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scrivere. Per due motivi, almeno. Il primo è che, non essendo la prima volta
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parte gli scherzi, sei riuscito a farmi riscoprire una fiducia in me stesso che
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Abstract

Graphs are a natural representation of the patterns we glimpse in the world as we

perceive it. The data as we receive it from nature is not only a set of objects but

also a group of informative interactions within them. Thanks to this remarkable

expressiveness, graphs have achieved ubiquitous prominence beyond mathematics

and have permeated various scientific domains, including Document Understand-

ing. Documents have a precise and rather complex structure: the objects found

within them can take on different meanings depending on their positioning and/or

their mutual relationships. These reasons elected graphs as an adequate framework

for leveraging structural information from documents, due to their inherent repre-

sentational power to codify the object components (or semantic entities) and their

pairwise relationships. The recent success of Geometric Deep Learning as well as

Graph Neural Networks has enabled the development of state-of-the-art methods

based on these architectures, which have made it possible to fill the gap between

theoretical foundations and practical applications. Through a graph-based ap-

proach, our work tackled several Document Understanding tasks, trying to meet

some of the limitations we found in this context, contributing with novel frame-

works, data collections and augmentation techniques. The aim of this dissertation

has been an attempt to connect our publications under one consistent narrative to

support our hypotheses and, in particular, to connect graphs and documents un-

der a common intersecting definition we referred as graph document representation.

Starting from a general overview of how documents met graph theory, we delve into

more specific details about the implementations of our research questions, both for

structured objects, such as tables, and whole document pages.

Keywords - Document Understanding, Geometric Deep Learning, Table Extrac-

tion, Document Layout Analysis, Key Information Extraction, Data Augmenta-

tion, Pattern Recognition
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Chapter 1

Introduction

Wise as you will have become, so full of experience,

you’ll have understood by then what these Ithakas mean.

C. P. Cavafy

Automated document analysis has always captured the interest of re-

searchers and companies. The former is because they are attracted to the

multi-faced challenge introduced by this topic, involving the use of computer

vision and natural language processing techniques. The latter, on the other

hand, because massive production of documents, whether born digital or

not, requires huge human supervision that is very expensive both in terms of

time and money, as well as prone to errors. That is why, over the years, re-

search interest regarding Document Understanding (DU) has advanced

steadily, by proposing increasingly cutting-edge solutions. By using the term

DU we would like to encompass in this dissertation the various terminolo-

gies, applications and solutions associated with the use of computer vision,

machine learning and deep learning techniques for the automatic analysis

of documents, changed through the years. The term Document Analysis

and Recognition (DAR) [95] has been the most widely used, including the

application of heuristics and/or statistical machine learning techniques to

applications such as document segmentation, reading order detection, and

Optical Character Recognition (OCR). Now that research has advanced es-

pecially for understanding visually-rich documents exploiting deep learning

methods, the term Document AI [32] started to be adopted, mainly referring

1
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Figure 1.1: Document Understanding challenges. (images taken from RVL-

CDIP [60], XFUND [156] and DocLayNet [110].

state-of-the-art advances in tasks such as Document Layout Analysis (DLA),

Key Information Extraction (KIE), Document Visual Question Answering

(DocVQA), Table Extraction (TE) and Document Classification (DC). Fi-

nally, as outlined by two recent benchmarks [19,137], the term DU emerged

as an umbrella term to comprehensively include all the different aspects of

artificial and document intelligence.

DU introduces several challenges for different reasons. First of all, docu-

ments are not unique entities, but they are an arrangement of objects, such

as paragraphs, images and tables, which are related to each other and can

present themselves in potentially infinite ways. The high variability in doc-

uments can be found in the following aspects, as summarized in Figure 1.1:

(i) data quality, e.g. scanned and digital-born documents require different

preprocessing pipelines which may highly affect the whole DU workflow; (ii)

contents, due to different languages and/or scripts; (iii) different document

layouts, e.g. magazines, scientific papers and invoices arrange their content

in total different ways. Moreover, benchmarks for DU often do not cover

important real scenarios, due to privacy issues on business, medical or legal

records or multi-page documents, making the development of state-of-the-

art methods weak for scenarios where the distribution of data is different

from the training one [47,137] and in-the-wild applications. The majority of

datasets available for the community, given the success of deep learning tech-

niques and SSL [9], contain a very large number of samples automatically

labelled (mainly composed by scientific papers), as opposed to small-scale

manually annotated collections. Following what is outlined in [136], a so-

lution to fill the gap between expensive annotation procedures and large

automatically labelled collections, as well as coverage of as many document
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types as possible, could be the generation of synthetic data, that is still

nowadays an open problem as important as it is challenging.

DU is challenging also because it can be tackled on different aspects,

which results in many tasks that modern deep learning systems have to face

and solve. DC is usually the first step among the majority of DU pipelines

since the recognition of the type of documents can give important informa-

tion for their subsequent analysis. RVL-CDIP [60] is the most important

benchmark for this task, which allowed the development and comparison

of state-of-the-art methods [81]. KIE includes understanding the relevant

information of forms [69, 156], receipts [67] and invoices [53]: e.g. dates,

addresses and names of companies and customers, total paid in transactions

of a certain type, and so on. In addition, question answering [99, 130] has

emerged as an extension of the KIE task principles, where a natural language

question replaces a property name. In this case Transformers [135, 138] are

holding the most competitive results. TE is also a very important task re-

lated to those already listed, yet of such importance that it can be considered

separately. The literature has expressed itself with many nomenclatures to

refer to tasks addressing tables [61], but recently [131] proposed a unified

definition and a new benchmark for TE. One of the first and most important

tasks regarding documents has been definitely DLA: it aims at automatically

finding regions of interest, such as text or figures, and, if needed, recogniz-

ing and classifying them, e.g. discriminating two blocks of text into title

or paragraph. Physically speaking, the objective is to identify homogeneous

contents (regions) in terms of coordinates, for the majority of bounding

boxes, through different page layouts, such as rectangular, Manhattan, non-

Manhattan, Multi-column Manhattan, Arbitrary Complex, and overlapping

(horizontally and diagonally) [14, 76]. Ranging from the early ’90s up to

nowadays, it is possible to broadly divide the different techniques into three

groups: heuristics, statistical machine learning, and deep learning methods.

Marinai largely describes the first two groups in [97], dividing the differ-

ent approaches depending on two criteria. The first one refers to how the

document is analyzed, either using bottom-up [77, 103, 142], top-down [101]

or hybrid techniques, depending on if the analyses start from basic doc-

ument constituent elements, such as connected components, or the whole

document. The second categorization criterium discriminate the different

approaches based on what will be analyzed, either the physical or logical

document layout [132, 150]. On the contrary deep learning, also thanks to
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Figure 1.2: Document Understanding (DU) applications and Geometric

Deep Learning (GDL) tasks. Bold text and bold lines highlight the ones

we focused on in this thesis and how both applications and tasks relate to

each other.

larger available document collections [85,164], started to be involved for DLA

including Convolutional Neural Networks [63,120], multi-modal transformer-

based architectures [66,154,155] and, after the recent success of Geometric

Deep Learning (GDL) [21], Graph Neural Networks (GNNs).

Referring to the latter kind of architecture, with graphs being an ex-

tremely powerful and general representation of data, DU can be backed

by graph representations as well. These structures robustly represent

objects and relations and introduce three general types of prediction tasks

at graph, node, and edge levels [126]. Graph reasoning for document parsing

involves manipulating structured representations of semantically meaningful

document objects (titles, tables, figures) and relations, using compositional

rules. Customarily, graphs have been selected as an adequate framework for

leveraging structural information from documents, due to their inherent rep-

resentational power to codify the object components (or semantic entities)

and their pairwise relationships. Moreover, having a graph offers accessibility

to many granularities, at node, edge and graph levels, and the ability to solve

numerous downstream tasks using a unique data representation. In this con-

text, recently graph neural networks (GNNs) have emerged as a powerful tool

to tackle the problems of KIE [27,158], DLA which includes well-studied sub-

tasks like table detection [121,122,148], table structure recognition [92,157]

and TE [49], Visual Question Answering VQA [86, 89], synthetic document

generation [17] and so on.

Figure 1.2 summarises and illustrates the many applications that can be
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handled in DU and the various tasks that are taken into account in GDL. The

subjects covered in this thesis are represented in bold. As will be described

in details in the following, the aim of this dissertation is two-fold: to connect

a selection of our scholarly publications about DU under the same narrative

strand and to connect graphs and documents under a common intersecting

definition we refer as graph document representation.

1.1 Outline, Research Questions and Contri-

butions

In this section we give an overview of the structure of this dissertation, along

with research questions (RQs) that motivated our research and a summary

of each chapter. In addition to the second one that introduces the pivotal

topics of this thesis, we have divided our work into two main parts: Part I.

Structured Document Objects - where we focus our interests on struc-

tured objects of the document, such as tables; and II. Document Objects

as Page Graph Nodes - where we broaden the definition of ”document

graph representation” to the whole document, modelling the objects within

it and the relationships between them as nodes and arcs, respectively, of its

graph representation. Each part, in turn, is approached from two different

perspectives, from both methodological and data aspects.

Chapter 2 - How Documents met Graph Theory

DU has been the leading topic of our research, but GNNs and graph theory

played a central role. For this reason, we believe that an in-depth study

dedicated to this topic would have enriched this thesis. In particular, we

define a general schema shared across methods of DU to extract the document

graph representation.

Chapter 3 - A graph-based method for Table Extraction

RQ 1: How can we build a graph on top of a PDF scientific paper,

with a particular attention for tabular object?

RQ 2: Is it possible to tackle TE at once working on a graph

representation?
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We are aware that tables in scientific papers are essential to sum up novel dis-

coveries and make research comparable. Being able to automatically extract

them, minimising structural and textual misinterpretations, is crucial. Since

the majority of publications are shared using PDFs, we propose a graphical

representation directly on them, enriching node features vectors with suit-

able representation embeddings for numerical values. Moreover, differently

from other methods, we are able to tackle in this way more tasks at once,

including table detection, functional analysis and layout analysis.

Chapter 4 - A new dataset and a data augmentation
approach about graph representation of tables

RQ 1: How can we build a new collection for Contextualized TE,

that is an extended version of TE?

RQ 2: As for Natural Language Processing and Computer Vision,

how can we define a data augmentation technique directly on a

graph structure?

Tables are usually surrounded by other useful information and including

them in the learning process would result in an enrichment of the TE task.

That is why we collected a new annotated collection of data, subset of two

popular datasets for TE (PubLayNet [164] and PubTables-1M [131]), to

have multiple information altogether. The collection does not require any

further preprocessing since the information are organized in a structured

way to directly tackle Contextualized TE, an extended version of TE suited

for graph-based methods. Moreover, we propose a simple yet effective data

augmentation technique directly on graph structures to meet real case sce-

narios such as class unbalancing and scarcity of data. To do so, we created

an automatic approach to generate different layouts of table through random

removal of nodes and edges and inversion of rows and columns for the task

of table type classification.
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Chapter 5 - A task agnostic document understanding
framework based on GNNs

RQ 1: How can we define a general framework to transform doc-

uments to graphs?

RQ 2: Is it possible to use such representation to tackle different

DU tasks?

RQ 3: Can we reduce the problem dimensionality while retaining

competitive performances?

Having already created a graph representation for a special case such as

TE for scientific publications and PDF documents, we decided to extend

this definition by creating Doc2Graph. This framework is able to extract a

graph representation from any document, proposing suited nodes and edge

features based on multiple modalities such as vision, language and layout.

We tested Doc2Graph for four different tasks on two different benchmarks,

obtaining competitive results and greatly reducing the number of parameters

required to train the proposed algorithm.

Chapter 6 - Automatic generation of scientific papers

RQ 1: How can we deal with the high variability in content and

layout when tackling any DU-related task?

The research community usually proposes new benchmarks and tasks to

encourage the development of novel algorithms. These latter, after huge

pretrainings, are then fine-tuned for downstream tasks and applied in-the-

wild. However, being nearly impossible to represent at training time all the

possible document representations, these systems still struggle with out-of-

distribution data. An alternative solution is to propose generative methods,

still an open problem and yet very promising. In this sense, we proposed

a customizable semi-automatic pipeline to easily annotate small collections

of documents and on top of that we use a generative layout transformer

architecture to generate multiple document pages. We tested our solution

for a DLA task, showing that a CNN-like architecture can improve final

results with our generated data.



8 Introduction

1.2 Compendium of Publications

This thesis is structured as a collection and re-elaboration of publications.

Thus, each chapter is connected to one or two conference and journal articles:

• Chapter 3: A graph-based method for Table Extraction

– Andrea Gemelli, E. Vivoli, S. Marinai: “Graph Neural Networks and

Representation Embedding for Table Extraction in PDF Documents”,

in International Conference on Pattern Recognition (ICPR), Montréal

(Canada), 2022

• Chapter 4: A new dataset and a data augmentation approach

about graph representation of tables

– Andrea Gemelli, E. Vivoli, S. Marinai: “CTE: A Dataset for Contex-

tualised Table Extraction”, in Italian Research Conference on Digital

Libraries (IRCDL), Bari (Italy), 2023

– D. Del Bimbo, Andrea Gemelli, S. Marinai: “Data Augmentation

On Graphs for Table Type Classification”, in IAPR Joint Interna-

tional Workshops on Statistical Techniques in Pattern Recognition and

Structural and Syntactic Pattern Recognition (SSPR 2022), Montréal

(Canada), 2022

• Chapter 5: A task agnostic document understanding framework

based on GNNs

– Andrea Gemelli, S. Biswas, E. Civitelli, S. Marinai. J. L. Canet:

“Doc2Graph: a Task Agnostic Document Understanding Framework

Based on Graph Neural Network”, in Text in Everything European

Conference of Computer Vision (ECCV Workshops), Tel Aviv (Israel),

2022

• Chapter 6: Automatic generation of scientific papers

– L. Pisaneschi, Andrea Gemelli, S. Marinai. “Automatic Genera-

tion of Scientific Papers for Data Augmentation in Document Layout

Analysis”, Pattern Recognition Letters, vol. 167, March 2023, pp. 38-

44. (Advances and New challenges in Document Analysis, processing

and Recognition at the Dematerialization Age)

– Andrea Gemelli, S. Marinai, L. Pisaneschi, F. Santoni. “Datasets

and Annotations for Layout Analysis of Scientific Articles”, Interna-

tional Journal on Document Analysis and Recognition (IJDAR), 2024



Chapter 2

How Documents met

Graph Theory

The image of the world around us, which we carry in our head, is

just a model. Nobody in his head imagines all the world,

government or country. He has only selected concepts, and

relationships between them, and uses those to represent the real

system

J. W. Forrester

Documents have a precise and rather complex structure: the objects

found within them can take on different meanings depending on their po-

sitioning and/or their mutual relationships. Furthermore, since there are

practically infinite types of layouts, considering the structure when process-

ing the documents themselves is a crucial step for any algorithm trying to

tackle DU related tasks. In this chapter we present “how documents met

graph theory”, that is, how documents started to be represented as graphs

and new solutions have been proposed to operate directly on them. To do so,

we briefly introduce graph theory and how it has influenced deep learning,

and then we report the latest approaches and state-of-the-art methods based

on GNNs for DU.

9
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2.1 Graph Theory in Pattern Recognition

The origins of graph theory coincide with Leonhard Euler’s work on geome-

tria situs (“geometry of location”) [40] of 1736, and its problem of the Seven

Bridges of Königsberg, historically known in mathematics and topology. The

term graph appeared for the first time later on in 1878, in a Nature paper

about “chemistry and algebra” [133]; but only in 1936 graph theory had its

foundation with its very first textbook [13].

From a general definition, a graph is an ordered pair of objects and rela-

tions. Formally:

Definition 2.1.1. A pair G = (V,E) is called a graph, where:

• V is a finite set of singular elements called vertices, also known as

nodes or points;

• E is a set of unordered pairs of vertices called edges, also known as

links, i.e. E = {{u, v} |u, v ∈ V }

Graphs are a natural representation of the patterns we glimpse in the

world as we perceive it. The data as we receive it from nature is not only

a set of objects but also a group of informative interactions within them.

Thanks to this remarkable expressiveness, graphs have achieved ubiquitous

prominence beyond mathematics and have permeated various scientific do-

mains [126]. In the field of chemistry, for instance, a molecule can be depicted

as a chemical graph, where vertices correspond to the constituent atoms of

the compound and edges symbolize the chemical bonds connecting them.

