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Abstract6

This paper explores the utilization of innovative technologies, such as drones and artificial intel-

ligence algorithms, for monitoring pests in orchards, with a specific focus on detecting the Ha-

lyomorpha halys (HH), commonly known as the Brown marmorated stink bug. The integration

of autonomous drones and suitable vision chips into integrated pest management shows promising

potential for effectively combating HH infestations. However, challenges arise from relying solely on

deep learning models trained using high-quality images from public datasets. In this work, we sig-

nificantly improve the quality of preliminary results obtained on artificial datasets by constructing

an enhanced dataset of images mainly captured in the field. We then conduct an in-depth analysis

of the captured images, considering factors such as blurriness and brightness, to assess the use of our

hardware and to improve the performance of the machine learning (ML) algorithms. Subsequently,

we proceed to train and evaluate various ML models based on the YOLO framework, employing

different metrics to compare their performance. Through the optimization of ML models and the

correction of image imperfections, this paper contributes to advancing automated decision-making

processes in pest insect monitoring and management, specifically in HH monitoring.
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1. Introduction9

Agriculture is the basis of human sustenance. Yet work in the fields is strenuous that fewer and10

fewer workers will be found willing to toil under the sun. Furthermore, due to the expanding global11

population, there is an escalating demand for food. So, it is crucial to enhance both production ca-12

pacity and quality food standards. Due to these reasons, numerous institutions are actively striving13

by leveraging new technologies. Until recently, in agriculture there has been an underutilization of14

state-of-the-art technologies and automation that other sectors of the economy have already ben-15

efited from [1]. In light of this, this paper focuses on the transition towards informed automated16

decision-making processes in agriculture, leveraging innovative technologies such as drones, vision17

chips, and machine learning algorithms. Our aim is to explore their application in the monitoring18

of orchards to effectively detect the presence of harmful insects [2, 3, 4].19

Orchard monitoring is a complex agricultural activity that necessitates a multidisciplinary20

approach encompassing agronomy, botany, biology, as well as computer science and engineering21

expertise [5]. Monitoring pests in orchards is a vital aspect of integrated pest management (IPM)22

but is recognized as a labor-intensive and time-consuming task. In this paper, we address the IPM23

of the Halyomorpha halys (HH), commonly known as the Brown marmorated stink bug (BMSB),24

as our case study. HH is an invasive stink bug originally native to East Asian regions such as25

China and Japan [6]. It poses a significant threat as a harmful and polyphagous pest, known to26

feed on a wide range of host plants. In particular, fruits such as pears, peaches, and nuts are27

among its preferred targets, leading to crop damage and loss. The spread of HH across the globe28

can be attributed to human activities, such as global trade, as well as climate change. Its presence29

was first documented in the United States of America in the 1990s and subsequently in Europe30

in the 2010s. In Italy, the detrimental impact of HH was first observed in 2012 in the Emilia31

Romagna region, which is home to some of Europe’s most valuable orchards [7]. Only in Italy,32

HH caused several million euros in damages to the main fruit productions in 2019. Currently,33

HH monitoring is performed with traps, that are unreliable and increase the overall damage, or34

using time-consuming active monitoring techniques. Attempts to counteract the HH outbreaks led35

to a massive increase in broad-spectrum pesticide use, disrupting all previous IPMs, increasing36

producer costs, and causing negative consequences to the environment and consumers.37

In February 2021, the Horizon 2020 HALY.ID project [8] was granted with the objective of38
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automating the monitoring activities by growers and plant health operators by July 2024. The39

main idea is to minimize or eliminate the reliance on traditional monitoring devices and activities,40

such as traps, baits, visual sampling, sweep netting, and frappage (i.e., tree beating). Instead,41

an automated monitoring process for scouting the HH is proposed. Ongoing preliminary results42

concerning the whole automated system for scouting HH are presented by Almstedt et al. [9].43

The current system incorporates advanced technological innovations, including a drone equipped44

with an RGB vision chip, a smart camera integrated into a specially designed sticky trap, and45

micro-climate stations for collecting temperature, pressure, and other pertinent data. Addition-46

ally, another ongoing research involves the analysis of ripe fruits using near-infrared hyperspectral47

imaging (NIR-HSI) to detect punctures that are not visible to the naked eye.48

In this paper, we primarily concentrate on one of the initial objectives of the HALY.ID project,49

which involves the identification of the HH from in-field images, possibly captured by drones50

or other devices, utilizing machine learning (ML) models. We decided to rely on the YOLO51

framework as the ML model since it was the best model in preparatory papers [10, 9], and which is52

acknowledged for meeting real-time performance requirements which indeed are the ultimate goal53

of the HALY.ID project. The initial attempts to detect HH have been conducted by using datasets54

not built in the field. Consequently, when these models have been tested on in-field images, their55

performance significantly deteriorated. Especially, the results in [9] suggest that ML algorithms56

trained on datasets formed of optimal and high-quality images sourced from public repositories and57

artificially augmented, do not produce satisfactory results if then applied to a real scenario like ours.58

Accordingly, it became imperative for us to construct a suitable dataset comprising predominantly59

field-captured images obtained from drones or other devices to train, verify, and test the ML60

model. Since the authors in [9] suggested that factors such as blurriness and brightness of the61

images captured by the drone contribute to unsatisfactory results, in this study, we thoroughly62

investigate these factors on the image quality. We conclude that by appropriately configuring63

the vision chip and optimizing the drone’s positioning, issues of blurriness and brightness can64

be effectively mitigated and are not limiting factors for the use of the drone. Additionally, we65

observed that a certain level of blurriness enhances the robustness of the model. However, it is66

important to avoid the misconception that increasing the blur level improves object recognition.67

We have demonstrated that the localization and detection of the bug deteriorate when all images68

3



are excessively blurred. The key lesson to take away is the significance of training the computer69

vision algorithm on the specific context in which it will be deployed for testing, or in a real-world70

application.71

Contributions and Paper Organization72

Our results are summarized as follows:73

• We create the first dataset1 of HH by using in-field images mainly taken by a drone, and74

improve its quality through a preliminary screening process aimed at eliminating unsuitable75

images prior to the ML training;76

• We train and evaluate multiple ML models using the YOLO framework on our built dataset77

obtaining very good results by evaluating different metrics;78

• We also prove the influence of blurriness and brightness on image quality in the HH detection79

experiments.80

The paper is structured as follows: We present the relevant related work in Section 2. The81

built dataset used for the project is presented in Section 3, while Section 4 covers the conducted82

ML experiments. Finally, conclusions are drawn in Section 5.83

2. Related Works84

The utilization of drones in the field of agriculture can be advantageous in various ways. It can85

be used in conjunction with satellites to create vegetation indicators [11, 12, 13], or for monitoring86

wildlife and cows [14, 15], just to mention a few. The use of drones can result in the capture of a87

vast amount of imagery, and when combined with ML algorithms, it can make the system faster88

and more accurate than human observers in monitoring and estimating animal populations.89

