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Abstract

The thesis is concerned with multi-objective optimization (MOO) problems
under various constraint types. In particular, we consider the unconstrained,
the box constrained, the general convex constrained and the cardinality con-
strained settings. As mathematical tool, MOO has received much attention
over the years, being suitable both in operation research applications and
in many real-world problems where contrasting goals have to be taken into
account.

In the dissertation, a general overview of the main MOO concepts is
given, focusing on the notions typically employed in the gradient-based MOO
approaches. In particular, we present a general formulation for the search
direction problem and a general framework for single-point methodologies,
i.e., approaches designed to generate a single solution to the problem at
hand. The features of each of the two concepts are discussed and analyzed;
finally, we show how they can be reduced to well-know schemes from the
MOO literature.

Then, we propose novel gradient-based methodologies aimed to recon-
struct the Pareto front for the considered problem classes. In some of the
mentioned settings it is the first attempt to define this type of approaches
generating multiple solutions rather than one, while in the others the topic
has been almost unexplored yet. However, in the MOO context, returning an
approximation of the Pareto front rather than a single solution can be much
more useful for the final user, so as they can choose among multiple trade-
offs of the objectives the one that is the most suitable for themselves. For
each methodology, detailed descriptions of the algorithmic scheme and char-
acteristic features are reported; moreover, each methodology is theoretically
analyzed and its convergence properties are stated and proved.

Finally, the proposed methods are numerically tested with wide bench-
marks of test problems, comparing each of them with state-of-the-art ap-
proaches from the MOO literature. The results show the efficiency and the
effectiveness of the proposals w.r.t. the competitors in diverse experimental
settings.
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Chapter 1

Introduction

Multi-objective optimization (MOO) has received a lot of attention by the
research community for the last 25 years. As a matter of fact, MOO problems
turned out to be relevant in different application fields, where objectives that
are in contrast with each other must be taken into account. Engineering
[17,/88,(96], management [45}/105], statistics [19], space exploration [86} 98]
are just some context examples where novel and effective multi-objective
optimization applications have been considered.

The interests on studying MOO rely on two major complexities, that
coupled together make MOO problems particularly difficult to handle. The
first complexity element is the general absence of a solution minimizing all
the objective functions simultaneously; as a consequence, the definitions of
optimality (global, local and stationarity), based on Pareto’s theory, are not
trivial and make optimization processes not obvious, both in terms of aims
and tools. The second one, on the other hand, traces one classical issue
typical of scalar optimization: in absence of convexity assumptions, there is
no equivalence between local and global (Pareto) optimality.

Popular classes of algorithms to solve multi-objective problems are those
of scalarization methods [30L32}35}42,43/87,95,[106] and of heuristic meth-
ods based on genetic and evolutionary algorithms (EAs) [561/63,[81]. Among
genetic methods, the NSGA-II algorithm [26] is arguably the most popular;
basically, it is a population-based procedure exploiting a cheaply computable
score to efficiently rank solutions w.r.t. the objectives and performing the
classical genetic crossover, mutation and selection operations to create the
new generation of solutions. However, both the scalarization and the evo-
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lutionary approaches come with non-negligible shortcomings. Indeed, the
first ones require a detailed analysis of the problem structure in order to
identify the weights defining a suitable scalarized objective. Moreover, an
unfortunate choice of the weights may lead to unbounded scalar problems,
even under strong regularity assumptions [34] sec. 7]. Finally, unlike heuris-
tic approaches such as NSGA-II, scalarization is designed to produce a single
solution and, in order to generate an approximation of the whole Pareto
front, the problem has to be repeatedly solved with different not known a
priori choices of weights. On the other hand, convergence properties cannot
be stated for heuristic algorithms; moreover, they might be expensive on
some scenarios [49,66194].

A class of MOO methods that has been widely studied for the past two
decades is the one concerning descent algorithms (either first-order, second-
order and derivative-free). These approaches are basically extensions of
the classical iterative scalar optimization algorithms. Steepest Descent [36],
Newton [34L[44], Quasi-Newton [89], Augmented Lagrangian [21], Conjugate
Gradient [71] are only a few methods of this family. In addition to having
theoretically relevant convergence properties, these algorithms, when used
on problems with reasonable regularity assumptions, have proven to be valid
alternatives to the scalarization approaches [87] and the evolutionary ones
[26], especially as the problem size grows [23]. The earliest developed al-
gorithms of this class are single-point, i.e., only able to produce a single
Pareto-stationary solution; in order to generate an approximation of the en-
tire Pareto front, they must be run multiple times in a multi-start fashion.
More recently, some of these algorithms have been extended to overcome
this limitation. These new front-oriented approaches (see, e.g., [23H25}37])
are capable of dealing with sequences of sets of points and thus producing a
Pareto front approximation in an efficient and effective manner. Indeed, in
the context of multi-objective applications, it is in practice crucial to gener-
ate a set of solutions constituting an approximation of the Pareto set, so that
the user can choose, a posteriori, the solution providing the most appropriate
trade-off among many.

In this thesis, we focus on the development of novel gradient-based ap-
proaches for multi-objective optimization problems, both unconstrained and
convex/cardinality constrained. In particular, we study new single-point and
front-oriented algorithms with the ultimate goal of proposing methodologies
capable of reconstructing the Pareto front in the most effective and efficient



way. For each proposal, we describe the algorithmic scheme and provide a de-
tailed theoretical analysis, where properties, including the convergence ones,
are stated and proved. Finally, in order to test the efficiency and effectiveness
of the new methods, they are compared with state-of-the-art algorithms for
MOO on benchmarks of test problems; the results of these extensive com-
putational experiments are shown and commented. Going more into the
details, the rest of the thesis concerns the following contributions.

e In Chapter 2] we recall the main concepts of Pareto’s theory; moreover,
we propose a general formulation for the search direction optimization
problem and we show how the latter can be reduced to well-known
schemes to find standard directions.

e In Chapter [3] we review some of the standard single-point gradient-
based methods, introducing a general framework that can represent
each of them; furthermore, we state some properties of the considered
algorithms that will be useful for the next sections; finally, we report
a brief theoretical description of the Front Steepest Descent (FSD) [23]
algorithm, which is designed to reconstruct the Pareto front of uncon-
strained multi-objective optimization problems.

e In Chapter [d we propose a memetic algorithm for bound-constrained
MOO problems that inherits the good features of both EA and MO de-
scent families. In particular, the new approach, called Non-dominated
Sorting Memetic Algorithm (NSMA), consists on combining the popu-
lar genetic approach NSGA-II with MO descent methods, similarly to
what is done in the scalar case in [47]. In this context, we present a
new front-oriented descent method, particularly suited to be executed
in combination with NSGA-II, and we provide a theoretical analysis
where feasibility and convergence properties are stated and proved.

e In Chapter |5, a multi-objective limited memory Quasi-Newton algo-
rithm for unconstrained MOO problems is presented. The possibil-
ity of defining limited-memory variants of Quasi-Newton methods cer-
tainly stands out among the factors contributing to the success of this
class of methods in scalar optimization: the management in memory of
the Hessian matrix, extremely inefficient and time-consuming in many
cases, is avoided but, still, an approximation of it with only the pre-
viously generated solutions is provided. To the best of our knowledge,
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limit-memory approaches for MOO have not been studied in the liter-
ature yet and our proposal represents de facto the first of this class of
algorithms.

In Chapter [6] we focus on the FSD [23] algorithm, arguing its limited
exploration capabilities which prevent it from spanning large portions
of the Pareto front; we thus propose small but crucial modifications to
the algorithm, showing that the new approach still preserves the same
convergence guarantees.

In Chapter [7] we propose an extended version of the augmented La-
grangian algorithm for multi-objective optimization (ALAMO) proposed
in [21], which deals with sets of points and effectively produces an ap-
proximation of the Pareto front for convex constrained multi-objective
optimization problems; unlike the original single-point ALAMO, this front-
oriented version, called FRONT-ALAMO, makes use of a common penalty
parameter and Lagrange multipliers for all points in the set of solu-
tions; moreover, unlike the other approaches presented in this thesis,
FRONT-ALAMO has properties of convergence to Pareto-stationarity that
can be proved without recurring to concepts such as the linked sequence
[67].

In Chapter [§] we introduce new optimality conditions for MOO prob-
lems with cardinality constraints, whose theoretical foundation was
only recently established in [57]; then, we present two new algorithms
to solve these problems; the first one is a single-point method consist-
ing on an extension of the THT method [3] to the MOO case; the second
algorithm, on the other hand, is a two-stage approach whose ultimate
goal is to approximate the whole Pareto front; for both methods, we
conduct a rigorous theoretical analysis, proving their properties of con-
vergence to points satisfying necessary conditions for global optimality.

In Chapter [9] we report the results of thorough computational exper-
iments, comparing the performance of our proposals with the one of
state-of-the-art algorithms from the multi-objective optimization liter-
ature on varied benchmarks of test problems.

In Chapter |10}, we provide some concluding remarks and possible ideas
for future research.



Chapter 2

Preliminaries

In this chapter, we present the general form of the multi-objective optimiza-
tion problems we will address in the thesis. Moreover, along with some key
concepts from the Pareto’s theory, we introduce a generic formulation for the
search direction problem. As will be shown, this one can be easily reduced to
well-known problems to find standard descent directions for multi-objective
optimization.

2.1 Problem Statement

Throughout the thesis, we consider multi-objective optimization problems of
the form

min F(z) = (fi(z),..., fm(z))"

2.1
s.t. z €, 21)

where F' : R™ — R™ is a vector-valued continuously differentiable function,
ie, F € CY(Q,R™), and the feasible set ) is assumed to be closed, non-
empty and non-discrete. We denote by Jp(-) = (Vfi(-),...,Vin ()T €
R™*™ the Jacobian matrix associated with F(-). Moreover, for all j €

{1,...,m}, the Hessian matrix of the function f;(-), when it exists, is de-
noted by V2f;(-). In what follows, we will denote the Euclidean norm in R"
by || - || and the N-dimensional vectors of all ones and all zeros, with N > 0,

by 15 and Oy respectively. Finally, we denote by Iy the identity matrix of
size N.
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Since we are in a multi-objective setting, we introduce the standard par-
tial ordering in R™: considering two points u,v € R™, we have that

u<v = u; <, Vi=1,...,m,
u<v <= u; <v, Vi=1,...,m.

An analogous definition can be also stated for the operators >, >. Further-
more, given the objective function F(-), we say that x € Q dominates y € Q
wr.t. Fif F(z) < F(y) and F(z) # F(y) and we denote it by F(z) S F(y).

In multi-objective optimization problems, we ideally would like to obtain
a point which simultaneously minimizes all the objectives at once. However,
such a solution is unlikely to exist. In this scenario, the concepts of optimality
are based on Pareto’s theory.

Definition 2.1. A point Z € Q is Pareto optimal for Problem if a point
y € Q such that F(y) S F(Z) does not exist. If there exists a neighborhood
N (z) such that the previous property is satisfied in Q N A(z), then z is
locally Pareto optimal.

In practice, it is difficult to attain solutions satisfying the Pareto optimality
property. A slightly weaker but certainly more viable to obtain condition is
weak Pareto optimality.

Definition 2.2. A point Z € 2 is weakly Pareto optimal for Problem
if a point y € Q such that F'(y) < F(z) does not exist. If there exists a
neighborhood N (Z) such that the previous property is satisfied in QNN (z),
then Z is locally weakly Pareto optimal.

We define the Pareto set as the set of all the Pareto optimal solutions.
Moreover, we refer to the image of the Pareto set w.r.t. F' as the Pareto
front.

We can now introduce the concept of Pareto stationarity.

Definition 2.3. A point z € Q2 is Pareto-stationary for Problem ([2.1)) if we
have that
‘max Vfj(z)'d>0, VdeD(x),
m

Jj=1,...,

where

DE)={veR"|IH>0:2+tveQVtel0,]}. (2.2)
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The property can be also compactly re-written as

min  max Vf;(z) d=0.
deD(z) j=1,..,m fi(@)
If a point Z is not a Pareto-stationary point for Problem (2.1]), then there
exists a direction d € D(z) such that max;—1,_,, Vf;(Z)"d < 0. Since F(-)
is continuously differentiable, we have that

o i+ 1) — £5(2)

t—0 t

=Vfi@)'d<0, Vji=1,...,m.

Thus, d is a common descent direction for F(-) at z, i.e., there exists t > 0
such that
F(z +td) < F(z), vt € (0,%].

Under differentiability assumptions, Pareto stationarity is necessary for
all types of Pareto optimality. Moreover, assuming the convexity of both F'(-)
(component-wise) and €2, Pareto stationarity is also a sufficient condition for
weak Pareto optimality. These theoretical relationships are stated in the
next lemma.

Lemma 2.1 ([34, Theorem 3.1]). The following statements hold:

o if T is locally weakly Pareto optimal, then T is Pareto-stationary for

Problem (2.1));

e if ) is convex, F(-) is component-wise convex and T is Pareto-stationary
for Problem (2.1)), then T is weakly Pareto optimal;

e if Q is convex, F(-) is twice continuously differentiable, V2 f;(z) = 0
forall j € {1,...,m} and all x € Q, and T is Pareto-stationary for
Problem (2.1)), then Z is Pareto optimal.

2.2 A Generic Formulation for the Search Di-

rection Problem

In this section, we introduce a generic formulation for the search direction
problem:

min  max ij(:f)Td+%dTMj(:E)d, (2.3)
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where, for all j € {1,...,m}, M;(z) € R"*". If the matrices M;(-) are
positive definite, i.e., M;(z) = 0Vj € {1,...,m} and Vz € Q, the function
V£i(@)Td+(1/2)d" M;(Z)d is strongly convex for each j € {1,...,m} and,
thus, Problem has a unique minimizer. We denote the latter by v(z)
and we indicate with 6(Z) the optimal value of the problem at z. Problem
(2.3) can be also reformulated as

min
BeR 5
deD(z)

s.t. V() Td+ %dTMj(;E)d <B, Vie{l,...m)
Lemma 2.2. Let us assume that, for all j € {1,...,m}, the matriz M;(-)
is positive definite, i.e., M;(x) = 0 Vx € Q. Then, for all z € Q, we have:
1. 6(z) and v(x) are well-defined;
2. 0(x) <0;
3. the following conditions are equivalent:
e x is not Pareto stationary;
o O(z) <0;
o v(x) #0,.
Proof. 1. The proof is trivial since
e the feasible set D(z) (Equation is closed and non-empty,

e max;_1,_ ., Vfiz) d+ %dTMj(x)d is strongly convex (M;(z) >
0 for all j € {1,...,m} and = € Q) and continuous in D(z).

2. Given d = 0,,, we have that max;—1, . m ij(SC)T(Z+ %JTMJ(:E)J =0.
Since d € D(x), we get the thesis.

3. The proof is identical to the one for [34, Lemma 3.2, Point 2.]. We can
indeed replace each Hessian matrix V2f;(-), j € {1,...,m}, with the
matrix M;(-), which is assumed to be positive definite.

O

Given the generic formulation for the search direction problem, we are
ready to introduce a relaxation of Pareto stationarity, called e-Pareto-stationarity.
This concept is firstly introduced in [21]: here, we propose a slightly modified
version.
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Definition 2.4. Let ¢ > 0. A point Z € 2 is e-Pareto-stationary for Problem
B i
1
i V@) Td+ Z|d)? > —e.
(in max fi(@) d+5ld|" = —e
Note that in this last problem M;(-) = I,, for all j =1,..., m. Moreover, as
in [90], we introduce the function D :  x R™ — R, defined by

D(z,d) = _max Vfi(z)'d. (2.4)

It is trivial to see that any direction d such that D(Z,d) < 0 is a common
descent direction at T for F(-). Moreover, the function D(-,-) has some
properties, which we report in the next lemma.

Lemma 2.3 (|90, Lemma 2.2]). The following statements hold:
o for any x € Q and o > 0, we have D(z,ad) = aD(z,d).
e the mapping (z,d) — D(z,d) is continuous.

Depending on the definition of the feasible set 2 and the matrices M (-),
.oy My, (+), Problem can be reduced to well-known schemes to define the
search direction. In Table we summarize some of the most important
ones. Note that only the Newton [34] and Quasi-Newton [89] directions
employ matrices different for each objective function. In particular, in the
remainder of the thesis, the matrices By, ..., By, will be called approrimation
matrices, as in the Quasi-Newton methodologies they aim to estimate the
objective functions curvature information typically contained in the second
derivatives V2f1(-),...,V2fn,(:). Further information about them can be
found in Sections 2.2.1] and
In the next lemma, we report the continuity properties related to some
of the functions v(+), 6(-) listed in the table.

Lemma 2.4. The following statements hold:

1. [36, Lemma 1, Point 3.] the mappings x — v°P(x) and z — 6P (z),
with x € R™, are continuous;

2. [29, Proposition 4] the function 65 (-) is continuous in C, with C' being
a convezx set;

3. [34, Lemma 3.2, Point 3.] the mapping x — v™ (z), with x € U C R"
and U being an open set, is bounded on compact sets and the function
ON () is continuous in U;
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M; () .
Name Q Notation
(.] =1,..., m)
Steepes‘F corflrnon R™ I, vSD(~), HSD(~)
descent direction [36)
Constrained sFeep(?st common C CR"™ I vC8 (), 6°5 ()
descent direction [29] (Convex)
V2£5()
Newton direction [34] R™ (F € C%(Q,R™)) o (), 0N ()
(V2fj(z) = 0,Vz € R™)
Quasi-Newton direction [89] R™ B; -0 v@N (), 99N (1)
Modiﬁe.d Ql.lasi-Newton R™ B0 WMQN (), QMQN(,)
direction |[1]

Table 2.1: Well-known search directions.

4. [89, Lemma 2, Point (c)] the function Ogn(-) is continuous in U, with
U C R” being an open set.

In the special cases where €2 = R"”, the dual form of Problem can be
explicitly formulated. In particular, we conducted a thorough analysis on the
problem, which is reported in Appendix [B] and we get that the Lagrangian
dual problem of is given by:

In this scenario, if the matrices M (-), ..., M,,(-) are positive definite, strong
duality holds and the Karush-Kuhn-Tucker (KKT) conditions are sufficient
and necessary for optimality. Moreover, denoting by A(Z) = (A1(Z), ..., Am(Z)) "
the optimal Lagrange multipliers vector, we have that

2 (Z) =1, ANZ) > 0, (2.6)
pRRY
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and

0@ =~ | N@M@)|  Jr@) A@). (2.7)

In the remainder of the thesis, we will use for the Lagrange multipliers the
same notation of the functions v(-), 6(-) (e.g., AP (-) = (A\{P("),..., )\,S;ZD(-))T
is the Lagrange multipliers vector associated with the steepest common de-
scent direction v5P(+)).

Due to the presence of the inverse of the convex combination of the matri-
ces My(-), ..., My(-),ie., [Z;”Zl )\ij(a?)] 1, Problem could be much
more difficult to handle. On the one hand, if the matrices are different among

each other, that is, they depend on the associated objective function, Prob-
lem (2.5)) is harder to solve w.r.t. (2.3). On the other hand, if M;(Z) = M > 0

—1
for all j € {1,...,m}, given (2.6) the difficult term [Z;n:l )\ij(i)} is

substituted by M~!. As a consequence, Problem (2.5) becomes a linearly
constrained, convex quadratic program which is easy to solve and even more
appealing to use w.r.t. (2.3), especially in situations where n > m.

2.2.1 The Quasi-Newton Approximation Matrices

In many works for MOO [89,91], the BFGS update formula is independently
used for all By, with j € {1,...,m}: given xy, xx+1 € R™ being the current
and next iterates of an algorithm that employs the Quasi-Newton direction,
we have that the matrix B; is updated as

Blspst BEF  yF(yk)T

T Rk T,k
Sy BJ sk Sk Y;

k+1 _ pk
B =B; - ,
where s = xp41 — z1 and y;-“ = Vfi(zpt1) — Vii(zw).
We also introduce the formula for updating the inverse of the approxi-
mation matrix Bj;, which we denote by Hj:

.
Hi™ = (L= pjyyst) Hy (I = pjuysc) + pfsest, (28

where p? = 1/(5;—yf)
Similar to the scalar case [84], for each j € {1,...,m}, if s[y¥ > 0 and
B;-“ > 0, then Bj’-“"'1 is positive definite. The same property holds true if
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{H Jk} is considered. When the objective functions are strictly convex, the
condition sgy;‘ > 0 is always satisfied for any pair (zx41,2x) and for each
j € {1,...,m}. However, this property is not guaranteed to hold in the
general case.

2.2.2 On the Use of a Single Approximation Matrix

The use of a single positive definite approximation matrix B was proposed
in [1] for the unconstrained smooth MOO setting. As anticipated at the end
of Section using a unique matrix M = B for each objective function
fi (), with j € {1,..., m}, makes Problem easier to solve:

LT Nplg (T
max —2)\ Jr(Z)B™ Jpr(Z) A

m (2.9)
s.t. ZAJ- =1, A>0,,.
j=1

Moreover, the modified Quasi-Newton descent direction can accordingly be

computed as
’U]VIQN(LE) _ —B_IJF(IE)T)\AIQN(LE).

The unique matrix B is obtainable as the approximation of a convex
combination of matrices. For this purpose, slightly modified BFGS update
formulas are introduced in [1]:

BksksgBk ukuz
sp BFsy spug

.
HM = (I, — pPusy ) HY (I, — pPuesy ) + pFspsy, (2.11)

Bk—‘rl —_ Bk _

(2.10)

with pF = 1/(8;—101@) and up = Z;nzl )\;V[QN(xk)yf



Chapter 3

Review of State-of-the-art
Gradient-Based Algorithms

After introducing the main concepts of Pareto’s theory and the definition of
descent direction, in this chapter we report some of the standard gradient-
based algorithmic schemes from the multi-objective literature. As antici-
pated in Chapter [1} we distinguish between single-point methods and front-
oriented approaches. The first ones aim to return a single, hopefully optimal,
solution; the second ones try to approximate the entire Pareto front, return-
ing multiple solutions among which an user can choose a posteriori the one
with the desired trade-off. Accordingly, this chapter is divided into two
sections, each of which is related to a specific algorithm type.

3.1 Single-point Methods

In Algorithm[3.1] the scheme of a generic framework for single-point gradient-
based methods is reported. At each iteration k, a descent direction is found
solving an instance of Problem (Line . Then, in Line [5|a step along
the direction v(zy) is found employing a line search technique and, finally,
in Line @] the new iterate xj1 is generated.

Through the next proposition, we state, under the hypothesis of convexity
of the feasible set ) and of convergence to Pareto stationarity, the well-
definiteness property of the framework when an e-Pareto-stationary solution,
with € > 0, is required.

17
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Algorithm 3.1: Generic Framework for Single-point Gradient-
Based Methods

Input: F': R" — R™, () feasible set, xg € Q.

k=0

while xj, is not Pareto stationary do

Compute

B W N =

1
v(zg) € argmin  max Vfj(zg) d+ ~d' M;(xg)d
deD(zy) I=1m 2

Perform a line search to find ay,
Tpt1 = T + apo(zy)
k=k+1

8 return x;

Proposition 3.1. Let us assume that Algorithm[3-1] generates a sequence of
points {xr} C Q, with Q being a convex feasible set, such that {xy} admits
limit points each of which is Pareto-stationary for Problem . Then,
given & > 0, Algorithm[5.]] finds in a finite number of steps a point which is

e-Pareto-stationary for (2.1)).

Proof. We assume, by contradiction, that Algorithm [3.1] produces an infinite
sequence of points {x} such that, for all k, z, is not e-Pareto-stationary
for Problem ([2.1). Since the method converges to Pareto-stationary points,
there exists a subsequence K C {1,2,...} such that

lim z, =2

k—o0
keK

and T is Pareto-stationary for . By Point 3. of Lemma and Table
we thus have that 6°(z) = 0.
Given that, by Point 2. of Lemma 65 (+) is continuous in , we get
that
lim QCs(xk) =0> —¢.

k—o0
keK

Reminding that §<°(x) < 0 for all z € Q (Point 2. of Lemma , this last
result implies that, for sufficiently large values for £ € K, the following equa-
tion has to hold: §°%(z4) = mingep(s,) maxje(r,. my V.fi(zr) Td+ 3[|d]? >
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—ég, i.e. by Definition x) is e-Pareto-stationary for (2.1). Therefore, we
get the contradiction and the assertion is proved. O

Depending on the employed descent direction (see Table and line
search technique, the framework reduces to some classical gradient-based
methodologies for multi-objective optimization. Below, we report a brief
description of each of them.

3.1.1 Multi-Objective Steepest Descent

Based on the concept of steepest common descent direction (see Table 7
the standard Multi-Objective Steepest Descent (MOSD) algorithm was pro-
posed in [36]. The approach employs a back-tracking Armijo-type Line
Search, whose description along with its scheme and finite-termination prop-
erty can be found in Section [3.2.1

Before proceeding with the MOSD convergence property, we need to intro-
duce a reasonable assumption, which will be also used in other contexts of
this thesis.

Assumption 3.1. The objective function F(-) has bounded level sets in the
multi-objective sense, i.e., the set Lp(z) = {x € Q| F(z) < z} is bounded
for any z € R™.

Lemma 3.1 ([36, Theorem 1]). Every accumulation point of the sequence
{zr} C R"™ produced by the MOSD algorithm is a Pareto-stationary point. If
Assumption holds with Q = R™ and z = F(xy), then the sequence {x}}
stays bounded and has at least one accumulation point.

3.1.2 Multi-Objective Projected Gradient

The Multi-Objective Projected Gradient (MOPG) method was firstly intro-
duced in [29] and then developed and analyzed in [39,|40]. In addition, the
MOPG main results were summarized in |38]. The method is an extension of
the MOSD procedure dealing with constrained problems. In particular, it deals
with optimization problems characterized by (2 = C' C R", with C being a
feasible closed and convex set. The considered descent direction in MOPG is
the constrained steepest common descent one (see Table , while the em-
ployed Armijo-type line search is the same one of MOSD (further information
about this technique can be found in Section |3.2.1]).
We report here two theoretical results of the MOPG method.
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Lemma 3.2 (|38, Lemma 4.3]). Let {3} C R™ be a sequence generated by
MOPG. Then, we have {xy} C Q.

Lemma 3.3 (|38, Theorem 4.4]). Every accumulation point, if any, of a
sequence {x} generated by MOPG is a feasible Pareto-stationary point.

3.1.3 Newton-type Methods

The considered Newton-type methods deal with unconstrained optimization
problems (2 = R™). In particular, we will consider:

e the Multi-Objective Newton (NWT) method [34];
o the Multi-Objective Quasi-Newton (Q-NWT) algorithm [89];
o the Multi-Objective Modified Quasi-Newton (MQ-NWT) approach [1].

We refer the reader to Table 2] in order to have more details about the
direction type employed in each algorithm. Note that, unlike the last two
methodologies, NWT only deals with problems characterized by F'(-) twice
continuously differentiable and strictly convex, since only in this scenario
the second derivatives V2fi(-),..., V2f,(+) exist and are positive definite.
Regarding the line search techniques employable in these methods, we refer
the reader to Section [3:2] Finally, for the sake of brevity, we do not report
here the detailed convergence properties of the approaches: these latter ones
can be deeply analyzed in the referenced papers.

3.2 Single-point Line Search Techniques

In this section, we provide a brief description of the Armijo-type and Wolfe
line searches employable in the single-point methods introduced in Section

B1

3.2.1 Armijo-type Line Search

Given a descent direction at the current solution xy, the idea of the Armijo-
Type Line Search (ALS) |36 is to reduce the step size until we get a sufficient
decrease for all the objective functions. The scheme of ALS is reported in
Algorithm

In the next proposition, we report the finite termination property of the
line search.
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Algorithm 3.2: Armijo-type Line Search (ALS)

1 Input: F': R™ — R™, Q feasible set, x € Q, v(xy) descent direction,
ag>0,0€(0,1),v€(0,1).

2 a=aqp

3 while z;, + av(xy) ¢ QV F(zg + av(zy)) £ F(ar) + yadp(zg)v(zy)
do

4 L a =

5 return «

Proposition 3.2. If F(-) is continuously differentiable and Jp(z)v(zx) <
0,,, then there exists some ¢ > 0, which may depend on x, v(zx), v and €,
such that

z+tv(x) € Q

and
F(z +tv(z)) < F(z) + ~vtJp(x)v(z)

for all t € (0,¢].

Proof. Given the hypothesis, by Lemma 4 in [36], we have that there exists
some & > 0, which may depend on z, v(z) and =, such that, for all ¢ € (0, &],

F(z +tv(x)) < F(x) + ytJp(x)v(x).

Moreover, by Equation (2.3)) v(z) € D(x) and, then, by (2.2) there exists
t > 0 such that for all ¢ € [0,7]

x +tv(z) € Q.

Thus, we get the thesis choosing € = min{¢&,t }. O

Remark 3.1. By the definition of D(-,-) (2.4), we have that Jp(z)v(z) <
1,,D(z,v(z)). Moreover, if M;(z) = 0 Vj € {1,...,m} Vo € Q, then it
follows that D(x,v(x)) < 6(z). Using Proposition and these results, we
trivially obtain that, for all ¢ € (0,¢],

F(z +tv(z)) < F(z) +vtJp(z)o(z)
< F(x) + LpytD(z, v(x))
< F(JJ) + 1m7t9('x :
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3.2.2 Wolfe Line Search

The Wolfe conditions have been extended to MOO in |71]: given the current
solution z and a descent direction v(xg), we want to find a step size «
satisfying

F (z + av(zg)) < F(zk) + LyaD (g, v(zg)) ,

and
D (zx + av(zy),v(xg)) > o D(xg, v(zk)),

where v,0 € (0,1). In the unconstrained scenario, assuming that v(xy)
is a descent direction for F(-) at xj and there exists A € R™ such that
F(xp + av(zy)) > A for all @ > 0, an interval of values exists satisfying
these conditions |71, Proposition 3.2]. The theoretical result can be further
improved assuming the boundedness of at least one objective function |72}
Proposition 1].

To the best of our knowledge, the first Wolfe line search for unconstrained
MOO was proposed in [72]. For the sake of brevity, we do not report here
nor the scheme or the finite termination property of this methodology; for
further information on the topic, we refer the reader to the referenced paper.

Remark 3.2. As mentioned in Section [2.2.1] similar to the scalar case, in
Quasi-Newton methods it is crucial to have, for each j € {1,...,m} and
iteration k, that s,;ryf > 0 in order to maintain the positive definiteness of
the approximation matrix B;. Indeed, unless F'(-) is component-wise strictly
convex, the latter inequality is not guaranteed. In order to overcome this
issue, in Quasi-Newton methods for scalar optimization, Wolfe conditions
are imposed at each iteration [84]. However, in MOO, even if the Wolfe
conditions are satisfied, it may occur that, at the iteration k, s;yf < 0 for
some j € {1,...,m}. In other words, considering that

Sk = Tpyl — T = akaN(xk), (3.1)
we may have that, for some j € {1....,m},
[V fi(@ai1) = V()] 09N (2x) <0,

which can be also re-written in the form

Vfi(argr) "o (x) < Vi (me) TN ().
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For this reason, a different formula for updating Bj; is introduced in [90].
The corresponding update formula for H; remains similar to (2.8, except
that p;? is now defined as

T,k e Tk
. 1/(skyj) if spyj >0, (3.2)
/ 1/ [D (T, 5%) — VI (@) " sk.] otherwise.
Using the above update rule, pf is proved to be strictly positive even when
s;ryf < 0. Thus, H J’-H'l and, consequently, le_c—i—l always remain positive
definite.

3.3 The Front Steepest Descent Algorithm

Through the years, the MOSD procedure (Section was extended to han-
dle a sequence of sets { X} of non-dominated points, rather than a sequence
of points, aiming to approximate the Pareto front of the optimization prob-
lems. In a context like the MOO one, providing multiple and different so-
lutions could be more useful than returning a single one: the user would be
indeed free to choose, a posteriori, the solution providing the most appro-
priate trade-off among many for themselves. An algorithm representing an
extension of the MOSD procedure in this direction is the Front Steepest De-
scent (FSD), firstly introduced in [23]. As mentioned in Chapter[L] FSD is not
the only front-oriented gradient-based algorithm in the literature; however,
it was inspirational for most of the works presented in this thesis and, for this
reason, we decided to recall its scheme and characteristics in a dedicated,
albeit short, section.

Before proceeding with the description of FSD, we need to introduce two
preliminary concepts, which will be also crucial in the mechanisms of our
proposals.

