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Abstract 

In this thesis we present a new method to assess longitudinally spinal cord (SC) atrophy, called 

SIENA-SC. 

The spinal cord (SC) is an important area of the central nervous system (CNS) as it plays a 

critical role in both motor and sensory functions. Magnetic resonance imaging (MRI) allows 

for in-vivo visualization of the SC, providing valuable insights into its structure and function 

and helping the diagnostic workup of several neurological conditions such as multiple sclerosis 

(MS), amyotrophic lateral sclerosis (ALS), and spinal cord injury. In addition, the quantification 

of SC atrophy can be used to monitor disease progression and as an outcome measure in 

clinical trials. However, these measures  have not reached yet a degree of robustness and 

reliability comparable to those of brain atrophy, which are currently used to monitor disease 

progression and treatment efficacy in neurodegenerative diseases. 

To date, there are two possible strategies to assess longitudinal volumetric changes of SC over 

time. The first is to compare the cross-sectional area (CSA) from segmentation maps obtained 

independently at each timepoint. This approach provides an indirect estimation of the atrophy 

rates and is limited by the inaccuracy of segmentation maps due to partial volume effects. The 

second approach relies on these SC segmented masks, but they are registered on a common 

reference space, providing a direct estimation of atrophy measurements. The first attempt to 

provide a reliable tool to measure SC atrophy longitudinally was made through the generalized 

boundary shift integral (GBSI)., an optimization of an algorithm that has been already 

validated to assess brain atrophy. 
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Structural Image Evaluation using Normalization of Atrophy (SIENA) is a widely recognized 

method that employs registration techniques to measure changes in brain volume over time. 

Over the past two decades, SIENA has been extensively used to evaluate brain atrophy due to 

its user-friendly nature and its reliability. SIENA calculates the zeros of the second derivative 

of the intensity profiles of the lines perpendicular to the surface in the two images to be 

compared. This approach helps to reduce the influence of MRI intensity inhomogeneity, as it 

relies on the shape of the intensity profiles rather than their specific intensity values. By using 

this method, the variability introduced by intensity variations is minimized, allowing for more 

robust and reliable measurements of atrophy. 

The study presented in this thesis introduces SIENA-SC, which is an adapted version of the 

SIENA method, designed to calculate the percentage of spinal cord change (PCVC) over time 

directly on the cord edges. Our main objective was to provide a fully automated approach that 

reduces variability in measuring SC atrophy and offers a solution similar to longitudinal brain 

atrophy measurements. 

In the first experiment, using a multicenter dataset including 13 scan-rescan and 190 Healthy 

Control (HC) subjects, SIENA-SC showed to have a lower measurement error than GBSI and 

CSA, reflected by lower standard deviation, coefficient of variation and median absolute 

variation. 

In the second experiment, the lower measurement variability of SIENA-SC than GBSI and CSA, 

was confirmed in a dataset of 65 MS subjects and the same 190 HC of the previous experiment, 

thus resulting into a better differentiation between patients with MS and HC, an improvement 

of statistical power, and reduction of sample size estimates. 
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In conclusion, SIENA-SC showed to be robust and feasible when assessing SC atrophy using 

brain MRI scans routinely acquired in clinical practice. Longitudinal spinal cord atrophy 

measured through SIENA-SC has the potential to become a recognized outcome measure for 

clinical trials. However, it should currently be considered as a secondary outcome measure 

until additional advancements enhance the ease of acquisition and processing. Further 

developments of the methods are needed to make the process more streamlined and user-

friendly. 
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Impact Statement 

In this thesis, I have developed and validated the Structural Image Evaluation using 

Normalization of Atrophy in Spinal Cord (SIENA-SC), one of the first registration-based method 

for quantification of spinal cord atrophy. The SIENA-SC pipeline is a modified version of the 

original SIENA method that has been designed to address the limitations of commonly used 

segmentation-based methods, such as measuring the spinal CSA. Furthermore, SIENA-SC has 

been designed for using routinely acquired MRI of brain. 

The improvements in spinal cord atrophy measurements presented in this thesis can expand 

research possibilities for future neurodegenerative diseases projects, such as Multiple 

Sclerosis, Amyotrophic Lateral Sclerosis and SC injury, where SC volume changes are 

representative of the most aggressive aspects of the diseases. 

The high robustness and reliability reached by SIENA-SC suggests that this tool has the 

potential to become a gold standard for clinical trials including spinal cord atrophy as an 

outcome measure. Moreover, obtaining spinal cord atrophy measurements from brain scans 

could represent a viable and clinically meaningful alternative to more technically challenging 

spinal cord images, in particular in multi-centre settings where homogenous spinal cord 

acquisitions are not feasible. 

Finally, results of this thesis are also important for the patients. Deriving spinal cord atrophy 

measurements from brain scans would significantly reduce the scan time for MRI and, thus, 

participants’ burden. In the future, it is important to identify changes in spinal cord volume 
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which may improve the monitoring of the clinical course of neurological disease and its 

treatment response. 

  



Pag. 9 / 132 
 

Table of contents 

ACKNOWLEDGEMENTS .................................................................................................................................... 3 

ABSTRACT ........................................................................................................................................................ 4 

IMPACT STATEMENT ......................................................................................................................................... 7 

TABLE OF CONTENTS ........................................................................................................................................ 9 

LIST OF ABBREVIATIONS ................................................................................................................................. 13 

LIST OF TABLES ............................................................................................................................................... 15 

LIST OF FIGURES ............................................................................................................................................. 16 

1 INTRODUCTION ..................................................................................................................................... 20 

1.1 THE SPINAL CORD ..................................................................................................................................... 20 

1.1.1 Structure .......................................................................................................................................... 21 

1.1.2 Grey ma er ..................................................................................................................................... 24 

1.1.3 White Ma er ................................................................................................................................... 25 

1.2 TOWARDS BRAIN SEGMENTATION TO SPINAL CORD SEGMENTATION ..................................................................... 27 

1.2.1 Brain Segmenta on method ........................................................................................................... 30 

1.2.1.1 Sienax ..................................................................................................................................................... 30 

1.2.2 Brain Registra on methods ............................................................................................................. 32 

1.2.2.1 Siena ....................................................................................................................................................... 32 

1.2.2.2 BSI ........................................................................................................................................................... 45 

1.2.3 Challenges in spinal cord imaging ................................................................................................... 49 

1.2.4 Brief overview of Spinal Cord methods ............................................................................................ 51 

1.2.4.1 Spinal Cord Segmenta on method ......................................................................................................... 53 

1.2.4.1.1 Jim...................................................................................................................................................... 54 

1.2.4.1.2 Spinal cord toolbox ............................................................................................................................ 54 

1.2.4.1.2.1 Sct_propseg ................................................................................................................................ 55 



Pag. 10 / 132 
 

1.2.4.1.2.2 Sct_deepseg ............................................................................................................................... 58 

1.2.4.2 Spinal Cord Registra on method ............................................................................................................ 61 

1.2.4.2.1 GBSI ................................................................................................................................................... 62 

1.2.4.2.2 Reg ..................................................................................................................................................... 63 

1.3 ROLE OF SPINAL CORD IN NEUROLOGICAL DISEASES .......................................................................................... 66 

1.4 MULTIPLE SCLEROSIS ................................................................................................................................. 68 

1.4.1 Introduc on ..................................................................................................................................... 68 

1.4.2 Epidemiology ................................................................................................................................... 68 

1.4.3 Pathology ........................................................................................................................................ 69 

1.4.4 Imaging biomarker in MS ................................................................................................................ 70 

1.4.5 Role of spinal cord imaging in MS diagnosis ................................................................................... 72 

1.4.6 Spinal Cord Atrophy in MS ............................................................................................................... 73 

1.4.7 Spinal cord atrophy in disease phenotypes ..................................................................................... 74 

1.4.8 Spinal cord atrophy and MS disability ............................................................................................. 75 

1.4.9 Spinal cord atrophy in clinical trials ................................................................................................. 76 

2 AIMS OF THESIS ..................................................................................................................................... 77 

3 PROPOSED METHODS: SIENA-SC ............................................................................................................ 78 

3.1 STEP 1: CROPPING THE FIELD OF VIEW OF BRAIN IMAGES .................................................................................. 78 

3.2 STEP 2: SPINAL CORD SEGMENTATION ........................................................................................................... 78 

3.3 STEP 3: IMAGE DENOISING ......................................................................................................................... 79 

3.4 STEP 4: IMAGE INHOMOGENEITY CORRECTION ................................................................................................ 79 

3.5 STEP 5: REPETITION OF SPINAL CORD SEGMENTATION ...................................................................................... 80 

3.6 STEP 6: SC STRAIGHTENING ........................................................................................................................ 80 

3.7 STEP 7: HALF-WAY SPACE REGISTRATION ....................................................................................................... 80 

3.8 STEP 8: REFINEMENT OF THE RESAMPLED CORD MASKS .................................................................................... 81 

3.9 STEP 9: ATROPHY COMPUTATION ................................................................................................................. 81 

3.10 CALIBRATION FACTOR ................................................................................................................................ 83 



Pag. 11 / 132 
 

4 EXPERIMENT 1: ROBUSTNESS ................................................................................................................ 85 

4.1 POPULATION ............................................................................................................................................ 85 

4.1.1 Scan rescan dataset ......................................................................................................................... 85 

4.1.2 Healthy Control dataset .................................................................................................................. 85 

4.1.3 Sta s cal analysis ........................................................................................................................... 86 

4.2 RESULTS .................................................................................................................................................. 88 

4.2.1 Scan - rescan dataset....................................................................................................................... 88 

4.2.2 Comparison between methods using Healthy Controls ................................................................... 88 

4.2.2.1 SIENA-SC vs GBSI .................................................................................................................................... 89 

4.2.2.2 SIENA-SC vs CSA change ......................................................................................................................... 89 

4.2.2.3 GBSI vs CSA change................................................................................................................................. 90 

4.3 MAIN FINDINGS........................................................................................................................................ 91 

5 EXPERIMENT 2: SENSITIVITY AND SAMPLE SIZE ..................................................................................... 93 

5.1 POPULATION ............................................................................................................................................ 93 

5.1.1 Mul ple Sclerosis subjects ............................................................................................................... 93 

5.2 STATISTICAL ANALYSIS ................................................................................................................................ 94 

5.3 RESULTS .................................................................................................................................................. 96 

5.3.1 Comparison between HCs and MS .................................................................................................. 96 

5.3.2 Sample size ...................................................................................................................................... 98 

5.4 MAIN FINDINGS...................................................................................................................................... 100 

6 GENERAL DISCUSSION.......................................................................................................................... 102 

6.1 LIMITATION............................................................................................................................................ 103 

6.2 FUTURE DIRECTIONS ................................................................................................................................ 103 

6.3 CONCLUSION ......................................................................................................................................... 103 

BIBLIOGRAPHY ............................................................................................................................................. 105 

 



Pag. 12 / 132 
 

  



Pag. 13 / 132 
 

List of abbrevia ons 

ALS: Amyotrophic lateral sclerosis 

AS: Ac ve Surface 

BET: Brain Extrac on Tool 

BSI: Boundary Shi  Integral 

CNS: Central Nervous System 

CSA: Cross-sec onal area 

CSF: Cerebrospinal fluid 

DIS: Dissemina on in space 

DIT: Dissemina on in me 

ET: Echo Time 

FOV: Field of View 

GBSI: Generalized Boundary Shi  Integral 

GM: Grey Ma er 

MOG: Myelin oligodendrocyte glycoprotein 

MS: Mul ple Sclerosis 

MRI: Magne c Resonance Imaging 

NBV: Normalized Brain Volume 

NMO: Neuromyeli s op ca 

NMOSD: Neuromyeli s op ca spectrum disorder 

PBVC: percentage brain volume change 

PCVC: Percentage Cord Volume Change 



Pag. 14 / 132 
 

RRMS: Relapsing Remi ng Mul ple Sclerosis 

RT: Repe on Time 

SC: Spinal Cord 

SCT: Spinal Cord Toolbox 

SD: Standard Devia on 

SE: Standard Error 

SIENA: Structural Image Evalua on using Normaliza on of Atrophy 

SIENA-SC: Structural Imaging Evalua on, Using Normaliza on, of Atrophy for Spinal Cord 

SPMS: Secondary Progressive Mul ple Sclerosis 

PPMS: Primary Progressive Mul ple Sclerosis 

WM: White Ma er 

 

  



Pag. 15 / 132 
 

List of Tables 

Table 1: Popula on demographic ............................................................................................. 86 

Table 2: Popula on demographics. Center 1: Florence. Center 2: Verona. *Scan-rescan MRIs 

were performed on the same day ............................................................................................ 93 

Table 3: Scanner acquisi on details for Florence and Verona Sites ......................................... 94 

Table 4: Table showing the raw mean values, standard devia on, and standard error of PCVC 

obtained with the three methods. SE: Standard Error. ............................................................ 96 

Table 5: Es mated sample size per arm with all the three methods (Power= 80%, 5% 

Significance level). .................................................................................................................... 98 

 

  



Pag. 16 / 132 
 

List of Figures 

Figure 1: a) Sagi al view of Cord Segments, b) close up of ligaments, c) conus medullaris. 

Source: h ps://wikimsk.org/wiki/Spinal_Cord_Anatomy. ...................................................... 22 

Figure 2: Spinal cord cross-sec on area evolu on along inferior-superior axis within 50 healthy 

subjects (mean age: 27 ± 6.5 y.o., 29 men, 21 women, source: De Leener et al., 2018). ........ 23 

Figure 3: Spinal grey ma er organiza on. Diagram at thoracic level (Source: 

h ps://doctorlib.info/medical/anatomy/43.html on June 18, 2020). ..................................... 24 

Figure 4: Atlas of major white ma er spinal tracts. In red are the motor descending pathways, 

in blue are the sensory ascending pathways.  ....................................................................... Source: 

h ps://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Spinal_cord_tracts_-

_English.svg/1920px-Spinal_cord_tracts_-_English.svg.png .................................................... 26 

Figure 5: Example of SIENAX workflow. ................................................................................... 31 

Figure 6: Le : Example brain surface found by BET. Middle: Example skull surface found by BET. 

