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Abstract

We have assembled a computational pipeline based on virtual screening, docking

techniques, and nonequilibrium molecular dynamics simulations, with the goal of iden-

tifying possible inhibitors of the SARS-CoV-2 NSP13 helicase, catalyzing by ATP

hydrolysis the unwinding of double or single-stranded RNA in the viral replication

process inside the host cell. The druggable sites for broad-spectrum inhibitors are rep-

resented by the RNA binding sites at the 5’ entrance and 3’ exit of the central channel,

a structural motif that is highly conserved across coronaviruses. Potential binders were

first generated using structure-based ligand techniques. Their potency was estimated

by using four popular docking scoring functions. Common docking hits for NSP13

were finally tested using advanced nonequilibrium alchemical techniques for binding
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free energy calculations on a high-performing parallel cluster. Four potential NSP13

inhibitors with potency from submicrimolar to nanomolar were finally identified.

Introduction

Since their worldwide emergency approval between late 2020 and early 2021, RNA vaccines

have been the major pharmaceutical weapon against the COVID-19 outbreak caused by the

SARS-CoV-2 coronavirus. These vaccines are composed of the mRNA sequence encoding

of the Spike structural protein of the virus, encapsulated in lipid nanoparticles for delivery.

Once the RNA strand is released inside the human cells, the viral protein is expressed using

the normal cell’s manufacturing process and then expelled inducing the immune system to

generate specific antibodies targeting the spike antigene. RNA vaccine efficacy was observed

to rapidly wane after few months of the full administration cycle1 as new variants2 of the

virus emerged. Impaired immunity was likely due to the mutational pressure induced by the

vaccine itself on the Spike gene in the virus RNA genome.

Waning of the RNA vaccines based on Spike encoding calls for a renovated effort in

identifying new antiviral agents to cure the SARS-CoV-2 infection. In the early stage of the

pandemic, the research of antiviral agents for SARS-CoV-2 was mainly directed towards two

non structural proteins as biological targets, namely the main protease 3CLpro,3,4 cleaving

the coronavirus polyprotein, and the RNA-dependent RNA polymerase (RdRp), catalyzing

the replication of the RNA from the viral RNA template. The rationale for targeting these

proteins lies in the fact that the mutation rate of the corresponding genes is believed to be

lower than that of the gene involving the exposed structural spike protein.5 These efforts

led to the identification of two compounds, Remdesivir, a prodrug administered via vein

injection inhibiting RdRp through its active metabolite GS-441524,6 and Nirmatrelvir,7

orally administered in combination with Ritonavir (Paxlovid) to block the 3CLpro function

by covalent binding. Both these drugs were approved by the FDA to treat patients with
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mild-to-moderate COVID-19.

Concerning Paxlovid, recent studies8–11 shows that SARS-CoV-2 can mutate in ways that

make it less susceptible to the drug. In Ref.,8 reverse genetics revealed that the combination

of the E166V and L50F mutations on 3CLpro conferred high resistance to the drug in infec-

tious cell cultures. These findings were later confirmed in Ref.9 where in vitro experiments

showed that a triple mutation L50F, E166A, and L167F on 3CLpro, while still allowing bind-

ing of the substrate to the enzyme, was associated with a significant loss (6x to 72x) of the

effectiveness of inhibition by Nirmatrelvir. Indeed, as reported in May in a biorxiv preprint,10

some of these 3CLpro mutations have been found already circulating in coronavirus-infected

people. Moreover, in a recent randomized controlled trial on Paxlovid efficacy on a sample of

vaccinated and non-vaccinated patients conducted by Pfizer,11 “sustained alleviation of all

symptoms for four consecutive days was not met, as previously reported,” eventually leading

to the discontinuation of the enrollment.

The clinical efficacy of Remdesivir remains contentious,12–14 with World Health Organi-

zation (WHO) even recommending against using the drug for COVID-19 after results from

a large randomized controlled trial.15 Moreover, anectodical emergence of a Remdesivir re-

sistance mutation during treatment of SARS-CoV-2 infection has been recently reported,

identifying the E802D mutation of RdRp as the main cause for impairing drug efficacy.16

The capability of the SARS-CoV-2 virus to evade drug effectiveness by selecting mu-

tations with good fitness on the two specific targets 3CLpro and RdRp reduces the hope

of using drugs targeting these non structural proteins as broad-spectrum effective antiviral

agents in the treatment of COVID-19 as well as in other coronavirus infections that may

arise in the future.

In this respect, the SARS-CoV-2 helicase NSP13, belonging to the helicase superfamily

1B, may represent a valid alternative anti-coronavirus biological target.17 This non structural

motor protein, as a component of the Replication Transcription Complex (RTC) of SARS-

CoV-2 forming in the host cell upon infection, catalyzes the unwinding of the RNA activated

3



by the hydrolysis of a nucleotide triphosphate (ATP). NSP13 (see Figure 1) is a 67 kDa

protein composed of five domains, a Zinc Binding Domain (ZBD), whose sole role is that of

linking NSP13 to NSP8 in the RTC,17,18 the 1A and 2A twin domains and the 1B domain,

delimiting the central channel for RNA unwinding, and the so-called stalk domain. Domains

1A, 2A, 1B and stalk are essential for helicase activity.19

Figure 1: SARS-CoV-2 NSP13 helicase. 1A and 2A domains in orange, 1B domain in grey,
stalk in red, ZBD in cyan and central channel residues in yellow. The arrow indicates the
sense of sliding, from 5’ to 3’, of the RNA substrate.