3.3.1 The Partial Descent Direction

As reported in Section [3.3.3] not all the objective functions are necessarily
considered in every iteration of FSD to define the search direction: considering
only a subset of them may be indeed useful to spread the search in the
objectives space and to reach the extreme regions of the Pareto front. In
this case, the resulting direction is called steepest partial descent direction.
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Similar to Problem (2.3)), we propose a more general formulation to find
partial descent directions:

. _ 1 _
o mex V(@) d+ idTMj (z)d, (3.3)
where Z C {1,...,m} is a subset of indices of objectives. Again, if the

matrices M;(-), with j € Z, are positive definite, Problem (3.3 has a unique
minimizer vz(Z). Accordingly, the optimal value of the problem at Z will be
denoted as 67(Z). It is trivial to see that, for all x € Q:

o O7(x) < 0(x) <0;
e O7(x) =0(z) when Z = {1,...,m};
e 07(-) inherits the continuity property, if it exists, of 8(-).

Similar to the steepest common descent direction (Table , the steep-
est partial one represents a special case of partial descent direction where
we have Q@ = R™ and M;(-) = I, for all j € Z. Moreover, a similar state-
ment can be also applied for the other well-known directions from the MOO
literature listed in the referenced table. Throughout the thesis, the partial
descent directions will be always distinguished from the common ones by
the subscript Z in the symbols v(-),0(-) (e.g., the steepest partial descent
direction will be denoted as v27(-)).

3.3.2 The Front Armijo-Type Line Search

In [23], a front-oriented variant of ALS (Algorithm [3.2)) is introduced; we call
it Front Armijo-Type Line Search (FALS). In order to describe this technique,
we need to introduce two additional notations: given a subset Z C {1,...,m}
and a set of points X C R", we define

o Fr(Z) as the |Z|-dimensional vector with components f;(Z), with j € Z,
and

e X7 C X as the set of points that are mutually non-dominated w.r.t.
FI('); i.e.,

Xr={re X |yeXst Fr(y) S Fr(x)}. (3.4)
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In Algorithm [3.3] we report the scheme of FALS. In this line search procedure,
the step size is reduced until a sufficient decrease is reached w.r.t. all the
points in X7 for at least one of the objective functions f;(-), with j € Z. FALS
can be considered as a weak extension of ALS to the multi-objective case. As
it is not required to obtain a sufficient decrease for all the objective functions,
employing FALS leads to two consequences: less required computational time
and larger values for the step size. These features may be very useful to
obtain good and spread Pareto front approximations in a short time.

Algorithm 3.3: Front Armijo-type Line Search (FALS)
1 Input: F:R* = R™ T C{1,...,m}, Xk C R" set of mutually
non-dominated points w.r.t. Fz(+), 2. € X%, ag > 0, § € (0,1),
v € (0,1).
2 a=aqp
s while Iy € X¥ s.t. Fr(y) + 177002 (2.) < Fr(z. + ovfP(z.)) do
4 L a=da

5 return «

FALS has a finite termination property, which we recall in the following
lemma.

Lemma 3.4. (25, Proposition 4] Let T C {1,...,m}, x. € X% be such that
020 (x.) <0, i.e., v2P(x.) exists such that

1 .
V(o) 02 (o) + gl\va(Ic)ll2 <0, VjeTl
Then da > 0 such that
Fr(y) + 1|I\7d9i9D(xc) £ Fr(ze + avi®(z.)), Vy € X7,

i.e., the while loop of FALS terminates in a finite number h of iterations,
returning a value & = 6"ag. Furthermore, the produced point x. + @ng(azc)
is not dominated with respect to the set X*.

3.3.3 Algorithmic Scheme and Properties

After introducing the notion of partial descent direction and the FALS proce-
dure, we are ready to report the scheme of FSD in Algorithm [3.4] In brief, at
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each iteration % all the points in the set X* (Step and any possible subset
of objectives Z C {1,...,m} (Step[6) are considered: if z. is not dominated
with respect to Fz(-) and 07 (x.) < 0, an execution of FALS (Algorithm [3.3)
is carried out to find a step size along the steepest partial descent direction
(Step ; the new resulting point is then added to the current set of solutions
X k_while all points that are dominated by it are removed (Step @)

Algorithm 3.4: Front Steepest Descent (FSD)

1 Input: F:R™ = R™, X% C R” set of mutually non-dominated
points w.r.t. F(+).

2 k=0
3 while a stopping criterion is not satisfied do
4 | XF=Xxk
5 forall z, € X* do
6 forall Z C {1,...,m} such that
e 1. € X% and
° 9§D(CEC) <0
do
8 o = FALS(F(-),Z, Xk, z.)
9 XF = (Xku{xc—&—av%’j(xc)})\
{ye X4 F (2 +avsP(a,) 5 F(y)}
10 XT’““ = Xk
1 | k=k+1

12 return XF

Now, we shall recall the convergence property of FSD. This one is based
on the concept of linked sequence |67], whose definition is reported below.

Definition 3.1. Let {X k} be a generated sequence of sets of non-dominated
points. We define a linked sequence as a sequence {z;, } such that, for any
k=1,2,..., the point z;, € X* is generated at iteration k — 1 by the point
Tj._, € XFk-1

Before proceeding with the FSD convergence property, we also need to state
the following assumption. We report it in a more general way, i.e., consid-
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ering a generic feasible set 2, since it will be also used in other chapters of
the thesis.

Assumption 3.2. Given a set of non-dominated points X° C €, there exists
zo € X° such that:

1. x is not Pareto-stationary for Problem (2.1));
2. the set Lr(x0) = UL, {z € Q| fj(z) < fi(xo)} is compact.

Note that this assumption is stronger than the one required to prove the
convergence of the MOSD method (Assumption with Q = R™). However,
as observed in [23], this is reasonable since the stopping criterion of FALS
(Algorithm is weaker than the second one used in ALS (Algorithm [3.2).

Lemma 3.5 ([23, Proposition 5]). Let Assumption hold with @ = R™.
Let {Xk} be the sequence of sets of nondominated points produced by Algo-
rithm . Let {x;.} be a linked sequence, then it admits limit points and
every limit point is Pareto-stationary for Problem .

Remark 3.3. An improved version of Algorithm was also proposed
in [23], which is based on an extrapolation strategy and allows to possibly
obtain many non-dominated solutions along the search direction. When used
within Algorithm [3:4] the extrapolation technique does not alter theoretical
convergence results, but the resulting algorithm is reported to be significantly
more effective.

Finally, the FSD algorithm can be adapted to handle box-constrained
optimization problems. We call the adaptation Front Projected Gradient
(FPG) and we provide a full description of it in Appendix along with
feasibility and convergence properties.
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Chapter 4

A Memetic Procedure for
Global Multi-Objective
Optimization

In this chapter EL we consider multi-objective optimization problems over a
box, i.e.,

min F(z) = (fi(z),..., fm(z))"

IGR'VL
s.t. x € [l,u],

where [,u € R™ are such that, for all i € {1,...,n}, I; < u;. In line with
Problem (2.1)), we denote the feasible set as @ = {z € R™ | z € [l,ul}.
Several computational approaches to solve these problems have been pro-
posed in the literature, that broadly fall into two main classes: evolutionary
algorithms (EAs), which are usually very good at exploring the feasible re-
gion and retrieving good solutions even in the nonconvex case, and descent
methods, which excel in efficiently approximating good quality solutions.
However, each of these two classes also has non-negligible practical draw-
backs: EAs have no theoretical convergence property [34] and are usually
expensive [491/66,(94]; on the other hand, descent algorithms often produce
suboptimal solutions when starting from non carefully chosen points and
are thus not suitable for highly non-convex problems. Here, we propose a

1Part of the content of this chapter has been published as “A memetic procedure
for global multi-objective optimization” in Mathematical Programming Computation,
2023 (61].

29
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new memetic method which combines the good features of both. Memetic
algorithms are particularly successful strategies in scalar optimization, com-
bining population-based techniques (either heuristic and/or genetic ones)
and local search steps [16,/46,/47,/68./69,79]. In the case of MOO, this idea
has only superficially been considered. Indeed, we can find approaches that
are mostly application-specific |[103] or that employ heuristic [55}/62}/64} 73|,
meta-heuristic [2,/101], stochastic [28}33] or scalarization-based [49194}/100]
local search steps. Even the few proposed strategies employing gradient in-
formation for the local search steps do not exploit the concept of common
descent directions. Rather, convex combinations of gradients are generated
and exploited in various ways [10L141/62,/66,/93]. Our proposal, which we call
Non-dominated Sorting Memetic Algorithm (NSMA), combines an evolution-
ary approach, i.e., NSGA-II, which represents the de facto standard at least
popularity-wise for unconstrained and bound-constrained MOO, with MO
descent methods. In particular, in order to be executed in combination with
NSGA-II, a new front-oriented descent method is presented and theoretically
analyzed.

4.1 Preliminaries: NSGA-IT

The Nondominated Sorting Genetic Algorithm II (NSGA-II) is a multi-objective
evolutionary algorithm that was proposed in [26]. In particular, NSGA-IT is
a genetic algorithm that creates a mating pool by combining the parent and
offspring populations and selecting the best N solutions. In this section, we
review the main characteristics of NSGA-II. For a deeper understanding of
the algorithm mechanisms, the reader is referred to the original work [26].

We report the main steps of NSGA-II in Algorithm

NSGA-II deals with a fixed size population (N solutions) and takes as
input an initial population X°. For the sake of clarity, from now on we
consider X© as a set composed by N feasible solutions. However, we want
to remark two facts.

e Starting with a population X° composed by N points is not neces-
sary: if the population is smaller /bigger, after the first iteration it is
increased /reduced in order to get exactly N solutions in it.

e NSGA-II can also manage unfeasible points. However, since in our work
we address bound constrained problems, and the genetic operators en-
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Algorithm 4.1: Nondominated Sorting Genetic Algorithm II
(NSGA-IT)

1 Input: F :R” — R™, Q feasible set, X° C Q, N population size.

© 00 N OO oA W N

10
11
12
13

14

k=0
X0 = x°
RO, C° = getMetrics(X?)
X0 RO, C0 = getSurvivors(XO,RO,éo,N)
while a stopping criterion is not satisfied do
Pk = getParents(X*, RF, C¥)
OF = crossover(P¥,1,u)
O* = mutation(O*,1, u)
Xk = Xty Ok
RFF1 CF+1 = getMetrics(XF 1)
Xk+1 RRHL OFH1 — getSurvivors(Xk+!, RF1 Ck1 N)
B k=k+1
return X"

sure that after the first iteration no point in the population violates
the bound constraints, we assume that X is only composed by feasible
points.

The core idea of the algorithm is that during an iteration:

the parents are chosen among the current solutions (Line ;

N offsprings are created from the parents through the crossover op-
erator (Line [8);

the offsprings are mutated using the mutation function (Line @;

a new population of 2N solutions is created merging the current pop-
ulation with the offsprings (Line ;

by the function getMetrics (Section[4.1.1)) scores are associated to the
members (Line [11));

by the function getSurvivors (Section 4.1.3) only the best N points
(survivors) are selected and maintained (Line [12)).
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The crossover and mutation operators have a crucial role in the NSGA-IT
mechanisms. The crossover operator aim is the creation of offsprings that
inherit (hopefully the best) features of the parents. The mutation operator
introduces some random changes in the offsprings. This latter one could be
useful when we want to spread our search in the objectives space as much
as possible. For a more detailed and technical explanation about these two
operators, we again refer the reader to [26]. We want to remark here that
the NSGA-II mechanisms ensure that there are no duplicates among the
offsprings and any offspring is not a duplicate of any point in the current
population. At the end of the algorithm execution, the current population
X* is returned.

In the next subsections, we provide other details of the algorithm that
are useful for our purposes.

4.1.1 Metrics

In this section, we explain the metrics used in the NSGA-II mechanisms
(computed in the getMetrics function in Lines of Algorithm . In
particular, these scores are used to select the parents and the survivors.

The first one is the ranking (R), which leads to a splitting of the popu-
lation in different domination levels. Briefly, if a point has rank 0, it means
that it is not dominated by any point in X* w.r.t. F(-). If it has rank 1, it is
dominated by some of the points with rank 0, but it is not w.r.t. any other
point with rank equal to or greater than 1. In order to obtain the ranking
values, a fast sorting approach is employed, which is one of the strength
elements of the NSGA-II algorithm.

The second considered metric is crowding distance (C). It is useful to
get an estimate of the density of solutions surrounding a particular point in
the population. Having a high crowding distance indicates that the point
is in a poorly populated area of the objectives space, and maintaining it in
the population may likely lead to a spread Pareto front. Note that for each
point this metric is calculated with respect to the solutions with the same
ranking value.

We again refer the reader to the original paper [26] for the rigorous defi-
nition of the metrics.
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4.1.2 Parents Selection

In the getParents function, pairs of parents are randomly chosen among
the solutions in X*. Then, considering a pair, only one of the two points is
selected by binary tournament. In this latter one, the solutions are compared
in the following way.

e The point with the lowest rank is preferred.

e If the ranking value is the same for both points, the one with the
highest crowding distance is chosen.

e In the unlikely case in which the crowding distance values are equal
too, a random choice is done.

The selected point will be used with a parent chosen from another pair in
the crossover function in order to create offsprings.

This approach of comparing the solutions is also used in the getSurvivors
function.

4.1.3 Selection Operation

After getting the offsprings through the crossover and mutation opera-
tors, the new population is composed by 2N solutions. The aim of the
getSurvivors function (Lines of Algorithm is to select and main-
tain the best IV solutions. As in the getParents function, the selection is
based on the ranking and the crowding distance.

e The set composed by the 2N points is initially sorted based on the
ranking.

e The solutions with the same rank are sorted based on the crowding
distance.

e The first IV points are chosen as the best ones.

4.2 Non-dominated Sorting Memetic Algorithm

In this section, we introduce our novel memetic algorithm for bound-constrained
MOO problems, which we call Non-dominated Sorting Memetic Algorithm
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(NSMA). We first show and describe the algorithmic scheme. Then, we for-
mally introduce the Front Multi-Objective Projected Gradient (FMOPG) algo-
rithm, which is the descent method used within the NSMA and for which we
also provide a rigorous theoretical analysis.

4.2.1 Algorithmic Scheme

The scheme of NSMA is reported in Algorithm Basically, the structure
of the proposed algorithm is similar to that of NSGA-II, from which we
also inherit all the genetic operators. The main differences between the two
methods are constituted by three new operations:

e getSurrogateBounds (Line ;
e getCrowdingDistanceThreshold (Line ;
e optimizePopulation (Line [16).

In the next subsections, we give a detailed description of these three new
functions.

4.2.1.1 Estimating Surrogate Bounds

When the addressed problem is characterized by a feasible region that is
particularly large w.r.t. the one(s) where the Pareto set lies, the NSGA-II
algorithm turns out to be slow at obtaining a good approximation of the
Pareto front. This issue occurs because of the crossover and, above all,
of the mutation operator. Random mutations over a large search area lead
from the very first iterations to a population which is overly disperse and far
from optimality. In such a scenario, even the effectiveness of the crossover
operator might be compromised: some parents might have extremely bad
features. As a consequence, NSGA-II may exhibit a performance slowdown.

In NSMA, this issue is solved using surrogate bounds for the crossover
and the mutation operators instead of the original ones. These bounds are
obtained using the getSurrogateBounds function, which we report in Algo-
rithm [£.3] The surrogate bounds are computed using the current population
and a shift value sp. This latter parameter is employed to progressively en-
large the region where the population can be distributed: a greater value
leads to a bigger enlargement.
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Algorithm 4.2: Non-dominated Sorting Memetic Algorithm

(NSMA)

1 Input: F : R® = R™, Q feasible set, X° C Q, N population size,
sn € RY, ¢ €[0,1], nope € N*, {g;} C R decreasing sequence.

2k=0,t=0

3 X0 =X0

4 R0, CY = getMetrics(X?)

5 X9 R0, C0 = getSurvivors(XO7R07C’07N)

6 while a stopping criterion is not satisfied do

7 P* = getParents(X*, RF, C¥)

8 ¢, uj = getSurrogateBounds(X"¥, 1, u, sy)
9 O* = crossover(PF, I3, uf)
10 | OF = mutation(O*, I3, uf)

11 Xkl = xkyOF

12 | RFHL CFFL = getMetrics(XF+1)

13 Cry1 = getCrowdingDistanceThreshold(X*+1, RF+1 O+ g
14 XFkFL REFL Okt1 — getSurvivors(Xk+1,I%k"'l,ék'*'l,N)

15 if £ mod ngy = 0 then

16 Xkt REHL Okl =

optimizePopulation(F(-),Q, X 1 RFL Ck+l g ) & N)
17 t=1t+1

18 gkz:k+1

19 return XF

Ideally, the exploration starts considering only a small (local) portion of
the feasible area, which is defined by the initial population and the shift
value sp. In this way, the points cannot be moved by the crossover and
the mutation operators too far away in the feasible set. At each following
iteration, new surrogate bounds are computed to enlarge the search space.

After a number of iterations, it may happen that the surrogate bounds
cover a bigger region than the one defined by the original bounds. In such
case, the search goes on over the entire feasible set.
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Algorithm 4.3: getSurrogateBounds

1 Input: X* C Q, I,u € R™ lower and upper bounds, s, € R¥.
2 fori=1,...,ndo

3 (17); = max {li, min {z;} — sh}
zeXk
4 | (u}); =min ui,rn;i)](c{xi} + sh}

5 return [j, uj

4.2.1.2 Identifying Exploration Candidates

Similarly as in memetic approaches for scalar optimization, performing local
searches starting from each point in a population usually turns out to be
inefficient. In fact, a great computational effort is required to optimize many
points that in the end do not lead to good solutions.

In the case of NSMA, one may think of only performing local searches
for the rank-0 points. However, this idea is inefficient too: during the last
iterations, most, if not all, the points are likely to be associated with a
ranking value equal to 0. Furthermore, many of these points could be in a
high density area of the Pareto front and, therefore, optimizing all of them
could be a waste of computational time.

The issue is solved by choosing to optimize the rank-0 points associated
with an high crowding distance. As already remarked in Section such
points are in a poorly populated area of the objectives space. Therefore,
optimizing them, we still contribute to obtain a better approximation of the
Pareto front, since they are rank-0 points, and, at the same time, we have
the possibility to populate a low density area, leading to a better spread
Pareto front.

Through the getCrowdingDistanceThreshold function, which we report
in Algorithm we retrieve the g—quantile of the crowding distances of the
rank-0 points in X**1. We denote by €k4+1 this quantity: only the rank-0
points associated with a crowding distance greater than or equal to ¢x41 will
be optimized through the FMOPG algorithm. Smaller values for the parameter
q lead to the optimization of a greater number of points.

As stated in [26], some points will be associated to a crowding distance
equal to +oo. These points are considered the extreme solutions of the
Pareto front w.r.t. a specific objective function. For this reason, they are
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Algorithm 4.4: getCrowdingDistanceThreshold
Input: X*+1 c Q, R Ok ¢ RIX*' metrics vectors, q €10,1].

1
2 CF1 = (¢, € C*li, = 0N ¢, < +oo}

3 if C¥*! # () then

4 L Let ¢4 be the ¢g—quantile of the set C*+!
5 else

6 L Ck+1 = +00

7 return cp4q

always used as starting solutions for local searches, since they could lead to
a wider Pareto front approximation.

4.2.1.3 Local Searches by Multi-Objective Descent

In the optimizePopulation function, which we report in Algorithm
the FMOPG method is employed to refine the population by performing local
searches. This function is the core of our memetic approach: it allows to
combine the typical features of descent methods with the genetic operators
of NSGA-II.

In order to be optimized through FMOPG w.r.t. a subset of indices of
objectives Z C {1,...,m}, a point x, must satisfy the following conditions.

e Its rank must be 0 and its crowding distance must be greater than or
equal to ¢x41 (Line . These requirements are already discussed in
Section [4.2.1.2]

e It must belong to X%H, which is the set of mutually non-dominated
points w.r.t. Fz(-) contained in X**1 (Line . A formal definition
of this set can be found in Equation . Trying to optimize points
which are not contained in X%H could be useless, since we have no
guarantee to reach a non-dominated point w.r.t. Fz(-).

e It must not be Pareto-stationary w.r.t. Fz(-) (Line 5cJ).

If the point satisfies all these requirements, it is used as starting solution in
the FMOPG algorithm. Along with it, the set X%H is used as input for the
algorithm. FMOPG returns the set of produced solutions, which are collected
in the set X? and inserted in the set X*+1.
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Algorithm 4.5: optimizePopulation
1 Input: F: R™ — R™, Q feasible closed and convex set, X*+1 ¢ Q,

k+1 . _ . .
RF+1 CF+1 ¢ RIX™T | metrics vectors, é,41 crowding distance

threshold, ¢; € Rg, N population size.
Xkt — xk+1
forp=1,...,|X**!| do
for Z € 211} do
if x, is such that

oA WN

a. rp, =0, ¢p > Cry1
v k41
b. x, € X7

c. 095 (z,) <0 (see Table

then
7 XP = FMOPG(F(-), 2, Z, Xt 2, 1)
XK+l — Xk+1 XP

9 RF+1 CF+1l = getMetrics(XF+1)
10 Xk+L R OFHl — getSurvivors(X k! REFL Ok N)
11 return X+t R+ Ck+l

Lastly, the new population Xk+1 i reduced in order to have exactly N
survivors. This last operation is performed through the getMetrics (Sec-
tion [4.1.1)) and the getSurvivors (Section [4.1.3)) functions of the NSGA-II
algorithm.

4.2.2 The Front Multi-Objective Projected Gradient Al-
gorithm

The Front Multi-Objective Projected Gradient (FMOPG) algorithm is the de-
scent method used in our memetic approach. In particular, it is a variant of

the MOPG method (Section [3.1.2)).

4.2.2.1 Algorithmic Scheme

We report the scheme of FMOPG in Algorithm
The main difference between FMOPG and MOPG is the following: while in
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Algorithm 4.6: Front Multi-Objective Projected Gradient (FMOPG)

1 Input: F: R® — R™, Q feasible closed and convex set,
ITC{l,....,m}, X°CQ, zy€ X"

2 k=0
3 while xy, is not Pareto-stationary w.r.t. Fz(-) do
4 Compute
df = argmin max Vf;(z;) " d + 1||d||2
dern  J€T 2 (4.1)
s.t. xp +deq
5 Let 9% the optimal value of Problem at x
6 | o« =B-FALS(F(),Q,Z, X% x;,dE, 0F)
7 Tpi1 = Tk + apdZ
8 XFH = Xk U {zp}
9 k=k+1

10 return sequence {x}

the original algorithm the current point xj is only optimized w.r.t. itself, in
FMOPG it is also w.r.t. the set of points in which it is contained. At each
iteration, the direction at the solution zj is found solving an instance of
Problem ; by Problem and Table it is trivial to see that if
059 (z1) < 0 thus 6% < 0, i.e., df is a feasible and descent direction at .
Then, in Line[6] a step size ay, is calculated by the B-FALS procedure, whose
description is reported in Appendix [A] In brief, B-FALS is an extension of
the FALS technique (Algorithm for the bound-constrained MOO setting:
the only added requirement w.r.t. the original procedure is that the step size
must lead to a point that is also feasible. Given the direction and the step
size, a new point x4 is finally obtained (Line[7)). This latter one is inserted
in the set X*, leading to a new set X**! (Line .

The FMOPG algorithm iterates until the current solution xj is Pareto-
stationary w.r.t. Fr(-). At the end, the method returns the sequence of
points {zy } generated during the iterations. Indeed, considering the stopping
conditions of B-FALS, we have no guarantee that, for all k, the point x4
dominates x; w.r.t. Fz(-). So, every point produced by FMOPG could be useful
to obtain good and spread Pareto front approximations.
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Finally, note that the FMOPG algorithm is called by the optimizePopulation
function with an additional parameter ¢; (Line [7] of Algorithm . In fact,
FMOPG is executed using e-Pareto-stationarity as stopping condition. In NSMA
(Algorithm , we consider a decreasing sequence {¢;} C RY. So, during
the iterations, we get closer and closer to the Pareto-stationarity.

4.2.2.2 Algorithm Analysis

In this section, we provide a rigorous analysis of the FMOPG algorithm from
a theoretical perspective. The following analysis is crucial to state the con-
vergence properties of FMOPG. These latter ones are crucial to guarantee that
local searches within NSMA stop in finite time and, thus, that the overall
algorithm is well-defined.

Before proceeding, we need to state an assumption.

Assumption 4.1. Let Z C {1,...,m}, X° C Q be a set of feasible points
and zg € X°. There does not exist a point 7y € X° that dominates zg w.r.t.
FI(~), ie., xg € X%

This assumption is reasonable since a point x, to be optimized through
FMOPG must be non-dominated w.r.t. Fz(-) (Section [4.2.1.3).
We begin by characterizing the points produced by the FMOPG algorithm.

Proposition 4.1. Consider a generic iteration k of FMOPG. Let T C {1,...,m},
X* be a set of feasible points and x;, € X*. Assume that xy, is not dominated
by any point in X* w.r.t. Fz(-). Then, B-FALS returns a step size ay > 0
such that the point xx11 = x) + akd% is feasible and not dominated by any
point in Xkt w.r.t. Fr(-).

Proof. The B-FALS algorithm is performed from x;, € X%, with 0% < 0 (Step
5), along a constrained partial descent direction df . Then, from Proposition
B-FALS terminates in a finite number of steps and returns a step size
ay, > 0 such that the point zp 1 = xf + akdf has the following properties:

® Ty €Y
e 75,1 is not dominated by any other point in X* w.r.t. Fr(-).

Since X**+1 = X* U {x}41}, the assertion is finally proved. O

Remark 4.1. Since the point z;y; induced by the step size produced by
B-FALS is not dominated by any point in X**! w.r.t. Fz(-), we can easily
conclude that the new point is also not dominated w.r.t. all the objectives.
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Given Proposition we can state the following corollary.

Corollary 4.1. Let Assumption hold with T C {1,...,m}, the set X°
and the point xo. Then, the sequence of sets {X*} and the sequence of points
{z} generated by FMOPG are such that for all k = 0,1, ..., xy is feasible and
not dominated by any point in X* w.r.t. Fz(-).

Proof. The assertion straightforwardly follows if the assumptions of Propo-
sition are satisfied at every iteration k of the algorithm.

When k = 0, this is guaranteed by Assumption[d.1] The case of a generic
iteration k simply follows by induction from Proposition [41] itself. O

In order to state the convergence property of FMOPG, from this point
forward we also suppose that Assumption holds. As already observed in
Section [3.3] for the FSD algorithm, this assumption is stronger than the one
required to prove convergence of the MOPG method (Assumption , but
still reasonable since the second stopping criterion of B-FALS (Appendix |[A))
is weaker than the second one used in ALS (Algorithm .

Proposition 4.2. Let Assumptions hold withT C {1,...,m}, the set
X0 and the point xo. Let {xy} be the sequence of points generated by FMOPG.
Then {x} admits limit points and every limit point is Pareto-stationary
considering the objectives f;(-), with j € I.

Proof. Firstly, we prove that the sequence {zj} admits limit points. Since
zo € XF for all k, Corollary guarantees that, for each k, z; € ©Q and
there exists an index j(xx) € T such that f;,)(2x) < fj(z,)(z0). So,

r € {r e Q| fj(fbk)(x) < fj(wk)(xo)}

and, therefore, x;, € Lr(xg), Vk. Assumption assures that the sequence
{z1} is bounded. Hence, this latter one admits limit points: we can consider
a subsequence K C {1,2,...} such that

lim z, = 2.

k—o0
keK

It is trivial to see that, by Lemma and the definition of 6% (Step , T
is Pareto-stationary w.r.t. Fz(-) if and only if 7 = 0. By contradiction, we
assume that Z is not Pareto-stationary w.r.t. Fz(-): there exists € > 0 such
that

0f < <0, Vk€K. (4.2)
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Next, we want to prove the following statement:
lim aibF = 0. (4.3)
k—o0
keK
Again, by contradiction, we assume that the assertion is not true: there
exists a subsequence K C K and 7 > 0 such that
I ~ _
apby <—-n <0, VkeK. (4.4)

Recalling Proposition and Corollary for all k € K, B-FALS returns
in a finite number of iterations a step size oy such that

Tpt1 = Tk + Oékd% e (45)

and Fr(yx) + lmfyakef ¢ Fr(xpy1), for all y, € X*. By using Equation
[4.4), we obtain that, for all k € K and for all y;, € X",

Fr(yr) = 11270 £ Fr(2rq1)- (4.6)
Since v > 0 and 5 > 0, we have that —vy7 < 0.
Since X* = XOU{x,}U...U{zx} and 2y € X°, it simply follows that, for all
ke K, Fr(xo) — Lizvi] £ Fr(xk41). Therefore, for all k € K, there exists
Jji € T such that f}, (z0) > fj, (o) — 77 > fj.(@r+1), and, then, considering

also Equation (4.5)),
Tpy1 € ZF(I’O). (47)

Moreover, let us consider k1, ko € K, with k1 < ko. By the instructions of the
algorithm, we know that z, 1 € X*2. Thus, from Equation , we know
that Fr(zg, 1) — 1770 £ Fr(2r,+1). Therefore, for any pair ki, ke € K,
with k1 < ko, there exists ji, € Z such that

Finy (@ry+1) =¥ 2 fi, (Thyt1)- (4.8)

Equations (4.7)) and (4.8]) imply that we have an infinite sequence { Fz(zx+1) }rei,
with 2141 € Lr(x0), where any pair of points is at a distance not smaller
than 7 from each other. Thus, the set

Z = {Z € R™ | z = F($k+1),dfk+1 S ZF(I’o),k S K}

is not compact. This last statement and the continuity of F(-) contradict
Assumption [3.2] since the image of a compact set under a continuous map
should be compact. Thus, Equation (4.3)) holds.
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Recalling Equation (4.2]), from Equation (4.3) we obtain the following
statement:
lim a; = 0.
k—o0
keK
Given this limit, we can consider sufficiently large values for k € K such that

ap < % <1. (4.9)

By the convexity of 2 and the definition of the direction dZ (41, Equation
([4.9) implies that the point zj + (ax/8)dE € Q. Therefore, for sufficiently
large values for k € K, the stopping conditions of B-FALS imply that there
exists a point y, € X* such that
@ «

SEOF < (on + ?kdf) . (4.10)
Considering Corollary [.1] and Equation (4.10) respectively, we have that an
index j(zy) € T exists such that [, (zk) + 7250 < fiwn (k) + 720F
and [z (Uk) + Y4EO0F < fien) (w6 + %2dE). Since the set Z is finite, we
can consider a subsequence K C K such that, for sufficiently large values for

Fr(yx) + L7y

ke K, j(x) — j and, combining the two above inequalities,
Qg Qg
f; (l“k + ?d@ = fi(zr) > VTQ%-
Using the Mean-value Theorem, we have that

Qg Qg
f; (xk + jd@ = fi(@e) = vai(fk)Tdfa
with & = xp, + tk%df, tr € (0,1). Then, we can write ij(fk)—rdf > ’yé’%,
from which we can state that

.
V(@) T + [V (6 = V()| df > 40F.
Since j € Z and the norm is non-negative, we have that 67 = max ez V f;(z1) T dZ+
T
%Hd%”2 > ij(itk)—rd% and, thus, (1 7’}/)0%—+ [ij(fk) — ij(:ck)] d% > 0.
Using Equation (4.2)), we obtain
.
~(1 =z + V158 = Vis(aw)] dE >0,

By taking the limit for & — 0o,k € K, recalling the continuity of Jx(-),
the boundedness of d and that oy — 0, we get that —(1 — )& > 0. Since
1—~>0and & > 0, we get the contradiction. So, we prove that the limit
point Z of the sequence {z} is Pareto-stationary w.r.t. Frz(-). O
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Finally, we prove that, when a stopping criterion based on the e-Pareto-
stationarity is considered, FMOPG is well defined, i.e., it terminates in a finite
number of iterations.

Proposition 4.3. Let Assumptions hold with T C {1,...,m}, the
set XO and the point xo. Let € > 0. Then, the FMOPG algorithm finds in a
finite number of steps a point xy, which is e-Pareto-stationary w.r.t. Fr(-).

