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Abstract 

In this thesis we present a new method to assess longitudinally spinal cord (SC) atrophy, called 

SIENA-SC. 

The spinal cord (SC) is an important area of the central nervous system (CNS) as it plays a 

critical role in both motor and sensory functions. Magnetic resonance imaging (MRI) allows 

for in-vivo visualization of the SC, providing valuable insights into its structure and function 

and helping the diagnostic workup of several neurological conditions such as multiple sclerosis 

(MS), amyotrophic lateral sclerosis (ALS), and spinal cord injury. In addition, the quantification 

of SC atrophy can be used to monitor disease progression and as an outcome measure in 

clinical trials. However, these measures  have not reached yet a degree of robustness and 

reliability comparable to those of brain atrophy, which are currently used to monitor disease 

progression and treatment efficacy in neurodegenerative diseases. 

To date, there are two possible strategies to assess longitudinal volumetric changes of SC over 

time. The first is to compare the cross-sectional area (CSA) from segmentation maps obtained 

independently at each timepoint. This approach provides an indirect estimation of the atrophy 

rates and is limited by the inaccuracy of segmentation maps due to partial volume effects. The 

second approach relies on these SC segmented masks, but they are registered on a common 

reference space, providing a direct estimation of atrophy measurements. The first attempt to 

provide a reliable tool to measure SC atrophy longitudinally was made through the generalized 

boundary shift integral (GBSI)., an optimization of an algorithm that has been already 

validated to assess brain atrophy. 
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Structural Image Evaluation using Normalization of Atrophy (SIENA) is a widely recognized 

method that employs registration techniques to measure changes in brain volume over time. 

Over the past two decades, SIENA has been extensively used to evaluate brain atrophy due to 

its user-friendly nature and its reliability. SIENA calculates the zeros of the second derivative 

of the intensity profiles of the lines perpendicular to the surface in the two images to be 

compared. This approach helps to reduce the influence of MRI intensity inhomogeneity, as it 

relies on the shape of the intensity profiles rather than their specific intensity values. By using 

this method, the variability introduced by intensity variations is minimized, allowing for more 

robust and reliable measurements of atrophy. 

The study presented in this thesis introduces SIENA-SC, which is an adapted version of the 

SIENA method, designed to calculate the percentage of spinal cord change (PCVC) over time 

directly on the cord edges. Our main objective was to provide a fully automated approach that 

reduces variability in measuring SC atrophy and offers a solution similar to longitudinal brain 

atrophy measurements. 

In the first experiment, using a multicenter dataset including 13 scan-rescan and 190 Healthy 

Control (HC) subjects, SIENA-SC showed to have a lower measurement error than GBSI and 

CSA, reflected by lower standard deviation, coefficient of variation and median absolute 

variation. 

In the second experiment, the lower measurement variability of SIENA-SC than GBSI and CSA, 

was confirmed in a dataset of 65 MS subjects and the same 190 HC of the previous experiment, 

thus resulting into a better differentiation between patients with MS and HC, an improvement 

of statistical power, and reduction of sample size estimates. 



Pag. 6 / 132 
 

In conclusion, SIENA-SC showed to be robust and feasible when assessing SC atrophy using 

brain MRI scans routinely acquired in clinical practice. Longitudinal spinal cord atrophy 

measured through SIENA-SC has the potential to become a recognized outcome measure for 

clinical trials. However, it should currently be considered as a secondary outcome measure 

until additional advancements enhance the ease of acquisition and processing. Further 

developments of the methods are needed to make the process more streamlined and user-

friendly. 
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Impact Statement 

In this thesis, I have developed and validated the Structural Image Evaluation using 

Normalization of Atrophy in Spinal Cord (SIENA-SC), one of the first registration-based method 

for quantification of spinal cord atrophy. The SIENA-SC pipeline is a modified version of the 

original SIENA method that has been designed to address the limitations of commonly used 

segmentation-based methods, such as measuring the spinal CSA. Furthermore, SIENA-SC has 

been designed for using routinely acquired MRI of brain. 

