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Abstract

In this thesis we present a new method to assess longitudinally spinal cord (SC) atrophy, called

SIENA-SC.

The spinal cord (SC) is an important area of the central nervous system (CNS) as it plays a
critical role in both motor and sensory functions. Magnetic resonance imaging (MRI) allows
for in-vivo visualization of the SC, providing valuable insights into its structure and function
and helping the diagnostic workup of several neurological conditions such as multiple sclerosis
(MS), amyotrophic lateral sclerosis (ALS), and spinal cord injury. In addition, the quantification
of SC atrophy can be used to monitor disease progression and as an outcome measure in
clinical trials. However, these measures have not reached yet a degree of robustness and
reliability comparable to those of brain atrophy, which are currently used to monitor disease

progression and treatment efficacy in neurodegenerative diseases.

To date, there are two possible strategies to assess longitudinal volumetric changes of SC over
time. The first is to compare the cross-sectional area (CSA) from segmentation maps obtained
independently at each timepoint. This approach provides an indirect estimation of the atrophy
rates and is limited by the inaccuracy of segmentation maps due to partial volume effects. The
second approach relies on these SC segmented masks, but they are registered on a common
reference space, providing a direct estimation of atrophy measurements. The first attempt to
provide a reliable tool to measure SC atrophy longitudinally was made through the generalized
boundary shift integral (GBSI)., an optimization of an algorithm that has been already

validated to assess brain atrophy.
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Structural Image Evaluation using Normalization of Atrophy (SIENA) is a widely recognized
method that employs registration techniques to measure changes in brain volume over time.
Over the past two decades, SIENA has been extensively used to evaluate brain atrophy due to
its user-friendly nature and its reliability. SIENA calculates the zeros of the second derivative
of the intensity profiles of the lines perpendicular to the surface in the two images to be
compared. This approach helps to reduce the influence of MRI intensity inhomogeneity, as it
relies on the shape of the intensity profiles rather than their specific intensity values. By using
this method, the variability introduced by intensity variations is minimized, allowing for more

robust and reliable measurements of atrophy.

The study presented in this thesis introduces SIENA-SC, which is an adapted version of the
SIENA method, designed to calculate the percentage of spinal cord change (PCVC) over time
directly on the cord edges. Our main objective was to provide a fully automated approach that
reduces variability in measuring SC atrophy and offers a solution similar to longitudinal brain

atrophy measurements.

In the first experiment, using a multicenter dataset including 13 scan-rescan and 190 Healthy
Control (HC) subjects, SIENA-SC showed to have a lower measurement error than GBSI and
CSA, reflected by lower standard deviation, coefficient of variation and median absolute

variation.

In the second experiment, the lower measurement variability of SIENA-SC than GBSl and CSA,
was confirmed in a dataset of 65 MS subjects and the same 190 HC of the previous experiment,
thus resulting into a better differentiation between patients with MS and HC, an improvement

of statistical power, and reduction of sample size estimates.
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In conclusion, SIENA-SC showed to be robust and feasible when assessing SC atrophy using
brain MRI scans routinely acquired in clinical practice. Longitudinal spinal cord atrophy
measured through SIENA-SC has the potential to become a recognized outcome measure for
clinical trials. However, it should currently be considered as a secondary outcome measure
until additional advancements enhance the ease of acquisition and processing. Further
developments of the methods are needed to make the process more streamlined and user-

friendly.
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Impact Statement

In this thesis, | have developed and validated the Structural Image Evaluation using
Normalization of Atrophy in Spinal Cord (SIENA-SC), one of the first registration-based method
for quantification of spinal cord atrophy. The SIENA-SC pipeline is a modified version of the
original SIENA method that has been designed to address the limitations of commonly used
segmentation-based methods, such as measuring the spinal CSA. Furthermore, SIENA-SC has

been designed for using routinely acquired MRI of brain.

The improvements in spinal cord atrophy measurements presented in this thesis can expand
research possibilities for future neurodegenerative diseases projects, such as Multiple
Sclerosis, Amyotrophic Lateral Sclerosis and SC injury, where SC volume changes are

representative of the most aggressive aspects of the diseases.

The high robustness and reliability reached by SIENA-SC suggests that this tool has the
potential to become a gold standard for clinical trials including spinal cord atrophy as an
outcome measure. Moreover, obtaining spinal cord atrophy measurements from brain scans
could represent a viable and clinically meaningful alternative to more technically challenging
spinal cord images, in particular in multi-centre settings where homogenous spinal cord

acquisitions are not feasible.

Finally, results of this thesis are also important for the patients. Deriving spinal cord atrophy
measurements from brain scans would significantly reduce the scan time for MRI and, thus,

participants’ burden. In the future, it is important to identify changes in spinal cord volume

Pag.7 /132



which may improve the monitoring of the clinical course of neurological disease and its

treatment response.
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1 Introduction

In this thesis, we present a new method for longitudinally assessing spinal cord (SC) atrophy,
called SIENA-SC (Structural Imaging Evaluation, Using Normalization, of Atrophy for Spinal

Cord), on routinely acquired MRI.

To make the thesis self-consistent, the necessary concepts will be provided in the introduction
so that the objectives can then be correctly described. The notions necessary to understand

the new solutions implemented in the software will also be provided.

Therefore, the introduction will be organized as follows:

1. An overview of the anatomy of the spine;

2. areview of the current state of the art methods for the analysis of the brain and the
spinal cord, with a particular regard to the SIENA methodology. This section will
explore also the challenges of spinal cord imaging and the attempts to overcome them

to develop reliable SC analysis tools;

3. a description of the role of the spinal cord in neurodegenerative disease, with a

particular focus on MS, a disease where SC atrophy has been already characterized.

1.1 The Spinal Cord

The SC constitutes, along with the brain, the central nervous system (CNS). The SC is a long
tubular-shaped structure located in the vertebral column, surrounded by Cerebrospinal fluid

(CSF) and extending from the medulla oblongata in the brainstem to the first or second lumbar
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vertebrae depending on individuals (Figure 1). As an extension of the brain, its role is to relay
nervous signals between the brain and the peripheral nervous system, ensuring the transfer
of efferent and afferent messages between the cerebral cortex and the motor and sensory
system. It is also the center for reflexes coordination and control. In particular, SC hosts central

pattern generators which control rhythmic movements such as breathing or walking.

1.1.1 Structure

The SC consists of 31 segments through which spinal nerves symmetrically enter and exit by
right and left sides : C1 to C8 for cervical levels, T1 to T12 for thoracic levels, L1 to L5 for lumbar
levels and S1 to S6 for sacral levels. During embryonic development, vertebrae match spinal
levels but as vertebral column grows faster than SC, it is not the case anymore at adulthood.
In general, the spinal levels are found at the same height as their respective rostral vertebral
levels (e.g., spinal level C4 is at the same height as vertebral level C3) [1]. However inter-

individual variations are observed [2].

The SC is made up of grey (GM) and white matter (WM) (Figure 1). GM is found in the center
with a butterfly or H shape, while white matter surrounds it. SC cross-section changes in shape
and area along inferior-superior axis (Figure 2), as GM and WM do. The GM/WM CSA ratio is
also reduced with aging [3,4]. The SC cross-section shape is round at thoracic and lower lumbar

levels and elliptical at cervical levels.

SC surface is cover by a thin membrane, the pia mater, which is the innermost layer of the
meninges, with the arachnoid mater and the dura mater as the outermost layer, at the surface
of the spinal canal. The spinal canal or the subarachnoid cavity is filled with CSF. The CSF is a

colorless fluid derived from blood plasma with equivalent sodium content but almost no
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proteins. It is composed at 99% of water. The remaining is glucose, potassium, calcium,
magnesium and chloride. The CSF plays a protective role for the brain and SC, acting as a
cushion or buffer. It also plays a role of autoregulation of the cerebral blood flow and

prevention of brain ischemia. Finally, it is an important component of the lymphatic system as

it enables metabolic waste products from brain and SC to be cleared.
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Figure 1: a) Sagittal view of Cord Segments, b) close up of ligaments, c) conus medullaris. Source:
https://wikimsk.org/wiki/Spinal_Cord_Anatomy.
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Figure 2: Spinal cord cross-section area evolution along inferior-superior axis within 50 healthy
subjects (mean age: 27 + 6.5 y.o., 29 men, 21 women, source: De Leener et al., 2018).
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1.1.2 Grey matter

The GM of the SC has the shape of a butterfly or the letter H (Figure 3) and it is mainly made
up of a mixed of neurons, interneuronal connection fibers, glial cells (cells supporting neurons
environment) and blood vessels. GM is generally divided into three main columns on each side
which host specific cellular groups receiving the nerve endings (Figure 3): the dorsal or
posterior horn, the ventral or anterior horn and the intermediate or lateral GM. In the center
is the central canal filled of CSF. The dorsal horns host the free nerve ending of afferent nerve
fibers entering SC by dorsal roots and transmitting signal to sensory neurons. The ventral horns
host the free nerve ending of efferent nerve fibers exiting SC through ventral roots and
transmitting signal from motor neurons (Errore. L'origine riferimento non é stata trovata.).
Afferent neurons and efferent neurons are connected through interneurons in the central grey
commissure around the central canal. These connections are responsible for spinal reflexes
(e.g., limb withdrawal reflex after a painful stimuli).

Posterior
horn (sensory) '\\

N

Lateral horn
(visceromotor) NGB

Anteriorhorn __———— . —___Afferent
(motor) ‘ ;;;" nuclei
‘ = ———1— Efferent
I nuclei

Columns Nuclei

Figure  3: Spinal grey  matter  organization. Diagram  at  thoracic  level  (Source:
https://doctorlib.info/medical/anatomy/43.html on June 18, 2020).
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1.1.3 White Matter

The white matter is made of long fibers called axons, running along the inferior-superior axis
and relaying nervous signal from neurons or receptors to other neurons or effectors. Those
fibers are wrapped in a myelin sheath providing a pale color to tissue (hence the name white
matter), which is produced by glial cell named oligodendrocytes. Axons diameters ranges from
1 to 10 um in humans [5]. White matter also includes some blood vessels and CSF in
extracellular space. Axons with globally same origin and destination are grouped by region
and function in symmetric right-left pathways or tracts (Figure 4). Two main categories can be
identified: the sensory ascending pathways and the motor descending pathways. Ascending
pathways consists of afferent fibers entering SC through dorsal roots or coming from SC GM
and conducting information to higher levels. Descending pathways are mainly composed of
fibers coming from motor cortex or brainstem and conducting information to lower levels and
to the peripheral nervous system. Finally, the propriospinal (or intersegmental) tracts are a
third category of pathways which are made of both ascending and descending, crossed and
uncrossed short fibers, and which interconnect adjacent or distal spinal levels. Main tracts of
this category (not represented in Figure 4) are the ventral propriospinal tract, the lateral

propriospinal tract and the dorsal propriospinal tract.
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Figure 4: Atlas of major white matter spinal tracts. In red are the motor descending pathways, in blue are the
sensory ascending pathways. Source:

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Spinal_cord_tracts_-_English.svg/1920px-
Spinal_cord_tracts_-_English.svg.png
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1.2 Towards brain segmentation to spinal cord segmentation

In order to be able to explain in detail SIENA-SC, the solution proposed in the following
chapters of this thesis for the evaluation of longitudinal atrophy of the SC, it is appropriate to
preliminarily introduce some general concepts related to the characteristics of MRl images, list
the possible causes of variability in the images themselves and some of the solutions proposed
in the field of volumetric analysis of the brain. Afterwards, we will describe the different

approaches used in the evaluation of SC atrophy.