Proof. Since Assumptions hold, Proposition |4.2| ensures that there
exists a subsequence K C {1,2,...} such that
lim zp =2

k—o0
keK

and z is Pareto-stationary w.r.t. Fz(-). From this point forward, the proof is
similar to the one for Proposition[3.1] The noteworthy difference is that only
the subset of objective functions indicated by Z must be considered. O

4.3 Conclusions

In this chapter, we considered smooth multi-objective optimization problems
subject to bound constraints. After a review of the existing literature, we
listed and commented the benefits and drawbacks of the main state-of-the-art
approaches designed to approximate the Pareto front of such problems, i.e.,
evolutionary algorithms and descent methods. We then focused on the design
of a memetic algorithm, whose aim is to combine the good features of both
the aforementioned approaches. We call this new method Non-dominated
Sorting Memetic Algorithm (NSMA). In this procedure, we exploit the genetic
operations of NSGA-II, which is the most popular genetic algorithm for the
considered class of problems, and the tools typical of gradient-based descent
methods, such as steepest descent directions and line searches. In particular,
we employ a new descent method, called Front Multi-Objective Projected
Gradient (FMOPG), which is a front-based variant of the original MOPG firstly
introduced in [29]. For FMOPG, we proved properties of convergence to Pareto
stationarity for the sequence of produced points.

Results of thorough computational experiments, in which we compared
our method with main state-of-the-art algorithms (NSGA-II included), are
reported in Section [0.2] These results show that NSMA can consistently out-
perform its competitors in terms of popular metrics for multi-objective op-
timization.



Chapter 5

A Limited Memory
Quasi-Newton Approach for
Multi-Objective Optimization

In this chapter E], we deal with the class of unconstrained multi-objective
optimization problems, i.e.,

min F(z) = (f1(2),..., fm(2)) . (5.1)

TER™

Quasi-Newton methods are among the most popular algorithms for the
unconstrained setting in scalar optimization. Based on a quadratic model
of the objective function, they do not require the calculation of the second
derivatives in order to find the search direction: the real Hessian is replaced
by an approximation matrix, which is updated at each iteration considering
the new generated solution and the previous one. The most famous update
formula for the approximation matrix is the BEFGS one, which is named after
Broyden, Fletcher, Goldfarb and Shanno [5]. In the multi-objective setting,
Quasi-Newton methods were proposed, for instance, in |1,|89-91].

Among the factors contributing to the success of Quasi-Newton methods
in scalar optimization, the possibility of defining limited-memory variants
of these approaches certainly stands out. The approximate Hessian matrix
can in fact be roughly recovered only using a finite number M of previously

IPart of the content of this chapter has been published as “A limited memory Quasi-
Newton approach for multi-objective optimization” in Computational Optimization and
Applications, 2028 |60).

45
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generated solutions. In this way, its management in memory, which could
be extremely inefficient and time-consuming, is avoided. In particular, the
L-BFGS algorithm, firstly designed in [83], has managed over the years to
achieve state-of-the-art performance in most settings, even with relatively
small values for M.

This work concerns, to the best of our knowledge, the first attempt in the
literature to define a multi-objective limited memory Quasi-Newton method.
The key elements that characterize the proposed approach are the following.

e A shared approximation of the Hessian matrices is employed to com-
pute the search direction.

e The Hessian matrix approximation only requires information related
to the most recent iterations to be computed.

e Equipped with a Wolfe type line search, the method is in general well
defined; moreover, in the strongly convex case, it is shown to possess
R-linear global convergence properties to Pareto optimality.

5.1 The Algorithm

We report the algorithmic scheme of our new Limited Memory Quasi-Newton
approach for MOO in Algorithm [5.1]

In the proposed approach, we use a single positive definite matrix H*
at each iteration k. In Section we introduce the update formula for
HF which is slightly different w.r.t. the one introduced in [1] and reported in
Section[2:2:2] Asin L-BFGS for scalar optimization, we maintain only a finite
number M of vectors pairs {(s;,u;)} in memory: the oldest one is discarded
each time a new vectors pair is calculated. These pairs are used in a two-
loop recursive procedure to efficiently carry out the matrix multiplication
R¥ = H* Jp(z)" (Section [5.1.1). This procedure is essentially an extension
for MOO of the one used in L-BFGS [84]. The matrix R¥ is then used in
Problem at Step [4] of the algorithm: the latter is simply derived from
Problem substituting H*Jr(xy)" with R*. We denote by %M (zy,)
the optimal value of Problem at xx. Moreover, we respectively denote
by MM (2,) (Line |5) and v=M (z;) (Line @) the Lagrange multipliers vector
and the direction corresponding to 6% (z;). Note that is valid in this
context too. Finally, in Line [7} a Wolfe line search is carried out to find a
step size ay, along the direction v (), satisfying the Wolfe conditions for



5.1 The Algorithm

47

Algorithm 5.1: Limited Memory Quasi-Newton Method

1 Input: F:R® - R™ 20 € R", v € (0,1/2), 0 € (y,1), H® = 0,

N

10

11

12

M e Nt.
for k=0,1,2,... do

Estimate R* = H*Jp (mk)—r € R™*™ (two-loop recursive
procedure)
Compute

1
OFM (2,) = fax — iATJF (z) RFA

m (5.2)
st A =1, A>0,,
j=1

Let MM (2y) = (MM (ap), .. -, )\ﬁlM(xk))T be the Lagrange
multipliers vector related to XM ()

Let oM () = —RFAM (23)

Choose ay, > 0 (trying first o, = 1) such that

F (a:k + ozkvLM(a:k)) < F(xg) + 1pyarD (mk,vLM(xk)) (5.3)
D (z + apv™™ (1), "M (2)) > 0D (vp, 0" (21))  (5.4)

Let o541 = o5, + agvEM(

if k > M then
L Discard vectors pair (sg_nr, ug—as) from storage

SL'k)

Compute and save
Sk = Tk+1 — Tk (5.5)

up =Y MM (@) [V f (w11) = V()] (5.6)

Jj=1

return z;

MOO (Section [5.1.3). The function D(-,-) present in the conditions, as well
as in the rest of the chapter, is defined as in (2.4).
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In the following, we deeply analyze the various aspects of Algorithm

5.1.1 Two-Loop Recursive Procedure for MOO

In L-BFGS, one of the most relevant features is the two-loop recursive pro-
cedure which, at any iteration k, given the vectors pairs saved in memory,
allows to efficiently compute the product H*V f(z}), where f(-) indicates
the objective function [84]. We remind, indeed, that in scalar optimization
the negative of this product identifies the Quasi-Newton descent direction:
d(x) = —H*V f(z;). Using this procedure, we do not need to store the
matrix H in memory. This property could be crucial when high dimensional
problems are considered: in these cases, maintaining and updating the ma-
trix H, which is dense in general, could be extremely inefficient. Here, we
propose an extension of this procedure for MOO: the algorithmic scheme is
reported in Algorithm

Algorithm 5.2: Two-Loop Recursive Procedure
1 Input: k€ N, M € N, {(s;,w;) | i € [max {0,k — M}, k—1]},
JF(Ik) S Rmxn, HO > 0.

2 q=Jp(zp)"

3 if £k =0 then

a | RO=H%

5 else

6 fori=k—1,..., max{0,k— M} do
7 O[i:piqTSi

8 q=q-—ua,

9 RF = HY

10 for i = max {0,k — M},...,k—1do
11 Bi=p' (R¥) s

12 RE = RFE + 5; (s —Bi)T

13 return R*

With respect to the scalar optimization case, this procedure computes
the product H*Jp(zr)". The same result could be obtained repeating
m times the procedure for scalar optimization to find Hkaj(xk) for all
j € {1,...,m}. In both cases, m (4Mn + n) multiplications are required.
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However, Algorithm allows to exploit the optimized operations of soft-
ware libraries for vector calculus.

The employment of Algorithm [5.2] is possible thanks to some properties
of (2.11)). Indeed, the latter can be re-written in the following form [84]:

HY = [(VR) T (R T R [y
4 M [(Vk—1)7 o (Vk—M-H)T} Skoprsg_ag [VETMEL VA1
4 ph-M+1 [(kal)T - (Vk7]VI+2)T:| Sk—M-&-lS;—M-H [Vk71VI+2 o Vk—l]

+ ...

+ Pk_lsk—lsg_p
where Vi = I,, — p'u;s] . As in L-BFGS, the eract matrix H*~™ is substi-
tuted by a suitable sparse positive definite matrix H°. From this last equa-
tion, the two-loop recursive procedure to compute the product H*Jg(x;)"
is derived. We refer the reader to [84] for more details.

5.1.2 Definition of H

In the proposed approach, we use a single positive definite matrix H. As
in [1] the update formula (2.11)) is used. However, taking inspiration from
(3-2), we use a different definition of p*:

& {1/ (sk uk) if sfup >0, (5.7)

1/ {Z’" MM (2, [D (Trs1,5%) — VI (xx) " sk]} otherwise.

As in [90], we carry out a line search to find a step size satisfying the Wolfe
conditions for MOO (Section . However, recalling the reasoning in
Remark in order to ensure that H**! = 0, we force through oF
to be positive even when s;uk < 0. We formalize this statement in the
following proposition.

Proposition 5.1. Considering a generic iteration k of Algorithm [5.1], let
zp € R™, vlM(z)) € R™ be a direction such that D (zj,v"M (24)) < 0,
ag > 0 be a step size along vE™M (21) and \'M (z1,) be the Lagrange multipliers
vector obtained solving Problem . If p* is updated by , then pF
positive.

Proof. See Appendix [C] O
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Remark 5.1. In the single objective case, the update formula for H*
coincides with the classical BEFGS rule. Indeed, it is sufficient to realize that,
since AI'M (z,) lies in the unit simplex by , then up = y*. Moreover,
the same reasoning can be applied with to get that p* = 1/ (s;yk)
Hence, the two-loop recursive procedure reduces to that of L-BFGS. In turn,
the overall Algorithmis nothing but L-BFGS, since d(zy) = —H*V f(x3,)
and Wolfe conditions are imposed by the line search.

Remark 5.2. The procedure in Algorithm cannot be used if we con-
sider an approximation matrix for each objective function, as in Problem
with M;(-) = B; for all j € {1,...,m} (see also Table 2.I). In such
case, both in the primal and in the dual problem the matrices are
tied to the problem variables; for example, when solving , the product
[23"21 A\;jB;]71Jr(Z) T would be recomputed any time a different solution A
is considered. The use of a single positive definite matrix prevents this issue:
matrix multiplication H.Jx(Z)" can be computed only once, before solving
subproblem , making it possible to exploit the efficiency of the two-loop
recursive procedure.

5.1.3 Wolfe Line Search

In this section, we introduce a simple line search scheme to find a step size
« along a given direction dj satisfying the Wolfe conditions:

F (zf + ady) < F(xg) + LnyvaD (zg, di) (5.8)
D (zy + ady,dy) > oD (,Tk, dy) .

Before proceeding, we consider that Assumption with Q = R™ holds.
Then, we prove that there exists an interval of values satisfying the Wolfe
conditions. Note that an analogous result has been obtained in [71}72] under
the different assumptions also reported in Section of this manuscript.

Proposition 5.2. Let Assumption[3.1] hold with Q = R™. Let z), € R™ and
assume that di, € R™ is a direction such that D(zy,dy) <0, v € (0,1/2) and
o € (v,1). Then, there exists an interval of values [ay, ], with 0 < oy < au,

such that for all o € [y, o] Equations (5.8) and (5.9)) hold.
Proof. See Appendix [C] O

After proving the existence of an interval of values satisfying the Wolfe
conditions, we report the algorithmic scheme of the considered line search.
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Algorithm 5.3: Wolfe Line Search
1 Input: F:R® = R™, 2, € R?, di, € R*, v € (0,1/2), 0 € (7, 1).
2 oz?:(),ag:oo,aozl

3 fort=0,1,2,... do

4 | if 3j st fj (w + oldy) > fi(xk) +valD (zg, di) then
5 altl =t
6 | ot =aqj
7 else

altl = ol

1f D (z + atdy,dy) < oD (xy,dy) then

10 L altt =at
11 else
12 L return o'
13 | Choose o' € (aj*!, al1)

Starting from a? = 0,00 = oo, the core idea of the line search is that
of reducing the interval [a},al] until a valid step size o' is found. At the
beginning of the for-loop, the Wolfe sufficient decrease condition (5.8]) is
checked. If it is not satisfied by af, we update of, and we maintain the same
value for o} (Lines [5| I and @ Otherw1se, !, is not updated (Line [8) and
we check if the Wolfe curvature condition is satisfied by of: if it is,
both Wolfe conditions are satisfied and, then, the current step size value is
returned; else o} is updated according to Line [1() ! After updating of, or af,
a new value for the step size a' is chosen in the interval (of,a!) and the
process is repeated.

In the next lemma, we state some properties related to the interval upper
and lower bounds o, and of.

Lemma 5.1. Consider a generic iteration t of Algorithm[5.3 Let ) € R™
and dy, be a direction such that D(xy,dy) < 0. Then, we have the following
properties:

1. if of, < oo, then

Fj(az) st fican)(@r +aydy) > fian) (@) +yay, D@, dy);
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2. a} is such that

F(z, + afdk) < F(xg) + lmfyosz(mk,dk)7
D(xk + Oéfdk,dk) < O'D(Ik,dk).

Proof. See Appendix [C] O

In the following proposition, we state that the proposed line search is
well defined, i.e., it terminates after a finite number of iterations returning
a step size satisfying the Wolfe conditions.

Proposition 5.3. Let Assumption[3.1] hold with @ =R", § € [1/2,1), n > 1
and let {of, o, '} be the sequence generated by Algorithm[5.5 Assume that:

1. di € R™ is a descent direction for F(-) at xj, € R";
2. for all t > 0, the step size ol is chosen so that

a. if al, = oo,
at > nmax{ozf,ozo},

b. if af, < oo,
max { (o' — af), (o, —a')} <6 (ol — ) .

Then Algorithm [5.3) is well defined, i.e., it stops after a finite number of
iterations returning a step size & satisfying the Wolfe conditions for MOO.

Proof. See Appendix [C] O

Remark 5.3. To the best of our knowledge, the first Wolfe line search for
MOO was proposed in [72]. Our line search is just a simpler algorithm that
is guaranteed to produce a point satisfying the Wolfe conditions. In fact, we
think that not using an inner solver, as done in [72], could be a performance
disadvantage and, in addition, smarter strategies to set the trial step size
may be integrated. We decided not to compare the two line searches, since
finding new efficient methodologies to find the step size is not the focus of our
work. Moreover, we are confident that the experimental results of Section
[0:3] would be similar regardless the employed Wolfe line search.
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5.2 Convergence Analysis

In this section, we show the convergence properties of our Limited Memory
Quasi-Newton approach. Before proceeding, similarly to what is done in
[65], we need to make some assumptions about the objective function F(+)
and the initial approximation matrix H°.

Assumption 5.1. We assume that:
e F'(+) is twice continuously differentiable;
o the set Ly (F (z9)) ={z € R" | F (x) < F (x0)} is convex;
e Ja,b € R such that, for all j € {1,...,m},

allz|® <2TV2fi(2)z <bz)|?, ¥z eR™Va € Lp(Fx)).

Assumption 5.2. The matrix H® is chosen such that the norms ||H°|| and
HBOH are bounded.

Remark 5.4. Assumption[5.1]implies Assumption|[3.1fwith Q = R". Indeed,
f; () is strongly convex for all j € {1,...,m} and, thus, has all the level sets
bounded. Also, by Assumption 3.1} we have that Propositions and
concerning the line search remain valid.

Remark 5.5. By Assumption we have skTyé€ > 0 for any k£ and for all
j €{1,...,m}. Then, considering and since A\!M (z;,) satisfies ,
we have that s;—uk > 0. Then, according to , Pk = 1/ (sZuk) and, thus,
we update B¥ and H” using and , respectively.

In order to carry out the theoretical analysis, we take as reference Algo-
rithm which is mathematically equivalent to Algorithm but makes
it more explicit how the approximation of H* is computed, i.e., applying M
times the update rule starting from H°. In the remainder of the sec-
tion, we will consider the approximation matrix B* for the sake of clarity;
the results are obviously the same if we consider the matrix H*. Finally,
note that Algorithm is only used in this section, since, unlike Algorithm
it requires to store the entire matrix in memory.
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Algorithm 5.4: Limited Memory Quasi-Newton Method

1 Input: F:R® - R™, 20 € R", v € (0,1/2), 0 € (y,1), BY = 0,
M e Nt.

Let h=0

N

3 for k=0,1,2,... do

4 Compute §5M (x;,) and \EM () solving Problem
5 Let vIM(z)) = — (B"“)f1 Jr (1) T AEM (24,

6 Choose ay, > 0 s.t. and hold

7 Let zpy1 = o1, + apvi™ (zy)

8 if kK > M then

9 Discard vectors pair (sg—ns, ug—pr) from storage

10 LSeth:k—M—i—l

11 Compute and save (s, uy) according to (5.5)-(5.6)

12 Let Béfo) =B°
13 for i =0,...,min{k,M — 1} do

14 Set

k T pk T
Biysiensiyn By wignuyyy,

Bfiy1) = By — (5.10)

T gk T
SirnB1)Si+h Sppnti+h

k+1 _ pk
15 Let BF*! = Bl ingk,M—1341)

16 return z;

For the theoretical analysis, we also need to introduce the formula for
the trace and the determinant of the matrix B¥+1:

[Brsil®, Juell

Tr(Bk-H) — TI“(Bk) _ ’

7 5.11

sg BFsy, S5 ug ( )

det(B*+1) = det(B) S U (5.12)
sg BFsy’ '

Note that these expressions hold when (2.10) is used to update the matrix
BF, which is always the case here by Assumption We also introduce
some basic notation that will be useful in the following analysis.
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Additional Notation We will denote by (Bk) the eigenvalues set of
the matrix B¥; by wm, (Bk) and wjys (Bk) we indicate the minimum and the
maximum eigenvalue, respectively; we refer by ¥ to the angle between the
vectors s, and B*sy. Concerning 5*, we also recall the formula of the cosine:

sgBksk

k
cos B = —F———.
Ikl | B* skl

(5.13)
We are now able to begin the convergence analysis with three technical

lemmas.

Lemma 5.2. Let Assumption hold and consider the sequences {x} and
{ULM (xk)} generated by Algorithm . Then,

Z D (mk,vLM(xk))Q

I3Y; 5 < 0.
k>0 [[vEM () |

Proof. The result follows as in Proposition 3.3 in [90], as the assumptions
made in the latter are trivially implied by Assumption [5.1 O

Lemma 5.3. Consider Assumption and let {1} be the sequence gener-
ated by Algorithm[54. Then, for all k > 0, we have that

cos ¥
D (o v ) <~ ot | o2 )
where v3P (1) is the steepest common descent direction calculated at x, (see

Table .

Proof. The proof is analogous to the one of Lemma 4.2 in [90], taking into
account that we have a single approximation matrix B*. O

Lemma 5.4. Let Assumptions[5.1] and[5.9 hold. Moreover, let {xx} be the
sequence generated by Algorithm [5.4) Then, there exists a constant § > 0
such that, for all k > 0, we have that

cos B > 6.
Proof. See Appendix [C] O

In the next proposition, we state that the sequence of points produced
by Algorithm [5.4] converges to a Pareto optimal point.
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Proposition 5.4. Let Assumptions and [5.9 hold. Assume that {x}} is
the sequence generated by Algorithm . Then, {x} converges to a Pareto

optimal point =* for Problem (5.1).

Proof. By Lemmas and we know that there exists a constant 6 > 0
such that, for all k£ > 0,

LM 7‘3055’6 LM SD
D (@, v (zx)) < == [0 (@) || [0 (ze) |

kM @l [P )]

IN

Considering this last result and Lemma [5.2] we obtain that

*xka k))2 > 62 SD
- Z [vLM (z =3 7 077 ()

k>0 )II =0

2

)

and, thus,

lim v°P(z) = 0,,. (5.14)

k—o0

By (5.3)), we know that, for allk > 0, z, € Lp (F (x¢)). Since Lg (F (20))
is compact (Remark, there exists a subsequence K C {0, 1,...} such that

lim z, = ™. (5.15)
k— o0
kEK
Recalling Equation (5.14)), Lemmasandwith Q=R"and M;(:) = I,
for all j € {1,...,m}, we have that v (z*) = 0,, and, thus, z* is Pareto-

stationary for Problem . Therefore, by Lemma with 2 = R™ and
Assumption we conclude that z* is Pareto optimal.

Now, let us assume, by contradiction, that there exists another subse-
quence K C {0,1,...} such that

lim z, = Z, (5.16)
k—o0
keK

with & # z*.

We prove that F' (£) # F (z*). If it were false, since by Assumption
F is strongly convex and Lp (F (z¢)) is convex, for all ¢ € (0,1), we would
get that F (tz + (1 —t)z*) < tF(Z) + (1 —t) F (z*) = F (z*). But, in this
case, we would contradict the fact that x* is Pareto optimal.
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Then, given that z* is Pareto optimal and that F (%) # F (z*), 35 €
{1,...,m} such that f; (z*) < f;(Z). Now, recalling and (5.16),
there exist ¥ € K and k € K such that k& < k and fi (k) < f; (zz).
But, since holds at each iteration of Algorithm we implicitly have
that the sequence {f; (xx)} is decreasing, for all j € {1,...,m}. Thus, we
get a contradiction and we conclude that

lim zj = z*,
k—o0

with z* being Pareto optimal. O

In the rest of the section, we discuss the convergence rate of Algorithm
6.4l We first have to provide a technical result.

Lemma 5.5. Let Assumptions[5.1] and[5.9 hold. Moreover, let {xy} be the
sequence generated by Algorithm and x* be the Pareto optimal point to
which the sequence converges. Then, for all k > 0,

o [lz — ¥ < 2[5 (ax)]],

o [lsi] > Y52 cos BF ||[vSP ()|,
where v3P

Table .

Proof. The proof is analogous to the one of Lemma 4.4 in [90], recalling that

xy) is the steepest common descent direction calculated at x, (see

here a single approximation matrix B* is considered. O

We are now ready to prove that the sequence of points generated by
Algorithm [5.4] R-linearly converges to Pareto optimality.

Proposition 5.5. Let Assumptions and hold. Furthermore, let {xy}
be the sequence generated by Algorithm[5.4] and x* be the Pareto optimal limit
point of the sequence. Then, {xy} R-linearly converges to x*. In addition,
we have that

> ok — 2*|| < 0. (5.17)

k>0

Proof. We first introduce the function f* : R®™ — R, defined as

[ (@) = Z AP () fi (), (5.18)
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where ASP (2*) is the multipliers vector associated with the steepest common
descent direction at z*. Recalling Lemmas and 2.2 with Q@ = R" and
M;(-) =1I, for all j € {1,...,m}, that z* is Pareto optimal and that
holds for v (z*), we have that

m

V< (z*) = ZA]SD (2*) Vf; (z%) = =P (z*) = 0,,. (5.19)
j=1
Now, forall k > 0and j € {1,...,m}, by Assumption and using Taylor’s
theorem, we get & ax — 2*(|* < f; (zx) — f; (z*) = Vf; (%) " (w3 —2*) <
bk — 2*||>. Multiplying this result by ASP (z*), summing over j € {1,...,m},
recalling (2.6)), which is valid for A3P (z*), and (5.19)), we obtain that

2

a b
2 llzk = 2P < S () = f1 (@) < o ek —2™|I" (5.20)
Given Lemma from the right-hand side of the last result we get
N . 2b 2
I (o) — [ (2%) < ) HUSD (z)|” (5.21)

On the other side, (2.6)), (5.3) and (5.18) imply that, for all & > 0, f* (xg+1) <
[* (zr)+vowD (zr, v2M (21,)) which, by subtracting the term f* (z*) in both
sides and taking into account Lemmas and changes into

k
£ (@) — 15 @) < £ () — £ @) — 220 1l 05 (@)

2
1 —0)cos?3* 2
< 1 ) — 1 ) = LEZ DI o
Joining this last result and (5.21)), we obtain that
S (@) = 7 (@7) < v (fF () = 7 (7)), (5.22)

(1—0)a?® cos® g

with rp, = 1 — 2 52 , for all k¥ > 0. It is easy to see that, by
the definitions of v and o, Assumption and Lemma ri € (0,1). In
addition, by Lemma[5.4] we also have that there exists a constant § > 0 such
that, for all k > 0, rp, <1 — ”“%&“252 = 7 < 1. Then, recursively applying
Equation and taking into account that, combining , and
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BI8), f* (o) — f* (*) > 0, we get

k
[ (@) = f7(27) < [H Tz] (f* (xo) = [ (27))

=T (o) = f* (27)).
Considering this last result and the left-hand side of (5.20), we obtain that

1/2 [ 2 1/2
o ol < ()2 20 o) - 1 @]
and, thus, the sequence {z\} R-linearly converges to x*.
Summing the last result for all £ > 0 and recalling that 7 < 1, we get

that ((5.17)) holds. O

5.3 Conclusions

In this chapter we proposed a new limited memory Quasi-Newton algorithm
for unconstrained multi-objective optimization. To the best of our knowl-
edge, it is the first attempt to define such an approach for MOO. As in
[1], we use a single approximation matrix, contrarily to what is done in the
other Quasi-Newton approaches. The idea of a single matrix, whose update
formula is slightly modified from the one used in the scalar case, allowed
us to extend the L-BFGS two-loop recursive procedure to multi-objective
optimization: the Hessian matrix approximation does not need to be main-
tained and managed in memory, but it is computed using a finite number
M of previously generated solutions. This feature is potentially crucial, es-
pecially when the approximation matrix is dense and/or high dimensional
problems are handled. For the proposed approach, under assumptions simi-
lar to the ones made for L-BFGS in the strongly convex scalar case, we stated
properties of R-linear convergence to the Pareto optimality of the produced
sequence of points.

The results of thorough computational experiments, provided in Section
[0.3] show that the new limited memory algorithm consistently outperforms
the state-of-the-art Newton and Quasi-Newton methods for MOO. More-
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over, the substantial benefits of using the proposed algorithm as local search
procedure within a global optimization framework are highlighted.



Chapter 6

Improved Front Steepest
Descent for Multi-objective
Optimization

In this chapter EL we are interested in optimization problems of the form

min F() = (@), ()| (6.1)
and we focus on the Front Steepest Descent (FSD) algorithm proposed in [23].
For a brief description of the method, the reader is also referred to Section|3.3
of this manuscript. FSD was shown to be far superior than a simple multi-
start version of the original (single-point) MOSD algorithm (Section [3.1.1).
Yet, we argue that FSD, as defined in 23], has limited exploration capabilities
and it is quite frequently unable to span large portions of the Pareto front.
We thus propose small but crucial modifications to the algorithm, that
allow to turn it tremendously effective at spanning the entire Pareto front,
regardless of the starting set of points. We then show that the proposed
approach still enjoys the nice convergence guarantees of the original FSD.

IPart of the content of this chapter has been published as “Improved front steepest
descent for multi-objective optimization” in Operations Research Letters, 2023 [59].

61
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6.1 FSD May Not Span the Pareto Front

The FSD algorithm constitutes, in practice, a significant improvement w.r.t.
the simple multi-start steepest descent strategy for multi-objective optimiza-
tion. However, in experimental settings, it is not uncommon to observe
situations where FSD is unable to retrieve large portions of the Pareto front.

Here, we highlight this shortcoming and argue that it is the direct result of
algorithmic design. In particular, the first condition at Step [6] of Algorithm
[3:4] makes the outcome of the algorithm very strongly dependent on the
starting point(s).

When a point z. is considered for exploration in Algorithm a par-
tial descent direction obtained according to the subset of objectives Z C
{1,...,m} is only considered if x, is nondominated within X* w.r.t. Fz(-);
in other words, there is no y € X* such that Fr(y) S Fr(z.). This condition
was required by the authors of [23] in order to establish finite termination
properties for the line search (Algorithm .

Unfortunately, that same condition results in a limited fraction of points
in X* to be used for starting a partial descent search. This fact can be
visualized, with very extreme outcomes, in the bi-objective case; indeed,
when m = 2, for each of the two proper subsets of indices, Z; = {1} and
T, = {2}, there is only one point that satisfies the (partial) nondominance
condition: zz, = argmin, ¢ yx fi(x) and 7, = argmin, ¢ xx fa(x).

Thus, partial descent is only carried out starting from the two current
extreme points in the Pareto front. Moreover, these partial descent steps
will only allow to explore, outwards, the extreme parts of the current front
approximation, whereas the other descent step will mainly drive points to
Pareto stationarity; as a result, even large holes within the current solutions
set cannot be filled.

Taking the reasoning to the extreme, let us assume that the starting set of
solutions already lies on the Pareto front; if the set contains only one point,
then by repeated partial descent w.r.t. Z; and Z, the entire Pareto front can
be spanned quite uniformly; this situation is depicted in Figure If, on
the other hand, there are two starting solutions, possibly far away from each
other in the objectives space, then only the extreme parts of the front will be
spanned, while the gap between the two points is not tackled (Figure [6.1b]).
Of course, the same reasoning applies with more than two starting points.

The paradoxical behavior of the algorithm is such that it might be conve-
nient to start far away from the Pareto front. In this way, FSD may have many
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(a) FSD starts from 1 Pareto point. (b) FSD starts from 2 Pareto points.
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(c¢) 3 independent FSD runs, started (d) 3 independent runs of FSD with
from 3 different random points. the extrapolation strategy, started

from the same 3 random points as
in (c).

Figure 6.1: Pareto fronts obtained by the FSD algorithm on the convex JOS
problem [51] (n = 5). For more details about the experimental settings, the
reader is referred to Section [9.1.2]

iterations at its disposal to increase the size of the set X* and uniformly span
the objectives space; points are then driven to Pareto stationarity thanks to
steps carried out considering Z = {1,2}. Anyhow, the results are still in-
fluenced, somewhat randomly, by the starting solutions, as shown in Figure
Moreover, the extreme parts of the front are always spanned much
more densely than the central one. We shall remark that, as the intermedi-
ate regions of the front often provide the most interesting trade-offs to users,
this is a very significant issue in practice.

The extrapolation technique proposed in [23] and mentioned in Remark
might allow to partly alleviate the issue discussed here, as much more
nondominated solutions are obtained at each iteration; however, it is again
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the exploration of the extreme regions that is mainly enhanced and sped up,
with possibly overall counterproductive results (Figure [6.1d)).

6.2 Improved Front Steepest Descent

In Algorithm we report the scheme of a modified Front Steepest Descent
(IFSD) algorithm that overcomes the limitations of Algorithm discussed
in Section 6.1}

Algorithm 6.1: Improved Front Steepest Descent (IFSD)

1 Input: F:R™ = R™, X° C R” set of mutually nondominated points
w.r.t. F(), a9 > 0,6 €(0,1).

2 k=0
3 while a stopping criterion is not satisfied do
4 | Xk =XF
5 | forall z. € X* do
6 if . € X* then
7 if 95P(2.) <0 then
8 Lalg = ALS(F(-),R", z.,v%P (x,))
9 else
10 Lozﬁ =0
11 2P =2+ aFvdP (2,)
| || X = (XFu (i) \{ye X PG s F))
13 forall Z C {1,...,m} s.t. 03P (z%) < 0 do
14 if 2% € X* then
15 ol = I}nglil({()mdh |Vye Xk 3je
{1,...,m} st fi(2f + a0d"vZP (2)) < fi(y)}
16 Xk = <XkU{zf+afv§D(zf)}) \
{v e XEIF (L +afofP(:1) 5 F (o)
17 _;Ekﬂ — Xk
18 |k=k+1

19 return XF
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Algorithm includes several modifications w.r.t. the original FSD ap-
proach:

e for any point in X* that is still nondominated when it is considered
for exploration, a preliminary steepest descent step is carried out; this
step exploits a classical single point Armijo line search (Algorithm [3.2));

e further searches w.r.t. subsets of objectives start at the obtained point,
as long as it is not dominated;

e for partial descent searches, we require the new point to be nondomi-
nated by all other points in X*.

The idea is that, with these modifications, all points may be used to start
exploration based on partial descent; convergence of all the produced points
towards stationarity is then forced by means of the “preliminary” steepest
descent step, that ensures the sufficient decrease. In Figure[6.2] the behavior
of the proposed approach in the same settings used for Figure [6.1] is shown.
In this example we can observe that now, regardless of the starting point(s),
the entire Pareto front is effectively spanned, with not even tiny holes.

In the next section we prove that the algorithm is well defined and actu-
ally produces convergent sequences of points.

6.2.1 Convergence Analysis

In this section, we provide the formal convergence analysis for Algorithm
6. 11

Proposition 6.1. The line search at Step[8 of Algorithm[6-1] is well defined.