The NSP13 helicase exhibits a remarkable sequence conservation across the coronaviridae

family especially in the residues delimiting the central channel. Figure 2 shows17 that 26

residues of the channel are conserved not only in SARS-CoV, SARS-CoV-2 and MERS

human coronavirus, but also in many non-human beta as well as in alphacoronavirus with

only two exceptions involving the point mutations R178K and A316S. Helicase inhibition is

not a novel anti-viral strategy and potent inhibitors of herpes simplex virus, shingles, and

hepatitis C viruses have been reported.20 In contrast, coronavirus helicases inhibition has so

far been underexplored.21

In this respect, in the summer of 2022, the Critical Assessment of Computational Hit-
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finding Experiment22 (CACHE), a joint private and governmental initiative for speeding

up in silico hit-finding predictions have launched an international challenge to find ligands

targeting the conserved RNA binding site of SARS-CoV-2 NSP13 using computational ap-

proaches. Each of the 23 computational groups joining the challenge was required to provide

no more than 100 hit compounds. Nearly 2000 in silico hits compounds were experimentally

assessed by CACHE and only preliminary results have been so far disclosed. The competition

sorted out 48 compounds out of the 2000 hits with an inhibition power of no less than 50 µM

against the SARS-CoV-2 helicase NSP13 in a Surface Plasmon Resonance (SPR) binding

assay. These 48 compounds are advanced in the second round of the CACHE challenge, the

so-called hit-expansion phase currently in fieri.

In this computational study, we have implemented a computational pipeline based on

virtual screening, docking techniques, and nonequilibrium molecular dynamics simulations,

with the aim of identifying possible NSP13 inhibitors blocking the entrance and/or exit of

the RNA central channel. The approach started from the generation of 321 compounds

using the LIGANN/PLAYMOLECULE interface23 provided by the company Accelera, a

tier Contract Research Organization (CRO) working and collaborating with more than 300

pharmaceutical and biotechnology companies around the world. Compounds were generated

using a neural network algorithm based on the shape and chemical-physical matching of the

3’ and 5’ exit and entrance of NSP13 channel. Two alternative ligand positions, one internal

and one external on each of the two RNA channel entry points were tested.
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Figure 2: Conservation of NSP13 central channel across coronaviruses (in red BCXXX: bat
coronavirus; CVHXX: human coronavirus; CVBXX: bovine coronavirus; CVMXXX: murine
coronavirus; FIPV: feline coronavirus; for full abbreviation meaning see Ref.24).

The LIGANN-matched compounds for the four possible binding sites were then fed to

four popular docking scoring functions based on the Autodock code.25 Common docking hits

were further validated by assessing the stability of the ligand poses using standard molecular

dynamics simulations extending for tens of nanoseconds. The selected ligand-receptor pairs

were finally advanced to nonequilibrium alchemical simulations on the Marconi/CINECA

HPC cluster using the recently proposed virtual double system single box (vDSSB) method-

ology for absolute binding free energy (BFE) estimation.26 The computational pipeline even-

tually delivered four potential inhibitors of the NSP13 helicase with predicted activity from

low micromolar to nanomolar.
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Results and Discussion

Ligand design by adversarial generative neural networks

The starting featurization of compounds for NSP13 inhibition was performed using the

software LIGANN,23 a structure-based de novo drug design tool based on generative neural-

networks. Given a binding pocket shape, sensed around the user-provided box center of an

input receptor PDB file, LIGANN implements a generative adversarial network27 produc-

ing in a multimodal fashion complementary ligand shapes that are eventually decoded into

SMILES strings.28 Starting from the protein chain B of the 7NNG X-ray PDB structure of

NSP13,17 we hence selected four possible locations for the ligand pose. To this end, through

the use of the molecular graphics toolkit VMD,29 we identified the 5’ 3’ endpoints of the

NSP13 central channel of interest (see Figure 1), and obtained the coordinates of four points

along the axis of the channel using pairs of residues as a reference (see Section Experimental)

to be fed as box centers for four independent LIGANN runs. These four ligand locations

along the channel are labeled as 3’(est), 3’(int) 5’(int), and 5’(est), as they approximately

mark the external and internal position of the the 3’ and 5’ entrances of the NSP13 central

channel for RNA substrate.

In Table 1 we report the main chemical features of the LIGANN-generated compounds

in the four channel locations. In general, we note that LIGANN-generated compounds are

bulkier when posed on the external ends of the channel. At the 5’(est) endpoint, for example,

ligands are found with a mean MW of about 300 Da, bearing at least two rings and exhibiting

significant flexibility, as measured by the number of rotatable bonds. The internal poses of

the RNA channel, both on the 3′ and 5′ sides, are occupied in general by lighter ligands

with reduced flexibility. The water/octanol partition coefficients are found in an optimal

range for absorption (1.5-3) for all four locations, reflecting the amphiphilic character of the

central channel (see Figure 2).
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Table 1: Ligand main features obtained with LIGANN. LogP: o/w partition coefficient;
nHa/d: number of Hbond acceptor or donors; MW: molecular weight (in kDa); nring: number
of rings; nrot: number of rotatable bonds; n: total number of compounds generated by
LIGANN.