Right: example subtrac on image a er registra on of two images from a subject without 

atrophy...................................................................................................................................... 33 

Figure 7: Example slices through an image a er edge point detec on, and also example 

perpendicular image profiles. .................................................................................................. 38 

Figure 8: Example profiles from one edge point with a slight shi  between mepoints, and the 

deriva ves of these profiles. .................................................................................................... 41 

Figure 9:Example slices showing atrophy as blue edge points and “growth” as red. .............. 42 

Figure 10: Overview of SIENA method ..................................................................................... 44 

Figure 11: Example of an idealized one dimensional cord boundary shi  between the intensity 

ibase(x) along x axis on baseline scan, and the intensity ireg(x) along x axis on registered follow-



Pag. 17 / 132 
 

up scan. An es mate of the shi  along x axis, ∆ω, may be obtained as the shaded area divided 

by the intensity range (I1 - I2). This strategy can be extended to three dimensions to es mate 

the cord volume loss ∆ν. .......................................................................................................... 46 

Figure 12: BSI pipeline. Source: Prados et al. 2015 .................................................................. 48 

Figure 13: Mul ple sclerosis SC lesions in sagi al images acquired with: a) Proton-density-

weighted, b) T2-weighted, c) phase-sensi ve inversion recovery and d) short tau inversion 

recovery imaging. Source: Tsagkas et al. 2019. ........................................................................ 51 

Figure 14: A-C shows a SC segmenta on performed with an ac ve surface method, while D-F 

demonstrates a fully automa c SC segmenta on. Source: Yiannakas et al. 2016 .................. 53 

Figure 15: Workflow of the detec on module. Source:Kaus et al 2003 .................................. 57 

Figure 16: Propaga on of the deformable mesh. Source: De Leener, Kadoury, and Cohen-Adad 

2014. ......................................................................................................................................... 58 

Figure 17: A 2D dilated convolu on with a recep ve view of size 5x5 and a filter of 9 parameters 

(output image in green). Source: h ps://towardsdatascience.com/types-of-convolu ons-in-

deep-learning-717013397f4d .................................................................................................. 60 

Figure 18: The journey of an image through deepseg. Source:Gros et al 2019. ...................... 61 

Figure 19: Pipeline for the longitudinal spinal cord assessment using GBSI. Source: Prados 

2020. ......................................................................................................................................... 63 

Figure 20: Schema c representa on of the main steps of preprocessing performed by the 

registra on (Reg) method on pairs of 3D T1-weighted baseline and follow-up scans. Manual 

and fully automated steps are represented in yellow and light blue boxes, respec vely. FU = 

follow-up; AS = ac ve surface. Source: Valsasina et al 2015. .................................................. 65 

Figure 21: SIENA-SC image processing pathway. ...................................................................... 82 



Pag. 18 / 132 
 

Figure 22: Boxplot showing the comparison of the measurements using SIENA-SC, GBSI and 

CSA change. The line inside the boxes indicates the median value. Results are shown in 

absolute values ......................................................................................................................... 88 

Figure 23: Sca er plot (on the le ) showing PCVC evalua on from SIENA-SC (x) and GBSI (y). 

The do ed line shows ideal agreement of x=y. The con nuous line shows the least-squares fit 

between SIENA-SC and GBSI. Bland Altman plot (on the right) showing the difference between 

SIENA-SC and GBSI .................................................................................................................... 89 

Figure 24: Sca er plot (on the le ) showing PCVC evalua on from SIENA-SC (x) and CSA change 

(y). The do ed line shows ideal agreement of x=y. The con nuous line shows the least-squares 

fit between SIENA-SC and CSA change. Bland Altman plot (on the right) showing the difference 

between SIENA-SC and CSA change. ........................................................................................ 90 

Figure 25: Sca er plot (on the le ) showing PCVC evalua on from GBSI (x) and CSA change (y). 

The do ed line shows ideal agreement of x=y. The con nuous line shows the least-squares fit 

between GBSI and CSA change. Bland Altman plot (on the right) showing the difference 

between SIENA-SC and CSA change. ........................................................................................ 90 

Figure 26: Boxplot illustrates the comparison of the annualized percentage cord area changes 

obtained using SIENA-SC, GBSI and CSA change between healthy control and mul ple sclerosis 

subjects. .................................................................................................................................... 97 

Figure 27: Plot showing the sample size power for different effect size for each method (SIENA-

SC: con nuous red line ; GBSI: blue dash-dot line ; CSA: green do ed line) ........................... 99 

 
 
 
 
 



Pag. 19 / 132 
 

 
 
 
 
  



Pag. 20 / 132 
 

1 Introduc on 

In this thesis, we present a new method for longitudinally assessing spinal cord (SC) atrophy, 

called SIENA-SC (Structural Imaging Evaluation, Using Normalization, of Atrophy for Spinal 

Cord), on routinely acquired MRI. 

To make the thesis self-consistent, the necessary concepts will be provided in the introduction 

so that the objectives can then be correctly described. The notions necessary to understand 

the new solutions implemented in the software will also be provided. 

Therefore, the introduction will be organized as follows: 

1. An overview of the anatomy of the spine; 

2. a review of the current state of the art methods for the analysis of the brain and the 

spinal cord, with a particular regard to the SIENA methodology. This section will 

explore also the challenges of spinal cord imaging and the attempts to overcome them 

to develop reliable SC analysis tools; 

3. a descrip on of the role of the spinal cord in neurodegenera ve disease, with a 

par cular focus on MS, a disease where SC atrophy has been already characterized. 

1.1 The Spinal Cord 

The SC cons tutes, along with the brain, the central nervous system (CNS). The SC is a long 

tubular-shaped structure located in the vertebral column, surrounded by Cerebrospinal fluid 

(CSF) and extending from the medulla oblongata in the brainstem to the first or second lumbar 
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vertebrae depending on individuals (Figure 1). As an extension of the brain, its role is to relay 

nervous signals between the brain and the peripheral nervous system, ensuring the transfer 

of efferent and afferent messages between the cerebral cortex and the motor and sensory 

system. It is also the center for reflexes coordina on and control. In par cular, SC hosts central 

pa ern generators which control rhythmic movements such as breathing or walking. 

1.1.1 Structure 

The SC consists of 31 segments through which spinal nerves symmetrically enter and exit by 

right and le  sides : C1 to C8 for cervical levels, T1 to T12 for thoracic levels, L1 to L5 for lumbar 

levels and S1 to S6 for sacral levels. During embryonic development, vertebrae match spinal 

levels but as vertebral column grows faster than SC, it is not the case anymore at adulthood. 

In general, the spinal levels are found at the same height as their respec ve rostral vertebral 

levels (e.g., spinal level C4 is at the same height as vertebral level C3) [1]. However inter-

individual varia ons are observed [2]. 

The SC is made up of grey (GM) and white ma er (WM) (Figure 1). GM is found in the center 

with a bu erfly or H shape, while white ma er surrounds it. SC cross-sec on changes in shape 

and area along inferior-superior axis (Figure 2), as GM and WM do. The GM/WM CSA ra o is 

also reduced with aging [3,4]. The SC cross-sec on shape is round at thoracic and lower lumbar 

levels and ellip cal at cervical levels. 

SC surface is cover by a thin membrane, the pia mater, which is the innermost layer of the 

meninges, with the arachnoid mater and the dura mater as the outermost layer, at the surface 

of the spinal canal. The spinal canal or the subarachnoid cavity is filled with CSF. The CSF is a 

colorless fluid derived from blood plasma with equivalent sodium content but almost no 
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proteins. It is composed at 99% of water. The remaining is glucose, potassium, calcium, 

magnesium and chloride. The CSF plays a protec ve role for the brain and SC, ac ng as a 

cushion or buffer. It also plays a role of autoregula on of the cerebral blood flow and 

preven on of brain ischemia. Finally, it is an important component of the lympha c system as 

it enables metabolic waste products from brain and SC to be cleared. 

 

 

Figure 1: a) Sagi al view of Cord Segments, b) close up of ligaments, c) conus medullaris. Source: 
h ps://wikimsk.org/wiki/Spinal_Cord_Anatomy. 
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Figure 2: Spinal cord cross-sec on area evolu on along inferior-superior axis within 50 healthy 
subjects (mean age: 27 ± 6.5 y.o., 29 men, 21 women, source: De Leener et al., 2018). 
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1.1.2 Grey ma er 

The GM of the SC has the shape of a bu erfly or the le er H (Figure 3) and it is mainly made 

up of a mixed of neurons, interneuronal connec on fibers, glial cells (cells suppor ng neurons 

environment) and blood vessels. GM is generally divided into three main columns on each side 

which host specific cellular groups receiving the nerve endings (Figure 3): the dorsal or 

posterior horn, the ventral or anterior horn and the intermediate or lateral GM. In the center 

is the central canal filled of CSF. The dorsal horns host the free nerve ending of afferent nerve 

fibers entering SC by dorsal roots and transmi ng signal to sensory neurons. The ventral horns 

host the free nerve ending of efferent nerve fibers exi ng SC through ventral roots and 

transmi ng signal from motor neurons (Errore. L'origine riferimento non è stata trovata.). 

Afferent neurons and efferent neurons are connected through interneurons in the central grey 

commissure around the central canal. These connec ons are responsible for spinal reflexes 

(e.g., limb withdrawal reflex a er a painful s muli). 

 

 

Figure 3: Spinal grey ma er organiza on. Diagram at thoracic level (Source: 
h ps://doctorlib.info/medical/anatomy/43.html on June 18, 2020). 
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1.1.3 White Ma er 

The white ma er is made of long fibers called axons, running along the inferior-superior axis 

and relaying nervous signal from neurons or receptors to other neurons or effectors. Those 

fibers are wrapped in a myelin sheath providing a pale color to ssue (hence the name white 

ma er), which is produced by glial cell named oligodendrocytes. Axons diameters ranges from 

1 to 10 μm in humans [5]. White ma er also includes some blood vessels and CSF in 

extracellular space. Axons with globally same origin and des na on are grouped by region 

and func on in symmetric right-le  pathways or tracts (Figure 4). Two main categories can be 

iden fied: the sensory ascending pathways and the motor descending pathways. Ascending 

pathways consists of afferent fibers entering SC through dorsal roots or coming from SC GM 

and conduc ng informa on to higher levels. Descending pathways are mainly composed of 

fibers coming from motor cortex or brainstem and conduc ng informa on to lower levels and 

to the peripheral nervous system. Finally, the propriospinal (or intersegmental) tracts are a 

third category of pathways which are made of both ascending and descending, crossed and 

uncrossed short fibers, and which interconnect adjacent or distal spinal levels. Main tracts of 

this category (not represented in Figure 4) are the ventral propriospinal tract, the lateral 

propriospinal tract and the dorsal propriospinal tract. 
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Figure 4: Atlas of major white ma er spinal tracts. In red are the motor descending pathways, in blue are the 
sensory ascending pathways.  Source: 
h ps://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Spinal_cord_tracts_-_English.svg/1920px-
Spinal_cord_tracts_-_English.svg.png 
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1.2 Towards brain segmenta on to spinal cord segmenta on 

In order to be able to explain in detail SIENA-SC, the solu on proposed in the following 

chapters of this thesis for the evalua on of longitudinal atrophy of the SC, it is appropriate to 

preliminarily introduce some general concepts related to the characteris cs of MRI images, list 

the possible causes of variability in the images themselves and some of the solu ons proposed 

in the field of volumetric analysis of the brain. A erwards, we will describe the different 

approaches used in the evalua on of SC atrophy. 

MRI is a medical applica on of nuclear magne c resonance. MRI is a medical imaging 

technique used in radiology to obtain images of the anatomy and physiological processes of 

the body. MRI scanners use strong magne c fields, magne c field gradients, and radio waves 

to generate images of the body's organs. MRI is not invasive, because it does not involve the 

use of X-rays or ionizing radia on, which dis nguishes it from CT and PET scans. The result of 

an MRI sequence is the crea on of a high-defini on 3D image of the organ being studied. An 

MRI image thus consists of an ordered, three-dimensional grid of voxels, the minimal elements 

of a 3D image equivalent to the pixels of two-dimensional images.  The intensity encoded in 

each voxel does not directly reflect any physical content but is indirectly related to the mes 

with which the spins of hydrogen atoms, previously aligned along a direc on through the use 

of a constant magne c field B0, return to the same once excited through a pulse of known 

radio frequency, called B1. These me intervals are called relaxa on mes, vary from ssue to 

ssue, and depend on parameters, such as repe on me (RT: the me between excita on 

pulses) and echo me (ET: the me in which radiofrequency data returning from the ssue 

a er the ini al radiofrequency pulses are collected) whose different combina on allows 
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different sequences to be constructed, which create images with varying intensity contrast 

between ssues. 

Given the complexity of the physical processes and digital signal processing involved in 

crea ng an MRI image, the ar facts that can be generated are numerous. These can depend 

on either hardware-related problems, such as B0 inhomogeneity in the region encompassing 

the analyzed organ or intensity distor ons due to B1 field inhomogeneity, or problems related 

to pa ent coopera on, such as mo on ar facts. Another, ineradicable source of variability in 

MRI images is called the par al-volume effect and is generated when the voxel size is larger 

than the intrinsic size of the structures to be studied. The ar fact occurs as a blurring of 

intensi es in voxels that contain mul ple ssues, such as the irregular interfaces between 

white and GM in the brain. 

This brief and far from exhaus ve review of the principles that preside over the crea on of 

MRI images and the possible sources of error allows us to focus on the various analysis 

pipelines that have been developed to analyze atrophy varia ons computed on MRI images. 

Generally speaking, image segmenta on is the process of dividing an image into different 

parts, aiming to define specific regions, whose boundaries separate image parts that display 

dis nct features. Quan ta ve MRI measures are strongly dependent not only on acquisi on 

parameters, but also on processing methods, presen ng with different sensi vity to change, 

repeatability and measurement error. 

Several libraries of free online so ware for neuroimaging analysis have implemented pipelines 

for fully automated quan fica on of brain atrophy and SC. Referring to the exis ng literature, 
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we can provide a schema c classifica on of so ware. We speak of a "segmenta on method" 

when the so ware does not directly compare brain MRI images of the same subject acquired 

over me. This type of so ware is mostly used in cross-sec onal analysis. Conversely, it is 

called "registra on method" when the so ware directly compares brain MRI images of the 

same subject acquired over me and is based on an ini al registra on. This type of so ware 

is o en used in longitudinal analysis [6]. 

Most 'segmenta on-based' so ware packages divide the analysis into separate sub-phases. 