Similarly, in the domain of social networks, interactions such as ”follow” and

”like” among users can be construed as a dynamic heterogeneous graph, sub-

ject to evolution over time. When it comes to navigation tools like Google

Maps, weighted graphs are used to determine the optimal path between a

source and a target location.

In particular, in Structural Pattern Recognition, graphs have been exten-

sively used as a powerful tool for representing and classifying visual patterns.

The biological and geometrical structure of the brain, recognized to be very

close to graph theory [23], influenced the experiments that were conducted

for pattern recognition, like for the pioneering Perceptron [124]. Neurons in

the visual cortex have a multi-layer structure with local spatial connectivity

and cells, also called receptive fields [68], that respond only when stimulated:
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Figure 2.1: Geometric Deep Learning Blueprint (taken from [21]).

simpler cells are activated for simple and local inputs, then aggregated in

more complex structures to recognise more complex patterns. These first

insights impacted computer vision, creating one of the first attempt of geo-

metric neural network called Neocognitron [44], an early version of modern

Convolutional Neural Networks (CNNs) [82]: the major difference was that,

at the time, it was trained without backprop [125]. That preliminary work

was further extended by the famous 5-layer deep CNN called LeNet-5 [83],

tested on the famous MNIST dataset for the classification of digits. When

the new challenging benchmark ImageNet [37] came out, an urgent need for

more complex convolutional neural networks emerged to solve such a com-

plex task. One of the first architectures developed and trained with a GPU

was AlexNet [78], which officially started the ”era” of deep learning. In

the last ten years this branch of research has seen rapid growth and several

new architectures have been proposed, such as Region Proposal Networks

(RPN) [63, 120], Transformers [138], and Generative Adversarial Networks

(GANs) [54], to name a few.

Given their common geometrical structures, the zoo of all these deep

learning methods have been recently reconciled under the same terminology

and mathematical priors with the term of Geometric Deep Learning (GDL)

[21]. To formalise the GDL Blueprint (Figure 2.1) the authors are using

group theory to model:
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Figure 2.2: Architectures based on GDL principles (taken from [21]).

• the symmetry structure (group) of the domain Ω (e.g. translation

group over IR2 or permutation group over a graph)

• its representation ρ that will act on signals (e.g. images or node fea-

tures)

• functions that incorporate properties of equivariance or invariance (e.g.

convolutional or message passing layers)

Together these principles provide a very general design, recognisable in every

popular deep neural network architecture, using a combination of equivariant

(preserving the structure of the domain) and invariant layers that aggregate

everything in a single output, e.g. image classification. These blueprints are

applied to different domains or geometric structures called the ”5G” of GDL:

Grids, Groups, Graphs, Geometric Graphs and Gauges. The implementation

of these principles gives rise to inductive biases that lead to some of the most

popular architecture mentioned so far (Figure 2.2).

Among all the possible functions f that can be defined and/or exploited

to work with different signals ρ, the emphasis of this thesis has been posed on

graphs and Graph Neural Networks, which we introduce in the next section.
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2.2 Graph Neural Networks

The two mathematicians A. Lehman and B. Weisfeiler, inspired by chemical

cyphers, developed an algorithm also known as the WL-test [149], to deter-

mine when two graphs are isomorphic, i.e. structural equivalent and with the

same connectivity despite of the order of nodes. Unfortunately, at the time

the algorithm was threaded as unfeasible, leaving this problem unsolved and

forgotten. A notable interest came back in the early 2000s with two works

that introduced the term Graph Neural Networks for the first time [55,128],

as a generalisation of neural networks to graph structures briefly later im-

proved and aligned to more recent deep learning techniques [87].

A Graph Neural Network (GNN) is an ”optimizable transformation on all

attributes of the graph (nodes, edges, global-context) that preserves graph

symmetries (permutation invariances)” [126]. To pass graph-like data to

the machine learning model, the definition 2.1.1 needs to be updated into a

machine-readable format.

Definition 2.2.1. Machine-readable graph. Given xu ∈ IRm a feature

vector associated with each node u ∈ V , a machine-readable graph is com-

posed by:

• a node feature matrix X ∈ IR|V|×m, representing the set of nodes V

in the m-dimensional space of study;

• an adjacency matrix A ∈ IR|V|×|V|, representing the set of edges E

(with auv = 1 if {u, v} ∈ E, auv = 0 otherwise).

Given this representation, a GNN is a function ϕ that maps each feature

node xu to an hidden and learnable representation hu given its neighbours

nodes’ features vectors XNu
(being Nu = {v ∈ V | {u, v} ∈ E}):

hu = ϕ(xu, XNu
)

Formally, this approach has been generally named message passing [51],

which is quite interestingly nothing but a strong resemblance of the ”graph

recolouring” heuristic approach proposed by Weisfeler and Lehman [153].

That being said, there are other possible strategies to create a GNN and,

in a recent survey [139], the author listed concisely and formally the three

main kinds of categories: (i) convolutional, the first attempts to generalize

the success of convolutional layers over graph structures, (ii) message passing
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and (iii) attentional, nowadays the leading approaches to GDL. Despite their

slightly different definition, any GNN layer is composed of a permutation-

invariant aggregator, such as sum, mean or max, and an update function,

e.g. a linear transformation of nodes’ features and a ReLU activation. The

nearly infinite possibilities to create different GNNs led to the foundations

of a varied ecosystem of models [165]. Among them, some architectures have

become of remarkable importance, not only for GDL but also for document

understanding pipelines. The first generalisations of convolution relied on

spectral approaches [22, 35]: using graph’s adjacency and Laplacian matri-

ces and applying a graph Fourier transform. These methods could project

signals into the spectral domain where they could be processed using linear

operations. The first simplified and scalable Graph Convolutional Network

(GCN) [75] has been proposed for semi-supervised node classification, nearly

equivalent to a GraphSAGE [58] with mean aggregator, in an inductive set-

ting. These two methods are still nowadays among the leading architectures

dealing with deep learning on graphs, even if attentional methods are taking

over. The Graph Attention Network (GAT) [140], inspired by the famous

transformer architecture [138], changed how hidden representations of each

node in the graph are computed, attending over its neighbours and following

a self-attention strategy. The original architecture has recently been refined

in an extensive evaluation named GATv2 [20]: the previous static attention

mechanism, has been fixed to be dynamic by simply applying the attention

evaluation after the nonlinearity. Finally, it is worth mentioning also Dy-

namic Graph CNN (DGCNN) [147], differently from other approaches, is

capable of dynamically updating the set graph’s interactions between each

layer.

In general, the recent success of GNNs and their rapid growth has to be

associated with at least three important factors (as also described through

the chapters in this thesis):

• structure matters: either by using GNNs alone or in combination

with vision and language in a multi-modal fashion, structural and lay-

out features have become irreplaceable for any model, as well as for

document understanding [148,155,160];

• a cheap architecture, yet effective: Transformers have opened

both new frontiers in machine learning and the need for scalable archi-

tectures for edge devices and real-time scenarios [34]; GNNs require a

reduced number of parameters, while capable of retaining good infer-
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ence results. We particularly address this point in Chapter 5, present-

ing the Doc2Graph framework [46];

• versatility: a graph allows different levels of granularity, opening to

the possibility of solving multiple downstream tasks with a unique rep-

resentation of the data. An example about table extraction is described

in Chapter 3.

In particular, the last point is due to the specific tasks that can be per-

formed on any graphical structure, which can be formally defined as follows:

Definition 2.2.2. Graph-related tasks. After the application of l sub-

sequent GNN layers, the hidden representations hl+1
u (∀u ∈ V ) can be used

at:

• node-level: to perform any classification / regression task, e.g. using

an MLP and a softmax / sigmoid activation function;

• edge-level: aggregating nodes’ pair feature vectors, to perform any

classification / regression task;

• graph-level: aggregating all the hidden representations using a readout

function, e.g. summation, average, maximum or minimum over all

node and/or edge features, to perform any classification / regression

task.

As further described in the next section, having a graph representation

of a document is extremely powerful: for instance, it allows to perform doc-

ument classification at the graph level, document layout analysis at the node

level, and table structure recognition at the edge level.

2.3 Document structure interpreted as a graph

Statistical and structural approaches have always been the two main ways

of representing objects for pattern recognition and, in particular, document

analysis. While the first generally makes use of vectors, the second one

prefers strings, trees and graphs, the latter being the most general form of

data structure [24]. Documents have been always seen and produced as a

precise and logical arrangement of objects in relation to each other, naturally

following a geometrical structure [59] ( the following is summarized in Figure
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Figure 2.3: How graph-like document representations evolved. From left to

right (images taken from original papers): hierarchical tree [101], Voronoi

diagram [77], graph document layout [88], table graph [2] and one of ours

graph representation proposal [49].

2.3). In 1984 Nagy proposed an X-Y cut algorithm in which the content of

an optical scanned document is hierarchically represented as a tree [101]. A

few years later, a Voronoi diagram is used for page segmentation [77], where

each region is delimited by Voronoi edges and points. A graph representation

of a document page is proposed in [88] to label document regions through

graph matching algorithms: quite interestingly the way the graph is obtained

is close to modern approaches. An OCR is used to extract document con-

tent: nodes are enriched with positional and heuristic features while edges

use distance metrics and mutual positions. Another graph representation is

proposed by [2], focusing on tables: each cell is a potential node of the graph

while edges are built following precise heuristics similar to a visibility graph.

Despite their flexibility, being able to encode multiple kinds of relationships

within objects and not being constrained to a fixed structure, techniques for

pattern recognition and document analysis did not obtain the same success

as other statistical competitor approaches. A lack of algorithmic tools for

graphs has been observed for years, mainly due to their high complexity

and lack of a mathematical structure, until the recent widespread of GNNs.

Differently from other domains where the structure is ”already given”, such

as in chemistry or social network applications, applying GNNs for DU also

needs to define the document graph. Each recent approach proposes its

pipeline to extract document graph representation. Nevertheless, it is

possible to recognise a common procedure and define a general pipeline to

transform documents into graphs (Figure 2.4). The following are the steps

shared among different approaches.
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Figure 2.4: A general schema to document graph representation extraction

pipelines.

Nodes definition: the first step to build a graph is to define what are its

constituent objects. To do so heuristic or intelligent system and tools are

exploited to perform a document preprocessing, usually involving OCRs (e.g.

EasyOCR, Tesseract) [121,161], PDF parsers (e.g. PDF Miner, PyMuPDF)

[49,143] or machine learning models depending on the data type. According

to the downstream task, the nodes can be words, lines of text or entities, i.e.

groups of words that acquire a definite meaning together. The outputs of

this step are 2D coordinates of bounding boxes enclosing the aforementioned

defined nodes and the recognised text within if needed. As a special case to

table extraction-related tasks, nodes can also be table cells [29, 116].

Linking rules: the layout information from the previous step is then used

to create the graph edges, following predefined linking rules. This is a very

crucial step since the learning algorithms are highly affected by the quality of

the structure and the quantity of the connections. That is why, on this point,

the literature has not yet found a common ground, and each work proposes

its own solution, differing in minor ways. To formalise this important step

without excluding the many nuances in this research area, the two most

important linking rules remain:

• k-nearest neighbours [27, 29]: based on Euclidean distances, this

approach is as simple as it is effective. Several works differ on how

these distances are evaluated, i.e. from the centres of bounding boxes

or within the 4 or 8 surrounding quadrants identified by the sides of
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the rectangles; as a particular case, if k is equal to the number of nodes

we can refer to this technique also as fully connected [46].

• visibility graph [122]: within a fixed range two bounding boxes are

connected if they are on ”line-of-sights”, i.e. a line can be traced within

them with no other intersecting rectangles within them. An interesting

alternative has been proposed by [145], called β-skeleton, by changing

the linking rule into “balls-of-sight”. In such a graph, two boxes are

connected if they can both touch a circle that does not intersect with

any other rectangle, providing a good balance between connectivity

and sparsity.

In alternative to these approaches, [34] used a trained edge proposal network

to initialise the graph before applying a multi-layer GCN, which is simply

composed of two linear networks with ReLU activation in between.

Node feature vector creation: as outlined in Definition 2.2.1 each node

require a feature vector. Depending on the different downstream tasks,

this information can be obtained by a concatenation of different modalities,

choosing between:

• visual features: pre-trained (or trained end-to-end) visual backbones,

e.g ResNet [64] or U-Net [123], plus ROIAlign layers are usually in-

volved to scale hidden feature maps to bounding box regions, to en-

code font type, styles, colors (if any) and other discriminative visual

patterns;

• layout features: scaled coordinates of bounding box

regions, represented by all (or any) terms of this set:

(xmin, ymin, xmax, ymax, xctr, yctr, w, h) representing left-bottom

and right-upper corners and rectangle center, width and height,

respectively; usually this information is encoded using fully connected

layers or 2D positional embedding [155];

• textual features: pre-trained (or trained end-to-end) word vectors

and/or transformer-based architectures, e.g. SpaCy [42] or SciBert

[12], are usually involved to encode document extracted text. [122]

uses a histogram to count the number of numeric, alphabet or symbol

elements to keep the content anonymous after the OCR application.

[116] uses only the length of the word.
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• typographic features: additional information about text. These

features include font type, size and other related kinds of information,

usually found and only available in PDF documents.

Edge feature vector creation (optional): some approaches include addi-

tional information on edges, which may include reading order, edge direction,

node distance and polar coordinates, to name a few.

A GNN for document understanding was first introduced for table struc-

ture recognition by classifying edges for cells, rows, and columns [116] and

for table detection in invoice documents [121]. In particular the latter, us-

ing a GAT in a recent extension in [122], proposes a language-independent

approach for privacy issues related to business documents. As a natural

extension, a similar approach has been used for form understating [27],

to solve the word grouping, labelling and entity linking tasks proposed by

FUNSD [69]. It is interesting how a second method called FUDGE [34] could

be able to drastically reduce the number of parameters required by the GAT

simply by applying a three-layer depth GCN on top of a ResNet50 and still

achieve an improvement in results for the same task. Finally, GNNs have

been applied also to the broader task of DLA. Either combining them in a

multi-modal fashion along with visual and semantic features [160] or using a

DGCNN on top of a novel graph sampling method [148], graph-based tech-

niques hold the state of the art for DLA benchmarks [110, 164], achieving

better results than traditional deep learning methods.

This chapter has primarily aimed to give the reader a general overview of

how the paths of graph theory and document understanding have intersected

in the world of research and, in general terms, a definition of document graph

representation that will be recalled throughout the following chapters. This

thesis will now go on to describe more specifically what our proposals have

been for structured objects, such as tables, and document pages using graph-

based methods.
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Chapter 3

A graph-based method for

Table Extraction

Tables are widely used in several types of documents since they

can represent important information in a structured way. In sci-

entific papers, tables sum up novel discoveries and summarize

experimental results, making the research comparable and easily

understandable by scholars. Several methods perform Table Ex-

traction working at image-level, losing useful information during

the conversion from PDF files. The application of OCR tools

can be prone to recognition errors, making table structure and

textual content misinterpreted. Moreover, these approaches are

considering tables alone or require multiple models trained sep-

arately to perform different tasks on tables. Exploiting a Graph

Neural Network on top of PDF parsing tools, overcomes all the

aforementioned limitations. A graph-based approach is able to

perform Table Extraction at once, also taking into consideration

the surrounding document regions. This chapter is mainly based

on this work [49].

3.1 Introduction

Nowadays documents are usually produced and shared as PDF files, due to

their capability of rendering the document content in a faithful way on dif-

23
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ferent platforms and devices. Developing systems able to correctly extract

information from them is crucial for any document understanding pipeline.

Intelligent systems need lots of data to be trained and to generalise on dif-

ferent distributions; moreover, PDF documents need to be accessible and

labelled. Since there exist several datasets with these features and they are

mainly composed of scientific articles [47], we focused our attention on these

kind of documents. Despite the wide use of PDF files, 95.5% of published

articles in PDF format are not semantically tagged [102]. Therefore, extract-

ing information from these documents remains a difficult problem. This is

particularly important for tables that are generated taking into account the

semantic information (e.g. from LATEX or MSWord) that is lost in the PDF.