3’(est) 3’(int)
〈LogP 〉 2.2 ± 1.4 1.8 ± 1.1
〈nHa/d〉 2.3 ± 2.1 1.4 ± 1.
〈MW 〉 0.25 ± 0.11 0.18 ± 0.62
〈nring〉 2.3 ± 1.2 1.4 ± 0.7
〈nrot〉 4.1 ± 2.0 1.9 ± 2.0
n 81 78

5’(est) 5’(int)
〈LogP 〉 2.8 ± 1.7 1.9 ± 1.0
〈nHa/d〉 2.8 ± 2.1 2.2 ± 1.8
〈MW 〉 0.30 ± 0.121 0.23 ± 0.96
〈nring〉 2.5 ± 1.1 1.7 ± 1.1
〈nrot〉 6.2 ± 4.9 3.8 ± 3.6
n 75 87

Figure 3: 2D maps of LIGANN-generated compounds on the four binding site of the RNA
channel as a function of number of H-bond acceptor/donors and XLOGP3.
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In the 2D color maps, we report the incidence of LIGANN-generated compounds for each

of the four poses as a function of the water-octanol partition coefficient LogP, calculated

using the XLOGP3 software,30 and of the number of H-bond acceptors or donors, nHa/d.

On the external sites, we notice a much larger variability of the LogP and nHa/d of the

LIGANN-generated compounds. Major peaks are found at LogP=1-2 and nHa/d ' 1 while

many secondary peaks are scattered in a wide region of the LogP/nHa/d semi-plane with

LogP > 0. When compounds are generated at the internal sites of the 5’ 3’ endpoints of

the channel, we observe a much more peaked distribution with maximum probability at

LogP ' 1.5 − 2 and nHa/d ' 1. This lack of variability for the two essential chemical-

physical features describing the capability of H-bond formation and the solubility in aqueous

and non-aqueous environment together with the reduced dimension (see Table 1) seems to

pinpoint a quite specific pharmacophore for the internal binding sites 5’(int) and 3’(int) of

the NSP13 channel.

Docking of the LIGANN-generated compounds

Docking was performed for each LIGANN-generated compound on all four binding sites

of the RNA central channel using four different Autodock-derived scoring functions, namely

Autodock4, Smina, Vina and Vinardo (see Experimental section for details), hence producing

a total of 5136 docking calculations. Results are shown in Figure 4. The shaded areas below

the curves indicate the compounds that are found with ∆G < −8.2 kcal/mol (Kd < 1 µM).

Autodock4 yields 17% of LIGANN compounds with micromolar dissociation constant or less.

Vina and Smina produce similar results with on average weaker activity, with only 8% of the

compounds with Kd less than 1 µM. The Vinardo scoring function gives most of the 1284

binding free energies between -9 and -4 kcal/mol with only 4% of compounds of micromolar

activity or less.
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Figure 4: Free energy distribution for various docking scoring functions on all 4 sites of the
RNA channel.

Correlation plots between the four docking scoring functions are shown in Figure 5. Cor-

relation, as measured by the Pearson correlation coefficient is good going from a minimum of

0.86 (Autodock4-Vinardo) to a maximum value of 0.99 (Vina-Smina). Ranking, as expressed

by the Kendall ranking coefficient τ , is also consistent in all docking scoring functions, rang-

ing from a minimum value of 0.64 (Autodock4-Vinardo) to a maximum of 0.83 (Vina-Smina).

BFE ranking, correlation and mean unsigned errors (MUE) are excellent among the Vina,

Smina and Vinardo triplet, and nearly ideal for the Smina-Vina pair, showing that the cor-

responding scoring functions produce in general very similar BFE’s. On the other hand, the

correlation diagrams with Autodock on the abscissa are all characterized by a slope a that

is significantly less than 1, crossing the perfect correlation line at around -6 kcal/mol, and

with a strongly left-shifted intercept. These common features indicate that Vina, Smina and

Vinardo tend to systematically underestimate the BFE of strong binders and overestimate

that of weak binders with respect to Autodock4, hence clustering the BFE’s in a narrow

range of [-9,-4] kcal/mol. In Ref.,31 clustering of Vina-calculated binding free energies in
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a much narrower range with respect to that obtained using Autodock4 was also observed.

Besides, recent benchmarks on extensive protein-ligand database32 or host-guest systems

involving macrocyclic receptor,31 showed that autodock-derived scoring functions such as

those used in Vina, Smina, or Vinardo, while often producing binding poses closer to the

experimental counterpart were outperformed by Autodock4 in the binding affinity. Consis-

tently, MUE exceeding 1 kcal/mol are observed between the Autodock4 BFE and the other

scoring functions.

Figure 5: Correlation plot for free energies (in kcal/mol) computed with Autodock4, Vina,
Smina and Vinardo scoring functions.
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In Figure 6, we show the binding free energy distribution obtained on the four selected

binding sites of the central RNA channel using the Autodock4 program. Each of the solid

black line distributions is obtained on the subset of LIGANN ligands by centering the dock-

ing search box in the same point used in the LIGANN search box. Comparison of the

distributions in Figure 6 with the distributions of the LIGANN-generated compounds on all

sites (dashed black line), i.e. irrespectively of the original location selected in the LIGANN

calculation, should give a measure of the capability of LIGANN to generate ligands with

shape and chemical features matching that of the selected binding site and at the same time,

should provide indications of the best binding pose as predicted by the LIGANN-docking

pipeline. Inspection of Figure 6 reveals that the external sites 3’ and 5’ are those where the

LIGANN-generated compounds have the best docking performance compared to the same

compounds tested on all four sites. Remarkably, more than 60% of the 75 compounds gener-

ated by LIGANN on the 5’(est) binding site (see Table 1) have micromolar binding affinity

or less according to Autodock4, compared to a value of ' 30% when these compounds are

tested with the same docking program on all four binding sites.
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Figure 6: Normalized free energy distribution for the Autodock4 docking scoring function
on the 4 binding poses labeled 3’(int), 3’(est), 5’(int), and 5’(est) for the LIGANN-generated
compounds. In the plots, the percentage of ligands with Kd < 1µM are reported for the
LIGANN-generated compounds docked in the LIGANN pose (solid line) and for the same
compounds on all four sites (dashed line). The shaded area yields the fraction of compounds
with Kd ≤ 1 µM.