Proof. The result follows from Proposition (€ = R™) and by the if con-
dition at Step [7] that ensures that 6°P(z.) < 0. O

Proposition 6.2. Step of Algorithm is well defined if z¥ is nondom-
inated with respect to points in Xk,

Proof. Let y be any point in X¥; if F(y) = F(zF), then by [36, Lemma 4] and
the condition 027 (2%) < 0, there exists & > 0 such that Fr (2F + avP(2F)) <

c

Fr(2F) = Fr(y) for all a < &; thus there exists h sufficiently large such that
fi (ZF + apd"viP (2F)) < fi(y) for all j € Z. If, on the other hand, there

(&

exists j € {1,...,m} such that f;(2¥) < f;(y), then by the continuity of



66 Improved Front Steepest Descent for MOO

00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
fi f

(a) 1 Pareto point as in Figure (b) 2 Pareto points as in Figure
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(¢) 3 independent runs from the
same random points as those of Fig-
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Figure 6.2: Pareto fronts obtained by the IFSD algorithm on the convex JOS
problem (n = 5). For more details about the experimental settings, the
reader is referred to Section

F(-) there exists o = ad” sufficiently small such that f; (2} + av?P(zF)) <

fi(y). Thus, the condition can be satisfied for all y € X* and o is the
minimum of the corresponding values of agd”. O

Proposition 6.3. If X* contains mutually nondominated points with respect
to F(-), then X* contains nondominated points at any time during iteration
k; thus Step of Algom'thm is always well defined and X*t' is finally
a set of nondominated solutions.

Proof. See Appendix [C] O

Lemma 6.1. After Step of Algorithm 2% belongs to Xk Moreover,
for all k > k, there exists y € X* such that F(y) < F(zF).
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Proof. See Appendix [C] O

In order to prove the convergence property of IFSD, we make use of
Assumption and the concept of linked sequence (Definition ; both
are also employed in [23] to prove the same property for FSD (Lemma [3.5)).

Proposition 6.4. Let Assumption hold with Q = R™, the set X° and
a point g € X°. Let {Xk} be the sequence of sets of nondominated points
produced by Algorithm . Let {z;,} be a linked sequence, then it admits
accumulation points and every accumulation point is Pareto-stationary for

Problem (6.1]).

Proof. For any k, either o € X* or mgp ¢ X*. In the former case, since all
points in X* are mutually nondominated, we certainly have xj, € Lrp(z0).
Otherwise, by a similar reasoning as in the proof of Lemma [6.1, we have
that there is a point yx € X* such that F(yx) < F(z¢); since yj does not
dominate xj, , we have that there exists h € {1,...,m} such that fy(z;,) <
fr(yk) < fn(zo); thus, again, z;, € Lp(zg). Therefore the entire sequence
{x;,} belongs to the compact set Lp(x0), and thus admits accumulation
points.

Now, let us consider an accumulation point Z of a linked sequence {z;, },
i.e., there exists K C {1,2,...} such that

er T

We assume by contradiction that z is not Pareto-stationary, i.e., by Lemma
with Q@ = R™ and M;(:) = I, for all j € {1,...,m}, 65P(z) < 0.
Thus, by the continuity of §57(-) (Lemma , there exists ¢ > 0 such
that for all k € K sufficiently large we have 057 (z;,) < —e < 0. Let
2, = xj, + a;,v°P(x;,) the point obtained at Step [L1] of the algorithm
starting from x;,. Now, ¢ , € [0, ], which is a compact set, thus there
exists a further subsequence K; C K such that a;, — @ € [0, p]. Moreover,
function v°P(-) is continuous by Lemma thus v9P(z;,) — vSP(z) for
k — oo, k € K;. Hence, taking the limits along K; we also get that z;, —
T+ avdP(z) = 2

By the definition of «j,, zj (Steps and Remark (Q = R,
M;(-) = I, for all j € {1,...,m}), we have that F(z;,) < F(z;) +
1ymya;, 0°P (25,). Taking the limits for k € Ky, k — oo, recalling again
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the continuity of §57(-), we get
F(2) < F(z) + 1,,7a0%"(z) < F(z) — 1,,7a¢. (6.2)

Now, given k € K7, let k1 (k) be the smallest index in K3 such that kq (k) > k.
By Lemma there exists y;, ., € X*1(®) such that F(Wj, o) < F(z5,);
moreover, T, . € XF(k): by Proposition the points in X5 *) are
mutually nondominated, hence there exists h(k) € {1,...,m} such that
fh(k)(xjkl(k)> < fh(k)(yjkl(k)) < fua(zj,). Considering a further subse-
quence Ky C K7 such that h(k) = h for all k € K5 and taking the limits, we
obtain f5(Z) < fx(2). Putting this last result together with (6.2)), we get

n(@) < fr(2) < fu(®) — yae.

Since @ € [0, apl, € > 0 and v > 0, the above chain of inequalities can only
hold if & = limp— o0, ke K, @, = 0. For all k € K, sufficiently large, we have
050 (x;,) < 0 and, thus, «;, is defined at Step [8| Since aj, — 0, for any
g € N, for all £ € K large enough we certainly have «;, < ogd?; thus,
the Armijo condition F (z;, + avP(z;,)) < F(zj,) + yadr(z;, )P (2;,)
is not satisfied by a = a(d?, i.e., there exists h(k) such that

Friy (@5 + @085 (25)) > i (@) + 7000V fr 4 (25,) 0P (25,).

Taking the limits along a suitable subsequence such that iz(k:) =h, recalling
the continuity of F(-), Jp(-) and v3P(-), we get

fi, (& + agd® P (2)) > f;(T) + 70V f;(z) "0 (2).

Now, since ¢ is arbitrary and 0°P(z) < 0, i.e., Jp(Z)vSP(Z) < 0,,, this is
absurd by Proposition (2 =R™). The proof is thus complete. O

6.3 Conclusions

In this chapter, we introduced an improved Front Steepest Descent algo-
rithm with asymptotic convergence guarantees similar to those of the original
method. The novel algorithm is designed so as to overcome some empirically
evident limitation of FSD, that is often unable to span large portions of the
Pareto front. Numerical evidence (Section suggests that the proposed
procedure effectively achieves this goal.

Future work should be focused on the integration of the proposed ap-
proach and the extrapolation strategy proposed in [23].



Chapter 7

Pareto Front Approximation
through a Multi-objective
Augmented Lagrangian Method

In this chapter EL we consider smooth multi-objective optimization problems
with convex constraints, i.e.,
min F(z) = (fi(x),.., fm())"
ze (7.1)
s.t. g(z) <0y,

where g : R™ — RP is a continuously differentiable, component-wise con-
vex function. In line with Problem , we denote the feasible set as
Q ={r € R" | g(x) < 0,}. In the following, we also indicate with
Jy() = (Vg1(-),...,Vgp(-))T € RP*™ the Jacobian matrix associated with
g(+). Note that equality constraints can be equivalently expressed as couples
of opposite inequality constraints, so this formulation is in fact general. Ac-
tually, specific management of equality constraints can often be convenient
from a computational perspective; the following discussion could easily be
extended to address the presence of explicit equality constraints, but we
prefer not to take them into account for the sake of simplicity.

The contribution of this chapter consists of the definition of an extended
version of the augmented Lagrangian algorithm for multi-objective optimiza-

IPart of the content of this chapter has been published as “Pareto front approximation
through a multi-objective augmented Lagrangian method” in EURO Journal on Compu-
tational Optimization, 2021 [22].

69
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tion (ALAMO) proposed in |21], which deals with sets of points and effectively
produces an approximation of the Pareto front for constrained vector-valued
problems. The key elements that characterize the proposed algorithm are:

e the management of a set of points at each iteration which are all mu-
tually nondominated w.r.t. the current augmented Lagrangian;

e the use of partial descent directions w.r.t. subsets of objectives in order
to enrich the approximate front;

e the use of a common penalty parameter and Lagrange multipliers for
all points in the set of solutions;

e the use of the MOSD algorithm (Section [3.1.1)) to make each point in
the current set approximately Pareto-stationary w.r.t. the augmented
Lagrangian, with increasing accuracy throughout the iterations.

For the proposed algorithm, we prove properties of convergence to Pareto-
stationarity for the generated sequence of sets of points, without the need
to recur to the concept of linked sequence introduced in [67]. In fact, the
convergence along linked sequences is implied by our result.

To the best of our knowledge, the SQP procedure [37] is the only other
derivative based method for constructing an approximated Pareto front of
constrained multi-objective problems that can be found in the literature.
It is worth remarking that, in contrast with the SQP method, convergence
of our algorithm does not depend on a final refinement step that follows a
finite exploration phase. As also noted by its authors, SQP can indeed be seen
as a single point procedure run in a multi-start fashion. On the contrary,
in our procedure convergence and exploration advance alongside, with both
asymptotically improving.

In order to introduce our new approach, we recall the definition of multi-
objective augmented Lagrangian for problems with inequality constraints.

Definition 7.1 (|21]). The multi-objective augmented Lagrangian function
with penalty parameter 7 > 0 associated with Problem (7.1)) is given by

LT (z,p) = F(z)+ 1m% <i (max {O,Qi(l') + /j_z})2> , (7.2)

where z € R™ and p > 0, is the vector of Lagrange multipliers.



7.1 The Algorithm 71

7.1 The Algorithm

In this section, we describe the front-oriented multi-objective augmented
Lagrangian method, which we call FRONT-ALAMO, to solve Problem . The
algorithmic scheme is reported in Algorithm[7.1] Note that we have denoted
by MOSD(-, -, -, €)) the MOSD algorithm (Section run until the solution is
eg-Pareto-stationary. We also denote by vy (), 7P (+) and v;fg(-), 9;?3(),
with Z C {1,...,m}, the functions of the steepest common and partial
descent directions (see Table associated with £7 (-, u*), respectively.

Through the iterations, the algorithm produces a sequence of sets of
points { X%}, which approximate the Pareto set of the original problem with
increasing accuracy. At each iteration, an augmented Lagrangian function
defined as in is considered, with penalty parameter 75, and multipliers
©*. At the beginning of the generic iteration k, all points that are dominated
w.r.t. L7 (-, u¥) are filtered out of the set; we denote such filtered set by Xk
Now, the following iterate Xy, is initialized as XF. Then, each point z. €
X* is used as a starting point for exploration as long as it is non-dominated:
in particular, for any possible subset Z C {1,...,m} the steepest partial
descent direction, provided that it actually exists, is exploited to obtain a
new point that must be not dominated w.r.t. L7 (-, u*) by any other point in
Xtmp (Line@. This point is then refined by means of the MOSD procedure up
to eg-Pareto-stationarity (Line and, finally, it is added in X, and all
the solutions dominated by it are removed (Line[L1)). After considering all the
possible subsets Z C {1,...,m}, an additional search based on the steepest
common descent direction is started from the solution z.: if such a direction
exists, a classical Armijo-type line search (Algorithm 3.2) is performed (Line
; the new point is then refined through the MOSD procedure (Line ; if
the resulting solution is not dominated w.r.t. L™ (-, u*) by any other point
in Ximp, it is consequently added to such set, while all the points that are
dominated by it are removed (Line .

Once all points in X* are tested, the constructed set will constitute the
next iterate X**1. The multipliers and the penalty parameter are updated
similarly as in the scalar ALM with multipliers safeguarding [54], with one
key adjustment: to evaluate how much a constraint is violated, the worst
violation attained on that constraint by any point in X**! is considered. In
addition, the second clause of the conditional statement at Line [21|allows to
avoid unfortunate cases where a point which is strictly feasible w.r.t. some
constraint g;(-) is unnecessarily pushed to satisfy it with a larger margin.



72 PF Approximation by a MO Augmented Lagrangian Method

Algorithm 7.1: Front-oriented Multi-Objective Augmented La-
grangian (FRONT-ALAMO)

1 Input: p® € RE, 1 >0,p>1,0 € (0,1),70 > 0, Q feasible set,
X0 Q, {er} CR{ a decreasing sequence, g > 0, 6 € (0, 1).

2 for k=0,1,... do

3 Let £7(-, u*) be the current Augmented Lagrangian function

defined as in (7.2)
set X¥ = X*k\ {z € X¥| Iy e XFst. LT(y,u*) S L7 (z, u*)}

a
5 set Xymp = X*
6 for z. € X* do
7 for 7 € 2{Lm} do
8 if . € Xtmp A Hk 2(z.) <0 then
9 set af = maxpen{aod" | Vy € Ximp 3j €
{,.. m} st L3F(xe + aod™vp 2 (xe), p¥) <
L (y 1)}
10 set 27 = MOSD(L™ (-, puF), R™, ze + oF v (xe), ex)
11 set Xemp = (Xemp U{22}) \{y € Xemp | L™ (2F,1%) 5
L7 (y, p*)}
12 if 977 (x.) <0 then
13 set o, = ALS(L™ (-, u¥), R", z., viP(2,.))
14 set z. = MOSD(L™ (-, u*), R, 2. + a.viP (z.), k)
15 if By € Ximp : L7 (y, uF) S L7(2., u) then
16 L set Ximp = (Xemp U {ze}) \ {y € Ximp | L™ (2, 1) S
L7 (y, u*)}
17 set Xkl = X,
18 fori=1,...,pdo
. k41 _ . Hi‘c
19 set V; —mln{ 6111)(;%1{ gi(x) ,7%}
20 set puf ! = max {O,min{,ui-C + 7 max {gl(x)},u}}
| zeXk+!

21 if |[[VFHY| > o||VFE|| v Bapsr € XF st gi(zper) <0 A
pF + 79:(v41) > 0 for some i € {1,...,p}) then

22 set Tp41 = PTk
23 else
24 L set Tp41 = Tk

25 return X~
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Remark 7.1. At each iteration k, the set X**! is a list of mutually non-
dominated points w.r.t. L (-, u*). As we will shortly see, maintaining a set
of mutually nondominated points with respect to the augmented Lagrangian
does not provide theoretical asymptotic properties. However, this has a re-
markable impact from a computational point of view: it allows, especially
at late iterations, to remove solutions that are too far from feasibility or
that have bad values for all the objectives; in addition, in practice the algo-
rithm will be run for a large enough number of iterations and then stopped;
the solutions in the returned set are mutually nondominated w.r.t. the final
augmented Lagrangian; because of this property, most of the points in the
returned set that are “sufficiently feasible” are nondominated also w.r.t. the
original problem.

In the next section, we will show in detail that Algorithm [7.1] is well
defined and we will carefully address its convergence properties.

7.2 Convergence Analysis

In this section, we provide a rigorous formal analysis of Algorithm from
a theoretical perspective. We first show that the procedure is actually well
defined and then we state its asymptotic convergence properties. In the
analysis, we make use of Assumption [3.I] with Q = R"™.

Concerning algorithm well-definiteness, we begin by noting that, having
Assumption by Lemma and Proposition (Q=R", M;(-) =1,
for all j € {1,...,m}) the MOSD procedure employed in Lines is well-
defined. The line search procedures at Lines [0I3] stop in a finite time too,
producing a valid step size. The well-definiteness of the first one comes by
Proposition [6.2] and the first condition in Line [§] that assures z. is non-
dominated w.r.t. £ (-, u*) in X;p,. As for the second line search, the
result holds straightforwardly from Proposition (Q = R™), also recall-
ing that the procedure starts at a point z. such that 677 (x.) < 0, ie.,
Jr(z)viP(2,.) < 0,,. Thus, we conclude that Algorithm [7.1]is well-defined.

Now, we are able to characterize the points belonging to each iterate set
X

Proposition 7.1. Let { X*+1} be the sequence of sets generated by Algorithm
7.1 Then, for each k and for each xy1 € X*+1, we have:
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1. xj41 is not dominated by any other point in X*+1 w.r.t. L7 (-, u¥), i.e.,
there does not exist y € X**1 such that L™ (y, u*) S L7 (241, p*);

2. xp4 is e-Pareto-stationary w.r.t. L7 (-, uF).
Proof. See Appendix [C] O

Let {X*} be the sequence of (finite) sets produced by the algorithm. In
order to assess the asymptotic convergence properties of Algorithm [7.1] we
need to consider sequences of points {zy} such that x;, € X* for all k.

We are now able to begin the convergence analysis with a technical
lemma.

Lemma 7.1. Let {X*} be the sequence of sets generated by Algom'thm
and let {z} be any sequence of points such that xj, € X* for all k. Let T be
a limit point of {xy}, i.e., there exists an infinite subset K C {0,1,...} such
that

lim zp =7,

k—o0
keK

and suppose that g(Z) < 0p, i.e., T € Q. Then, for alli=1,...,p such that
9:(Z) < 0 we have
max{0, uf + 7rgi(xr 1)} = 0

for all k € K sufficiently large.
Proof. See Appendix [C] O

Next, we prove feasibility of limit points of all possible points sequences
{z1} produced by the algorithm.

Proposition 7.2. Let {X*} be the sequence of sets generated by Algorithm
with e — 0, and let {z} be any sequence of points such that xj, € X*
for all k. Let T be a limit point of {xr}. Then, T is feasible for Problem

Proof. Let K C {0,1,...} be an infinite subset such that

If the sequence {7} is bounded, from the instructions of the algorithm there
must exist k; such that, for all k > k;, we have ||[VFHL|| < o|V*||. Since
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o < 1, this implies lim ||[V¥|| =0, i.e., for all i € {1,...,p},
k—o0

k
lim Vk"'1 = lim mln{ min {—g;(x)}, 'u’} =0.
Tk

k—oo k—oco reXk+1

Since by definition pf > 0 for all i and k, it has to be lim min {—g;(x)} >

k—oo ze Xk+1 B

0. But min {—g;(z)} < —gi(xk4+1). Hence
reXkt1

gi(T) = hm gz($k+1) < lim max {—g;(z)} <O0.
k—oo xe Xk+1
keK keK

Now, assume 7, — 00. Let us suppose, by contradiction, that there exists
d € R™ such that

jnax <Zmax{0 9:(Z)}Vg (T )) dy <o. (7.3)

From Proposition we know that each point z € X**! is gy -Pareto-
stationary w.r.t. £ (-, u*). Hence, Vd € R", max VL (Tht1, ) Td +
J

.....

1||d||> > —ek. Considering the last equation and the direction d € R", we
have that

.
P k
. N 1, 4
[ max { <ij(xk+1) + 7Y max {o,gi(xm) +5 } Vgl(xﬂl)) d} + 5 ldIP = —ep.

i=1

Dividing both sides of the inequality by 7 and taking the limits for k¥ — oo,
k € K, recalling the continuity of Jg(-) and J,(-), the boundedness of {u*}
and that 7, — oo, we get

,,,,,

,,,,,

which, since the arguments of the outer max operator are independent of j, is
equal to 3V (|| rnam{Op,g(;f)}||2)T d >0, Vd € R", where the max operator
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is intended component-wise. Thus, T is a critical point for problem

1 2
min o | max{0, g(2)}°.
Since Q # () and the above problem is convex, T is a global minimum point
with max{0,,g(Z)} = 0,, i.e., g(T) <0,. O

Finally, we show that limit points are Pareto-stationary for the original
problem.

Proposition 7.3. Let {X*} be the sequence of sets generated by Algorithm
with e — 0, and let {z} be any sequence of points such that xj, € X*
for all k. Let T be a limit point of {xx}. Then, T is Pareto-stationary for

Problem (7.1)).

Proof. Recalling that, from Proposition ZTk41 s ex-Pareto-stationary for
L7 (-, 1k), the result similarly follows as in Proposition 6 from [21], where
Lemma [7.1] can be used in place of Lemma 9 from the referenced paper. [J

Remark 7.2. Pareto-stationarity, which we are able to prove for limit points
of FRONT-ALAMO, is the same property that holds for limit points of the
sequence produced by the single point ALAMO and analogous, in the scalar
context, to stationarity attained by limit points of scalar ALM. Therefore, it
is reasonable to assume that stronger properties are unlikely to be obtained
by an ALM-like algorithm.

Remark 7.3. In the literature of Pareto front constructing descent methods
[23,167], convergence analysis is based on the concept of linked sequence
(Definition . It is easy to see that linked sequences are a particular
instance of the sequences of points considered in Propositions [7.2}[7.3] hence
the convergence result obtained for Algorithm is somewhat stronger than
those based on linked sequences.

Remark 7.4. In our theoretical analysis we assumed the existence of a
limit point Z. As commonly done in the literature of augmented Lagrangian
methods [12}21], we do not directly address properties of existence of limit
points, leaving it to boundedness arguments on the sequences, level sets,
lower-level feasible sets or restart strategies.

Remark 7.5. The SQP algorithm [37], which is, to the best of our knowl-
edge, the only other derivative-based method in the literature to generate



7.3 Conclusions 7

an approximation of the Pareto front of MOO problems with general convex
constraints, has similar convergence properties as Algorithm[7.1] in the sense
that limit points of sequences of solutions are Pareto-stationary. However,
the setting is basically different, as the exploration phase of the SQP method
is eventually stopped and all the obtained points are then independently
driven to Pareto-stationarity by an iterative method. Convergence hence
follows from a single-point mechanism. On the other hand, in Algorithm
[71] exploration and convergence are performed somewhat in parallel, in an
effectively multiple-points fashion.

7.3 Conclusions

In this chapter, we considered smooth multi-objective optimization problems
subject to convex constraints. We focused on the task of generating good
Pareto front approximations for this class of problems and, after a brief
review of the existing literature, we proposed an Augmented Lagrangian
Method specifically designed for this task.

The method represents an extension of the ALAMO procedure [21], which
is designed to produce a single Pareto-stationary solution. The proposed
algorithm handles, at each iteration, a list of points that are mutually non-
dominated and Pareto-stationary with respect to the current multi-objective
augmented Lagrangian. Line searches along steepest common and partial
descent directions are employed to carry out an exploration of the objectives
space. The penalty parameter and the Lagrange multipliers are updated
taking into account constraint violations by all the points in the current list.
For this algorithm, we proved global convergence to Pareto-stationarity of
the sequences of points in the iterates lists. This type of convergence is more
general than that based on linked sequences.

Thorough computational experiments (Section show that our method
outperforms the SQP algorithm [37] in terms of popular metrics for multi-
objective optimization. Moreover, we compared the proposed procedure with
the state-of-the-art derivative-free (DMS [25]) and genetic (NSGA-II [26]) ap-
proaches. Our procedure proved to obtain better results even w.r.t. the two
mentioned ones.
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Chapter 8

Cardinality-Constrained
Multi-Objective Optimization:
Novel Optimality Conditions
and Algorithms

In this chapter, we consider multi-objective optimization problems with a
sparsity constraint on the vector of variables:

min F (z) = (f1 (x),...,fm(x))T

zEeRn (8.1)
s.b. [zl <'s,
where || - ||o denotes the ¢y pseudo-norm, i.e., the number of nonzero compo-

nents of a vector, and s € N is such that 1 < s < n. In line with Problem
, we denote the feasible set induced by the upper bound on the £
pseudo-norm as Q = {x € R" | ||z]|o < s}.

Problems where solutions with few nonzero components are required rep-
resent a topic recently investigated by the optimization community [99]. So-
lution sparsity is often induced by the direct introduction of a cardinality
constraint on the variables vector. However, setting an upper-bound for
the g pseudo-norm makes the problem partly combinatorial and thus N'P-
hard [11,/82]. For this reason, many approaches whose aim is to solve this
problem approximately have been proposed. We refer the reader to [99] for
a thorough survey of these methods. However, algorithms dealing exactly
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with the £y pseudo-norm can be found in the literature. In particular, the
Iterative Hard Thresholding (IHT) algorithm [3], the Penalty Decomposition
(PD) approach [70] and the Sparse Neighborhood Search (SNS) method [58]
are designed to be employable in the most general cases, even without con-
vexity assumptions. With these methods, problems are tackled by means of
continuous local optimization steps and convergence to solutions satisfying
necessary optimality conditions is guaranteed.

Although MOO and problems requiring solution sparsity have been thor-
oughly investigated separately, the combination of these two themes, i.e.,
sparsity and multiple objectives, has almost never been explored. The theo-
retical foundation for cardinality-constrained MOO was recently laid in [57],
where a Penalty Decomposition approach was also proposed for sparse MOO
tasks along with its convergence analysis. Moreover, a theoretical study ex-
tending the work from [15] to the MOO case was presented in [41]. The
development of high-performing procedures to deal with this class of prob-
lems is beneficial for many real-world applications. For instance, there are
several reasons in machine learning for requiring sparsity within classifica-
tion/regression models (e.g., interpretability [6], robustness [104], lightness
[18]). In addition, there are approaches in the literature where learning tasks
can be tackled from a Pareto-based, multi-objective perspective: fitting qual-
ity and reducing model complexity (e.g., minimizing ||w||?, with w being the
model weights vector) are just two examples of conflicting objectives for
which a good trade-off may be useful [52].

In this chapter, we continue the theoretical analysis started in [57], in-
troducing new optimality conditions for MOO problems with cardinality
constraints. In particular, we define the concept of L-stationarity in MOO,
which is directly inspired by the homonymous condition for sparse single-
objective optimization (SOO) tasks [3]. Then, we introduce two new algo-
rithms to solve these problems; the first one consists of an extension of the
THT method to the MOO case and it is designed to retrieve an L-stationary
solution; we call this method Multi-Objective Iterative Hard Thresholding
(MOIHT) and we prove that it is indeed guaranteed to converge to points
satisfying the newly introduced necessary optimality condition. The second
algorithm, on the other hand, is a two-stage approach whose ultimate goal is
to approximate the whole Pareto front. This method, which we call Sparse
Front Steepest Descent (SFSD), is theoretically analyzed too.
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Additional Notation Given an index set S C {1,...,n}, the cardinality
of S is indicated with |S|, while we denote by S = {1,...,n}\ S its com-
plementary set; we call S a singleton if |S| = 1. Letting € R™, we denote
by zg the sub-vector of z induced by S, i.e., the vector composed by the
components z;, with ¢ € S; S1(z) = {i € {1,...,n} | #; # 0} represents the
support set of x, that is, the set of the indices corresponding to the non-zero
components of z; So(x) = {1,...,n}\ S1(x) is the S1(z) complementary set.
Furthermore, according to [4], we say that an index set J is a super support
set for x if Si(x) C J and |J| = s; the set of all super support sets at z is
denoted by J(x) and it is a singleton if and only if ||z]o = s.

8.1 Preliminaries: the Proximal Operator in
MOO

A thorough analysis of proximal methods in the multi-objective setting can
be found in the literature (see, e.g., [13,97]). For the scope of this work,
we refer to the discussion carried out in [97], where the considered MOO
problems are of the form

win (1 (&) + 91 (&), (2) g () (8.2)
For all j € {1,...,m}, f;(-) is assumed to be continuously differentiable,
whereas g;(-) is lower semi-continuous, proper convex but not necessarily
smooth.
Let z € R™. A prozimal step at xjp can be carried out according to
Tk+1 = Tk + trpdy, where t; is a suitable stepsize and the descent direction
dy, is obtained solving

: L o2
min  max {Vfj@) d+g; (@ +d) =g @)} + gl (83)

where L > 0. An optimal solution of Problem (8.2)) is such that 0,, is solution

to (8.3).
Interestingly and similarly to the scalar case, Problem (8.3)) can be seen
as a generalization of well-known schemes to define the search direction:

e if, for all j € {1,...,m}, g;(-) = 0, then (8.3) coincides with the
problem of finding the steepest common descent direction [36];
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o if, for all j € {1,...,m}, g;(-) is the indicator function of a convex set
C, then (8.3) becomes equivalent to the constrained steepest common
descent direction problem [29].

The mentioned search directions can be also found listed in Table 2] of this
manuscript.

In the next section, we are going to show that the proximal operator can
be used to handle the nonconvex set €, in line with the work [3] for scalar
optimization.

8.2 Optimality Conditions

Under differentiability assumptions on the objective function F(-), a Pareto-
stationarity condition was proved in [57] to be necessary for (local) weak
Pareto optimality. In what follows, we report slightly different definition
and properties, adapted to Problem .

Definition 8.1 ([57, Definition 3.2]). A point Z € €2 is Pareto-stationary

for (8.1) if

_ . _ 1 2
¥ @)= min max V5@ S =0, (8.4

where D(Z) = {v e R" | A >0: T +tv e QVt € [0,¢]} = {v e R"|
llvsy@)llo < s —[|Z]lo} is the set of feasible directions at z.

We denote by V(Z) the set of optimal solutions of Problem (8.4) at z.

Lemma 8.1 (|57, Proposition 3.3]). Let z € Q be locally weakly Pareto
optimal for Problem (8.1)). Then, T is Pareto-stationary for (8.1)).

The second lemma states that, assuming the convexity of the objective
functions, the stationarity condition is also sufficient for local weak Pareto
optimality.

Lemma 8.2. Assume F(-) is component-wise convezx. Let T € 0 a Pareto-
stationary point for Problem (8.1). Then, T is locally weakly Pareto optimal

for (8.1)).
Proof. See Appendix [C] O



8.2 Optimality Conditions 83

Moreover, in [57], the Lu-Zhang first-order optimality conditions for
scalar cardinality-constrained problems [70] have been extended to the multi-
objective optimization setting.

Definition 8.2 (|57, Definition 3.6]). A point Z € 2 satisfies the Multi-
Objective Lu-Zhang first-order optimality conditions (MOLZ conditions) for
(8.1)) if there exists a super support set J € J(Z) such that

67 (z) = 511]%1’1 max Vf] (Z)"d+ = ||dH st. dy=0; (85)

ER j=1,.
Since Problem (8.5)) has a strongly convex objective function and a convex
feasible set, it has a unique optimal solution at Z that we indicate with v”/(z).

Lemma 8.3 ([57, Proposition 3.7]). Let T € Q be a Pareto stationary point
for Problem (8.1)). Then, T satisfies the MOLZ conditions.

As pointed out in [57], the converse is not always true; in order to obtain
an equivalence between the two conditions, we need a stronger requirement.

Lemma 8.4 ([57, Proposition 3.10]). A point T € Q is a Pareto stationary
point for Problem (8.1)) if and only if it satisfies the MOLZ conditions for
all J € J(Z).

The Pareto-stationarity condition can be interpreted as a direct extension
of the basic feasibility concept in cardinality-constrained SOO [3l/4]. As such,
the limitations of scalar basic feasibility naturally get transferred to the MOO
case; in particular, Pareto-stationarity is only a local optimality condition
and it does not allow to obtain information about the quality of the current
support set. The MOLZ conditions emphasize this issue even more, being
generally less restrictive than Pareto-stationarity.

With the above consideration in mind, we are motivated to extend the
stronger L-stationarity condition from [3] to the MOO case. In order to
do so, we shall reinterpret L-stationarity in terms of proximal operators.
Specifically, we can employ Problem to define L-stationarity for MOO.

Let us consider the problem

6L (z) = min max Vii(z )Td—|— lld||?, (8.6)
deDL(z) j=1,...m

where DE(z) = {v € R" | 2 + v € Q} and let us denote by VX(z) the set
of optimal solutions at Z (since Q) is not a convex set, the solution is not
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necessarily unique). It is easy to notice that Problem is equivalent to
(8.3) where, for all j € {1,...,m}, g;(-) is the indicator function of the set
Q.

Lemma 8.5. Let & € Q2 and L > 0. Then, the following conditions hold:
1. 0% (z) and VE(z) are well-defined;
2. 0L(z) <0;
3. the mapping x — 0L (z) is continuous.

Proof. For Points 1. and 2. we can follow the proof of Points 1. and 2.
of Lemma having in this case M;(-) = LI, for all j € {1,...,m} and
recalling that, by definition, D% (z) is closed and non-empty.

The proof of Point 3. is identical to the one of Proposition 4 in [29]. The
argument is not spoiled by the set D¥(Z) being nonconvex. O

We are now ready to introduce the definition of L-stationarity in MOO.

Definition 8.3. A point Z € Q is L-stationary for Problem (8.1)) if 6% (z) =
0.

Remark 8.1. By simple algebraic manipulations, the problem in (8.6) can
be rewritten as

L
. (T = -~ =12
min max Vf;(z) (z—12)+ 5 |z -2l (8.7)
We can now observe that, if m = 1, Definition [8.3| actually coincides with
scalar L-stationarity. Indeed, exploiting (8.7)), 8% (z) is equivalent to

L L 1 1
. AT (o a2 i e ST (2 -\ (2
min V7 (#) (2 7) + gz~ 2l = min Tz 2+ L V@I ~ 5 IVI@)
The minimum in the above problem is attained for z* € Ig[z — 7V f(Z)],
with Tl being the (not unique) Euclidean projection onto the nonconvex set
Q. We thus have that 6%(z) = 0 if Z||z* —z||>+ Vf(z) " (2* — z) = 0, which
is satisfied if z € llg[z — +V f(Z)], i.e., T is L-stationary according to [3].