As a consequence TE, meaning detecting tables, recognising their structure,

and analysing their contents, remains a challenging task as demonstrated

among competitions on table analysis to deal with both born-digital and

scanned documents [45, 52]. Nevertheless tables are commonly used as a

compact and efficient way for describing statistical and relational informa-

tion [146] and it is essential to efficiently extract and analyze them, e.g. to

compare SOTA results in scientific papers [72]. So far, most of the works

consider image-based approaches; as shown in [61] recent methods often ex-

ploit Computer Vision and Natural Language Processing (NLP) techniques

to deal with tables and OCR tools are employed whenever text is needed.

Since scientific papers are currently distributed as born-digital PDF files it is

appropriate, in our view, to look at the information in the PDF file without

relying on error-prone OCR tools [18] [19]. However, extracting information

from PDF documents is not an easy task. The first techniques for extracting

information from tables explored solutions for PDF documents taking into

account heuristics object-based approaches. These methods analyze both

textual and positional information often relying on heuristics [62, 98]. Dif-

ferently, various PDF parsers with different features can be used. Some of

them only extract basic PDF elements such as text, images, and graphi-

cal items. Others are able to extract additional information specifically for

scientific papers, such as title, authors, and abstract [94] [1] [96]. In other

cases, it is possible to extract more complex items (e.g. tables) [25], but

these tools require an accurate location of the table, otherwise they may

fail when tables are surrounded by text [5, 73]. The latter techniques often

rely on low-level tools for PDF parsing (e.g. PDFMiner [107] MuPDF [7],

or PDFBox [3]). Among others, we preferred PyMuPDF [115] being reli-
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able and well-documented, providing token-level objects needed to build the

graph.

Taken into considerations the aforementioned challenges and limitations,

the main contributions of our work are:

1. the redefinition of the TE task as a node classification one, ad-

dressed by a GNN. Graph nodes are composed of basic PDF objects

while edges are computed considering relationships and mutual dis-

tances between nodes. Our experiments show that GNNs are a well

suited solution for TE;

2. the graph nodes are augmented using a novel textual embedding

of different representations for numerical and non-numerical values.

These embeddings are learned over table cells elements taking into ac-

count the PubTables-1M dataset [131]. Our experiments demonstrate

the efficiency of the proposed representation embeddings in conjunction

with the node positional information. Ablation studies are conducted

exploring also other word embeddings;

3. a new dataset is collected by merging the ground-truths of two

widely-used datasets for DLA [164] and for TE [131]. This novel

dataset allows us to perform both tasks at the same time.

3.2 Related Works

Table Understanding (TU) consists of three steps [61]: Table Detection

(TD), Table Structural Segmentation (TSS), and Table Recognition (TR).

TSS is referred to as Table Structure Recognition (TSR) in [131] where

the recognition of column and projected row headers is defined as Table

Functional Analysis (TFA). To perform TD table boundary coordinates are

detected. This task is often performed in the image domain [28] and re-

cently approached with object detection techniques. Usually, models like

Faster-RCNN and Mask-RCNN [164] [84] are used. On the other hand, at

the token level, NLP-based methods are involved in using both textual and

visual features, such as LayoutLM [155] in [85]. Once tables are found, their

structure is recognized by identifying their rows, columns, and cell positions.

A Cascade Mask R-CNN (CascadeTabNet) is used in [114] to detect tables

and body cells, arranging them in columns and rows based on their positions.
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Table 3.1: Comparison of tasks performed by different methods. (*future

extension of our proposed method).

Methods
Tasks

DLA TD TSR TFA

LayoutLM [85] ✓ ✓
VSR [160] ✓ ✓
Riba et al. [121] ✓
CascadeTabNet [114] ✓ ✓
LGPMA [117] ✓
TGRNet [157] ✓
Ours ✓ ✓ (✓*) ✓

However, none of these methods take into account the document structure

and require separated subsequent steps to deal with tables. On the contrary,

as outlined in Chapter 2, the graph representation of a document allows to

solve several tasks at once. In this scenario, GNNs can tackle TE bringing

advantages beyond solely relying on visual and/or language features.

3.3 Problem Formulation

The term TE appears back in 2003 [111], aiming at labeling each line of a

document with a tag and describing its function relative to tables. A more

recent work [131] proposes another meaning for TE, providing TD, TSR,

and TFA annotations. With TE, we refer to the task of detecting tables and

extracting the meaning of their content at once, at the token level. To this

purpose, we adopt a GNN to tackle TE as a node classification problem. To

the best of our knowledge, our method is the only one addressing TE and

DLA at once. In Table 3.1 we compare the sub-tasks performed by some

methods described in Section 3.2 and Chapter 2.

In order to perform TE, we collected a new dataset as described in the

following section. To do so, we merged the data and the annotations given

by the PubLayNet and PubTables-1M datasets, both based on PubMed Cen-

tral publications. The merged dataset contains 13 different classes adding

to the regions annotated in PubLayNet, the table annotations described in

PubTables-1M (row, column, table header, projected header, table cell, and
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Table 3.2: Comparison of original and merged datasets (Document Layout

Analysis (DLA), Table Detection (TD), Table Structure Recognition (TSR),

and Table Functional Analysis (TFA)).

Datasets
# Pages

(train / val / test)
# Tables Tasks # Classes

PubLayNet 336k / 11k / 11k 107k DLA, TD 5

PubTables-1M 460k / 57k / 57k 948k TD, TSR, TFA 7

Merged 67k / 1.5k / 1.5k 27k DLA, TD, TSR, TFA 13

grid cell). Moreover, we add the two classes caption and other, the lat-

ter being all the remaining not-labeled text-regions (e.g. page headers and

page numbers). Details are summarized in Table 3.2. We further expanded

the dataset and the task itself, giving it the name of Contextualized Table

Extraction as extensively described in Chapter 4.

3.4 Method

In the next sections we illustrate how a PDF paper is handled to build its

graph, adding explanations about node and edge features and representation

embeddings and the strategies used to handle class imbalance during train-

ing. Finally, we describe the message passing algorithm applied to train the

GNN. The whole pipeline, from documents to layout inference, is summa-

rized in Figure 3.1.

Figure 3.1: Overview of the proposed method.
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(a) Whole graph (b) Sub-graph for class balancing

Figure 3.2: Graph of a portion of page. Different types of nodes have different

colors. (red: text, green: title, pink: table cell, orange: table header, light

blue: caption, grey: other)

3.4.1 Converting PDF pages to graphs

Graphs are generated from PDF files in three steps:

1. information about basic items (tokens) in PDFs are extracted by using

PyMuPDF;

2. each node is connected to its nearest visible nodes according to the

visibility graph [121];

3. features are added to each node and edge.

Following the general schema provided in Chapter 2, we enrich our graph

nodes with positional and textual features. We use new representation em-

bedding features (Section 3.4.2) that help the model to better discriminate

table cells and headers from the rest, performing also TFA. Inspired by [121]

we make use of edge weights and enrich graph edges with token boxes dis-

tances, letting closer elements contribute more to the message passing al-

gorithm (Section 3.4.3). Node features are a combination of geometrical

and textual information as shown in Figure 3.3. The geometrical features

are < x1, y1, x2, y2, w, h, xc, yc, A >, where x1, y1, x2, y2 are the corners of the

bounding box having width w, height h, center xc, yc and area A. Other node

features describe the textual content from different perspectives: a) inspired

by [121] we add three values <% of characters, % of digits, % of symbols> to
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Algorithm 1 Edge weight we

Require: u, v ∈ V, e = (u, v) ∈ E

if (u above v) ∨ (u below v) then

de ← max(u.y1, v.y1)−min(u.y2, v.y2)

else if (u left of v) ∨ (u right of v) then

de ← max(u.x1, v.x1)−min(u.x2, v.x2)

end if

we = 1− de

maxe∈E{de}

better distinguish items in tables from other page contents. The values are

the percentage of characters, digits, and symbols in the node, respectively;

b) we add a boolean value for images that identifies images recognized by

PyMuPDF; c) tokens are described with the proposed representation em-

bedding: as described in Section 3.4.2 they are more informative if contain-

ing digits or symbols; d) static NLP-based embeddings (SciBERT [12] and

Spacy [42]) are also considered among node features. The feature of edge

(u, v) is the distance between bounding boxes of u and v as defined in Al-

gorithm 1. To handle the graph, we use the DGL open-source library [144].

An example of the graph corresponding to a portion of a page is shown in

Figure 3.2a.

In scientific papers, most of the nodes belong to paragraphs and are la-

beled as “text” and correspond to more than 80% of the whole dataset.

During training, we deal with this class imbalance by excluding pages with-

out tables and by discarding some “text” nodes in the remaining pages. A

“text” node v is discarded if there is a path with more than k edges from v

to any other node u with a different label in the original graph. Discarded

nodes are called ”islands”. By removing islands it is possible to reduce the

number of nodes surrounded by others of the same class. In this way, the

message passing algorithm aggregates more messages coming from different

sources helping the method to discriminate objects. In Figure 3.2b we show

the graph obtained by removing islands in the whole page graph.

3.4.2 Representation embedding

Even though tables in documents can be recognized by only using the layout

information of document objects, textual information can help for this task.

Common methods for representing textual information rely on word embed-
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dings. Static embeddings represent isolated words (i.e. Word2Vec [100],

GloVe [108]) while contextualized embeddings provide different word rep-

resentations according to different contexts (i.e. Elmo [109], BERT [38]).

Word embeddings are extremely useful in several NLP tasks; however, it is

difficult to represent numbers, formulas, and intervals that often appear in

tables. Recently, [70] defined a new Word2Vec approach for enhancing nu-

merical embeddings. Word embeddings can hardly learn numerals as there

are an infinite number of them and their individual appearances in train-

ing corpora are rare. Two different representations are provided for words

and numerals: the latter are represented by prototypes obtained by cluster-

ing numerals with SOM or GMM. Numerals are represented either by the

closest prototype or by a weighted average of the closest prototypes.

Inspired by [70] we propose a representation embedding to handle formu-

las and intervals in addition to words and numerals as described in Section

3.4.2. Table headers are often either words or word-numeral combinations,

while table cells mainly contain numerals or a combination of numerals with

other symbols (e.g. numbers and intervals). In some cases (e.g. in tables

comparing SOTA papers) all the cells contain words, but this is not very

frequent in our dataset. For each token corresponding to a graph node,

we obtain the representation embedding by first mapping the token into

a standardized representation and then embedding the representation in a

dense vector. A representation is a combination of symbols (e.g. ’±’, ’+’,

’◦’) and the x and w characters that correspond to sequences of digits and

words, respectively. Examples of representations of tokens are: ”Precision-

Recall”→ ”w-w”; ”12.5”→ ”x.x”, ”+3.1(2.5± 1.0)”→ ” + x.x(x.x± x.x)”.

Algorithm 2 describes the function word2repr that maps a token (wordi)

to its representation (repri). In PubTables-1M there are more than 50,000

different representations that provide an overview of the various contents of

a scientific table. To embed the representations, we induce a set P of pro-

totypes obtained by clustering the l = 2000 most frequent representations

Figure 3.3: Node features: positions and representations have a fixed length;

Spacy or SciBERT embeddings have a length of 300 and 760, respectively.
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Algorithm 2 Word to Representation

Require: len(wordi) > 0

Ensure: repri = word2repr(wordi)

repri ← wordi
repri ← repri.replace(/[A− Za− z]/g, ”w”)

repri ← repri.replace(/[0− 9]/g, ”x”)

repri ← repri.sub(r”(.)\1+”, r”\1”)

in the dataset. The clustering is obtained by computing with the Leven-

shtein distance [43] the distance matrix Dl×l (corresponding to distances

between representations). The Affinity propagation algorithm is then ap-

plied to the Dl×l matrix to compute the P prototypes (in our experiments

we have P = 47). Following [70], we define a similar process to embed to-

ken representations by training a Word2Vect model with SkipGram negative

sampling. To train the Word2Vect over the training set T of tables, we

consider three ways to visit table cells and define context elements and the

target one. Given a table t ∈ T , and considering a sliding window of size

w = 5, we extract for each cell cti,j (i= row, j= column of table t) a list of

neighboring cells arranged following one of three patterns:

Headers: cti,j ⇒ [cti,0, c
t
i,j−1, c

t
i,j , c

t
i−1,j , c

t
0,j ]

Rhombus: cti,j ⇒ [cti,j−1, c
t
i−1,j , c

t
i,j , c

t
i+1,j , c

t
i+1,j+1]

Linear : cti,j ⇒ [cti,j−2, c
t
i,j−1, c

t
i,j , c

t
i,j+1, c

t
i,j+2]

For instance, for the table in Figure 3.4, taking ct3,2 = v9 we obtain the

following patterns:

Headers: ct3,2 = v9 ⇒ [rc, v8, v9, v5, hb]

Rhombus: ct3,2 = v9 ⇒ [v8, v5, v9, v13, v10]

Linear : ct3,2 = v9 ⇒ [rc, v8, v9, v10, v11]

In the current system we use the Rhombus method since it provides better

results and most likely reflects the graph structure for a center node. Once

we have the embeddings for the P prototypes, the ones for other representa-

tions can be computed by associating each of them to its closest prototype

embedding or by computing a weighted average of all the prototypes. In
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ha hb hc hd

ra v0 v1 v2 v3
rb v4 v5 v6 v7
rc v8 v9 v10 v11
rd v12 v13 v14 v15

Figure 3.4: Example of table to illustrate representation embedding.

some preliminary tests, we found that the first approach provides more in-

formative vectors. The resulting representation embeddings are employed in

the node feature vectors.

3.4.3 Custom message passing

In this work we apply a variant of the GraphSAGE algorithm [58]. The

information flows through the graph aggregating node features from neigh-

bors. As this process iterates, nodes incrementally gain more information

from farther ones. Given a graph G = (V,E) each node v ∈ V has its own

feature vector hv (Figure 3.3) and it collects information from neighbors

N(v), whose vectors are called messages. Most algorithms copy the mes-

sages into the so-called mailbox, but in our case we scale them by an edge

weight we computed in Algorithm 1. The weight we is the normalized spatial

distance of nodes u and v, it reaches the maximum value (we = 1) on touch-

ing nodes. In so doing, nearest nodes contribute more to the information

flow under the hypothesis that local nodes often belong to the same class.

At step k, each feature vector in the neighborhood of v is collected in its

mailbox mk
v = {weh

k−1
u | ∀u ∈ N(v)}. Then each node aggregates messages

using a permutation-invariant differentiable function, such as pooling, mean,

or sum. We sum messages to compute a weighted average of feature vec-

tors of neighboring nodes: hk
N(v) =

∑
m∈mk

v

m

|N(v)| We then concatenate the current

node feature vector hk−1
v with the aggregation of neighboring nodes hk

N(v)

and each node updates itself: hk
v = σ(W × CONCAT(hk−1

v , hk
N(v))) where

W is the weights matrix of a fully connected layer, applied to learn different

patterns in feature vectors. Other approaches add hk−1
v directly to messages

or just update it with hk
N(v).
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3.5 Experiments

In this section, we discuss the performed experiments. At training time,

only pages containing tables are used (around 27k) reserving 5% of them

for validation. The test set contains 1.5k pages including also pages without

tables. To evaluate the performance of the proposed method, model accuracy

and F1 scores are considered. The F1 metric is used for table cells and table

header classes. In this section, we discuss the methods and the corresponding

results reported in Table 3.3.

3.5.1 Ablations

Each method differs from the others varying the hidden layer dimensions

hdim and the number of parameters pno. After fixing the number of GNN

layers (lno = 4), three different methods are employed. Base, the first one,

fixes the hidden dimension hdim = 1000 for all input features size indim.

By doing so, the network size changes with the different sizes of the input

elements. In the method called Padding, instead, the size of the network is

fixed by padding the input size and forcing it to have dimension: indim =

(bbox + repr + max(Spacy, SciBERT )) = 861. Finally Scaled fixes the

number of network parameters pno = 100k by reshaping the hidden size

hdim on the basis of the input size, according to the following second degree

equation: pno = (lno−2)∗h2
dim+(indim+outdim)∗hdim. The main difference

between Padding and Scaled is related to the first layer parameters which

are not completely used by Padding since some input values are always set

to zero.

3.5.2 Results

Experimental results (summarized in Table 3.3) are designed to answer two

main questions. Firstly, whether the proposed representation embedding

improves the performance on table detection and discrimination of cells and

headers. Secondly, if the representation embedding is a good alternative to

language models. Concerning the first question, we can notice that in general

by adding the representation embedding we have better performance for the

detection of table cells (cell F1). Model B adds representation embeddings to

the positional information of model A and, in this case, the cell F1 score in-

creases for all methods (e.g. for Padding by 5.4 %). cell-h F1 scores are lower
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Table 3.3: Evaluations are conducted with accuracy on all classes and F1

score on table cells and headers. Each model (A, B, ..) has been tested with

different combination of features.

