
Chapter 7 
Intelligent Space Communication 
Networks 

Mario Marchese, Simone Morosi, and Fabio Patrone 

7.1 Introduction 

Different fields are currently benefiting from the introduction of more intelligent 
solutions in space systems and devices. In most cases, this means the use of 
Artificial Intelligence (AI) based techniques to solve problems already addressed by 
previous solutions, but in a more efficient and effective way, and tackle issues not 
addressable yet due to the limitations of the available solutions. AI techniques are 
currently under study, development, and deployment in a huge plethora of scenarios 
and applications for improving a high number of services in terms of different 
performance indicators. 

In communication networks, including satellite communication networks, AI-
based solutions may differ in different aspects: 

• Scope: AI techniques can be applied for different purposes related to the offered 
applications, i.e. to improve the quality of the user’s exploited applications, or 
to the offered connectivity service, i.e., to improve the quality of the user’s 
experienced connectivity and/or the number of users that can join the network. 

• Algorithm: AI solutions can be based on different Machine Learning algorithms 
that can be categorised in different subsets depending on how they perform the 
training phase, such as supervised, unsupervised, and semi-supervised learning,
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or their basic principles, such as Deep Learning (DL) and Reinforcement 
Learning (RL). 

• Input information: AI techniques may use typically big datasets as input in the 
training phase before being able to perform well in the operational phase. These 
sets of information may refer to single or multiple variables analysed over time. If 
the analysed data are reported in terms of multiple and heterogeneous variables, 
correlating them is another task that AI solutions may perform differently. 

• Implementation location: AI algorithms can run on different nodes of the network 
depending on their scope, the needed input information, and the nodes’ available 
data processing and storing capabilities. For example, moving AI capabilities to 
the edge of the network, i.e., closer to the users, may bring some advantages, 
especially in terms of users’ perceived service, but it needs a higher control 
overhead and nodes with enough available resources. 

• Improved performance: different AI solutions can be the best solutions depending 
on the problem to solve and the performance we aim to improve. For example, 
some algorithms may offer better performance in terms of accuracy and reliabil-
ity but suffer from high computational delays. This is suitable for applications 
with high-reliability requirements but may be intolerable for delay-sensitive 
ones, which instead prefer much faster decision times and tolerate higher error 
rates.

7.2 AI Improvements in Satellite Networks 

Space communication networks are benefiting from the employment of AI tech-
niques in multiple ways [1]. Multiple issues can be addressed by AI-based solutions, 
leading to several improvements compared to the previously available techniques. 

7.2.1 Communication Resource Allocation 

Communication resources are typically limited and have to be properly managed in 
order to, on one hand, satisfy each user’s QoS requirements and, on the other hand, 
avoid waste. This is even more prominent in satellite communication networks due 
to the stronger resource limitations compared to terrestrial networks. AI techniques 
can help address several sub-aspects: 

• Network traffic prediction: being able to predict network traffic evolution over 
time is an advantage that can improve multiple processes, such as congestion 
control, routing, and handover. Concerning routing, for example, currently 
designed and deployed satellite communication networks show an increasing 
trend in terms of the number of satellites to offer connectivity to a high number 
of possible interested users spread in wider, potentially worldwide, areas. Most
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of them are composed of LEO satellites which are deployed on multiple orbital 
planes at different altitudes. Hierarchical solutions are also envisioned where 
LEO, MEO, and GEO satellites have different roles and cooperate to offer 
Internet connectivity and exchange data among them through RF or optical Inter-
Satellite Links (ISL). The routing process and the consequent resource allocation 
are of primary importance due to the high availability and variability of end-to-
end paths and the numerous parameters that can be taken into account related to 
both the user performance requirements and network (satellites, ISLs, satellite-
ground links, . . . ).  

Traffic forecasting techniques not based on AI solutions suffer from two major 
difficulties: the limited onboard computational resources and the Long-Range-
Dependence (LRD) of satellite network traffic that makes lower complexity 
Short-Range-Dependence (SRD) models to fail achieving accurate forecasting. 

For these reasons, AI solutions have been proposed to further optimize this 
task. Some examples are a high-accuracy traffic forecasting method with lower 
training time which applies Principal Component Analysis (PCA) and then a 
generalized regression NN [2], an Extreme Learning Machine (ELM)-based 
technique employed for traffic load forecasting of satellite nodes before routing 
[3], and a method based on Fly Optimization Algorithm—Extreme Learning 
Machine (FOA-ELM) which uses the Empirical Mode Decomposition (EMD) 
to decompose the traffic of the satellite with LRD into a series with SRD to 
decrease the predicting complexity and improve the prediction speed [4]. 