In the rest of the section, we analyze the relations between L-stationarity,
Pareto optimality, Pareto-stationarity and MOLZ conditions. We begin
showing that, for any L > 0, each L-stationary point is Pareto-stationary.
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Proposition 8.1. Let & € Q be an L-stationary point for Problem (8.1))
with L > 0. Then, T is Pareto-stationary for (8.1)).

Proof. By contradiction, we assume that Z is not Pareto-stationary for 7
i.e., there exists d € D(z) such that
0> max V@) d+2ldl’> max V@) d (88)
je{1,...,m} 2 je{l,....m}
where the second inequality is justified by the non-negativity of the norm
operator.

We now define the direction d(t) = td. Given the definition of D(z) and
the feasibility of d, we have there exists > 0 such that z+d(t) € QVt € [0,].
Thus, by definition of D*(z), for all t € [0,%], d(t) € D*(Z). Let us define
the function #% : R” x R® — R as 0 (x,d) = max;—1. . Vfi(z)Td+£|d|>.
By (8:6), it follows that 0 (z) = 0 (&, "), where 5% € VX(%), and also

oL (z) < 0 (z,d), VYdeDL(z). (8.9)

Combining the definitions of d(t) and 6%(z,d), we get that 0%(z,d(t)) =
tmaxj—1,. . V() d+t2L||d|?. It is easy to see that 0 (z,d(t)) < 0 if

0<t< V(@) d, (8.10)

————  max
L] 3=1-%m
where the right-hand side is a positive quantity as L > 0 and (8.8)) holds.
Then, taking into account the feasibility of d(t), and (8.10]), we can
define a direction d(f), with f € (O, min{z, —ﬁ max;—1,..m Vfj (a?)Td}> ,
so that d(f) € DY(z) and 0% (z) < 6% (z,d(f)) < 0. We finally get a con-
tradiction since, by hypothesis, Z is an L-stationary point for (8.1), i.e.,
6 (z) = 0. O

The last result also highlights the relation between L-stationarity and
MOLZ conditions, which, as stated in Lemma [8:3] are necessary for Pareto
stationarity. We formalize it in the next corollary.

Corollary 8.1. Let T € Q be an L-stationary point for Problem (8.1]) with
L > 0. Then, x satisfies the MOLZ conditions.

Given Proposition [B:I] and Lemma [8:2] we can also state that, under
convexity assumptions for F(-), L-stationarity is a sufficient condition for
local weak Pareto optimality.
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Corollary 8.2. Assume that F(-) is component-wise convex and let T € §)
be an L-stationary point for Problem (8.1)) with L > 0. Then, T is locally

weakly Pareto optimal for (8.1).

In order to continue the analysis, we need to introduce a couple of notions.
The first one is an assumption similar to the one used for L-stationarity in
[3], while the second one concerns an adaptation of the descent lemma to
MOO.

Assumption 8.1. For all j € {1,...,m}, Vf;(-) is Lipschitz-continuous
over R™ with constant L(f;), i.e., |V f;j(z) — Vf;j(y)|| < L(f;)||x — y|| for all
x,y € R™

In what follows, we indicate with L(F') € R™ the vector of the Lipschitz
constants, i.e., L(F) = (L(f1),...,L(fm))".

Lemma 8.6 ([5, Proposition A.24]). Let f;(-), j = 1,...,m, be a contin-
wously differentiable function satisfying Assumption|8.1 Then, for all L >
L(f;) and any x,d € R", we have that f;(z+d) < f;(z)+V f;(z) Td+5||d]>.

We are ready to show that, for specific L values, the L-stationarity con-
dition is necessary for weak Pareto optimality.

Proposition 8.2. Let Assumption [8.] hold, = € Q be a weakly Pareto op-
timal point for Problem and L > maxj=1, m L(f;). Then, T is L-
stationary for . Moreover, we have that VX (z) = {0,}, i.e., the set
VI(Z) is a singleton.

Proof. By contradiction, let us assume that either Z is not L-stationary for
(8-1) or VE(z) \ {0,} # 0. Then, there exists a direction d € DL (Z) such
that d # 0,, and

N L -
(z)T Zd|I? < o. 11
max ;@) d+ S ld)* <0 (8.11)

By Lemma we have that, for all h € {1,...,m},

fn (md) < fu(@) + V(@) "d+ @HJHQ. (8.12)

.....

—%HJHQ, where the first inequality comes from the definition of maximum
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operator. Recalling the hypothesis on L and the non-negativity of the norm,
we combine (8.12)) and the last result obtaining that

fu(z+d) < fuley + ZID=Ea < gy 4 EI I L)

1.

_ 3 _ d||?
Thus, for all A € {1,...,m} we have f,(Z + d) — fin(T) < %(L(fh) —
max;e(1,...m} L(fj)) < 0, leading to the conclusion that we have found a
point Z+d € Q such that F(Z +d) < F(z). This is a contradiction since, by
hypothesis, Z is weakly Pareto optimal for (8.1). Thus, we get the thesis. [

V £;(+) Lipschitz Cont.,
L > max;—1,. m L(f;)

Weak
Pareto

Figure 8.1: Graphical scheme of the theoretical relationships among (local)
weak Pareto optimality, L-stationarity, Pareto stationarity and MOLZ con-
ditions. The L-stationarity properties are displayed with solid arrows, while
the other ones, stated and proved in [57], are indicated with dotted arrows.

All the theoretical relationships stated in this section are shown in a
graphical and compact view in Figure B The analysis on L-stationarity
highlights how the choice of the L value could be crucial: if L is too small,
L-stationarity might not be a necessary optimality condition; on the other
hand, if L gets too large, all the Pareto stationary points also become L-
stationary. This behavior can be better noticed with an example.

Example 8.1. Let us consider the following optimization problem:

1
min = ((z1 - 3)° + (22 — 2.5)%, (21 — 1)? + (22 — 0.5)?) | st. 2], < 1.
z€ER? 2
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Figure 8.2: Pareto optimal solutions and Pareto front of problem of Example

E1

The Lipschitz constant of the gradient of both objective functions f;(-) is
L(f;) = 1. In Figure the Pareto optimal solutions and the Pareto
front are plotted: the problem has global optimal solutions corresponding to
points with 1 # 0; the local ones are characterized by the second component
xy # 0. By Lemmas [R{I}8.3] it follows that all the considered points are
Pareto-stationary and satisfy the MOLZ conditions. In Figure [8:3] we show
which Pareto solutions are L-stationary, considering four different choices for
L. If L is chosen too small (Figure7 some global Pareto solutions do not
result to be L-stationary. As stated in Proposition the L-stationarity
condition turns out to be necessary for Pareto optimality for an L value
greater than the Lipschitz constants (Figure where L = 1.01). On the
other hand, a too high value makes the condition rather weak: in Figure(8.3¢
(L = 1.25), even some local Pareto solutions are L-stationary. The situation
is further stressed in Figure where L = 2 and all Pareto-stationary
points are also L-stationary.

8.3 New Algorithmic Approaches for Sparse
MOO Problems

In this section, we propose two procedures to solve cardinality-constrained
MOO problems. The first one can be seen as an extension of the lterative
Hard Thresholding (IHT) algorithm [3]; the second one is a front approxima-
tion approach that takes as input candidate solutions, possibly associated
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Figure 8.3: L-stationary points in the Pareto front of problem of Example
(L(F) = (1,1)T) for different values of L.

with different support sets, and then spans the portions of the Pareto front
associated with those supports. We report their schemes and discuss their
properties in separate sections.

8.3.1 Multi-Objective Iterative Hard Thresholding

The first procedure we introduce is the Multi- Objective Iterative Hard Thresh-
olding (MOIHT) algorithm. The scheme of the method is reported in Algo-
rithm B3] At each iteration of MOIHT, the current solution z is updated
solving Problem . The execution continues until an L-stationary point

for (8.1) is found.

Remark 8.2. At each iteration k, the solution xj,; generated by MOIHT
is feasible for (8.1)). Indeed, the feasibility easily follows by definition of
DL(a:k).
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Remark 8.3. It is very important to underline that Step [4] is a practical
operation that can be effectively implemented in the general case. Problem
can indeed be solved up to global optimality, for example with mixed-
integer programming techniques (see, e.g., [8f9]). Defining a sufficiently large
scalar M > 0, the problem can be equivalently reformulated as

L
éngl};ﬁ+§||d||2 st. V@ 'd<p Vji=1,...,m, 106 <s,

—Mé<z+4+d< Mo, BeER, deR" §e{0,1}".

Algorithm 8.1: Multi-Objective Iterative Hard Thresholding
(MOTHT)

1 Input: F: R™ — R™, Q feasible set, zy € 2,
L > maxje{17...,m} L(f])

2 k=0
3 while xj, is not L-stationary for Problem (8.1)) do
4 Compute

L
VI (2) = argmin = max  Vfj(zx) " d+ = ||d|? (8.13)
deDEL (z,) I€{L,...,m} 2

5 Let vf € VE(zy)
6 Tpy1 = Tk + v,I;
7 | Letk=Fk+1

8 return xy

8.3.1.1 Convergence Analysis

In this section, we provide a detailed theoretical analysis of MOIHT, where we
suppose that Assumption holds.

Before proving the main convergence result, we need to prove a technical
lemma.

Lemma 8.7. Let Assumptions hold and {xy} be the sequence gen-
erated by Algorithm with constant L > max;je(1,....my L(f;). Then:

1. for all k, F(zy) — F(zp1) > Lok — 2pg1 || (L L — L(F));
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2. for all k, if vy, # Try1, then F(xpy1) < F(ag);
3. for all j € {1,...,m}, the sequence {f;(zr)} is non-increasing;
4. the sequence {F(xy)} converges;

5. limg oo ||k — Tpsa ||* = 0.
Proof. See Appendix [C] =

Proposition 8.3. Let Assumptions hold and {xy} be the sequence
generated by Algorithm with constant L > maxje(1,...my L(fj). Then,
the sequence admits cluster points, each one being L-stationary for Problem
B1).
Proof. First, we prove that the sequence admits limit points. By Lemma
we deduce that, for all k, F(zr) < F(zk-1) < ... < F(xg). More-
over, as noted in Remark xp € Q for all k. Thus, we have that
xp € Lp(F(x0)) Vk. Since Assumption holds, we conclude that the se-
quence {zj} is bounded and it thus admits limit points.
Now, we denote as T a limit point, i.e., there exists a subsequence K C

{0,1,...} such that

lim z;, = .

R
By Point 5. of Lemma and Step |§|, we have that limy_, oo ek Hv,fHQ =0
and, thus, v,f —k 0,. Considering this last result and taking the limit for
k — 0o,k € K, in Problem , by Point 3. of Lemma Steps the
continuously differentiability of F'(-) and the continuity of the maximum and
norm operators, we get that

0% (z) = lim 0% (xy) = lim  max Vf;(xx) of + %Hv,sz =0.

k—o00 k—oo je{l,....m
keK e et }

We conclude that 07 (z) = 0 and, then, Z is L-stationary for Problem (8.1].
O

Remark 8.4. By Proposition and the continuity of 6%(-) (Lemma [S.5)
we are guaranteed that, for any ¢ > 0, Algorithm will produce a point
zp, such that 6(z;) > —e in a finite number of iterations. Thus, we can
effectively employ this condition as a practical stopping criterion for the
MOIHT procedure. A similar finite termination property is also proved for the
general framework for single-point methods (Algorithm in Proposition
However, in that result € is assumed to be a convex feasible set.
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8.3.2 Sparse Front Steepest Descent

In what follows, we describe and analyze the Sparse Front Steepest Descent
(SFSD) methodology. The algorithm can be seen as a two phases approach,
which is based on the following consideration: in problems of the form ,
the Pareto front is usually an irregular set made up of several, distinct smooth
parts; each of these nice portions of the front is typically the image of a
set of solutions sharing the same structure, i.e., associated with the same
support set. The rationale of the proposed algorithm is thus to first define
a set of starting solutions; the support sets of these solutions should ideally
be diverse and define a subspace where a portion of the Pareto set lies.
Then, an adaptation of the Front Steepest Descent (FSD) algorithm (Section
3.3) can be run starting from this initial set of solutions to span the front
exhaustively. To the best of our knowledge, SFSD is the first front-oriented
approach for cardinality-constrained MOO.

8.3.2.1 Phase One: Initialization

The first phase of the SFSD procedure deals with the identification of a set
of starting solutions. The most direct way of proceeding would arguably
be exhaustive enumeration of the super support sets, selecting for each a
solution. However, the number of possible supports is high, growing as fast
as (T;), but only a small fraction contributes to the Pareto front. Thus,
this strategy is inefficient, up to being totally impractical with problems of
nontrivial size.

A totally random initialization might also appear to be a possible path
to take, but, by similar reasons as above, it would end up being a completely
luck-based operation. Therefore, we suggest to exploit single-point solvers to
retrieve Pareto-stationary solutions. Indeed, by the mechanisms of this kind
of algorithms, not only the obtained points are stationary but are usually
also good solutions from a global optimization perspective. In the numerical
experiments (Section , we explored the following (not exhaustive) list of
options.

e Using the MOIHT discussed in Section [8:3.1] in a multi-start fashion.
Since the algorithm finds L-stationary solutions, optimization should
be driven avoiding “bad” supports.

o Using the Multi-Objective Sparse Penalty Decomposition (MOSPD) method
from [57] in a multi-start fashion; in brief, at each iteration k of MOSPD,
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a pair (Tg+1, Yk+1) is found such that xy; is (approximately) Pareto-
stationary for the penalty function Q, (7, yx11) = F(x) + F1,[2 —
yrr1||?, with 7, — oo for k — oco. The pair (7441, yrr1) is obtained
by means of an alternate minimization scheme. For further details, we
refer the reader to [57]. MOSPD is proved to converge to points satis-
fying the multi-objective Lu-Zhang conditions for Problem , that
are even weaker than Pareto-stationarity; however, Penalty Decompo-
sition methods have been shown to retrieve solutions both in the scalar
[53] and in the multi-objective [57] case that are good from a global
optimization perspective.

e Combining the strategies of the two preceding points: for each point
of a multi-start random initialization, we can first run the MOSPD pro-
cedure to exploit its exploration capabilities; then, we can use MOIHT
in cascade, so that bad Lu-Zhang points that are not L-stationary can
eventually be escaped. We refer to this approach as MOHyb.

e Solving the scalarized - single objective - problem for different trade-off
parameters.

Once the starting set of solutions is obtained by one of the above strate-
gies, a further step has to be carried out. Indeed, we need to associate each
solution with a super support set. Now, if a solution has full support, then
there is a unique super support and no ambiguity. However, there might
be solutions with incomplete support; these solutions might be not Pareto-
stationary (for example, if obtained with MOSPD), in which case we shall
carry out a descent step along the steepest feasible descent direction; if on
the other hand we actually have a Pareto-stationary point with incomplete
support, we shall associate it with any of the super supports.

Obviously, we can complete this first phase with a filtering operation,
where dominated solutions get discarded. To sum up, the result of the first
phase of the algorithm provides a set of starting solutions each one associated
with a super support set.

8.3.2.2 Phase Two: Front Steepest Descent Adaptation

In Algorithm we report the scheme of the proposed algorithmic frame-
work SFSD.
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Algorithm 8.2: Sparse Front Steepest Descent (SFSD)

1 Input: F': R™ — R™, Q feasible set, ag > 0, § € (0,1).
2 X0 = Initialize(F(-))

3 k=0

4 while a stopping criterion is not satisfied do

5 Xk = xk

6 forall (z.,J,.) € X* do

7 if (z.,J.,) € X* then

8 if 67« (z.) < 0 then

0 | af = ALS(F(-), Q, e, v (x.))

10 else

11 L ak =0

12 2P = 2.+ aFvee (z,)

13 Xk = ()/(\ku{(zf,Jx)D\

{0.7,) € B8 10, = T, F(:) 5 F(y)}

14 forall Z C {1,...,m} s.t. H;IC(zé) < 0do

15 if (2%, J,.) € X* then

16 ol = thgé({aoéh |V (y, Jy) € Xk, Jy =g, 35 €

oo
{1,...,m} st. fi(z + aod™vz™ (28)) < fi(y)}

17 2 =zk 4+ aZvye(2F)

is Xk = (ZFU{(z0}) \

{9, € R 10y = 1., F(2) 5 F(y)}

19 /'\,:k'“ = Xk
20 | k=k+1

21 return X'*

The method starts working with the starting set of solutions resulting
from the Initialize step, i.e., phase one of the algorithm; the obtained set
XY is then given by

X0 ={(z,J.) | J. € T(x)},

i.e., solutions associated with a corresponding super support set. Given any
pairs (z, J,), (y, J,) € X° with J,, = J,,, we assume that z and y are mutually
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nondominated w.r.t. F(-).

Basically, the SFSD algorithm employs the instructions of the Front Steep-
est Descent (FSD) algorithm (Section [3.3)), modified as suggested in Chapter
[6] treating separately points associated with different super support sets.

Specifically, for any nondominated point z. in the current Pareto front
approximation, a common descent step in the subspace corresponding to the
support J,_ is carried out, doing a standard Armijo-type line search (Algo-
rithm [3.2). In other words, the search direction is thus given by v’z (x,)
according to . Then, further searches w.r.t. subsets of objectives are
carried out from the obtained point, as long as it is not dominated by any
other point y in the set with J, = J, . These additional explorations are
carried out along partial descent directions in the reference subspace of the
point at hand. Counsidering Z C {1,...,m} as a subset of objectives indices,
we define 07 (Z) = mingepn maxjez Vf;(Z) ' d+3|d|? s.t. dj = 0,7). Similar
to 7 the problem has a unique solution that we denote by v (Z).

Since the solutions are compared only if associated to the same super
support set, the subspaces induced by different super support sets are ex-
plored separately in SFSD. As a result, we basically obtain separate Pareto
front approximations, each one corresponding to a super support set. At the
end of the SFSD execution, all the points can be compared and the domi-
nated ones can finally be filtered out in order to obtain the final Pareto front
approximation for Problem .

Note that, conceptually, the algorithm can be seen as if multiple, inde-
pendent runs of the IFSD method (Chapter @ were carried out, each time
constraining the optimization process in a particular subspace; however, ex-
ploration in SFSD is carried out “in parallel” throughout different supports,
so that the front approximation is constructed uniformly and we can avoid
cases where all the computational budget is spent for the optimization w.r.t.
the first few considered supports.

Remark 8.5. Since each point is considered for search steps only in the
subspace induced by its associated super support set, it easily follows that
every new solution will be feasible for (8.1)).

8.3.2.3 Algorithm Theoretical Analysis

In this section, we state the convergence property of the SFSD methodology.
We refer the reader to Chapter [f] for the proofs of properties inherited by
SFSD directly from the IFSD method.
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Before proving the convergence result, we need to introduce the set X k =
{x | 3(x,J) € Xk} , with J denoting a super support set.

Remark 8.6. The SFSD methodology also inherits the well-defineteness
property from the front steepest descent method. In particular, the sound-
ness of the line searches holds by Propositions and stated in
Chapter [f] In fact, proofs can be adapted easily, taking into account that
SFSD deals separately with one or multiple sets, each corresponding to a
different super support set J.

In the next proposition, we make use of both Point 2. of Assumption [3.2]
and the concept of linked sequence (Definition [3.1]).

Proposition 8.4. Let Point 2. of Assumption hold with XY, a set of
mutually nondominated points associated with the super support set J, and
a point xg € XS. Let {Xf}} be the sequence of sets of nondominated points
produced by Algorithm . Let {xjk} be a linked sequence, then it admits
accumulation points, each one satisfying the MOLZ conditions for Problem

E1).

Proof. By the instructions of the algorithm, each linked sequence {zjk}
can be seen as a linked sequence generated by applying the IFSD algorithm
(Chapter @ to the problem of minimizing F'(z) subject to x ;7 = 0,7 Thus,
we can follow the proof of Proposition to show that each accumulation
point Z of the linked sequence {z7 } is such that 67(z) = 0, i.e., T satisfies
the MOLZ conditions for (8.1]). O

8.4 Conclusions

In this chapter, we considered cardinality-constrained multi-objective opti-
mization problems. Inspired by the homonymous condition for sparse SOO
[3], we defined the L-stationarity concept for MOO and we analyzed its re-
lationships with the main Pareto optimality concepts and conditions.
Then, we proposed two novel algorithms for the considered class of prob-
lems. The first one is an extension of the Iterative Hard Thresholding method
[3] to the MOO case, called MOIHT: like the original approach, it aims to gen-
erate an L-stationary point. The second algorithm called Sparse Front Steep-
est Descent (SFSD) is, to the best of our knowledge, the first front-oriented
approach for cardinality-constrained MOO. Being an adaptation of the front
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steepest algorithm [23], SFSD aims to approximate the (typically irregular
and fragmented) Pareto front of the problem at hand. The method depends
on suitable initialization strategies, including, e.g., multi-starting the MOIHT
or the MOSPD [57] algorithms, an hybridization of the two, or a scalarization
approach. From a theoretical point of view, we proved for MOIHT that the
sequence of points converges to L-stationary solutions; for SFSD, on the other
hand, we stated global convergence to points satisfying the MO Lu-Zhang
optimality conditions.

By a numerical experimentation (Section , we evaluated the perfor-
mance of the proposed methodologies on benchmarks of quadratic and logis-
tic regression problems. The SFSD methodology is thus shown to be success-
ful at spanning the Pareto front in an exhaustive way, with the multi-start
hybrid MOSPD-MOIHT procedure (MOHyb) being the most promising solution
to be used in the first phase of the algorithm.
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Chapter 9

Computational Experiments

In this chapter, we provide the results of thorough computational experi-
ments to evaluate the efficiency and effectiveness of the algorithms proposed
in the thesis. The full code of the experiments was written in Python3. In
addition, all the tests were run on a computer with the following character-
istics: Ubuntu 22.04, Intel Xeon Processor E5-2430 v2 6 cores 2.50 GHz, 16
GB RAM. In order to solve instances of the search direction problem ,
we employed the Gurobi Optimizer (Version 9.1) [48].

9.1 Experimental Settings

In this section, we report detailed information on the metrics, the settings
used for the main tested algorithms and, finally, the problems used to carry
out the comparisons.

9.1.1 Metrics

In this section, we provide a little description of the main metrics and tools
used to compare the algorithms.

The first three metrics are the ones introduced in [25], which are very
popular and used by the multi-objective optimization community: Purity,
I'-spread and A-spread.

We recall that the Purity metric measures the quality of the generated
front, i.e., how effective a solver is at obtaining non-dominated points w.r.t.
its competitors. In detail, the Purity value indicates the ratio of the number

99



100 Computational Experiments

of non-dominated points that a solver obtained over the number of the points
produced by that solver. Clearly, a higher value is related to a better per-
formance. In order to calculate the Purity metric, we need a reference front
to establish whether a point is dominated or not. In our experiments, we
considered as the reference front the one obtained by combining the fronts
retrieved by the tested algorithms and by discarding the dominated points.

The spread metrics are equally essential, since they measure the uni-
formity of the generated fronts in the objectives space. In particular, the
T'—spread is defined as the maximum /., distance in the objectives space
between adjacent points of the Pareto front (extremes of the reference front
included), while the A-spread is quite similar to the standard deviation of
the £, distance. As opposed to the Purity, low values for the spread metrics
are associated with good performance.

The fourth metric we employed is the Hypervolume (HV') [110]: it cal-
culates the area/volume which is dominated by the provided set of solutions
with respect to a reference point. The latter is chosen such that the value
of each of its coordinates is slightly greater than the worst value obtained
by any of the compared solvers on the related objective function. Similar to
Purity, higher values for the Hypervolume metric mean better performance.

Lastly, we employed the performance profiles introduced in [27], that are
an useful tool to better appreciate the relative performance and robustness
of the tested algorithms. The performance profile of a solver w.r.t. a certain
metric is the (cumulative) distribution function of the ratio of the score
obtained by the solver over the best score among those achieved by all the
considered solvers. In other words, it is the probability that the metric score
achieved by the solver in a problem is within a factor 7 € R of the best
value obtained by any of the solvers in that problem. For a more technical
explanation about performance profiles, we refer the reader to [27]. Note that
performance profiles w.r.t. Purity and Hypervolume were produced based on
the inverse of the obtained values, since these metrics have increasing values
for better solutions.

9.1.2 Algorithms and Hyper-parameters

The main front-oriented algorithms we tested for the comparisons are the
following.

e The Front Steepest Descent (FSD) algorithm [23], whose description
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can be found in Section [3.3] is the representative for front-oriented
descent methods for unconstrained MOO problems. We also tested
FSD equipped with the extrapolation strategy proposed in [23] and
mentioned in Remark B.3t this variant is indicated as EFSD.

e The Front Projected Gradient (FPG) method. In Appendix the
reader can find a description and a theoretical analysis of this approach.
In brief, it is a variant of FSD capable of handling box-constrained MOO
problems.

e NSGA-II [26], which we describe in detail in Section is the most
popular evolutionary algorithm for both unconstrained and box-constrained
MOO problems. The parameters values for NSGA-II were chosen ac-
cording to the referenced paper.

e The Direct Multi-Search (DMS) algorithm [25], which is a multi-objective
derivative-free method, inspired by the search/poll paradigm of direct-
search methodologies of directional type. The parameters for this
method were set according to the referenced paper and the code avail-
able online (http://www.mat.uc.pt/dms).

e The MOSQP algorithm [37], which we consider a gradient-based SQP—
type competitor for convex constrained nonlinear MOO problems. The
chosen hyper-parameters for MOSQP were the best ones according to [37].
For the quadratic approximations, we used H; = I, in the second stage
and H; = V2f;(zx) + E; (E; being obtained by a modified Cholesky
algorithm) in the third stage, as it is claimed to be the most robust
and efficient way to use MOSQP [37]. For a more detailed explanation
about the various MOSQP stages and versions, we refer to [37]. Lastly,
we used the Ipopt software package (https://github.com/coin-or/
Ipopt|) [102] in order to solve the SQP problems.

As for the hyper-parameters of our approaches, they were chosen based
on some preliminary experiments on subsets of the tested problems, which
we do not report here for the sake of brevity.

e For NSMA (Section [4.2), we set N = 100, s;, = 10, ¢ = 0.9, nope = 5.
The same number N of solutions in the population was also used for
NSGA-TII.
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e For FRONT-ALAMO (Section[7.1)), we set: 79 = 1; if the problem only has
bound constraints p = 10, otherwise p = 2; 0 = 0.9; w = 10%; pu° = 0,,.

e For all the Armijo-Type Line Searches, we set ap = 1, § = 0.5, v =
1074

e For IFSD (Section[6.2), FRONT-ALAMO and SFSD (Section [8.3.2), a strat-
egy to limit the number of points used for partial descent searches was
employed, in order to improve the efficiency of the overall procedures
and avoid the production of too many, very close solutions. In particu-
lar, we added a condition based on the crowding distance [26], of which
a brief description can be found in Section [{.1.1] to decide whether a
point should be considered for further exploration.

Unless explicitly stated otherwise, for each algorithm and problem the
test was run for up to 2 minutes. A stopping criterion based on a time limit
is the fairest way to compare such structurally different algorithms. Clearly,
we also took into account other specific stopping criteria indicating that a
certain algorithm cannot improve the solutions anymore.

NSMA and NSGA-II are non-deterministic algorithm w.r.t. the others.
Therefore, we decided to run them 5 times on every problem, with different
seeds for the pseudo-random number generator. Every execution was char-
acterized by the same time limit (2 minutes). The five generated fronts were
compared based on the Purity metric and only the best one was chosen as the
output of NSMA/NSGA-II. In this context, the reference front was the combi-
nation of the fronts of the 5 executions. Executing 5 runs lets NSMA/NSGA-II
reduce its sensibility to the seed used for its random operations. All the
other algorithms are deterministic and, then, they were executed once.

9.1.3 Problems

The problems constituting the benchmark of the computational experiments
are listed in Table[9.1] In this benchmark, we considered problems whose ob-
jective functions are at least continuously differentiable almost everywhere.
If a problem is characterized by singularities, we counted these latter ones as
Pareto-stationary points. Unless explicitly stated otherwise, the values for
n considered for the experiments are the ones shown in the table.

In the table we explicitly divide the problems with at most only box
constraints, the ones with general convex constraints and the two new box-
constrained convex MOO problems MAN_1 and MAN_2, whose formulation
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’ Source ‘ Problem H m ‘ n ‘ Box ‘ n ‘ nnp ‘
CEC09_1, CEC09_2
CEC09_3, CEC09_4 ) - 10, 9%
CEC09_5, CEC09_6 » 2% Y,
[107] CEC09.7 30, 40, 50,
100, 200
CEC09_8, CEC09_9 5
CEC09.10
ZDT.1, ZDT_2
1209 ZDT_ 3, ZDT 4 2.5 10, 20 Y
- - 2 1 9> 18, 24, N/A | N/A
50|, App. [D| | MOP_2, M-MOP_2 30, 40, 50,
[80] MMR_5 100, 200
App. |D| M-FDS_1 3
MOP_1 2 1
[50] MOP_3 2 )
MOP_7 3
[51) JOS_1 , | 25.10,20,30 X
[92] SLC_2 40, 50, 100, 200
M-BNH_1, M-BNH_2 || 2 2 X | N/A
LAP_1 2 2 X 1
[21) 2, 5, 10, 20
LAP_2 2 30, 40, 50 X | N/A 1
100, 200
App. |D| M-OSY 2 6 v 4 2
MAN_1 2 | 2,5, 10, 20, 30
App- [0 MAN 2 31 40,50, 100,200 | ¥ | VA | VA

Table 9.1: Problems used in the computational experiments. Box indicates
if the considered problem has boundary conditions. n; indicates the number
of linear constraints, without considering the boundary ones, if any. np;
indicates the number of non linear constraints.

can be found in Appendix [D] Regarding the first category, the set is mainly
composed by problems with particularly difficult objective functions, such
as the CEC09 problems [107] and the ZDT ones |[109]. The CEC09 problems
have non-continuously differentiable objective functions; the same feature is
present in the ZDT problems, where the objective functions are also compos-
ite. Hence, these problem classes are particularly interesting for the analysis
of the behavior of the algorithms with hard tasks. Note that some problem
names are characterized by the prefix M-: these problems are rescaled ver-



104 Computational Experiments

sions of the original ones and their formulations are provided in Appendix [D]
Finally, we included in our benchmark the slightly modified versions of the
BNH problems and the LAP problems proposed in [21]. We also considered
a modification of the OSY problem [85], whose formulation can be found in
Appendix [D]

Unless explicitly stated otherwise, similar to what is done in [25], for
each box-constrained problem, the initial points were uniformly selected from
the hyper-diagonal defined by the bound constraints. In this scenario, the
number of initial points is equal to the dimension n of the problem. Since in
the MOP_1 problem n = 1, only in this case we started the tests from one
feasible point, namely, = = 0.

9.2 Performance Evaluation of the Non-dominated
Sorting Memetic Algorithm

In this section EL we focus on the comparison of NSMA (Chapter |4 Section
4.2) with some of the main state-of-the-art methods in diverse settings. In
particular, we tested as competitors FPG, NSGA-II and DMS. We consider the
first two methods, described in Appendix [A] and Section [4.1] respectively,
the representatives for descent methods and EAs for box-constrained MOO
problems and, thus, NSMA most direct competitors.

9.2.1 Experimental Comparisons between NSGA-II and
FPG

Before turning to the evaluation of the NSMA, we carry out a preliminary
study. Evolutionary algorithms and descent methods have their own draw-
backs. In particular, EAs do not have theoretical convergence properties.
In addition, they can be very expensive in particular settings. On the other
side, descent algorithms suffer on highly non-convex problems: in these cases,
they often produce sub-optimal solutions, especially when the starting points
are not chosen carefully. In this section, we want to address two topics:

e the impact of convexity of the objective functions on the performance
of these algorithms;

IThe implementation code of the NSMA algorithm can be found at https://github.
com/pierlumanzu/nsma [74].
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e the behavior of the methods as the problem dimension n increases.

For the comparisons of this section, we only considered the NSGA-II
and FPG algorithms, which we respectively pick as representatives for the
two classes of methods. As benchmark, we picked four problems that are
scalable w.r.t. the problem dimension n and have the following features: the
MAN_1 problem and the ZDT_1 problem have convex objective functions;
the CEC09_1 problem and the CEC09_4 problem have nonconvex objective
functions. They can be found listed in Table [0.1] For these comparisons,
each problem was tested for values of n € {5, 10, 20, 30, 40, 50, 100, 200}.
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Figure 9.1: Performance profiles for FPG and NSGA-II on the conver MAN_1
and ZDT_1 problems.
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Figure 9.2: Performance profiles for FPG and NSGA-II on the nonconvex

CEC09_1 and CEC09_4 problems.