Model Features Metrics
Methods

Base Padding Scaled

A bbox

accuracy 0.873 0.841 0.866

cell F1 0.798 0.765 0.799

cell-h F1 0.659 0.651 0.642

B
bbox

+ repr

accuracy 0.876 0.875 0.873

cell F1 0.821 0.819 0.816

cell-h F1 0.653 0.649 0.648

C
bbox

+ Spacy

accuracy 0.859 0.847 0.868

cell F1 0.767 0.773 0.781

cell-h F1 0.685 0.675 0.660

D

bbox

+ repr

+ Spacy

accuracy 0.865 0.860 0.809

cell F1 0.780 0.776 0.811

cell-h F1 0.689 0.675 0.644

E
bbox

+ SciBERT

accuracy 0.882 0.843 0.879

cell F1 0.838 0.816 0.846

cell-h F1 0.688 0.699 0.686

F

bbox

+ repr

+ SciBERT

accuracy 0.709 0.787 0.870

cell F1 0.855 0.832 0.777

cell-h F1 0.668 0.636 0.671
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because headers often contain words that are not well modeled by represen-

tation embeddings. Furthermore, if we add the SciBERT word embeddings

to representations, we notice that model F outperforms all the others in the

detection of table cells (using the Base method). With respect to model E

the cell F1 score increases by 1.7%. Regarding the second question, we can

notice that representation embedding alone achieves good results. For cell F1

score, model B obtains almost the same results compared to C (where Spacy

replaces the representation embedding) and E (where SciBERT replaces the

representation embedding). About the accuracy, model B outperforms C

over all the methods and E with padding.

The results can also be verified qualitatively by looking at inferences of

three pages in Figure 3.5. For each page, we present the graph node predic-

tions (pages with tokens), clusters of nodes belonging to the same class and

the grouped entities (pages with object boundaries). The majority of table

headers and cell nodes are well recognized. Some errors are present mainly

near region boundaries: e.g., at the top of table bodies, some table cells are

misclassified as headers. As a first step towards page objects identification,

we apply a post-processing phase based on PyMuPDF blocks. The library

detects groups of entities that are then labeled with the majority class among

them. Even if this approach works most of the times, relying on simple rules

is prone to errors. In second row, it is possible to see that PyMuPDF fails (f)

because there is too much space withing the table and it outputs overlapping

boxes.

3.6 Conclusions and Future Works

We presented a pipeline to perform DLA and TE in PDFs of scientific papers.

We propose to represent PDF papers as graphs and redefine the problem of

TE as a node classification problem by means of GNNs. We enhance node

features using novel representation embeddings that we empirically prove to

be effective to discriminate table elements from other classes. Even if the

post-processing provides promising results, to improve them future works

will investigate and include edge classification in the GNN model to group

elements belonging to same entities. In this way it will be possible to compare

this approach with both TD and TSR methods. We also aim to further

investigate the representation embedding by studying its properties.



36 A graph-based method for Table Extraction

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: Three examples of model inference per row at token-level (left),

clustering (center) and post-processing (right). Different colors represent

different types of nodes or blocks (red: text, green: title, pink: table cell,

orange: table header, light blue: caption, grey: other, dark blue: list, yellow:

table).



Chapter 4

A dataset and

augmentation approach for

graph representation of

tables

As shown in the previous chapter, extracting tables from docu-

ments, and particularly from scientific articles, is as important as

it is challenging. Usually, Table Extraction is tackled using tradi-

tional Computer Vision or Natural Language Processing methods

that totally or partially disregard the important structural infor-

mation. This is also partly due to datasets that do not explicitly

expose this feature in their annotations. Consequently, the ap-

plication of graph-based methods, although attracting increasing

interest, is limited by the scarcity of data with structural infor-

mation. For this reason, we have created a new collection and

task, called Contextualized Table Extraction, to meet these lim-

itations. Moreover, we proposed a new augmentation approach

directly on the graph representation of tables, tested for the task

of table type classification. This chapter is mainly based on these

two works [36,50].

37
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4.1 Introduction

Nowadays, large collections of documents require a huge amount of human

work to annotate documents and extract important information. In the last

thirty years, the DAR community tried to overcome this challenge, exploit-

ing suitable algorithms and artificial intelligence techniques to automatize

the analysis of documents and reduce its costs. Among others, DC, DLA

and TU more broadly attracted the interest of researchers and companies.

Moreover, collections of scientific papers such as arXiv and PubMed opened

to the possibility of accessing a large number of documents along with their

structural information represented in standard formats such as LATEX and

XML. That is why scientific literature parsing and scientific table analysis

rapidly became one of the most prominent areas of research in DAR: large

datasets have been released [131, 164], allowing the community to develop

deep learning models. Unfortunately, as we will describe in the next sections,

these datasets come with partial information that forces the experimentation

of DLA and TE. From this identified lack, we define Contextualized Table

Extraction (CTE), a broader task that comes along with novel annotations

for a collection of 75k scientific pages containing more than 35k tables, en-

couraging the development of new systems capable of tackling a multitude

of tasks at once. CTE is formulated as a token and link classification task,

encouraging the usage of graph-based methods which are widely used in

applications where the structure and layout in documents matter.

This chapter introduces the following contributions:

• We define the task of Contextualized Table Extraction (CTE), an

extended version of TE as defined in [131] that adds layout information

and encourages the development of end-to-end systems that can tackle

multiple tasks at once;

• Novel annotations are created by merging subset of [131, 164] and ex-

tending the collections presentend in [49]. The new collection in-

cludes 75k scientific pages and more than 35k tables. Tokens at the

basis of annotations correspond to words extracted from PDFs using

PyMuPDF and labeled according to the region they belong to; table

structure information is encoded as links between tokens;

• The dataset encourages the use and development of graph meth-

ods on documents, providing to the community a new set of labeled
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Table 4.1: Comparison of CTE with related datasets: ♣ denotes the

datasets used to generate the new annotations. A dataset is S4G (suitable

for graphs) if a graph can be constructed directly with no further preprocess-

ing. DLA (Document Layout Analysis), TD (Table Detection), TSR (Table

Structure Recognition), and TFA (Table Functional Analysis) show which

tasks models can be trained for.

Dataset #pages #tables #classes DLA TD TSR TFA S4G

PubLayNet (♣) 358k 107k 5 ✗ ✓ ✗ ✗ ✗

PubTables-1M (♣) 574k 948k 7 ✗ ✓ ✓ ✓ ✗

DocBank 500k 417k* 12 ✓ ✓ ✓* ✗ ✓**

SciTSR 0 15k - ✗ ✗ ✓ ✗ ✓

CTE 75k 35k 13 ✓ ✓ ✓ ✓ ✓

*DocBank is an extension of TableBank, from which we gathered these information

**If tokens used as graph nodes, no information on edges

data to experiment with GNN-based techniques. The annotations do

not require any further processing (either in labels or data themselves)

to construct a graph over the scientific pages.

• We also propose a new augmentation technique for table struc-

tured data, directly on their graph representation. The method has

been tested on the Tab2Know dataset for table classification.

4.2 Related Works

Despite the advances in the field, several challenges strongly limited the

generalization of methods developed until a few years ago, as outlined in

Chapter 1. To address these challenges a large number of data need to be

collected in order to fully exploit the power of Deep Learning models that

achieve the state-of-the-art for the aforementioned tasks. Unfortunately, cre-

ating such datasets is nothing but trivial since accurate annotations come

at a high cost in terms of time and human effort [110, 129]. On the other

hand, automatic annotation techniques are not always applicable since they

require a large number of documents shared together with their source files

in standard formats such as LATEX, XML, or HTML [85, 164]. Additionally,

these techniques usually generate weakly labeled collections and are more
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error-prone than manually annotated ones. A third solution could be using

data augmentation techniques, either based on heuristic or generative ap-

proaches, in scenarios where few labeled samples are available and/or more

variability in layout and contents its needed. These points are discussed

in more detail in Chapter 6, where the aforementioned limits are met by a

proposed generative method.

Other document collections. We compare our collection with some of

the most important datasets proposed for DLA nad TE in in Table 4.1. Pub-

LayNet and DocBank have been widely used to train object detectors [63,120]

and transformers [155] for DLA. Overall, these datasets contain around

half a million pages labeled into five and twelve different classes, respec-

tively. PubLayNet has been constructed merging the information extracted

from PDFMiner (bounding box regions) and the XML files shared by the

publishers (containing the region labels). DocBank is built gathering the

LATEXsource files and assigning labels taking into account the section tags.

For the TE task, a recent dataset has been released (PubTables-1M) which

counts nearly one million tables, labeled to perform not only TD and TSR

but also Table Functional Analysis (TFA) that provides additional infor-

mation on table cells like table headers. Even if it is smaller, SciTSR [29]

introduced a collection of 15k tables generated from LATEX to perform TSR,

mainly using a GNN. As it is possible to notice in Table 4.1, all these datasets

lack a comprehensive and broader set of annotations, forcing the community

to develop multiple systems that, in application scenarios, would lead to

heavy and large pipelines.

Data Augmentation techniques. In object detection, DA techniques

involve color operations (contrast, brightness), geometric operations (trans-

lations, rotations), and bounding box operations [166]. None of these can

be used in our case since we are considering graphs to represent the tables

and augmentation operations commonly used in vision and language have no

analogs for graphs [162]. Similarly to what we did for trees [8] and inspired

by [74], we applied some of their augmentations on table examples directly

in the graph structure ). Operations that can be performed on tables are

random deletion of rows, row replication, column deletion and column repli-

cation. Instead of working directly on images, we therefore extract the table

structure and then apply DA on their graph representation, by means of

node deletion, edge deletion and inversion of node contents.
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Figure 4.1: Example page (content is intentionally concealed in ’Original’)

and corresponding CTE annotations. Objects represent the layout regions.

Tokens contain the word tokens labeled according to the class in the top

of the figure. Acronyms for table annotations are: THEAD (table headers),

TSPAN (table sub-headers spanning along different columns), TGRID (table

cells), TCOLS and TROWS (respectively columns and rows of the tables).
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4.3 A dataset for CTE

The proposed dataset for CTE is obtained by merging data and annotations

given by PubLayNet and PubTables-1M datasets, both based on PubMed

Central publications. As depicted in the next sections, firstly we identify

the pages of scientific papers annotated in both datasets, then we merge the

information and add two novel classes (captions and page information) and

finally use PyMuPDF to extract text and position of tokens. We used a

preliminary small version of this collection in [49], applying a GNN to tackle

CTE. After the release of PubLayNet test set we updated the version of CTE

dataset, now containing more annotated data.

4.3.1 Problem Formulation

CTE is the broader task of extracting tables (meaning their detection) recog-

nizing their structure and performing functional analysis, along with other

page layout information. To do so, CTE is formulated as token and link

classification tasks, similarly to [85], since fine-grained objects like tokens

permits to tackle multiple tasks at once. For instance, recognizing the table

headers and grid cells allows to detect the tables (grouping tokens together

through links) and add functional information. In addition, through token

and link classification the need for more components would be reduced since

a method capable of successfully solving CTE would require us to train only

one model, extracting more information at once. Given Precision and Recall

for token and link classification, namely Token Precision (TP), Token Recall

(TR), Link Precision (LP), and Link Recall (LR). We can define the F1CTE

metric as follows:

F1CTE =
F1Token + F1Link

2
=

TP · TR
TP + TR

+
LP · LR
LP + LR

. (4.1)

Token classification. The first step required to tackle CTE is the clas-

sification of tokens, extracted from PDF pages using PyMuPDF. Tokens

contain textual and positional information, along with class information in-

herited from the larger region they belong to (details in Table 4.2, token

annotations). This subtask exposes these properties:

1. Through token classification it is possible to achieve DLA, TD, and

TFA at once.
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2. If tackled along with link classification to achieve CTE the F1CTE

metric (Eq. 4.1) should be used. If tackled alone the metric proposed

in [85] can be used as well.

Link Classification. In order to group together tokens belonging to

tables into columns, rows, or grid cells, additional information on links among

pairs of tokens is added. This subtask exposes these properties:

1. Through link classification it is possible to perform TSR.

2. Similarly to token classification, F1 is preferred to evaluate link classi-

fication if tackled alone.

3. Links connecting non-tables items should be considered as an addi-

tional class ’none’.

Object Recognition. Even if not required to do CTE, the annotations

include area information of different regions in the paper (as common for

object detection). Grouping together tokens belonging to the same class via

edges can be exploited to find such areas, e.g. extracting sub-graphs from the

whole document. A recent paper [145] exploited GNN to perform post-OCR

paragraph recognition by grouping together similar items in the pages.

4.3.2 Subset of PubLayNet and PubTables-1M

PubLayNet is a collection of 358, 353 PDF pages with five types of regions

annotated (title, text, list, table, image) [164]. PubTables-1M [131] is a

collection of 947, 642 fully annotated tables, including information for table

detection, recognition, and functional analysis (such as identifying column

headers, projected rows, and table cells). The datasets are built to address

different tasks, as summarized in Table 4.1.

To merge the datasets, we first identify the papers belonging to both

collections. From this subset, we keep pages with tables fully annotated in

PubTables-1M and pages without tables: this filters out even more pages,

since we found some PubTables-1M annotations to have only one annotated

table in pages containing two or more tables. Following this step, we obtain

approximately 75k pages. The resulting merged dataset contains objects la-

beled into 13 different classes, having in addition to the regions annotated in

PubLayNet the table annotations described in PubTables-1M (row, column,

table header, projected header, table cell, and grid cell). Moreover, we added
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two classes: caption and other. Captions are heuristically found taking into

account the proximity with images and tables, while the other class contains

all the remaining not-labeled text regions (e.g. page headers and page num-

bers). The remaining PubLayNet train, validation and test documents kept

the same split in our own collection.

4.3.3 Annotation procedure

Once a complete annotated list of pages is selected from the two datasets,

we leverage an external tool to extract page tokens. After comparing several

tools, we opted for PyMuPDF [115] which is a Python open-source library

backed by a large community and constantly maintained. Each element,

visible or not visible, present in the PDF page is extracted and annotated

based on the annotation bounding-box it appears in, as depicted in Figure

4.1: tokens are labeled according to their enclosing labeled region (upper

part); links, instead, are presented as groups of tokens for visualization pur-

poses (bottom part), but encoded as couples as described in details in the

next Section and in Table 4.2. By doing so, the resulting page is composed

by extracting page tokens along with their position (bounding boxes coordi-

nates) and their textual content (mostly single words). This process heavily

depends on original versions of the PDF files: even if the document name is

the same along the two datasets annotations (PubLayNet and PubTables-

1M) the PDF version of PubLayNet documents could differ. This is due

to the two year gap between the datasets’ release dates. To obtain reliable

information, in our approach we discard all the pages (and tables) in which

the content of the two sources does not correspond anymore.

4.3.4 Dataset structure and format

After the merging procedure, we end up with three JSON files (subset of the

original PubLayNet one) splitting the data into train, val, and test. Each

one contains information regarding tokens extracted by PyMuPDF, their

links and the regions that group them (larger objects). Tokens have these

information: token id, bounding box coordinates, text, class id, and object id

(larger region to which it belongs). Links between tokens (belonging to the

same row, column or grid cell) have information such as link id, class id, and

token id (list of tokens linked together). Finally, objects contain information

such as object id, bounding box coordinates and class id. A representation of
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Table 4.2: Annotation Format: each line contains different information in

case of Objects, Tokens, or Links.

Object annotations

Index 0 1,0 1,1 1,2 1,3 2

Content object id x0 y0 x1 y1 class id

Token annotations
Index 0 1,0 1,1 1,2 1,3 2 3 4

Content token id x0 y0 x1 y1 text class id parent object id

Link annotations
Index 0 1 2,0 2,1 2,n-1

Content link id class id 1st token id 2nd token id n-th token id

the aforementioned annotation format is represented in Tables 4.2.

4.3.5 Limitations

We are aware that the proposed dataset, even if it is proposing a new bench-

mark to tackle CTE, has room for improvement. As such, we list the limi-

tations of the dataset:

1. There is a small quantity of data and tables compared to other datasets.

Considering that adding more annotated data would be nothing but

trivial, we believe this point could be addressed in two ways: i) as

a starting pool of data to train generative models and getting new

samples automatically labeled (e.g. using techniques similar to [112]);

ii) using the CTE collection as a challenging benchmark to compare

lightweight models, such as GNNs, along with state-of-the-art trans-

formers (notably anger of huge amount of data).