The first one reduces the amount of voxels to be analysed. Thus, for the analysis of brain 

images, this phase automa cally separates the parenchyma (GM+WM+CSF) from the non-

parenchyma, while for the analysis of SC images, this phase automa cally segments the SC 

cord. The second one consists of automa cally correc ng the MR images of the previously 

iden fied organ for B0 inhomogeneity (e.g. brain or SC). Finally, these approaches provide the 

total volume and GM and WM volumes by summing the par al volumes (PVE) of each ssue 

es mated in each voxel, i.e. the propor ons of WM, GM and CSF present in each voxel of an 

MRI image. The quan fica on of the PVE in each voxel starts by assigning the PVE to a given 

voxel, using its intensity and that of the surrounding voxels, thus reducing classifica on errors 

due to the presence of random noise. To improve segmenta on, a-priori spa al informa on 

concerning the posi on of voxels can be added to the MRI intensi es, thus reducing the 

es mated propor on of a certain ssue in voxels that most likely belong to a different ssue, 

based on their posi on. 

"Registra on-based" so ware packages provide the total/GM/WM volume changes by 

comparing co-localized volumes of serially acquired MRI images from the same subject. A 
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preliminary step common to most of these procedures is the registra on of all MRI images of 

the same subject on the same virtual space. Early so ware packages used in longitudinal 

analysis introduced the concept of halfway-space in which to align two MRI examina ons of 

the same subject and on which to measure the percentage of change in overall volume by 

calcula ng the shi  in the parenchyma/CSF boundary over me. 

Before describing the solu ons developed for SC, it is instruc ve to look in detail at the 

pipelines implemented in some of the so ware used for the analysis of brain atrophy, as many 

of the solu ons implemented in the analysis of SC atrophy exploit so ware (or concepts) 

previously developed for the analysis of brain images. 

1.2.1 Brain Segmenta on method 

1.2.1.1 Sienax 

SIENAX works for cross-sec onal (single me point) analysis, and it is useful for differen a ng 

two groups of subjects on the basis of single me point brain size measurement [7]. 

SIENAX a empts to es mate normalized brain volume (NBV) from a single image, using the 

skull to normalise spa ally, with respect to a standard image. It starts by performing 

segmenta on of brain from non-brain ssue in the head and es mates the outer skull surface. 

The brain and skull images are then registered to a standard space brain and skull image pair 

derived from the MNI152 standard image [8]. Next a standard space mask is used to make sure 

that no parts of the eyes are le  from the brain extrac on (because of the connec on of the 

op c nerve, this can occasionally happen) and also to provide a consistent (i.e., non-arbitrary) 
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cutoff point for the brain stem. Finally ssue-type segmenta on is carried out (including par al 

volume es ma on) and a (normalised) brain volume es mate is produced. 

The normaliza on for head/skull size is very important because it reduces within-group 

varia ons, making cross-group comparisons more sensi ve. 

The complete SIENAX method is summarized in the Figure 5. 

 

 

 

 

Figure 5: Example of SIENAX workflow. 
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1.2.2 Brain Registra on methods 

Brain atrophy measures have been a cornerstone in the study of interventions with putative 

neuroprotective effects [9–11], because of the application of registration-based methods that 

provide direct estimates of brain atrophy, such as the SIENA [7], and the BSI method [12–14]. 

Both SIENA and BSI demonstrated a reduced sample size requirements to detect significant 

differences between groups or over time and are nowadays well-established methods to 

measure longitudinal brain atrophy in clinical trials and in observational studies for 

neurodegenerative diseases [15]. 

The two methods men oned above will be described in detail, as they form the conceptual 

basis on which SIENA-SC is based and describe some of the func onali es that have been 

employed, with the necessary adapta ons, in the implementa on of SIENA-SC. 

1.2.2.1 Siena 

SIENA performs segmenta on of brain from non-brain ssue in the head and es mates the 

outer skull surface (for both me-points), and uses the resul ng masks to register the two 

images on a halfway space, while correc ng and normalising for imaging geometry changes. 

Then the registered segmented brain images are used to find local atrophy, measured on the 

basis of the movement of image edges [7,16]. 

Brain extrac on 

The first processing stage is the separa on of parenchyma from non-parenchyma ssue. The 

method used is known as BET - Brain Extrac on Tool [17]. BET provides a binary brain mask, 

the segmented brain image, and an external skull surface image as output. 
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Skull extrac on 

Measurement of changes in brain size benefits from the es ma on of the skull (which is of 

fairly unvarying size over me in an adult) as a normalising factor in both cross-sec onal and 

longitudinal measurements. 

Before brain change can be measured, the two images of the brain have to be registered 

(aligned). Clearly this registra on cannot allow rescaling, otherwise the overall atrophy will be 

underes mated. However, because of possible changes in imaging geometry over me (due 

to gradient calibra on dri  or variable local field distor ons), it is necessary to hold the scale 

constant (see also [18] for previous work on this problem; note that some longitudinal 

methods have failed to take account of this problem, although methods based primarily on 

cross-sec onal measurements tend to normalise against it). With the method described here, 

this can be achieved by using the exterior skull surface (assumed to be constant in size and 

shape for an individual) as a scaling constraint in the registra on. 

In most MR images, the skull appears very dark. In T1-weighted images, the internal surface 

of the skull is largely indis nguishable from the CSF, which is also dark. Thus, the exterior 

Figure 6: Le : Example brain surface found by BET. Middle: Example skull surface found 
by BET. Right: example subtrac on image a er registra on of two images from a subject 
without atrophy. 
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surface is searched for. This also can be difficult to iden fy, even for human experts, but is the 

most realis c surface to aim to find. The exterior skull surface is found automa cally as the 

final stage of brain extrac on, using BET. Star ng with the es mated brain surface, each 

surface point is taken as the start of a search outwards for the op mal skull posi on. The most 

distant (from the brain) point of low intensity (before the bright scalp) is found, and the first 

peak in gradient outside of this is then defined as the exact posi on of the exterior of the skull 

surface. This method is quite successful, even in regions of overlying (dark) muscle or where 

there is significant (bright) marrow within the bone. Thus, a skull image is generated for each 

input image, to be used in registra on. 

Registra on 

As already stated, before the differences between two images can be found, the brains in the 

two images must be aligned, using a registra on procedure. The registra on carried out uses 

a robust and accurate automated linear registra on tool, FLIRT (FMRIB’s Linear Image 

Registra on Tool) [19]. A three-step procedure is used, where the brain images are used to 

op mise the ini al registra on and the final transla on and rota on, whilst the skull images 

are used to op mise the scaling and skew. 

One could stop here and apply change analysis to the registered second brain and the original 

first brain. However, this is not op mal, as the second brain image has been through a 

processing step that the first brain image has not, namely a spa al transforma on (involving 

interpola on of its values). The images will therefore look slightly different; the transformed 

second brain image will be slightly more blurred than the first brain image. To ensure that the 

images being compared undergo equivalent processing steps, both input images are 
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transformed to a posi on which is halfway between the two. In this way both images are 

subjected to a similar degree of interpola on-related blurring. 

The typical quality of this brain registra on is illustrated in Figure 6 (right), an example 

subtrac on of a registered pair of head images, which shows only appreciable mo on outside 

of the skull. 

All of the brain and skull images are now discarded; only the original unsegmented images and 

the brain mask images are kept. The transforma ons are applied to these images so that two 

registered (“common-space”) head images and two registered brain mask images result. These 

four images are passed on to the next stage. 

Masking 

The registered binary brain masks are now combined into a single mask which will be applied 

to the registered head images to produce two new registered brain images. The reason for this 

(rather than keeping the original registered brain images) is that even slight differences in the 

original brain segmenta ons (i.e., the produc on of the brain masks) would cause the 

artefactual appearance of brain change. Thus, the two masks are “binary ORed” - i.e., if either 

is 1 at a par cular voxel, the output is 1. (They cannot be “ANDed” as the brain from the second 

me point would cause incorrectly reduced masking of the first me point image in the case 

of atrophy.)  

The resul ng combined mask is then applied to the registered head images to produce two 

registered brain images. These two images are passed to the final stage for the analysis of 

change. 
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Change analysis 

The next stage in the analysis is the change es ma on itself. There is great variety in how this 

is achieved amongst published longitudinal atrophy methods. Some researchers (e.g., [20–22]) 

use normalized subtrac on of the images, assuming that resul ng areas of significant 

devia on from zero correspond to areas of interes ng brain change. This relies on the 

assump on that the images will appear exactly the same (apart from the change of interest); 

various procedures such as histogram matching and rela ve bias field correc on have been 

suggested [22], in order to a empt to make the images look as similar as possible. Others look 

more directly for changes around ssue boundaries. For example, [12,18] use the “boundary 

shi  integral” (the area under the intensity profile across a boundary in image 1 is subtracted 

from that for image 2, and normalised by the boundary height, resul ng in an accurate 

measure of lateral mo on), which gives the mo on of each edge, even if blurred, but only if 

image contrasts in general are well matched between scans (See chapter 1.2.2.2 for further 

details). Methods that are principally cross-sec onal in nature avoid the need to address the 

issue of change analysis. 

The system presented here first a empts to find all brain surface edge points and then 

es mates the mo on of these edge points from one me point to the next. This edge mo on 

is found for the whole brain surface, enabling the total volume change to be es mated. The 

previously published version of SIENA found edges on the basis of edge strength, and then 

found edge mo on by searching for matching edge points from one image to the next. This 

suffered slightly from rela vely imprecise defini on of edge points, i.e., discrimina on was 

imperfect. The current version uses full ssue-type segmenta on to find edge points, and thus 
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is more correctly selec ve, and also enforces con nuity of the es mated brain surface. Thus 

the system presented here finds all brain surface edge points (including internal brain- CSF 

edge points, such as those around the ventricles) and then finds the mo on of these points, 

in a Bayesian framework, perpendicular to the local edge, to sub-voxel accuracy. 

In order to find all brain surface edge points, ssue segmenta on is performed on the image 

from me point 1 a er applica on of the joint brain mask (see previous sec on). The tool used 

[23] carries out ssue (GM, WM and CSF) segmenta on and bias field correc on. The method 

is based on a hidden Markov random field (segmenta on labelling) model and an associated 

Expecta on-Maximiza on algorithm for es ma ng ssue intensity parameters and bias field 

(spa al intensity inhomogeneity). The whole process is fully automa c (a er being instructed 

as to whether the image is T1 or T2, and whether to a empt to segment GM and WM as a 

single class or as separate classes), producing a ssue-labelled segmenta on. It is robust and 

reliable, compared to the more common finite-mixture-model-based methods, which are 

sensi ve to noise, par cularly as they use no spa al neighbourhood informa on. 

The ssue segmenta on labels are used to find all brain edge points. First, grey and white 

voxels are combined into a single class, as are also CSF and background voxels. All boundary 

voxels between these two resul ng classes are used for the next processing stage. Note that 

this method of finding brain edge voxels enforces a con nuous surface (without breaks), 

although not necessarily a topologically simple one. Figure 7 shows example slices through an 

image a er edge point detec on (and also example perpendicular image profiles as described 

below). 
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Next, the common-space registered image from me point one is processed at each brain edge 

point. First the image gradient direc on (in 3D) is found, using a simple 3x3x3 Gaussian-

weighted deriva ve operator. This is used to find the surface normal unit vector (and will 

always point from the darker side of the boundary to the lighter side - this informa on will 

later be used to tell the difference between atrophy and “growth”). 

Next, a 1D array (an intensity profile perpendicular to the edge) is filled with values from the 

image. These values are sampled at sub-voxel posi ons (using tri-linear interpola on) as the 

array’s elements will not in general fall exactly at voxel grid posi ons. The length of the array 

is preset to a fixed number of millimeters (typically ± 3); the extent will also be limited by the 

presence of a second edge, for example, the far side of a sulcus, in order to prevent other 

nearby edges from confusing the mo on es ma on. A second 1D array is filled with values 

from exactly the same image posi ons from the (common-space registered) image from me 

point two. 

Figure 7: Example slices through an image a er edge point detec on, 
and also example perpendicular image profiles. 
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Edge mo on is now es mated by finding the rela ve shi , between the arrays, which produces 

the maximum correla on (to sub-voxel accuracy using interpola on of the correla on scores). 

However, before the correla on, each array is pre-processed in two ways. 

First each profile is convolved with a differen a ng kernel, as it makes sense to correlate the 

deriva ves (edge-enhancements) of the two 1D image profiles rather than the raw image 

values; if there are intensity or contrast differences between the two images, the posi on of 

maximum correla on could be skewed, but this effect is much reduced if correla ng edge-

enhanced versions of the profiles. Thus this method requires no (intensity) normalisa on of 

the images, and is not sensi ve to problems arising from intensity inhomogenei es across the 

images. The second process is the mul plica on of each profile by a high-power exponen al 

profile (smoothed sharp cutoff); this acts as a prior on the expected mo on by weigh ng the 

correla on score, so that higher mo ons are less likely than small ones - this helps reduce the 

effect of large mo on mismatches (which otherwise make a large contribu on to error in the 

overall method). This can be viewed as a Bayesian prior: 

𝑃(𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡|𝑑𝑎𝑡𝑎) ∞ 𝑃(𝑑𝑎𝑡𝑎|𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)𝑃(𝑑𝑖𝑠𝑝𝑙𝑎𝑚𝑒𝑛𝑡) 

( 1-1 ) 

where the first term on the right can be thought of as the raw correla on score, and second 

term is the prior on the displacement between the profiles 

𝑃(𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)  ∝ 𝑒  

( 1-2 ) 
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which has σ set to a suitable length such as 7mm. Because the posterior on the displacement 

is simply used to find the maximum probability the constants of propor onality are 

unimportant. 

Thus, the op mal displacement is found for each edge point, and, as stated earlier, the 

direc on of the edge normal determines whether atrophy or “growth”1 is taking place at this 

point. The posi on of op mal displacement is es mated to sub-voxel accuracy by fi ng a 

quadra c through the correla on values at the peak and its two neighbours. Figure 8 shows 

example profiles from one edge point with a slight shi  between me points, and the 

deriva ves of these profiles. 
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For example, slices showing atrophy as blue edge points and “growth” as red, see Figure 9. 

 

 

 

Figure 8: Example profiles from one edge point with a slight shi  between 
mepoints, and the deriva ves of these profiles. 
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Percentage Brain Volume Change Quantification 

Brain atrophy is conveniently quan fied by a single number such as the percentage brain 

volume change (PBVC). The ini al value obtained from the change image is the sum of all edge 

point mo ons (linear voxel units), which, when mul plied by voxel volume, gives the total BVC. 