• Channel model: the features of satellite channels may differ depending on 
multiple parameters, such as the satellite altitude, and may change over time. 
Considering a channel model as close as possible to the real scenario, it is useful 
to have a very clear idea about the transmission and interference conditions 
and so usefully allocate the available communication resources. However, the 
creation of precise satellite channel models and the consequent estimation of the 
channel parameters is a challenge due to the multiple factors to take into account. 

Even if several techniques are already consolidated with satisfactory perfor-
mance, such as ray tracing, they all suffer from many limitations, such as the 
need for a huge amount of information that may not be available and the high 
required computational effort that are in contrast with the real-time optimization 
needs. 

AI-based solutions have proven to be effective in overcoming these limita-
tions. Some examples are solutions based on more traditional ML techniques, 
such as NN [5], and more sophisticated DL-based solutions [6] aim to forecast 
packet losses, an aspect related to the channel modelling for optimal resource 
allocation. 

• Signal Detection: As each signal must be separated before classification, mod-
ulation, demodulation, decoding, and other signal processing, localization and 
detection of carrier signals in the frequency domain are crucial. 

Most of the traditional techniques are based on single or multiple threshold 
values, rely on tractable mathematical models under known noise process and/or 
deterministic interference, and required human intervention, making the process
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Fig. 7.1 DL-based signal detection and demodulation strategy [7]

more complex and the needed effort more significant in an environment full of 
signals to identify and differentiate. 

AI approaches can be efficiently used under dynamic interference to effec-
tively detect the target signals. AI detectors can be trained for detecting various 
modulation and coding techniques and be based on different algorithms [7] (see 
Fig. 7.1). A DL-based solution is proposed in [8] to morse signals blind detection 
in wideband spectrum data, while a FCNmodel is proposed in [9] to detect carrier 
signal in the broadband power spectrum. 

• Interference management: interference is a phenomenon that strongly affects 
communications, in particular through satellite links. It is a common event whose 
effects are worsening with the increasing congestion of the satellite frequency 
bands due to a higher number of deployed communication satellites, active 
satellite network users, and expected applications. As a consequence, interfer-
ence management is essential to allow high-quality and reliable communications 
through detection, classification, and suppression of interference, as well as 
minimization of its occurrence. 

Interference detection is a well-studied subject that has been extensively 
addressed also for satellite communications. Most common solutions are based 
on theoretical models for signal characteristics and satellite channels used to 
estimate interference and techniques to properly counterbalance the transmitted 
signals optimizing interference cancellation [10]. 

To further minimize interference effects, examples of the proposed AI-based 
solutions include a framework combining Support Vector Machine (SVM) , 
unsupervised learning, and DRL-based approaches for satellite selection, antenna 
pointing, and tracking [11], an approach to forecast the signal spectrum to be 
received in absence of anomaly by using LSTM trained on historical anomaly-
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free spectra [12] and a DNN and LSTM-based method to detect and classify 
interference [13]. 

• Beam hopping: conventional satellite systems uniformly allocated resources 
across beams, which may lead to lower resources than needed in some beams 
and the resource under-utilization in other beams due to the typical not uniform 
geographical distribution of the users underneath. Beam hopping has emerged 
as a promising technique to achieve great flexibility in managing non-uniform, 
time and spatial variant traffic requests. It is based on a dynamic allocation 
of the available resources to only a subset of the overall beams depending on 
the current users’ traffic demands. The problem is to optimally decide when to 
allocate resources to a new beam and for how long. 

Even if this problem has been already addressed by proposing solutions not 
based on AI techniques, the technological evolution is leading to complications 
that are difficult to properly take into account with traditional methods. For 
example, as the number of beams increases (reaching hundreds or thousands of 
beams per satellite), it is becoming more difficult and time consuming to find the 
optimal choice rather than one of many local optima. 

Some of the proposed AI solutions involve the use of DRL to reduce 
the transmission delay and increase the system throughput [14] (see Fig. 7.2), 
fully-connected NNs to predict non-optimal beam hopping patterns [15], and 
low-complexity Multi Objective-DRL to ensure the fairness of each cell and, at 
the same time, improve the achievable throughput [16]. 

• Energy management: communication satellites typically require a high amount 
of energy to transmit data due to the physical nature of the space environment

Fig. 7.2 DRL-based beam hopping algorithm [14]
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and the high attenuation and interference factors than a typical terrestrial 
environment. Satellites suffer, at the same time, from severe energy limitations, 
considering the Sun as the only energy source, the generated power depending 
on the extension and orientation of the satellite’s solar panels, and the available 
energy depending on the satellite’s battery capacity. Besides, the increasing 
number of users and the decreasing satellite size is further stressing these 
limitations, imposing a careful management of the satellite energy consumption 
to avoid service disruptions. 