2. The heuristics used for the the classes caption and other could affect

the generalization of trained models, highly dependent on the paper

format used in PubMed Central. On the other hand, we are enriching

information about tables by recognizing captions, that contain valuable

table descriptions and that otherwise would be discarded.

3. We still lack additional information such as author, keywords, and

equations. We are going to add these additional labels in the near

future, considering Grobid [56] in the annotation procedure, since it
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is a machine learning library for extracting technical information from

scientific publications, from PDF to XML/TEI structured documents.

4. The first attempts to define a baseline is reported in [49], in which

the task of TE and DLA are treated end-to-end. This chapter aims at

sharing the CTE dataset in a way that the scientific community can

further propose baselines on this work.

While we acknowledge that CTE has some limitations, we believe that

it represents a significant step towards a more comprehensive solution for

TE in documents. In our previous work [49], we investigated different ways

to achieve CTE through ablation studies, so as to analyze the impact of

different components on the system’s performances. In this chapter, instead,

we define the F1-based metric (F1CTE) for the updated dataset regarding

CTE. As the combination of two metrics, namely Token F1 and Link F1,

they can be used to evaluate the performance of the system.

4.4 Data Augmentation on Graphs

For DA, new graphs can be obtained by modifying their structure and the

information associated with the nodes and edges. Since the embedding for

each table is evaluated through a message passing algorithm that strongly

relies on the table structure and content, removing elements of the graph

and changing node features helps to generate more variability of examples

for each class. This not only improves the generalization capability of the

model, but can help to reduce class imbalance.

4.4.1 Method

Our method consists of two main steps: random removal of nodes and edges

and inversion of rows and columns. Although we applied simple heuristics,

the results reported on Tab2Know [79] show that they were effective, as well

as easy to implement and reproduce.

Random removal of nodes and edges. In these operations, a random

sample of nodes or arcs within the table is removed from the graph. By doing

so, it is possible to generate a new graph similar to the initial one, but with

different information.
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Figure 4.2: Recognition of columns. Group of 1s in the projected vector

indicate different columns.

• nodes removal: a random subset of node indexes is removed. The size

of the sample depends on the number of nodes in the graph, a random

number between 1% and 20% of the total number of nodes.

• edges removal: a random subset of edge indexes is removed. The size

of the sample depends on the number of edges in the graph, a random

number between 1% and 20% of the total number of edges.

The amount of randomly removed nodes/edges is an arbitrary choice. We

did not want to: (i) discard too much information and (ii) introduce any

bias in the decision.

Inversion of rows and columns The row and column inversion tech-

nique is more complex, due to the fact that the internal structure of the

tables is not known. Therefore, it is necessary to define an approach to ap-

proximate this structure. Once identified, rows or columns can be inverted,

by means of swapping their node features.

• Column inversion: table column identification is made with a projection-

profile based approach which defines a vector of size equal to the width

of the table region. Each element of the vector is initialized to 0. Then,

for each word, the coordinates x1 and x2 of the corresponding bound-

ing box are extracted and projected, setting to 1 the vector values

whose indices correspond to these coordinates. The obtained result is

shown in figure 4.2: adjacent 0s should identify column boundaries,

while adjacent 1s the coordinates of each column. Thus, two columns

can be inverted by swapping their contents, that is, the features of the

nodes whose center of the bounding box belongs to those columns. The
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Figure 4.3: Recognition of rows. The blue bounding box is detected be-

longing to a new row since its x coordinate is lower than the previous green

block.

limitation of this technique is visible whenever there is a space between

words belonging to the same column.

• Row inversion: To reverse rows, it is necessary to compare the positions

of ”successive” bounding boxes. PyMuPDF reads and orders the con-

tent from left to right and from top to bottom. So, when a bounding

box appears positioned ahead of the next one, it means that the latter

is on a new row. In Fig. 4.3 the orange, green and blue bounding boxes

are successive ones: the last one is on a new row since its x coordinate

is lower than the green one. Once the structure of the rows has been

identified, they can be reversed by swapping the features of the nodes

belonging to them. The limitation of this technique is visible in the

case of multi-row tables.

4.4.2 Preparing the data

The first step to apply a GNN for table classification is the conversion of

tables in PDF papers into graphs as outlined in the previous chapter. The

library is used to extract words and their bounding boxes; by using the

positions of the tables in the annotations, only the words within them can

be considered (Fig. 4.4). One graph for each table is built, where words

correspond to nodes. Each node is connected to its nearest visible node

when their bounding boxes intersect horizontally or vertically. Each graph,

representing a table, is associated with the annotation corresponding to its

type.

The Tab2Know dataset contains information regarding tables extracted

from scientific papers in the Semantic Scholar Open Research Corpus. Ta-

bles are extracted using PDFFigures [30], a tool that finds figures, tables,
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Figure 4.4: Words and bounding boxes extracted from one PDF paper using

PyMuPDF. Nodes are connected through a visibility directed (from green to

red sides) graph.

and captions within PDF documents, and Tabula1, that outputs a CSV per

each table reflecting its structure and content. After the conversion, each

table is saved as an RDF triple addressable by an unique URI. Each CSV

is then analyzed to recognize headers, type of table and columns type. The

authors define an ontology of 27 different classes, 4 of which are defined as

”root” ones (Example, Input, Observation and Other): the others are given

depending on the type of columns found inside each table (e.g. Recall is a

subclass of Metric that is a subclass of Observation). Their training corpus is

composed of 73k tables, labeled using Snorkel [119] and starting from a small

pre-labeled set of tables obtained through human supervision using SPARQL

queries. Human annotators then looked at 400 of them, checking their la-

beling correctness and, after resolving their conflicts when disagreeing, used

this subset as the test set. To extract and group information on tables from

Tab2Know, we built a conversion system to derive a JSON object for each

available table. The information is the table numbering in the document, the

page number where the table is located, the number of rows that make up the

header, the document URL, the table class definition, and the caption text.

We also added some information not represented in the RDF graph, such as

the position of the table and the location of the caption (the latter informa-

tion is obtained using PDFFigures and Tabula). Then we downloaded the

PDFs of papers containing corresponding tables, accessed from the Seman-

tic Scholar Open Research Corpus. From each paper, the pages containing

the tables are extracted. Unfortunately it is not possible to use the whole

Tab2Know dataset. For instance, some papers are no longer available or an

1https://github.com/tabulapdf/tabula

https://github.com/tabulapdf/tabula
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updated version does not match the annotations provided anymore. From

the total, only the data whose annotations match are used, discarding the

others. We obtained a subset containing 33,069 tables extracted from 11,800

scientific documents (45% of the original one). In addition, this dataset is

very unbalanced (80% Observation, 10% Input, 7% Other, 3% Example) and

it contains several missing or wrong annotations (55% of column classes have

been labeled as ’others’, across 22 different classes). For these reasons, we

only use in this preliminary work the test set that was manually classified

and corrected by humans. Specifically, this dataset contains 361 tables ex-

tracted from 253 scientific papers. The distribution of tables according to the

class is as follows: 235 Observation, 43 Input, 13 Example, 29 Other (41

were ’unclassified’, and we do not consider them during training). We retain

20% of this subset as training (randomly sampled keeping the same class

occurrences) and, through the data augmentation techniques described be-

fore, we evaluated the generalization capabilities of the proposed model. The

Tab2Know dataset can be used for performing table classification. However,

the manually labeled subset is small and therefore we need to implement

suitable Data Augmentation (DA) techniques. DA is widely used in ma-

chine learning in order to make models generalize better on unseen samples

and unbalanced datasets.

Tables without annotation and those from which a graph cannot be built

are discarded. At the end we obtain 320 graphs split into four classes: Obser-

vation (235), Input (43), Example (13), and Other (29). Examples of classes

can be seen in Fig. 4.5. Each node in the graph corresponds to a feature

vector. In addition to the geometric features of the nodes, such as position

and size, textual content embeddings are added using spaCy. In particular,

two spaCy models are used and compared: en core web lg and en core sci lg.

The first one is the largest English vocabulary which associates each word

with a numerical vector of 300 values; the other model, trained on a biomed-

ical corpus, associates each word with a numerical vector of 200 values. The

results obtained using the two models are compared in the experiments.

4.4.3 Experiments

The main experiments performed are summarized in Table 4.3 that compares

results obtained by applying different Data Augmentation techniques and

spaCy models en_core_web_lg and en_core_sci_lg with baseline results.

In bold we highlight the most significant results of the F1 score for each
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Figure 4.5: Different types of tables with their classes in Tab2Know (taken

from [79]).

technique applied. These values are also summarized in Table 4.4 to discuss

the outcomes of the experiment. Table 4.4 summarizes the best F1 score

values obtained considering some DA combinations. We can observe that

the models appear to be rather inaccurate. This is mainly caused by the

dataset itself, that is unbalanced toward the Observation class and small in

size. It can also be seen that models using the en_core_sci_lg embedding

show better results than those using en_core_web_lg, since the first one is

a biomedical-based embedding that is most likely capable of appropriately

characterizing and recognizing terms present in the tables extracted from

scientific documents. In particular, models that exploit en_core_web_lg

and do not use data augmentation techniques turn out to be less accurate

and fail to recognize any table of class Other. In general, models that employ

data augmentation result in higher F1 score values. Furthermore, observing

Table 4.4, it can be seen that better values are obtained for the models in

which data augmentation techniques are applied: particularly among these,
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Table 4.3: Results without data augmentation (No Aug.); Data Augmenta-

tion with Row and Column inversion (R/C ); Data Augmentation with Row

and Column inversion and random removal of nodes and edges (All). P , R

and F1 correspond to Precision, Recall and F1 score.

No Aug.

train size: 63

web lg sci lg

Classes (#) P R F1 P R F1

Observation (185) 0.85 0.84 0.84 0.87 0.92 0.89

Input (35) 0.37 0.49 0.42 0.47 0.54 0.51

Example (10) 0.42 0.5 0.45 0.67 0.2 0.31

Other (23) 0.00 0.00 0.00 0.43 0.26 0.32

All (253) 0.41 0.46 0.43 0.61 0.48 0.51

R/C

train size: 200 train size: 400

web lg sci lg web lg sci lg

Classes (#) P R F1 P R F1 P R F1 P R F1

Observation (185) 0.82 0.84 0.83 0.85 0.92 0.89 0.82 0.84 0.84 0.84 0.94 0.88

Input (35) 0.37 0.43 0.39 0.52 0.46 0.48 0.34 0.34 0.34 0.52 0.40 0.45

Example (10) 0.80 0.40 0.53 0.60 0.30 0.40 0.57 0.40 0.47 0.50 0.30 0.37

Other (23) 0.06 0.04 0.05 0.41 0.30 0.35 0.05 0.04 0.05 0.50 0.30 0.38

All (253) 0.51 0.43 0.45 0.60 0.50 0.53 0.45 0.41 0.42 0.59 0.48 0.52

All

train size: 200 train size: 400

web lg sci lg web lg sci lg

Classes (#) P R F1 P R F1 P R F1 P R F1

Observation (185) 0.81 0.83 0.82 0.85 0.94 0.89 0.81 0.82 0.81 0.84 0.93 0.88

Input (35) 0.32 0.37 0.34 0.48 0.40 0.44 0.33 0.40 0.36 0.52 0.43 0.47

Example (10) 0.80 0.40 0.53 0.67 0.40 0.50 0.60 0.30 0.40 0.50 0.30 0.37

Other (23) 0.06 0.04 0.05 0.57 0.35 0.43 0.05 0.04 0.05 0.36 0.22 0.27

All (253) 0.50 0.41 0.44 0.64 0.52 0.56 0.45 0.39 0.41 0.55 0.47 0.50

the one obtained by alternating the inversion of rows and columns with

random removal of nodes and arcs is preferable.

4.4.4 Limitations

The proposed solution has some aspects that could be deepened or improved

to further develop the work started. First, it might be useful to test the im-

plemented Data Augmentation techniques on other datasets to analyze their

potential and efficiency. In addition, other Data Augmentation techniques

could be implemented, such as adding or removing rows and columns to a

table, or improving the techniques already implemented. For example, the



4.5 Conclusions and Future Works 53

Table 4.4: Summary of F1 scores for different data augmentation ap-

proaches. No Aug. indicates no Data Augmentation technique was applied,

R/C indicates row and column inversion technique and All indicates row

and column inversion technique and random removal of nodes and arcs.

No Aug. R/C All

train size 64 200 400 200 400

en_core_web_lg 0.43 0.45 0.44 0.49 0.41

en_core_sci_lg 0.52 0.53 0.52 0.56 0.51

row and column recognition techniques could be improved, especially in the

case of multi-row tables.

4.5 Conclusions and Future Works

In this Chapter we presented a new dataset to tackle the task of Contextu-

alized Table Extraction. Usually, TE pipelines involve several components

to perform different tasks on tables, without considering other important

information present in the document such as captions. Based on these limi-

tations, the proposed collection of data aims at developing models capable of

tackling more tasks at once, resulting in CTE. We are looking to extend the

dataset by adding more information such as authors, keywords, and equa-

tions. In addition to providing a new dataset for contextualized TE, the

CTE task can also serve as a basis for future research, such as: investigating

the effectiveness of using GNNs versus transformer architectures or combin-

ing table structure information with external additional knowledge base for

a DocVQA setting on scientific papers.

Furthermore we presented a new data augmentation technique on the

table graph structure. The results achieved are promising, even if the method

proposed is limited by the simple heuristics proposed. The use of Data

Augmentation techniques made it possible to improve the results obtained

by an increase in the F1-Score measure in the ablation studies presented. We

conclude by noting how such Data Augmentation techniques applied directly

to graphs could prove to be an interesting clue for the application of GNNs in

the presence of resource-limited datasets, a very common situation in many

application domains.



54
A dataset and augmentation approach for graph representation

of tables



Part II

Document Objects as Page

Graph Nodes

55





Chapter 5

A task agnostic document

understanding framework

based on GNNs

The application of Graph Neural Networks has become crucial in

various Document Understanding tasks beyond Table Extraction

since they can unravel important structural patterns, fundamental

in Key Information Extraction processes. Previous works in the

literature propose task-driven models and do not take into account

the full power of graphs. In this chapter we present Doc2Graph,

a task-agnostic document understanding framework based on a

graph-based model, to solve different tasks given different types

of documents. We evaluated our approach on two challenging

datasets for Key Information Extraction in forms and invoices.

This chapter is mainly based on this work [46].

5.1 Introduction

The current state-of-the-art practice in the document understanding commu-

nity is to utilize the power of huge pre-trained vision-language models [4,154,

155] that learn whether the visual, textual and layout cues of the document

are correlated. Despite achieving superior performance on most document

57
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understanding tasks, large-scale document pre-training comes with a high

computational cost both in terms of memory and training time. We present

a solution that does not rely on huge vision-language model pre-training

modules, but rather recognizes the semantic text entities and their relation-

ships from documents exploiting graphs. The solution experiments on two

challenging benchmarks for forms [69] and invoices [53] with a very small

amount of labeled training data. Inspired by some prior works [34,121,122],

we introduce Doc2Graph, a novel task-agnostic framework to exploit graph-

based representations for document understanding. The proposed model is

validated in three different challenges, namely KIE in form understanding,

invoice layout analysis and table detection. A graph representation module

is proposed to organize the document objects. The graph nodes represent

words or the semantic entities while edges the pairwise relationships between

them. Finding the optimal set of edges to create the graph is anything but

trivial: usually in literature heuristics are applied, e.g. using a visibility

graph [121]. In this work, we do not make any assumption a priori on the

connectivity: rather we attempt to build a fully connected graph represen-

tation over documents and let the network learn by itself what is relevant.

In summary, the primary contributions of this work can be summarized

as follows:

• Doc2Graph, the first task-agnostic GNN-based document understand-

ing framework, evaluated on two challenging benchmarks (form and

invoice understanding) for three significant tasks, without any require-

ment of huge pre-training data;

• We propose a general graph representation module for docu-

ments, that do not rely on heuristics to build pairwise relationships

between words or entities;

• A novel GNN architectural pipeline with node and edge aggre-

gation functions suited for documents, that exploits the relative posi-

tioning of document objects through polar coordinates.