On the site 3’(int), we found only 1% of the 78 LIGANN-generated compound with

Autodock4-predicted micromolar activity or less against a 26% value when we dock the

same 78 compounds on all four binding sites. The latter value seems to indicate that, rather

than a deficiency of the LIGANN-docking pipeline, compounds that are moderately fit for the

internal site 3’(int) according to LIGANN (i.e. those clustered around the point [nHa/d=1,

LogP=2] in the 2D reported in Figure 3) are likely good binders for the external sites also.

In Table 2, we finally report the ten compounds that are found with Kd < 1µM (∆Gbind <

−8.2 kcal/mol) when averaged over all four docking scoring functions. None of these ten

compounds are commercially available according to the PubChem database.33 The BFEs

reported in bold were obtained by docking the corresponding compound on the same box

center used in the LIGANN calculation. As inferred by Figure 6, and given the high correla-
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tion between the four scoring functions (see Figure 5), we note that 5’(est) appears to be the

best druggable site for all docking scoring functions irrespective of the LIGANN generation

site. So, for example, the compound 79 generated by LIGANN when centering the box on

the internal location at the RNA entry site 5’(int) has a BFE of only -6.8 kcal/mol according

to Autodock4 when posed in the same LIGANN site, while its BFE rises to -11.4 kcal/mol

when docking is performed by centering the box at the 5’(est) location.
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Table 2: BFE of the best 10 hits (in kcal/mol) obtained from the four docking programs on
each of the four sites. The first column refers to the LIGANN index. BFE referring to the
original LIGANN sites are marked in bold.

3’(est)

n ATD4 VI SM VNR mean
52 -10.8 -8.0 -7.5 -7.7 -8.5
23 -9.7 -8.2 -8.1 -8.3 -8.6
43 -9.3 -8.2 -8.2 -7.2 -8.2
79 -8.7 -8.6 -7.5 -7.1 -8.0
62 -8.4 -7.9 -7.7 -7.3 -7.8
44 -8.1 -8.2 -8.2 -8.3 -8.2
57 -8.6 -7.8 -8.0 -8.1 -8.1
12 -9.5 -7.1 -7.5 -6.1 -7.6
7 -7.4 -7.6 -7.5 -8.8 -7.8

3’(int)
n ATD4 VI SM VNR mean
52 -11.7 -8.3 -9.3 -8.3 -9.4
23 -10.4 -9.4 -9.4 -8.1 -9.3
43 -10.9 -10.1 -10.1 -8.8 -10.0
79 -10.0 -9.3 -9.7 -8.6 -9.4
62 -9.7 -9.1 -9.1 -7.5 -8.8
44 -8.9 -9.0 -8.9 -8.1 -8.7
57 -9.8 -8.3 -8.7 -7.2 -8.5
12 -10.7 -8.8 -8.8 -7.2 -8.9
7 -8.8 -8.7 -8.3 -8.6 -8.6

5’(est)
n ATD4 VI SM VNR mean
79 -11.5 -10.5 -10.2 -9.8 -10.5
52 -13.8 -10.3 -10.1 -7.8 -10.5
3 -12.6 -9.7 -9.6 -7.8 -9.9
43 -12.7 -10.0 -10.0 -8.5 -10.3
62 -11.2 -10.1 -10.1 -8.5 -10.0
12 -12.0 -9.6 -9.7 -8.0 -9.8
44 -11.1 -9.8 -9.8 -8.6 -9.8
57 -10.7 -9.2 -9.4 -9.0 -9.6
23 -9.0 -7.2 -7.2 -6.2 -7.4

5’(int)
n ATD4 VI SM VNR mean
79 -10.4 -9.3 -9.1 -7.3 -9.0
52 -10.9 -8.6 -8.9 -8.3 -9.2
3 -11.4 -8.7 -8.3 -9.6 -9.5
43 -9.9 -8.4 -9.0 -7.3 -8.7
62 -10.6 -8.7 -8.8 -6.4 -8.6
12 -11.9 -7.8 -7.9 -6.7 -8.6
44 -8.6 -8.7 -8.7 -6.8 -8.2
57 -8.9 -8.3 -8.5 -8.2 -8.5
23 -12.4 -8.3 -8.3 -6.6 -8.9
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MD preliminary assessment

To proceed further in our computational pipeline, we selected from the docking stage the

best four binders by sorting all the 321 LIGANN-generated compounds according to their

average BFE score taken over the combination of the four docking functions and the four

binding sites. These compounds, shown in Figure 7 have labels 43 (generated with LIGANN

on site 5’(int)), 52 (generated with LIGANN on site 3’(est)), 62 (generated with LIGANN

on site 5’(int)), and 79 (generated with LIGANN on site 3’(est)). At pH=7, 43, 53, and

79 have one net positive charge, while 62 has two. All compounds are characterized by an

extensive linear network of connected aromatic or non-aromatic rings with poor ramification

(e.g. 43 and 62), connected by rotatable bonds. Chiral centers are present only on com-

pound 43. Reported pharmacokinetic parameters such ESOL (estimated water solubility),

XLOGP3, gastrointestinal (GI) absorption, Hbond donors or acceptors, blood-brain bar-

rier permeability (BBB), and synthetic accessibility, were estimated using the SWISSADME

online tool.34
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Figure 7: Docking best hit compounds.

