are insurance providers
and national health systems around the world going to respond to
requests for the use of such therapies in MDS patients that would
now be re-classified as MDS/AML? It will also require additional
discussions with regulatory agencies such as the US Food and
Drug Administration, the European Medicines Agency, and other
regulatory agencies to harmonize how these new classification
schemes will be adopted into clinical trial designs, which may be
used to support future drug approvals.

As mentioned previously, ICD codes are the foundation of
cancer registries such as the SEER program in the United States
and the European Network of Cancer Registries. Population level
studies have yielded important information on the epidemiology
of MDS as well as practice patterns and outcomes in patients
treated outside of the controlled clinical trial setting [50-52]. As
only a minority of patients with MDS are being treated in a clinical
trial and various differences in terms of baseline patient
characteristics exist, such population-based studies are essential
[52, 53]. However, such population-based studies are limited by
the absence of granular information as exemplified by the fact
that the majority of patients with MDS included in the SEER-
Medicare database are coded as MDS, not otherwise specified
(MDS-NOS) [54]. Additionally, using the term “refractory anemia
with excess blasts” in disease registries and epidemiologic and
population-based outcome studies as a surrogate for higher-risk
MDS has limitations as well [51]. The elimination of the MDS-U
from both the ICC and WHO 2022 offers the opportunity for more
specific disease classification in disease registries but the various
differences in definitions could further hamper research efforts if
not reconciled.

FUTURE DIRECTIONS
While it could be viewed as a concerning development to have
two separate and divergent classifications for a comparatively rare

Leukemia (2022) 36:2939 - 2946



disorder such as MDS, we acknowledge that this does bring
thoughtful divergent opinions to the forefront and provides an
impetus to enhance international consistency in standards of
clinical care and in clinical trial design for MDS and ultimately
help move the field forward. One example is the use of two
different terms for MDS, with the WHO adopting the new term
“myelodysplastic neoplasms” to emphasize the neoplastic nature
of MDS while maintaining the abbreviation of MDS, while the ICC
maintains the term “myelodysplastic syndromes”. Although we
recognize that highlighting the neoplastic and clonal nature of
MDS is important, we anticipate that this difference in MDS
nomenclature may pose several challenges affecting routine
clinical care, clinical trial design, conduct, and interpretation, and
regulatory aspects of therapies, disease registries (e.g. Surveil-
lance, Epidemiology, and End Results [SEER]), and health system
administration such as medical billing codes (e.g., ICD codes) and
drug reimbursement [3]. Of even greater importance, the potential
for discordant opinions regarding diagnosis between one
physician and another poses the risk of increasing patient
confusion and anxiety.

While many definitions proposed by the ICC and WHO 2022 are
concordant [3, 5], several key differences as outlined above exist
and could impact the design and outcome of clinical trials, patient
care, and drug development and regulatory approval in MDS.
There is agreement among the community of MDS providers to
remain vigilant and ensure that differences in disease classification
are accounted for in clinical trial design, enrolment, and reporting
of outcomes. As the evidence supporting the different classifica-
tions continues to evolve and acknowledging that the primary
principles guiding both the WHO 2022 and the ICC classification
are molecular and clinicopathologic disease characteristics, it
remains unclear which definitions capture disease biology best.
However, these differences will hopefully spawn research efforts
to refine definitions with the next revision of the classification
system. Genetically defined disease entities and the suggested
MDS/AML category, particularly, will require additional validation.
Finally, it will be important to assess the implications of each
classification system on other key aspects of MDS management
such as risk stratification tools incorporating molecular data as
well as efforts aiming to redefine response criteria in MDS
[10, 23, 55]. We remain hopeful that these competing and
divergent classifications schemes will eventually be harmonized
to achieve one uniform consensus for MDS classification that
will be adopted in the near future. Until such a consensus
definition is achieved, this serves as a call-to-action to minimize
any unintended, negative impact on patient care and to continue
with collaborative research efforts to improve patient outcomes.
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