5.2 Related works

Current state-of-the-art approaches [4,65,113,154,155] on document under-

standing tasks have utilized the power of large pre-trained language models,

relying on language more than the visual and geometrical information in a
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document and also end up using hundreds of millions of parameters in the

process. Moreover, most of these models are trained with a huge transformer

pipeline, which requires an immense amount of data during pre-training.

In this regard, Davis et al. [33] and Sarkar et al. [127] proposed language-

agnostic models. In [33] they focused on the entity relationship detection

problem in forms [69] using a simple CNN as a text line detector and then

detecting key-value relationship pairs using a heuristic based on each rela-

tionship candidate score generated from the model. Sarkar et al. [127] rather

focused on extracting the form structure by reformulating the problem as a

semantic segmentation (pixel labeling) task. They used a U-Net based archi-

tectural pipeline, predicting all levels of the document hierarchy in parallel,

making it quite efficient. The FUDGE [34] framework was then developed

for form understanding as an extension of [33] to greatly improve the state-

of-the-art on both the semantic entity labeling and entity linking tasks by

proposing relationship pairs using the same detection CNN as in [33]. Then

a GCN was deployed with plugged visual features from the CNN so that

semantic labels for the text entities were predicted jointly with the key-value

relationship pairs, as they are quite related tasks. Inspired by this influential

prior work [34], we aim to propose a task-agnostic GNN-based framework

called Doc2Graph that adapts a similar joint prediction of both the tasks,

semantic entity labeling and entity linking using a node classification and

edge classification module respectively. Doc2Graph is established to tackle

multiple challenges ranging from KIE for form understanding to layout anal-

ysis and table detection for invoice understanding, without needing any kind

of huge data pre-training and being lightweight and efficient.

5.3 Method

In this section, we present the proposed approach. First, we describe the

pre-processing step that converts document images into graphs. Then, we

describe the GNN model designed to tackle different kinds of tasks.

5.3.1 Documents graph structure

A graph is a structure made of nodes and edges. A graph can be seen as

a language model representing a document in terms of its segments (text

units) and relationships. A preprocessing step is required. Depending on
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the task, different levels of granularity have to be considered for defining the

constituent objects of a document. They can be single words or entities,

that is, groups of words that share a certain property (e.g., the name of a

company). In our work we try both as the starting point of the pipeline:

we apply an OCR to recognize words, while a pre-trained object detection

model for detecting entities. The chosen objects, once found, constitute the

nodes of the graph.

At this point, nodes need to be connected through edges. Finding the

optimal set of edges to create the graph is anything but trivial: usually in

literature heuristics are applied, e.g. using a visibility graph [121]. These

approaches: (i) do not generalise well on different layouts; (ii) strongly rely

on the previous node detection processes, which are often prone to errors;

(iii) generate noise in the connections, since bounding box of objects could

cut out important relations or allow unwanted ones; (iv) exclude in advance

sets of solutions, e.g. answers far from questions. To avoid those behaviours,

we do not make any assumption a priori on the connectivity: we build a

fully connected graph and we let the network learn by itself what relations

are relevant.

5.3.2 Node and edge features

In order to learn, suitable features should be associated to nodes and edges

of the graph. In documents, this information can be extracted from sources

of different modalities, such as visual, language and layout ones. Different

methods can be applied to encode a node (either word or entity) to enrich its

representation. In our pipeline, with the aim to possibly keep it lightweight,

we include:

• a language model to encode the text. We use the spaCy large English

model to get word vector representations of words and entities;

• a visual encoder to represent style and formatting. We pretrain a U-Net

[123] on FUNSD for entities segmentation. Since U-Net uses feature

maps at different encoder’s layers to segment the images, we decide to

use all these information as visual features. Moreover, it is important

to highlight that, for each features map, we used a RoI Alignment layer

to extract the features relative to each entities bounding box;

• the absolute normalized positions of objects inside a document; layout
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Figure 5.1: Our proposed Doc2Graph framework. For visualisation pur-

poses, the architecture shows the perspective of one node (the blue one in

Doc2Graph).

and structure are meaningful features to include in industrial docu-

ments, e.g. for key-value associations.

As for the edges, to the best of our knowledge, we propose two new sets of

features to help both the node and the edge classification tasks:

• a normalized Euclidean distance between nodes, by means of the min-

imum distance between bounding boxes. Since we are using a fully

connected graph this is crucial for the aggregation node function in

use to keep locality property during the message passing algorithm;

• relative positioning of nodes using polar coordinates. Each source node

is considered to be in the center of a Cartesian plane and all its neigh-

bors are encoded by means of distance and angle. We discretize the

space into bins (one-hot encoded), whose number can be chosen, in-

stead of using normalized angles: a continuous representation of the

angle is challenging because, for instance, two points at the same dis-

tance with angles 360◦ and 0◦ would be encoded differently.

5.3.3 Architecture

Each node feature vector passes through our proposed architecture (Fig. 5.1,

visualization of GNN layer inspired by “A Gentle Introduction to GNNs”):

https://distill.pub/2021/gnn-intro/
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the connectivity defines the neighborhood for the message passing, while the

weight learnable matrices are shared across all nodes and edges, respectively.

We make use of four different components:

• Input Projector: this module applies as many fully connected (FC)

layers as there are different modalities in use, to project each of their

representations into inner spaces of the same dimension; e.g., we found

it to be not very informative combine low dimensional geometrical

features with high dimensional visual ones, as they are;

• GNN Layer: we make use of a slightly different version of Graph-

SAGE [58]. Using a fully connected graph, we redefine the aggregation

strategy (eq. 5.2);

• Node Predictor: this is a FC layer, that maps the representation of

each node into the number of target classes;

• Edge Predictor: this is a two-FC layer, that assigns a label to each

edge. To do so, we propose a novel aggregation on edges (eq. 5.3).

GNN Layer

Our version of GraphSAGE slightly differs in the neighborhood aggregation.

At layer l given a node i, hi its inner representation and N(i) its set of

neighbors, the aggregation is defined as:

hl+1
N(i) = aggregate({hl

j ,∀j ∈ N(i)}) (5.1)

where aggregate can be any permutation invariant operation, e.g. sum or

mean. Usually, in other domains, the graph structure is naturally given by

the data itself but, as already stated, in documents this can be challenging

(sec. 5.3.1). Then, given a document, we redefine equation 5.1 as:

hl+1
N(i) =

c

|Υ(i)|
∑

j∈Υ(i)

hl
j (5.2)

where Υ(i) = {j ∈ N(i) : |i−j| < threshold}, |i−j| is the Euclidean distance

of nodes i and j saved (normalized between 0 and 1) on their connecting edge,

and c is a constant scale factor.
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Edge Predictor

We consider each edge as a triplet (src, e, dst): e is the edge connecting the

source (src) and destination (dst) node. The edge representation he to feed

into the two-FC classifier is defined as:

he = hsrc ∥ hdst ∥ clssrc ∥ clsdst ∥ epolar (5.3)

where hsrc and hdst are the node embeddings output of the last GNN layer,

clsscr and clsdst are the softmax of the output logits of the previous node

predictor layer, epolar are the polar coordinates described in sec 5.3.2 and ∥
is the concatenation operator. These choices have been made because: (i)

relative positioning on edges is stronger compared to absolute positioning on

nodes: the local property introduced by means of polar coordinates can be

extended to different data, e.g. documents of different sizes or orientations;

(ii) if the considered task comprise also the classification of nodes, their

classes may help in the classification of edges, e.g. in forms it should not

possible to find an answer connected to another answer.

Given the task, graphs can be either undirected or directed: both are

represented with two or one directed edge between nodes, respectively. In

the first case, the order does not matter and so the above formula can be

redefined as:

he = (hsrc + hdst) ∥ clssrc ∥ clsdst ∥ epolar (5.4)

5.4 Results

In this chapter we present experiments of our method on two different

datasets, FUNSD and RVL-CDIP invoices, to tackle three tasks: entity link-

ing, layout analysis and table detection. We also discuss results compared

to other methods.

5.4.1 Proposed model

We performed ablation studies on our proposed model for entity linking on

FUNSD without contribution and classification of nodes (Fig. 5.1), since we

found it to be the most challenging task. In Tab. 5.1 we report different

combinations of features and hyperparameters. Geometrical and textual fea-

tures make the largest contribution, while visual features bring almost three

points more to the Key-Value F1 score by an important increase in terms of
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Table 5.1: Ablation studies of Doc2Graph model. EP Inner dim and IP FC

dim show edge predictor layer input dimension and the input projector fully

connected layers output dimension, respectively. AUC-PR refers to the key-

value edge class. The # Params refers to Doc2Graph trainable parameters

solely.

Features F1 per classes (↑)

Geometric Text Visual EP Inner dim IP FC dim None Key-Value AUC-PR (↑) # Params ×106 (↓)

✓ ✗ ✗ 20 100 0.9587 0.1507 0.6301 0.025

✗ ✓ ✗ 20 100 0.9893 0.1981 0.5605 0.054

✓ ✓ ✗ 20 100 0.9941 0.4305 0.7002 0.120

✓ ✓ ✗ 300 300 0.9961 0.5606 0.7733 1.18

✓ ✓ ✓ 300 300 0.9964 0.5895 0.7903 2.68

network parameters (2.3 times more). Textual and geometrical features re-

main crucial for the task at hand, and their combination increase by a large

amount both of their scores when used in isolation. This may be due to two

facts: (i) our U-Net has not been included during the GNN training time

(as done in [34]), unable to adjust the representation for spotting key-value

relationship pairs; (ii) the segmentation task used to train the backbone do

not yield useful features for that goal (as shown in Tab. 5.1). The hyper-

parameters shown in the table refer to the edge predictor (EP) inner layer

input dimension and the input projector fully connected (IP FC) layers (per

each modality) output dimension, respectively. A larger EP is much more

informative for the classification of links into ‘none’ (cut edges, meaning no

relationship) or ‘key-value’, while more dimensions for the projected modal-

ities helped the model to better learn the importance of their contributions.

These changes bring an improvement of 13 points on the key-value F1 scores,

between the third and fourth line of the table where we keep the features

fixed. We do not report the score relative to others network settings since

their changes only brought a decrease in overall metrics. We use a learning

rate of 10−3 and a weight decay of 10−4, with a dropout of 0.2 over the last

FC layer. The threshold over neighbor nodes and their contribution scale

factor (sec. 5.3.3) are fixed to 0.9 and 0.1, respectively. The bins to discretize

the space for angles (sec. 5.3.3) are 8. We apply one GNN layer before the

node and edge predictors.
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5.4.2 FUNSD

Dataset

The dataset [69] comprises 199 real, fully annotated, scanned forms. The

documents are selected as a subset of the larger RVL-CDIP [60] dataset, a

collection of 400,000 grayscale images of various documents. The authors

define the Form Understanding (FoUn) challenge into three different tasks:

word grouping, semantic entity labeling and entity linking. A recent work

[141] found some inconsistency in the original labeling, which impeded its

applicability to the key-value extraction problem. In this work, we are using

the revised version of FUNSD.

Entity Detection

Our focus is on the GNN performances but, for comparison reasons, we used

a YOLOv5 small [71] to detect entities (pretrained on COCO [90]). In [69]

the word grouping task is evaluated using the ARI metric: since we are

not using words, we evaluated the entity detection with F1 score using two

different IoU thresholds (Tab. 5.2). For the semantic entity labeling and

entity linking tasks we use IoU > 0.50 as done in [34]: we did not perform

any optimization on the detector model, which introduces a high drop rate

Figure 5.2: Image taken from [141]: the document on the right is the re-

vised version of the document on the left, where some answers (green) are

mislabeled as question (blue), and some questions (blue) are mislabeled as

headers (yellow)
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Table 5.2: Entity detection results. YOLOv5 [71]-small performance on the

entity detection task.

Metrics (↑) % Drop Rate (↓)

IoU Precision Recall F1 Entity Link

0.25 0.8728 0.8712 0.8720 12.72 16.63

0.50 0.8132 0.8109 0.8121 18.67 25.93

Figure 5.3: Blue boxes are FUNSD entities ground truth, green boxes are

the correct detected one (with IoU > 0.25/0.50), while red boxes are the

false positive ones.

for both entities and links. We create the graphs on top of YOLO detections,

linking the ground truth accordingly (Fig. 5.3): false positive entities (red

boxes) are labeled as class ’other’, while false negative entities cause some

key-value pairs to be lost (red links). The new connections created as a

consequence of wrong detections are considered false positives and labeled

as ‘none’.

Numerical results

We trained our architecture (sec. 5.3.3) with a 10-fold cross validation. Since

we found high variance in the results, we report both mean and variance over

the 10 best models chosen over their respective validation sets. The objective

function in use (L) is based on both node (Ln) and edge (Le) classification

tasks: L = Ln + Le. In Tab. 5.3 we report the performance of our model

Doc2Graph compared to other language models [65, 155] and graph-based

techniques [27,34]. The number of parameters # Params refer to the train-

able Doc2Graph pipeline (that includes the U-Net and YOLO backbones);

for the spaCy word-embedding details, refer to their documentation. Using

https://spacy.io/models/en#en_core_web_lg
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YOLO our network outperforms [27] for semantic entity labeling and meets

their model on entity linking, using just 13.5 parameters. We could not do

better than FUDGE, which still outperforms our scores. Their backbone

is trained for both tasks along with the GCN (GCN that adds just minor

improvements). The gap, especially on entity linking, is mainly due to the

low contributions given by our visual features (Tab. 5.1) and the detector

in use (Tab. 5.3). We also report the results of our model initialized with

ground truth (GT) entities, to show how it would perform in the best case

scenario. Entity linking remains a harder task compared to semantic en-

tity labeling and only complex language models seem to be able to solve it.

Moreover, for the sake of completeness, we highlight that, with good entity

representations, our model outperforms all the considered architectures for

the Semantic Entity Labeling task. Finally, we want to further stress that

the main contribution of a graph-based method is to yield a simpler but

more lightweight solution.

Qualitative results

The order matters for detecting key-value relationship, since the direction of

a link induce a property for the destination entity that enriches its meaning.

Differently from FUDGE [34] we do make use of directed edges, which led

to a better understanding of the document having interpretable results. In

Fig. 5.5 we show our qualitative results using Doc2Graph on groundtruth:

green and red dots mean source and destination nodes, respectively. As

Table 5.3: Results on FUNSD. The results have been shown for both seman-

tic entity labeling and entity linking tasks with their corresponding metrics.

F1 (↑)

Method GNN Semantic Entity Labeling Entity Linking # Params ×106 (↓)

BROS [65] ✗ 0.8121 0.6696 138

LayoutLM [65,155] ✗ 0.7895 0.4281 343

FUNSD [69] ✓ 0.5700 0.0400 -

Carbonell et al. [27] ✓ 0.6400 0.3900 201

FUDGE w/o GCN [34] ✗ 0.6507 0.5241 12

FUDGE [34] ✓ 0.6652 0.5662 17

Doc2Graph + YOLO ✓ 0.6581 ± 0.006 0.3882 ± 0.028 13.5

Doc2Graph + GT ✓ 0.8225 ± 0.005 0.5336 ± 0.036 6.2
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Figure 5.4: RVL-CDIP Invoices benchmark in [121]. There are 6 regions:

supplier (pink), invoice info (brown), receiver (green), table (orange), total

(light blue), other (gray).

shown in the different example cases, Fig. 5.5a and 5.5b resemble a simple

structured form layout with directed one-to-one key-value association pairs

and Doc2Graph manages to extract them. On the contrary, where the layout

appears to be more complex as in Fig. 5.5d, Doc2Graph fails to generalize

the concept of one-to-many key-value relationship pairs. This may be due

to the small number of trainable samples we had in our training data and

the fact that header-cells usually present different positioning and semantic

meaning. In the future we will integrate a table structure recognition path

into our pipeline, hoping to improve the extraction of all kinds of key-value

relationships in such more complex layout scenarios.

5.4.3 RVL-CDIP Invoices

Dataset

In the work of Riba et al. [121] another subset of RVL-CDIP has been re-

leased. The authors selected 518 documents from the invoices classes, an-

notating 6 different regions (two examples of annotations are shown in Fig.

5.4). The task that can be performed are layout analysis, in terms of node

classification, and table detection, in terms of bounding box (IoU > 50).
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Numerical results

As done previously, we perform a k-fold cross validation keeping, for each

fold, the same amount of test (104), val (52) and training documents (362).