As previously discussed, docking calculations in several instances have shown that rather

strong BFEs can be obtained when the compound is docked on a different site than that

used in the LIGANN calculation. As an example, in Figure 8, we show the best scoring

Vinardo poses of the 79 compound when docked using as box center all the four external

and internal binding sites along the central channel. Inspection to Table 2 shows that the

best Vinardo score for compound 79 (-9.8 kcal/mol) is obtained when centering on 5’(est)

rather than on the site 3’(est) (-7.1 kcal/mol) that was originally used for generating the

compound with LIGANN. From Figure 8, it should be further noted that the center of mass
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(COM) of the best docking pose of 79, while close to the box center 3’(est) used in LIGANN

for its generation can be quite far from the alternate box centers as in 3’(int) and 5’(int).

Figure 8: Best Vinardo pose of ligand 79 obtained with the docking search box centered at
the 5’(int), 3’(int) (black) 3’(est), and 5’(est) (green). The violet arrow (sense from 5’ to
3’) marks the central channel of NSP13. 1A and 2A domains in orange, 1B domain in grey,
stalk in red, ZBD in cyan, and central channel residues in yellow.

For each of the four compounds of Figure 7, we hence performed four preliminary MD

simulations at constant pressure and constant temperature starting from the best Vinardo

pose on the sites 3’(int), 3’(est), 5’(int), and 5’(est). Full simulation details can be found

in the Methods section. We use the Vinardo pose as the starting structure for the ligand-

NSP13 complex since this scoring function is known to provide docked structures that are

closer to their experimental counterpart when compared to other Autodock-derived scoring

functions35 such as Smina, Vina or Autodock4. These simulations were aimed at assessing the
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stability of the binding states of the ligand-receptor complexes in standard thermodynamic

conditions.

In Figure 9, we show the probability distributions of the ligand-receptor COM-COM

distance in the eight MD simulations. The significant shift of the COM of the ligand from

the original LIGANN box centers, indicated by straight lines in the Figure is a combined

effect of the Vinardo and MD calculations. Such shifts are more pronounced on the 5’ end,

where we even observe an inversion of the distributions of the internal and external sites for

compound 52. Several complexes are characterized by distributions with double or multiple

peaks, indicating either that the initial Vinardo location of the ligand COM was not optimal

or the ligand is swapping between alternate poses of comparable strength in the channel.

On the 5’ end, the internal and external COM-COM distributions of compound 52 cover a

range of more than 10 Å with significant overlap, indicating that the Vinardo poses for this

compound at the 5’ end are not stable.

Remarkably, compound 79 appears to be stable in all 4 poses with no appreciable merging

of the narrow COM-COM distributions. Compound 43 exhibits two stable single poses

internal and external at the 3’ end, while the mobility of the ligand is more pronounced at

the 5’ end. Compound 52 exhibits a stable pose at the 5’ end inverted internal position (black

trait), while the 62-receptor exhibits two stable conformations at the 3’ internal location.
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Figure 9: Ligand-receptor COM-COM distribution of the four selected ligands computed in
20 ns of MD simulation. The plots on the left and the right refer to ligands placed in the 3’
end and 5’ end, respectively. The original LIGANN sites where the compounds were initially
generated can be inferred from Table 2. The straight lines mark the distance between the
LIGANN box centers and the COM of the receptor. The width of the shaded (red and black)
areas corresponds to the LIGANN box size. The green shaded areas mark the distributions
of the selected ligand-receptor complexes for nonequilibrium alchemical simulation.

We hence retained eight ligand-receptor complexes to proceed further in our computa-

tional pipeline, namely 79 in all four poses, the 62 at 3’(int), 52 at 5’(int), and 43 at 3’(int)

and 3’(est). Note that only two (43 at 3’(int) and 79 at 3’(est)) of the 321 original LIGANN

hits survived in the docking-MD computational pipeline.

vDSSB alchemical calculations of the BFE

The eight selected complexes based on the MD preliminary assessment (see Figure 9) were

further advanced to the last step of the virtual computational pipeline, consisting of a combi-
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nation of enhanced sampling MD simulations for generating a canonical sample of the initial

equilibrium states,36 followed by swarms of hundreds of nonequilibrium (NE) alchemically-

driven MD trajectories connecting the end-states to finally recover the absolute BFE as a

functional of the work distribution using the Jarzynski theorem.37,38 Both these sequential

computational steps, which are based on the generation of concurrent and independent MD

runs, can be effectively executed on massively parallel facilities with basically no communi-

cation overhead.

More specifically, in the first step we collected hundreds of uncorrelated equilibrium con-

figurations of the solvated complex by running replicates of MD simulations for a total time

of ' 0.2 microseconds for each of the eight selected ligand-receptor systems. Independent

MD replicates have been shown in several instances36,39 to provide a sampling as accurate

as that of the expensive Replica Exchange Method (HREM).39,40 For the decoupled ligand,

canonical sampling is efficiently obtained performing an HREM simulation of the gas-phase

solute molecule alone, combined with equilibrium configurations of the solvent.