This is one possible measure, as would be a PBVC derived directly from this. However, a more 

invariant measure is obtained by dividing this volume by the number of edge points found 

mes the voxel “area”. (Note, the final stages of SIENA are always carried out with cubic voxels, 

so there is no confusion about the defini on of area here.) This measure is then the mean 

perpendicular brain surface mo on. The reason why this is preferable to the total volume 

change is that it is not (to first order) dependent on the number of edge points found. As the 

number of edge points depends on slice thickness (see below - typically by a factor of two 

between 1mm slices and 6mm) and (to a lesser extent) other scanning details, it is a good idea 

Figure 9:Example slices showing atrophy as blue edge points and “growth” as red. 
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to normalize for the number of points found. Finally, if it is required to convert the mean 

surface mo on to a PBVC, the ra o of the brain volume to the brain surface area needs to be 

es mated. 

In this formula on: 

𝑙 =  
𝑣∑𝑚

𝑎𝑁
 

( 1-3 ) 

where 𝑙 is the mean surface mo on, ∑m is the edge mo on (voxels) summed over all edge 

points, v is voxel volume, N is the number of detected edge points and a is voxel CSA. Thus, 

% 𝑏𝑟𝑎𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =  
100𝑙𝐴

𝑉
=  

100𝑙𝑓𝑉

𝑉
= 100𝑙𝑓 

( 1-4 ) 

where A is the brain surface area (actual, i.e., not aN), V is the actual brain volume, f is the 

ra o of actual area to volume. 

It is possible to find f directly for any given image without knowing A or V; if a single image is 

scaled by a known amount and then compared with the unscaled version using the above 

change analysis, the correct PBVC is known from the scaling that was applied, and the 

measurement of 𝑙 then allows f to be found. It varies across scanners, slice thicknesses and 

pulse sequence, but normally lies between 0.1 and 0.2mm−1. Applying this method (referred 

to as self-calibra on) helps reduce bias (systema c error) in the reported es mates of PBVC. 

The complete SIENA method is summarized in Figure 10. 
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Figure 10: Overview of SIENA method 
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1.2.2.2 BSI 

“BSI” refers to Boundary Shi  Integral, is a widely recognized technique [12] to measure 

atrophy directly from the difference image of the registered serial MR images [12,13]. 

The BSI algorithm assumes that a change in volume of a so  ssue object must be associated 

with an exact shi  in the boundary of that object. The shi  of the ssue boundary results in 

an exactly equivalent shi  of the signal which is constructed from the MR samples [12]. 

Hence, if the baseline scan and follow-up scan are registered, in the area around the boundary 

of the registered scans Ibase and Ireg, the intensi es of Ibase(x; y; z) and Ireg(x; y; z) should shi  by 

an amount corresponding to the posi on shi ; this permits the precise measurements of 

boundary shi s by determining intensity shi s in the boundary region. The change in volume 

can thus be es mated by compu ng the integral of all of the boundary shi s. 

If ibase(x) is the MR signal along the cord boundary at the loca on x of the baseline scan and 

ireg(x) is the MR signal at loca on x of a registered follow-up scan on which there has been a 

boundary shi  of ∆ω from the baseline, then these two MR signals can be related by ireg(x) = 

ibase(x+∆ω) in the region of the cord boundary [12]. Moreover, if the intensity changes 

monotonically across the cord boundary, then ibase(x) and ireg(x) will take the form shown in 

Figure 11. We can therefore define inverse func ons xbase(i) and xreg(i), related by xreg(i) = xbase(i) 

- ∆ω. 
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A simple es mate of ∆ω can be obtained using ∆ω = xbase(i) - xreg(i), where i may be any value 

within the intensity range of the cord boundary region [IR, IS]. In 3D T1 weighted spine MR 

images, the cord is brighter while the CSF is darker, thus IR is the intensity on the CSF side of 

the boundary and IS is the intensity on the cord side of the boundary. A more robust es mated 

can be obtained by averaging the es mates of ∆ω over an intensity range [I2, I1], as shown in 

Equa on ( 1-5 ). 

∆𝜔 =
1

𝐼 − 𝐼
( 𝑥 (𝑖) −  𝑥 (𝑖))𝑑𝑖 

( 1-5 ) 

where IR ≤ I2 < I1 ≤ IS. 

Figure 11: Example of an idealized one dimensional cord boundary shi  between the 
intensity ibase(x) along x axis on baseline scan, and the intensity ireg(x) along x axis on 
registered follow-up scan. An es mate of the shi  along x axis, ∆ω, may be obtained as the 
shaded area divided by the intensity range (I1 - I2). This strategy can be extended to three 
dimensions to es mate the cord volume loss ∆ν. 
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Equa on ( 1-5 ) can alterna vely be expressed as an integral with respect to x over the 

boundary, as wri en in Equa on ( 1-6 ). Equa on ( 1-5 ) and Equa on ( 1-6 ) are equivalent by 

considering that both integrals evaluate the area of the shaded region in Figure 11. 

∆𝜔 =
1

𝐼 − 𝐼
 (𝐶𝑙𝑖𝑝( 𝑖 (𝑥), 𝐼 , 𝐼 ) − 𝐶𝑙𝑖𝑝(𝑖 (𝑥), 𝐼 , 𝐼 ))𝑑𝑥 

( 1-6 ) 

where IR ≤ I2 < I1 ≤ IS, and 𝐶𝑙𝑖𝑝(𝑎; 𝐼 ; 𝐼 ) =
𝐼
𝑎
𝐼

      
𝑎 < 𝐼

𝐼  ≤ 𝑎 ≤  𝐼
𝐼 >  𝐼

 

If we extend this strategy to three-dimensions and determine the integral numerically by 

evalua ng the integrand at small sampling intervals, the volume change can be calculated as 

shown in Equa on ( 1-7 ). 

∆𝑣 =
𝐾

𝐼 − 𝐼
 𝑋 (𝐶𝑙𝑖𝑝(𝐼 (𝑥, 𝑦, 𝑧), 𝐼 , 𝐼 ) − 𝐶𝑙𝑖𝑝 𝐼 (𝑥, 𝑦, 𝑧), 𝐼 , 𝐼

, , ∈

) 

( 1-7 ) 

where K is the unit voxel volume, E is the set of voxels in the border region of the cord, Ibase(x; 

y; z) and Ireg(x; y; z) are the voxel intensi es on the registered baseline and follow-up scans at 

(x; y; z), and the intensity range of the integral [I2; I1] is referred to as the intensity window. 

Finally, the evalua on of BSI requires the appropriate selec on of an intensity window. The 

intensity window [I2; I1] should be selected such that it falls en rely within the intensity 

transi ons associated with the boundaries of the structure of interest. 

When applied to MRI image, the two T1-weighted images are co-registered using an affine 

registra on that correct for rota on, transla on, scaling and minimize the standard devia on 
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of the ra o image [24]. The registered scans are then differen ally bias-corrected [25] before 

calcula ng the BSI. The method defines a region that lies near the borders of the baseline and 

registered repeat brain masks. The BSI technique is based on integra ng the differences in 

intensi es over this region. Scan intensi es are normalised by dividing each scan by its 

respec ve mean, calculated over the interior region. The intensi es are bounded by a clipping 

func on based on a pre-defined upper and lower intensity for each scan. Dividing the 

integrated differences by the span of the clipping func on provides a measure of the global 

brain volume loss (Figure 11). The absolute scaling of the BSI (that allows a final % brain volume 

change to be es mated) is calibrated using manual measurements of brain volume on each 

scan. The Figure 12 shows an example of the en re workflow on a brain analysis. 

 

  

Figure 12: BSI pipeline. Source: Prados et al. 2015 
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1.2.3 Challenges in spinal cord imaging 

MRI is also the method of choice in inves ga ng disorders of the SC in a fairly quick and non-

invasive fashion. Based on the magne c proper es of the hydrogen atoms, abundant in the 

human body in fat and water, various MRI contrasts may be generated and deliver anatomical 

detail, informa on on structural composi on and ssue func on [26–28]. For that purpose, a 

number of different MR-sequences and contrasts are used including relaxa on me-weighted 

(T1, T2, T2*), proton-density weighted, magne za on prepared rapid gradient echo, fast-spin 

echo, phase-sensi ve and short tau inversion recovery techniques [29]. 

However, in contrast to brain MRI, the environment of the SC presents addi onal challenges 

for MRI methods [26–28]. Greatest challenge is the inhomogeneous magne c field across the 

SC due to the different magne c proper es of the surrounding ssues, e.g. CSF, fat, vertebral 

bones, and air- ssue interfaces. This may lead to image distor ons and a loss of spa al 

resolu on. Further, the SC is a fairly thin and curved structure with a maximal antero-posterior 

diameter of 8.3 ± 1.6mm at the C1 level and maximal latero-lateral diameter of 13.3 ± 2.2mm 

at the C5 level [2,30–33], which results in par al volume effects (a mix of ssues with different 

relaxa on proper es in one voxel) at the SC/CSF borders [26–29]. Another challenge is the 

cord’s physiological movement in the spinal canal as a result of cardiac-induced pulsa le CSF 

mo on, respiratory mo on, and swallowing resul ng in MRI mo on ar facts [34–36]. Contact 

of the SC with some point of the osseous canal, which par ally eliminates contrast between 

the SC and its surroundings further hampers assessment. Furthermore, osteophytes of the 

spinal column can cause focal changes in CSF flow dynamics within the spinal canal causing so 
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called CSF flow ar facts. Finally, so-called “Gibbs trunca on ar facts” are very common in SC 

MRI resul ng in high signal in the center and dark edges of the SC. 

Another limita on is the currently insufficient contrast between SC GM, WM and CSF on 

conven onal SC MRI. Only recently, advanced MRI sequences were able to overcome those 

obstacles providing images with sufficient signal- and contrast-to-noise ra os between SC 

compartments in 3 Tesla MRI machines. 

Despite anatomical and methodological challenges, SC MRI is essen al in clinical rou ne and 

can be generally assessed in two ways: qualita vely or quan ta vely. Qualita ve SC MRI 

assessment involves neuroradiologists searching for MRI signal intensity changes within the 

SC in order to dis nguish normal SC ssue from focal intramedullar pathology such as 

demyelina on, edema, or inflamma on e.g. in MS lesions (Figure 13). This is currently the sole 

use of SC MRI in clinical se ngs. However, some of the disorders affec ng the SC do not 

present with focal abnormali es in the sense of hypo- or hyperintense lesions on MRI but are 

rather characterized by neurodegenera on of various ae ologies leading to neuronal loss and 

shrinkage, Wallerian degenera on and axonal loss (e.g. spinal muscular atrophy, amyotrophic 

lateral sclerosis). Others do manifest with MRI intensity changes indica ng inflammatory and 

demyelina ng lesions, which -however- do not represent the en re underlying SC pathology 

and o en do not serve as reliable biomarkers (e.g. MS, human-T-cell lymphotropic virus type-

1 (HTLV-1) associated myelopathy). Nevertheless, the a ermath of those neurodegenera ve 

and demyelina ng processes is ssue shrinkage and can be assessed in vivo on MRI as SC 

volume loss. Hence, cross-sec onal or longitudinal quan ta ve measurements of SC volume 

and/or CSA indirectly deliver addi onal valuable informa on regarding mechanisms of 
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neuropathology, that cannot be appreciated with the naked eye in qualita ve assessments of 

SC MRI. Nonetheless, this is not part of clinical rou ne for the me being yet. 

 

 

1.2.4 Brief overview of Spinal Cord methods 

The purpose of this chapter is to present background informa on on SC image segmenta on, 

laying the groundwork of our tool, SIENA-SC. 

Implemen ng image segmenta on techniques to quan fy the SC volume and CSA have been 

introduced since 1996 [37]. Despite that, computer-based SC segmenta on remains 

demanding in part due to limita ons hampering SC MR-imaging (as men oned in chapter 

Figure 13: Mul ple sclerosis SC lesions in sagi al images acquired with: a) Proton-density-weighted, b) T2-
weighted, c) phase-sensi ve inversion recovery and d) short tau inversion recovery imaging. Source: Tsagkas et 
al. 2019. 
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1.2.3). A big number of semi- and fully automa c techniques have been proposed [38]. The 

most important include ac ve contours of surfaces [39–41], level sets [42], par al volume 

modeling [43], gradient vector flow [44], atlas-based approaches [45,46], and tubular 

deformable models with variable required user interac on from manual iden fica on of the 

SC centerline [41] to the iden fica on of mul ple [40] or single [39,46] anatomical landmarks, 

with completely automated approaches presented only recently (Figure 14) [47]. In the past, 

SC atrophy was usually determined by assessing the CSA of the cervical cord, usually at the 

C2/C3 level, which has been shown to correlate with clinical measures, although 

reproducibility was limited and depending on data quality as well as reposi oning [37,48,49]. 

However, un l now only a few of those methods have been validated and/or evaluated on 

pa ent follow-up data to demonstrate the applicability in longitudinal trial se ngs with up to 

two years follow up me [37,41,47,50–52]. 

For the purpose of this thesis, chapter 1.2.4.1 presents the current most used and relevant 

segmenta on-based methods, chapter 1.2.4.2 presents the a empts provided for the 

longitudinal SC atrophy es ma on. 
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1.2.4.1 Spinal Cord Segmenta on method 

The tools described in this sec on provide the CSA as metric of measurement. When using 

segmenta on methods for longitudinal SC atrophy calcula on, thus providing an indirect 

es ma on, the rate of atrophy is es mated by numerical subtrac on of SC CSA measurements 

calculated at different me-points. For instance, percent change of cord area is calculated 

using the following formula ( 1-8): 

 

Figure 14: A-C shows a SC segmenta on performed with an ac ve surface method, while D-F demonstrates a fully 
automa c SC segmenta on. Source: Yiannakas et al. 2016 
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𝑎𝑡𝑟𝑜𝑝ℎ𝑦 = 100 ∗
(𝑓𝑜𝑙𝑙𝑜𝑤 𝑢𝑝 𝑎𝑟𝑒𝑎 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑟𝑒𝑎)

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑟𝑒𝑎
 

( 1-8) 

Years between baseline and follow-up scans can also be included in the denominator of the 

formula, if there is variability of the interval between scans [53,54]. 