The improvements in spinal cord atrophy measurements presented in this thesis can expand 

research possibilities for future neurodegenerative diseases projects, such as Multiple 

Sclerosis, Amyotrophic Lateral Sclerosis and SC injury, where SC volume changes are 

representative of the most aggressive aspects of the diseases. 

The high robustness and reliability reached by SIENA-SC suggests that this tool has the 

potential to become a gold standard for clinical trials including spinal cord atrophy as an 

outcome measure. Moreover, obtaining spinal cord atrophy measurements from brain scans 

could represent a viable and clinically meaningful alternative to more technically challenging 

spinal cord images, in particular in multi-centre settings where homogenous spinal cord 

acquisitions are not feasible. 

Finally, results of this thesis are also important for the patients. Deriving spinal cord atrophy 

measurements from brain scans would significantly reduce the scan time for MRI and, thus, 

participants’ burden. In the future, it is important to identify changes in spinal cord volume 
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which may improve the monitoring of the clinical course of neurological disease and its 

treatment response. 
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1 IntroducƟon 

In this thesis, we present a new method for longitudinally assessing spinal cord (SC) atrophy, 

called SIENA-SC (Structural Imaging Evaluation, Using Normalization, of Atrophy for Spinal 

Cord), on routinely acquired MRI. 

To make the thesis self-consistent, the necessary concepts will be provided in the introduction 

so that the objectives can then be correctly described. The notions necessary to understand 

the new solutions implemented in the software will also be provided. 

Therefore, the introduction will be organized as follows: 

1. An overview of the anatomy of the spine; 

2. a review of the current state of the art methods for the analysis of the brain and the 

spinal cord, with a particular regard to the SIENA methodology. This section will 

explore also the challenges of spinal cord imaging and the attempts to overcome them 

to develop reliable SC analysis tools; 

3. a descripƟon of the role of the spinal cord in neurodegeneraƟve disease, with a 

parƟcular focus on MS, a disease where SC atrophy has been already characterized. 

1.1 The Spinal Cord 

The SC consƟtutes, along with the brain, the central nervous system (CNS). The SC is a long 

tubular-shaped structure located in the vertebral column, surrounded by Cerebrospinal fluid 

(CSF) and extending from the medulla oblongata in the brainstem to the first or second lumbar 
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vertebrae depending on individuals (Figure 1). As an extension of the brain, its role is to relay 

nervous signals between the brain and the peripheral nervous system, ensuring the transfer 

of efferent and afferent messages between the cerebral cortex and the motor and sensory 

system. It is also the center for reflexes coordinaƟon and control. In parƟcular, SC hosts central 

paƩern generators which control rhythmic movements such as breathing or walking. 

1.1.1 Structure 

The SC consists of 31 segments through which spinal nerves symmetrically enter and exit by 

right and leŌ sides : C1 to C8 for cervical levels, T1 to T12 for thoracic levels, L1 to L5 for lumbar 

levels and S1 to S6 for sacral levels. During embryonic development, vertebrae match spinal 

levels but as vertebral column grows faster than SC, it is not the case anymore at adulthood. 

In general, the spinal levels are found at the same height as their respecƟve rostral vertebral 

levels (e.g., spinal level C4 is at the same height as vertebral level C3) [1]. However inter-

individual variaƟons are observed [2]. 

The SC is made up of grey (GM) and white maƩer (WM) (Figure 1). GM is found in the center 

with a buƩerfly or H shape, while white maƩer surrounds it. SC cross-secƟon changes in shape 

and area along inferior-superior axis (Figure 2), as GM and WM do. The GM/WM CSA raƟo is 

also reduced with aging [3,4]. The SC cross-secƟon shape is round at thoracic and lower lumbar 

levels and ellipƟcal at cervical levels. 

SC surface is cover by a thin membrane, the pia mater, which is the innermost layer of the 

meninges, with the arachnoid mater and the dura mater as the outermost layer, at the surface 

of the spinal canal. The spinal canal or the subarachnoid cavity is filled with CSF. The CSF is a 

colorless fluid derived from blood plasma with equivalent sodium content but almost no 
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proteins. It is composed at 99% of water. The remaining is glucose, potassium, calcium, 

magnesium and chloride. The CSF plays a protecƟve role for the brain and SC, acƟng as a 

cushion or buffer. It also plays a role of autoregulaƟon of the cerebral blood flow and 

prevenƟon of brain ischemia. Finally, it is an important component of the lymphaƟc system as 

it enables metabolic waste products from brain and SC to be cleared. 