Nowadays, there has been a growing emphasis on employing ML techniques for monitoring90

insect species. Traditional methods such as support vector machine, adaptive boosting, artificial91

neural network [16, 17, 18, 19], and deep learning techniques based on convolutional neural networks92

(CNNs) [20, 21, 22] have demonstrated optimal results in insect monitoring. For instance, a93

1Currently, the dataset is set as private as required by the HALY.ID consortium agreement. At the end of the
project, it will be released to the scientific community for research purposes.
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novel approach for early detection and continuous monitoring of adult-stage whitefly and thrip in94

greenhouses has been proposed in [17]. The approach is based on an image-processing algorithm95

and artificial neural networks. The developed whitefly and thrip identification algorithm achieved96

very satisfactory results. This proposed approach has the potential to improve IPM strategies and97

reduce the use of harmful chemicals in greenhouse agriculture.98

To the best of our knowledge, apart from the HALY.ID project, only a limited number of99

studies have showcased the direct detection of insects through aerial surveys conducted with drones100

in open fields. This is despite the fact that drones can be equipped with specialized cameras capable101

of capturing high-resolution images of small objects and GPS technology for efficient positioning.102

One of these works aims to determine the effectiveness of drones in detecting the immobile stage of103

the Monema flavescens [23]. The results indicate that an aerial survey performed with a drone at a104

height of 3 m above the tree canopy is more efficient and successful in identifying butterfly cocoons105

than a ground survey. Additionally, the captured images demonstrate the ability to differentiate106

between open and closed cocoons. So, the authors highlight the potential of drones for detecting107

insects directly in agriculture.108

In the initial phase of the HALY.ID project, there have been several attempts to scouting109

HH using different imaging technologies. Ferrari et al. [24] evaluate the use of NIR-HSI as a110

potential technology for detecting HH specimens on various vegetal backgrounds that can mimic111

field conditions. From a set of hyperspectral images comprising HH, two chemometric approaches112

have been used to develop classification models. The first one focuses on spectral information, and113

selects relevant spectral regions for discrimination, while the second one uses CNN to model spatial114

and spectral features in the hyperspectral images. The authors then merge the two strategies by115

considering only the spectral regions selected by the first approach for CNN modeling. The results116

demonstrate the potential of NIR-HSI combined with chemometric analysis and CNNs to detect117

HH accurately, even when mimicking different background conditions. Although this technology118

holds the potential to become an effective tool for IPM in the agricultural sector, offering timely119

and accurate information to prevent substantial economic losses, it is currently not ready for field120

deployment due to its prohibitive cost.121

Additionally, in the context of HALY.ID project, several preliminary studies using RGB cam-122

eras have also been conducted to detect HH. Trufelea et al. [25] propose the use of deep learning123
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models to classify pests belonging to the Pentatomidae family. Specifically, they propose to train124

a CNN to recognize four different kinds of Pentatomidae insects, including HH adult, HH nympha,125

Pyrrhocoris apterus, and Nezara viridula. A total of 760 images have been used for training (600)126

and validation (160). Among them, 520 images are from the Maryland Biodiversity database [26],127

and 240 from a custom dataset collected by professional cameras. A modified Single Shot Detector128

(SSD) model having the Intersection over Union (IoU) value of 70.2 as performance indicator has129

been proposed by the same authors. Subsequently, Ichim et al. [27] investigate the identification130

of HH insect with four CNNs, namely, GoogLeNet, ResNet101, DenseNet201, and VGG19. The131

dataset is built on two public datasets with many different insects, and a custom dataset collected132

with a DJI Mini 2 drone containing images with adults and nymphae of HH. All the images from133

the dataset are resized to 227 × 227 pixels. Transfer learning and data augmentation are utilized134

to reduce computational effort during the learning phase, and statistical indicators (such as pre-135

cision and recall) derived from confusion matrices are employed to evaluate the performance of136

each CNN. The performances are good when the networks are tested on data similar to the ones137

in the public dataset, i.e., images of the insects taken in the laboratory with professional cameras138

by expert photographers. The learning time is also considered in this paper.139

Very recently, the “You Only Look Once” (YOLO) [28] model has been used to detect harmful140

insects in ecological orchards by Sava et al. [10]. The authors evaluate YOLO with region-based141

CNNs (R-CNN), and several YOLO models have been trained, validated, and tested on the afore-142

mentioned Maryland dataset [26], which contains professional macro images of HH in different143

poses, from different short distances, and at different stages of evolution. As a conclusion, the144

best results have been obtained using the YOLO-m model which obtains for all metrics (precision,145

recall, and mean average precision) results above 95%. However, the authors did not evaluate their146

models on datasets built from in-field images.147

2.1. Motivations for a New Experiment148

After the preliminary results in [25, 10], the primary objective became the training of ML149

models on new in-field images. To accomplish this, in our previous work in [9] we adopted a150

lightweight deep neural network (DNN) called CenterNet [29]. CenterNet is an SSD model capable151

of processing each image in a single step and is compatible with various backbones, including152

RegNet [30], which we utilized. Initially, CenterNet was trained solely on images captured by153
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the HALY.ID project’s drone, specifically the DJI Matrice 300, in a first-person view mode,154

while flying within the aisles between the rows of the pear trees. Unfortunately, the performance155

results were unsatisfactory, primarily due to the limited size of the in-field dataset. To address156

this, an additional semi-artificial dataset was generated, distinct from the Maryland dataset [26]157

previously utilized in [10, 27]. This semi-artificial dataset includes the silhouette and appearance158

of the HH extracted randomly from images with varying orientations sourced from public datasets.159

Additionally, selected random backgrounds were combined with the HH images, and various image160

transformations (such as scale, rotation, translation, and photometric distortions) were applied,161

similar to those described in [24].162

Table 1: Experimental results (precision among all the classes) on different testing datasets, as reported in [9].