We show the performance profiles for the two algorithms on the convex
problems in Figure [9.1f and on the nonconvex problems in Figure|9.2
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MAN_1 (F convex)
n Purity T'—spread A—-spread
FPG NSGA-II FPG NSGA-II FPG NSGA-II
5 1.0 1.0 55.0 2.439 N/A 0.655
10 1.0 0.97 83.969 25.021 1.882 0.549
20 1.0 0.96 724.921 218.945 1.734 0.623
30 1.0 0.94 3485.981 1605.224 1.694 0.702
40 1.0 0.77 5292.454 3722.987 1.863 0.799
50 1.0 0.474 10330.682 5964.774 1.987 0.924
100 1.0 0.0 82996.647 58239.443 1.987 0.94
200 1.0 1.0 1171289.94 677249.587 1.964 0.898

Table 9.2: Metrics values obtained by FPG and NSGA-II in the MAN_1 prob-
lem with n € {5,10,20, 30,40, 50,100, 200}. The metric values marked in
bold are the best obtained in the considered instance.

We can observe that in the former case the FPG turned out to be better
than NSGA-ITI in terms of Purity. This result reasonably comes from the
fact that, in problems characterized by convex objective functions, the use
of first-order information and common descent directions lets FPG find better
solutions than NSGA-II for equal computational budget. On the contrary,
the FPG algorithm was outperformed by NSGA-II in terms of I'-spread and
A-spread. In this perspective, the crossover and mutation operations of
NSGA-ITI allow to consistently obtain spread Pareto front approximations,
while the constrained steepest partial descent directions and the B-FALS em-
ployed by FPG, whose description can be found in Appendix[A] are apparently
not as effective.

As for the nonconvex case, we can observe from the Purity profile that
now the FPG obtained many points that are dominated by those produced by
NSGA-II. The results with the spread metrics are instead analogous to the
convex case, with NSGA-II outperforming FPG. However, the performance
gaps in terms of I'-spread and A-spread are less marked than the ones in
the convex case.

In order to assess the performance of the algorithms as the problem di-
mension n increases, in Tables we show in detail the metrics
values achieved by the two methods on the convex MAN_1 problem and the
non-convex CEC09_1 and CEC09_4 problems.

The Purity values indicate some relevant features of the two algorithms.
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CECO09-1 (F non-convex)
n Purity T'—spread A—-spread
FPG NSGA-II FPG NSGA-II FPG NSGA-II
5 0.983 0.92 0.555 0.149 1.754 0.843
10 0.982 0.92 0.555 0.387 1.701 1.042
20 1.0 0.91 0.327 0.475 1.971 1.597
30 1.0 0.75 0.462 0.605 1.578 1.719
40 1.0 0.73 0.437 0.593 1.519 1.713
50 1.0 0.87 0.402 0.604 1.474 1.729
100 1.0 0.978 0.466 0.595 0.427 1.668
200 1.0 0.26 0.501 0.571 0.821 1.574

Table 9.3: Metrics values obtained by FPG and NSGA-II in the CECO09_1
problem with n € {5, 10, 20, 30, 40, 50, 100,200}. The metric values marked
in bold are the best obtained in the considered instance.

CEC09-4 (F non-convex)
n Purity T'—spread A—-spread
FPG NSGA-II FPG NSGA-II FPG NSGA-II

5 0.025 0.96 0.421 0.134 1.876 0.789
10 0.003 0.97 0.3 0.03 1.972 0.548
20 0.001 0.98 0.339 0.087 1.926 0.575
30 0.001 0.98 0.395 0.1 1.942 0.57
40 0.002 0.98 0.4 0.133 1.864 0.603
50 0.02 0.98 0.44 0.115 1.337 0.584
100 0.01 0.99 0.384 0.145 1.274 0.682
200 0.09 0.98 0.451 0.478 1.208 1.08

Table 9.4: Metrics values obtained by FPG and NSGA-II in the CEC09_4
problem with n € {5, 10, 20, 30, 40, 50, 100,200}. The metric values marked
in bold are the best obtained in the considered instance.
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While in the convex case, FPG outperformed NSGA-II, in the non-convex
case, the performance depends on the problem at hand. In the CEC09_1
case, FPG turned out to be capable of obtaining better points than NSGA-IT.
Moreover, as the value of n increased, the superiority of FPG on the Purity
metric became even marked. A similar situation can be also seen on the
MAN_1 problem, where, except for the n = 200 case, the NSGA-II perfor-
mance degraded on the largest instances. These results highlight one of the
drawbacks of the EAs, i.e., the limited scalability. In this case, common de-
scent directions can be very helpful for cheaply improving the quality of the
solutions. On the other hand, on problems with more difficult non-convex
objective functions, such as the CEC09_4 problem, FPG failed to escape from
non-optimal Pareto stationary points; in this case, NSGA-IT could exploit its
genetic operators to obtain better solutions.

Overall, NSGA-IT outperformed FPG on the I'-spread and A—spread met-
rics. Note that the A—spread metric is not available for FPG on the MAN_1
problem with n = 5, since it requires at least two points to be returned.
However, as the value for n increases, the limited scalability of the genetic
approach may worsen its performance. Some examples of this behavior are
the spread metrics results of the two approaches on high dimensional in-
stances of the CEC09_1 and CEC09_4 problems. In these cases, FPG obtained
better performance: the constrained steepest partial descent directions and
the B-FALS algorithm turned out to be helpful in exploring the extreme re-
gions of the objectives space and, then, in finding a spread approximation of
the Pareto front.

In conclusion, both algorithms have features that make them very ef-
fective in specific situations: on convex and not extremely difficult non-
convex problems, FPG was better in obtaining good solutions, while NSGA-II
was more effective on escaping from non-optimal points on highly irregu-
lar problems. Furthermore, the genetic features of NSGA-II let this latter
one perform better in finding spread and uniform Pareto fronts most of the
times: this fact is indeed reflected in the spread metrics values obtained
by NSGA-II. However, the limited scalability of NSGA-II could compromise
its performance on high dimensional problems, in terms of both Purity and
spread metrics. All these facts remark once again how much trying to join
these benefits in one algorithm might be appealing.
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9.2.2 Preliminary Comparisons between NSMA and the
State-of-the-art Algorithms

In this section, we provide the results on two problems along with some
first comments about the behavior of the four algorithms. We analyzed
the CEC09_3 problem with n = 10 and the ZDT_3 problem with n = 20.
The first one has particularly difficult objective functions, while the second
one is also characterized by a composite function and a disconnected front
We consider these problems suitable to
start an analysis about the performance of the considered algorithms. For
other information on CEC09_.3 and ZDT_3, the reader is referred to Table
9. 1]

which is not convex everywhere.
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Figure 9.3: Approximation of the Pareto front of the CEC09_3 problem with

n = 10.

From the results on the CEC09_3 problem, shown in Figure[9.3] we imme-
diately observe the effectiveness of our approach. Indeed, NSMA outperformed
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Figure 9.4: Approximation of the Pareto front of the ZDT_3 problem with
n = 20.

the other algorithms in terms of Hypevolume, I'—spread and A-spread. More-
over, its result on the Purity metric was similar to the best one, which was
obtained by FPG, and better than the two other competitors.

NSGA-II and FPG turned out to be the second and the third best al-
gorithms, respectively, with FPG outperforming the genetic method only in
terms of Purity. The two algorithms seem not to be capable of spreading
the search in the objectives space. Indeed, they retrieved many points but
most of them are concentrated in a small portion of the objectives space.
In this regard, NSMA was better: this result arguably comes from the use of
constrained steepest partial descent directions with points characterized by
a high crowding distance. Indeed, using descent steps at such points lets
NSMA obtain a more spread and uniform Pareto front approximation w.r.t.
its competitors.
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NSMA and NSGA-II turned out to be the best algorithms on the ZDT_3
problem, as we can observe in Figure Furthermore, they exhibited very
similar performance. It is known that NSGA-II is one of the most effective
algorithms to use with the ZDT problem class. Indeed, its genetic features
allow it to escape from non-optimal Pareto-stationary solutions and to ob-
tain good results with the most complex functions. NSMA seems to use these
features as efficiently as NSGA-II. We also observe a little performance en-
hancement in terms of Purity.

The lack of these characteristics did not allow FPG to have the same
performance. Indeed, although this algorithm obtained a good value for the
Purity metric, it produced few points and it was not capable to obtain a
spread and uniform Pareto front. DMS seems not to have the same issues,
having been able to properly identify two blocks of the disconnected front.
In this case, the derivative-free algorithm even managed to obtain a slightly
better Purity value than FPG.

9.2.3 Performance Analysis in Variable Settings

In this section, we want to assess the robustness of the proposed algorithm
in the specific settings where, as highlighted in Section [9.2.1] genetic and
descent methods exhibit particular struggles. In detail, we compare the
performance of the four algorithms (NSMA, FPG, NSGA-II and DMS) in two
peculiar problems already addressed in Section MAN_1 (F convex)
and CEC09_4 (F nonconvex). Moreover, we consider the following problem
dimensionalities: n € {5, 10, 20,200}.

The results for the MAN_1 problem are shown in Figure[9.5|and Table[9.5
For n = 5, DMS turned out to be the best overall algorithm, obtaining a
Purity value similar to the one of FPG and excelling in terms of Hypervolume
and I'-spread. However, observing the plot, the points produced by the
NSMA algorithm seem to be near to those obtained by DMS and FPG. We
hence deduce that the latter algorithms produced only slightly better points.
Furthermore, in this problem NSMA outperformed the competitors in terms
of A-spread: our method managed to achieve a more uniform Pareto front.

As the value of n increases, the DMS performance gets worse and NSMA
outperforms it w.r.t. all the metrics. In particular, in these cases our method
turned out to be the best in terms of the Hypervolume and spread metrics.
For n € {10,20}, DMS produced only a single point that is also dominated
(it is not observable in the figure since it is too far from the reference front).
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Figure 9.5: Approximation of the Pareto front of the convex MAN_1 problem
at different dimensionalities retrieved by NSMA, FPG, NSGA-II and DMS.

In fact, the performance drop of DMS as the size of problems grows is not
unexpected: derivative-free algorithms based on searches along coordinate
directions are well known to poorly scale in general.

The performance of NSGA-II is rather poor w.r.t. NSMA, regardless the
value of n. Arguably, this result can be attributed to the aforementioned
NSGA-II performance slowdown occurring on problems characterized by a
particularly large feasible sets (Section . In this context, NSMA par-
ticularly exploited the surrogate bounds, the constrained steepest descent
directions and the optimization of the points with high crowding distance.
The constrained steepest descent directions also allowed FPG to be the best
algorithm in terms of Purity overall. However, this method poorly performed
regarding the Hypervolume and spread metrics. Finally, for great values of
n, our approach and FPG are the only algorithms whose Purity values are
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[ n || Metric || NSMA FPG NSGA-II DMS
Purity 0.38 1.0 0.01 0.995
5 Hypervolume 444.767 0.0 440.096 448.565
I'-spread 2.231 55.0 2.439 0.027
A-spread 0.624 N/A 0.655 0.902
Purity 0.94 1.0 0.45 0.0
10 Hypervolume || 4.637 x 1010 | 4.632 x 1010 | 4.635 x 1010 0.0
T'—spread 11.212 185.201 117.139 5.968 x 106
A-spread 0.566 1.803 0.661 N/A
Purity 0.99 1.0 0.02 0.0
20 Hypervolume || 3.746 x 1010 | 3.716 x 1010 | 3.731 x 1010 0.0
I'spread 84.651 1568.5 843.579 4.071 x 108
A-spread 0.48 1.584 0.7 N/A
Purity 0.99 1.0 0.0 0.0
200 Hypervolume || 1.185 x 1010 | 4.127 x 10% | 4.898 x 10° | 3.11 x 108
I'—spread 29545.758 1171289.94 677249.587 1.17 x 106
A—spread 0.492 1.948 0.9 1.0

Table 9.5: Metrics values achieved by the four algorithms (NSMA, FPG,
NSGA-II and DMS) on the convex MAN_1 problem for n € {5, 10,20,200}.
The metric values marked in bold are the best obtained on the considered
instance.

not near to 0.

Regarding the CEC09_4 problem, whose results are reported in Figure
and Table[9.6] NSMA was the algorithm with the best overall performance:
it generally obtained better metrics values than its most important competi-
tors (FPG and NSGA-II). Here, the combination of genetic operations and
constrained steepest descent directions was greatly helpful to escape from
non-optimal Pareto-stationary points and, thus, to obtain remarkable re-
sults. Indeed, the independent use of only one of these two approaches did
not lead to the same performance. In this problem, except in terms of Pu-
rity in the n = 10 case, the DMS algorithm performed poorly regardless the
considered dimensionality.

In conclusion, NSMA can be considered a viable option with convex prob-
lems, both in the low and the high dimensional cases. At the same time, our
approach did not suffer with non-convex problems characterized by difficult
objective functions, as opposed to FPG. On the contrary, it also outperformed
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Figure 9.6: Approximation of the Pareto front of the nonconvex CEC09_4
problem at different dimensionalities retrieved by NSMA, FPG, NSGA-II and
DMS.

NSGA-II, which is known to be a particularly suitable algorithm to use in
these cases but struggles as the dimensionality of the problem grows.

9.2.4 Overall Comparison

In this last section of computational experiments, we provide the perfor-
mance profiles for the four considered algorithms on the CEC09, ZDT,
MOP_1, MOP_2, MOP_3 and MAN_1 problems. The reader can be found
them listed in Table The profiles are shown in Figure

The performance profiles remark once again the benefits of using our pro-
posed approach. Regarding the Purity metric: NSMA is the clear winner. In
problems with complicated objective functions, local optimization of points
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[ n || Metric || nsua | FpG | NsGA-II [ DmMs |
Purity 0.65 0.025 0.58 0.0
5 Hypervolume 0.473 | 0.365 0.477 0.375
I'—spread 0.121 | 0.421 0.134 0.331
A-spread 0.582 | 1.824 0.789 1.946
Purity 0.78 0.002 0.55 0.883
10 Hypervolume 0.5 0.404 0.496 0.384
I'—spread 0.05 0.3 0.03 0.289
A-spread 0.539 | 1.973 0.551 1.734
Purity 0.82 0.0 0.6 0.112
20 Hypervolume 0.487 | 0.391 0.483 0.382
I"—spread 0.103 | 0.339 0.087 0.301
A-spread 0.539 | 1.917 0.576 1.644
Purity 0.8 0.011 0.75 0.0
200 Hypervolume 0.427 | 0.306 0.407 0.234
I"—spread 0.31 0.451 0.478 0.599
A—spread 0.992 | 1.208 1.08 1.111

Table 9.6: Metrics values achieved by the four algorithms (NSMA,
FPG, NSGA-II and DMS) on the nonconvex CEC09.4 problem for n €
{5,10,20,200}. The metric values marked in bold are the best obtained
on the considered instance.

in the NSMA mechanisms could result in a waste of computational time. From
the results, however, we deduce that the converse is true: the combined use of
constrained steepest descent directions and genetic operations allowed NSMA
to achieve the best performance.

The proposed method also outperformed the other ones in terms of Hy-
pervolume and I'-spread, while its performance is very similar to the one of
NSGA-IT in terms of A-spread. We can conclude that our approach is able
to effectively obtain accurate, spread and uniform Pareto front approxima-
tions. At the same time, we deduce that the same cannot be said for the
FPG, which turned out to be the worst method w.r.t. these metrics. However,
the descent-based algorithm was the second best in terms of Purity, outper-
forming NSGA-II. In general, DMS was not effective overall on the considered
benchmark.

Lastly, we tested the four algorithms considering a time limit of 30 sec-
onds for the experiments: the results can be seen in Figure Our aim is
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Figure 9.7: Performance profiles for the NSMA, FPG, NSGA-II and DMS algo-
rithms on the CEC09, ZDT, MOP_1, MOP_2, MOP_3 and MAN_1 problems,
run with a time limit of 2 minutes.

to observe the effectiveness of the methods at the first iterations.

Considering the Hypervolume and the I'—spread metrics, we observe that
the differences between our approach and the other algorithms are now even
clearer, while the situation is not changed in terms of Purity and A-spread.
We can conclude that NSMA turned out to be also effective considering a
smaller time limit: from the very first iterations, our approach was capable
to obtain good, wide and uniform Pareto front approximations.



9.3 Computational Experiments on the Limited Memory Quasi-Newton

Approach for MOO 117
Purity Hypervolume
1.0 1.0
e
0.8 ‘._.”'_.,....,-o-.-......--o--o-o- 0.8 i
£ i,l ..-...4.--0-O-""'"".""".“.""
| e
206 P S sl 206l &
2 S e ] = ¢
El k4 — = El )
E | AT e |
3 oad] pourt” 3o.allf
i —— NSMA i
i e FPG
02 —r— NSGAI 0.2
-+~ DMS
0.0 0.0
2 4 6 8 10 2 4 6 8 10
T T
I-spread A-spread
1.0 1.0 .
AT
e = 3 ‘! i .'...-l“'"'"'""
0.8 AT 08! [ o
B

P R e

Cumulative

o o

> o
Cumulative
o o
IS o

o

N
o.
I
N

0.0

0.0

Figure 9.8: Performance profiles for the NSMA, FPG, NSGA-II and DMS algo-
rithms on the CEC09, ZDT, MOP_1, MOP_2, MOP_3 and MAN_1 problems,
run with a time limit of 30 seconds.

9.3 Computational Experiments on the Lim-
ited Memory Quasi-Newton Approach for

MOO

In this section EI, we compare the performance of the limited memory Quasi-
Newton approach proposed in Section (Chapter|[5)), which we call LM-Q-NWT,
and of other state-of-the-art Newton and Quasi-Newton methods for MOO

from the literature.
In particular, the first competitor is the Multi-Objective Newton method

2The full code of the experiments can be found at https://github.com/pierlumanzu/
limited_memory_method_for_MOO |76|.


https://github.com/pierlumanzu/limited_memory_method_for_MOO
https://github.com/pierlumanzu/limited_memory_method_for_MOO
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(NWT) proposed in [34]. Since this method is not designed to handle uncon-
strained multi-objective non-convex problems, we evaluated its performance
only on the convex test instances. The other two competitors are the Quasi-
Newton approach (Q-NWT) proposed in [90] and the Modified Quasi-Newton
method (MQ-NWT) presented in [1]. We refer the reader to Section for
additional details on these three approaches. At the first iteration of all the
Quasi-Newton approaches, including LM-Q-NWT, the approximation matrix/-
matrices is/are set equal to the identity matrix.

In Table[9.7] we list the problems tested in the experiments of this section.
In particular, we compared the algorithms in 78 convex and 83 non-convex
problems. Additional details on these latter ones can be also found in Ta-
ble 0.I] The problems scalable w.r.t. the problem dimension were tested
for values of n € {2,5,10, 20, 30, 40, 50, 100, 200, 500, 1000}, except for the
CECO09 problems where the n = 2 case was not considered. For each algo-
rithm, we tested each problem with 100 different initial points chosen from
a uniform distribution. The latter was defined through lower and upper
bounds specified for each problem in Table [0.7] Since in this context we
consider unconstrained multi-objective optimization problems, these bounds
were only used to choose the random initial points. Starting from an initial
point, we decided to let the algorithms run until one of the following stopping
conditions was met:

e the current solution is e-Pareto-stationary (Definition [2.4]); in the ex-
periments,
€= 5epsl/ 2

where eps denotes the machine precision;
e a time limit of 2 minutes is reached.

In order to make the comparisons as fair as possible, we decided to use the
same line search strategy for all the approaches. In particular, we employed
the Wolfe line search proposed in Section Note that all the considered
problems have objective functions that let Assumption .1 with Q = R™ hold
and, thus, the finite termination of Algorithm is guaranteed. The values
for the line search parameters were chosen according to some experiments
on a subset of the tested problems and are as follows: v = 1074, ¢ = 1071,
n =2.5and § = 0.5. We do not report these preliminary results for the sake
of brevity. In order to efficiently use the proposed line search in MQ-NWT, we
used Equation to compute p* at each iteration k.
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Type H Problem ‘ Bounds ‘
JOS_1a [-10, 10]"
JOS_1b [-102,10%]"
JOS_1c [10—2, 1)
SLC-2 [~102,10%]"
Convex
M-FDS_1 see App. El
MOP.7 see [50|
MAN_1 (10,101 |
MAN_2 see App. IDI
CEC09_1, CEC09_2, CEC09_3
see |107]
CEC09_7, CEC09_8, CEC09_10
Non Convex M-MOP_2 see App. El
MOP_3 see [50|
MMR._5 see |80ﬁ

Table 9.7: Problems tested in the computational experiments of Section
along with the bounds used to choose the initial points.

The choice for the parameter M of the new limited memory approach is
separately discussed in Section Since it denotes the number of vectors
pairs maintained in memory during the iterations, it is the most critical
among the LM-Q-NWT parameters.

For each algorithm and problem, the main considered metrics are the
following.

e N.: the percentage of runs ended with an e-Pareto-stationary point.

e T: the computational time to reach the e-Pareto-stationarity from an
initial point. If the e-Pareto-stationarity is not reached within the time
limit, the value of T' related to that point is set to co.

o Ths: the mean of the finite T" values.

Similar to Purity and Hypervolume (Section|9.1.1)), N, has increasing values
for better solutions. Thus, the performance profiles w.r.t. this metric were
produced based on the inverse of the obtained values.

9.3.1 Selection of the Parameter M

The parameter M indicates how many vectors pairs {(s;, u;)} are maintained
in memory at each iteration of LM-Q-NWT. A bad value for this parameter
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might compromise the overall performance of the approach, making it too
slow or not capable of reaching e-Pareto-stationary points within the time
limit.

In order to select a proper value for M, we analyzed the performance of
LM-Q-NWT with M € {2,3,5,10,20} on a subset of the tested problems.

e 2 convex problems: SLC_2 (m = 2), MAN_2 (m = 3).

e 2 non-convex problems: CEC09_1 (m = 2), CEC09_10 (m = 3).
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Figure 9.9: Performance profiles for the LM-Q-NWT algorithm with M €
{2,3,5,10,20} on the SLC_2, MAN_2, CEC09-1 and CEC09-10 problems.

In Figure we report the performance profiles for the five variants of
the new limited memory method. The solvers with M € {5,10} turned out
to be the best w.r.t. both N. and T, while the variant with M = 2 was
outperformed by all the other methods. We conclude that too little infor-
mation on the previous steps can compromise the performance of LM-Q-NWT.
On the other hand, the management of too many vectors pairs and the use
of the two-loop recursive procedure can require great computational costs.
A demonstration of this fact is the performance of the proposed approach
with M = 20 on the T metric. Although this solver performed well w.r.t.
N., it is only the fourth most robust algorithm in terms of computational
time.

After analyzing the performance profiles, we decided to use the new lim-
ited memory approach with M = 5 for the rest of the section. However, the
variant with M = 10 appears to be a good choice too.
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9.3.2 Overall Comparisons

In this section, we compare the proposed approach with the Newton and
Quasi-Newton algorithms. As already mentioned, we tested NWT only on the
convex problems. Then, we separately report the performance profiles for
the convex and non-convex problems in Figures and respectively.
In order to better remark the differences among the methods, for each metric
we show three plots concerning different sets of values for n.

e Figures[0.10a] [0.10d] [0.17a] 0.11d} all the n values.
e Figures [0.100] 0.10¢] [0.110] [0.11¢t n > 50.
e Figures[0.10d [0.108, [0.11d, 0. 11 n < 50.
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Figure 9.10: Performance profiles for the LM-Q-NWT, NWT, Q-NWT and MQ-NWT
algorithms on the convex problems of Table
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Figure 9.11: Performance profiles for the LM-Q-NWT, Q-NWT and MQ-NWT al-
gorithms on the non-convex problems of Table [9.7]

Regarding the performance on the convex problems for all the n values,
the proposed approach proved to be the best algorithm, outperforming the
competitors w.r.t. both the metrics. Moreover, the gap between LM-Q-NWT
and the others is sharper when taking into account the non-convex prob-
lems or the high dimensional ones. For high n values, the NWT and Q-NWT
algorithms proved to suffer the maintenance of the Hessians and the approx-
imation matrices respectively. As a consequence, they turned out to be the
least robust w.r.t. both the metrics. Using a single approximation matrix
allowed the MQ-NWT approach to perform better. However, in extremely high
dimensional problems, even managing a single matrix proved to be an ex-
pensive job. In these cases, the performance of the limited memory approach
was remarkable.

On the low dimensional problems, the NWT and Q-NWT algorithms had a
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good performance. The proposed approach similarly behaved w.r.t. the N,
metric, but it was generally outperformed by these algorithms in terms of
T. Managing the real Hessians or the approximation matrices turned out
to be a tractable task when n is small enough. Moreover, by definition,
these matrices provide more accurate information about the curvature of
the objective functions than the matrix of LM-Q-NWT and MQ-NWT. However,
these two algorithms still proved to be competitive, obtaining good T' metric
results in most of the problems.

In order to analyze the performance of the algorithms more deeply, in
Tables we report the metrics values obtained in two convex
and two non-convex problems respectively. In particular, we show the results
for n € {5, 20,50, 200, 500, 1000}.

N. T
" LM-Q-NWT ~ NWT  Q-NWT MQ-NWT || LM-Q-NWT NWT Q-NWT  MQ-NWT
5 1.0 1.0 1.0 1.0 0.028 0.102 0.045 0.028
20 1.0 1.0 1.0 1.0 0.015 0.586 0.093 0.015
50 1.0 1.0 1.0 1.0 0.022 1.113 0.218 0.022

200 1.0 1.0 1.0 1.0 0.081 14.604 0.696 0.088

500 1.0 0.88 1.0 1.0 0.187 90.595 1.041 0.229

1000 0.57 0.01 0.13 0.24 52.184 146.784  28.078 68.779

Table 9.8: Metrics values achieved by the LM-Q-NWT, NWT, Q-NWT and
MQ-NWT algorithms on the convex MAN_1 problem (m = 2) for n €
{5, 20,50, 200,500,1000}. A value marked in bold is the best obtained for a
metric on a specific problem.

Regarding the N, metric, the proposed method outperformed the com-
petitors regardless the values for n and m. As in the performance profiles,
the differences between LM-Q-NWT and the other approaches are clearer on
the high dimensional problems. In some of these, NWT and Q-NWT were not
able to obtain any e-Pareto-stationary point.

On the problems with two objective functions, almost all the best results
in terms of the T); metric were obtained by the proposed approach. However,
the same performance was not obtained on the problems with m = 3 and
low value for n. The use of a single matrix seems not to provide accurate
enough information about the functions curvature when the objectives are
more than two. An additional demonstration of this fact could be also the
similar performance of the MQ-NWT algorithm. On the other hand, the use of
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N, Twm

n LM-Q-NWT NWT Q-NWT MQ-NWT || LM-Q-NWT NWT Q-NWT  MQ-NWT

5 1.0 1.0 1.0 1.0 0.771 0.132 0.176 0.758
20 1.0 1.0 1.0 1.0 2.413 0.32 0.403 2.44
50 1.0 1.0 1.0 1.0 3.376 0.891 0.688 3.287
200 1.0 1.0 1.0 1.0 5.333 13.416 5.292 13.113
500 1.0 0.95 1.0 1.0 23.353 109.853 36.66 39.028
1000 1.0 0.0 0.0 0.99 32.868 - - 109.541

Table 9.9: Metrics values achieved by the LM-Q-NWT, NWT, Q-NWT and
MQ-NWT algorithms on the convex M-FDS_1 problem (m = 3) for n €
{5, 20, 50,200,500, 1000}. A value marked in bold is the best obtained for a
metric on a specific problem.

N. Tm

. LM-Q-NWT Q-NWT MQ-NWT || LM-Q-NWT Q-NWT  MQ-NWT

5 1.0 1.0 1.0 0.057 0.093 0.057

20 1.0 1.0 1.0 0.116 0.166  0.113
50 1.0 1.0 1.0 0.142 0.225 0.145

200 1.0 1.0 1.0 0.324 1.158  0.495
500 1.0 1.0 1.0 1.013 5.766 1.673
1000 1.0 1.0 1.0 1.787 32.464  5.244

Table 9.10: Metrics values achieved by the LM-Q-NWT, Q-NWT and MQ-NWT
algorithms on the non-convex M-MOP_2 problem (m = 2) for n €
{5, 20,50, 200, 500,1000}. A value marked in bold is the best obtained for a
metric on a specific problem.

the real Hessian/an approximation matrix for each objective function seems
to overcome the issue: indeed, NWT and Q-NWT had the best performance in
terms of Th; in these cases. LM-Q-NWT still obtained great results for this
metric on the problems with three objective functions and high value for n,
outperforming the other competitors. Even with m = 3, the employment
of a single matrix turned out to be essential in high dimensional problems.
Like the proposed approach, MQ-NWT proved to perform better than NWT and
Q-NWT with m = 3 and high value for n, resulting the second best algorithm
in these cases.
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N, Twm
n
LM-Q-NWT Q-NWT MQ-NWT || LM-Q-NWT  Q-NWT  MQ-NWT
5 1.0 1.0 1.0 1.036 0.62 1.472
20 1.0 1.0 0.99 3.4 1.357 3.72
50 1.0 1.0 1.0 5.531 2.013 6.213
200 1.0 1.0 1.0 6.565 12.028 11.798
500 0.99 0.9 0.98 26.099 80.713  36.693
1000 0.94 0.0 0.73 32.367 - 77.311

Table 9.11: Metrics values achieved by the LM-Q-NWT, Q-NWT and MQ-NWT
algorithms on the non-convex CEC(09-8 problem (m = 3) for n €
{5, 20,50, 200,500,1000}. A value marked in bold is the best obtained for a
metric on a specific problem.

9.3.3 Results in a Global Optimization Setting

In the previous section, we compared the LM-Q-NWT method with strongly
related approaches from the state-of-the-art, in terms of efficiency and ef-
fectiveness at reaching approximate Pareto-stationarity. Now, we show the
(positive) impact that the proposed procedure may have if used within a
global multi-objective optimization framework. In particular, here we con-
sider the memetic algorithm NSMA, proposed in Section[4.2]of this manuscript.

For the experiments, we consider two possible modifications of the NSMA
algorithm:

e NSMA-W, which employs in the FMOPG method (Algorithm the Wolfe
line search proposed in Section [5.1.

e NSMA-L, which uses the new limited memory approach (Algorithm [5.1))
as the local optimization procedure.

We compared these two approaches with NSGA-II (Section and the orig-
inal version of NSMA. In each variant of the memetic approach, the points
selected as starting solutions for the local search procedures were only op-
timized w.r.t. all the objective functions. In the original version of NSMA,
the points can be also refined w.r.t. a subset of the objective functions
Z c {1,...,m}. However, Assumption (@ = R™) may not hold for
some subset Z and, then, when trying to optimize a point w.r.t. Z, the Wolfe
line search would continue its execution for an infinite number of steps.
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Figure 9.12: Performance profiles for the NSMA-L, NSMA-W, NSMA and NSGA-II
algorithms on the problems of Table [0.7]

In Figure[9.12] we report the performance profiles for the NSMA-L, NSMA-W,
NSMA and NSGA-II algorithms on the problems listed in Table 9.7 The
considered performance metrics are Purity, Hypervolume, I'—spread and A—
spread. For more details on these metrics, the reader is referred to Section
We also remind that, due to the random operations contained both in
NSGA-IT and NSMA, all the algorithms were executed five times with different
seeds for the pseudo-random number generator. Additional information on
this experimental setting can be found in Section [9.1.2

In terms of Purity, NSMA-L and NSMA-W turned out to be the two most
robust algorithms. The proposed Wolfe line search allowed to improve the
results of the original NSMA. In fact, the use of the limited memory approach
allowed to obtain the best possible performance. Regarding the Hypervolume
and spread metrics, NSMA-L and NSMA-W had a similar performance. NSMA
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results on Hypervolume and I'—spread are comparable with the ones of the
two variants. However, the original approach was slightly outperformed in
terms of A-spread. NSGA-II did not perform well w.r.t. all the metrics:
the variants of NSMA turned out to be capable in finding more accurate and
uniform Pareto front approximations.