 

 

Figure 1: a) SagiƩal view of Cord Segments, b) close up of ligaments, c) conus medullaris. Source: 
hƩps://wikimsk.org/wiki/Spinal_Cord_Anatomy. 
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Figure 2: Spinal cord cross-secƟon area evoluƟon along inferior-superior axis within 50 healthy 
subjects (mean age: 27 ± 6.5 y.o., 29 men, 21 women, source: De Leener et al., 2018). 



Pag. 24 / 132 
 

1.1.2 Grey maƩer 

The GM of the SC has the shape of a buƩerfly or the leƩer H (Figure 3) and it is mainly made 

up of a mixed of neurons, interneuronal connecƟon fibers, glial cells (cells supporƟng neurons 

environment) and blood vessels. GM is generally divided into three main columns on each side 

which host specific cellular groups receiving the nerve endings (Figure 3): the dorsal or 

posterior horn, the ventral or anterior horn and the intermediate or lateral GM. In the center 

is the central canal filled of CSF. The dorsal horns host the free nerve ending of afferent nerve 

fibers entering SC by dorsal roots and transmiƫng signal to sensory neurons. The ventral horns 

host the free nerve ending of efferent nerve fibers exiƟng SC through ventral roots and 

transmiƫng signal from motor neurons (Errore. L'origine riferimento non è stata trovata.). 

Afferent neurons and efferent neurons are connected through interneurons in the central grey 

commissure around the central canal. These connecƟons are responsible for spinal reflexes 

(e.g., limb withdrawal reflex aŌer a painful sƟmuli). 

 

 

Figure 3: Spinal grey maƩer organizaƟon. Diagram at thoracic level (Source: 
hƩps://doctorlib.info/medical/anatomy/43.html on June 18, 2020). 
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1.1.3 White MaƩer 

The white maƩer is made of long fibers called axons, running along the inferior-superior axis 

and relaying nervous signal from neurons or receptors to other neurons or effectors. Those 

fibers are wrapped in a myelin sheath providing a pale color to Ɵssue (hence the name white 

maƩer), which is produced by glial cell named oligodendrocytes. Axons diameters ranges from 

1 to 10 μm in humans [5]. White maƩer also includes some blood vessels and CSF in 

extracellular space. Axons with globally same origin and desƟnaƟon are grouped by region 

and funcƟon in symmetric right-leŌ pathways or tracts (Figure 4). Two main categories can be 

idenƟfied: the sensory ascending pathways and the motor descending pathways. Ascending 

pathways consists of afferent fibers entering SC through dorsal roots or coming from SC GM 

and conducƟng informaƟon to higher levels. Descending pathways are mainly composed of 

fibers coming from motor cortex or brainstem and conducƟng informaƟon to lower levels and 

to the peripheral nervous system. Finally, the propriospinal (or intersegmental) tracts are a 

third category of pathways which are made of both ascending and descending, crossed and 

uncrossed short fibers, and which interconnect adjacent or distal spinal levels. Main tracts of 

this category (not represented in Figure 4) are the ventral propriospinal tract, the lateral 

propriospinal tract and the dorsal propriospinal tract. 
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Figure 4: Atlas of major white maƩer spinal tracts. In red are the motor descending pathways, in blue are the 
sensory ascending pathways.  Source: 
hƩps://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Spinal_cord_tracts_-_English.svg/1920px-
Spinal_cord_tracts_-_English.svg.png 
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1.2 Towards brain segmentaƟon to spinal cord segmentaƟon 

In order to be able to explain in detail SIENA-SC, the soluƟon proposed in the following 

chapters of this thesis for the evaluaƟon of longitudinal atrophy of the SC, it is appropriate to 

preliminarily introduce some general concepts related to the characterisƟcs of MRI images, list 

the possible causes of variability in the images themselves and some of the soluƟons proposed 

in the field of volumetric analysis of the brain. AŌerwards, we will describe the different 

approaches used in the evaluaƟon of SC atrophy. 