MRI is a medical application of nuclear magnetic resonance. MRI is a medical imaging
technique used in radiology to obtain images of the anatomy and physiological processes of
the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves
to generate images of the body's organs. MRI is not invasive, because it does not involve the
use of X-rays or ionizing radiation, which distinguishes it from CT and PET scans. The result of
an MRI sequence is the creation of a high-definition 3D image of the organ being studied. An
MRI image thus consists of an ordered, three-dimensional grid of voxels, the minimal elements
of a 3D image equivalent to the pixels of two-dimensional images. The intensity encoded in
each voxel does not directly reflect any physical content but is indirectly related to the times
with which the spins of hydrogen atoms, previously aligned along a direction through the use
of a constant magnetic field BO, return to the same once excited through a pulse of known
radio frequency, called B1. These time intervals are called relaxation times, vary from tissue to
tissue, and depend on parameters, such as repetition time (RT: the time between excitation
pulses) and echo time (ET: the time in which radiofrequency data returning from the tissue

after the initial radiofrequency pulses are collected) whose different combination allows
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different sequences to be constructed, which create images with varying intensity contrast

between tissues.

Given the complexity of the physical processes and digital signal processing involved in
creating an MRI image, the artifacts that can be generated are numerous. These can depend
on either hardware-related problems, such as BO inhomogeneity in the region encompassing
the analyzed organ or intensity distortions due to B1 field inhomogeneity, or problems related
to patient cooperation, such as motion artifacts. Another, ineradicable source of variability in
MRI images is called the partial-volume effect and is generated when the voxel size is larger
than the intrinsic size of the structures to be studied. The artifact occurs as a blurring of
intensities in voxels that contain multiple tissues, such as the irregular interfaces between

white and GM in the brain.

This brief and far from exhaustive review of the principles that preside over the creation of
MRI images and the possible sources of error allows us to focus on the various analysis

pipelines that have been developed to analyze atrophy variations computed on MRI images.

Generally speaking, image segmentation is the process of dividing an image into different
parts, aiming to define specific regions, whose boundaries separate image parts that display
distinct features. Quantitative MRI measures are strongly dependent not only on acquisition
parameters, but also on processing methods, presenting with different sensitivity to change,

repeatability and measurement error.

Several libraries of free online software for neuroimaging analysis have implemented pipelines

for fully automated quantification of brain atrophy and SC. Referring to the existing literature,
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we can provide a schematic classification of software. We speak of a "segmentation method"
when the software does not directly compare brain MRI images of the same subject acquired
over time. This type of software is mostly used in cross-sectional analysis. Conversely, it is
called "registration method" when the software directly compares brain MRI images of the
same subject acquired over time and is based on an initial registration. This type of software

is often used in longitudinal analysis [6].

Most 'segmentation-based' software packages divide the analysis into separate sub-phases.
The first one reduces the amount of voxels to be analysed. Thus, for the analysis of brain
images, this phase automatically separates the parenchyma (GM+WM+CSF) from the non-
parenchyma, while for the analysis of SC images, this phase automatically segments the SC
cord. The second one consists of automatically correcting the MR images of the previously
identified organ for BO inhomogeneity (e.g. brain or SC). Finally, these approaches provide the
total volume and GM and WM volumes by summing the partial volumes (PVE) of each tissue
estimated in each voxel, i.e. the proportions of WM, GM and CSF present in each voxel of an
MRI image. The quantification of the PVE in each voxel starts by assigning the PVE to a given
voxel, using its intensity and that of the surrounding voxels, thus reducing classification errors
due to the presence of random noise. To improve segmentation, a-priori spatial information
concerning the position of voxels can be added to the MRI intensities, thus reducing the
estimated proportion of a certain tissue in voxels that most likely belong to a different tissue,

based on their position.

"Registration-based" software packages provide the total/GM/WM volume changes by

comparing co-localized volumes of serially acquired MRI images from the same subject. A
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preliminary step common to most of these procedures is the registration of all MRI images of
the same subject on the same virtual space. Early software packages used in longitudinal
analysis introduced the concept of halfway-space in which to align two MRI examinations of
the same subject and on which to measure the percentage of change in overall volume by

calculating the shift in the parenchyma/CSF boundary over time.

Before describing the solutions developed for SC, it is instructive to look in detail at the
pipelines implemented in some of the software used for the analysis of brain atrophy, as many
of the solutions implemented in the analysis of SC atrophy exploit software (or concepts)

previously developed for the analysis of brain images.

1.2.1 Brain Segmentation method

1.2.1.1 Sienax

SIENAX works for cross-sectional (single time point) analysis, and it is useful for differentiating

two groups of subjects on the basis of single time point brain size measurement [7].

SIENAX attempts to estimate normalized brain volume (NBV) from a single image, using the
skull to normalise spatially, with respect to a standard image. It starts by performing
segmentation of brain from non-brain tissue in the head and estimates the outer skull surface.
The brain and skull images are then registered to a standard space brain and skull image pair
derived from the MNI152 standard image [8]. Next a standard space mask is used to make sure
that no parts of the eyes are left from the brain extraction (because of the connection of the

optic nerve, this can occasionally happen) and also to provide a consistent (i.e., non-arbitrary)
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cutoff point for the brain stem. Finally tissue-type segmentation is carried out (including partial

volume estimation) and a (normalised) brain volume estimate is produced.

The normalization for head/skull size is very important because it reduces within-group

variations, making cross-group comparisons more sensitive.

The complete SIENAX method is summarized in the Figure 5.
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Figure 5: Example of SIENAX workflow.
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1.2.2 Brain Registration methods

Brain atrophy measures have been a cornerstone in the study of interventions with putative
neuroprotective effects [9—11], because of the application of registration-based methods that
provide direct estimates of brain atrophy, such as the SIENA [7], and the BSI method [12-14].
Both SIENA and BSI demonstrated a reduced sample size requirements to detect significant
differences between groups or over time and are nowadays well-established methods to
measure longitudinal brain atrophy in clinical trials and in observational studies for

neurodegenerative diseases [15].

The two methods mentioned above will be described in detail, as they form the conceptual
basis on which SIENA-SC is based and describe some of the functionalities that have been

employed, with the necessary adaptations, in the implementation of SIENA-SC.

1.2.2.1 Siena

SIENA performs segmentation of brain from non-brain tissue in the head and estimates the
outer skull surface (for both time-points), and uses the resulting masks to register the two
images on a halfway space, while correcting and normalising for imaging geometry changes.
Then the registered segmented brain images are used to find local atrophy, measured on the

basis of the movement of image edges [7,16].

Brain extraction

The first processing stage is the separation of parenchyma from non-parenchyma tissue. The
method used is known as BET - Brain Extraction Tool [17]. BET provides a binary brain mask,

the segmented brain image, and an external skull surface image as output.
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Figure 6: Left: Example brain surface found by BET. Middle: Example skull surface found
by BET. Right: example subtraction image after registration of two images from a subject
without atrophy.

Skull extraction

Measurement of changes in brain size benefits from the estimation of the skull (which is of
fairly unvarying size over time in an adult) as a normalising factor in both cross-sectional and

longitudinal measurements.

Before brain change can be measured, the two images of the brain have to be registered
(aligned). Clearly this registration cannot allow rescaling, otherwise the overall atrophy will be
underestimated. However, because of possible changes in imaging geometry over time (due
to gradient calibration drift or variable local field distortions), it is necessary to hold the scale
constant (see also [18] for previous work on this problem; note that some longitudinal
methods have failed to take account of this problem, although methods based primarily on
cross-sectional measurements tend to normalise against it). With the method described here,
this can be achieved by using the exterior skull surface (assumed to be constant in size and

shape for an individual) as a scaling constraint in the registration.

In most MR images, the skull appears very dark. In T1-weighted images, the internal surface

of the skull is largely indistinguishable from the CSF, which is also dark. Thus, the exterior
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surface is searched for. This also can be difficult to identify, even for human experts, but is the
most realistic surface to aim to find. The exterior skull surface is found automatically as the
final stage of brain extraction, using BET. Starting with the estimated brain surface, each
surface point is taken as the start of a search outwards for the optimal skull position. The most
distant (from the brain) point of low intensity (before the bright scalp) is found, and the first
peak in gradient outside of this is then defined as the exact position of the exterior of the skull
surface. This method is quite successful, even in regions of overlying (dark) muscle or where
there is significant (bright) marrow within the bone. Thus, a skull image is generated for each

input image, to be used in registration.

Registration

As already stated, before the differences between two images can be found, the brains in the
two images must be aligned, using a registration procedure. The registration carried out uses
a robust and accurate automated linear registration tool, FLIRT (FMRIB’s Linear Image
Registration Tool) [19]. A three-step procedure is used, where the brain images are used to
optimise the initial registration and the final translation and rotation, whilst the skull images

are used to optimise the scaling and skew.

One could stop here and apply change analysis to the registered second brain and the original
first brain. However, this is not optimal, as the second brain image has been through a
processing step that the first brain image has not, namely a spatial transformation (involving
interpolation of its values). The images will therefore look slightly different; the transformed
second brain image will be slightly more blurred than the first brain image. To ensure that the

images being compared undergo equivalent processing steps, both input images are
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transformed to a position which is halfway between the two. In this way both images are

subjected to a similar degree of interpolation-related blurring.

The typical quality of this brain registration is illustrated in Figure 6 (right), an example
subtraction of a registered pair of head images, which shows only appreciable motion outside

of the skull.

All of the brain and skull images are now discarded; only the original unsegmented images and
the brain mask images are kept. The transformations are applied to these images so that two
registered (“common-space”) head images and two registered brain mask images result. These

four images are passed on to the next stage.

Masking

The registered binary brain masks are now combined into a single mask which will be applied
to the registered head images to produce two new registered brain images. The reason for this
(rather than keeping the original registered brain images) is that even slight differences in the
original brain segmentations (i.e., the production of the brain masks) would cause the
artefactual appearance of brain change. Thus, the two masks are “binary ORed” - i.e., if either
is 1 at a particular voxel, the output is 1. (They cannot be “ANDed” as the brain from the second
time point would cause incorrectly reduced masking of the first time point image in the case

of atrophy.)

The resulting combined mask is then applied to the registered head images to produce two
registered brain images. These two images are passed to the final stage for the analysis of

change.
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Change analysis

The next stage in the analysis is the change estimation itself. There is great variety in how this
is achieved amongst published longitudinal atrophy methods. Some researchers (e.g., [20-22])
use normalized subtraction of the images, assuming that resulting areas of significant
deviation from zero correspond to areas of interesting brain change. This relies on the
assumption that the images will appear exactly the same (apart from the change of interest);
various procedures such as histogram matching and relative bias field correction have been
suggested [22], in order to attempt to make the images look as similar as possible. Others look
more directly for changes around tissue boundaries. For example, [12,18] use the “boundary

III

shift integral” (the area under the intensity profile across a boundary in image 1 is subtracted
from that for image 2, and normalised by the boundary height, resulting in an accurate
measure of lateral motion), which gives the motion of each edge, even if blurred, but only if
image contrasts in general are well matched between scans (See chapter 1.2.2.2 for further

details). Methods that are principally cross-sectional in nature avoid the need to address the

issue of change analysis.

The system presented here first attempts to find all brain surface edge points and then
estimates the motion of these edge points from one time point to the next. This edge motion
is found for the whole brain surface, enabling the total volume change to be estimated. The
previously published version of SIENA found edges on the basis of edge strength, and then
found edge motion by searching for matching edge points from one image to the next. This
suffered slightly from relatively imprecise definition of edge points, i.e., discrimination was

imperfect. The current version uses full tissue-type segmentation to find edge points, and thus
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is more correctly selective, and also enforces continuity of the estimated brain surface. Thus
the system presented here finds all brain surface edge points (including internal brain- CSF
edge points, such as those around the ventricles) and then finds the motion of these points,

in a Bayesian framework, perpendicular to the local edge, to sub-voxel accuracy.