1.2.4.1.1 Jim 

Jim provide a toolbox for medical image analysis. Within the JIM tool, the ASM is a surface-

based method that semi-automa cally outlines the cord, a er marking the centre of the SC 

[41,55]. The ASM has provided more prompt and repeatable measures of the SC volume, 

compared with manual methods [56]. The ASM offers a considerable reduc on in user 

interac on me, and can be performed over long spinal segments. The user needs to iden fy 

landmarks at the extremes of the region to study, and, then, mark the centerline of the cord. 

Sagi ally-acquired images are then reforma ed to the axial plane to obtain five con guous 3 

mm slices; the program automa cally calculates the radius and the centre of each axial slice 

and, finally, the CSA is obtained by averaging these con guous slices [41]. Jim is not provided 

free of charge and it hasn’t been used in this thesis. 

1.2.4.1.2 Spinal cord toolbox 

The Spinal Cord Toolbox (SCT) is a free open-source so ware dedicated to the processing of 

SC MR images. SCT contains a lot of func ons for working on the SC in several different fields 

[57]. Most of the func ons in the SCT are the state-of-the-art in their field. A lot of recent 

works in the SC domain have used the SCT in their research [58]. SCT works on Unix 
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environment. The tool is freely available at 

h ps://spinalcordtoolbox.com/user_sec on/installa on.html. 

In this thesis, we used SCT as the basis for the development of our tool for three main reasons. 

First, the SCT proposes two algorithms for the SC segmenta on and both of them are quite 

recent. The large amount of studies using the SCT to achieve their results is a good hint about 

the quality of the proposed algorithms [47,57,59]. Moreover one of those algorithms is based 

on deep learning techniques that allows a total automated segmenta on also from brain MRI 

images. 

Second, the segmenta on algorithm inside SCT showed to have same sensi vity as the Ac ve 

Surface Model (ASM) within JIM (h ps://www.xinapse.com/) but has higher inter-rater 

repeatability and is more me-efficient [47]. 

Third, the SCT and its algorithms are open-source and very easy to use. Moreover, it has an 

ac ve community of developers which make sure that the SCT stays at the top of the current 

techniques. 

1.2.4.1.2.1 Sct_propseg 

This algorithm has been developed in 2014 by researchers from Polytechnique Montréal and 

the University of Montréal [59]. It is totally automa c and is designed to segment the en re 

SC (Figure 15). 

The algorithm consists in the iterated propaga on of a deformable 3D mesh which ends up 

corresponding to the SC. It is divided into two modules: the detec on and the propaga on 

module. 
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The detec on module consists in finding SC posi on and orienta on. The module is divided in 

three phases followed by a valida on step. It starts by the automa c selec on of an axial slice 

(e.g. the middle one). Using the symmetry of the body, the medial antero-posterior line that 

passes through the SC is detected. The medial antero-posterior line posi on is computed by 

maximizing the mutual informa on between the two parts of the image separated by the line 

(the line defines the middle of the symmetry). A restrained image is then created by cropping 

a region of 5 cm length in the le -right direc on of the symmetrical line. Due to the circular 

shape of the SC, the second phase consist in performing a circular Hough transforma on [60] 

on the cropped image. Since other circular shape structure can be present on the image only 

circles embedded in other circles are kept (the SC lies in the spinal canal). Note also that a 

stretching factor is applied on the Hough transforma on in order to detect ellip cal shapes 

which correspond more to the SC shape in certain parts. Finally those two steps are repeated 

on 10 axial slices, 5 rostral and 5 caudal to the star ng plane (each separated by several 

millimeters) in order to improve detec on rate. The neighbouring points (between different 

slices) of the detected structures are then connected. It is assumed the longest connected 

chain is the SC. In order to ensure the SC was detected, a valida on step is executed. This 

valida on uses a classifica on method based on easily computable metrics. 
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Using the informa on collected in the detec on module, a triangular tubular mesh is created. 

During the propaga on module this mesh will be transformed to correspond in the best way 

possible to the SC. This itera ve process is divided in two phases. 

The first phase consists in selec ng the most promising points where the mesh has to be 

deformed. The second phase consists in the use of ac ve contour techniques where each 

selected point is displaced to minimize an energy func on. Once the mesh is deformed one 

sec on Mi of it is duplicated and translated in order to propagate the mesh. A different energy 

term is maximized in order to determine the orienta on of the mesh at the new points. The 

process is mainly inspired from the work of Kaus et al. [61]. For computa onal conveniences 

Figure 15: Workflow of the detec on module. Source:Kaus et al 2003 
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the itera ve process is first computed on a low-resolu on mesh and second on a refined mesh 

interpolated from the first mesh once it has been deformed and propagated. This provides a 

complete automated algorithm for the segmenta on of the SC (Figure 16).  

 

 

1.2.4.1.2.2 Sct_deepseg 

Researchers of the University of Montreal have developed in 2019 a new segmenta on 

algorithm for the SC using deep learning and U-net architecture [62]. It contains also a model 

designed for the detec on of SC sclerosis.  

Figure 16: Propaga on of the deformable mesh. Source: De Leener, Kadoury, and Cohen-
Adad 2014. 
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The new segmenta on algorithm is divided in two different convolu onal structures which 

are applied one a er the other to the image. 

On classical MR images, SC voxels represent less than 1% of the total amount of voxels. The 

role of the first CNN is to find the center of the SC such that the image is then cropped around 

it in order to remove the useless informa on. This CNN uses 2D convolu on and is a slightly 

deriva on of the classical U-net architecture (Figure 17). The number of downsampling steps 

is reduced from 4 to 2. This is possible because the conven onal convolu on are replaced by 

dilated convolu on in the contrac on sec on. A dilated convolu on is a convolu on which 

uses a sparse filter which provides an exponen al expansion of the recep ve view (the 

"window" of pixels that is scanned through the filter for each convolu on). Due to the larger 

recep ve view, this process captures more contextual informa on compared to a classical 

convolu on with the same amount of parameters in the filter. As the dimensions of the 

feature maps will decrease quicker a er each convolu onal layer, it allows to use less 

downsampling steps . The CNN creates a predic on mask which indicates the degree of 

confidence each voxel is part of the SC. The centerline of the SC is then computed using Op C. 

This is a fast globalcurve op misa on algorithm, which regularises the centerline con nuity 

along the Superior-to-Inferior axis [63]. 
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The second CNN uses 3D convolu ons and is computed in a volume around the SC centerline. 

From the volume, 3D patches of size 64x64x48 are extracted.  

Intensity normaliza on is applied on the patches to homogenise the intensity distribu on on 

standardised intensity range [64].  

This CNN is a 3D deriva on of the 2D U-net architecture, with 3D convolu on[65]. The role of 

this CNN is to segment the SC. Its output is a binary mask with same dimensions as the input 

image. The full deepseg framework can be applied through a SCT func on on NIFTI image and 

allows different op ons choices such as the contrast of the image. 

Figure 17: A 2D dilated convolu on with a recep ve view of size 5x5 and a 
filter of 9 parameters (output image in green). Source:
h ps://towardsdatascience.com/types-of-convolu ons-in-deep-learning-
717013397f4d 
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The training has been divided by MRI contrast (T1,T2 and T2*) in order to make trained models 

available for each contrast. A dataset containing 1943 images (151 for T1, 904 for T2 and 888 

for T2*) and coming from 30 different centers has been used for the training of the models. 

The training set contains very heterogeneous images in resolu on and orienta on which 

allows the algorithms to work on almost every MR image. An example of the cord detec on 

module is showed in Figure 18. 

 

 

 

1.2.4.2 Spinal Cord Registra on method 

Registra on based methods have the great advantage of providing a direct es ma on of the 

rate of atrophy. To date, GBSI is the only one freely available solu on for longitudinally 

assessing SC using a pure registra on-based approach [66].  

Figure 18: The journey of an image through deepseg. Source:Gros et al 2019. 
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1.2.4.2.1 GBSI 

The GBSI is an extension of the BSI algorithm already used for the longitudinal brain atrophy 

es ma on. The pipeline used to test the performance of GBSI is applicable to datasets with 

T1-weighted images (brain or dedicated spine acquisi on), with iden cal acquisi on 

parameters, ideally using 1 mm isometric voxels, at two me-points for each subject. A graphic 

overview of the pipeline is illustrated in Figure 19 and further detailed below. 

The first step is the manual or automa c segmenta on of the SC from T1-w images. 

A erwards, the extracted masks are used to compute a ring surrounding the SC to scale the 

signal intensity of the images accoun ng for the presence of the noise floor [67]; for this step 

the signal intensi es in the whole 3D volume are corrected using a fast version of the adap ve 

non-local means filter algorithm [68]. Then, an intensity inhomogeneity correc on is applied 

to the 3D data using the N4 algorithm [69]. Once images are corrected for noise and intensity 

non-uniformi es, both SC me-points are straightened using a specific so ware available 

within the SCT [70]. Both SCs are then registered to the half-way space using a symmetric, 

affine and inverse-consistent method [71]. To reduce the residual bias field and homogenise 

the grey scale between both registered me-points, a symmetric differen al bias correc on is 

applied [25]. Finally, the GBSI is computed on a voxel-by-voxel basis as the difference in 

intensity between the baseline and the follow-up image within a clipped window and can be 

obtained from the two k-means class values. The clipped window goal is to catch the difference 

between ssue intensi es at the two me-points, reducing the background influence. Then 

the intensity differences are weighted by the probabilis c XOR mask voxel-wise. PCVC was 
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calculated by dividing the GBSI value by the binarized, straightened and registered baseline 

cord mask volume. 

 

 

1.2.4.2.2 Reg 

The Reg method is composed of the following main steps: 1) ini al segmenta on, 2) image co-

registra on, and 3) final cord segmenta on. The general workflow is illustrated in Figure 20. 

The first part of the process is manual, then it will proceed in a total automa c way. The 

analysis starts when the operator puts the landmark to iden fy the approximate center line of 

the SC at both me points. The marking of the cord center is refined using an approach similar 

to that described by Gros et al [63]. The cord is then segmented using the AS method [41]. The 

cord masks obtained were then dilated by a distance of 2 mm, and an annulus surrounding the 

Figure 19: Pipeline for the longitudinal spinal cord assessment using GBSI. Source: Prados 2020. 
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cord was formed by an exclusive OR opera on (XOR) between the original cord outlines and 

the dilated outlines in order to assess the signal intensi es within the CSF surrounding the 

cord. The standard devia on (SD) of the CSF signal was used as a measure of the noise level in 

a nonlocal means noise reduc on filter [72], which was applied to the original axial cord 

images before they were segmented once again using the low number of cord shape 

coefficients, but this me the segmenta on was used to produce a straightened cord image of 

the region between the superior and inferior cord landmarks for both me points [41]. 

In the second step, the two straightened cord images are registered to a half-way space and a 

symmetric differen al bias correc on is applied [25]. At this point there is a further 

improvement where any slight residual misregistra on along the cord are removed using an 

in-plane-only registra on procedure with transla ons along x and y, and rota on on the z-axis. 

Now the two straightened cord images are  precisely aligned, with cord centroids at the origin 

in the straightened cord space, and the two registered straightened cord images were pixel-

by-pixel intensity averaged, and the AS method was used to give ini al approximate cord 

outlines. Then, these outlines were used to ini alize the final cord segmenta ons of the two 

straightened cord images separately. 

The overall mean PCVC between the most superior and most-inferior overlapping registered 

slices was calculated as the average of the values for the two images processed in forward and 

reverse order ( 1-9 ): 

𝑃𝐶𝐴𝐶 = (100 ∗
(𝐶𝑆𝐴 − 𝐶𝑆𝐴 )

𝐶𝑆𝐴
 

( 1-9 ) 
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where CSABL is the mean cord CSA in the baseline image and CSAFU is the mean cord CSA in the 

follow-up image. 

Although it falls into the category of registra on-based tools, the final computa on of atrophy 

is done in the same way as segmenta on methods. 

 

  

Figure 20: Schema c representa on of the main steps of preprocessing performed by the registra on (Reg) method on 
pairs of 3D T1-weighted baseline and follow-up scans. Manual and fully automated steps are represented in yellow and 
light blue boxes, respec vely. FU = follow-up; AS = ac ve surface. Source: Valsasina et al 2015. 
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1.3 Role of spinal cord in neurological diseases 

The SC is affected by inflammatory and neurodegenera ve processes leading to irreversible 

ssue loss in several neurological condi ons, such as MS [54], NMO [73–75], and human T- 

lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spas c paraparesis [76]. 

Moreover, SC atrophy is associated with more severe clinical features in amyotrophic lateral 

sclerosis [77–79], SC injury [80], and Friedreich’s ataxia [81], and with worse recovery from SC 

surgery [82]. There is also preliminary evidence of SC atrophy in Alzheimer’s disease [83], and 

in Hun ngton disease [84], sugges ng that SC atrophy can be part of more widespread 

neurodegenera ve diseases. 

In one study involving 19 pa ents with SC injury, SC atrophy was shown to correlate with motor 

and sensory deficits [85].Notably, Lundell et al. showed that anterio-posterior width (APW) 

and le  right width (LRW) of the cord can be used to assess sensory and motor func on 

independently. In another study, atrophy was shown to correlate with American Spinal Injury 

Associa on (ASIA) score in a chronic SC injury popula on, independently from DTI and 

magne za on transfer measurements[86]. SC atrophy has also been demonstrated in pa ents 

with amyotrophic lateral sclerosis [87]. Notably, Cohen-Adad et al. showed an associa on 

between muscle deficits and local SC atrophy, sugges ng that atrophy is a sensi ve biomarker 

for lower motor neuron degenera on. The authors tested the specificity of atrophy at a given 

vertebral level (between C4 and C7) in rela on to muscle deficits and motor-evoked poten als 

using a stepwise linear regression model. They demonstrated that deficit of the deltoid muscle 

(at the C5 spinal level, equivalent to the C4 vertebral level) was associated with atrophy at the 

C4 vertebral level, and that deficit of the abductor pollicis brevis or adductor digi  minimi (at 
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the C8 spinal level, equivalent to the C7 vertebral level) was associated with atrophy at the C7 

vertebral level. 