In the second alchemical step, two independent parallel jobs, corresponding to NE fast

decoupling trajectories of the initially equilibrated ligand in the bound state, and to the NE

re-coupling trajectories of the initially equilibrated ligand, concur to the determination of

the standard dissociation free energy as a functional, E , of the convolution of the bound-state

and unbound state alchemical work distributions, i.e.:

∆G0
vDSSB = −RT ln

[
1

nbnu

∑
b

∑
u

e−β(Wb+Wu)

]
(1)

+ RT ln(Vsite/V0)

where the indices b, u run on the nb bound state and nu unbound state NE alchemical work

values, and β = 1/kBT . The last term on the RHS is a standard state correction term

depending on the ratio between the translational volume Vsite of the ligand in the bound

state and of the standard state volume V0 as thoroughly discussed in Refs.41–43
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The full process, termed virtual double system single box (vDSSB),26 corresponds to a

non physical alchemical path whereby the ligand is transferred from the bound state to the

bulk solvent as if the two independent processes occurred in the same simulation box, with

one ligand disappearing on the host and the other materializing in the far distant bulk. NE

alchemical simulations and vDSSB have been successfully tested against experimental BFEs

in several SAMPL blind challenges43–47 and in the absolute binding free energy estimation of

non-covalent ligands of the SARS-CoV-2 main protease.26,48 Technical details on the vDSSB

implementation are provided in Section Experimental.

Figure 10: Convolution of the bound state and unbound state work distributions for selected
ligands.

In Figure 10, we show the convolution of the unbound (growth) and bound (annihilation)

work distributions, (Pb ∗ Pu)(W ) =
∫
dwPb(W )Pu(W − w) obtained using vDSSB for the

eight ligand-receptor poses. The dissociation free energy, ∆G0, is a function of the mean

work value µ and of the variance σ2 of the convolution. More specifically, for Gaussian or

quasi-Gaussian distribution, ∆G0 ' µ− 1
2
βσ2 increases linearly with the mean work µ and

decreases linearly with the variance σ. For non-Gaussian distribution, we use the Jarzynski
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exponential average corrected for a positive systematic bias proportional to the variance and

inversely proportional to the number sampled points nu × nb.44,49,50

Table 3: vDSSB estimate of the dissociation free energy (in kcal/mol) for the eight NSP13
complexes. Vcorr is the standard state correction computed from the equilibrium MD repli-
cates of the bound state (see Eq. 2). Kd (M) is the dissociation constant.

CMP ∆G0 Vcorr Kd

43(3’est) 7.4 ± 1.6 -1.6 4×10−6

43(3’int) 5.6 ± 3.1 -1.9 8×10−5

52(5’int) 8.0 ± 0.8 -2.4 1×10−6

62(3’int) 9.4 ± 1.3 -1.9 1×10−7

79(3’est) 9.7 ± 0.7 -1.4 8×10−8

79(3’int) 10.9 ± 1.5 -1.7 1×10−8

79(5’est) 2.6 ± 1.0 -1.9 1×10−2

79(5’int) 7.9 ± 2.0 -2.5 2×10−6

In Table 3 we finally report the dissociation free energy computed using Eq. 2 for the

eight ligand-receptor systems. Six out of the eight combinations compound/location are

predicted of micromolar or submicromolar activity, in basic agreement with the docking

calculations (see Table 2). Two of the combinations, 79 (5’(est)) and 43 (3’(int)), appear to

be false positive, identified in the last stage, vDSSB, of our computational pipeline.

The best binder according to vDSSB is compound 79 at the 3’ end of the channel with

the external and internal position yielding predicted dissociation constant in the nanomolar

range. Not surprisingly, compound 62, with similar chemical-physics features (see Figure

7) is also predicted to be a strong binder with submicromolar activity at the 3’(int) end.

Compounds 79 and 62, according to the SWISSADME online platform (see Figure 7), are

among the four scrutinized ligands, those with the lowest (most facile) synthetic accessibility.

Binding strength at the 5’ end is also notable with 79 and 52 resulting in the low mi-

cromolar range. Compound 43 at the 3’ end is a much weaker binder although in this case,

the spread of the corresponding work distribution functions (see Figure 10) do not allow a

sufficiently precise measurement of the vDSSB free energy (first term on the RHS of Eq.

2). At the upper end of the 95% confidence interval for the vDSSB dissociation free energy,
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43 is nonetheless predicted of sub-micromolar activity at both the 3’(int) and the 3’(est)

locations.

vDSSB, pinpointing the 3’ end as the best druggable site, appears to be at variance with

earlier predictions based on the ICM software by MOLSOFT L.L.C. (molsoft.com), yielding

the 5’ end of the central channel as the site with the highest druggable score in the SARS-