This time we applied an OCR to build the graph. There are two tasks:

layout analysis, in terms of accuracy, and table detection, using F1 score

and IoU > 0.50 for table regions. Our model outperforms [121] in both

tasks, as shown in tables 5.4 and 5.5. In particular, for table detection, we

extracted the subgraph induced by the edge classified as ‘table’ (two nodes

are linked if they are in the same table) to extract the target region. Riba

et al. [121] formulated the problem as a binary classification: we report, for

brevity, in Tab. 5.5 the threshold on confidence score they use to cut out

edges, that in our multi-class setting (‘none’ or ‘table’) is implicitly set to

0.50 by the softmax.

Qualitative results

In Fig. 5.6 we show the qualitative results. The two documents are du-

plicated to better visualize the two tasks. For layout analysis, the greater

bounding boxes colors indicate the true label that the word inside should

have (the colors reflects classes as shown in Fig. 5.4). For the table detec-

tion we use a simple heuristic: we take the enclosing rectangle (green) of

the nodes connected by ‘table’ edges, then we evaluate the IoU with target

regions (orange). This heuristic is effective but simple and so error-prone:

if a false positive is found outside table regions this could lead to a poor

detection result, e.g. a bounding box including also ’sender item’ entity or

’receiver item’ entity. In addition, as inferred from Figs. 5.6a and 5.6b, ’to-

tal’ regions could be taken out. In the future, we will refine this behaviour

Table 5.4: Layout analysis results on RVL-CDIP Invoices. Layout analysis

accuracy scores depicted in terms of node classification task.

Accuracy (↑)

Method Max Mean

Riba et al. [121] 62.30 -

Doc2Graph + OCR 69.80 67.80 ± 1.1
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Table 5.5: Table Detection in terms of F1 score. A table is considered

correctly detected if its IoU is greater than 0.50. Threshold values refers to

the scores an edges has to have in order to do not be cut: in our case is set

to 0.50 by the softmax in use.

Metrics (↑)

Method Threshold Precision Recall F1

Riba et al. [121] 0.1 0.2520 0.3960 0.3080

Riba et al. [121] 0.5 0.1520 0.3650 0.2150

Doc2Graph + OCR 0.5 0.3786 ± 0.07 0.3723 ± 0.07 0.3754 ± 0.07

by both boosting the node classification task and including ’total’ as a table

region for the training of edges.

5.5 Conclusion and Future Works

In this chapter, we have presented a task-agnostic document understanding

framework based on a GNN. We proposed a general representation of docu-

ments as graphs, exploiting full connectivity between document objects and

letting the network automatically learn meaningful pairwise relationships.

Node and edge aggregation functions are defined by taking into account the

relative positioning of document objects. We evaluated our model on two

challenging benchmarks for three different tasks: entity linking on forms, lay-

out analysis on invoices and table detection. Our preliminary results show

that our model can achieve promising results, keeping the network dimen-

sionality considerably small. For future works, we will extend our frame-

work to other documents and tasks, to deeper investigate the generalization

property of the GNN. We would like also to explore more extensively the

contribution of different source features and how to combine them in more

meaningful and learnable ways.
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(a) (b)

(c) (d)

Figure 5.5: Entity Linking on FUNSD. Differently from other apporaces,

we make use of directed edges improving explainability: green and red dots

mean source and destination nodes, respectively.
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(a) (b)

(c) (d)

Figure 5.6: Layout Analysis on RVLCDIP Invoices. Inference over two doc-

uments from RVL-CDIP Invoices, showing both: 1. Layout Analysis

(a,c) for six different classes - supplier (pink), invoice info (brown), receiver

(green), table (orange), total (light blue), other (gray); and 2. Table De-

tection (b,d) - in the images our extracted table (green) is shown in contrast

with the label table (orange).



Chapter 6

Automatic generation of

scientific papers

As already introduced in Chapter 4, datasets of scientific articles

have played a key role in the development of modern deep learning

systems for Document Understanding. Usually, these are either

manually or automatically labelled, introducing a tradeoff between

the quantity and quality of the annotated data, as well as the

costs required to create them. A third solution is to consider syn-

thetic document generation. The latter is not only of considerable

help in application scenarios where there is little data available

to perform model training but also allows for the creation of a

potentially infinite number of diverse examples along with their

annotations. However, as effective as it is, document generation

is still a task far from being solved. In this scenario we propose a

customizable pipeline to generate high-quality pages of scientific

papers, demonstrating their effectiveness on a custom benchmark

for Document Layout Analysis. This chapter is mainly based on

these works [47,112].

6.1 Introduction

Recently an increasing demand for larger datasets for deep learning meth-

ods has started to open new challenges on how to annotate such collections.

73
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Figure 6.1: Different pipelines to create labelled data depend on the com-

bination of three main factors: the sources from where to crawl the data

(left), which data are available (center), and which annotation procedures to

involve (right). Synthetic documents do not require to following any specific

annotation procedure since labels are given within the generated data.

Throughout the years, procedures for annotating documents have been pro-

posed trying to maximise two different measures, usually inversely propor-

tional: quality and amount of annotations, taking into consideration also

time, costs and data variability. As a matter of fact, available datasets, such

as PubLayNet and DocBank [85, 164], exhibit limited variability in content

and layout: their creators collected papers from arXiv or PubMed Central,

mostly including double column layouts. As a consequence, when trained

models are applied to different layouts (e.g. single-page proceedings) the

results can be worse than expected. On the opposite, another recent dataset

called DocLayNet [110] came out, proposing a new collection of manual an-

notated documents varied in layout, content and document domain. The

dataset consists of documents belonging to six distinct domains (Financial,

Scientific, Patents, Manuals, Laws, and Tenders), counts 80,863 PDF pages

with annotated bounding boxes belonging to 11 different classes. To ensure

homogeneity among different annotators, a 100 pages annotation guideline

has been written and administered to 32 selected experts. The whole anno-
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tation process lasted 6 months.

In general, we could summarize the dataset creation procedures as man-

ual or automatic. The first ones generally do not scale well with the dataset

size. In addition, guidelines need to be defined so that different annotators

follow the same rules to produce coherent and homogeneous annotations

among data. This approach has been the foundation of most datasets across

different machine learning fields but today it is often not preferred due to

its high cost both in terms of money and time. However, researchers con-

tinue to propose manually annotated data since the human supervision is

capable of yielding qualitative annotations and gather important informa-

tion that are not easily available through automatic annotations. On the

contrary, automatic approaches often rely on rule-based scripts to annotate

large collections of data, such as PDF scientific articles shared as PDF files.

Since it is not trivial to access information such as text, tables, and titles

and to detect them easily in the page layout starting from a PDF, additional

structured information, e.g. contained in LATEX and XML, need to be used

for the automatic annotations of this data, which is the primary reason that

limits the application of these techniques on different documents.

An alternative solution is the generation of synthetic documents together

with their annotations. Using generative methods it is possible to automat-

ically create annotations for any arbitrary amount of data, with layout and

content variations. That is why we designed a synthetic data generator that

can be easily customized to generate documents of a desired specific layout,

to augment the training data and potentially boost the performances of a

pre-trained object detector model.

A summary of the three possible ways to collect annotated collections of

documents, as described so far, is depicted in Figure 6.1. Our contribution

in this chapter belong to the third block of the procedures column, and the

three main aspects of our work are the following:

• We propose a semi-automatic annotation approach to obtain

high-quality annotations for a small set of scientific papers; anno-

tation errors are manually fixed and 11 different regions (title, authors,

abstract, keywords, subtitle, text, image, table, caption, formula, ref-

erence) are labeled; these annotations are used for data augmentation;

• We propose a data generation pipeline that starts from the an-

notated pages to train a generative model (based on LayoutTrans-

former [57]) and produce large collections of pages with variable layout
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Figure 6.2: The proposed pipeline: first, data are collected, annotated in

a semi-automatic fashion, and finally manually corrected (red boxes); then

they are used to train a LayoutTransformer generator model that in turn

generates synthesized layouts (green boxes) that are filled with content (blue

box). We obtain a dataset of documents belonging to the domain of the

initial data. Labels in the diagram are as follows: 1: Formulas, titles, tables;

2: Abstract, authors, keywords; 3: Text; 4: Figures; LT: LayoutTransformer.

whose regions are populated with synthetically generated content (e.g.

text, images, tables). These pages can then be used to train DLA

engines;

The overall approach is layout-agnostic. Our experiments show that it

can work for both double and single-column scientific papers and we demon-

strate that it is possible to improve the results of DLA by using a small

semi-automatically annotated dataset.

6.2 Related work

The generation of synthetic data for boosting the recognition performance

of trainable models has been extensively used in the last years and research

on DLA is not an exception. Some methods require the user to carefully

design rules that describe the distribution of regions in the page layout. For

instance, in [11] a generator of semi-structured documents is proposed. This

tool generates samples of administrative documents requiring the user to

design by hand the general structure (defines the different types of infor-
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mation needed). The tool then modifies the position of items in the page

by taking into account suitable random variables. Structured historical doc-

uments are generated, starting from a hand-designed general organization

of the document in [26]. In [118] a generative process that treats every

physical component of a document as a random variable and models their

intrinsic dependencies using a Bayesian Network graph is proposed. The

Bayesian Network defines the synthetic document generation process. The

primitive units, style attributes, and layout elements are all treated as ran-

dom variables and represented as nodes in a graph. Several sub-networks

are designed to model different parts of a scientific paper (e.g. document,

section, table, and figure). User-defined layout and font styles are considered

as starting information in Document Domain Randomization (DDR [91]) to

render simulated pages of scientific papers by modeling randomized textual

and non-textual contents of interest that are downloaded from online repos-

itories.

More recently, several generative models for document layout generation

have been proposed. In [16], the authors try to learn layouts from a set

of document images, leveraging a GAN (Generative Adversarial Network)

architecture. In [104] an architecture based on VAE (Variational Auto-

Encoder) and RNN (Recurrent Neural Network) is described. It can convert

training page layouts into an embedded compact representation, whose space

is represented by a Gaussian distribution. New document layouts can be cre-

ated by sampling novel values from the distribution. A GAN-based method

to generate a document layout given images, keywords and category of the

document is described in [163]. One problem with this approach is that a

large amount of training data is needed. Also transformers have been used

to generate layouts. In [6] the authors model the distribution of objects in

example layouts and a self-attention mechanism is used to detect high-level

object relationships. LayoutTransformer, proposed in [57] is a framework

that leverages self-attention to learn contextual relationships between layout

elements and generates new layouts in the given domain. The authors exploit

it to generate scientific papers, but only rely on PubLayNet for training.

Motivated by the transformers’ achievements for document generation,

we make use of the LayoutTransformer generative model [57] to perform

data augmentation by first creating synthetic layouts starting from a small

number of annotated pages and then populating the regions with techniques

inspired by DDR [91]. In addition, in Section 6.4.1 we explain how the
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graph structure of the document layout was taken into account to create

new variations that kept logical sense.

6.3 Semi-automatic annotation

The pipeline of the proposed approach is summarized in Fig. 6.2. Given a

few papers from the target publication (journal or conference proceedings)

some preliminary annotations are obtained by integrating the output of two

PDF parsing tools (Sec. 6.3.1). These annotations are then refined by users

(Sec. 6.3.2) and clean data are used to train the generative model as described

in Section 6.4.

6.3.1 Automatic annotation

Since PDF files faithfully represent the layout and typographic information

of documents, but not their semantics, we parse the PDF papers with two

tools: the GROBID [56] machine learning library, focused on extracting bib-

liographic information from scientific papers, and the PDFMiner library [106]

that extracts layout elements in the pages. The GROBID output is a TEI

XML file [31] that represents the metadata of the paper. In particular, the

TEI tags describe the class type and the bounding box for titles, sub-titles,

tables, and formulas. However, in the case of authors, abstract, and key-

words the position information is missing. The PDF files are then processed

by PDFMiner which extracts all the text blocks and images with their bound-

ing box coordinates. The information extracted with the two tools is then

merged and nine object classes are identified as follows.

• Titles, subtitles, tables and formulas (arrow 1 in Fig. 6.2) are identified

in the GROBID output using beautifulsoup4 [10] to parse the TEI

XML files.

• GROBID also extracts abstract, authors, and keywords (arrow 2 in

Fig. 6.2), in this case, but there is no bounding box information in the

TEI tags. Since all the text-boxes are extracted by PDFMiner it is

possible to find position information by using text matching between

GROBID and PDFMiner results. The text matching is computed with

SequenceMatcher (from Python difflib [39]) considering two strings as

similar if the score is greater than a threshold set to 0.7 (the threshold
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is a balance between too much noise with low values and too many

false negatives with high ones).

• The text regions extracted by PDFMiner (arrow 3 in Fig. 6.2) that

are not matched with the output of GROBID are first filtered with

some heuristics to exclude false positives and then saved as text. For

instance, text regions smaller than the font size are removed. The other

objects extracted by PDFMiner are figures (arrow 4 in Fig. 6.2).

In the subsequent manual correction, the labels of text regions corresponding

to captions and references are fixed obtaining regions for the 11 classes that

are used by the generative model. Annotation examples for double and sin-

gle columns are shown in Fig. 6.3. After performing the previous steps the

annotation information is converted to a format suitable for manual correc-

tion. For each processed paper we create page images (using the pdf2image

python library [105]) and convert the annotations to XML files in PASCAL

VOC format [41].

6.3.2 Annotation correction

Not surprisingly, there are some errors in the automatic annotation. We

therefore manually check the annotations using labelImg [80] (arrow 5 in Fig.

6.2), an interactive tool that reads PASCAL VOC annotations, supports the

user to fix errors, and saves the updated annotations.

Corrections performed include the addition of missing objects (e.g. ta-

bles, images, captions, and page numbers) and the separation of overlapping

objects that we want to avoid. Since the proposed content generation

(Section 6.4.3) cannot easily handle overlapping regions, we deal with the

overlaps by removing the shared area and reducing the overlapping regions

accordingly. Given simple annotation guidelines, for each page, the annota-

tors needed a time ranging from 30 seconds to two minutes depending on

the complexity of the page (i.e. number of different regions in the page).

By correcting the annotations we expect to help the generative model

to produce better training samples: considering that we started with very

few training examples, it is crucial to work with high-quality annotations to

produce plausible results. We will show how this step improves also the final

results by a large margin, in the experiments presented in Section 6.5.3. The

last step is to prepare the data to use them to train the generative model

(LayoutTransformer) that accepts data in COCO format [90].
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Figure 6.3: Examples of automatically annotated pages. From GROBID and

PDFMiner we extract nine categories: title (blue), authors (light green), ab-

stract (cyan), keywords (red), subtitles (purple), text (pink), images (yellow),

formulas (black) and tables (green). Captions and references are added by

hand.
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6.4 Document generation

After preparing the data, a generative model is used to increase the number of

samples to train a computer vision model for DLA. The document generation

follows three main steps (bottom part of Fig. 6.2). 1) the generative model

is trained from annotated data; 2) layouts are generated using the model

and then adjusted in post-processing; 3) regions in the synthetic layouts are

populated with realistic content.

6.4.1 Layout Transformer training

The goal is to generate many document pages with a fair amount of variance

in content, starting from a small set of input data. To do this, we use the

generative layout method LayoutTransformer [57], motivated by the results

achieved on the PubLayNet dataset.

We summarize here some key information about the model. The reader

can refer to [57] for additional details. The model uses self-attention [138] to

learn contextual relationships between objects in the layout of a document

page. A layout can be represented as a set of bounding boxes of regions of

different types. The layout of one page can be defined as a graph G with n

nodes, where each node i ∈ {1, ..., n} is a region. The graph is fully connected

and the goal of the attention network is to learn the relationships occurring

between nodes. Each node can be represented as (si, xi, yi, hi, wi), where si
is the feature vector, (xi, yi) are the coordinates of the center, and (hi, wi)

are the height and width of the node bounding box.

The model takes as input a permutation of nodes and their d-dimensional

vector representations. It is important to note that by doing this, the at-

tention module can assign weights explicitly to each layout element. The

attention module is similar to transformers’ decoder: it is formed by L at-

tention layers each of which is composed of masked multi-head attention

and a fully connected feed-forward layer, residual connections and Layer

Normalization. Each d-dimensional representation attends to all the input

latent vectors as well as previously predicted latent vectors. Teacher forc-

ing is used at training and validation time, so ground truth samples are

used instead of the previous step output, to train the model efficiently. Re-

garding the training loss, the KL-Divergence is minimized between softmax

prediction by softmax layer, outputting a one-hot distribution with label

smoothing, a regularization technique which prevents over-fitting and also
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Figure 6.4: Examples of training examples (top) and generated pages before

manual correction (bottom). Double column layout in the left, single column

layout on the right. Region colors are the same as those used in Fig. 6.3 apart

from the orange box in the last example that corresponds to References.

the model being over-confident.