In order to find all brain surface edge points, tissue segmentation is performed on the image
from time point 1 after application of the joint brain mask (see previous section). The tool used
[23] carries out tissue (GM, WM and CSF) segmentation and bias field correction. The method
is based on a hidden Markov random field (segmentation labelling) model and an associated
Expectation-Maximization algorithm for estimating tissue intensity parameters and bias field
(spatial intensity inhomogeneity). The whole process is fully automatic (after being instructed
as to whether the image is T1 or T2, and whether to attempt to segment GM and WM as a
single class or as separate classes), producing a tissue-labelled segmentation. It is robust and
reliable, compared to the more common finite-mixture-model-based methods, which are

sensitive to noise, particularly as they use no spatial neighbourhood information.

The tissue segmentation labels are used to find all brain edge points. First, grey and white
voxels are combined into a single class, as are also CSF and background voxels. All boundary
voxels between these two resulting classes are used for the next processing stage. Note that
this method of finding brain edge voxels enforces a continuous surface (without breaks),
although not necessarily a topologically simple one. Figure 7 shows example slices through an
image after edge point detection (and also example perpendicular image profiles as described

below).
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Figure 7: Example slices through an image after edge point detection,
and also example perpendicular image profiles.

Next, the common-space registered image from time point one is processed at each brain edge
point. First the image gradient direction (in 3D) is found, using a simple 3x3x3 Gaussian-
weighted derivative operator. This is used to find the surface normal unit vector (and will
always point from the darker side of the boundary to the lighter side - this information will

later be used to tell the difference between atrophy and “growth”).

Next, a 1D array (an intensity profile perpendicular to the edge) is filled with values from the
image. These values are sampled at sub-voxel positions (using tri-linear interpolation) as the
array’s elements will not in general fall exactly at voxel grid positions. The length of the array
is preset to a fixed number of millimeters (typically + 3); the extent will also be limited by the
presence of a second edge, for example, the far side of a sulcus, in order to prevent other
nearby edges from confusing the motion estimation. A second 1D array is filled with values
from exactly the same image positions from the (common-space registered) image from time

point two.

Pag.38/132



Edge motion is now estimated by finding the relative shift, between the arrays, which produces
the maximum correlation (to sub-voxel accuracy using interpolation of the correlation scores).

However, before the correlation, each array is pre-processed in two ways.

First each profile is convolved with a differentiating kernel, as it makes sense to correlate the
derivatives (edge-enhancements) of the two 1D image profiles rather than the raw image
values; if there are intensity or contrast differences between the two images, the position of
maximum correlation could be skewed, but this effect is much reduced if correlating edge-
enhanced versions of the profiles. Thus this method requires no (intensity) normalisation of
the images, and is not sensitive to problems arising from intensity inhomogeneities across the
images. The second process is the multiplication of each profile by a high-power exponential
profile (smoothed sharp cutoff); this acts as a prior on the expected motion by weighting the
correlation score, so that higher motions are less likely than small ones - this helps reduce the
effect of large motion mismatches (which otherwise make a large contribution to error in the

overall method). This can be viewed as a Bayesian prior:

P(displacement|data) o P(data|displacement)P(displament)

(1-1)

where the first term on the right can be thought of as the raw correlation score, and second

term is the prior on the displacement between the profiles

—displacement?
P(displacement) < e 20*

(1-2)
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which has o set to a suitable length such as 7mm. Because the posterior on the displacement
is simply used to find the maximum probability the constants of proportionality are

unimportant.

Thus, the optimal displacement is found for each edge point, and, as stated earlier, the
direction of the edge normal determines whether atrophy or “growth”1 is taking place at this
point. The position of optimal displacement is estimated to sub-voxel accuracy by fitting a
guadratic through the correlation values at the peak and its two neighbours. Figure 8 shows
example profiles from one edge point with a slight shift between time points, and the

derivatives of these profiles.
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Figure 8: Example profiles from one edge point with a slight shift between

timepoints, and the derivatives of these profiles.

For example, slices showing atrophy as blue edge points and “growth” as red, see Figure 9.
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Figure 9:Example slices showing atrophy as blue edge points and “growth” as red.

Percentage Brain Volume Change Quantification

Brain atrophy is conveniently quantified by a single number such as the percentage brain
volume change (PBVC). The initial value obtained from the change image is the sum of all edge
point motions (linear voxel units), which, when multiplied by voxel volume, gives the total BVC.
This is one possible measure, as would be a PBVC derived directly from this. However, a more
invariant measure is obtained by dividing this volume by the number of edge points found
times the voxel “area”. (Note, the final stages of SIENA are always carried out with cubic voxels,
so there is no confusion about the definition of area here.) This measure is then the mean
perpendicular brain surface motion. The reason why this is preferable to the total volume
change is that it is not (to first order) dependent on the number of edge points found. As the
number of edge points depends on slice thickness (see below - typically by a factor of two

between 1mm slices and 6mm) and (to a lesser extent) other scanning details, it is a good idea
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to normalize for the number of points found. Finally, if it is required to convert the mean
surface motion to a PBVC, the ratio of the brain volume to the brain surface area needs to be

estimated.

In this formulation:

vym
aN

(1-3)

where [ is the mean surface motion, Ym is the edge motion (voxels) summed over all edge

points, v is voxel volume, N is the number of detected edge points and a is voxel CSA. Thus,

100lA _ 100fV
v Vv

% brain volume change = = 100lf

(1-4)

where A is the brain surface area (actual, i.e., not aN), V is the actual brain volume, f is the

ratio of actual area to volume.

It is possible to find f directly for any given image without knowing A or V; if a single image is
scaled by a known amount and then compared with the unscaled version using the above
change analysis, the correct PBVC is known from the scaling that was applied, and the
measurement of [ then allows f to be found. It varies across scanners, slice thicknesses and
pulse sequence, but normally lies between 0.1 and 0.2mm™2. Applying this method (referred

to as self-calibration) helps reduce bias (systematic error) in the reported estimates of PBVC.

The complete SIENA method is summarized in Figure 10.
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Figure 10: Overview of SIENA method
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1.2.2.2 BSI

“BSI” refers to Boundary Shift Integral, is a widely recognized technique [12] to measure

atrophy directly from the difference image of the registered serial MR images [12,13].

The BSI algorithm assumes that a change in volume of a soft tissue object must be associated
with an exact shift in the boundary of that object. The shift of the tissue boundary results in

an exactly equivalent shift of the signal which is constructed from the MR samples [12].

Hence, if the baseline scan and follow-up scan are registered, in the area around the boundary
of the registered scans lpase and Ireg, the intensities of lhase(X; y; z) and lreq(X; y; z) should shift by
an amount corresponding to the position shift; this permits the precise measurements of
boundary shifts by determining intensity shifts in the boundary region. The change in volume

can thus be estimated by computing the integral of all of the boundary shifts.

If ipase(x) is the MR signal along the cord boundary at the location x of the baseline scan and
ireg(x) is the MR signal at location x of a registered follow-up scan on which there has been a
boundary shift of Aw from the baseline, then these two MR signals can be related by ireq(x) =
ibase(X+Aw) in the region of the cord boundary [12]. Moreover, if the intensity changes
monotonically across the cord boundary, then ipase(x) and ireg(x) will take the form shown in
Figure 11. We can therefore define inverse functions Xpase(i) and Xreq(i), related by Xreg(i) = Xpase(i)

-Aw.
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Cord boundary shifted by Aw:
ireg(x) = ibase(X+Aw)

Normalized intensity, T

Displacement along line through cord boundary, x

Figure 11: Example of an idealized one dimensional cord boundary shift between the
intensity ibase(x) along x axis on baseline scan, and the intensity ireg(x) along x axis on
registered follow-up scan. An estimate of the shift along x axis, Aw, may be obtained as the
shaded area divided by the intensity range (I1 - I2). This strategy can be extended to three
dimensions to estimate the cord volume loss Av.

A simple estimate of Aw can be obtained using Aw = Xpase(i) - Xreg(i), Where i may be any value
within the intensity range of the cord boundary region [Ig, Is]. In 3D T1 weighted spine MR
images, the cord is brighter while the CSF is darker, thus Iz is the intensity on the CSF side of
the boundary and Is is the intensity on the cord side of the boundary. A more robust estimated
can be obtained by averaging the estimates of Aw over an intensity range [/, /1], as shown in

Equation ( 1-5).

1 (h _ -
Aw = (xbase(l) - xreg(l))dl
L —1),

(1-5)

where Ir< b <11 < s.
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Equation ( 1-5 ) can alternatively be expressed as an integral with respect to x over the
boundary, as written in Equation ( 1-6 ). Equation ( 1-5 ) and Equation ( 1-6 ) are equivalent by

considering that both integrals evaluate the area of the shaded region in Figure 11.

1
Aw = 7 f (Clip(ipgse(x), 11, I3) — Clip(iyeg(x), 1, 13))dx
! 2 boundary
(1-6)
I a<l,
where k<2< 11 < s, and Clip(a; 14; 1) = {a L <a<1
11 Il > Il

If we extend this strategy to three-dimensions and determine the integral numerically by
evaluating the integrand at small sampling intervals, the volume change can be calculated as

shown in Equation ( 1-7).

K

Av = I —1 X Z (Clip(lbase(foI Z)f11'12) - Clip(lreg(fof Z),Il, 12))
1 2

x,y,Z€EE
(1-7)
where K is the unit voxel volume, E is the set of voxels in the border region of the cord, lpase(X;
y; z) and lreg(x; y; z) are the voxel intensities on the registered baseline and follow-up scans at

(x; v; z), and the intensity range of the integral [/, I1] is referred to as the intensity window.

Finally, the evaluation of BSI requires the appropriate selection of an intensity window. The
intensity window [I2; I:] should be selected such that it falls entirely within the intensity

transitions associated with the boundaries of the structure of interest.

When applied to MRI image, the two T1-weighted images are co-registered using an affine

registration that correct for rotation, translation, scaling and minimize the standard deviation
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of the ratio image [24]. The registered scans are then differentially bias-corrected [25] before
calculating the BSI. The method defines a region that lies near the borders of the baseline and
registered repeat brain masks. The BSI technique is based on integrating the differences in
intensities over this region. Scan intensities are normalised by dividing each scan by its
respective mean, calculated over the interior region. The intensities are bounded by a clipping
function based on a pre-defined upper and lower intensity for each scan. Dividing the
integrated differences by the span of the clipping function provides a measure of the global
brain volume loss (Figure 11). The absolute scaling of the BSI (that allows a final % brain volume
change to be estimated) is calibrated using manual measurements of brain volume on each

scan. The Figure 12 shows an example of the entire workflow on a brain analysis.

Bias Field Probabilistic Brain Symmetric Symmetric
Correction Segmentation 12 DOF Registration Differential Bias

Correction

Original data Generalized-BSI

Calculation

o
£
[1])
4
L1
=]

Figure 12: BSI pipeline. Source: Prados et al. 2015
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1.2.3 Challenges in spinal cord imaging

MRI is also the method of choice in investigating disorders of the SC in a fairly quick and non-
invasive fashion. Based on the magnetic properties of the hydrogen atoms, abundant in the
human body in fat and water, various MRI contrasts may be generated and deliver anatomical
detail, information on structural composition and tissue function [26—28]. For that purpose, a
number of different MR-sequences and contrasts are used including relaxation time-weighted
(T1, T2, T2*), proton-density weighted, magnetization prepared rapid gradient echo, fast-spin

echo, phase-sensitive and short tau inversion recovery techniques [29].