9.4 Performance Assessment of the Improved
Version of the Front Steepest Descent Al-
gorithm

In this section EL we show the results of computational experiments on the
Improved Front Steepest Descent (IFSD) algorithm (Chapter [6]), supporting
the discussion in Sections [6.1HG.21

In the experiments, we compared our approach (IFSD) to the original
FSD (Algorithm , equipped with the base line search FALS (Algorithm
3.3) or the extrapolation strategy (EFSD). The parameters setting for the
line searches can be found in Section [0.1.2]

The benchmark used for the comparisons consists of the unconstrained
versions of the following problems: CEC09_2, CEC09.3, JOS_1b, MAN_1
(m = 2) and CEC09_10 (m = 3). The JOS_1b and MAN_1 problems are
convex, whereas the CEC09 ones are nonconvex. Other information on them
can be found in Table For all the problems, we considered instances
with values of n in {5, 10, 20, 30,40, 50,100, 200}. Moreover, each problem
was tested twice, with different strategies for the initial points: a) n points
are uniformly sampled from the hyper-diagonal defined by lower and upper
bounds (see Sectionfor more details); b) only the midpoint of the hyper-
diagonal is selected. We recall that the bounds of the JOS_1b problem can
be found in Table

We report in Figure [0.13] the performance profiles for the IFSD, FSD and
EFSD algorithms on the entire benchmark of 80 problem instances. We ob-
serve a remarkable superiority of the proposed approach w.r.t. the original
variants of the algorithm, especially in terms of the spread metrics, which
points out that the Pareto front is indeed spanned more widely and uni-
formly. The strong Hypervolume performance also supports this result. As

3The implementation code of the IFSD algorithm can be found at https://github.
com/pierlumanzu/ifsd||75|


https://github.com/pierlumanzu/ifsd
https://github.com/pierlumanzu/ifsd
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Figure 9.13: Performance profiles for the IFSD, FSD and EFSD algorithms on
a benchmark of 80 MOO problems.

for Purity metric, the three algorithms appear to be closer, but we still
observe a slight advantage of IFSD.

9.5 FRONT-ALAMO Performance Analysis

In this sectionEl, we focus on the comparisons between FRONT-ALAMO (Chap-
ter @ and some state-of-the-art methods in the multi-objective constrained
optimization context, i.e., MOSQP, NSGA-II and DMS. These algorithms are
already introduced in Section|9.1.2

The problems considered for the experiments were mainly those with

4The implementation code of the FRONT-ALAMO algorithm can be found at https://
github.com/pierlumanzu/front-alamo |77]


https://github.com/pierlumanzu/front-alamo
https://github.com/pierlumanzu/front-alamo
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Problem(s) H Initial Point(s) ‘
M-BNH_1, LAP_1, LAP_2 0n
M-BNH_2 [8,—3]T
M-OSY [2,0,1,0,1,8] "

CEC09, ZDT, MOP_1

MOP_2, MOP_3 See Sec.

Table 9.12: Initial points for the tested problems.

general convex constraints, i.e., the LAP, M-BNH and M-OSY problems.
Then, we also tested the approaches on the bound-constrained CEC09, ZDT,
MOP_1, MOP_2, MOP_3 problems. As in Section [9.1.3] it is worth remark-
ing that the CEC09 and ZDT problems have particularly difficult objective
functions, so they are interesting to study the effectiveness of the algorithms
when solving hard problems. All these problems can be also found listed,
along with other their characteristics, in Table For each problem with
general constraints, we started the algorithms from one feasible point (Table
. In this way, we intended to study the exploration capabilities of the al-
gorithms. Indeed, algorithms with great exploration abilities should create a
spread and solid Pareto front on these problems. For the bound constrained
problems, the initial points were uniformly selected from the hyper-diagonal,
as already described in Section [9.1.3

9.5.1 Preliminary Assessment of FRONT-ALAMO Performance
w.r.t. ALAMO

As a preliminary computational experiment, we compared FRONT-ALAMO and
ALAMO on a selection of the LAP_2 problems. As mentioned at the beginning
of Chapter [7|, FRONT-ALAMO is an extension of ALAMO [21] capable of dealing
with sets of points and, then, of effectively producing Pareto front approxi-
mations of the considered problems. Thus, it is reasonable to compare the
performance of our new approach w.r.t. its original version. Being ALAMO
a single-point approach, it was run in a multi-start fashion from 100 initial
randomly sampled feasible points. The execution was repeated 5 times, each
of them with a different seed for the pseudo-random number generator, in
order to be less sensitive to the random initialization. The resulting 5 fronts
were compared based on the Purity metric and the best one was compared
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with the front obtained by FRONT-ALAMO.

X FRONT-ALAMO
ALAMO
Reference Front

n =50 n =100

-1000 -500 f10 500 1000 —4000 —2000 fll) 2000 4000
Figure 9.14: Pareto front approximation for FRONT-ALAMO and ALAMO con-
sidering LAP_2 problems at different dimensionalities.

In Figure we show the plots of the fronts obtained by the two algo-
rithms, while in Table[0.13] the related metrics values are reported. From the
table, we can observe that FRONT-ALAMO was competitive in terms of Purity
and outperformed ALAMO w.r.t. all the other metrics. The improvements on
the Hypervolume and spread metrics are not surprising, since FRONT-ALAMO
aims to approximate the Pareto front by iteratively exploiting every point of
the current list, especially considering the current list itself to validate each
line search step. The plots reflect the results in the table: as the value for
n increased, FRONT-ALAMO managed to find more accurate, wider and more
uniform Pareto front reconstructions than its single-point version.
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| n || Metric [[ FRONT-ALAMO [  ALAMD
Purity 0.959 1.0

9 Hypervolume 2.048 2.011
I'—spread 0.316 0.669
A—spread 0.884 0.905

Purity 0.907 1.0

10 Hypervolume 151.262 135.687
I'—spread 2.177 31.607
A-spread 0.857 0.949

Purity 0.962 1.0
50 Hypervolume 16709.004 11244.539
I'—spread 50.436 1147.977
A-—spread 0.921 0.889

Purity 0.98 1.0
100 Hypervolume 127446.169 | 81077.973
T'—spread 208.059 5194.112
A—spread 0.936 0.941

Table 9.13: Metrics values obtained by FRONT-ALAMO and ALAMO in the LAP_2
problems with n = 2,10,50,100. The values marked in bold are the best
values (each of which is related to a specific score) obtained in a considered
problem.

9.5.2 M-BNH, LAP_1 and M-OSY Problems

In this section, we study the performance of FRONT-ALAMO, MOSQP, NSGA-II
and DMS on the M-BNH_1, M-BNH_2, LAP_1 and M-OSY problems.

The results on the M-BNH problems (Figure show the great perfor-
mance of FRONT-ALAMO with respect to the competitors: indeed, our method
obtained the second best Purity value both on the M-BNH_1 problem and
on the M-BNH_2. In this latter problem, the differences with respect to our
gradient-based competitor are even clearer, as MOSQP did not manage to ob-
tain a single non-dominated solution w.r.t. the competitors. Considering the
A—spread, FRONT-ALAMO was the second best method on the M-BNH_2 prob-
lem, while it was outperformed w.r.t this metric on the M-BNH_1 instance.
However, in this last scenario, except for NSGA-II, the gap between the ap-
proaches is not too sharp. As for the Hypervolume and I'—spread metrics,
FRONT-ALAMO appears to have a decent behavior, being the second best algo-
rithm on the M-BNH_1 problem and outperforming all the competitors on
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the M-BNH_2 problem. The worst algorithm turned out to be MOSQP, which
seems to lack of search capabilities in the objectives space on the M-BNH
problems. This fact can be also noted to a lesser extent for the DMS algorithm
on the M-BNH_2 problem. On the M-BNH_1 instance, DMS outperformed the
NSGA-II method in terms of Purity, Hypervolume and I'-spread, while it is
the opposite considering the A—spread metric. The situation is similar on
the M-BNH_2 problem, although the performance of the two approaches was
more similar.

Considering the LAP_1 problem (Figure fd), FRONT-ALAMO per-
formed very well, outperforming the competitors in terms of Hypervolume
and I'-spread and being the second best algorithm on the other metrics. The
MOSQP method managed to outperform FRONT-ALAMO on one metric, that is
the Purity, while the NSGA-IT algorithm performed better on the A—spread,
in terms of which the genetic algorithm turned out to be the best. DMS got re-
sults similar to the ones of our approach w.r.t. Purity and Hypervolume: this
fact is also reflected in the front plots of the two approaches. In the M-OSY
problem (Figure [0.16p-h) NSGA-II was the most effective obtaining an ac-
curate and uniform Pareto front. In this case, FRONT-ALAMO achieved some
interesting results. First of all, it outperformed the DMS algorithm w.r.t.
all the metrics: this achievement is remarkable since DMS is gradient-free
and can escape non optimal Pareto-stationary points, while our method is
gradient-based. In addition, our algorithm obtained better values on Purity,
Hypervolume and T'-spread than its gradient-based competitor (MOSQP).

9.5.3 LAP_2 Problems

The LAP_2 problems represent another useful class of problems: indeed,
they allow to discuss about the sensibility of the algorithms with regard
to n, that is, how well they scale. Indeed, many algorithms have great
performance considering small values of n. However, when a problem size
grows, they lose their abilities to retrieve good Pareto front approximations.

Before seeing some plots and metric values, we show the performance pro-
files considering all the LAP_2 problems in Figure [9.17] The performance
profiles highlight that FRONT-ALAMO outperformed the other competitors with
respect to Purity, Hypervolume and I'-spread. On the other hand, consid-
ering A-spread, NSGA-II was the best algorithm. In fact, the results of
the methods on this metric differ little among each other: on the LAP_2
problems, no algorithm particularly suffered from a non-uniformity in their
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Figure 9.17: Performance profiles for the four algorithms on the LAP_2
problems.

fronts.

The motivation of these different results on the two spread metrics can
be explained through Figure [9.18] where we show the Pareto fronts in four
different LAP_2 problems. Here, we show the fronts all together in order to
provide a more direct impression of the results. Indeed, in the LAP_2 prob-
lems, FRONT-ALAMO results show the superiority of our method at exploring
the objectives space and creating a spread and uniform Pareto front. As the
value for n increased, the competitors obtained large I'-spread values with
respect to those of FRONT-ALAMO, since they struggle to explore the extreme
regions of the front.

When n = 2, all the methods managed to obtain the same Pareto front.
However, increasing n, the differences between them become more and more
clear. For instance, NSGA-II performance got worse with n > 10. The
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X FRONT-ALAMO
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Figure 9.18: Pareto front approximation for the four algorithms considering
LAP_2 problems at different dimensionalities.

genetic approach seems to be unable to spread the search in the objectives
space and, also, to create a good, although small, Pareto front. The other
gradient-free method (DMS) performed better but still it hardly reached the
extremes of the objectives space when n > 50. MOSQP seems not to have
this last negative feature but it generally retrieved very few points and, in
addition, most of them are dominated. However, the MOSQP performance was
good with n < 10.

The above comments on the algorithm behaviors on the LAP_2 problems
are also supported by the numbers in Table Observe that FRONT-ALAMO
outperformed the competitors as the value of n increased. The superiority
of our method when the dimension of a problem is high is very remarkable,
especially considering Purity, Hypervolume and I'-spread. As we just high-
lighted commenting the performance profiles, except for the n = 2 case, all
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| n || Metric [[ FRONT-ALAMO MOSQP NSGA-TI DMS
Purity 0.875 0.676 0.49 0.991

9 Hypervolume 2.325 2.323 2.314 2.326
I'—spread 0.379 0.545 0.176 0.043
A-spread 0.886 0.795 0.456 1.859

Purity 0.697 0.92 0.0 0.792
10 Hypervolume 241.006 227.248 195.301 243.002
I'-spread 6.601 27.501 40.092 0.427
A-spread 0.869 0.999 0.825 1.134

Purity 0.995 0.0 0.0 0.189
50 Hypervolume 18375.772 15381.231 11285.47 14196.154
I'—spread 94.525 570.767 1240.803 1028.08
A-spread 0.923 1.176 0.94 0.961

Purity 1.0 0.0 0.0 0.0
- Hypervolume 137126.605 | 121140.484 | 73609.626 | 90808.266
I'—spread 208.059 686.982 4827.8 4705.776
A—spread 0.936 1.154 0.968 1.041

Table 9.14: Metrics values obtained by the four algorithms in the LAP_2
problems with n = 2,10,50,100. The values marked in bold are the best
values (each of which is related to a specific score) obtained in a considered
problem.

the algorithms performed well regarding the A-spread metric.

9.5.4 CEC09, ZDT and MOP Problems

In this last section of computational experiments, we comment the results
on the problems characterized only by boundary constraints listed at the
beginning of Section For the sake of brevity, we preferred to show the
performance profiles related to all these problems in Figure [9.19

The performance profiles on the Purity and Hypervolume metrics high-
light the effectiveness of our method: it was not obvious, a priori, to obtain
such great results with such complex functions, especially when some of our
competitors are derivative-free and, thus, they potentially escape from non
optimal Pareto-stationary points.

Considering the spread metrics, our results are competitive with respect
to those of the other competitors. In particular, in the I'=spread performance
profiles FRONT-ALAMO was the third best algorithm, while the gradient-free
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Figure 9.19: Performance profiles for the four algorithms on the CECO09,
ZDT, MOP_1, MOP_2 and MOP_3 problems.

methods (NSGA-II and DMS) managed to have slightly better performance.
Regarding the A—spread, NSGA-ITI and DMS turned out to be the most robust
algorithms. However, the performance profiles on this metric are another
proof of the effectiveness of the four algorithms to retrieve an uniform Pareto

front.

9.6 Performance Evaluation of MOIHT and SFSD

In this section EL we evaluate the efficiency and effectiveness of the MOIHT

and SFSD approaches presented in Sections and (Chapter [8)) re-

5The implementation code of the MOIHT and SFSD methodologies can be found at https:
//github.com/pierlumanzu/cc-moo
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spectively.

In our numerical experience, we considered two classes of problems: cardinality-
constrained quadratic problems and sparse logistic regression tasks.

The quadratic MOO problems, which often represent a useful test bench-
mark in optimization, have the form

;Ié}'g}t 1 (" Qe —cf 2,27 Qaz — c;rac)—r st zllo < s

where 1, Q2 € R™*"™ are random positive semi-definite matrices and ¢y, co €
R™ are vectors whose values are randomly sampled in the range [—1,1).
In the experiments, we varied the following problem parameters: the size
n € {10,25,50}; the condition number of the matrices x € {1,10,100}; the
cardinality upper bound s. In particular, the latter was set in the following
way: for n = 10, s € {2,5,8}; for n = 25, s € {5,10,20}; for n = 50,
s € {5,15,30}. Moreover, we used 3 different seeds for the pseudo-random
number generator, thus leading to a total of 81 quadratic problems. For each
instance, ()1 and @2 are characterized by the same condition number, i.e.,
L(f1) = L(f2) = k.

As for the sparse logistic regression problem [7}[20], it is a relevant task
in machine and statistical learning. Given a dataset of N samples with n
features R = (r1,...,75)" € RV*™ and N corresponding labels {t1,...,tx}
belonging to {—1,1}, the regularized sparse logistic regression problem is
given by:

N
: 1 T A 2
wekn N leog (T+exp(—t; (w'r)))+ 5 wll” st Jwlo <s,
i=

where A > 0. The logistic loss aims to fit the training data, while the
regularization term helps to avoid overfitting. The two functions are clearly
in contrast with each other. For our experiments, we employed the multi-
objective reformulation considered in [57):

N T

min (& S log(1 + exp(—ti(w ), ;|w||2) st o < s.
i=1

For this problem, L(F) = (||[R"R||/N,1) . The dataset suite we considered

is composed of 7 binary classification datasets from the UCI Machine Learn-

ing Repository [31] (Table [9.15). We tested the algorithms on instances of

the problem with s € {2,5,8,12,20}. For each dataset, the samples with
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missing values were removed. Moreover, the categorical variables were one-
hot encoded, while the other ones were standardized to zero mean and unit
standard deviation.

’ Dataset H N ‘ n ‘
Heart (Statlog) 270 25
Breast Cancer Wisconsin (Prognostic) 194 33
QSAR Biodegradation 1055 41
SPECTF heart 267 44
Spambase 4601 57
Optical recognition of handwritten digits 3823 62
Madelon 2000 | 500

Table 9.15: Datasets used for the experiments on sparse logistic regression.
The number of features takes into account one-hot encoding of categorical
ones.

Note that, for both classes of problems, in the following we will also
consider solution approaches based on scalarization, i.e., tackling the problem
mingcq fi(z) + Afa(x), where A > 0. In the quadratic case, the problem
can be solved by means of commercial solvers such as Gurobi, exploiting an
MIQP reformulation. In the logistic regression case, we instead use the Greedy
Sparse-Simplex (GSS) algorithm [3]. Note that, opposed to MIQP approach
in quadratic problems, GSS is not guaranteed to produce a Pareto optimal
solution.

As anticipated in Section our SFSD methodology was tested tak-
ing as starting solutions the ones generated by the single-point methods
mentioned above, i.e., MOIHT, MOSPD, MOHyb, MIQP and GSS.

Every execution had a time limit of 4 minutes. In particular, each single-
point method was tested in a multi-start fashion: it had to process as many
input points as possible within 2 minutes; in the remaining time, the MOSD
procedure (Section was employed as a refiner, starting at each returned
point and keeping fixed its zero variables so that the cardinality constraint
was kept valid. In SFSD, we set a time limit of 2 minutes for both phases of
the algorithm.

For MOIHT, MOSPD and MOHyb, we considered 2n initial solutions randomly
sampled from a box ([—2,2]™ for the quadratic problems; [0, 1]™ for logistic
regression). In order to be feasible, each initial point is first projected onto
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Q. These algorithms were executed 5 times with different seeds for the
pseudo-random number generator to reduce the sensibility from the random
initialization. The five generated fronts were then compared based on the
Purity metric and only the best and worst ones were chosen for the com-
parisons. The scalarization-based approaches were run once considering 2n
values for A, i.e., A € {27%2 | i € Z, i € [-n,n)}, and starting at the initial
solution 0,, € Q.

9.6.1 Quadratic Problems

In this section, we report the results on the cardinality-constrained quadratic
problems. As for the algorithms parameters, based on some preliminary ex-
periments not reported here for the sake of brevity, we set: ¢ = 1077, L =
1.1k for MOIHT; 741 = 1.57%, €9 = 1072, ert1 = 0.9ey and || zp41 — Yyl <
103 as stopping condition for MOSPD; the Pareto stationarity approximation
degree ¢ = 10~7 for MOSD (see Definition and Section . The param-
eters for the Armijo-type line searches are already listed in Section [9.1.2
Possible values for the MOSPD parameter 7 are discussed in the next section.
The parameters choices for MOIHT and MOSPD were also used in MOHyb.

9.6.1.1 Preliminary Assessment of MOIHT, MOSPD and MOHyb

We start analyzing the effectiveness of MOIHT, MOSPD and MOHyb, comparing
them in Figure [9.20| on a selection of quadratic problems. In order to show
the differences among the algorithms as clearly as possible, only for this
experiment, we considered a single run where the methods took as input
the same 25 randomly extracted initial points. Moreover, we set no time
limit, so that all the algorithms could process each initial solution until the
respective stopping criteria were met.

The MOSPD and MOHyb performance was investigated for values for mp €
{1,100} (results for 79 = 100 are shown in the left column of the figure,
To = 1 on the right). The black dots indicate the reference front: the latter
is obtained combining the fronts retrieved by running SFSD with all the
proposed initialization strategies and discarding the dominated solutions.

In well-conditioned problems (x = 1), the MOIHT algorithm performs well,
reaching solutions that belong to the reference front. As for MOSPD, the re-
sults with 79 = 100 are worse, with MOSPD obtaining solutions far from the
reference front. The situation is further stressed as the problem dimension n
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Figure 9.20: Results achieved by MOIHT, MOSPD and MOHyb with 79 € {1,100},
starting at 25 random initial solutions, on a selection of quadratic problems.
The filled markers denote L-stationary solutions (L = 1.1x). The small black
dots form the reference front.
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grows. This sounds reasonable, since setting 79 = 100 in Penalty Decomposi-
tion schemes binds the variables close to the initial feasible solution and, as a
consequence, prevents from exploiting the exploration capabilities of MOSPD.
A better choice for 79 (79 = 1) improves the performance of the algorithm,
although MOIHT still performs better. This result is somewhat in line with
the theory: MOIHT generates L-stationary points, whereas MOSPD converges
to solutions only guaranteed to satisfy the (weaker) MOLZ conditions. In
this scenario, MOHyDb inherits the effectiveness of MOIHT: regardless the value
for 79, it succeeded in getting solutions of the reference front.

In ill-conditioned problems (x > 1), the MOIHT performance gets worse:
the method struggled in reaching the reference front. This might be ex-
plained by the larger values of L that have to be used with these problems
(L = 1.1k). As the value of L grows, the L-stationarity condition does not
provide enough information on the quality of the solution support set. As a
consequence, MOIHT can end up in many L-stationary points with “bad” sup-
port, i.e., far from the actual Pareto front of the problem. MOSPD with 79 = 1
obtained better solutions in these cases. Employing lower values for 7, the
approach is initially allowed to search for a good point minimizing F'(-): this
feature can be crucial to avoid a large portion of “bad” L-stationary points
and to reach solutions in the reference front. MOHyb (79 = 1) proved to be
effective in these scenarios too. The hybrid approach, in these ill-conditioned
cases, profited from the exploration capabilities of MOSPD, reaching the same
solutions. However, like in the well-conditioned case, MOHyb also proved to
be less sensitive than MOSPD w.r.t. the value of 7q, taking advantage of the
MOIHT mechanisms to reach at least L-stationary solutions when 79 = 100.

9.6.1.2 Evaluation of the SFSD Methodology

We start the analysis of the SFSD algorithm performance on the quadratic
problems through Figure [9.21] where we show how the front descent phase
allows to improve the results of basic multi-start approaches corresponding
to phase one, i.e., MOIHT, MOSPD, MOHyb and MIQP. According to the results
of Section for MOSPD and MOHyb, we set 79 = 1.

As anticipated in Section[8:3.2] in cardinality-constrained MOO the Pareto
fronts are typically irregular and made up of several smooth parts. The plots
in the figure perfectly reflect these characteristics: each front portion can in-
deed be associated with a specific support set. Starting from the solutions
generated by the single-point methods, the SFSD methodology proves to be
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Figure 9.21: Results of SFSD phase two compared to simple MOSD refinement
of solutions retrieved in phase one. We show one example instance for each
considered multi-start/phase one strategy.

effective in exhaustively spanning each portion associated with a support
set. This feature allowed our novel front-oriented approach to identify re-
gions of the Pareto front that would have otherwise been hardly covered
with the multi-start strategy. As mentioned in Section to the best
of our knowledge, SFSD is the first front-oriented approach for cardinality-
constrained MOO. In the absence of other specialized algorithms, it is diffi-
cult to quantitatively assess the potential of our algorithm and we need to
resort to the visual inspection of the solutions. In the rest of the section, we
then focus our attention on the different options we outlined for the phase
one of the SFSD algorithm, comparing its performance as the initialization
strategy varies. The comparisons were made by means of the performance
profiles (Figure on the entire benchmark of quadratic problems.
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Figure 9.22: Performance profiles for SFSD with different initialization strate-
gies, i.e., MOIHT, MOSPD, MOHyb (best executions w.r.t. Purity) and MIQP on
the quadratic problems.

Looking at the Purity and the Hypervolume metrics, SFSD resulted to
be more robust with MOHyb as initialization strategy instead of MOIHT and
MOSPD. These results reflect the behavior of the three single-point algorithms
already shown in Figure [0.20} while MOIHT resulted to be more effective on
the well-conditioned problems, MOSPD, with a right choice for the value for
To, performed better on the (larger) set of ill-conditioned problems; MOHyb,
inheriting the mechanisms of both, managed to obtain good results on prob-
lems of both types. As for I'—spread, MIQP proves to be more capable than
the other single-point methods in generating solutions in the extreme regions
of the objectives space, and this fact allowed SFSD to get wider front recon-
structions. The performance of our front-oriented approach with MOHyb,
MOIHT and MOSPD employed in the phase one was quite similar in this sce-
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Figure 9.23: Performance profiles for SFSD with different initialization strate-
gies, i.e., MOIHT, MOSPD, MOHyb (best executions w.r.t. Purity) and GSS on 35

logistic regression problems.

nario. Regarding the A-spread metric, i.e., uniformity of the Pareto front
approximation, all the initialization strategies led to comparable results.

9.6.2 Logistic Regression

In this last section, we analyze the performance profiles (Figure on the
logistic regression problems for SFSD with the different possible choices for the
first phase of the algorithm. The values for the parameters of the algorithms
were again chosen based on preliminary experiments which are not reported
for the sake of brevity. In particular, we set: L = 1.1max{L(f1), L(f2)} for
MOIHT; € = 10~ 7 for both MOIHT and MOSD; 79 = 1, Tp41 = 1.37%, €0 = 1072,
ert1 = 0.9e; and ||wp41 — yry1]] < 1072 as stopping condition for MOSPD.
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Again, the parameters for MOIHT and MOSPD were also employed in MOHyb.
Finally, since the objective functions have different scales, similarly to what is
done in |57, when computing the spread metrics we considered the logarithm
(base 10) of the f2(-) values and, then, re-scaled both fi(-) and fa2(-) to have
values in [0, 1].

With respect to the Purity and the Hypervolume metrics, SFSD resulted
to be more robust with MOIHT, MOSPD and MOHyb as initialization strategies,
with MOHyb appearing to be slightly superior. As for the I'-spread metric,
GSS was the best algorithm for the SFSD phase one. However, although SFSD,
equipped with this setting, was effective in reaching remote regions of the
objectives space, it struggled to obtain uniform Pareto front approximations
and, thus, to obtain good A-spread values. As for this last metric, using as
initialization strategy MOIHT proved to be a better choice.
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Figure 9.24: Performance profiles for SFSD with different initialization
strategies, i.e., MOIHT, MOSPD, MOHyb (worst executions w.r.t. Purity) and
MIQP/GSS.

Remark 9.1. In the previous sections, we considered the best executions of
SFSD equipped with MOIHT, MOSPD and MOHyb, and we compared them with
the deterministic outputs of our front-oriented algorithm when MIQP/GSS was
employed in the phase one. Thus, for the sake of completeness, in Figure
we report the performance profiles w.r.t. the Purity metric obtained
considering the worst runs. Comparing these performance profiles with the
ones in Figures[9.22}0.23] we observe only slight decreases in the performance
of the non-deterministic strategies.
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Chapter 10

Conclusions

In this thesis, we considered a various set of multi-objective optimization
(MOO) problems. In particular, the set includes unconstrained, box con-
strained, convex constrained and cardinality-constrained instances.

As first contribution of the dissertation, we presented an overview, as
general as possible, of the main theoretical MOO concepts, with a focus on
the ones concerning well-known gradient-based methodologies from the MOO
literature. In particular, we proposed: a general formulation for the search
(descent) direction problem; a framework for the gradient-based approaches.
For both of them, we reported the main properties; moreover, we showed
how they can be reduced to well-known schemes.

In the MOO context, reconstructing the Pareto front of the problem could
be much more helpful than returning a single solution: in this way, having to
choose from multiple solutions representing different tradeoffs of the objec-
tive functions, the final user would be free to choose a posteriori the best one
for their scope. In the MOO literature, Pareto front reconstruction has been
mainly addressed through evolutionary/derivative-free algorithms, while, to
date, few first-order approaches have been introduced and analyzed. Most
of the proposed gradient-based methodologies are indeed “single-point”, i.e.,
designed to return a single solution. However, running such algorithms in
a multi-start fashion may be ineffective to generate accurate and uniform
Pareto front approximations, both from a conceptual and practical point of
view.

In this thesis, we then focused on proposing innovative gradient-based
methodologies designed to approximate, as accurately as possible, the Pareto
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front of the considered problems. Among the employed tools, the common
and partial descent directions certainly stand out, being potentially crucial to
obtain convergence and exploration of the objectives space at the same time.
For each approach, we reported and described the algorithmic scheme. In
addition, each one was theoretically analyzed in order to state its character-
istic properties, including the convergence one(s) to feasible points satisfying
necessary optimality conditions.

From an experimental point of view, our methods were tested by means
of thorough computational experiments, where they were compared with
state-of-the-art approaches from the MOO literature. The results let us to
conclude that our algorithms are effective and efficient w.r.t. the competitors
in retrieving accurate, wide and uniform Pareto front approximations.

Finally, during the development of the presented works, some possible
future research directions arose. We conclude the thesis reporting some of
the most prominent ones.

e An extension of our memetic approach NSMA (Chapter [4)) to be used in
more general settings, such as multi-objective optimization problems
with general convex/non-convex constraints.

e The development of an extension of our limited memory Quasi-Newton
approach (Chapter [5)) for box-constrained MOO problems, taking in-
spiration by L-BFGS-B [108], the well-known L-BFGS variant for single-
objective optimization problems with bound constraints.

e The employment of our Improved Front Steepest Descent approach
(Chapter @ within memetic procedures, such as NSMA, for global multi-
objective optimization.

e A possible variant of FRONT-ALAMO (Chapter [7) to deal with MOO
problems with general, possibly non-convex, constraints.

e The extension of the theoretical results and the algorithms presented in
Chapter [§| to handle additional constraints other than the cardinality
one.



Appendix A

The Front Projected Gradient
Algorithm

In this appendix, we describe an adaptation of the FSD method [23] (Algo-
rithm for box-constrained MOO problems, which we call Front Projected
Gradient (FPG). We initially report the scheme of the new adaptation. Then,
in the remainder of the appendix, we provide a rigorous theoretical analysis.

A.1 Algorithmic Scheme

We report the scheme of FPG in Algorithm The noteworthy differences
w.r.t. the original approach are the following:

e the initial set X is composed by feasible non-dominated points, i.e.,
X0CQ, withQ={z eR" |z € [l,u],l,u € R" s.t. | <u};

e the direction at the solution z. is found solving an instance of Prob-

lem (A.1)); by Problem (2.3) and Table it is trivial to see that if

055 (z.) < 0 thus 62 < 0, i.e., dZ is a feasible and descent direction at
Te;

e FPG employs the Bound-constrained Front Armijo-Type Line Search
(B-FALS), which we report in Algorithm the only added require-
ment w.r.t. FALS (Algorithm [3.3)) is that the step size must lead to a
point that is also feasible.
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Algorithm A.1: Front Projected Gradient (FPG)

1 Input: F:R™ = R™, Q feasible closed and convex set, X° C Q set
of mutually non-dominated points w.r.t. F(+).

2 k=0
3 while a stopping criterion is not satisfied do
4 Xk = x*k
5 forall z, € X* do
6 forall Z C {1,...,m} such that

e 1. € X% and

e 095(x.) <0

do
Compute
df = argmin maxV f;(z.)"d+ 1Hd||2
dern  JET 2 (A1)
s.t. x.+d e
9 Let 6 the optimal value of Problem (A.1) at .
10 o = B-FALS(F(-),Q,Z, Xk, x.,dZ,67)
11 Xk =
(X’“ U {z. +adf}> \ {y € X¥|F(zc+adl) s F(y)}

12 XT’CH = Xk
18 | k=k+1

14 return XF

In the remainder of the appendix, we state some properties of both the

methodologies.

A.2 Algorithm Analysis

We begin the analysis showing that B-FALS terminates in a finite number of
iterations.

Proposition A.1. Let Z C {1,...,m}, z. € XX be such that 6 < 0, i.e.,
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Algorithm A.2: Bound-constrained Front Armijo-type Line Search

(B-FALS)

1 Input: F: R™ — R™, Q feasible closed and convex set,
ZC{1,...,m}, X% C Q set of mutually non-dominated points
w.r.t. Fr(-), x. € X%, dZ feasible descent direction, 67 € R, ag > 0,
0€(0,1),v€(0,1).

2 a=aqg

3 while
ze+adl ¢ QV Iy e X5 st Fr(y) + Lzyobt < Fr(z. + adl) do

4 L a=da

5 return «

dX defined as in (A1) exists such that
1
Vfi(we)Tdg + Slldl|F <0, Vi
Then 3 > 0 such that
T, +adt €Q

and
Fr(y) + Lz yab} £ Fr(az. + adl), Yy € X5,

i.e., the while loop of B-FALS terminates in a finite number h of iterations,
returning a value & = §"ag. Furthermore, the produced point x. + adr is
not dominated with respect to the set X*.