In this work we used the following model and training hyperparameters:

d = 512 as the embedding dimension for each element in the layout, L = 6

as the layers number and nheads = 8 as the number of multi-attention heads

in Transformer architecture. Concerning the layout parameters, max length

= 128 indicates the maximum number of elements to be generated for the

layout (most real pages have fewer regions). Regarding training, an Adam

optimizer is used, with β1 = 0.9 and β2 = 0.99, lr = 10−4. The network is

also set up to synthesize 612 x 792 and 440 x 667 layout pages, respectively

for double and single columns. In the top part of Fig. 6.4 we show some

examples of training layouts.

6.4.2 Layout generation

Exploiting LayoutTransformer, trained from scratch with few input samples,

it is possible to generate an arbitrary number of synthetic pages. In the

second row of Fig. 6.4 we show some examples of generated layouts. it is

possible to observe the strengths and weaknesses of the method: the ability to

recognize and then generate the high-level page layout, but also overlapping

regions that are not realistic. To remove overlapping regions, post-processing

is performed with a set of operations: (i) group bounding boxes by category;

(ii) identify overlapping objects; (iii) merge overlapping boxes; (iv) create
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Figure 6.5: Example of post-processing layout corrections: overlapping

bounding boxes in the left are correctly separated in the right.

extra annotations; (v) remove small noisy annotations. In Fig. 6.5 we show

the input and the output of the post-processing on a sample page where

some regions overlap.

6.4.3 Content generation

Once the synthetic layout is generated, it is possible to fill the generated

bounding boxes with suitable content. Textual objects in the generated

PDF files are obtained by using a simple language model based on n-grams

that assigns a probability to sequences of words. Our goal is to make the

text as realistic as possible to train a DLA model. However, we do not

aim at generating ”fake” papers with semantically meaningful content. We

generate the text exploiting NLTK (Natural Language Tool Kit) [15]. We use

different language models for different types of regions and therefore there

are separate language models for titles, authors, abstracts, subtitles, texts,

and references. Given textual instances for each type of region, we use them

to train the different language models and then to generate fake text to be

used in document generation.
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In addition to text, we also fill the generated layouts with images, ta-

bles, and formulas gathered from the Internet. The different sources for the

contents of interest are as follows:

• Text categories: the bounding boxes labeled as titles, authors, subti-

tles, keywords, text, abstract, caption, and references are filled with

synthetically generated text using specific 3-grams models.

• Images categories: figure and tables. The bounding boxes labeled as

figures and tables are filled with images retrieved from VISImageNav-

igator1 a collection of more than 30K figures and tables from proceed-

ings of conferences.

• Mathematical objects: the bounding boxes corresponding to formulas or

equations are populated with formulas samples from the EquationSheet

dataset2 then typewritten in the PDF using pylatex.

Final examples with generated layout and content can be evaluated qual-

itatively in Fig. 6.7.

6.5 Experiments

We evaluate the quality of generated documents using a ResNeXt [134] model

to perform DLA on proceedings of ICDAR 2019 (double columns layout) and

of the ICPR 2021 (single column layout) workshops. Starting from the same

amount of annotated pages, we generate synthetic pages and compare the

final results with and without data augmentation.

6.5.1 Training and test data

The pipeline described in Sections 6.3 and 6.4 is layout-agnostic, meaning

that it can work both for single and double-column layouts. To show this

behavior, we used two different sources of scientific papers. We collect 2088

pages for each conference after the semi-automatic annotation process, then

we augment their number by nearly 10k more samples using the generative

model. In Table 6.1 we summarize the statistics of the training and test

data: 50% of the original pages are retained as test set, while the rest are

1https://visimagenavigator.github.io/
2https://www.equationsheet.com/

https://visimagenavigator.github.io/
https://www.equationsheet.com/
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Figure 6.6: Single column layouts: in the first row we show the training

samples, while in the second one the generated document regions. Region

colors are the same as the ones used in 6.3.

for training the LayoutTransformer. The number of pages and regions after

data augmentation is also reported.

6.5.2 Object detector for DLA

We use an object detector to validate the quality of the generation process,

performing DLA on the original and augmented data. To tackle DLA we

make use of ResNeXt [152], taken from the detectron2 [151] model zoo. The

model is initialized with DocBank weights [85]. Regarding training details,

we use a learning rate warm-up (from 0.2 to 0.6) for the first 1.500 steps.

We iterated for 10.000 steps for about 5 hours. Concerning ResNeXt we left

cardinality to 32, bottleneck width to 8 and depth to 101. The batch size is

set to 8.
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Table 6.1: Statistics of training and test data.

# Samples Train Test

Layout PDF Pages Regions Pages Pages

ICDAR (2C) 385 2,088 15,478 1,044 1,044

with aug. - 12,079 147,960 12,079 1,044

ICPR (1C) 218 2,088 8,242 1,044 1,044

with aug. - 12,582 115,170 12,582 1,044

Table 6.2: Summary of experimental results: comparison of AP measures

for different ResNeXt models trained on different data.

Metrics (↑)

Layout Models AP0.50:.95 AP50 AP75

ICDAR

2 Columns

Baseline 0.735 0.917 0.809

Augmented 0.681 0.913 0.776

Augmented-refined 0.745 0.949 0.834

ICPR-W

1 Column

Baseline 0.107 0.256 0.077

Augmented 0.079 0.124 0.018

Augmented-refined 0.597 0.823 0.764

6.5.3 Results

Depending on the use of the data augmentation or not, we define three

different models, trained on different data:

1. Baseline: only trained with corrected annotated pages.

2. Augmented: trained adding generated pages obtained from uncorrected

annotations.

3. Augmented-refined: trained adding generated pages obtained from cor-

rected annotations.

In the single-column case, due to the high unbalance of classes, we train

three different models for data augmentation using three different training

sub-sets: 1) one model consisting of first pages (those with title and authors);

2) one containing only pages with at least a ”reference” instance 3) the last

one including all the remaining pages. In Table 6.2 experimental results are
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presented: the metric in use is the mAP proposed by COCO, with different

thresholds (0.5, 0.75 and 0.50:.05:.95). From the results we can notice:

• Data augmentation improves all the metric scores: dealing with a small

dataset well-annotated (baseline) does not allow a deep model such as

ResNeXt to generalize well, but increasing the size of the training set

to improve results.

• In particular, we improve the AP.50:.95 scores by 1% for double column

and a considerable margin of 49% for single column. The worst results

(in particular on the baseline) for single-column documents, in com-

parison with double-columns, are due to the initialization of the model

with weights learned from the DocBank dataset, which is mostly com-

posed of double columns papers. Thanks to the proposed approach,

it is possible to do domain adaptation from double-column to single-

column layouts.

• The removal of noise produced by the automatic annotation process,

through manual correction of annotations, shows that the combination

of semi-automatic labeling of a small amount of data along with a

generative model, can improve the quality of generated documents. We

obtain an average improvement for all the metrics of 5.2% on the double

column and 65% on single column layouts, comparing augmented and

augmented-refined models.

6.6 Conclusions and Future Works

In this chapter, we propose a method to synthesize an arbitrarily large num-

ber of pages of scientific articles from few annotated pages. We implemented

a semi-automatic pipeline to enhance the quality of layout annotations of

scientific papers, exploiting information contained in the PDF. On top of a

small amount of data, we work with a LayoutTransformer to generate new

document layouts that are then filled with realistic content to create high-

resolution synthetic data. Finally, we evaluate the effectiveness of the data

augmentation proposed using a fine-tuned object detector model, obtaining

an improvement in the mAP score for single and double-column layouts.

We have shown that a good quality of annotations with the support of a

generative model can be efficient compared to the automatic annotation of
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large-scale data. Moreover, the generation of new data can help the pre-

trained models to generalize also to different layouts. In future work, we

aim to extend this pattern to different document layouts, such as legal doc-

uments, invoices, and medical records.

An important aspect we would like to explore more deeply in future re-

search is the semantic content of generated scientific paper pages, that relates

to the possibility to develop a model that is able to generate documents in

different domains. It might be also interesting to refine the generation of text

and other contents to be meaningful and mutually correlated. In particular,

content-aware of its relative (e.g., in which section) and absolute (e.g., in

which page) positioning could allow the generation of complete papers. In

addition, creating better synthetic data could permit the application of DLA

methods that take into consideration also text information.
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Figure 6.7: Examples of generated documents: double-column on the upper

side, single column on the bottom one.
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Chapter 7

Conclusions and Future

Works

In this thesis we tackled several Document Understanding tasks, such as Doc-

ument Layout Analysis, Table Extraction and Key Information Extraction,

exploiting a graph document representation and state-of-the-art Graph Neu-

ral Networks. We also tried to meet the limitations we found on the available

benchmarks for DU, proposing a new collection of annotated scientific pa-

per for Contextualized Table Extraction, a data augmentation technique for

graph representation of tables and a generative method to create new doc-

ument pages. The aim of this dissertation has been an attempt to connect

our publications and in particular graphs and documents under a common

intersecting definition we referred as graph document representation. Start-

ing from a general overview of how graph theory and documents met, we

delved into more specifics details about the implementations of our research

questions, both for structured objects, such as tables, and whole document

pages.

We started by describing briefly graph theory and geometric deep learn-

ing, reporting the GNNs that achieved remarkable results for several scientific

research areas and, in particular, for DU. Moreover, we described through a

general schema how the graph structure is usually extracted from documents

shared among several state-of-the-art methods.

Then we presented our graph-based approach to TE, tested on a subset of

PubLayNet and PubTables-1M. We build the graph structure on top of PDF
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scientific publication pages using an opensource tool to parse them. Words

have been used as nodes, enriched with suitable representation embeddings

we proved to be a good alternative to other more traditional text embed-

ding methods. In particular, we were able to tackle DLA, TD and TFA at

once thanks to the graph document representation. We also identified some

shortcomings in modern DU benchmarks known to the scientific commu-

nity, including partial annotations of document pages and lack of sufficient

variability. We tried to identify, albeit partially, these limitations. First

by proposing a collection for Contextualized Table Extraction, an extended

version of TE that includes more information and allows the development of

graph-based systems. Then, we also proposed a rather simple yet effective

technique for augmenting data by operating directly on the graph structure,

tested for table type classification but which we believe can be applied in

other scenarios as well.

Moving to whole document pages, we presented our framework Doc2Graph,

which extend the previous developed graph-based solution for PDF files and

TE to generalise over different type of documents and related tasks. We

achieved promising results for four tasks over two challenging benchmarks,

named FUNSD and RVL-CDIP invoices, for KIE and business DLA. More-

over, we showed our method to drastically reduce the number of parameters

required for training, while retaining competitive results.

Finally, in Chapter 6, we presented a customizable generative pipeline, to

create high quality scientific paper pages with different layouts and contents.

This pipeline can be involved for real case scenarios where the amount of data

available is quite reduced and pretrained models would struggle to generalize

over out-of-distribution samples. We tested our method using a ResNext

showing that augmenting the data at our disposal the method got better for

layout analysis over a constrained amount of data.

Either way, the exploration about graph-based techniques applied to

document-related tasks has just started and we think there are several future

works worth to be further investigated. First of all, self supervised learn-

ing (SSL) has been proven to be successful for several deep learning areas

and architectures [9], but not as much as for graph-based methods. Borrow-

ing pretext tasks from other domains it is not that effective and proposing

new and specific ones directly in the graph space is still an open problem.

Moreover graph SSL is still lacking of a theoretically mathematical founda-

tion [93]. A first approach trying to bring pretraining over a graph document
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representation has been recently proposed in [161], involving a Masked Sen-

tence Modeling (MSM) where some text content is masked with a special

token and the model tries to predict it similarly to [138]. We believe that

there is an important room of improvement for SSL on graph document

representation, proposing novel techniques that directly exploit structural

information.

As introduced by [121], privacy is an important aspect to be taken into

consideration while working with business documents, and even more with

legal or medical records. Transformer-based techniques proved to be state-

of-the-art methods in several DU benchmarks able to solve multiple tasks.

Regardless, many graph-based method are able to retain competitive results

while being language-independent [34, 122]. Even if for a different reason,

we proposed something similar with representation embeddings that could

be further explored in this direction [49]. Advancing new techniques that

preserve the privacy contained in documents is of paramount importance,

and graph-based methods can become an excellent solution for achieving

that goal.

We proposed a pipeline to generate scientific paper pages based on a

transformer architecture that, also based on a graph document representa-

tion, has been able to reason over document layouts and create content with

a precise structural sense. However, bringing the recent success of diffu-

sion on several fields [159] also over graph would improve already existing

graph-based generative methods [17].

Finally, we believe that Doc2Graph could be naturally extended to meet

all the aforementioned future directions. In particular, the GNN could be

used as an encoder also (and especially) for DocVQA [99], recently adopted

as the task to deal with multi-industry, multi-domain, and multi-page chal-

lenges on visually rich document in DU and track its progresses [137].
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Appendix A

List of contributions

This research activity has led to several publications in international journals

and conferences. These are summarized below.

International Journals

1. Andrea Gemelli, S. Marinai, L. Pisaneschi, F. Santoni. “Datasets and

Annotations for Layout Analysis of Scientific Articles”, International Journal

on Document Analysis and Recognition (IJDAR), 2024.

2. L. Pisaneschi, Andrea Gemelli, S. Marinai. “Automatic Generation of

Scientific Papers for Data Augmentation in Document Layout Analysis”,

Pattern Recognition Letters, vol. 167, March 2023, pp. 38-44. (Advances

and New challenges in Document Analysis, processing and Recognition at

the Dematerialization Age)

International Conferences and Workshops

1. Andrea Gemelli, D. Shullani, D. Baracchi, S. Marinai, A. Piva. “Structure

Matters: Analyzing Videos Via Graph Neural Networks For Social Media

Platform Attribution”, IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2024.

2. Andrea Gemelli, E. Vivoli, S. Marinai, T. Zappaterra: “Deep-learning for

Dysgraphia Detection on Children Handwritings”, in Document Engineering

(DocEng), Limerick (Ireland), 2023

3. Andrea Gemelli, E. Vivoli, S. Marinai: “CTE: A Dataset for Contextu-

alised Table Extraction”, in Italian Research Conference on Digital Libraries

(IRCDL), Bari (Italy), 2023
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4. Andrea Gemelli, S. Biswas, E. Civitelli, S. Marinai. J. L. Canet: “Doc2Graph:

a Task Agnostic Document Understanding Framework Based on Graph Neu-

ral Network”, in Text in Everything European Conference of Computer Vi-

sion (ECCV Workshops), Tel Aviv (Israel), 2022

5. Andrea Gemelli, E. Vivoli, S. Marinai: “Graph Neural Networks and Rep-

resentation Embedding for Table Extraction in PDF Documents”, in Inter-

national Conference on Pattern Recognition (ICPR), Montréal (Canada),

2022

6. D. Del Bimbo, Andrea Gemelli, S. Marinai: “Data Augmentation On

Graphs for Table Type Classification”, in IAPR Joint International Work-

shops on Statistical Techniques in Pattern Recognition and Structural and

Syntactic Pattern Recognition (SSPR 2022), Montréal (Canada), 2022



Appendix B

List of repositories

This research activity also has led to several repositories implementations,

with the help of other excellent colleagues. In our work all models are trained

on a 24GB GeForce RTX 3090 using PyTorch and the Deep Graph Li-

brary (DGL) for implementation. Others tools to process documents include

Tesseract , EasyOCR and PyMuPDF.

• Doc2Graph: implementation of [46], Chapter 5. Developed in col-

laboration with Ph.D. Enrico Civitelli and Computer Vision Center.

• GNN-Table Extraction: implementation of [49]. Developed in col-

laboration with Emanuele Vivoli.

• DA-GraphTab: implementation of [36]. Developed by our student

Davide del Bimbo under my supervision.

• CTE-Dataset: annotations and scripts for Contextualized Table Ex-

traction [50]. Developed in collaboration with Emanuele Vivoli.

• dysgraphia-detection: annotations and scripts for Dysgraphia De-

tection in Children Handwritings [48]. Developed in collaboration with

Emanuele Vivoli.
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