Dataset P

hh unimore rgb lab-images july2021 scaled 0.97
2021-09-01-by-smartphone scaled 0.79
farmer scaled 0.82
drone-camera 2021-08-30 scaled 0.28
drone-camera 2021-08-31 scaled 0.36
drone-camera 2021-09-01 scaled 0.30
drone-camera 2021-09-03 scaled 0.32

At the end of the process, the number of artificial images so created was 8, 880 generated163

starting from 221 backgrounds, and 105 silhouettes of the HH. By folklore, this size is considered164

suitable for detection of medium objects. After training CenterNet on the semi-artificial dataset,165

it was subsequently tested on various other datasets whose results are reported in Table 1 [9].166

The results indicate that the precision (P ) is high for images captured with smartphones and even167

better for images obtained from professional cameras in the laboratory. However, the performance168

is considerably lower when using images taken with the drone. Although one could be tempted169

to brutally ascribe the poor results to the low resolution of the drone images, we know that a170

careful analysis of the optics’ properties of the DJI Zenmuse H20 camera (the one attached to the171

DJI Matrice 300 in the HALY.ID project) has been conducted before taking the photos, and the172

parameters (such as focal length, distance from the subject) were selected so as the resolution is173

suitable to detect the HH features [9]. Namely, when observed with the naked eye, the images174

taken by the drone generally appear good, and even excellent in the portion of the photo where the175

bugs reside. Hence, we suspect that the decline in performance is primarily due to the disparity176

between the training and testing datasets. In fact, the training dataset comprises silhouettes on177
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artificial backgrounds (see Figure 1a), whereas the testing dataset consists of actual bugs moving178

on leaves, branches, and pears (see Figure 1b).179

(a) Silhouette on a background. (b) Drone’s taken image.

Figure 1: The training dataset.

In conclusion, considering the disparity in results between [9] and [25, 10], we attribute the180

variations in performance to the neural network employed and the fact that [25, 10] utilize the181

same type of images for both training and testing. Therefore, in this paper, we propose the182

utilization of in-field images taken by the DJI Matrice 300 drone or other digital devices not only183

for testing, but also for training.184

To ensure confidence in the image quality and evaluate it, we assess the blurriness and bright-185

ness using metrics proposed in the literature. Specifically, we employ the no-reference blurring186

metric proposed in [31] and the brightness metric proposed by the International Commission on187

Illumination Laboratory (CIELAB) [32]. Furthermore, we decide to employ YOLO as the object188

detector due to its excellent performance as demonstrated in [10] for HH detection in an artificial189

dataset. It is worth noting that YOLO is renowned for its suitability in real-time detection, which190

aligns with the future extension requirements of our project [33].191

In the following section, we will present and explain the process we undertook to create the192

dataset utilized for the recognition of HH in the field.193

3. Created Dataset194

In this section, we present the dataset that we created for our study. We begin by explaining195

the composition of the dataset in Section 3.1. The dataset primarily consists of in-field and real-196
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world images captured in the orchard using various devices, including the DJI Matrice 300 drone,197

smartphones, and professional cameras. Notice that the collected images not only contain speci-198

mens of HH, but also specimens of the other native stink bug called Nezara viridula (briefly, NV).199

Furthermore, in Section 3.2 we investigate the blurriness and brightness of the selected images to200

objectively evaluate their quality. Since the dataset was curated by a human operator from the201

overall acquired images, this assessment provides valuable insights. Additionally, in Section 3.3 we202

examine the size of the bugs in the images, as this factor plays a crucial role in the labeling pro-203

cedure. A suitable labeling is essential for the subsequent development of computer vision models,204

which we discuss in Section 4.205

3.1. Dataset Composition206

One of the primary goals of the HALY.ID project was to develop a comprehensive and col-207

laborative dataset of in-field images containing stink bugs. This dataset would serve as a valuable208

resource for computer vision algorithms to effectively identify the presence of the bugs in orchards.209

During the summer campaign of the project in 20212, we acquired a total of 1, 234 images.210

Figure 2 shows a few examples of the collected images. Specifically, we captured a total of 855211

images using a drone-based automated protocol (see Figure 2a) in a pear orchard located in Carpi,212

Italy [34, 35]. Additionally, we took 299 images in the same orchards at different times of the day213

using various digital devices (see Figure 2b) such as smartphones and digital/professional cameras.214

These images were taken under different lighting conditions, including morning and afternoon.215

Furthermore, we obtained 80 images of live bugs in a laboratory setting (see Figure 2c). Overall,216

these 1, 234 images were collected for the HALY.ID project. Finally, to ensure completeness, we217

downloaded additional 34 high-quality images from the Internet (see Figure 2d), sourcing them218

from other available datasets, preexisting the HALY.ID project. As a result, our initial dataset219

consisted of a total of 1, 268 images. Among the 855 pictures taken by the drone, we discovered220

the presence of bugs in only 653 of them. Furthermore, out of the 299 images taken in the field221

by other devices, we identified bugs in 274 of them. So, the actual number of images that contain222

at least one specimen of bugs is (653 + 274) (i.e., 89%) from the orchard and 80 + 34 = 114 (i.e.,223

11%) from the laboratory or external datasets.224

2This study is limited to the project’s campaign 2021.
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(a) In-field image with drone. (b) In-field image with smartphone.

(c) Laboratory image. (d) Maryland dataset image.

Figure 2: An example of image for each category.
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We anticipate that several images were excluded from the dataset due to low quality issues.225

So, the final dataset has 677 images, out of which 83% where captured in the orchard, 12% in the226

laboratory, and 5% from other dataset in Internet.227

The drone’s images have been captured by leveraging the DJI Zenmuse H20 camera mounted228

as a payload on the DJI Matrice 300 drone, hovering at the height of 1.5-2 m above the ground. We229

took the images of the stink bugs from distances ranging between 3-4 m, resulting in diagonal angles230

of view ranging from 24-18◦. We chose these parameters to ensure a resolution of 0.2 mm which231

guarantees to identify the features that characterize the HH, in particular the characteristic white-232

and-black antennas and the connexivum (see Figure 3). To meet the aforementioned conditions,233

considering the diagonal length of the DJI Zenmuse H20 chip as 9.60 mm and 6, 483 pixels [9], the234

images captured by the DJI Matrice 300 must have a diagonal field of view no greater than 1.3 m.235

As a result, the above distances and focal lengths have been determined.236

Rectangular

Connexivum

Striped
antennas

≈14 m
m

5 Clearer
dots

Figure 3: HH and its distinctive features.

As aforementioned, the created dataset contains two classes of stink bugs: the invasive species,237

Halyomorpha halys (HH), and the most common stink bug in Italian orchards, Nezara viridula238

(NV), as shown in Figure 4. The HH and NV are quite different. From our dataset consisting of239

677 images, there are 1, 803 actual distinct instances of bugs, divided in 1, 502 HH and 301 NV240

specimens. So, the scope of our algorithm is not only to detect a “stink bug”, but also to classify241

it as either a HH or a NV. Although the classification is not a trivial task, the localization and242

detection of the bugs is definitely an even more challenging task.243

11



Figure 4: Three Pentatomidae stink bugs: Halyomorpha halys (HH, left), Nezara viridula (NV, center), and Rhaphi-
gaster nebulosa (RN, right, never observed in the monitored orchard).