Proof. Assume by contradiction that the thesis is false. Then the algorithm
produces an infinite sequence {§"ao} such that, for all h, either

T+ Magd ¢ Q
or a point y, € XX exists such that
Fz(yn) + 1|I"y5ha09§ < Fr(z.+ 5ha0df). (A.2)

By the convexity of 2 and the definition of the direction dZ (A.1]), since
§"ag — 0 as h — oo, for h sufficiently large the point z.. + §"aod? is feasible
and thus condition holds. Then, following the proof of Proposition 4
in [23], we can prove the thesis. O
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Regarding FPG, the first property we prove is about the feasibility of the
points produced by the algorithm.

Proposition A.2. Let {X*} be the sequence of sets of points generated by
FPG. Then, for all k, every point . in the set X* is feasible for Problem

).

Proof. The proof is straightforward. First of all, the initial set X° is com-
posed by feasible points. New solutions are only added through Line
Considering the convexity of 2 and the definition of the direction dZ (A.T))
for any Z C {1,...,m}, and reminding the stopping criteria of B-FALS, these
new points are contained in §2 and, therefore, they are feasible for Problem

E-1). O

Finally, we are ready to state the convergence property of FPG. In order
to prove it, we make use of Assumption and of the concept of linked
sequence (Definition [3.1]).

Proposition A.3. Let us assume that Assumption holds. Let {X*} be
the sequence of sets of non-dominated points w.r.t. F(-) produced by FPG. Let
{z;,} be a linked sequence, then it admits limit points and every limit point
is Pareto-stationary for Problem .

Proof. The proof is almost identical to the one of Proposition 5 in [23]. There
is mainly one difference. After proving that
kli)nolo .., =0 (A3)
keK
[23} Equation 22], where K indicates a subsequence, the FSD authors consider
sufficiently large values of k such that «;, ., < ag. In this case, the steps
of FALS (Algorithm and the definition of X*, k € K, imply that there
exists y, € X* such that

Fr, (yr) + 1|Ik|7%9§5(%) < Fr, (%'k + %’U&?(%)) :

With respect to FALS, B-FALS has an additional stopping criterion: the
step size must lead to a point that is feasible for Problem . In this
context, aj, ., /0 < ap might not have been selected because the point x;, +
(ajkﬂ/d)djz-: ¢ Q. However, through a little modification, we can handle
this additional stopping criterion.
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First of all, Equation (A.3) still holds: the proof of this statement is the
same provided in [23]. Then, we can consider sufficiently large values of k
such that o

Ay < % <1.
In this way, by the convexity of 2 and the definition of the direction dJI:
(A.1), the points produced by the two step sizes are feasible, i.e., the B-FALS
feasibility stopping criterion is satisfied. Then, the steps of B-FALS and the
definition of X*, k € K, imply that there exists y, € X* such that

Yjrt1 4T Yjnt1 T

Fr, (yx) + 1@\7%@5 < Fy, (xjk + %%:) :

From this point forward, we can follow the remainder of the proof of Propo-
sition 5 in [23] in order to prove the thesis. O
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Appendix B

Analysis of the Search Direction
Problem

In this appendix, we propose a further analysis on Problem with Q =
R™. In particular, we show the steps to get the dual form of the problem,
along with characteristics typical of its optimal solutions and Lagrange mul-
tipliers.

As shown in Section given T € €, Problem can be re-written as

1
min 5 stV ()" d+ 5dTMj(gz)d—ﬁ <0, Vje{l,...,m}.
deD(z)

In this scenario, the Lagrangian function is of the following form:
m ~ 1 ~
L(B,d,N) =B+ A {ij ()" d+ 5amwj(x)d -5,
j=1

where Ap,..., A, are the Lagrange multipliers. Denoting by A € R™ the
vector of all the Lagrange multipliers, we also introduce the dual problem:
max inf L(8,d,\) s.t. A>0,,.
AeR™  BER
deD(z)

Now, let us consider €2 = R"™, along with the positive definiteness of the
matrices M1 (+),..., My (+), as, in this special case, we can address some fea-
tures of the dual form and the solutions more explicitly. In Section we
indeed state that, if M;(-) > 0 Vj € {1,...,m}, then Problem (2.3 has
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a unique solution. Moreover, in such scenario, we have that the problem
is convex and has a Slater point, i.e., (8,d) = (1,0,). Then, strong dual-
ity holds and the Karush-Kuhn-Tucker (KKT) conditions are sufficient and
necessary for optimality:

AL (B,d, \) AL (B,d, )\ - _ _
(5 =1- Z)\ =0, #:Z/\j[wj@HM]‘(m)d}:Om
j=1
which leads to
—1
Sn=1 d=— | uM@)]| Jr@" A (B.1)
j=1 J=1

Considering Equation , given A > 0,,, we can state that in MOO
the search direction depends on convex combinations of both the matrices
Mi(+),..., M, (-) and the gradients.

In scalar optimization (m = 1, f(-) indicates the objective function),
depending on the form of the matrix M;(-), the second formula of
reduces to standard search directions:

o if My(-) = I, the formula reduces to the steepest descent direction

d=-Vf(z);

o if Mi(-) = V2f(-), the formula reduces to the Newton direction d =
—[V2f(@)] 'V f(@);
e if M;(-) = B, with B being the Quasi-Newton approximation matrix,
the formula reduces to the Quasi-Newton direction d = —B~!V f(z);
Equation (B.1}) also leads to re-write the dual function; in particular, 3
disappears since Z;nzl Aj = 1, while d is substituted:
-1
. T N T
ég%L(ﬁ,d,)\) —f>\ Jr (T Z)\ M ( Je (@) A
deR™

Using this last equation, we can finally retrieve the final form of the dual

problem:
-1

_7T T au
){Iel%wg /\ Jr (Z) Z)\M Jr(Z) A

s.t. ZAJ- =1,  A>0,.



Appendix C

Supplementary Mathematical
Proofs

In this appendix, we provide the proofs of propositions and lemmas that did
not find space in the main body of the thesis.

Proposition Considering a generic iteration k of Algorithm let
z, € R, oFM(2) € R™ be a direction such that D (zj,v" (zy)) < 0,
ay > 0 be a step size along vEM (z1) and \EM (1) be the Lagrange multipliers
vector obtained solving Problem . If p* is updated by , then p* is

positive.

Proof. First, the case skTuk > 0 is trivial.

Then, let s;—uk < 0 and let us consider D (2g41,sk) — V f; (:ck)T Sk, with
j € {1,...,m}. Considering that D(zy,sx) > Vf;(zx) s, by definition of
D(-,-) and Equation , we have that

D (zrs1,8%) — VS (xx) " sp
2 D(l’k+1,8k) —D(xk,sk) (C].)

=D (Ik-+1, akULM(xk.)) -D (xk, ozk.vLM(xk)) )

In Algorithm the Wolfe conditions are imposed at each iteration k (Line
: in particular, D (xk_H,vLM(xk)) > oD (o:k,vLM(xk)). Then, also con-
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sidering Lemma we obtain that

D (a:k+1, ozkvLM(xk)) - D (xk, OékULM(xk))
=y [D (fL‘kJrl, ULM(xk)) - D (kaLM(xk))} (C.2)
> ay, (0 — 1) D (g, v"M (zy)) > 0,

where the last inequality comes from the fact that ap, > 0, 0 — 1 < 0 and
D (mk,ULM(xk)) < 0. Using (C.1]) and (C.2)), we conclude that

D (l‘k+1, Sk) — ij (ack)T s > 0. (03)

Since we have considered a generic j € {1,...,m}, it trivially follows that
this last equation is verified for all j.

Now, given , which is valid for the Lagrange multipliers vector
AEM (z,), and (C.3)), we can state that

SN () [D (a1, 58) = Vfj (wx) " k] > 0.
j=1
Then, if the second formula in (5.7) is used, p* > 0. O

Proposition Let Assumption hold with Q@ = R™. Let x}, € R™ and
assume that dy, € R™ is a direction such that D(zy,dy) <0, v € (0,1/2) and
o € (v,1). Then, there exists an interval of values [ay, ], with 0 < oy < @,
such that for all o € [y, o] Equations and hold.

Proof. Given F'(-) continuously differentiable and dj, descent direction for
F() at z; and recalling Proposition with Q = R", we can state that
there exists ¢ > 0 such that, for all a € (0, ¢], we have

F(zr +ady) < F (z) + yaJp(zr)dy < F (z) + LpyaD (zg, dg), (C.4)

where the last inequality follows from Remark We now assume, by
contradiction, that for all & > 0 we have

F (zr + ady) < F (x) + LyyaD (2, dg) -

This last result indicates that we have {zy + ady | a > 0} C Lp (F(zx)),
which is absurd since Assumption holds. Therefore, there exists & > ¢
and j € {1,...,m} such that

f5 (zk + ady) = f5 (zx) + vaD (x, dy) (C.5)
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and, by the continuity of F(-), equation (C.4]) holds for all o < é&.
Using the Mean-value Theorem, we have that

F5 (w + Gdy) = f; () + GV f; ( + tady) " di, (C.6)
with ¢ € (0,1). Combining (C.5)) and (C.6) we get
ij (xk + tddk) di = ~vD (wk, dk) >oD (l‘k, dk) , (C7)

where the last inequality follows from the fact that ¢ > v and D (z, dy) < 0.
By definition of D(-, -), we have the following condition: D (z) + t&dy,dy) >
ij. (zx + tézdk)T dy. Using the latter and (C.7]), we obtain that

D (xy + tady, di) > oD (xg, dy) .

Then, by the continuity of D(,-), there exists an interval [y, o] C (0, &)
such that, for all a € [oy, ], we have that D (zk + adg,d) > oD (xg, dg).
Moreover, since for all « € [0, &] Equation (5.8) holds and [, o] C ( d)
the proof is complete.

Lemma Consider a generic iteration t of Algorithm[5.3 Let x), € R™
and dy, be a direction such that D(xy,dy) < 0. Then, we have the following
properties:

1. if ol < oo, then
3j(ay,) st fian)(@r +aydr) > fian) (@) +yal,D(wg, di);  (C.8)

2. al is such that

F(xy, + ajdy) < F(zy) + Lnyag D(wk, di), (C.9)
D(!Ek-‘rafdk,dk) <0‘D(.’L‘k,dk). (C.IO)
Proof. 1. Since a? = oo and o, < 0o, the interval upper bound has been

updated at least once though Line Let  be the iteration in which
this update takes place: it follows that 0 < < t. In this case, we have
that

Hj(at_) c {17 ... ,m} s.t. fj(af) (xk—‘,—at_dk) > fj(az) (.Z‘k)—‘,—fy(lt_D(l‘k,dk)

and aft! = af. Then, it trivially follows that Equation (C.8) holds for
altl,
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Now, suppose that # + 1 < ¢ and consider the iteration £ + 1. By the

instructions of the algorithm, a’t? is updated either by af? = af+!
(Line[p) or aft2 = af+! (Line[§). The first case is identical to the one
of iteration . In the second case, since (C.8) is satisfied for aft!, it is

also for ai‘*‘Q. For t > t + 2, the property follows by induction.

Given o € (0,1) and D(zy,dy) < 0, it is easy to prove that and
hold for af = 0.

Then, consider the first iteration of Algorithm Similarly to the
upper bound, all is set equal to either ozlo (Line @ or o (Line .
The latter case occurs if F(zy +a®dy) < F(zk) + 1nyaD(zy, di) and
D(x,+a’dy, dy,) < oD (z,dy). Thus, it simply follows that conditions
(C.9) and are satisfied in both cases.

For t > 1, we get the thesis by induction.
O

Proposition Let Assumptz'on hold with Q@ =R™, § € [1/2,1),n > 1
and let {a}, ol,, o'} be the sequence generated by Algorithm . Assume that:

1. di € R™ is a descent direction for F(-) at x € R™;

2. for all t > 0, the step size o' is chosen so that

a. if al, = oo,
o' > nmax{af,a’}, (C.11)
b. if af, < o0,

max { (o — af) . (af, — o)} <6 (o, — af) .

Then Algorithm is well defined, i.e., it stops after a finite number of
iterations returning a step size & satisfying the Wolfe conditions for MOO.

Proof. By contradiction, we assume that the thesis is false, i.e., the algorithm
does not stop in a finite number of iterations.

First, we consider the case in which of, = co for all ¢, i.e., the interval

upper bound is never updated. In this case, by the instructions of Algorithm
the Wolfe sufficient decrease condition is always satisfied, i.e., for each
step size o we have that

F (xk + atdk) < F(xy) + 1yal D (z, dy) - (C.12)
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By hypothesis 2.a., for all ¢, if af, = oo, then af is updated according to
(C.11). Using the latter, we obtain that

o' > nmax{a},a’} > nal. (C.13)

Moreover, Line is executed at every iteration, i.e., af = of~!. Then,
turns into at > nat=! > n? max{oszl,ao} > ... > (n)'al. Since
n > 1 and a® = 1, it follows that lim;_,., a* = oo.

Then, there exists an infinite sequence of points {x;+ady } >0 satisfying
(IC.12). This fact is in contradiction with Assumption

Now, we consider the case in which 3¢ such that af; < M. Then, the
bounded and monotone sequences {a} },~;, with af > 0, and {ca! },~;, with
al, < M, are generated. From Lemma it follows that, for ¢ > f,i

3j(al,) st fiar) (@e + aldi) > ficar)y (@) + 705, D (2, di),
Vie{l,...,m}, fj (zx + ojdi) < fj (1) + vy D (g, d) - (

Let 7 C {f,i+1,...} be a subsequence such that, for all t € T, j (af,) = j.
By the instructions of the algorithm, the upper and lower bounds are
updated in one of the following ways: a/f! = of, af™' = af; oft! = o,

ajt! = at. In the first case, we can state that

max { (af — of), (af, — o)} = max { (a5 — af*1) | (af, — af1)}

o g (C.16)
= “u l .

An analogous result can be also achieved for the second case. Using
and hypothesis 2.b, we obtain that of"1 —aj ™' < max {(af — af), (af, — o)} <
§ (o, — o). Recalling that § € [1/2,1), {af} and {a!,} are monotone and
bounded sequences and that, for all ¢, we have a! < o' < of, the above
equation implies that af, — o} goes to zero as t — oo, with ¢ € 7. Moreover,

it follows that

lim ! = lim of = lim o' = a.
t—oo ¥ t—o0 ! t—o0 (Cl?)
teT teT teT

Given (C.14) and (C.13), the definition of j and the continuity of F(-),
by taking the limit for ¢ — oo, with ¢t € 7, we obtain that

f] (a:k + ady) = f] (l‘k) +~yaD ($k, dy) . (C.IS)

Taking into account this result and (C.14]), we have that, for all t € T,
al, > a.
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On the other hand, for ¢ € T, Equation can be re-written in
the following way: f; (z), + agdy) > f; (vx) +v (@ + af, — @) D (g, dy). Us-
ing and by simple algebraic manipulations we get f; (zx + aldg) >
f; (@ + ady) + v (af, — @) D (z, dy) and, then,

f} (l’k + Ozidk) — fj (Ik + @dk)

P
of, — &

> D (zg,dy) .

Now, by taking the limit for ¢ — oo, with ¢t € T, and recalling (C.17) and
the continuous differentiability of F(-), we obtain that
Vf; (zk + ady)" dx > 7D (zx, dy) . (C.19)

Since D (zx + adk, dx) > V f; (xx + ady,) " dy, by definition of D(-,-), 0 > v
and D (x,dy) < 0, from (C.19) we have that

D (zy + ady, dy) > oD (g, dg) . (C.20)

However, from Lemma it follows that D (zy + ofdy,dy) < oD (xy,dy).
By taking the limit for ¢ — oo, with ¢ € T, and recalling and the
continuity of D(-,-), we get from the last equation that D (x) + ady, dy) <
oD (xk,dy). The latter is in contradiction with (C.20). We thus get the
thesis. O

Lemma Let Assumptions and hold. Moreover, let {xi} be the
sequence generated by Algorithm[5.]} Then, there exists a constant § > 0
such that, for all k > 0, we have that

cos F > 6.

Proof. Let us consider k > 0, 7 € [0,1] and the point zj + 7s;. By Assump-

tion and Equations (5.3) and (5.5)), we have that x4+ 75, € Lr (F (20)).
Also recalling that A*M (z;,) satisfies (2.6]), we obtain for any z € R™ that

1 1 m 1
/ allz|]® dr < / 27 ZAJLM (zx) V2 fj () + Tsp)zdr < / blz||? dr
0 0 = 0
and, then,

allz|* < 2 / Z/\LM 1) V2 fi(xn + Tsp)zdr < bz|)”. (C.21)
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For z = s;, we thus obtain

1 m
allsel® < s,j/ S ONM (k) V2 fj(wr + Tsk)skdr < bllse]*. (C.22)

j=1

Defining

1 m
Gr = / Z)\]LM (zx) V2 fj(x + Ts1) dT (C.23)

j=1
and, recalling (5.6)), we solve the integral:

m

1

Grsk = Z )\jLM (l‘k) / Vij(!L'k + TSk)Sk dr
i 0

o (C.24)

= ZAJLM (zx) [Vfj (xrr1) = Vi (21)] = upe.
j=1

Given this last result and Equation (C.22)), we obtain that a [|s]|* < sgug <
blsk]* and, thus, considering the left-hand side,

S;—uk
2 puy
skl
Furthermore, if we consider z = G,lﬂ/st in (C.21)), with G,lc/2 being the

positive definite square root of G, we get

a ))Gi/28kH2 < (G}fsk)T/oliA}M () V2 fy(an + ) dr (G ) < bHG,lj%kHz
j=1

(C.25)

and, recalling (C.23)), a(s;Gksk) < ngisk < b(sZGksk). Then, given
Remark and Equation (C.24)), focusing on the right-hand side, we have

2
[l

<b.

skTu;€ B

Now, recalling Assumption and Equation (5.10]), we apply recursively
(5.11) and we obtain that

min{k,M—1} HBZ)51+h||2 min{k,M—1} ”m h||2
Tr(B¥*!) = Te(Bfy) — NZ@orehll Mwasn ™
© ; Sl—;hBéCl>3l+h lz:(:) 8 ULtk
min{k,M—1} 2 (026)
0 llwisnl
ST+ D e
1=0 Si4nUi+h

< Tr(B”) + (min {k, M — 1} + 1)b < b,
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for some b > 0, where the inequalities come from the fact that, for all k > 0
and I =0,...,min{k, M — 1}, Bé“l) is positive definite (cf. the instructions of
Algorithm and Remark . We can apply a similar reasoning with the
determinant formula :

min{k,M—1} T

Si4+pUl+h
det(BF) = det(Bf)) T
(0) g SlTHlBécl)sH_h
min{k,M—-1} T 2
— det(B) H Sipntith ||sitall _
=0 Isi4nll? SlTJthécz)SHh

From (C.26|), we deduce that the greatest eigenvalue of BZ) is smaller than
b. Thus, given Assumption and Equation (C.25)), we get that

a min{k,M—1}+1
det (B*1) > det(B°) <b> > a, (C.27)
where a > 0.

Then, by (5.13]), the min-max theorem and the triangle inequality, we
have:

2
cos B = sg BFsy, Wi (B*) |||l _ Ym (B¥)
sl IBEskll = || Bl [|sk]® 1B*|

We know that:

e by definition of trace and determinant, recalling (C.26)) and (C.27]), we

get
det (B¥) = H w < (n— Dwy (BY) w, (BY),
weQ(Bk)
and thus
k - -
o (Bk> > det (B ) S a a

(n—1)wpr (BF) = (n— 1) Tr (BF) = (n—l)l;;

e considering the euclidean norm and that B is a real positive definite
B*|| < war (BY) < Tr (B¥) <.

matrix,

Joining the last three results, we obtain that

wm (BY) i,

k
COS > >
P R
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where the last inequality comes from the definitions of @ and b. Thus, we

get the thesis choosing § = (n_‘ll)g,z. O

Proposition If X* contains mutually nondominated points with respect
to F(-), then X* contains nondominated points at any time during iteration
k; thus Step [18 of Algorithm[6.1] is always well defined and X**+' is finally
a set of nondominated solutions.

Proof. At iteration k, the set X* is initialized with the nondominated points
XP*: then, it is only updated at Steps [12| and At Step either 2% = z.,
and the set is not modified, or, by the definition of ¥, ¥ dominates =,
which in turn was nondominated. Thus, the added point z* is nondomi-
nated, while all the newly dominated points are removed. At Step the
added point z¥ +aZv2P(zF) is nondominated by the definition of oZ; all the
newly dominated points are removed. Thus, Xk always contains mutually
nondominated solutions. By Proposition Step is therefore always
well defined. Moreover, since X¥t1 = X* at the end of the iteration, X*+1
inherits the nondominance property from Xk O

Lemma After Step of Algorithm 2¥ belongs to X*. Moreover,
for all k > k, there exists y € X" such that F(y) < F(2F).

Proof. The first assertion of the proposition trivially follows from the update
rule of Xk, at Step Now, either z¥ € X* or 2k ¢ Xf“; in the former case,
we trivially have y = z¥; otherwise, we can notice that, by the instructions
of the algorithm, any set X ’;, k> k, is the result of repeated application
of Steps [12] and starting from X* at some point when 2k e X% When
2% was removed from the set, a point y' was certainly inserted such that
F(y') < F(z¥). Then, either y! € X*, or y! was removed when a point y?
such that F(y?) < F(y!) was added. By recursively applying the reasoning,
we have that there is certainly a point y* € X* such that F(yt) < F(yt~!) <
... < F(y?) < F(y") < F(2%). This completes the proof. O

Proposition Let {X*+1} be the sequence of sets generated by Algorithm
7.1, Then, for each k and for each xy1 € X*+1, we have:

1. x4 is not dominated by any other point in X*+1 w.r.t. L7 (-, u¥), i.e.,
there does not exist y € X**1 such that L™ (y, u*) S L™ (vgq1, u*);

2. Tpy1 is ex-Pareto-stationary w.r.t. L (-, u*).
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Proof. We prove the two statements one at a time:

1. X**+1 ig equal to Xtmp at the end of the main loop of each iteration, at
Line Ximp is initialized with X k_ which contains mutually nondom-
inated points w.r.t. L7 (-, u¥) by its definition at Line |4l Then, Xy,
can be modified only at Lines In the first case, we have that
the point 22, with Z C {1,...,m}, is non-dominated by the definition
of af and the MOSD procedure; in the second case, by the condition at
Line[T5] a point is added only if it is non-dominated. In both scenarios,
if the new point is added in X4, all the solutions dominated by it
are removed from the set.

2. We have two possible cases: x;41 € XF or Tpy1 ¢ X*. In the latter
case, Tr4+1 has necessarily been added to Xy, through instructions

in particular, z,4+; was produced by either instruction [10|or
and is thus e;-Pareto-stationary.

So, let us assume that 541 € Xk and, by contradiction, that egD($k+1) <
—eg. In this case, z. = xp1 would satisfy the condition at Step
The line search hence is guaranteed, by Proposition (Q = R"),
to find a step a. such that L™ (z. + a.vP(2.), 1*) < L7 (2¢, 1),
and by the properties of the MOSD procedure we have L™ (z., u*) <
L7 (xe + avgP(z.), u). Hence, this new point z. (strictly) domi-
nates zy.; w.r.t. £(-, u¥). Now, from the instructions of the algo-
rithm, either z. belongs to X**! or there exists y € X**1 such that
L7y, pF) S LT (2o, uF) < L7 (2gy1, u¥). However, this is absurd,
since zp4+1 € X*+1 and from statement 1. X%t contains mutually
nondominated points. Hence, Q,fD(:EkH) > —¢p.

O

Lemma Let {X*} be the sequence of sets generated by Algom'thm
and let {z} be any sequence of points such that xj, € X* for all k. Let T be
a limit point of {x}, i.e., there exists an infinite subset K C {0,1,...} such

that  lim a3, = Z, and suppose that g(Z) < 0, i.e., T € Q. Then, for all
k—oo,ke K

i=1,...,p such that g;(Z) < 0 we have
max{0, uf + 7rgi(xr41)} =0

for all k € K sufficiently large.
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Proof. Let g;(Z) < 0 and k1 € K be such that g;(xx+1) < ¢ < 0 for all
k > k1, k € K. From the instructions of the algorithm we know that uf >0
for all k. There are two possible cases.

® T — OO
The sequence {*} is bounded by definition, hence there exists ko > k1,
ke € K, such that for all k € K, k > ky we have u¥ + 7g;(zx11) < 0
and thus max{0, u¥ + 79;(zr41)} = 0.

e {7} is bounded.
From instruction of the algorithm, there must exist ko > ky such
that, for all k > ko, condition

Vo e Xk u?—&—mgj(x)go Vjie{l,...,p}st. gj(xz) <0

holds. Hence, for k > ko, k € K, we have u¥ + 74.g:(441) < 0. Thus,
we have max{0, ¥ + 7,9;(zx41)} = 0 for k € K sufficiently large.

O

Lemma Assume F(-) is component-wise convex. Let T € Q) a Pareto-
stationary point for Problem (8.1). Then, T is locally weakly Pareto optimal

for .

Proof. Since 7 is a Pareto-stationarity point for Problem (8.1]), by Definition
we have that °(z) = 0, i.e.,

max Vf;(z) d+ % |d|>>0, VdeD(z). (C.28)

je{1,....m}

Let us suppose, by contradiction, that there exists a direction de D(Z) such
that

Vi (z) d<o. C.29
jeihax fi (%) (C.29)

Since (C.28]) holds, we then deduce that %HJHQ > |maxje1,....m} ij(f)T(f | >
0. Now, let us introduce the function #° : R” xR x[0,1] — R as °(z, d, t) =

..........

D(z) and 05(z) < 65(z,d,t). It is easy to see that 65(z,d,t) < 0 if
0 <t < —(2/||d]|*) maxjeqa,....my Vfi(Z) " d, where the right-hand side is
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a positive quantity by Equation . But, in this case, we would have
that 05(z) < 05(z,d,t) < 0, which contradicts the Pareto-stationarity of
Z. Thus, we prove that, if z is Pareto stationary for Problem , then
max;e(1,. m} V.Sfi(Z)Td > 0, Vd € D(z). From this point forward, we can
follow the proof of Proposition 3.5 in [57]. O

Lemma Let Assumptions hold and {xy} be the sequence gen-
erated by Algorithm with constant L > max;je(1,....m} L(f;). Then:

1. for all k, F(xy) — F(zp41) = tl|oe — 2pg1 || (L L — L(F));
2. for all k, if x # xy1, then F(xr11) < Flag);
3. for all j € {1,...,m}, the sequence {f;(xr)} is non-increasing;
4. the sequence {F(xy)} converges;
5. limg oo ||k — T41]]? = 0.
Proof. 1. The thesis can be proved making an argument similar to that of

Proposition and reminding that z;11 = z +v&, with vl € V()

(Step |§| of Algorithm .

2. Tt follows directly from Point 1., recalling that L > L(f;) for all j €
{1,...,m} and ||z — k41| > 0.

3. By Point 1. and the hypothesis on L, we have that, for all £ and
JjeA{l,...,m}, fi(xr41) < fj(xr). Thus, for all j € {1,...,m}, the
sequence {f;(xy)} is non-increasing.

4. Tt follows from Assumption and Point 3..

5. From Point 1., we have that, for all k and j € {1,...,m}, —=-"&
zr41? < fi(xr) — fj(@r41). Since f(-) is continuous, we can take the
limit for &k — oo on both sides of the inequality: limy_, s %(L)ka -
Tp1]]? < limgoo fi(zk) — fj(wp+1) = 0, where the equality comes
from Point 4.. By the definition of L and the non-negativity of the
norm, the statement is proved.

O



Appendix D

Novel and Modified Test
Problems

In this appendix, we introduce two new convex MOO test problems, which we
call MAN_1 and MAN_2. Moreover, we report the formulation of rescaled
versions of FDS_1 [34] and MOP_2 [50]. Finally, we introduce a modified
version of the OSY problem [85] with convex feasible set and convex objective
functions. All the mentioned problems can be also found listed in Table

MAN_1 N
fi(z) = Zi=1(xi - Z)Q
min
fa(z) = Z?:l e 4w
st we [-10%10%]".
MAN_2

filw) = S, e

n

min  fo(z) = Zi:l e 4 x;

2

fa(w) =32 €™
st ze[-1,1]".
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M-FDS_1 . »
filz) = Y, teste
min  fo(z) = eZimmi/n 4 ||z)?
i(n—i+1)e i
folw) = L, demptde ™
st. xe[-2,2]".
M-MOP_2
fl(x) =1—e" iy (@i=1/vn)?/n
min
fo(z) =1—e" iy (@i+1/vn)?/n
st xe[—4,4".
M-OSY
fi(x) =25(z1 —2)% + (22 — 2)% + (23 — 1)2 + (24 — 4)? + (25 — 1)?
In]iRI%_
€
fa(z) = Z?:l 3322
s.t. 1+ o -2 Z 0;

6 —x1—x2 >0,
2—x9+21 >0,
2—x1+ 322 >0,
4—(x3—3)2—$420,
— (x5 —3)2 426 —4>0,
0 < 1,2, 76 < 10,

1 <z3,25 <5,

0<uxz4 <6.



Appendix E

Publications

This research activity has led to several publications in international journals
El For some of them, a public version of the experimental code has been also
published.

International Journals

1. P. Mansueto, F. Schoen “Memetic differential evolution methods for clus-
tering problems”, Pattern Recognition, 114 (2021) [DOI: 10.1016/j.patcog.2021.107849]

2. G. Cocchi, M. Lapucci, P. Mansueto “Pareto front approximation through
a multi-objective augmented Lagrangian method”, FURO Journal on Com-
putational Optimization, 9 (2021) [DOI: 10.1016/j.ejco.2021.100008]

3. M. Lapucci, P. Mansueto, F. Schoen, “A memetic procedure for global
multi-objective optimization”, Mathematical Programming Computation, 15,
227-267 (2023) [DOI: 10.1007/s12532-022-00231-3]

4. M. Lapucci, P. Mansueto, “A limited memory Quasi-Newton approach
for multi-objective optimization”, Computational Optimization and Appli-
cations, 85, 33-73 (2023) [DOIL: 10.1007/s10589-023-00454-7]

5. M. Lapucci, P. Mansueto, “Improved front steepest descent for multi-
objective optimization”, Operations Research Letters, 51, 242247 (2023) [DOI:
10.1016/j.0r1.2023.03.001]

6. M. Lapucci, P. Mansueto, “Cardinality-Constrained Multi-Objective Opti-
mization: Novel Optimality Conditions and Algorithms”, Accepted at Jour-

IThe author’s bibliometric indices are the following: H-index = 4, total number of
citations = 44 (source: Google Scholar on January 29th, 2024).
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nal of Optimization Theory and Applications (2024; Available soon) [Preprint
DOI: 10.48550/arXiv.2304.02369]

7. S. Marinai, S. Capobianco, Z. Ziran, A. Giuntini, P. Mansueto, “Recogni-
tion of Concordances for Indexing in Digital Libraries”, In: Ceci, M., Ferilli,
S., Poggi, A. (eds) Digital Libraries: The Era of Big Data and Data Science,
IRCDL 2020, Communications in Computer and Information Science, 1177
(2020) [DOI: 10.1007/978-3-030-39905-4_14]

Experimental Codes

1. P. Mansueto, “A Memetic Procedure for Global Multi-Objective Opti-
mization” (2022) [DOI: 10.5281/zenodo.7299857] [GitHub Repository URL:
https://github. com/pierlumanzu/nsmal

2. P. Mansueto, “LM-Q-NWT: A Limited Memory Quasi-Newton Approach
for Multi-Objective Optimization” (2023) [DOI: 10.5281/zenodo.7762660] [GitHub
Repository URL: https://github.com/pierlumanzu/limited_memory_method_
for_MOO|

3. P. Mansueto, “Improved Front Steepest Descent for Multi-Objective Opti-
mization” (2023) [DOI: 10.5281/zenodo.7762661] [GitHub Repository URL:
https://github. com/pierlumanzu/ifsd]

4. P. Mansueto, “Pareto front approximation through a multi-objective aug-
mented Lagrangian method” (2023) [DOI: 10.5281/zenodo.8337581] [GitHub
Repository URL: https://github. com/pierlumanzu/front-alamo|

5. P. Mansueto, M. Lapucci, “MOIHT & SFSD — Algorithms for Cardinality-
Constrained Multi-Objective Optimization Problems” (2024) [DOI: 10.5281 /zen-

0d0.10473331] [GitHub Repository URL: https://github.com/pierlumanzu/
cc-moo)|
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