MRI is a medical applicaƟon of nuclear magneƟc resonance. MRI is a medical imaging 

technique used in radiology to obtain images of the anatomy and physiological processes of 

the body. MRI scanners use strong magneƟc fields, magneƟc field gradients, and radio waves 

to generate images of the body's organs. MRI is not invasive, because it does not involve the 

use of X-rays or ionizing radiaƟon, which disƟnguishes it from CT and PET scans. The result of 

an MRI sequence is the creaƟon of a high-definiƟon 3D image of the organ being studied. An 

MRI image thus consists of an ordered, three-dimensional grid of voxels, the minimal elements 

of a 3D image equivalent to the pixels of two-dimensional images.  The intensity encoded in 

each voxel does not directly reflect any physical content but is indirectly related to the Ɵmes 

with which the spins of hydrogen atoms, previously aligned along a direcƟon through the use 

of a constant magneƟc field B0, return to the same once excited through a pulse of known 

radio frequency, called B1. These Ɵme intervals are called relaxaƟon Ɵmes, vary from Ɵssue to 

Ɵssue, and depend on parameters, such as repeƟƟon Ɵme (RT: the Ɵme between excitaƟon 

pulses) and echo Ɵme (ET: the Ɵme in which radiofrequency data returning from the Ɵssue 

aŌer the iniƟal radiofrequency pulses are collected) whose different combinaƟon allows 
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different sequences to be constructed, which create images with varying intensity contrast 

between Ɵssues. 

Given the complexity of the physical processes and digital signal processing involved in 

creaƟng an MRI image, the arƟfacts that can be generated are numerous. These can depend 

on either hardware-related problems, such as B0 inhomogeneity in the region encompassing 

the analyzed organ or intensity distorƟons due to B1 field inhomogeneity, or problems related 

to paƟent cooperaƟon, such as moƟon arƟfacts. Another, ineradicable source of variability in 

MRI images is called the parƟal-volume effect and is generated when the voxel size is larger 

than the intrinsic size of the structures to be studied. The arƟfact occurs as a blurring of 

intensiƟes in voxels that contain mulƟple Ɵssues, such as the irregular interfaces between 

white and GM in the brain. 

This brief and far from exhausƟve review of the principles that preside over the creaƟon of 

MRI images and the possible sources of error allows us to focus on the various analysis 

pipelines that have been developed to analyze atrophy variaƟons computed on MRI images. 

Generally speaking, image segmentaƟon is the process of dividing an image into different 

parts, aiming to define specific regions, whose boundaries separate image parts that display 

disƟnct features. QuanƟtaƟve MRI measures are strongly dependent not only on acquisiƟon 

parameters, but also on processing methods, presenƟng with different sensiƟvity to change, 

repeatability and measurement error. 

Several libraries of free online soŌware for neuroimaging analysis have implemented pipelines 

for fully automated quanƟficaƟon of brain atrophy and SC. Referring to the exisƟng literature, 
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we can provide a schemaƟc classificaƟon of soŌware. We speak of a "segmentaƟon method" 

when the soŌware does not directly compare brain MRI images of the same subject acquired 

over Ɵme. This type of soŌware is mostly used in cross-secƟonal analysis. Conversely, it is 

called "registraƟon method" when the soŌware directly compares brain MRI images of the 

same subject acquired over Ɵme and is based on an iniƟal registraƟon. This type of soŌware 

is oŌen used in longitudinal analysis [6]. 

Most 'segmentaƟon-based' soŌware packages divide the analysis into separate sub-phases. 