However, in contrast to brain MRI, the environment of the SC presents additional challenges
for MRI methods [26—-28]. Greatest challenge is the inhomogeneous magnetic field across the
SC due to the different magnetic properties of the surrounding tissues, e.g. CSF, fat, vertebral
bones, and air-tissue interfaces. This may lead to image distortions and a loss of spatial
resolution. Further, the SCis a fairly thin and curved structure with a maximal antero-posterior
diameter of 8.3 £ 1.6mm at the C1 level and maximal latero-lateral diameter of 13.3 + 2.2mm
at the C5 level [2,30-33], which results in partial volume effects (a mix of tissues with different
relaxation properties in one voxel) at the SC/CSF borders [26—29]. Another challenge is the
cord’s physiological movement in the spinal canal as a result of cardiac-induced pulsatile CSF
motion, respiratory motion, and swallowing resulting in MRI motion artifacts [34—36]. Contact
of the SC with some point of the osseous canal, which partially eliminates contrast between
the SC and its surroundings further hampers assessment. Furthermore, osteophytes of the

spinal column can cause focal changes in CSF flow dynamics within the spinal canal causing so
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called CSF flow artifacts. Finally, so-called “Gibbs truncation artifacts” are very common in SC

MRI resulting in high signal in the center and dark edges of the SC.

Another limitation is the currently insufficient contrast between SC GM, WM and CSF on
conventional SC MRI. Only recently, advanced MRI sequences were able to overcome those
obstacles providing images with sufficient signal- and contrast-to-noise ratios between SC

compartments in 3 Tesla MRI machines.

Despite anatomical and methodological challenges, SC MRl is essential in clinical routine and
can be generally assessed in two ways: qualitatively or quantitatively. Qualitative SC MRI
assessment involves neuroradiologists searching for MRI signal intensity changes within the
SC in order to distinguish normal SC tissue from focal intramedullar pathology such as
demyelination, edema, or inflammation e.g. in MS lesions (Figure 13). This is currently the sole
use of SC MRI in clinical settings. However, some of the disorders affecting the SC do not
present with focal abnormalities in the sense of hypo- or hyperintense lesions on MRI but are
rather characterized by neurodegeneration of various aetiologies leading to neuronal loss and
shrinkage, Wallerian degeneration and axonal loss (e.g. spinal muscular atrophy, amyotrophic
lateral sclerosis). Others do manifest with MRI intensity changes indicating inflammatory and
demyelinating lesions, which -however- do not represent the entire underlying SC pathology
and often do not serve as reliable biomarkers (e.g. MS, human-T-cell lymphotropic virus type-
1 (HTLV-1) associated myelopathy). Nevertheless, the aftermath of those neurodegenerative
and demyelinating processes is tissue shrinkage and can be assessed in vivo on MRI as SC
volume loss. Hence, cross-sectional or longitudinal quantitative measurements of SC volume

and/or CSA indirectly deliver additional valuable information regarding mechanisms of
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neuropathology, that cannot be appreciated with the naked eye in qualitative assessments of

SC MRI. Nonetheless, this is not part of clinical routine for the time being yet.

Figure 13: Multiple sclerosis SC lesions in sagittal images acquired with: a) Proton-density-weighted, b) T2-
weighted, c) phase-sensitive inversion recovery and d) short tau inversion recovery imaging. Source: Tsagkas et
al. 2019.

1.2.4 Brief overview of Spinal Cord methods

The purpose of this chapter is to present background information on SC image segmentation,

laying the groundwork of our tool, SIENA-SC.

Implementing image segmentation techniques to quantify the SC volume and CSA have been
introduced since 1996 [37]. Despite that, computer-based SC segmentation remains

demanding in part due to limitations hampering SC MR-imaging (as mentioned in chapter
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1.2.3). A big number of semi- and fully automatic techniques have been proposed [38]. The
most important include active contours of surfaces [39-41], level sets [42], partial volume
modeling [43], gradient vector flow [44], atlas-based approaches [45,46], and tubular
deformable models with variable required user interaction from manual identification of the
SC centerline [41] to the identification of multiple [40] or single [39,46] anatomical landmarks,
with completely automated approaches presented only recently (Figure 14) [47]. In the past,
SC atrophy was usually determined by assessing the CSA of the cervical cord, usually at the
C2/C3 level, which has been shown to correlate with clinical measures, although
reproducibility was limited and depending on data quality as well as repositioning [37,48,49].
However, until now only a few of those methods have been validated and/or evaluated on
patient follow-up data to demonstrate the applicability in longitudinal trial settings with up to

two years follow up time [37,41,47,50-52].

For the purpose of this thesis, chapter 1.2.4.1 presents the current most used and relevant
segmentation-based methods, chapter 1.2.4.2 presents the attempts provided for the

longitudinal SC atrophy estimation.
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Figure 14: A-C shows a SC segmentation performed with an active surface method, while D-F demonstrates a fully
automatic SC segmentation. Source: Yiannakas et al. 2016

1.2.4.1 Spinal Cord Segmentation method

The tools described in this section provide the CSA as metric of measurement. When using
segmentation methods for longitudinal SC atrophy calculation, thus providing an indirect
estimation, the rate of atrophy is estimated by numerical subtraction of SC CSA measurements
calculated at different time-points. For instance, percent change of cord area is calculated

using the following formula ( 1-8):
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(follow up area — baseline area)

trophy = 100
atrophy * baseline area

(1-8)
Years between baseline and follow-up scans can also be included in the denominator of the

formula, if there is variability of the interval between scans [53,54].

12411 Jim

Jim provide a toolbox for medical image analysis. Within the JIM tool, the ASM is a surface-
based method that semi-automatically outlines the cord, after marking the centre of the SC
[41,55]. The ASM has provided more prompt and repeatable measures of the SC volume,
compared with manual methods [56]. The ASM offers a considerable reduction in user
interaction time, and can be performed over long spinal segments. The user needs to identify
landmarks at the extremes of the region to study, and, then, mark the centerline of the cord.
Sagittally-acquired images are then reformatted to the axial plane to obtain five contiguous 3
mm slices; the program automatically calculates the radius and the centre of each axial slice
and, finally, the CSA is obtained by averaging these contiguous slices [41]. Jim is not provided

free of charge and it hasn’t been used in this thesis.

1.2.4.1.2 Spinal cord toolbox

The Spinal Cord Toolbox (SCT) is a free open-source software dedicated to the processing of
SC MR images. SCT contains a lot of functions for working on the SC in several different fields
[57]. Most of the functions in the SCT are the state-of-the-art in their field. A lot of recent

works in the SC domain have used the SCT in their research [58]. SCT works on Unix
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environment. The tool is freely available at

https://spinalcordtoolbox.com/user_section/installation.html.

In this thesis, we used SCT as the basis for the development of our tool for three main reasons.

First, the SCT proposes two algorithms for the SC segmentation and both of them are quite
recent. The large amount of studies using the SCT to achieve their results is a good hint about
the quality of the proposed algorithms [47,57,59]. Moreover one of those algorithms is based
on deep learning techniques that allows a total automated segmentation also from brain MRI

images.

Second, the segmentation algorithm inside SCT showed to have same sensitivity as the Active
Surface Model (ASM) within JIM (https://www.xinapse.com/) but has higher inter-rater

repeatability and is more time-efficient [47].

Third, the SCT and its algorithms are open-source and very easy to use. Moreover, it has an
active community of developers which make sure that the SCT stays at the top of the current

techniques.

1.2.4.1.2.1 Sct_propseg
This algorithm has been developed in 2014 by researchers from Polytechnique Montréal and
the University of Montréal [59]. It is totally automatic and is designed to segment the entire

SC (Figure 15).

The algorithm consists in the iterated propagation of a deformable 3D mesh which ends up
corresponding to the SC. It is divided into two modules: the detection and the propagation

module.
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The detection module consists in finding SC position and orientation. The module is divided in
three phases followed by a validation step. It starts by the automatic selection of an axial slice
(e.g. the middle one). Using the symmetry of the body, the medial antero-posterior line that
passes through the SC is detected. The medial antero-posterior line position is computed by
maximizing the mutual information between the two parts of the image separated by the line
(the line defines the middle of the symmetry). A restrained image is then created by cropping
a region of 5 cm length in the left-right direction of the symmetrical line. Due to the circular
shape of the SC, the second phase consist in performing a circular Hough transformation [60]
on the cropped image. Since other circular shape structure can be present on the image only
circles embedded in other circles are kept (the SC lies in the spinal canal). Note also that a
stretching factor is applied on the Hough transformation in order to detect elliptical shapes
which correspond more to the SC shape in certain parts. Finally those two steps are repeated
on 10 axial slices, 5 rostral and 5 caudal to the starting plane (each separated by several
millimeters) in order to improve detection rate. The neighbouring points (between different
slices) of the detected structures are then connected. It is assumed the longest connected
chain is the SC. In order to ensure the SC was detected, a validation step is executed. This

validation uses a classification method based on easily computable metrics.
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Figure 15: Workflow of the detection module. Source:Kaus et al 2003

Using the information collected in the detection module, a triangular tubular mesh is created.
During the propagation module this mesh will be transformed to correspond in the best way

possible to the SC. This iterative process is divided in two phases.

The first phase consists in selecting the most promising points where the mesh has to be
deformed. The second phase consists in the use of active contour techniques where each
selected point is displaced to minimize an energy function. Once the mesh is deformed one
section Miof it is duplicated and translated in order to propagate the mesh. A different energy
term is maximized in order to determine the orientation of the mesh at the new points. The

process is mainly inspired from the work of Kaus et al. [61]. For computational conveniences
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the iterative process is first computed on a low-resolution mesh and second on a refined mesh
interpolated from the first mesh once it has been deformed and propagated. This provides a

complete automated algorithm for the segmentation of the SC (Figure 16).

Figure 16: Propagation of the deformable mesh. Source: De Leener, Kadoury, and Cohen-
Adad 2014.

1.2.4.1.2.2 Sct_deepseg
Researchers of the University of Montreal have developed in 2019 a new segmentation
algorithm for the SC using deep learning and U-net architecture [62]. It contains also a model

designed for the detection of SC sclerosis.
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The new segmentation algorithm is divided in two different convolutional structures which

are applied one after the other to the image.

On classical MR images, SC voxels represent less than 1% of the total amount of voxels. The
role of the first CNN is to find the center of the SC such that the image is then cropped around
it in order to remove the useless information. This CNN uses 2D convolution and is a slightly
derivation of the classical U-net architecture (Figure 17). The number of downsampling steps
is reduced from 4 to 2. This is possible because the conventional convolution are replaced by
dilated convolution in the contraction section. A dilated convolution is a convolution which
uses a sparse filter which provides an exponential expansion of the receptive view (the
"window" of pixels that is scanned through the filter for each convolution). Due to the larger
receptive view, this process captures more contextual information compared to a classical
convolution with the same amount of parameters in the filter. As the dimensions of the
feature maps will decrease quicker after each convolutional layer, it allows to use less
downsampling steps . The CNN creates a prediction mask which indicates the degree of
confidence each voxel is part of the SC. The centerline of the SC is then computed using OptiC.
This is a fast globalcurve optimisation algorithm, which regularises the centerline continuity

along the Superior-to-Inferior axis [63].
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Figure 17: A 2D dilated convolution with a receptive view of size 5x5 and a
filter of 9 parameters (output image in green). Source:
https.//towardsdatascience.com/types-of-convolutions-in-deep-learning-
717013397f4d

The second CNN uses 3D convolutions and is computed in a volume around the SC centerline.

From the volume, 3D patches of size 64x64x48 are extracted.

Intensity normalization is applied on the patches to homogenise the intensity distribution on

standardised intensity range [64].

This CNN is a 3D derivation of the 2D U-net architecture, with 3D convolution[65]. The role of
this CNN is to segment the SC. Its output is a binary mask with same dimensions as the input
image. The full deepseg framework can be applied through a SCT function on NIFTI image and

allows different options choices such as the contrast of the image.

Pag. 60 /132



The training has been divided by MRI contrast (T1,T2 and T2*) in order to make trained models
available for each contrast. A dataset containing 1943 images (151 for T1, 904 for T2 and 888
for T2*) and coming from 30 different centers has been used for the training of the models.
The training set contains very heterogeneous images in resolution and orientation which
allows the algorithms to work on almost every MR image. An example of the cord detection

module is showed in Figure 18.