In MS, SC atrophy is one of the long-term sequelae, par cularly in the most disabling forms of 

the disease, with the cervical cord being most affected. The main cause is thought to be 

Wallerian degenera on as a result of changes that occur in the brain, rather than ssue loss 

due to primary cord pathology. However, only moderate correla ons have been found 

between cervical cord atrophy and conven onal and advanced MRI measures of brain damage 

[88,89], sugges ng that degenera ve and inflammatory processes typical of MS affect the cord 

and the brain with dynamics that are par ally independent. As explained previously, the SC is 

the main pathway for informa on connec ng the brain with the peripheral nervous system, 

thus SC atrophy has a major impact on pa ents’ clinical status. 

Since we validate our so ware using MS subjects, the following paragraph 1.4 will be 

dedicated on the MS pathology. 
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1.4 Mul ple Sclerosis 

1.4.1 Introduc on 

MS is a chronic inflammatory demyelina ng and neurodegenera ve disease of the CNS, 

poten ally causing any neurological deficit [90,91]. Previous studies have implicated a 

combina on of gene c and environmental factors in the-pathogenesis of MS, with chronic 

inflamma on and neurodegenera on mediated by the pa ent’s immune system [92,93]. 

1.4.2 Epidemiology 

According to the most recent Global Burden of Disease Study es mates (2016), MS is the most 

common immune-mediated disease of the CNS, with over 2.2 million cases world-wide, 

corresponding to 10% increased prevalence from 1990 [94]. North America, Western Europe 

and Australasia hold higher prevalence rate (91-164 cases per 100,000), compared with Africa 

(2-3 cases per 100,000) [94]. On the contrary, incidence of MS has been rela vely stable or 

slightly increased over the past four to five decades [94]. As such, the rising prevalence mostly 

reflects improved survival, with a global mortality rate for MS being decreased by 11% 

between 1990 and 2016 [94]. 

Clinical onset is generally in early adult life, though there is increased awareness of 

presenta on in childhood [90]. Prevalence of MS is similar in preteen boys and girls, but 

progressively increases through life me among women, with a 2:1 sex ra o in favor of women 

in the sixth decade of life [94]. As discussed above, the life expectancy for a person with MS is 

rela vely unimpeded by the disease, with a 5 to 10-year reduc on versus non-affected 

individuals [95]. However, MS is one of the leading causes of disability from CNS disease among 
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young adults, and has a severe impact on quality of life, made further strenuous by a rela vely 

young average age of onset [90,94]. 

1.4.3 Pathology 

The most typical pathology signs of MS is the presence of demyelina ng lesions in the WM 

and GM, in the brain and in the SC [96–100]. Demyelina ng lesions generally originate around 

venules, where accumula on of inflammatory lymphocytes can be observed [101,102], along 

with astrocy c response and macrophages/microglia infiltrates to the ac ve injury site, 

eventually resul ng into glio c scars [103]. Acute inflammatory demyelina on is clinically 

associated with the acute onset of new neurological symptoms (i.e., clinical relapse) [104–

106]. 

Neuro-axonal loss is another prominent hallmark of MS and is a key factor of irreversible 

disability accrual [107]. In the early stages of the disease, axonal loss is generally seen in areas 

of pathological demyelina on, in associa on with inflammatory infiltrates consis ng of 

macrophages/microglia and lymphocytes [108]. During the course of the disease, axonal loss 

can occur in areas of prolonged demyelina on without ac ve inflamma on, sugges ng that 

axonal survival is related to the presence of myelin support [109–112]. Notwithstanding this, 

the presence of chronically demyelinated axons suggests that demyelina on does not 

necessarily leads to neuro-axonal loss [110,113,114]. In advanced MS, axonal loss results into 

shrinking of the brain parenchyma (i.e., atrophy), and is associated with impaired func on of 

macrophages/microglia and astrocytes, and with increased oxida ve stress and mitochondrial 

damage. In par cular, demyelina on and subsequently impaired axonal dysfunc on increase 
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the energy demand, further contribu ng to altered metabolism, neuronal dysfunc on and, 

ul mately, axonal loss [115–117]. 

The mechanisms by which demyelina on and axonal loss occur are profoundly heterogeneous 

and involve a variety of cellular subsets [90,118,119]. The sequence of pathological events 

might include perivenular infiltra on of macrophages, CD8+ T lymphocytes and CD4+ T 

lymphocytes and B lymphocytes, with profound blood brain barrier (BBB) leakage, giving rise 

to classical ac ve demyelinated plaques  [119–124]]. As the disease progresses, infiltrates of T 

and B lymphocytes, ac va on of microglia/macrophages and astrocytes, and mitochondrial 

dysfunc on become obvious throughout the brain parenchyma, also in the absence of major 

BBB damage [120,125], with forma on of aggregates of inflammatory cells in the form of 

meningeal follicle-like structures, and expansion of previously-exis ng WM and GM lesions 

[116,117,119–121,126–129] . These changes ul mately lead to progressive demyelina on, 

axonal loss and neurodegenera on in the brain and the SC [116,117,119,126,129] . 

Inflamma on, demyelina on, and axonal loss can be measured in vivo by using MRI [130]. 

1.4.4 Imaging biomarker in MS 

During the last 20 years, over a dozen DMTs received the approval for the treatment of RRMS, 

being facilitated by screening the an -inflammatory ac vity of puta ve treatments using 

ac ve MRI lesions as outcomes in phase 2 trials [131,132]. On the contrary, the paucity of 

ac ve medica ons for both PPMS and SPMS is striking [90,133]. In view of this, the Progressive 

MS Alliance recently suggested to develop and validate biomarkers of progression that could 

make clinical trials for progressive MS less me and resource-consuming, when compared with 
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conven onal clinical measures [134]. This could be achieved with the iden fica on of reliable, 

repeatable and sensi ve-to change imaging outcomes [54,135]. 

Several brain MRI measures are able to reflect the inflammatory and neurodegenera ve 

pathology of MS [136,137]. Brain lesion count and volume are robust markers of inflamma on 

and demyelina on, and are important outcomes in both RRMS and progressive MS trials [9]. 

Following recent improvements in analysis methods, brain atrophy has gained relevance, in 

light of its strong associa on with disability accrual [9,135]. Advanced brain MRI techniques, 

such as magne za on transfer ra o (MTR), diffusion tensor imaging (DTI) and magne c 

resonance spectroscopy (MRS), have been included in few trials so far, and hold promise for 

the future, as they can reflect specific pathological changes targeted by neuroprotec ve 

treatments, such as improved myelina on measures within lesional ssue, following 

treatment [135,138]. Positron emission tomography (PET) and op cal coherence tomography 

(OCT) are also emerging as candidate imaging outcomes of MS progression [135]. 

More recently, improvements in MRI acquisi on protocols and post-processing have overcome 

some of the limita ons associated with imaging the SC, a small and mobile structure at risk of 

mo on artefacts from breathing, cardiac movement, CSF pulsa on and blood flow [53,54]. 

Conven onal SC MRI provides informa on on focal lesions, which are necessary for the 

diagnosis and prognosis of MS and is commonly used in the clinical se ng [9,139]. SC volume 

loss is the result of demyelina on, neuro-axonal loss, oligodendrocyte damage, and gliosis, 

ul mately resul ng in chronic motor, sensory and autonomic dysfunc on [37,140], and will be 

at the very centre of this thesis. Advanced SC MRI techniques assess the type and extent of SC 



Pag. 72 / 132 
 

abnormali es, but, as discussed below, their use is currently limited to specialized centres for 

research purposes [54]. 

Overall, looking at the paradigm of treatment development for PPMS and SPMS, the number 

of imaging outcomes included in clinical trials has almost doubled from 2.3±1.5 in the decade 

1996- 2006, to 4.1±2.6 in most recent years (2007 to current) [135]. 

1.4.5 Role of spinal cord imaging in MS diagnosis 

The 2017 revised McDonald criteria confirmed that MRI is the most useful paraclinical test to 

aid the diagnosis of MS and can be used to establish dissemina on of lesions in space (DIS) 

and me (DIT) [141]. The SC is one of the four areas of the CNS where lesions with 

characteris cs typical of MS are scored to confirm DIS. Prior to the 2017 McDonald criteria, 

only asymptoma c SC lesions were scored for DIS, which led to the high specificity of the DIS 

criteria; in order to facilitate the scoring of the criteria, and avoid discussing which lesion is the 

symptoma c one in cases of mul ple lesions occurring in the same CNS loca on, the 2017 

revised criteria do not dis nguish anymore between symptoma c and asymptoma c lesions 

when tes ng the DIS criteria. In par cular, the inclusion of SC symptoma c lesions for DIS or 

DIT increases diagnos c sensi vity, with li le or no reduc on in specificity [142–144]. 

Whilst brain MRI is recommended in all pa ents who are undergoing inves ga ons for the 

diagnosis of MS, SC MRI is advisable when: (1) The clinical presenta on suggests a SC lesion; 

(2) The clinical presenta on is sugges ve of PPMS; (3) Brain MRI is normal, but there is a strong 

clinical suspicion of MS; (4) Brain MRI findings are inconclusive (e.g., age-related vascular 

changes) [141,145,146]. Therefore, SC MRI is generally recommended in pa ents with SC CIS 

and in those with non-spinal MS not fulfilling the DIS criteria. It is debated whether all the 
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remaining CIS pa ents, who have non-spinal MS and fulfil DIS criteria on brain MRI brain, 

should undergo SC MRI [147]. 

More recently, pa ents with clinical features typical of MS, but showing evidence of pathology 

exclusively in the SC, even with a single lesion, and whose MRI does not fulfil the DIS criteria, 

have been described as two novel clinical en es: (1) Progressive solitary sclerosis, when 

insidiously progressive upper motor neuron impairment can be a ributed to an isolated 

demyelina ng lesion within the CNS (within the SC in 90% cases) [148]; and (2) Pure spinal MS, 

when relapsing episodes of short-segment myeli s occur over me, in the absence of typical 

brain or op c nerve lesions [149]. Progressive solitary sclerosis and pure spinal MS are 

proposed novel MS phenotypes, characterised by a predominant SC pathology. Myelocor cal 

MS is another suggested pathology subtype of MS where axonal loss in the WM occurs in 

absence of obvious demyelina on, but is s ll lacking further pathology and clinical valida on 

[113]. 

1.4.6 Spinal Cord Atrophy in MS 

SC atrophy is a common and clinically relevant aspect of MS. An increasing number of studies 

have focused on the importance of SC atrophy as a biomarker of disability progression and as 

an outcome measure in clinical trials. 

SC atrophy is the consequence of different pathological processes, including axonal transec on 

and associated neuro-axonal loss, demyelina on, loss of oligodendrocytes, gliosis, and, 

ul mately diffuse ssue injury [98,99,150–154]. Although these pathological abnormali es 

occur within focal lesions, extensive ssue abnormali es are also present in the normal-

appearing SC of MS pa ents, and this finding may explain why SC atrophy occurs 
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independently of SC lesions [98–100,110,155–158]. Addi onally, SC atrophy also occurs, at 

least in part, independently of brain pathology [156,159,160]. 

SC atrophy is generally measured as CSA at the cervical level, which is least affected by 

movement artefacts, yields the most reproducible results, and provides the best clinical 

correlates [161–165]. The most common levels are C1-C2 and C2-C3, but measurements can 

be also made between C1 and C7 [166]. Atrophy assessment can be done on a variety of 

sequences, mainly 3D T1-weighted and T2*- weighted gradient echo sequences on different 

MRI scanners (e.g. Philips, Siemens, GE) [37,41,167]. 

1.4.7 Spinal cord atrophy in disease phenotypes 

SC atrophy occurs even in early stages of MS and has been detected in pa ents with CIS [167–

170]. In CIS pa ents who were followed-up for 5 years a er onset, the lowest rate of SC 

atrophy (-0.1% a year) was observed in those who remained CIS, whilst the highest rate (-1.4% 

a year) was detected in pa ents who developed MS and had an EDSS at the last me point 

equal or greater than 3 [171]. In general, a high rate of SC atrophy is observed in the 

progressive forms of MS, especially SPMS (-2.2% per year) [150,166,169,170,172]. Overall, in 

clinically-definite MS, the rate of cord atrophy has been reported to vary between 1 and 5% 

per year [37,150,173–175]. A mul centre study has detected a rate of -1.22% per year in 

pa ents with stable MS and -2.01% in pa ents who deteriorated over me [166]. Interes ngly, 

there is a significant development of SC atrophy in early PPMS pa ents when compared with 

healthy controls over only 1-year follow-up, but not in pa ents with established SPMS, who 

had a higher disability and more atrophic cord than early PPMS pa ents [176]. Although the 

rate of atrophy may vary slightly between studies, because of different cohorts and different 
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methods, it is consistently higher than the rate of brain atrophy, which is known to be around 

-0.5% per year in MS pa ents [177]. A recent meta-analysis of twenty-two longitudinal studies 

assessing SC atrophy in all MS subtypes revealed a pooled rate of SC atrophy of -1.78% per 

year, that increased to - 2.08% per year when considering progressive pa ents alone [161]. 

Only few studies have examined cervical cord atrophy in NMOSD and reported conflic ng 

results. Some studies found more pronounced SC atrophy in AQP4 posi ve pa ents than MOG 

pa ents [73], and in MS than NMOSD [74], whereas another study found similar reduc ons of 

CSA in NMOSD and MS [75]. 

1.4.8 Spinal cord atrophy and MS disability 

Several studies have shown associa ons between: (1) the extent of SC atrophy at a single me 

point and concurrent disability [178], and (2) the rate of SC atrophy over me and disability 

progression [51,89,167,170,179,180]. A recent study has reported that every 1% increase in 

the annual rate of SC volume loss is associated with a 28% risk of developing disability 

progression in the subsequent year [181]. In a longitudinal cohort of non-spinal CIS, upper cord 

cross-sec onal area (UCCA) decrease was associated with 5-year increased disability, 

measured by EDSS [180]. Overall, SC atrophy can account for 77% of disability progression a er 

5 years [171,178,182]. Within EDSS, the sub-scores that reflect the neurological func ons 

mediated by SC pathways, such as the pyramidal, sensory, bowel and bladder func onal 

scores, correlated with SC atrophy [52]. Higher SC atrophy rate is associated with worsening of 

more specific measures of motor disability, such as the 9HPT and the T25FWT [178,181]. 