3.2. Evaluation of Blurriness and Brightness244

As previously mentioned, the constructed dataset is heterogeneous as it has been assembled245

from diverse sources. Consequently, there is a significant amount of variability in the image quality,246

including variations in resolutions, aspect ratios, and other factors that could represent a bias for247

the computer vision algorithms, such as non-optimal blurriness and brightness [9].248

Regarding the blurriness, some of the images taken during the drone’s flight are out of focus249

due to the camera’s auto-focusing mechanism. It is worthy to point out that the DJI Zenmuse250

H20 camera attached to our drone, although it is equipped with the zoom ability, is a compact251

camera born to work with a wide focal length to capture large landscapes. When capturing images252

at large distances, unexpected changes in distance have relatively less impact on the auto-focus253

performance. However, when shooting at small distances, there is a possibility that the camera may254

fail to accurately focus at the intended distance, leading to out-of-focus images. For example, the255

irregular shape of the trees, including unpruned branches, can mislead the auto-focus mechanism,256

resulting in a sharp image focus on an insignificant branch, while the desired subject results blurred.257

Regarding the brightness, we have observed the presence of certain pictures with excessive258

exposure in certain areas or even throughout the entire image. This issue is likely attributable259

to the fact that the majority of the images have been captured during the peak hours of the day260

(late morning and early afternoon) in summer, when the sun is at its brightest. Additionally, it is261

not uncommon for the shadows created by the trees to cause an imbalanced distribution of light,262

resulting in excessive contrast along the edges of the image.263

With the purpose of avoiding biased training, a preliminary operator screening procedure has264
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been applied. Specifically, an expert human operator has inspected one image at a time estimating265

different quality indicators before the labeling phase, e.g., the focus around the target, the bright-266

ness balancing, the amount of pixels that characterize the stink bug, and so on. As previously said,267

677 images have been selected. However, because the selection process used during the screening268

phase is operator-dependent, we have chosen to validate our selection phase by utilizing established269

no-reference estimators from the literature for both blurriness [31] and perceived brightness [32].270

Figure 5 illustrates an analysis of the images in the dataset in terms of blurriness and perceived271

brightness according to the acquisition source. In detail, on the x-axis we list the blurriness scores,272

while the brightness scores are represented on the y-axis. The blurriness-metric is a score in the273

range [0, 1]: 0 represents blurred image, whereas 1 very sharp image. In other words, a sharpen274

image is represented by a high blurriness-metric score, whereas a low blurriness-metric score implies275

image blurred. Similarly, the brightness-metric is a score in the range [0, 1]: 0 represents perception276

of light absents, whereas 1 means dazzling light. Hence, the images with the best metrics (blurriness277

tends to 1, brightness tends to 0.5) will stay in the central right column of the plots.278
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smartphone set
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blurriness

Internet set

Figure 5: Dataset evaluation on blurriness, and perceived brightness for each acquisition source.

In principle, the laboratory image set (Figure 2c) is the most uniform according the two metrics.279

This is due to the fact that the images were taken in a light controlled environment, and maintaining280

a fixed view of the target.281

The drone image set (Figure 2a) reports higher values of brightness than the laboratory image282

set because the images have been taken outside. Nonetheless, we notice that overall the dots283

(images) are clustered together in a limited area with a few outliers due to the blurriness score.284

The clustered blurriness behavior can be attributed to the fact that the images have been shot285
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under similar distance and focal length conditions. On the other hand, the presence of a few present286

outliers can be attributed to the fact that when the drone takes a photo, as explained before, the287

auto-focus can be misled. However, as previously discussed, the target specimens are still clearly288

visible in the selected images.289

A separate analysis is required for both the smartphone and Internet sets. Regarding to the290

smartphone set (Figure 2b), it exhibits the largest variance among blurriness scores. This is291

because the set comprises images taken by different operators, mainly farmers that helped in292

collecting images, using different devices, each equipped with diverse image sensors. Moreover,293

differently from the images collected with the DJI Matrice 300, no specific programmatic policy294

governed the image capture process. As for the Internet set (Figure 2d), it exclusively contains295

macro photos. In this case, the stink bug specimen occupies a significant portion of the image and296

is the only element in focus. The low blurriness scores in this set occur when the stink bug occupies297

a limited area within the image. This is the only set that has quite high values for brightness,298

which seem to depend on the prevalence of white inside the picture. For example, the image with299

the highest brightness 0.91 score is a macro photo where a HH lays on a white wall. No image has300

brightness-score below 0.15 (i.e., an estimated score which establishes an “underexposed” image).301

Table 2: Dataset analysis and composition. The average (avg) is among all the pictures.

Set num.
blurriness brightness

perc.
avg min max avg min max

Drone 289 0.69 0.05 0.92 0.40 0.24 0.69 43%
Smartphone 274 0.48 0.03 0.84 0.44 0.28 0.90 40%
Laboratory 80 0.66 0.38 0.84 0.33 0.21 0.45 12%
Maryland Dataset 34 0.49 0.10 0.86 0.52 0.28 0.91 5%

Total 677 100%

In conclusion, as summarized in Table 2, the drone image set offers on average good quality,302

also in comparison with the other image sets. Its performance validates the parameters that we303

set using the DJI Matrice 300. Furthermore, the operator selection process has resulted in a304

satisfactory dataset of images, considering the available quantity.305

Overall, the dataset demonstrates minimal issues related to brightness and blurriness. Nev-306

ertheless, we conducted a further investigation that involves the YOLO neural network to assess307

with more certainty the impact of blurriness on our dataset. We construct, as described in Sec-308

tion 4, three distinct training sets, called Rand, Best, and Worst, based on the blur scores. We309
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train the YOLO models using each of these sets to gauge the impact of blurriness on the learning310

capability of the YOLO models. Subsequently, we evaluate the three trained models on the same311

test set. It appears that no one of the three training sets dominates the others. As demonstrated312

in the experiment discussed in Section 4.6, blurriness can be a limiting factor. However, based on313

this assessment, we can conclude that the level of blurriness in the created dataset is not critical.314

3.3. Bug Size Analysis and Labeling Phase315

The consequent labeling procedure, performed to allow the training of computer vision models,316

has been done through the well-known open-source software called make-sense [36]. We decided317

to draw bounding boxes including the antennae, the paws of the bug, as well as the body so as318

not to lose any HH feature. Indeed, the acquired experience concerning the resolution with the319

employed devices (DJI Zenmuse H20 and other smartphones) permitted us to recognize all the320

features previously detailed in Figure 3.321

In Figure 6 (first row), we provide insights into the size distribution of the different bounding322

boxes for the two stink bug classes. The x-axis represents the width in pixels, while the y-axis323

represents the height in pixels of the drawn bounding boxes for each set of pictures. In Figure 6324