Resource scheduling schemes, even involving temporary complete or partial 
shutdown of the single identified satellite communications, have been designed 
to dynamically adjust the data overload of each satellite distributing the energy 
consumption throughout the satellite segment. 

Examples of AI solutions include using DNN compression before data 
transmission to improve latency and optimize the power allocation in satellite-to-
ground communications [17], RL to share the workload of overworked satellites 
with near satellites with lower load [18], and DRL to allocate communication 
slots with high energy efficiency [19].

7.2.2 Security 

More satellite communication networks will be widespread with a higher number 
of users, the more they will be appealing for malicious attacks, especially cyber-
attacks, aiming to disrupt the offered service or even damage the network apparatus. 
Recent solutions focus more attention on security, following the principle of 
security-by-design, but there is still room for improvements, especially considering 
the problem of improving security of the already deployed satellite systems. Also in 
this case, AI techniques can help address several sub-aspects: 

• Anti-jamming: jamming is one of the simplest but most effective attacks that 
can be carried on against communication networks to interfere and, in the worst 
case, completely disrupt the offered service, isolating the users located in the 
attacked area from the network or making a base station incapable of offering 
connectivity. Traditional solutions have been proposed to alleviate the jammer 
effects, such as the FHSS and DSSS strategies. However, these solutions are not 
able to dynamically adjust their action depending on the jammer characteristics. 

AI principles have already been considered to develop more sophisticated 
attack methods. For example, a smart jammer able to automatically adjust 
the jamming channel and power in order to maximize the jamming effect is 
proposed in [20]. This makes of primary importance the use of AI-based anti-
jamming solutions able to automatically protect the network nodes against 
jamming attacks, AI-based or not. Some examples include: a hierarchical 
learning approach proposed in [21] to improve the frequency selection process 
where both jamming and co-channel interference are present; a frequency-spatial
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2-D anti-jamming scheme to resist jamming and interference and a fast DQN 
based 2-D mobile communication algorithm that applies DQN, macro-actions 
and hotbooting techniques to achieve the optimal frequency selection described 
in [22]; a spatial anti-jamming scheme based on DRL to take proper data routing 
choices to make the network more robust against jamming attacks that can disrupt 
a subset of the network links presented in [23]. 

• Monitoring telemetry data: telemetry is the group of information describing 
the status of the system, especially, in our case, the satellites. They are control 
packets that are sent in downlink to help ground operators to monitor the satellite 
status, such as satellite position, satellite attitude, and solar panel orientation, 
and operations to be sure that they are operating within the defined limits. All 
these data are recorded and can be analysed to detect abnormal events and 
predict possible upcoming abnormal situations in order to minimize failure risks. 
However, how to correlate heterogeneous data coming from multiple sources 
of information to find correlations, recognize patterns, and so detect anomalies, 
may be a challenge. Simple solutions involve setting operational ranges for the 
monitored parameters and periodically checking their values to detect single 
or systematic out-of-range events. Even if simplicity is their best advantage, 
they suffer from severe limitations as the systems are becoming more complex 
with a higher number of parameters to monitor. This in turn leads to a higher 
volume of data to send through the satellite links with a consequent higher 
delay needed to process all the data and close the loop with proper reactive 
actions. AI-based solutions help build more sophisticated and reactive health 
monitoring systems by using different techniques, such as probabilistic clustering 
[24]. Other examples involve using linear regression to forecast short-lifetime 
satellite behaviours (3–5 years) and NNs for long-lifetime satellite behaviours 
(15–20 years) [25] and a self-learning classification algorithm able to achieve 
onboard telemetry data classification with low computational complexity and low 
time latency [26]. 

7.2.3 Orbital Edge Computing (OEC) 

Orbital Edge Computing (OEC) is a recent vision in next-generation satellites, seen 
as powerful nodes equipped with additional data computational and storage capa-
bilities that can be exploited by the offered services. Process data directly onboard 
satellites can help several applications reduce latency compared to centralized cloud 
processing platforms where raw data have to be forwarded through satellites from 
users to the platform and processed data on the backward path. Store a significant 
amount of data onboard satellites can help further reduce latency avoiding that data 
requests and responses traverse the satellite path to reach the data repositories and 
vice versa. 

Allocation of tasks to process and data batches to store among satellites is 
the main problem to address related to the OEC concept [27]. The dynamic and
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Fig. 7.3 RL-based computing offloading approach [28] 

time-varying nature of satellite networks, such as in terms of satellite-satellite and 
satellite-ground user links, require a careful task and data distribution strategy that 
should take into account different factors, such as the network topology changes 
over time and estimations of the user traffic flows and data processing requests. 