CoV-2 NSP13 helicase.17 The ICM method (Pocketfinder)51 relies on a purely geometric

approach on static structures, scanning putative ligand envelopes based on a grid potential

constructed using a Lennard-Jones atomic probe. This methodology has the same limitation

of the common high-throughput docking approaches with flexible ligand and rigid receptor

whereby the dynamical adjustments (induced fit) of the protein pocket upon binding is

disregarded altogether. Not surprisingly, our docking calculations also seem to indicate the 5’

end at the best druggable site (see Table 2). We stress that in the MD-based vDSSB method,

induced-fit as well as microsolvation phenomena are explicitly accounted for in standard

thermodynamic conditions using accurate atomistic models, hence providing a reliable tool

of identifying false positives obtained from pure geometric approaches such as structure-

based ligand or pocket probing (LIGANN or ICM), or docking technologies. In this regard,

in the Supporting Information (SI), we provide a detailed analysis for the eight selected

compounds/locations by comparing the binding pattern of the best docking poses (according

to Vinardo) to those obtained from the equilibrium MD simulations of the bound state. While

the static docking binding pattern is illustrated by LigPlot diagrams relying on a purely

geometric criterion, the strength of specific residue-ligand interactions in the MD equilibrium

sampling is represented by heat-maps. Significant difference of the binding modality between

the docking approach (lock and key model) and the MD approaches (induced fit) are apparent

in most of the instances. Full details can be found in the SI.
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Conclusion

We set up a funnel-like computational pipeline aimed at identifying potential inhibitors of

the SARS-CoV-2 helicase NSP13 binding to a highly conserved central channel. We initially

generated hundreds of fit ligands relying on a structure-based de novo drug design based

on generative neural networks. We then proceeded with extensive docking screening using

various scoring functions. We finally assessed the resulting docking hits using advanced MD-

based nonequilibrium alchemical simulations delivering accurate absolute dissociation free

energies with credible confidence intervals. We ended up with four compounds (see Figure 7)

with predicted micromolar or sub-micromolar activity on at least one of the four identified

binding sites along the RNA channel. Although none of the predicted active compounds is

commercially available, two of them are in principle easily synthetically accessible. Com-

pound 79, binding at internal 3’(int) location of the NSP13 channel with nanomolar activity,

has remarkable structure similiarities with one of the best binders according to preliminary

data recently disclosed in round #2 of the ongoing CACHE initiative.52

Indeed, the availability of a molecule capable of inhibiting NSP13 by blocking the highly

conserved RNA channel could be a good candidate of a broad-spectrum drug, hence poten-

tially providing a powerful asset for the treatment of SARS-CoV-2 infections as well as of

future infections mediated by the Coronavirus family. To this end, in the context of the

EU-funded National Recovery and Resilience Plan, Tuscany Health Ecosystem (THE), Nan-

otechnologies for diagnosis and therapy, we are planning to synthesize and test, in wet-lab

experiments, the vDSSB hits identified in the present study with the final aim of devel-

oping nanosystems for the delivery of a broad-spectrum antiviral agent against pulmonary

infections with facile administration.
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Methods

LIGANN calculations: The 3D structure of NSP13 in its open form17 (after ATP hy-

drolysis into ADP) was downloaded from the protein data bank (PDB code 7NNG). The

7NNG X-ray structure contains two symmetry-related molecules. We have chosen the second

molecule (chain B) and fixed the gaps using the Chimera software53 followed by a minimiza-

tion of the inserted residues using the VMD toolkit. The resulting PDB file was fed to the

LIGANN program. Box centers for the LIGANN calculations are specified in Table 4.

Table 4: Coordintes of the box centers (chain B of 7NNB) for the LIGGAN calculations are
defined as the midpoint vectors connecting the Cα of residue 1 to the Cα of residue 2.

Cα(1) Cα(2) x y z
3’(int) K139 E197 -22.0 16.5 -38.5
3’(est) T231 P335 -16.5 21.5 -44.5
5’(int) T413 Y515 -32.0 19.7 -24.8
5’(est) R178 Y515 -27.4 13.2 -21.0

For the generation of the ligands, we used 10 shapes and 10 decoding smiles for a maximum

of 100 generated ligands in each of the four LIGANN runs. The effective number of ligands

after removal of duplicate or invalid SMILES code is reported in Table 1 for the four locations.

Results of LIGANN calculations, including panels, shape shape-matching outcube files (that

can visualized by loading the 7NNG-B coordinates into VMD), are available on the Zenodo

open repository.54

Docking Calculations: SMILES codes from the LIGANN output were converted to

pdb and pdbqt files using OpenBabel toolkit.55 The chain B of the 7NNG file was used to pro-

duce the pdbqt file of the receptor. Docking was performed using the programs Autodock4,

Vina, Smina, and Vinardo. Autodock425 is based on an empirical scoring function explicitly

including atom-atom Lennard-Jones potentials and atomic charges. We used the default

atomic charges (Gesteiger) generated using the MGLtools suite.56 Vina57,58 uses a simpli-

fied approach for electrostatic interactions replaced by knowledge-based hydrophobic and

hydrogen bonding terms. Smina,59 a fork of Vina, supports the customization of the scor-
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ing function improving the performance of scoring and minimization workflows. We used

the default scoring function in Smina, which is equivalent to Vina with improved empirical

parameters.59 Vinardo,60 is available as an option in the Smina-fork. The Vinardo scor-

ing function is in essence a modulation of the Vina simplified score, trained on updated

state-of-the-art datasets such as PDBBind.61

In all docking calculations, the receptor was kept rigid. Docking was performed placing

the 321 LIGANN compounds in the four channel locations at 3’(int), 3’(est), 5’(int), 5’(est),

and using the four scoring functions hence producing a total of 5136 docking calculations.