Input 3D image Centerline Volume of interest Segmentation

Figure 18: The journey of an image through deepseg. Source:Gros et al 2019.

1.2.4.2 Spinal Cord Registration method

Registration based methods have the great advantage of providing a direct estimation of the
rate of atrophy. To date, GBSI is the only one freely available solution for longitudinally

assessing SC using a pure registration-based approach [66].
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1.2.4.2.1 GBSI

The GBSl is an extension of the BSI algorithm already used for the longitudinal brain atrophy
estimation. The pipeline used to test the performance of GBSI is applicable to datasets with
T1l-weighted images (brain or dedicated spine acquisition), with identical acquisition
parameters, ideally using 1 mm isometric voxels, at two time-points for each subject. A graphic

overview of the pipeline is illustrated in Figure 19 and further detailed below.

The first step is the manual or automatic segmentation of the SC from T1l-w images.
Afterwards, the extracted masks are used to compute a ring surrounding the SC to scale the
signal intensity of the images accounting for the presence of the noise floor [67]; for this step
the signal intensities in the whole 3D volume are corrected using a fast version of the adaptive
non-local means filter algorithm [68]. Then, an intensity inhomogeneity correction is applied
to the 3D data using the N4 algorithm [69]. Once images are corrected for noise and intensity
non-uniformities, both SC time-points are straightened using a specific software available
within the SCT [70]. Both SCs are then registered to the half-way space using a symmetric,
affine and inverse-consistent method [71]. To reduce the residual bias field and homogenise
the grey scale between both registered time-points, a symmetric differential bias correction is
applied [25]. Finally, the GBSI is computed on a voxel-by-voxel basis as the difference in
intensity between the baseline and the follow-up image within a clipped window and can be
obtained from the two k-means class values. The clipped window goal is to catch the difference
between tissue intensities at the two time-points, reducing the background influence. Then

the intensity differences are weighted by the probabilistic XOR mask voxel-wise. PCVC was
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calculated by dividing the GBSI value by the binarized, straightened and registered baseline

cord mask volume.

Original data Spinal cord Denoising Bias Field Straighten D Symmetric
Segmentation Correction Symmetric Differential GBSl
Registration Bias Calculation

Correction

Baseline

Figure 19: Pipeline for the longitudinal spinal cord assessment using GBSI. Source: Prados 2020.

1.2.4.2.2 Reg

The Reg method is composed of the following main steps: 1) initial segmentation, 2) image co-

registration, and 3) final cord segmentation. The general workflow is illustrated in Figure 20.

The first part of the process is manual, then it will proceed in a total automatic way. The
analysis starts when the operator puts the landmark to identify the approximate center line of
the SC at both time points. The marking of the cord center is refined using an approach similar
to that described by Gros et al [63]. The cord is then segmented using the AS method [41]. The

cord masks obtained were then dilated by a distance of 2 mm, and an annulus surrounding the
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cord was formed by an exclusive OR operation (XOR) between the original cord outlines and
the dilated outlines in order to assess the signal intensities within the CSF surrounding the
cord. The standard deviation (SD) of the CSF signal was used as a measure of the noise level in
a nonlocal means noise reduction filter [72], which was applied to the original axial cord
images before they were segmented once again using the low number of cord shape
coefficients, but this time the segmentation was used to produce a straightened cord image of

the region between the superior and inferior cord landmarks for both time points [41].

In the second step, the two straightened cord images are registered to a half-way space and a
symmetric differential bias correction is applied [25]. At this point there is a further
improvement where any slight residual misregistration along the cord are removed using an

in-plane-only registration procedure with translations along x and y, and rotation on the z-axis.

Now the two straightened cord images are precisely aligned, with cord centroids at the origin
in the straightened cord space, and the two registered straightened cord images were pixel-
by-pixel intensity averaged, and the AS method was used to give initial approximate cord
outlines. Then, these outlines were used to initialize the final cord segmentations of the two

straightened cord images separately.

The overall mean PCVC between the most superior and most-inferior overlapping registered
slices was calculated as the average of the values for the two images processed in forward and

reverse order ( 1-9 ):

(CSApy — CSAg;)

PCAC = (100
(100« CSAg,

(1-9)
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where CSAg; is the mean cord CSA in the baseline image and CSAru is the mean cord CSA in the

follow-up image.

Although it falls into the category of registration-based tools, the final computation of atrophy

is done in the same way as segmentation methods.
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Figure 20: Schematic representation of the main steps of preprocessing performed by the registration (Reg) method on
pairs of 3D T1-weighted baseline and follow-up scans. Manual and fully automated steps are represented in yellow and
light blue boxes, respectively. FU = follow-up; AS = active surface. Source: Valsasina et al 2015.
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1.3 Role of spinal cord in neurological diseases

The SC is affected by inflammatory and neurodegenerative processes leading to irreversible
tissue loss in several neurological conditions, such as MS [54], NMO [73-75], and human T-
lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis [76].
Moreover, SC atrophy is associated with more severe clinical features in amyotrophic lateral
sclerosis [77-79], SC injury [80], and Friedreich’s ataxia [81], and with worse recovery from SC
surgery [82]. There is also preliminary evidence of SC atrophy in Alzheimer’s disease [83], and
in Huntington disease [84], suggesting that SC atrophy can be part of more widespread

neurodegenerative diseases.

In one study involving 19 patients with SCinjury, SC atrophy was shown to correlate with motor
and sensory deficits [85].Notably, Lundell et al. showed that anterio-posterior width (APW)
and left right width (LRW) of the cord can be used to assess sensory and motor function
independently. In another study, atrophy was shown to correlate with American Spinal Injury
Association (ASIA) score in a chronic SC injury population, independently from DTI and
magnetization transfer measurements[86]. SC atrophy has also been demonstrated in patients
with amyotrophic lateral sclerosis [87]. Notably, Cohen-Adad et al. showed an association
between muscle deficits and local SC atrophy, suggesting that atrophy is a sensitive biomarker
for lower motor neuron degeneration. The authors tested the specificity of atrophy at a given
vertebral level (between C4 and C7) in relation to muscle deficits and motor-evoked potentials
using a stepwise linear regression model. They demonstrated that deficit of the deltoid muscle
(at the C5 spinal level, equivalent to the C4 vertebral level) was associated with atrophy at the

C4 vertebral level, and that deficit of the abductor pollicis brevis or adductor digiti minimi (at
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the C8 spinal level, equivalent to the C7 vertebral level) was associated with atrophy at the C7

vertebral level.

In MS, SC atrophy is one of the long-term sequelae, particularly in the most disabling forms of
the disease, with the cervical cord being most affected. The main cause is thought to be
Wallerian degeneration as a result of changes that occur in the brain, rather than tissue loss
due to primary cord pathology. However, only moderate correlations have been found
between cervical cord atrophy and conventional and advanced MRI measures of brain damage
[88,89], suggesting that degenerative and inflammatory processes typical of MS affect the cord
and the brain with dynamics that are partially independent. As explained previously, the SC is
the main pathway for information connecting the brain with the peripheral nervous system,

thus SC atrophy has a major impact on patients’ clinical status.

Since we validate our software using MS subjects, the following paragraph 1.4 will be

dedicated on the MS pathology.
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1.4  Multiple Sclerosis

1.4.1 Introduction

MS is a chronic inflammatory demyelinating and neurodegenerative disease of the CNS,
potentially causing any neurological deficit [90,91]. Previous studies have implicated a
combination of genetic and environmental factors in the-pathogenesis of MS, with chronic

inflammation and neurodegeneration mediated by the patient’s immune system [92,93].

1.4.2 Epidemiology

According to the most recent Global Burden of Disease Study estimates (2016), MS is the most
common immune-mediated disease of the CNS, with over 2.2 million cases world-wide,
corresponding to 10% increased prevalence from 1990 [94]. North America, Western Europe
and Australasia hold higher prevalence rate (91-164 cases per 100,000), compared with Africa
(2-3 cases per 100,000) [94]. On the contrary, incidence of MS has been relatively stable or
slightly increased over the past four to five decades [94]. As such, the rising prevalence mostly
reflects improved survival, with a global mortality rate for MS being decreased by 11%

between 1990 and 2016 [94].

Clinical onset is generally in early adult life, though there is increased awareness of
presentation in childhood [90]. Prevalence of MS is similar in preteen boys and girls, but
progressively increases through lifetime among women, with a 2:1 sex ratio in favor of women
in the sixth decade of life [94]. As discussed above, the life expectancy for a person with MS is
relatively unimpeded by the disease, with a 5 to 10-year reduction versus non-affected

individuals [95]. However, MS is one of the leading causes of disability from CNS disease among
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young adults, and has a severe impact on quality of life, made further strenuous by a relatively

young average age of onset [90,94].

1.4.3 Pathology

The most typical pathology signs of MS is the presence of demyelinating lesions in the WM
and GM, in the brain and in the SC [96—100]. Demyelinating lesions generally originate around
venules, where accumulation of inflammatory lymphocytes can be observed [101,102], along
with astrocytic response and macrophages/microglia infiltrates to the active injury site,
eventually resulting into gliotic scars [103]. Acute inflammatory demyelination is clinically
associated with the acute onset of new neurological symptoms (i.e., clinical relapse) [104—

106].

Neuro-axonal loss is another prominent hallmark of MS and is a key factor of irreversible
disability accrual [107]. In the early stages of the disease, axonal loss is generally seen in areas
of pathological demyelination, in association with inflammatory infiltrates consisting of
macrophages/microglia and lymphocytes [108]. During the course of the disease, axonal loss
can occur in areas of prolonged demyelination without active inflammation, suggesting that
axonal survival is related to the presence of myelin support [109-112]. Notwithstanding this,
the presence of chronically demyelinated axons suggests that demyelination does not
necessarily leads to neuro-axonal loss [110,113,114]. In advanced MS, axonal loss results into
shrinking of the brain parenchyma (i.e., atrophy), and is associated with impaired function of
macrophages/microglia and astrocytes, and with increased oxidative stress and mitochondrial

damage. In particular, demyelination and subsequently impaired axonal dysfunction increase
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the energy demand, further contributing to altered metabolism, neuronal dysfunction and,

ultimately, axonal loss [115-117].

The mechanisms by which demyelination and axonal loss occur are profoundly heterogeneous
and involve a variety of cellular subsets [90,118,119]. The sequence of pathological events
might include perivenular infiltration of macrophages, CD8+ T lymphocytes and CD4+ T
lymphocytes and B lymphocytes, with profound blood brain barrier (BBB) leakage, giving rise
to classical active demyelinated plaques [119-124]]. As the disease progresses, infiltrates of T
and B lymphocytes, activation of microglia/macrophages and astrocytes, and mitochondrial
dysfunction become obvious throughout the brain parenchyma, also in the absence of major
BBB damage [120,125], with formation of aggregates of inflammatory cells in the form of
meningeal follicle-like structures, and expansion of previously-existing WM and GM lesions
[116,117,119-121,126-129] . These changes ultimately lead to progressive demyelination,

axonal loss and neurodegeneration in the brain and the SC [116,117,119,126,129] .

Inflammation, demyelination, and axonal loss can be measured in vivo by using MRI [130].

1.4.4 Imaging biomarker in MS

During the last 20 years, over a dozen DMTs received the approval for the treatment of RRMS,
being facilitated by screening the anti-inflammatory activity of putative treatments using
active MRI lesions as outcomes in phase 2 trials [131,132]. On the contrary, the paucity of
active medications for both PPMS and SPMS is striking [90,133]. In view of this, the Progressive
MS Alliance recently suggested to develop and validate biomarkers of progression that could

make clinical trials for progressive MS less time and resource-consuming, when compared with
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conventional clinical measures [134]. This could be achieved with the identification of reliable,

repeatable and sensitive-to change imaging outcomes [54,135].