The first one reduces the amount of voxels to be analysed. Thus, for the analysis of brain 

images, this phase automaƟcally separates the parenchyma (GM+WM+CSF) from the non-

parenchyma, while for the analysis of SC images, this phase automaƟcally segments the SC 

cord. The second one consists of automaƟcally correcƟng the MR images of the previously 

idenƟfied organ for B0 inhomogeneity (e.g. brain or SC). Finally, these approaches provide the 

total volume and GM and WM volumes by summing the parƟal volumes (PVE) of each Ɵssue 

esƟmated in each voxel, i.e. the proporƟons of WM, GM and CSF present in each voxel of an 

MRI image. The quanƟficaƟon of the PVE in each voxel starts by assigning the PVE to a given 

voxel, using its intensity and that of the surrounding voxels, thus reducing classificaƟon errors 

due to the presence of random noise. To improve segmentaƟon, a-priori spaƟal informaƟon 

concerning the posiƟon of voxels can be added to the MRI intensiƟes, thus reducing the 

esƟmated proporƟon of a certain Ɵssue in voxels that most likely belong to a different Ɵssue, 

based on their posiƟon. 

"RegistraƟon-based" soŌware packages provide the total/GM/WM volume changes by 

comparing co-localized volumes of serially acquired MRI images from the same subject. A 
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preliminary step common to most of these procedures is the registraƟon of all MRI images of 

the same subject on the same virtual space. Early soŌware packages used in longitudinal 

analysis introduced the concept of halfway-space in which to align two MRI examinaƟons of 

the same subject and on which to measure the percentage of change in overall volume by 

calculaƟng the shiŌ in the parenchyma/CSF boundary over Ɵme. 

Before describing the soluƟons developed for SC, it is instrucƟve to look in detail at the 

pipelines implemented in some of the soŌware used for the analysis of brain atrophy, as many 

of the soluƟons implemented in the analysis of SC atrophy exploit soŌware (or concepts) 

previously developed for the analysis of brain images. 

1.2.1 Brain SegmentaƟon method 

1.2.1.1 Sienax 

SIENAX works for cross-secƟonal (single Ɵme point) analysis, and it is useful for differenƟaƟng 

two groups of subjects on the basis of single Ɵme point brain size measurement [7]. 

SIENAX aƩempts to esƟmate normalized brain volume (NBV) from a single image, using the 

skull to normalise spaƟally, with respect to a standard image. It starts by performing 

segmentaƟon of brain from non-brain Ɵssue in the head and esƟmates the outer skull surface. 

The brain and skull images are then registered to a standard space brain and skull image pair 

derived from the MNI152 standard image [8]. Next a standard space mask is used to make sure 

that no parts of the eyes are leŌ from the brain extracƟon (because of the connecƟon of the 

opƟc nerve, this can occasionally happen) and also to provide a consistent (i.e., non-arbitrary) 
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cutoff point for the brain stem. Finally Ɵssue-type segmentaƟon is carried out (including parƟal 

volume esƟmaƟon) and a (normalised) brain volume esƟmate is produced. 

The normalizaƟon for head/skull size is very important because it reduces within-group 

variaƟons, making cross-group comparisons more sensiƟve. 

The complete SIENAX method is summarized in the Figure 5. 

 

 

 

 

Figure 5: Example of SIENAX workflow. 
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1.2.2 Brain RegistraƟon methods 

Brain atrophy measures have been a cornerstone in the study of interventions with putative 

neuroprotective effects [9–11], because of the application of registration-based methods that 

provide direct estimates of brain atrophy, such as the SIENA [7], and the BSI method [12–14]. 

Both SIENA and BSI demonstrated a reduced sample size requirements to detect significant 

differences between groups or over time and are nowadays well-established methods to 

measure longitudinal brain atrophy in clinical trials and in observational studies for 

neurodegenerative diseases [15]. 

The two methods menƟoned above will be described in detail, as they form the conceptual 

basis on which SIENA-SC is based and describe some of the funcƟonaliƟes that have been 

employed, with the necessary adaptaƟons, in the implementaƟon of SIENA-SC. 

1.2.2.1 Siena 

SIENA performs segmentaƟon of brain from non-brain Ɵssue in the head and esƟmates the 

outer skull surface (for both Ɵme-points), and uses the resulƟng masks to register the two 

images on a halfway space, while correcƟng and normalising for imaging geometry changes. 

Then the registered segmented brain images are used to find local atrophy, measured on the 

basis of the movement of image edges [7,16]. 