Associa ons between the development of SC atrophy and disability progression are 

par cularly strong in PPMS [172]. 
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1.4.9 Spinal cord atrophy in clinical trials 

Since SC atrophy rates are two-to-three mes higher than brain atrophy (-1.78% vs -0.5% per 

year), in par cular in progressive MS [161,183], and the SC is a very eloquent site of pathology 

in MS, SC atrophy has been considered as an exploratory outcome measure in phase 2 and 

phase 3 clinical trials, especially in pa ents with progressive MS, although much less frequently 

than brain atrophy [9]. However, clinical therapeu c trials that incorporated SC atrophy as an 

outcome measure did not demonstrate beneficial drug effects on this metric [184–186]. In 

addi on to the possibility that the medica ons tested were not effec ve, there may be other 

reasons for these nega ve results, related to methodological difficul es of calcula ng SC 

atrophy; these include: movement artefacts and subsequent image noise; the limited spa al 

resolu on of MRI scanners, which is an important issue, given the small cord size; mul centre 

design, with inter-site variability related to the use of different scanners with different 

acquisi on se ngs; and inter-study variability related to the use of different methods to 

calculate SC area [187,188]. Also, SC normalisa on using the intracranial volume, which aims 

to reduce the effect of biological condi ons unrelated to the disease, has been suggested  

[50,162,163], but it is not always performed. 

There have been encouraging results from a recent, single-centre, study employing SC atrophy 

[176,188]. If pa ents at the early stage of PPMS, with mild disability and a non-atrophic cord 

are selected, the sample size necessary to run a trial over only 1 year is achievable [176]. 

  



Pag. 77 / 132 
 

2 Aims of thesis 

Iden fying reliable imaging outcome measures is a cornerstone for improving the 

understanding of the disease mechanisms and for monitoring the clinical course of 

neurological diseases and its response to treatment [9,54]. 

Against this background, this thesis will focus on: 

1) Develop a novel method, SIENA-SC, for the longitudinal assessment of SC atrophy by 

adap ng a well-established registra on-based method already use for the 

quan fica on of brain atrophy. The en re pipeline is fully described in Chapter 3. 

2) Test the robustness and the reliability of SIENA-SC on a cohort of HCs. Hereby, we 

compared precision and repeatability of SC atrophy measurements obtained with one 

segmenta on method (CSA change obtained with sct_propseg), a registra on-based 

methods (GBSI) and our novel registra on-based method. The experiment is fully 

described in Chapter 4. 

3) Validate SIENA-SC using a cohort of pathological subjects and evaluate SC atrophy as a 

poten al valuable biomarker. This experiment is presented in Chapter 5 and consists 

of the applica on of SIENA-SC to a cohort of MS subjects to further evaluate the ability 

of the so ware to discern physiological and pathological rate of atrophy and its 

treatment effect with the study of the sample size. Results will be compared among 

the three methods, SIENA-SC, GBSI and CSA change. 

Finally, Chapter 6 summarizes the development of SIENA-SC, the limita ons of the study and 

possible future direc ons. 
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3 Proposed Methods: SIENA-SC 

SIENA-SC [189] is applicable to T1-weighted brain images, with iden cal or similar acquisi on 

parameters, ideally using 1 mm isometric voxels, at two me-points for each subject. A graphic 

overview of the pipeline is presented in Errore. L'origine riferimento non è stata trovata. and 

further detailed below. 

3.1 Step 1: Cropping the field of view of brain images 

The first step is intended to constrain the field-of-view (FOV) of the input images to the SC 

area. In order to do this, we choose the brainstem from the MNI atlas as the neurological 

reference of the bounding box to crop the FOV of the images. The brainstem was resampled 

from the atlas in MNI space to the na ve T1-weighted images and then eroded 5 mes. The 

last slice of the masks was taken as a reference point to remove all the regions above the 

bo om of the brainstem. This step was performed to isolate the cord sec on and to improve 

the performance of the segmenta on and the following registra on step of the SC. 

3.2 Step 2: Spinal cord segmenta on 

The crucial step to obtain a total automated pipeline is the automated localiza on of the SC. 

For the purpose of this study and to avoid any manual interven on we used the fully automa c 

deep learning algorithm provided by SCT library (sct_deepseg) [62] described in chapter 

1.2.4.1.2.2. This segmenta on is computed separately and independently for each me-point, 

over all the visible SC. The obtained cord masks were used as input to perform intensi es 

correc on in step 2. 
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3.3 Step 3: Image Denoising 

The extracted masks serve the purpose of compu ng a ring surrounding the SC, allowing for 

the scaling of signal intensity in the images while considering the presence of the noise floor 

[67]. To achieve this, the original T1-weighted images undergo denoising using a fast variant 

of the adap ve nonlocal means filter algorithm. This denoising process employs the mask 

derived from the segmented SC [68]. Specifically, the standard devia on of the signal within a 

ring located in the CSF is calculated to determine the root power of the noise, which is then 

used to account for the existence of a noise floor. To ensure accuracy, any voxel values within 

the extracted ring that exceeded 2 standard devia ons above the mean were disregarded. This 

step prevents the inclusion of values origina ng from nerve roots or other erroneous signal 

intensi es. Finally, the ring within the CSF was derived by dila ng twice the SC mask, followed 

by the subsequent subtrac on of the mask itself. 

 

3.4 Step 4: Image inhomogeneity correc on 

The 3D MRI data undergoes an intensity inhomogeneity correc on using the N4 algorithm 

[69], specifically within the region defined by the two- me dilata on of SC masks. The 

correc on process incorporates the following parameters: full width at half maximum (FWHM) 

of 0.05, a convergence threshold set at 0.0001, and a maximum number of itera ons capped 

at 1000 [14]. This applica on of the N4 algorithm ensures that intensity varia ons within the 

SC region are appropriately addressed and mi gated. 
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3.5 Step 5: Repe on of Spinal Cord segmenta on 

In order to enhance the segmenta on accuracy and minimize bias caused by significant change 

in intensi es caused by MRI ar facts between scans, we repeated the segmenta on on the 

denoised and inhomogeneity corrected input images using a propaga on segmenta on 

algorithm [59]. To facilitate this process, we used the SC centerline derived from the previously 

computed masks as the input for the method. 

3.6 Step 6: SC straightening 

To eliminate any varia ons in cord curvature between me-points caused by posi oning in the 

scanner, we employ a reliable and precise approach to straighten the MRI images. This involves 

u lizing the SC segmenta on previously computed and employing a robust and accurate tool 

part of the SCT so ware package [57,70]. This approach preserves the SC's topology, crucial 

for measuring even the most delicate altera ons in SC edges when employing SIENA-SC. 

3.7 Step 7: Half-way space registra on 

To prevent the introduc on of biases that may arise from registering one me-point to 

another, the images are registered to the halfway space through an affine transforma on 

[16,190,191]. This step employs an inverse-consistent and symmetric algorithm [71]. The SC 

mask dilated un l covering the vertebrae is used to provide a non-moving reference in the 

registra on algorithm. A er acquiring the transforma ons, both the images and their 

corresponding masks from each me-point are linearly resampled to the shared halfway space 

using a nearest neighbor interpola on. This ensures accurate alignment and facilitates 

subsequent analyses by establishing a consistent reference frame. 
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3.8 Step 8: Refinement of the resampled cord masks 

Two addi onal refinements of the SC masks were performed at this stage. First, as resampling 

a mask into a different image space could result in loss of accuracy, we performed a smoothing 

of the border of the masks using a diamond-connec vity of the voxels. Second, the resampled 

segmenta on masks on the halfway space were merged and the longer mask not covering the 

cord region in both images has been cut. In this way we are sure that the masks cover the same 

length between the two mepoints. This was performed because the SC sec on can vary by 

the number of slices between mepoints (e.g. different orienta on, different posi oning of 

the subject in the scanner), thus the final computa on is performed on the same region of 

interest. 

Finally, the obtained masks were then transferred to the algorithm for the computa on of the 

atrophy.  

3.9 Step 9: Atrophy computa on 

As a final step, the PCVC was es mated between the two aligned cord images following SIENA 

algorithm principles. To achieve this, the mean perpendicular surface mo on from the 

generated edge points masks were es mated ignoring the flow in z direc on (in order to have 

a 2D evalua on of atrophy along the cord) and finally converted to a PCVC. 

To make the PCVC es ma on robust, SIENA method internally corrects for possible small 

differences on image resolu on and/or misalignment by calcula ng a calibra on factor. Briefly, 

two PCVCs are calculated between the original image and a couple of ar ficial images obtained 

by varying the dimension of voxels (one increasing and one decreasing from the same scale 
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factor). These two PCVC are then averaged. Given that the “nominal” PCVC is known, once 

fixed the scale factor,  a calibra on factor can be obtained by dividing the “nominal” changes 

by the averaged PCVC. Now, given that the calculated PCVC depends also on the number of 

edge points and that this number is roughly 100 smaller for SC than for brain image, we 

accordingly changed the scale factor by dividing for 100. The ra onale of this approach in 

described in the next chapter 3.10. 

To increase robustness, the “forward” and “backward” PCVC was calculated for each pair of 

images swapping baseline and follow-up images. The average value of the “forward” and 

“backward” atrophy results was the final PCVC. 

 

 

Figure 21: SIENA-SC image processing pathway. 
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3.10 Calibra on Factor 

To find the correc on factor rela ng the self-calibra on used in the brain atrophy es ma on 

with that used for SC atrophy, we employed the math already exposed in Smith et al. [7] and 

explained in chapter 1.2.2.1. 

In detail, the fb self-calibra on of the brain is comprised between 0.1 and 0.2 mm-1 and it is 

related only to the actual area of studied surface following the formula: 

𝑝𝑏𝑣𝑐 =
100𝑙𝐴

𝑉
=

100𝑙𝑓𝑉

𝑉
= 100𝑙𝑓 

( 3-1 ) 

where 𝑙 is the mean surface displacement of the border, A and V are the brain surface and 

volume and f is the self-calibra on for the brain. 

Given that f is independent from volume, to assess the fsc for SC we have simply made the ra o 

between the area of SC and area of brain from 100 randomly selected healthy volunteers of 

our popula on.  

From the brain mask volume as obtained with BET, we derived the “nominal” radius of the 

brain (rb), by approxima ng the brain itself to a sphere. 

From this value, we obtained the brain surface (sb) following this formula: 

𝑠 =
(𝑟 − 1)

𝑟
 

( 3-2 ) 
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From the actual volume of SC, derived by mask obtained from SCT and using Lsc, the length in 

mm of the SC mask we obtained the “nominal” SC radius rsc and from this the nominal SC 

surface ssc . 

𝑆 = 𝐿 ∗ 𝜋(𝑟 − (𝑟 − 1) ) 

( 3-3 ) 

Finally, the correc on factor between the self-calibra on of the brain and the self-calibra on 

of SC has been obtained averaging 𝑆 𝑆  . 

This value ranged from 0.01 and 0.02 and we opted for using a correc on factor of 0.01, thus 

𝑓 = 0.01 ∗ 𝑓 . 
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4 Experiment 1: Robustness 

The first experiment concerns the study of the robustness of SIENA-SC compared with other 

two methods, GBSI and CSA change, to evaluate the longitudinal SC atrophy. 

4.1 Popula on 

We used two different MRI datasets (Table 1): 

1. A single centre test dataset with HCs acquired twice on the same day to assess the 

reproducibility of the atrophy measurements. In this dataset it is expected to see an 

absence of cord atrophy. 

2. A longitudinal mul  centre dataset with HCs. 

4.1.1 Scan rescan dataset 

Thirteen healthy subjects (mean age: 39 ± 9,4 years) underwent a brain MRI acquisi on using 

a 3 T Philips at Meyer Hospital in Florence. For each subject the MRI scans were acquired twice 

on the same day with reposi oning of the subject in-between acquisi ons. 3D T1-weighted 

brain images were acquired in sagi al orienta on with 1mm isotropic voxel. The goal of the 

use of this dataset was to assess the scan-rescan repeatability of the automated so ware. We 

compared the PCVC measurement evaluated with SIENA-SC, GBSI and CSA change. 

4.1.2 Healthy Control dataset 

190 mul center subjects (mean age: 74 ± 5,7 years) with an average follow-up of 1,2 ± 0,2 

years freely available from ADNI website (h ps://adni.loni.usc.edu/). 
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All subjects had two brain 3D T1-w images acquired using a 3T MRI scanner, sagi ally oriented 

and with 1 mm isotropic voxel. 

 

 Number (Female) Mean (SD) Age, 
years  

Mean (SD) Follow-up   

Scan-rescan dataset 13 (6) 39 ± 9.4 0* 

Healthy Control 
dataset 190 (99) 74 ± 5.7 1.2 ± 0.2 

Table 1: Popula on demographic 

 

4.1.3 Sta s cal analysis  

The sta s cal analysis was performed using MATLAB Release R2020a. Significance level was 

set to P < 0.05. The results are shown in mean, standard devia on, and standard error. All the 

atrophy measurements were yearly normalized before performing sta s cs, except for the 

scan-rescan dataset. 

Paired t-student was employed to compare PCVC in scan-rescan dataset. 

Pearson’s correla on has been used to evaluate the degree of concordance between the 

different measurements obtained by the different methods. The Bland Altman plot was used 

to test for the presence of systema c bias. 
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PCVC obtained from CSA measurements was calculated as the CSA difference between two 

consecu ve me-points CSA, divided by the first me-point and mul plied by 100. 
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4.2 Results 

4.2.1 Scan - rescan dataset 

SIENA-SC showed lower measurement error (mean: -0.06%; SD: ±0.18; SE: 0.03) compared to 

GBSI (mean: -0.12%; SD: ± 0.73; SE: 0.13 ; p<0.005) and CSA change (mean: 0.58%; SD: ± 2.2; 

SE: 0.32 ; p<10E-10). GBSI showed lower measurement error compared with CSA (p<0.01).  SE: 

Standard Error. (Figure 22). 

 

4.2.2 Comparison between methods using Healthy Controls 

On the HCs dataset, the annualized PCVC showed no degree of atrophy using all the three 

methods (SIENA-SC: -0.05% ± 0.45 ; GBSI: -0.08% ± 1.6; CSA: 0.005% ± 3.1). 

T-test analysis did not show any difference in the measurements obtained with the three 

methods (SIENA-SC vs GBSI: p=0.85 ; SIENA-SC vs CSA change: p=0.78 ; GBSI vs CSA change: 

p=0.73). 