(second row), we illustrate the distribution of the bounding box positions relative to the examined325

pictures. Essentially, these plots display the center position of each bounding box as a percentage326

with respect to the width and height of the picture. So, on each x-axis and y-axis, we depict the x327

coordinate and y coordinate of the bounding box center, respectively, as a percentage relative to the328

maximum x and y coordinates of the image. Furthermore, the analysis categorizes the information329

from the bounding boxes based on the adopted source of acquisition. The sources include drone,330

smartphone/professional camera, laboratory, and the Maryland (Internet) image set.331

Concerning the size distribution in Figure 6 (first row), as said before, the built dataset is332

heterogeneous since we have used pictures taken by the drone, by the farmers, by the entomologists,333

and images obtained from the Internet. Not surprisingly, the sizes of the pictures we have (in pixels)334

directly impact the detection of stink bugs, as well as the accuracy of determining their size and335

position, along with other distinctive features. As a consequence, the dimension of the HH varies336

from, approximately, 30 × 30 px to 1000 × 1000 px. Differently, the NV samples have a limited337

bug size variance. Notice that the majority of images, i.e., 97% of instances, which contain NV338

have been taken using the drone, and the remaining 3% using smartphone cameras. However,339
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Figure 6: Bounding boxes analysis.

although there is a large variance in the bug size, the vast majority of the bug instances, i.e., more340

than 50% of instances, are in the range of 200× 200 px. This is because 289 of 677 (total) images341

have been taken by the drone with a strictly configured setting. When examining images within342

a single category, it is evident that the drone set exhibits the smallest bounding boxes and the343

least variability in size. This observation is particularly true when considering only the NV class.344

Considering the smartphone set of images, we note a larger variability in the size, with bounding345

box sizes up to 1200× 900 px. We also find that the largest NV instances are in this particular set.346

However, we can note that the more is the bounding box size, the more rarefied are the instances347

in the plot. The huge variability in the acquisition devices’ image sensor characterizes the way348

how bounding boxes components spread inside the plots. Differently, the laboratory set contains349

bounding boxes which are extremely similar with respect to their side sizes. As we can evaluate350

in the example of Figure 2c, the bugs are placed on a disc with some underneath leaves, and the351

image is completely focused on them. Therefore, the few differences in the size depend on the352

poses of the bug, and the amount of occlusion duty to the handcrafted background. Finally, taking353
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under consideration the images downloaded from the Internet, we observe that this set contains the354

largest bounding boxes of the built dataset regarding the HH. Indeed, this tiny set is characterized355

by high resolution macro images, where the bug represents the target of the shot.356

Concerning the position distribution in Figure 6 (second row), differently from what we stated357

for the bounding box sizes, the drone set highlights a strong variability for bug positions for both358

the classes. In fact, even if the majority of the bugs approximately reside in the center of the359

images, there are some instances whose bounding boxes are located at the borders of the image.360

This behavior can be attributed to the strict acquisition strategy employed by the drone. Since361

the position of the bugs in the orchard, especially on the trees, is unpredictable, the drone images362

capture a wider range of bug sizes and positions. A similar behavior is exhibited for the smartphone363

set, where the bounding box positions span over the entire surface of the images. We affirm that it364

is a predictable behavior because, as mentioned before, this set is built using the most diverse image365

sensors of the dataset. To conclude, both the laboratory and the Internet sets are characterized366

by a very stable positioning of the bugs. Indeed, in both the sets the bugs approximately cover367

the center of the image. The differences observed in the laboratory set can be attributed to the368

circular placement of bugs on a disc by hand. On the other hand, in the Internet set, macro photos369

typically center the target (stink bug) in the middle of the picture (see Figure 2d).370

In the next section, we evaluate our computer vision algorithms from the created dataset in371

order to detect the stink bugs.372

4. Evaluation of the Localization and Detection of the Bug373

In this section, we detail and discuss the setup and results of our conduced experiments from374

the created dataset. We start by giving an overview of the used computer vision algorithms and375

tools (Section 4.1) as well as the adopted metrics for the comparison (Section 4.2). We describe376

the training configuration phase in Section 4.3. We thoroughly compare and analyze first the377

training and validation results in Section 4.4, and then the testing results in Section 4.5, obtained378

from different models. Finally, we evaluate the impact of the blurriness on the previous results379

(Section 4.6).380
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4.1. Algorithms and Tools381

Here, we briefly recap the YOLO algorithm giving an insight of its working process, and the382

well-known strategy of the Transfer learning (TL) that we used to identify the stink bugs.383

The YOLO algorithm [28], the fifth version of the well-know YOLO (You Only Look Once)384

firstly introduced in [37], is a deep learning-based architecture based on the PyTorch framework385

that is used to conduct this experiment. The main innovation of this family of algorithms is framing386

the object detection problem as a regression problem instead of a classification task by spatially387

separating bounding boxes and associating probabilities to each of the detected images using a388

single CNN. YOLO is lightweight and fast, and also needs much less computational capabilities389

than the other current state-of-the-art architecture models while keeping the performance near to390

them [28]. In particular, it can process images at 45 frames per second, so making YOLO suitable391

for performing the detection of the bug directly on an edge-computing device possibly embedded392

in the drone itself.393

Furthermore, since we have a limited amount of images and limited computational power, we394

decided to perform the training phase either from scratch or by using the TL paradigm [38]. When395

training a computer vision model, the TL gives the possibility to reuse aspects of a computer vision396

algorithm already trained in depth on a huge amount of images for a new model for which far less397

images are available. The process takes relevant parts of the existing ML model and transfer398

them to solve a new, possibly similar, problem. Hence, a key part of TL is the generalization.399

This means that only the knowledge that can be used by another model in different scenarios or400

conditions, is transferred. Instead of models being rigidly tied to a training dataset from scratch,401

models trained using TL will be more generalized. Models developed in this way can be utilized402

in changing conditions and with different datasets.403

4.2. Adopted Metrics404

Let us review a few definitions before going in depth with our results. As explained before,405

YOLO detects the stink bug by returning a prediction box Bp, and the consequent labeling asso-406

ciates to each bug a ground truth box Bgt. For each Bp and Bgt, the IoU is defined as the ratio407

between the intersection area between Bp and Bgt, and the union area between Bp and Bgt, i.e.,408

IoU =
A(Bp∩Bgt)
A(Bp∪Bgt)

, where A represents the area function. A detection box is considered a prediction409

box if the IoU is above a threshold τ . If not differently stated, we assume τ = 0.5. We define:410
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1. True Positive (TP ): A correct detection, i.e., a detection with IoU ≥ τ and object class411

identified.412

2. False Positive (FP ): A wrong detection (i.e., Bp 6= 0) and detection with IoU < τ . Note413

that this includes the case of no-overlap with a Bgt (Region of Interest equals to Bgt). Namely,414

if Bgt = 0, we have IoU = 0.415

3. False Negative (FN ): A ground truth not detected, i.e., missed detection Bp = 0. Since416

Bgt > 0, it holds that Bp ∪Bgt > 0.417

Note that, since Bgt ∪Bp 6= 0, the IoU is always correctly defined.418

Once again, our experiments consider two stink bug classes: HH and NV. We measure the419

performance on the test set for each class, as well as for the combined performance of the two420

classes, by considering four metrics. Concerning the first two, we have precision (P ) and recall421