Some examples of AI-based solutions are a joint resource allocation and task 
scheduling approach that aims to allocate the computing resources to virtual 
machines and schedule the offloaded tasks for Unmanned Aerial Vechile (UAV) 
edge servers, whereas an RL-based computing offloading approach handles the 
multidimensional network resources and learns the dynamic network conditions 
[28] (see Fig. 7.3), and a joint user-satellite association and task offloading decision 
with optimal resource allocation methodology based on DRL to improve the long-
term latency and reduce the energy consumption [29]. A novel AI-based architecture 
for Earth Observation satellites which embeds AI DNN algorithms for consuming 
data at source rather than on the ground aim to minimize the downlink bandwidth 
usage is presented in [30]. 

7.2.4 Remote Sensing 

Multiple applications and functionalities benefit from the use of AI-based solutions. 
Remote Sensing is the operation of collecting and processing information about the 
observed areas, objects, or phenomena from their reflected and emitted radiation. Its 
applicability regards numerous scenarios and applications with multiple advantages, 
such as the possibility to remotely monitor dangerous or unreachable areas. 

Traditional approaches are in use since the beginning of this discipline with 
considerable results. However, the need to monitor more complex phenomena and 
the development of more precise sensors able to collect a much wider set of different
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information from the monitored subject to analyse and correlate to take useful 
conclusions recently emerged, with the consequent need to have more flexible and 
versatile solutions. 

The evolution of computer vision capabilities due to DL has led to the increased 
development of remote sensing solutions adopting state-of-the-art DL algorithms on 
satellite images. An example is a combined kNN and CNN-based solution to map 
coral reef environments by using remote sensing images [31]. Object detection and 
recognition are another set of applications whose capabilities have improved thanks 
to AI. CNN-based object detection algorithms have been developed to recognise 
different kinds of objects, such as clouds [32] and ships [33]. 

7.2.5 Space-Air-Ground Integrated Network 

Space-Air-Ground Integrated Network (SAGIN) is a recent evolution of satellite 
communication networks is not only leading to the deployment of Mega LEO 
satellite constellations made of thousands of satellites, but also to hierarchical 
networks composed of multiple layers of space (satellites), aerial (UAVs and/or 
HAPs), and ground communication nodes. This is also leading to a higher number 
of users interested in exploiting the connectivity services of this kind of networks 
which were previously limited to giving telephone, tv, or Internet coverage to 
unserved areas. Integration with terrestrial mobile communications, such as 5G, is 
another aspect deeply under investigation and standardization within the 3GPP. 

SAGINs aim to provide users with improved and flexible end-to-end services 
thanks to a hierarchical network where different kinds of nodes typically have 
different roles but they all collaborate and exchange users’ data to offer them the 
required QoS. 

AI-based solutions can help optimize the achievable performance improving 
multiple aspects. For example: a CNN-based solution is proposed in [34] to optimize 
the network overall performance by using traffic patterns and the remaining buffer 
size of GEO and MEO satellites as input information (see Fig. 7.4); a DRL-
based solution that jointly optimises the satellite selection and the UAV location 
to maximise the end-to-end data rate of the source-satellite-UAV-destination com-
munications is presented in [35]; a low-complexity technique for computing the 
capacity among satellites by using a time structure based augmenting path searching 
method and a long-term optimal capacity assignment RL-based model to maximize 
the long-term utility of the system is suggested in [36]. 

7.2.6 Satellite Operations 

Potential applications of AI are also being thoroughly investigated in satellite 
operations [37], in particular to support the operation of large satellite constellations,
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Fig. 7.4 Typical SAGIN network topology (a); flow chart of the proposed AI-based routing 
solutions (b) [34] 

including relative positioning, communication and end-of-life management. To this 
aim some of the experiments that have been planned on the OPS-SAT mission 
[38] included artificial intelligence: as a matter of facts, to develop autonomous
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spacecraft that use artificial intelligence to take care of themselves would be very 
useful for exploring new parts of the Solar System and reducing mission costs. 

In addition, it is becoming more common to find ML systems analysing the huge
amount of data that comes from each space mission, including spacecraft telemetry
and product data; another application of AI would be the analysis of all this data. It is
worth stressing that data coming from some Mars rovers is being transmitted using
AI: particularly, intelligent data transmission software on board rovers removes
human scheduling errors which can otherwise cause valuable data to be lost. The
same technology could also be used in long-termmissions that will explore the Solar
System, meaning that they will require minimal oversight from human controllers
on Earth.

Nonetheless AI also currently lacks the reliability and adaptability required in 
new software; these qualities will need to be improved before it takes over the space 
industry. 
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