In all calculations, the search box was cubic with a sidelength of 18 Å and the box centers

are those given in Table 4. Complete docking results are available on the Zenodo archive.54

MD calculations Preliminary MD calculations of the NSP13 complex with the four

ligands, shown in Figure 7, are done using the GROMACS code (2022 release).62 In all 16

MD simulations, we started from the Vinardo best docking pose of the complex, generating

a cubic MD box of ' 96 Å sidelength filled with ' 27600 TIP3P63 water molecules using the

standard GROMACS ancillary scripts, eventually resulting in a system containing ' 100000

atoms. We adopted the AMBER99SB-ILDN force field64 for the protein and the GAFF2

general force field for the ligand with parameters generated using the PrimaDORAC web

interface.65 We introduced a weak harmonic restraint potential between the COM of the

ligand (Vinardo pose) and the COM of the receptor, with the equilibrium distance computed

on the initial structure of the complex, and force constant of 120 kJ/nm2. The systems were

initially minimized at 0 K with the steepest descent procedure and subsequently equilibrated

at constant volume and at constant temperature (NVT) T=298.15 K, enforced by way of

a Bussi thermostat66 with an integration time step of 1 fs and a thermal friction coupling

constant of 4.18 ps for 250 ps. The production stage of 20 ns (preliminary MD assessment)

was performed switching to the constant pressure constant temperature ensemble (NPT),

using the Parrinello-Rahman barostat,67 rigid constraints only on the X-H bonds (with X

being any heavy atom) and setting the timestep to 2.0 fs. Electrostatic interactions were

27



treated using particle-mesh Ewald (PME) method68 with a grid spacing of 1.2 Å and a

spline interpolation of order 4. MD assessment data are available in the Zenodo archive.54

vDSSB: canonical sampling The NPT canonical (equilibrium) sampling of the bound

state for the eight survivor complexes after stability assessment of the docking pose (79 in all

four channel locations, 62 at 3’(int), 52 at 5’(int), and 43 at 3’(int) and 3’(est)) was carried

out on the Marconi heterogeneous cluster provided by CINECA,69 by running in parallel,

using the multidir GROMACS option, 12 replicates of independent NPT simulations

lasting 15 ns each and with initial velocities generated by a random seed, hence totaling 180

ns. Due to the chaotic nature of the system, the rate of separation of trajectories starting

from the same set of initial coordinates but with different initial velocities is extremely fast

with Lyapunov exponents of the order of the ps−1. In each of the replicates, we collected 75

system configurations taken at regular intervals hence harvesting a canonical (equilibrium)

sample of 900 space phase points of the bound state whence we randomly extracted 400

initial configurations for the subsequent ligand annihilation in the bound state.

To obtain the initial unbound state configurations with the fully decoupled ligand in bulk

water, 400 configurations of the gas-phase isolated ligand were generated at 300 K v ia an

HREM simulation lasting 8 ns with a maximum scaling factor of 0.1 for the intramolecular

potential energy (corresponding to a “potential temperature” of 3000 K) and 12 replicas

with standard scaling protocol based on the geometric progression. These gas-phase HREM

simulations on the four compounds in Figure 7 were done using the ORAC software.70 The

HREM-generated 400 gas-phase configurations were inserted in a random position within an

equilibrated water box composed of ' 2500 − 3000 (depending on the ligand size) TIP3P

molecules, hence generating 400 initial configurations for the subsequent ligand growth in

bulk solvent.

vDSSB NE alchemical calculations. Annihilation of the ligand in the bound state

was performed in a single parallel run on the Marconi HPC platform, using again the multi-

dir option starting from the bound state canonical sample of 400 configurations. The ligand
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was therefore annihilated in 400 NE independent trajectories in the NPT ensemble (each last-

ing 1.125 ns) linearly switching off sequentially the electrostatic and the Lennard-Jones (LJ)

interactions using the GROMACS free energy module. Similarly, the growth process of the

ligand in bulk solvent consisted in a parallel job running 400 NE recoupling trajectories with

an inverted protocol (switching on LJ first followed by electrostatic interactions), each last-

ing 1.05 ns. For both annihilation and growth processes we used a soft-core regularization71

in the LJ stage to avoid catastrophic instabilities during the final (annihilation) and initial

(growth) stages of the NE MD trajectories. No a posteriori charge correction due to charge

annhilation or generation is needed when using GROMACS, as the direct-lattice contribution

due to the neutralizing background72 (the reciprocal lattice contribution is automatically in-

cluded when using PME in GROMACS) is evaluated on-the-fly during the transition in the

ewald.cpp routine by a call to the function ewald charge correction. Input mdp

files as well as examples of batch submission scripts for the bound and unbound jobs are

available in the Zenodo archive.54

The bound state and unbound state work values were computed by integrating the corre-

sponding GROMACS-generated dhdl files (printed every 15 fs) using the trapezoidal rule.

The dissociation free energy was computed from the convolution of the two work samples

using Eq. 2, correcting the exponential average for the bias as reported in Refs.44,49,50 Vsite in

Eq. 2 was computed from the variance of the COM-COM distribution during the equilibrium

stage as prescribed in Refs.41–43

In the Zenodo archive,54 work values are provided along with a bash script to compute

the standard dissociation free energies.

Supporting Information

Analysis of the binding pattern of the NSP13 for the four compounds shown in Figure

7 as obtained in docking and in MD simulations. Additional references cited within the
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Supporting Information.73
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The channel for RNA unwinding of NSP13 SARS-CoV-2 helicase is highly conserved in alpha

and beta mammals coronavirus. Exploiting a funnel-like computational pipeline, we identified

several micromolar or submicromolar NSP13 ligands blocking the central channel of NSP13.

These compounds could potentially be good candidates for the development of a broad-spectrum

drug for coronavirus infections.
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