(R), computed as follows:422

P =
TP

TP + FP
, R =

TP
TP + FN

, (1)

where TP , FP , and FN are computed by fixing τ = 0.5. Note that TP + FN at the denominator423

of R is the number of stink bugs, i.e., the number of ground truth boxes computed during the424

labeling process. Precisely, when R refers to HH (respectively, NV), TP +FN is the number of HH425

(respectively, NV) found in the training set. When R refers to all classes, TP + FN is the number426

of HH ∪NV found in the training set.427

Furthermore, we compute the mean AP m0.5 (Pascal VOC challenge [39]) also known as428

mAP [0.5], and m0.95 (MS COCO challenge [40]) metrics, also known as mAP [0.5 : 0.05 : 0.95]).429

These metrics refine the TP and FP definitions by using the confidence parameter γ, i.e., a likelihood430

value returned by the network. Specifically:431

1. True Positive (TP ): A correct detection, i.e., a detection with IoU ≥ τ , given that γ ≥ τγ .432

2. False Positive (FP ): A wrong detection, i.e., a detection with IoU < τ , given that γ ≥ τγ .433

To compute the mτ metric with τ = 0.5, denoted as m0.5, the precision and recall values are434

computed with the IoU threshold τ ≥ 0.5 and varying the confidence threshold τγ . For each435

considered confidence threshold τγ , only the prediction boxes that satisfy γ ≥ τγ are considered.436

Then, among such images, the values TP and FP are determined based on the IoU condition.437
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Consequently, the relative precision and recall values are recomputed. Then, a curve is built by438

plotting for each value of the recall (on the x-axis) the corresponding precision value on the y-439

axis and the approximated area of such a curve is returned as the mean average precision value440

m0.5. The term “average” comes to the fact that the area of the curve refers to several values441

of confidence values. Note that when τγ decreases, the recall score cannot decrease because the442

TP cannot decrease and the denominator (ground truth) remains the same; while the behavior of443

precision is not predictable because both TP and FP cannot decrease, no claims can be made about444

the recall ratio.445

Later on, in our discussion, we say that an object detector is confidence-robust if the precision446

is little affected by the variations of the confidence level. If that is the case, it means that all the447

prediction boxes have a high confidence level, and the precision level remains almost constant. In448

other words, an object detector is robust if the mτ score with τ = 0.5, i.e., m0.5 and the P value,449

are close. The m0.95 metric repeats the computation of mτ by changing τ between 0.5 ≤ τ ≤ 0.95,450

with steps of 0.05; and returns the average of all the computed values mτ . From now on, we say451

that the detector is IoU-robust if the average precision is little affected by the IoU variations. If452

that is the case, the actual IoU value of the prediction boxes is high (close to 1) for all the images.453

Hence, if the object detector is IoU-robust, the m0.95 and m0.5 scores are close.454

In the following, we explain how to train our neural networks based on the YOLO models. We455

work with three different training sets to demonstrate the satisfactory quality of the images, i.e.,456

the minimum impact of blurriness issues on our dataset, as anticipated in Section 3.2.457

4.3. Configuration of the Object Detectors458

In this section, we explain how we built the neural networks based on the YOLO models.459

Before testing the computer vision algorithms, a suitable training phase of the networks is required460

utilizing the created dataset of pictures. To accomplish this, the entire dataset has been divided461

into two parts: a testing set of 135, and the remaining 542 images, corresponding, respectively, to462

the 20% and 80% of the dataset.463

For three times, the 542 images have been then partitioned into two sets: a training set con-464

sisting of the 407 (i.e., 60%) the images, and a validation set consisting of the remaining 135 (i.e.,465

20%) images. In fact, in order to investigate the claim that “the less blur an image has, the more466

accurate the prediction will be” [9], the 542 images have been organized as three distinct training467
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and validation sets based on a blurriness score [31]. Specifically, the least 407 blurred images are468

selected and denoted as the Best training group. Similarly, the Worst training group consists of469

the most 407 blurred images. Finally, a Rand training group of 407 images randomly selected is470

simply assembled. Then, for each Rand, Best, and Worst group, it is created a corresponding471

validation set using the remaining 135 unselected images. These three groups will be used to train472

different object detectors, as explained below.473

In order to extend the number of samples for the models, we performed an augmentation474

phase. Specifically, for each image of the group training set, three new images obtained by random475

transformations are also included. The extended set contains different transformations such as476

image hue, saturation, and value (HSV) augmentation, translation, scale, flipping, and mosaic. By477

performing this augmentation, the total number of training samples increased from 407 to 1, 628.478

In order to implement this, we employed the augmentation techniques recently proposed in the479

YOLO’s library [28] which applies random on-the-fly transformations during the training epochs.480

Figure 7 shows an example of three different transformations, where a combination of mosaic481

enhancement and HSV-saturation (left), scale-in and transformation (middle), and combination482

of mosaic enhancement and scale-out (right), are shown. Since different images differ for their483

size, and since that TL uses weights obtained from the COCO dataset [41] which is composed by484

pictures with a size of 640 × 640 px, we decided to scale down all the pictures to this particular485

value. This process is divided into two sub-phases: initially, the images are cropped in a square486

shaped eventually padded with white color, and subsequently scaled down to the fixed side length487

of 640 px without losing the original ratios.488

Figure 7: Example of image augmentation.