Several brain MRI measures are able to reflect the inflammatory and neurodegenerative
pathology of MS [136,137]. Brain lesion count and volume are robust markers of inflammation
and demyelination, and are important outcomes in both RRMS and progressive MS trials [9].
Following recent improvements in analysis methods, brain atrophy has gained relevance, in
light of its strong association with disability accrual [9,135]. Advanced brain MRI techniques,
such as magnetization transfer ratio (MTR), diffusion tensor imaging (DTI) and magnetic
resonance spectroscopy (MRS), have been included in few trials so far, and hold promise for
the future, as they can reflect specific pathological changes targeted by neuroprotective
treatments, such as improved myelination measures within lesional tissue, following
treatment [135,138]. Positron emission tomography (PET) and optical coherence tomography

(OCT) are also emerging as candidate imaging outcomes of MS progression [135].

More recently, improvements in MRl acquisition protocols and post-processing have overcome
some of the limitations associated with imaging the SC, a small and mobile structure at risk of
motion artefacts from breathing, cardiac movement, CSF pulsation and blood flow [53,54].
Conventional SC MRI provides information on focal lesions, which are necessary for the
diagnosis and prognosis of MS and is commonly used in the clinical setting [9,139]. SC volume
loss is the result of demyelination, neuro-axonal loss, oligodendrocyte damage, and gliosis,
ultimately resulting in chronic motor, sensory and autonomic dysfunction [37,140], and will be

at the very centre of this thesis. Advanced SC MRI techniques assess the type and extent of SC
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abnormalities, but, as discussed below, their use is currently limited to specialized centres for

research purposes [54].

Overall, looking at the paradigm of treatment development for PPMS and SPMS, the number
of imaging outcomes included in clinical trials has almost doubled from 2.3+1.5 in the decade

1996- 2006, to 4.1+2.6 in most recent years (2007 to current) [135].

1.4.5 Role of spinal cord imaging in MS diagnosis

The 2017 revised McDonald criteria confirmed that MRI is the most useful paraclinical test to
aid the diagnosis of MS and can be used to establish dissemination of lesions in space (DIS)
and time (DIT) [141]. The SC is one of the four areas of the CNS where lesions with
characteristics typical of MS are scored to confirm DIS. Prior to the 2017 McDonald criteria,
only asymptomatic SC lesions were scored for DIS, which led to the high specificity of the DIS
criteria; in order to facilitate the scoring of the criteria, and avoid discussing which lesion is the
symptomatic one in cases of multiple lesions occurring in the same CNS location, the 2017
revised criteria do not distinguish anymore between symptomatic and asymptomatic lesions
when testing the DIS criteria. In particular, the inclusion of SC symptomatic lesions for DIS or

DIT increases diagnostic sensitivity, with little or no reduction in specificity [142—-144].

Whilst brain MRI is recommended in all patients who are undergoing investigations for the
diagnosis of MS, SC MRI is advisable when: (1) The clinical presentation suggests a SC lesion;
(2) The clinical presentation is suggestive of PPMS; (3) Brain MRl is normal, but there is a strong
clinical suspicion of MS; (4) Brain MRI findings are inconclusive (e.g., age-related vascular
changes) [141,145,146]. Therefore, SC MRI is generally recommended in patients with SC CIS

and in those with non-spinal MS not fulfilling the DIS criteria. It is debated whether all the
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remaining CIS patients, who have non-spinal MS and fulfil DIS criteria on brain MRI brain,

should undergo SC MRI [147].

More recently, patients with clinical features typical of MS, but showing evidence of pathology
exclusively in the SC, even with a single lesion, and whose MRI does not fulfil the DIS criteria,
have been described as two novel clinical entities: (1) Progressive solitary sclerosis, when
insidiously progressive upper motor neuron impairment can be attributed to an isolated
demyelinating lesion within the CNS (within the SCin 90% cases) [148]; and (2) Pure spinal MS,
when relapsing episodes of short-segment myelitis occur over time, in the absence of typical
brain or optic nerve lesions [149]. Progressive solitary sclerosis and pure spinal MS are
proposed novel MS phenotypes, characterised by a predominant SC pathology. Myelocortical
MS is another suggested pathology subtype of MS where axonal loss in the WM occurs in
absence of obvious demyelination, but is still lacking further pathology and clinical validation

[113].

1.4.6 Spinal Cord Atrophy in MS

SC atrophy is a common and clinically relevant aspect of MS. An increasing number of studies
have focused on the importance of SC atrophy as a biomarker of disability progression and as

an outcome measure in clinical trials.

SC atrophy is the consequence of different pathological processes, including axonal transection
and associated neuro-axonal loss, demyelination, loss of oligodendrocytes, gliosis, and,
ultimately diffuse tissue injury [98,99,150-154]. Although these pathological abnormalities
occur within focal lesions, extensive tissue abnormalities are also present in the normal-

appearing SC of MS patients, and this finding may explain why SC atrophy occurs
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independently of SC lesions [98-100,110,155-158]. Additionally, SC atrophy also occurs, at

least in part, independently of brain pathology [156,159,160].

SC atrophy is generally measured as CSA at the cervical level, which is least affected by
movement artefacts, yields the most reproducible results, and provides the best clinical
correlates [161-165]. The most common levels are C1-C2 and C2-C3, but measurements can
be also made between C1 and C7 [166]. Atrophy assessment can be done on a variety of
sequences, mainly 3D T1-weighted and T2*- weighted gradient echo sequences on different

MRI scanners (e.g. Philips, Siemens, GE) [37,41,167].

1.4.7 Spinal cord atrophy in disease phenotypes

SC atrophy occurs even in early stages of MS and has been detected in patients with CIS [167-
170]. In CIS patients who were followed-up for 5 years after onset, the lowest rate of SC
atrophy (-0.1% a year) was observed in those who remained CIS, whilst the highest rate (-1.4%
a year) was detected in patients who developed MS and had an EDSS at the last time point
equal or greater than 3 [171]. In general, a high rate of SC atrophy is observed in the
progressive forms of MS, especially SPMS (-2.2% per year) [150,166,169,170,172]. Overall, in
clinically-definite MS, the rate of cord atrophy has been reported to vary between 1 and 5%
per year [37,150,173-175]. A multicentre study has detected a rate of -1.22% per year in
patients with stable MS and -2.01% in patients who deteriorated over time [166]. Interestingly,
there is a significant development of SC atrophy in early PPMS patients when compared with
healthy controls over only 1-year follow-up, but not in patients with established SPMS, who
had a higher disability and more atrophic cord than early PPMS patients [176]. Although the

rate of atrophy may vary slightly between studies, because of different cohorts and different
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methods, it is consistently higher than the rate of brain atrophy, which is known to be around
-0.5% per year in MS patients [177]. A recent meta-analysis of twenty-two longitudinal studies
assessing SC atrophy in all MS subtypes revealed a pooled rate of SC atrophy of -1.78% per

year, that increased to - 2.08% per year when considering progressive patients alone [161].

Only few studies have examined cervical cord atrophy in NMOSD and reported conflicting
results. Some studies found more pronounced SC atrophy in AQP4 positive patients than MOG
patients [73], and in MS than NMOSD [74], whereas another study found similar reductions of

CSA in NMOSD and MS [75].

1.4.8 Spinal cord atrophy and MS disability

Several studies have shown associations between: (1) the extent of SC atrophy at a single time
point and concurrent disability [178], and (2) the rate of SC atrophy over time and disability
progression [51,89,167,170,179,180]. A recent study has reported that every 1% increase in
the annual rate of SC volume loss is associated with a 28% risk of developing disability
progression in the subsequent year [181]. In a longitudinal cohort of non-spinal CIS, upper cord
cross-sectional area (UCCA) decrease was associated with 5-year increased disability,
measured by EDSS [180]. Overall, SC atrophy can account for 77% of disability progression after
5 years [171,178,182]. Within EDSS, the sub-scores that reflect the neurological functions
mediated by SC pathways, such as the pyramidal, sensory, bowel and bladder functional
scores, correlated with SC atrophy [52]. Higher SC atrophy rate is associated with worsening of
more specific measures of motor disability, such as the 9HPT and the T25FWT [178,181].
Associations between the development of SC atrophy and disability progression are

particularly strong in PPMS [172].
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1.4.9 Spinal cord atrophy in clinical trials

Since SC atrophy rates are two-to-three times higher than brain atrophy (-1.78% vs -0.5% per
year), in particular in progressive MS [161,183], and the SC is a very eloquent site of pathology
in MS, SC atrophy has been considered as an exploratory outcome measure in phase 2 and
phase 3 clinical trials, especially in patients with progressive MS, although much less frequently
than brain atrophy [9]. However, clinical therapeutic trials that incorporated SC atrophy as an
outcome measure did not demonstrate beneficial drug effects on this metric [184—-186]. In
addition to the possibility that the medications tested were not effective, there may be other
reasons for these negative results, related to methodological difficulties of calculating SC
atrophy; these include: movement artefacts and subsequent image noise; the limited spatial
resolution of MRI scanners, which is an important issue, given the small cord size; multicentre
design, with inter-site variability related to the use of different scanners with different
acquisition settings; and inter-study variability related to the use of different methods to
calculate SC area [187,188]. Also, SC normalisation using the intracranial volume, which aims
to reduce the effect of biological conditions unrelated to the disease, has been suggested

[50,162,163], but it is not always performed.

There have been encouraging results from a recent, single-centre, study employing SC atrophy
[176,188]. If patients at the early stage of PPMS, with mild disability and a non-atrophic cord

are selected, the sample size necessary to run a trial over only 1 year is achievable [176].
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2 Aims of thesis

Identifying reliable imaging outcome measures is a cornerstone for improving the

understanding of the disease mechanisms and for monitoring the clinical course of

neurological diseases and its response to treatment [9,54].

Against this background, this thesis will focus on:

1)

2)

3)

Develop a novel method, SIENA-SC, for the longitudinal assessment of SC atrophy by
adapting a well-established registration-based method already use for the
guantification of brain atrophy. The entire pipeline is fully described in Chapter 3.

Test the robustness and the reliability of SIENA-SC on a cohort of HCs. Hereby, we
compared precision and repeatability of SC atrophy measurements obtained with one
segmentation method (CSA change obtained with sct_propseg), a registration-based
methods (GBSI) and our novel registration-based method. The experiment is fully
described in Chapter 4.

Validate SIENA-SC using a cohort of pathological subjects and evaluate SC atrophy as a
potential valuable biomarker. This experiment is presented in Chapter 5 and consists
of the application of SIENA-SC to a cohort of MS subjects to further evaluate the ability
of the software to discern physiological and pathological rate of atrophy and its
treatment effect with the study of the sample size. Results will be compared among

the three methods, SIENA-SC, GBSI and CSA change.

Finally, Chapter 6 summarizes the development of SIENA-SC, the limitations of the study and

possible future directions.
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3 Proposed Methods: SIENA-SC

SIENA-SC [189] is applicable to T1-weighted brain images, with identical or similar acquisition
parameters, ideally using 1 mm isometric voxels, at two time-points for each subject. A graphic
overview of the pipeline is presented in Errore. L'origine riferimento non é stata trovata. and

further detailed below.

3.1 Step 1: Cropping the field of view of brain images

The first step is intended to constrain the field-of-view (FOV) of the input images to the SC
area. In order to do this, we choose the brainstem from the MNI atlas as the neurological
reference of the bounding box to crop the FOV of the images. The brainstem was resampled
from the atlas in MNI space to the native T1-weighted images and then eroded 5 times. The
last slice of the masks was taken as a reference point to remove all the regions above the
bottom of the brainstem. This step was performed to isolate the cord section and to improve

the performance of the segmentation and the following registration step of the SC.