Brain extracƟon 

The first processing stage is the separaƟon of parenchyma from non-parenchyma Ɵssue. The 

method used is known as BET - Brain ExtracƟon Tool [17]. BET provides a binary brain mask, 

the segmented brain image, and an external skull surface image as output. 
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Skull extracƟon 

Measurement of changes in brain size benefits from the esƟmaƟon of the skull (which is of 

fairly unvarying size over Ɵme in an adult) as a normalising factor in both cross-secƟonal and 

longitudinal measurements. 

Before brain change can be measured, the two images of the brain have to be registered 

(aligned). Clearly this registraƟon cannot allow rescaling, otherwise the overall atrophy will be 

underesƟmated. However, because of possible changes in imaging geometry over Ɵme (due 

to gradient calibraƟon driŌ or variable local field distorƟons), it is necessary to hold the scale 

constant (see also [18] for previous work on this problem; note that some longitudinal 

methods have failed to take account of this problem, although methods based primarily on 

cross-secƟonal measurements tend to normalise against it). With the method described here, 

this can be achieved by using the exterior skull surface (assumed to be constant in size and 

shape for an individual) as a scaling constraint in the registraƟon. 

In most MR images, the skull appears very dark. In T1-weighted images, the internal surface 

of the skull is largely indisƟnguishable from the CSF, which is also dark. Thus, the exterior 

Figure 6: LeŌ: Example brain surface found by BET. Middle: Example skull surface found 
by BET. Right: example subtracƟon image aŌer registraƟon of two images from a subject 
without atrophy. 
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surface is searched for. This also can be difficult to idenƟfy, even for human experts, but is the 

most realisƟc surface to aim to find. The exterior skull surface is found automaƟcally as the 

final stage of brain extracƟon, using BET. StarƟng with the esƟmated brain surface, each 

surface point is taken as the start of a search outwards for the opƟmal skull posiƟon. The most 

distant (from the brain) point of low intensity (before the bright scalp) is found, and the first 

peak in gradient outside of this is then defined as the exact posiƟon of the exterior of the skull 

surface. This method is quite successful, even in regions of overlying (dark) muscle or where 

there is significant (bright) marrow within the bone. Thus, a skull image is generated for each 

input image, to be used in registraƟon. 

RegistraƟon 

As already stated, before the differences between two images can be found, the brains in the 

two images must be aligned, using a registraƟon procedure. The registraƟon carried out uses 

a robust and accurate automated linear registraƟon tool, FLIRT (FMRIB’s Linear Image 

RegistraƟon Tool) [19]. A three-step procedure is used, where the brain images are used to 

opƟmise the iniƟal registraƟon and the final translaƟon and rotaƟon, whilst the skull images 

are used to opƟmise the scaling and skew. 

One could stop here and apply change analysis to the registered second brain and the original 

first brain. However, this is not opƟmal, as the second brain image has been through a 

processing step that the first brain image has not, namely a spaƟal transformaƟon (involving 

interpolaƟon of its values). The images will therefore look slightly different; the transformed 

second brain image will be slightly more blurred than the first brain image. To ensure that the 

images being compared undergo equivalent processing steps, both input images are 
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transformed to a posiƟon which is halfway between the two. In this way both images are 

subjected to a similar degree of interpolaƟon-related blurring. 

The typical quality of this brain registraƟon is illustrated in Figure 6 (right), an example 

subtracƟon of a registered pair of head images, which shows only appreciable moƟon outside 

of the skull. 

All of the brain and skull images are now discarded; only the original unsegmented images and 

the brain mask images are kept. The transformaƟons are applied to these images so that two 

registered (“common-space”) head images and two registered brain mask images result. These 

four images are passed on to the next stage. 

Masking 

The registered binary brain masks are now combined into a single mask which will be applied 

to the registered head images to produce two new registered brain images. The reason for this 

(rather than keeping the original registered brain images) is that even slight differences in the 

original brain segmentaƟons (i.e., the producƟon of the brain masks) would cause the 

artefactual appearance of brain change. Thus, the two masks are “binary ORed” - i.e., if either 

is 1 at a parƟcular voxel, the output is 1. (They cannot be “ANDed” as the brain from the second 

Ɵme point would cause incorrectly reduced masking of the first Ɵme point image in the case 

of atrophy.)  