Each augmented training group will be used to validate and train an object detector based489
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on a YOLO model. Specifically, we trained the following versions of YOLO, namely, small (S),490

medium (M), and extra large (X ). Each YOLO model has been trained and evaluated using an491

NVIDIA Tesla V100 with 16 GB of VRAM, provided by Google Colab. Furthermore, the models492

are trained by exploiting the pre-trained weights of COCO dataset, thus implementing the TL.493

We trained each model by setting a few parameters3 such as batches with 32 pictures, 200 epochs,494

learning rate equals to 10−2, SGD optimizer [42], and image size of 640 × 640 pixels. Section 4.4495

displays the training results. Finally, nine object detectors are obtained because the S,M, and X496

YOLO models are trained with the three Rand, Best, and Worst groups with TL mechanism.497

4.4. Training and Validation Results498

In this section, we evaluate the training the validation performance among the three afore-499

mentioned groups, i.e., Rand (random selection), and Best and Worst (informed selection).500

Specifically, in Figure 8 we report the training and validation performance of the resulting YOLO501

models. For all the models and for all the training splits, Figure 8a reports the training perfor-502

mance in terms of loss functions, while Figure 8b reports the specific metrics used for the validation503

performance (i.e., P , R, and m0.5). These are reported on the y-axis. Moreover, each plot shows504

the epochs on the x-axis.505

Concerning Figure 8a, in each of the three plots nine curves are shown: one curve for each506

combination of training split (Rand, Best, Worst) and YOLO model (S,M, X ). The first plot507

reports the box loss, namely the function which establishes how well the model guesses bounding508

boxes coordinates. We observe that the models converge to a loss close to 0 fairly quickly. All509

the three training groups converge faster when the X model is used. The classification loss, which510

measures how well the model distinguishes between different classes, and the objectness loss, which511

is roughly speaking the confidence that some object exists in a given box, rapidly converge for512

all the models and all the groups. One can notice that the objectness loss, although it reaches a513

plateau, remains slightly higher than 0.514

Focusing on Figure 8b, the three rows report the precision, recall, and mean AP achieved by515

the YOLO models during the validation phase (see Eq. (1)). The first column depicts the results516

of the three models trained on the Rand split, while the central and the last columns show the517

results for the Best and the Worst split, respectively. Notice that the used metrics are values518

3For the training parameters, we refer to the YOLO’s yaml file named hyp.scratch-low [28].
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averaged on the two classes HH and NV to be recognized. In all the rows, the models trained on519

the Rand split reach better performance, faster than the models trained on the Best and Worst520

splits, where the X is always the best. While the three groups behaves almost the same for the P521

metric, the R and m0.5 performance of Worst and Best are worse than those of Rand. The P522

curves of Worst and Rand fluctuate much more than those of R and m0.5.523

Summarizing, we note that all the models obtain a satisfactory performance with both the524

loss functions and metrics. Also, they stabilize their trends reaching a plateau in 200 epochs.525

So, we can state that 200 epochs represent a reasonable trade-off between quality of the solution,526

and training time. Furthermore, we observe that the models trained on randomly selected images527

(Rand) reach the best results on all the metrics with a stable and smooth trend. The models528

trained on the Worst split exhibit the worst performance, while the Best split allows the models529

to place in between the Rand and the Worst splits. Finally, focusing on the size of the models,530

we can notice that the larger is the model, the higher is the score, and this remark is valid for each531

metrics, and for each split considered.532

4.5. Testing Results533

In this section, we finally validate all the YOLO models on the testing set, without applying534

any transformations.535

Table 3 reports the results on the testing set achieved by the three different neural networks536

obtained by training the YOLO models with the three different training splits, i.e., Rand, Best,537

and Worst. In general, looking at all the three groups, we can observe that theM and X models538

obtain a performance above 89% for all classes. The R metric scores for the same models varies539

between 73% and 85%. Both HH and NV classes are recognized with a good balance between P540

and R. For the HH class and Rand split, P is always above 92%, and hence approximately a tenth541

of the HH bugs is misclassified. However, R is only above 75%, which indicates that the models542

tend to miss the HH achieving more FN . The NV class has higher P than HH, although obtains543

a worse performance on R. This means that the NV individuals are rarely misclassified, although544

they are often unrecognized.545

One can observe that the job is hard. Namely, during our labeling phase we have observed546

that also expert phytosanitary operators or entomologists sometimes miss the stink bugs on the547

pictures. Generally, the m0.5 of the HH class is higher than that of the NV class, and the difference548
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Rand split
Mod. HH Class NV Class All Classes

P R m0.5 m0.95 P R m0.5 m0.95 P R m0.5 m0.95

S 0.84 0.74 0.80 0.52 0.77 0.66 0.70 0.38 0.80 0.70 0.75 0.45
M 0.92 0.75 0.85 0.58 0.91 0.77 0.82 0.51 0.92 0.76 0.83 0.55
X 0.92 0.78 0.85 0.60 0.92 0.79 0.83 0.59 0.92 0.79 0.84 0.60

Best split
Mod. HH Class NV Class All Classes

P R m0.5 m0.95 P R m0.5 m0.95 P R m0.5 m0.95

S 0.77 0.72 0.77 0.48 0.86 0.67 0.72 0.36 0.81 0.69 0.75 0.42
M 0.90 0.73 0.81 0.56 0.89 0.67 0.72 0.36 0.89 0.73 0.81 0.54
X 0.98 0.71 0.84 0.59 0.99 0.83 0.86 0.62 0.97 0.77 0.85 0.61

Worst split
Mod. HH Class NV Class All Classes

P R m0.5 m0.95 P R m0.5 m0.95 P R m0.5 m0.95

S 0.89 0.74 0.81 0.54 0.80 0.70 0.71 0.38 0.84 0.72 0.76 0.46
M 0.95 0.73 0.84 0.58 0.94 0.77 0.81 0.52 0.95 0.75 0.82 0.55
X 0.95 0.77 0.86 0.61 0.95 0.85 0.87 0.60 0.95 0.81 0.86 0.60

Table 3: Results of YOLO models trained on different images.

between m0.5 and P is smaller for the HH class than for the NV class. This means that the models549

for the HH class are more confidence-robust than those for the NV class. Instead, the difference550

between the m0.95 from m0.5 is high for both the classes. This means that there is a high variations551

in the IoU size of the prediction boxes.552

The results on the “ALL Classes” confirm the above results. The models are not IoU-robust553

because the m0.95 and m0.5 scores significantly differ. Instead, the models are relatively confidence-554

robust since the distance between P and m0.5 is moderate.555

Looking at the metrics, there is a dominance of the X (extra large) model, which confirms the556

behavior of the training. Namely, concerning the Best split, it reaches the highest values for P557

on both the classes HH and NV (98% and 99%, respectively) with the X model. However, with558

the same model, the best split reports the worst R scores, except for the NV class. One possible559

interpretation is that when presented with very sharp images, the model can establish a strong560

understanding of the distinctive features of stink bugs, and it almost never misclassifies. However,561

it lacks of flexibility in the decision, and it misses several bugs.562

The Rand is the set of images that guarantees the most balanced P and R values. This is likely563
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due to the random selection, which enables the networks to train on a more diverse set of samples.564

As a result, they acquire a higher level of generality that aids in the training process. As regard the565

Worst set, it surprisingly reaches really good results. In particular, we can observe that results566

of the S model dominate those of the S model with the Best and Rand sets, but in general there567

is no dominance. We believe that these results simply confirm that there is not a marked gap568

between the best and worse samples in our dataset, as proved in the previous Section 3.2). In569

other words, the quality of our dataset is on average good.570

In conclusion, we obtained a significant improvement in the results with respect to those re-571

ported in Table 1 (data from [9]). We attribute this achievement to the quality of our dataset and572

the fact that both the testing and training sets comprise images captured under similar conditions.573