3.2 Step 2: Spinal cord segmentation

The crucial step to obtain a total automated pipeline is the automated localization of the SC.
For the purpose of this study and to avoid any manual intervention we used the fully automatic
deep learning algorithm provided by SCT library (sct_deepseg) [62] described in chapter
1.2.4.1.2.2. This segmentation is computed separately and independently for each time-point,
over all the visible SC. The obtained cord masks were used as input to perform intensities

correction in step 2.
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3.3 Step 3:Image Denoising

The extracted masks serve the purpose of computing a ring surrounding the SC, allowing for
the scaling of signal intensity in the images while considering the presence of the noise floor
[67]. To achieve this, the original T1-weighted images undergo denoising using a fast variant
of the adaptive nonlocal means filter algorithm. This denoising process employs the mask
derived from the segmented SC [68]. Specifically, the standard deviation of the signal within a
ring located in the CSF is calculated to determine the root power of the noise, which is then
used to account for the existence of a noise floor. To ensure accuracy, any voxel values within
the extracted ring that exceeded 2 standard deviations above the mean were disregarded. This
step prevents the inclusion of values originating from nerve roots or other erroneous signal
intensities. Finally, the ring within the CSF was derived by dilating twice the SC mask, followed

by the subsequent subtraction of the mask itself.

3.4 Step 4: Image inhomogeneity correction

The 3D MRI data undergoes an intensity inhomogeneity correction using the N4 algorithm
[69], specifically within the region defined by the two-time dilatation of SC masks. The
correction process incorporates the following parameters: full width at half maximum (FWHM)
of 0.05, a convergence threshold set at 0.0001, and a maximum number of iterations capped
at 1000 [14]. This application of the N4 algorithm ensures that intensity variations within the

SC region are appropriately addressed and mitigated.
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3.5 Step 5: Repetition of Spinal Cord segmentation

In order to enhance the segmentation accuracy and minimize bias caused by significant change
in intensities caused by MRI artifacts between scans, we repeated the segmentation on the
denoised and inhomogeneity corrected input images using a propagation segmentation
algorithm [59]. To facilitate this process, we used the SC centerline derived from the previously

computed masks as the input for the method.

3.6 Step 6: SC straightening

To eliminate any variations in cord curvature between time-points caused by positioning in the
scanner, we employ a reliable and precise approach to straighten the MRl images. This involves
utilizing the SC segmentation previously computed and employing a robust and accurate tool
part of the SCT software package [57,70]. This approach preserves the SC's topology, crucial

for measuring even the most delicate alterations in SC edges when employing SIENA-SC.

3.7 Step 7: Half-way space registration

To prevent the introduction of biases that may arise from registering one time-point to
another, the images are registered to the halfway space through an affine transformation
[16,190,191]. This step employs an inverse-consistent and symmetric algorithm [71]. The SC
mask dilated until covering the vertebrae is used to provide a non-moving reference in the
registration algorithm. After acquiring the transformations, both the images and their
corresponding masks from each time-point are linearly resampled to the shared halfway space
using a nearest neighbor interpolation. This ensures accurate alignment and facilitates

subsequent analyses by establishing a consistent reference frame.
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3.8 Step 8: Refinement of the resampled cord masks

Two additional refinements of the SC masks were performed at this stage. First, as resampling
a mask into a different image space could result in loss of accuracy, we performed a smoothing
of the border of the masks using a diamond-connectivity of the voxels. Second, the resampled
segmentation masks on the halfway space were merged and the longer mask not covering the
cord region in both images has been cut. In this way we are sure that the masks cover the same
length between the two timepoints. This was performed because the SC section can vary by
the number of slices between timepoints (e.g. different orientation, different positioning of
the subject in the scanner), thus the final computation is performed on the same region of

interest.

Finally, the obtained masks were then transferred to the algorithm for the computation of the

atrophy.

3.9 Step 9: Atrophy computation

As a final step, the PCVC was estimated between the two aligned cord images following SIENA
algorithm principles. To achieve this, the mean perpendicular surface motion from the
generated edge points masks were estimated ignoring the flow in z direction (in order to have

a 2D evaluation of atrophy along the cord) and finally converted to a PCVC.

To make the PCVC estimation robust, SIENA method internally corrects for possible small
differences on image resolution and/or misalignment by calculating a calibration factor. Briefly,
two PCVCs are calculated between the original image and a couple of artificial images obtained

by varying the dimension of voxels (one increasing and one decreasing from the same scale
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factor). These two PCVC are then averaged. Given that the “nominal” PCVC is known, once
fixed the scale factor, a calibration factor can be obtained by dividing the “nominal” changes
by the averaged PCVC. Now, given that the calculated PCVC depends also on the number of
edge points and that this number is roughly 100 smaller for SC than for brain image, we
accordingly changed the scale factor by dividing for 100. The rationale of this approach in

described in the next chapter 3.10.

To increase robustness, the “forward” and “backward” PCVC was calculated for each pair of
images swapping baseline and follow-up images. The average value of the “forward” and

“backward” atrophy results was the final PCVC.

1) Resampling
the masks on

halfway space;
2) Smoothing
Denoising Second Straightening of the borders;
Original Cropping Deep learning & segmentation & 3) Cut not Atrophy
i i on corrected Halfway overlapping computation
correction images registration regions
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- ':‘ |

B High Growth
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Figure 21: SIENA-SC image processing pathway.
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3.10 Calibration Factor

To find the correction factor relating the self-calibration used in the brain atrophy estimation
with that used for SC atrophy, we employed the math already exposed in Smith et al. [7] and

explained in chapter 1.2.2.1.

In detail, the fp self-calibration of the brain is comprised between 0.1 and 0.2 mm™ and it is

related only to the actual area of studied surface following the formula:

10014 _ 1001fV
v v

pbvc = = 100lf

(3-1)
where [ is the mean surface displacement of the border, A and V are the brain surface and

volume and f is the self-calibration for the brain.

Given that fis independent from volume, to assess the fs. for SC we have simply made the ratio
between the area of SC and area of brain from 100 randomly selected healthy volunteers of

our population.

IH

From the brain mask volume as obtained with BET, we derived the “nominal” radius of the

brain (rs), by approximating the brain itself to a sphere.

From this value, we obtained the brain surface (sp) following this formula:

(rp — 1)3
Tb3

Sp =

(3-2)
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From the actual volume of SC, derived by mask obtained from SCT and using Ls, the length in
mm of the SC mask we obtained the “nominal” SC radius rsc and from this the nominal SC

surface ssc.
Sgc = Lgc * 7T(rszc = (Tsc — 1)2)

(3-3)

Finally, the correction factor between the self-calibration of the brain and the self-calibration

of SC has been obtained averaging SSC/Sb

This value ranged from 0.01 and 0.02 and we opted for using a correction factor of 0.01, thus

fsc = 0.01 % f;,.
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4 Experiment 1: Robustness

The first experiment concerns the study of the robustness of SIENA-SC compared with other

two methods, GBSI and CSA change, to evaluate the longitudinal SC atrophy.

4.1 Population

We used two different MRI datasets (Table 1):

1. A single centre test dataset with HCs acquired twice on the same day to assess the
reproducibility of the atrophy measurements. In this dataset it is expected to see an
absence of cord atrophy.

2. Alongitudinal multi centre dataset with HCs.
4.1.1 Scan rescan dataset

Thirteen healthy subjects (mean age: 39 + 9,4 years) underwent a brain MRI acquisition using
a 3 T Philips at Meyer Hospital in Florence. For each subject the MRI scans were acquired twice
on the same day with repositioning of the subject in-between acquisitions. 3D T1-weighted
brain images were acquired in sagittal orientation with 1mm isotropic voxel. The goal of the
use of this dataset was to assess the scan-rescan repeatability of the automated software. We

compared the PCVC measurement evaluated with SIENA-SC, GBSI and CSA change.
4.1.2 Healthy Control dataset

190 multicenter subjects (mean age: 74 + 5,7 years) with an average follow-up of 1,2 + 0,2

years freely available from ADNI website (https://adni.loni.usc.edu/).
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All subjects had two brain 3D T1-w images acquired using a 3T MRI scanner, sagittally oriented

and with 1 mm isotropic voxel.

Number (Female) Mean (SD) Age, | Mean (SD) Follow-up
years
Scan-rescan dataset 13 (6) 3994 o*
Healthy Control 190 (99) 74+5.7 1.2+0.2
dataset

Table 1: Population demographic

4.1.3 Statistical analysis

The statistical analysis was performed using MATLAB Release R2020a. Significance level was
set to P < 0.05. The results are shown in mean, standard deviation, and standard error. All the
atrophy measurements were yearly normalized before performing statistics, except for the

scan-rescan dataset.

Paired t-student was employed to compare PCVC in scan-rescan dataset.

Pearson’s correlation has been used to evaluate the degree of concordance between the
different measurements obtained by the different methods. The Bland Altman plot was used

to test for the presence of systematic bias.
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PCVC obtained from CSA measurements was calculated as the CSA difference between two

consecutive time-points CSA, divided by the first time-point and multiplied by 100.
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4.2 Results

4.2.1 Scan -rescan dataset

SIENA-SC showed lower measurement error (mean: -0.06%; SD: +0.18; SE: 0.03) compared to
GBSI (mean: -0.12%; SD: + 0.73; SE: 0.13 ; p<0.005) and CSA change (mean: 0.58%; SD: + 2.2;
SE: 0.32; p<10E-10). GBSI showed lower measurement error compared with CSA (p<0.01). SE:

Standard Error. (Figure 22).
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Figure 22: Boxplot showing the comparison of the measurements using SIENA-SC, GBSI and
CSA change. The line inside the boxes indicates the median value. Results are shown in
absolute values

4.2.2 Comparison between methods using Healthy Controls

On the HCs dataset, the annualized PCVC showed no degree of atrophy using all the three

methods (SIENA-SC: -0.05% * 0.45 ; GBSI: -0.08% * 1.6; CSA: 0.005% + 3.1).

T-test analysis did not show any difference in the measurements obtained with the three
methods (SIENA-SC vs GBSI: p=0.85 ; SIENA-SC vs CSA change: p=0.78 ; GBSI vs CSA change:

p=0.73).
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4.2.2.1 SIENA-SCvs GBS/

SIENA-SC correlation with GBSI: r=0.48, p<0.05, mean absolute difference=-0.02%. The least-
squares fit between SIENA-SC and GBSl is estimated at y=1.42x (R?>=0.16). See Figure 23 for a
direct SIENA-SC vs. GBSI plot and a Bland Altman of the same data. The strong asymmetry in

both the plot is driven by the differences in standard deviation between the two methods.

29(+1.965D)

002 [p=083]

A (SIENA_SC & GBSI)

-30(-1.965D)

8 ] 4 2 0 2 4 6 5 0 5
SIENA_SC Mean (SIENA_SC & GBSI)

Figure 23: Scatter plot (on the left) showing PCVC evaluation from SIENA-SC (x) and GBSI (y). The dotted line shows
ideal agreement of x=y. The continuous line shows the least-squares fit between SIENA-SC and GBSI. Bland Altman
plot (on the right) showing the difference between SIENA-SC and GBSI

4.2.2.2 SIENA-SCvs CSA change

Correlation between SIENA-SC and CSA change measurements: r=0.29, p<0.05, mean absolute
difference=0.06%. The least-squares fit between SIENA-SC and CSA change is estimated at
y=2.02x + 0.12 (R?>=0.09). See Figure 24 for a direct SIENA-SC vs. CSA plot and a Bland Altman
of the same data. The strong asymmetry in both the plot is driven by the differences in

standard deviation between the two methods.
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Figure 24: Scatter plot (on the left) showing PCVC evaluation from SIENA-SC (x) and CSA change (y). The dotted
line shows ideal agreement of x=y. The continuous line shows the least-squares fit between SIENA-SC and CSA
change. Bland Altman plot (on the right) showing the difference between SIENA-SC and CSA change.