Figure 22: Boxplot showing the comparison of the measurements using SIENA-SC, GBSI and 
CSA change. The line inside the boxes indicates the median value. Results are shown in 
absolute values 
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4.2.2.1 SIENA-SC vs GBSI 

SIENA-SC correla on with GBSI: r=0.48, p<0.05, mean absolute difference= -0.02%. The least-

squares fit between SIENA-SC and GBSI is es mated at y=1.42x (R2=0.16). See Figure 23 for a 

direct SIENA-SC vs. GBSI plot and a Bland Altman of the same data. The strong asymmetry in 

both the plot is driven by the differences in standard devia on between the two methods. 

 

 

4.2.2.2 SIENA-SC vs CSA change 

Correla on between SIENA-SC and CSA change measurements: r=0.29, p<0.05, mean absolute 

difference=0.06%. The least-squares fit between SIENA-SC and CSA change is es mated at 

y=2.02x + 0.12 (R2=0.09). See Figure 24 for a direct SIENA-SC vs. CSA plot and a Bland Altman 

of the same data. The strong asymmetry in both the plot is driven by the differences in 

standard devia on between the two methods. 

Figure 23: Sca er plot (on the le ) showing PCVC evalua on from SIENA-SC (x) and GBSI (y). The do ed line shows 
ideal agreement of x=y. The con nuous line shows the least-squares fit between SIENA-SC and GBSI. Bland Altman 
plot (on the right) showing the difference between SIENA-SC and GBSI 
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4.2.2.3 GBSI vs CSA change 

Correla on between GBSI and CSA change measurements: r=0.33, p<0.05, mean absolute 

difference= 0.09%. The least-squares fit between GBSI and CSA change is es mated at y=0.63x-

0.06 (R2=0.11). See Figure 25 for a direct GBSI vs. CSA change plot and a Bland Altman of the 

same data. 

  

Figure 24: Sca er plot (on the le ) showing PCVC evalua on from SIENA-SC (x) and CSA change (y). The do ed 
line shows ideal agreement of x=y. The con nuous line shows the least-squares fit between SIENA-SC and CSA 
change. Bland Altman plot (on the right) showing the difference between SIENA-SC and CSA change. 

Figure 25: Sca er plot (on the le ) showing PCVC evalua on from GBSI (x) and CSA change (y). The do ed line 
shows ideal agreement of x=y. The con nuous line shows the least-squares fit between GBSI and CSA change. 
Bland Altman plot (on the right) showing the difference between SIENA-SC and CSA change. 
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4.3 Main findings 

SIENA-SC showed a consistent higher robustness than GBSI and the CSA change when PCVC 

from scan rescan were assessed, while no differences were found between the three methods 

in the longitudinal dataset of HC. This is expected, due to the small biological varia on of SC 

volume in HC. However, compared to GBSI and CSA change, SIENA-SC demonstrated a smaller 

dispersion of the data, as es mated by the standard error. 

The higher robustness of SIENA-SC and GBSI, when compared with CSA on a scan-rescan 

dataset, can be explained by a be er ability of registra on-based methods to account for 

par al volume effects [192]. Such effects can cause segmenta on errors and variability when 

calcula ng CSA. Indeed, conven onal segmenta on-based methods rely on numerical 

differences between areas obtained from hard segmenta on at each me-point, which can 

lead to indirect es mates of atrophy and greater variability, especially when using scans with 

different intensity scales, different voxel sizes or other confounding effects like subject’s 

reposi oning, cord curvature or noise. The similar approach between SIENA-SC and GBSI can 

also explain the moderate correla on between the two methods, correla on that becomes 

weaker when they are compared with CSA (SIENA-SC: R=0.29, GBSI: R=0.33). Thus, our analysis 

confirmed the already known bigger reliability of registra on-based methods compared with 

the segmenta on-based ones [53]. 

Although sharing some of the pre-processing steps, the higher robustness and sensi vity 

shown by SIENA-SC compared with GBSI could rely on the different approaches used to derive 

changes in atrophy from local intensi es varia ons. SIENA-SC reduces the impact of local 

random fluctua ons in voxel intensi es by comparing the profiles of the intensity deriva ves, 
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and not directly assessing the differences in voxel intensi es. On the other hand, GBSI reduces 

the global differences in two SC images through a prior intensity normaliza on and then 

directly compares the voxel intensi es. This approach might be influenced by local fluctua ons 

in voxel intensi es, not fully recovered a er the global intensity normaliza on and leads to 

assume that SIENA-SC could be less biased by sources of variability in MRI signal. In other 

words, GBSI approximate the brain volume change by measuring the intensity difference while 

SIENA measure the intensity profile distance between each corresponding pair of edge voxels 

of the rigidly registered baseline and repeat images. Indeed, both these two techniques 

significantly reduce the variance from segmenta on errors by assessing the changes directly 

using intensity informa on. 

 

 

  



Pag. 93 / 132 
 

5 Experiment 2: Sensi vity and sample size 

5.1 Popula on 

The second experiment aims to study the sensi vity of SIENA-SC in order to dis nguish the 

physiological and pathological rate of atrophy. 

5.1.1 Mul ple Sclerosis subjects 

We add a dataset of MS subject to the HC dataset used in the experiment 1. Popula on of the 

experiment 2 is summarized in Table 2. 

MS data: 65 subjects acquired at two Italian sites: 10 subjects from Meyer Hospital in Florence 

(mean age: 40 ± 12,9 years; follow-up: 1,2 ± 0,4 ) and 55 subjects from University Hospital in 

Verona (mean age: 39 ± 11,3 years; follow-up: 1,4 ± 0,7). 

All subjects had two brain 3D T1-w images acquired using a 3T MRI scanner, sagi ally oriented 

and with 1 mm isotropic voxel. Details of the MRI acquisi on are in Table 3. 

 Number (Female) Mean (SD) Age, 
years 

Mean (SD) Follow-up 

HC dataset 190 (99) 74 ± 5.7 1.2 ± 0.2 

MS dataset 
Center 1: 10 (7) 

Center 2: 55 (45) 
40 ± 12.9 

Center 1: 1.2 ± 0.4 

Center 2: 1.4 ± 0.7 

Table 2: Popula on demographics. Center 1: Florence. Center 2: Verona. *Scan-rescan MRIs were performed on 
the same day 
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Site Field 

Strength 

Manufacturer Scanner 

Model 

Echo 

Time 

Repe on 

Time 

Flip 

Angle 

Pixel 

Bandwidth 

Slice 

Thickness 

Spacing 

Between 

slices 

Florence 3T Philips Achieva 0,004s 0,01s 8 175 1 1 

Verona 3T Philips Achieva 0,004s 0,008s 8 191 1 1 

Verona 3T Philips Ingenia 0,004s 0,008s 8 191 1 1 

Table 3: Scanner acquisi on details for Florence and Verona Sites 

 

5.2 Sta s cal analysis  

The sta s cal analysis was performed using MATLAB Release R2020a. Significance level was 

set to P < 0.05.  

A linear regression model has been used to measure the sensibility of the methods in 

discrimina ng HC subjects from MS pa ents. SIENA-SC, GBSI and CSA change were  the 

dependent variable, group (HC or MS), age and sex were the covariates. Results are shown as 

the coefficient of PCVC change in MS pa ents, 95% confidence interval and p-values. 



Pag. 95 / 132 
 

To evaluate the precision of each method, we computed the sample size for an hypothe cal 

trial with 80% power at the 5% significance level and looking for 50%, 70% and 90% treatment 

effects. 

As for the experiment one, PCVC obtained from CSA measurements was calculated as the CSA 

difference between two consecu ve me-points CSA, divided by the first me-point and 

mul plied by 100. 
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5.3 Results 

5.3.1 Comparison between HCs and MS 

The linear regression model adjusted by group (HC and MS), age and sex, showed a different 

rate of atrophy in MS pa ents compared to the HC using the three methods: SIENA-SC (Coeff: 

-0.54, 95%CI=[-0.87, -0.21],  p<0.001); GBSI (Coeff: -0.84 ; 95%CI=[ -1.81, 0.12 ], p=0.08); CSA 

change (Coeff: -1.92 ; 95%CI=[ -3.82,  -0.016 ], p=0.048). Raw values of the results are 

illustrated in Table 4 and Figure 26. 

 HC MS p-value 

Annualized SIENA-SC [SE] -0.05 ± 0.45 [0.03] -0.6 ± 0.77 [0.09] <0.001 

Annualized GBSI [SE] -0.08 ± 1.6 [0.12] -1.14 ± 1.56 [0.19] 0.08 

Annualized CSA change [SE] 0.005 ± 3.1 [0.22] -1.52 ± 3.44 [0.42] 0.048 

Table 4: Table showing the raw mean values, standard devia on, and standard error of PCVC obtained with the 
three methods. SE: Standard Error. 
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Figure 26: Boxplot illustrates the comparison of the annualized percentage cord area changes obtained using 
SIENA-SC, GBSI and CSA change between healthy control and mul ple sclerosis subjects. 
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5.3.2 Sample size 

Considering the sample size es ma on per arm for a clinical trial where SC atrophy could be 

an outcome to measure the response to treatment, SIENA-SC showed the lowest number of 

MS pa ents needed to observe an effect over this hypothe cal treatment (Table 5 and Figure 

27).  

So ware Effect size % Sample Size [CI] (MS Subjects) 

SIENA-SC 50 54 [39 to 95] 

 70 146 [107 to 217] 

 90 1290 [933 to 1986] 

GBSI 50 62 [36 to 135] 

 70 167 [86 to 478] 

 90 1483 [714 to 4287] 

CSA 50 171 [59 to 5628] 

 70 472 [157 to 2700] 

 90 4224 [1859 to 8991] 

Table 5: Es mated sample size per arm with all the three methods (Power= 80%, 5% Significance level). 
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Figure 27: Plot showing the sample size power for different effect size for each method (SIENA-SC: 
con nuous red line ; GBSI: blue dash-dot line ; CSA: green do ed line) 
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5.4 Main findings 

There have been few clinical trials and observa onal studies in MS that used SC atrophy as an 

outcome measure, because of the large sample size required when using the available CSA 

method [9,135,193]. 

To provide evidence that SIENA-SC could be applied to neurological diseases, in this 

experiment we applied SIENA-SC, GBSI and the CSA change on a dataset of MS pa ents from 

two centers. As explained in chapter 1.4, SC atrophy is a well-known feature in MS since the 

early stages and monitoring cervical SC atrophy may be clinically relevant, due to its correla on 

with increased disability. 

In our popula on, SIENA-SC was able to significantly dis nguish between MS and HC 

(p<0.001), compared with GBSI (p=0.08). Although CSA changes narrowly obtained 

significance (0.048), both CSA and GBSI showed higher standard error than that from SIENA-

SC. These results imply that SIENA-SC measurements are more precise, thereby holding 

promise for future MS research on SC imaging. 

SIENA-SC yielded increased sta s cal power to detect 50-70-90% treatment effects than those 

provided by GBSI and CSA change, anyway, both the registra on-based methods 

outperformed the results obtained by the atrophy changes measured with CSA. Specifically, 

SIENA-SC provided a three-fold smaller sample size than that obtained with CSA, while only 

slightly smaller than the one es mated by GBSI. Overall, the sample size es mates for SC 

atrophy measurements with SIENA-SC are of the same order of magnitude as those for brain 

atrophy obtained with registra on-based methods [15,194,195]. 
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This preliminary analysis is promising and seems to indicate SC atrophy as evaluated by SIENA-

SC a suitable endpoint in clinical trials and in observa onal datasets.  
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6 General discussion 

This study shows the feasibility of SIENA-SC, a fully automated, easy-to-use, tool to calculate 

the PCVC using brain MRI acquisi ons, thus transla ng the behavior of the original SIENA 

method from brain to SC. Assessing SC atrophy from brain scans, the scan me for MRI and 

the associated cost could be significantly reduced, also relieving pa ents’ burden. Moreover, 

SIENA-SC allows to obtain PCVC without extensive computer engineering experience and 

reduce inter-operator variability. To obtain this, a novel op mized pre-processing procedure, 

cons tuted by integra ng and op mizing some previously developed rou nes, was ideated 

and tested. 

SIENA-SC starts with a pre-processing based on an ar ficial-intelligence freely available tool 

[62]. This step eliminates the ini al operator interven on necessary for the iden fica on of 

the ini al mask of the spine. This approach is valid by itself, making fully automated also the 

two methods, GBSI and CSA, compared with SIENA-SC. Indeed the same generated cord masks 

have been used for the atrophy assessment in all the three methods. In order to reproduce 

the SIENA methodology for the analysis of SC atrophy, we op mized a registra on procedure 

between two longitudinally acquired images. This step was implemented using jointly, for each 

mepoint, images and masks of the dilated cord up to the vertebra, to provide the registra on 

tool a non-moving reference. Finally, SIENA-SC derives the percentage change in atrophy 

through an indirect approxima on of the local edge displacement, using the differences 

between the deriva ves of the intensi es between the 2 images and a calibra on factor that 

depends on the size of the SC and serves to reduce the variability introduced by the intrinsic 

differences between the two images. 
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6.1 Limita on 

This study is a proof-of-concept of the use of SIENA-SC. We mainly focused on the crea on of 

the method and the ini al valida on of its robustness and sensi vity. These results should be 

confirmed on larger datasets of brain MRI images with a visible cervical cord and tested in 

different neurological diseases. 

6.2 Future direc ons 

The easy use of SIENA-SC could allow the evalua on of physiological changes in large data sets 

of HCs, defining norma ve values as already demonstrated for the brain atrophy using the 

SIENA method [196]. Furthermore, new studies using data sets of neurological pa ents 

supplied by clinical informa on should be er explore the method's sensi vity in iden fying 

pathological devia ons from normality. Finally, SC atrophy could be combined with other 

clinical and brain MRI outcome measures to further improve the surveillance of the clinical 

course in neurological diseases [139,197,198]. Indeed, combined endpoints have become 

increasingly common, and the inclusion of SC atrophy could further improve sta s cal power 

and clinical correlates. 

6.3 Conclusion 

In this study, we presented SIENA-SC, a new method to assess SC atrophy longitudinally. 

The so ware is fully automated, easy to use and has been specifically designed, but not 

limited, to work on rou nely acquired brain MRI sequences, such as MPRAGE[6]. 
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SIENA-SC offers reliable, sensi ve and consistent quan ta ve measurements of longitudinal 

SC volume change. 

This study provides evidence that SIENA-SC can be considered as a precise and reliable tool for 

calcula ng MS-related SC atrophy in clinical trials and in observa onal datasets or in other 

neurological disease where SC plays a determinant role. 
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