In contrast to [9], our dataset does not include images captured in completely different contexts,574

which contributes to the improved performance.575

Finally, to further support our assertion that blurring is not a significant issue in our dataset, we576

propose conducting an examination in the next section where we intentionally introduce a strong577

level of blurring and evaluate the results on our dataset.578

4.6. Impact of Blurriness579

The previous experiments, where the three splits were arranged based on their blurriness scores,580

seem to suggest that the presence of out-of-focus regions within an image does not pose an issue581

for the detection. This is evident as the results of the Worst split are not significantly different582

from the Best split, and overall, the Rand split achieves the best performance. In this section,583

our objective is to systematically explore the impact of blur by deliberately blurring a certain584

percentage of photos from a specific split. We begin by introducing a blur effect on 50% of the585

training and validation samples, and subsequently expand it to 100%. Next, the networks are586

subsequently retrained using the same parameters, but this time on the transformed set of images.587

By following this approach, we aim to disprove that increasing levels of blur would paradoxically588

enhance the detection performance.589

To achieve appropriately blurred images, we introduce blurriness by convolving each original590

image with a suitable matrix of size 5× 5 [43]. This convolution applies a smoothing effect to the591

interior ridges using the cv.blur function. Figure 9 depicts the impact of this kernel. Specifically,592

we can observe that the convolution operation produces a resulting image with slightly smoothed593
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contours, effectively simulating an image captured with subtle flickering.594

Figure 9: Example of blur kernel effects.

As previous mentioned, we repeat the training of the YOLO networks, i.e., S, M, and X , by595

using transformed training and validation set with increasing percentage of blurred images. For596

each previously created split, we intentionally introduce blur to 50% and subsequently 100% of the597

samples. Figure 10 displays the training performance of the Rand split with 50% of the images598

transformed. Specifically, the first row illustrates the loss functions, namely bounding box loss,599

classification loss, and objectiveness loss. The second row presents the validation metrics, including600

precision (P ), recall (R), and mean average precision (m0.5).601

Overall, the training behavior of the models on transformed images is similar to what has602

already been observed in Figure 8. Indeed, as regard to the loss functions, we can basically observe603

that all of them converge very close to 0 after a few epochs. Furthermore, the X model demonstrates604

a tendency to converge faster compared to the other two networks. Conversely, the S model is605

the slowest in terms of convergence. When considering the validation performance, we observe a606

rapid stabilization of all metrics, although each line exhibits some noise in its trend. Consequently,607

we can conclude that, from a training perspective, the introduction of 50% induced blur does not608

significantly affect the learning performance of the networks. The behavior remains the same even609

when more blurred images are introduced. Also the training results of the models trained on 100%610

blurred images do not display any significant discrepancies. So, we have opted not to plot them.611
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Figure 11 presents the performance evaluation metrics of the three YOLO networks, considering612

different percentages of forced blur in the training set with 0%, 50%, and 100% of blurred images.613

Each row of plots in Figure 11 corresponds to a different group of results, namely HH, NV, and614

all the classes, respectively. On the other hand, each column represents the evaluation metrics. In615

each plot, the amount of blur imposed on the training set is fixed on the x-axis, while the y-axis616

represents the scores obtained by the models.617

In principle, we can observe that as the percentage of blur increases, the performance of the618

networks tends to decrease for each model. When analyzing the behavior of the networks based619

on their size, we find that X achieves the highest results, while S demonstrates the lowest perfor-620

mance, as previously observed. Regarding the precision, all three lines consistently decline as the621

percentage of blurred images increases, specifically for the HH class. This pattern is also observed622

in the other rows of the plot. However, we observe the opposite trend for the S network and the623

NV class.624

We observe a significant increase of 1% in precision when using a training set with 100%625

blurring. Similarly, when the models are trained on a set with 50% blurred images, we observe a626

smoother, but still noticeable, increase in precision for M and X models. This can be attributed627

to a degradation in recall, causing the models to become more selective in detecting stink bugs.628

Consequently, they only predict the clearest targets, resulting in a reduction in false positives and629

an improvement in precision. The recall parameter is the evaluation metric most impacted by630

blur. For all network sizes, we observe a drop of 2% in recall when using a training set with631

100% blurring. This behavior is expected since, similar to the human eye, the ability to recognize632

unclear objects diminishes. When examining the two mean average precision metrics (m0.5 and633

m0.95), we observe a consistently decreasing trend, confirming that blurring progressively reduces634

the recognition capacity of the networks.635

In summary, the results suggest that blurring has a detrimental effect on the recognition capac-636

ity of the networks, as indicated by the decreasing trend in all precision metrics. The detrimental637

effect was not evident in the previous experiments because the Worst set was not enough deteri-638

orated with respect to the Best set.639
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5. Conclusion640

In this paper, we have undertaken the study of a system with the ultimate goal of automating641

the HH pest scouting in orchards by leveraging drones and computer vision algorithms, particularly642

ML. Our study primarily focused on constructing a suitable dataset of images featuring the HH643

and enhancing its quality through a preliminary screening process. To capture the images in the644

field, we carefully selected appropriate hardware, including a vision chip and drone. Subsequently,645

we proceeded to train and evaluate various ML models based on the YOLO framework, employing646

different metrics to assess their performance. Additionally, we conducted an in-depth analysis647

of the captured images, considering factors such as blurriness and brightness, to improve the648

performance of the ML algorithms. Our results are highly satisfactory and underscore the critical649

significance of meticulous dataset construction, model training, and image analysis in the successful650

implementation of ML for HH recognition.651

Further research and developments are required to complete a fully autonomous orchard mon-652

itoring, which can be extended to other invasive and emergent pests. To progress towards this653

goal, several key areas need attention. For instance, the development of a client-server application654

that leverages the bug-detectors described in this work for real-time detection is crucial. This ap-655

plication would enhance the practicality and accessibility of the monitoring system. Additionally,656

integrating bug-detectors with microclimate weather observations to build a HH prediction model657

holds immense potential. This integration can provide valuable insights into the pest population658

dynamics, enabling proactive decision-making and pest management strategies. Continued research659

efforts are essential to identify novel approaches that can complement the existing methods and660

contribute to more effective IPMs.661
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[34] F. Betti Sorbelli, F. Corò, S. K. Das, E. Di Bella, L. Maistrello, L. Palazzetti, C. M. Pinotti, A drone-based736

application for scouting halyomorpha halys bugs in orchards with multifunctional nets, in: 2022 IEEE In-737

ternational Conference on Pervasive Computing and Communications Workshops and other Affiliated Events738

(PerCom Workshops), IEEE, 2022, pp. 127–129.739
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