4.2.2.3 GBSl vs CSA change

Correlation between GBSI and CSA change measurements: r=0.33, p<0.05, mean absolute

difference=0.09%. The least-squares fit between GBSI and CSA change is estimated at y=0.63x-

0.06 (R?=0.11). See Figure 25 for a direct GBSI vs. CSA change plot and a Bland Altman of the

same data.
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Figure 25: Scatter plot (on the left) showing PCVC evaluation from GBSI (x) and CSA change (y). The dotted line
shows ideal agreement of x=y. The continuous line shows the least-squares fit between GBSI and CSA change.
Bland Altman plot (on the right) showing the difference between SIENA-SC and CSA change.
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4.3 Main findings

SIENA-SC showed a consistent higher robustness than GBSI and the CSA change when PCVC
from scan rescan were assessed, while no differences were found between the three methods
in the longitudinal dataset of HC. This is expected, due to the small biological variation of SC
volume in HC. However, compared to GBSI and CSA change, SIENA-SC demonstrated a smaller

dispersion of the data, as estimated by the standard error.

The higher robustness of SIENA-SC and GBSI, when compared with CSA on a scan-rescan
dataset, can be explained by a better ability of registration-based methods to account for
partial volume effects [192]. Such effects can cause segmentation errors and variability when
calculating CSA. Indeed, conventional segmentation-based methods rely on numerical
differences between areas obtained from hard segmentation at each time-point, which can
lead to indirect estimates of atrophy and greater variability, especially when using scans with
different intensity scales, different voxel sizes or other confounding effects like subject’s
repositioning, cord curvature or noise. The similar approach between SIENA-SC and GBSI can
also explain the moderate correlation between the two methods, correlation that becomes
weaker when they are compared with CSA (SIENA-SC: R=0.29, GBSI: R=0.33). Thus, our analysis
confirmed the already known bigger reliability of registration-based methods compared with

the segmentation-based ones [53].

Although sharing some of the pre-processing steps, the higher robustness and sensitivity
shown by SIENA-SC compared with GBSI could rely on the different approaches used to derive
changes in atrophy from local intensities variations. SIENA-SC reduces the impact of local

random fluctuations in voxel intensities by comparing the profiles of the intensity derivatives,
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and not directly assessing the differences in voxel intensities. On the other hand, GBSI reduces
the global differences in two SC images through a prior intensity normalization and then
directly compares the voxel intensities. This approach might be influenced by local fluctuations
in voxel intensities, not fully recovered after the global intensity normalization and leads to
assume that SIENA-SC could be less biased by sources of variability in MRI signal. In other
words, GBSI approximate the brain volume change by measuring the intensity difference while
SIENA measure the intensity profile distance between each corresponding pair of edge voxels
of the rigidly registered baseline and repeat images. Indeed, both these two techniques
significantly reduce the variance from segmentation errors by assessing the changes directly

using intensity information.
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5 Experiment 2: Sensitivity and sample size

5.1 Population

The second experiment aims to study the sensitivity of SIENA-SC in order to distinguish the

physiological and pathological rate of atrophy.

5.1.1 Multiple Sclerosis subjects

We add a dataset of MS subject to the HC dataset used in the experiment 1. Population of the

experiment 2 is summarized in Table 2.

MS data: 65 subjects acquired at two Italian sites: 10 subjects from Meyer Hospital in Florence

(mean age: 40 £ 12,9 years; follow-up: 1,2 + 0,4 ) and 55 subjects from University Hospital in

Verona (mean age: 39 + 11,3 years; follow-up: 1,4 £ 0,7).

All subjects had two brain 3D T1-w images acquired using a 3T MRI scanner, sagittally oriented

and with 1 mm isotropic voxel. Details of the MRI acquisition are in Table 3.

Number (Female)

Mean (SD) Age,

Mean (SD) Follow-up

Center 2: 55 (45)

years
HC dataset 190 (99) 74£5.7 1.2+0.2
Center 1: 10 (7) Center1:1.2+0.4
MS dataset 40+12.9

Center2:1.4+0.7

Table 2: Population demographics. Center 1: Florence. Center 2: Verona. *Scan-rescan MRIs were performed on

the same day
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Site Field Manufacturer | Scanner Echo Repetition Flip Pixel Slice Spacing
Strength Model Time Time Angle | Bandwidth | Thickness | Between
slices
Florence 3T Philips Achieva | 0,004s 0,01s 8 175 1 1
Verona 3T Philips Achieva | 0,004s 0,008s 8 191 1 1
Verona 3T Philips Ingenia | 0,004s 0,008s 8 191 1 1

Table 3: Scanner acquisition details for Florence and Verona Sites

5.2 Statistical analysis

The statistical analysis was performed using MATLAB Release R2020a. Significance level was

set to P < 0.05.

A linear regression model has been used to measure the sensibility of the methods in
discriminating HC subjects from MS patients. SIENA-SC, GBSI and CSA change were the
dependent variable, group (HC or MS), age and sex were the covariates. Results are shown as

the coefficient of PCVC change in MS patients, 95% confidence interval and p-values.
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To evaluate the precision of each method, we computed the sample size for an hypothetical
trial with 80% power at the 5% significance level and looking for 50%, 70% and 90% treatment

effects.

As for the experiment one, PCVC obtained from CSA measurements was calculated as the CSA
difference between two consecutive time-points CSA, divided by the first time-point and

multiplied by 100.
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5.3 Results

5.3.1 Comparison between HCs and MS

The linear regression model adjusted by group (HC and MS), age and sex, showed a different
rate of atrophy in MS patients compared to the HC using the three methods: SIENA-SC (Coeff:
-0.54, 95%Cl=[-0.87, -0.21], p<0.001); GBSI (Coeff: -0.84 ; 95%CI=[ -1.81, 0.12 ], p=0.08); CSA
change (Coeff: -1.92 ; 95%Cl=[ -3.82, -0.016 ], p=0.048). Raw values of the results are

illustrated in Table 4 and Figure 26.

HC MS p-value
Annualized SIENA-SC [SE] -0.05 £ 0.45 [0.03] -0.6 £ 0.77 [0.09] <0.001
Annualized GBSI [SE] -0.08 £ 1.6 [0.12] -1.14 £ 1.56 [0.19] 0.08
Annualized CSA change [SE] 0.005 + 3.1 [0.22] -1.52 £3.44 [0.42] 0.048

Table 4: Table showing the raw mean values, standard deviation, and standard error of PCVC obtained with the
three methods. SE: Standard Error.
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Figure 26: Boxplot illustrates the comparison of the annualized percentage cord area changes obtained using
SIENA-SC, GBSI and CSA change between healthy control and multiple sclerosis subjects.
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5.3.2 Sample size

Considering the sample size estimation per arm for a clinical trial where SC atrophy could be
an outcome to measure the response to treatment, SIENA-SC showed the lowest number of

MS patients needed to observe an effect over this hypothetical treatment (Table 5 and Figure

27).
Software Effect size % Sample Size [CI] (MS Subjects)

SIENA-SC 50 54 [39 to 95]
70 146 [107 to 217]
90 1290 [933 to 1986]

GBSI 50 62 [36 to 135]
70 167 [86 to 478]
90 1483 [714 to 4287]

CSA 50 171 [59 to 5628]
70 472 [157 to 2700]
90 4224 [1859 to 8991]

Table 5: Estimated sample size per arm with all the three methods (Power= 80%, 5% Significance level).
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Figure 27: Plot showing the sample size power for different effect size for each method (SIENA-SC:
continuous red line ; GBSI: blue dash-dot line ; CSA: green dotted line)
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5.4 Main findings

There have been few clinical trials and observational studies in MS that used SC atrophy as an
outcome measure, because of the large sample size required when using the available CSA

method [9,135,193].

To provide evidence that SIENA-SC could be applied to neurological diseases, in this
experiment we applied SIENA-SC, GBSI and the CSA change on a dataset of MS patients from
two centers. As explained in chapter 1.4, SC atrophy is a well-known feature in MS since the
early stages and monitoring cervical SC atrophy may be clinically relevant, due to its correlation

with increased disability.

In our population, SIENA-SC was able to significantly distinguish between MS and HC
(p<0.001), compared with GBSI (p=0.08). Although CSA changes narrowly obtained
significance (0.048), both CSA and GBSI showed higher standard error than that from SIENA-
SC. These results imply that SIENA-SC measurements are more precise, thereby holding

promise for future MS research on SC imaging.

SIENA-SCyielded increased statistical power to detect 50-70-90% treatment effects than those
provided by GBSl and CSA change, anyway, both the registration-based methods
outperformed the results obtained by the atrophy changes measured with CSA. Specifically,
SIENA-SC provided a three-fold smaller sample size than that obtained with CSA, while only
slightly smaller than the one estimated by GBSI. Overall, the sample size estimates for SC
atrophy measurements with SIENA-SC are of the same order of magnitude as those for brain

atrophy obtained with registration-based methods [15,194,195].
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This preliminary analysis is promising and seems to indicate SC atrophy as evaluated by SIENA-

SC a suitable endpoint in clinical trials and in observational datasets.
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6 General discussion

This study shows the feasibility of SIENA-SC, a fully automated, easy-to-use, tool to calculate
the PCVC using brain MRI acquisitions, thus translating the behavior of the original SIENA
method from brain to SC. Assessing SC atrophy from brain scans, the scan time for MRI and
the associated cost could be significantly reduced, also relieving patients’ burden. Moreover,
SIENA-SC allows to obtain PCVC without extensive computer engineering experience and
reduce inter-operator variability. To obtain this, a novel optimized pre-processing procedure,
constituted by integrating and optimizing some previously developed routines, was ideated

and tested.

SIENA-SC starts with a pre-processing based on an artificial-intelligence freely available tool
[62]. This step eliminates the initial operator intervention necessary for the identification of
the initial mask of the spine. This approach is valid by itself, making fully automated also the
two methods, GBSl and CSA, compared with SIENA-SC. Indeed the same generated cord masks
have been used for the atrophy assessment in all the three methods. In order to reproduce
the SIENA methodology for the analysis of SC atrophy, we optimized a registration procedure
between two longitudinally acquired images. This step was implemented using jointly, for each
timepoint, images and masks of the dilated cord up to the vertebra, to provide the registration
tool a non-moving reference. Finally, SIENA-SC derives the percentage change in atrophy
through an indirect approximation of the local edge displacement, using the differences
between the derivatives of the intensities between the 2 images and a calibration factor that
depends on the size of the SC and serves to reduce the variability introduced by the intrinsic

differences between the two images.
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6.1 Limitation

This study is a proof-of-concept of the use of SIENA-SC. We mainly focused on the creation of
the method and the initial validation of its robustness and sensitivity. These results should be
confirmed on larger datasets of brain MRI images with a visible cervical cord and tested in

different neurological diseases.

6.2 Future directions

The easy use of SIENA-SC could allow the evaluation of physiological changes in large data sets
of HCs, defining normative values as already demonstrated for the brain atrophy using the
SIENA method [196]. Furthermore, new studies using data sets of neurological patients
supplied by clinical information should better explore the method's sensitivity in identifying
pathological deviations from normality. Finally, SC atrophy could be combined with other
clinical and brain MRI outcome measures to further improve the surveillance of the clinical
course in neurological diseases [139,197,198]. Indeed, combined endpoints have become
increasingly common, and the inclusion of SC atrophy could further improve statistical power

and clinical correlates.

6.3 Conclusion

In this study, we presented SIENA-SC, a new method to assess SC atrophy longitudinally.

The software is fully automated, easy to use and has been specifically designed, but not

limited, to work on routinely acquired brain MRI sequences, such as MPRAGE][6].
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SIENA-SC offers reliable, sensitive and consistent quantitative measurements of longitudinal

SC volume change.

This study provides evidence that SIENA-SC can be considered as a precise and reliable tool for
calculating MS-related SC atrophy in clinical trials and in observational datasets or in other

neurological disease where SC plays a determinant role.
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