The resulƟng combined mask is then applied to the registered head images to produce two 

registered brain images. These two images are passed to the final stage for the analysis of 

change. 
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Change analysis 

The next stage in the analysis is the change esƟmaƟon itself. There is great variety in how this 

is achieved amongst published longitudinal atrophy methods. Some researchers (e.g., [20–22]) 

use normalized subtracƟon of the images, assuming that resulƟng areas of significant 

deviaƟon from zero correspond to areas of interesƟng brain change. This relies on the 

assumpƟon that the images will appear exactly the same (apart from the change of interest); 

various procedures such as histogram matching and relaƟve bias field correcƟon have been 

suggested [22], in order to aƩempt to make the images look as similar as possible. Others look 

more directly for changes around Ɵssue boundaries. For example, [12,18] use the “boundary 

shiŌ integral” (the area under the intensity profile across a boundary in image 1 is subtracted 

from that for image 2, and normalised by the boundary height, resulƟng in an accurate 

measure of lateral moƟon), which gives the moƟon of each edge, even if blurred, but only if 

image contrasts in general are well matched between scans (See chapter 1.2.2.2 for further 

details). Methods that are principally cross-secƟonal in nature avoid the need to address the 

issue of change analysis. 

The system presented here first aƩempts to find all brain surface edge points and then 

esƟmates the moƟon of these edge points from one Ɵme point to the next. This edge moƟon 

is found for the whole brain surface, enabling the total volume change to be esƟmated. The 

previously published version of SIENA found edges on the basis of edge strength, and then 

found edge moƟon by searching for matching edge points from one image to the next. This 

suffered slightly from relaƟvely imprecise definiƟon of edge points, i.e., discriminaƟon was 

imperfect. The current version uses full Ɵssue-type segmentaƟon to find edge points, and thus 
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is more correctly selecƟve, and also enforces conƟnuity of the esƟmated brain surface. Thus 

the system presented here finds all brain surface edge points (including internal brain- CSF 

edge points, such as those around the ventricles) and then finds the moƟon of these points, 

in a Bayesian framework, perpendicular to the local edge, to sub-voxel accuracy. 

In order to find all brain surface edge points, Ɵssue segmentaƟon is performed on the image 

from Ɵme point 1 aŌer applicaƟon of the joint brain mask (see previous secƟon). The tool used 

[23] carries out Ɵssue (GM, WM and CSF) segmentaƟon and bias field correcƟon. The method 

is based on a hidden Markov random field (segmentaƟon labelling) model and an associated 

ExpectaƟon-MaximizaƟon algorithm for esƟmaƟng Ɵssue intensity parameters and bias field 

(spaƟal intensity inhomogeneity). The whole process is fully automaƟc (aŌer being instructed 

as to whether the image is T1 or T2, and whether to aƩempt to segment GM and WM as a 

single class or as separate classes), producing a Ɵssue-labelled segmentaƟon. It is robust and 

reliable, compared to the more common finite-mixture-model-based methods, which are 

sensiƟve to noise, parƟcularly as they use no spaƟal neighbourhood informaƟon. 

The Ɵssue segmentaƟon labels are used to find all brain edge points. First, grey and white 

voxels are combined into a single class, as are also CSF and background voxels. All boundary 

voxels between these two resulƟng classes are used for the next processing stage. Note that 

this method of finding brain edge voxels enforces a conƟnuous surface (without breaks), 

although not necessarily a topologically simple one. Figure 7 shows example slices through an 

image aŌer edge point detecƟon (and also example perpendicular image profiles as described 

below). 
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Next, the common-space registered image from Ɵme point one is processed at each brain edge 

point. First the image gradient direcƟon (in 3D) is found, using a simple 3x3x3 Gaussian-

weighted derivaƟve operator. This is used to find the surface normal unit vector (and will 

always point from the darker side of the boundary to the lighter side - this informaƟon will 

later be used to tell the difference between atrophy and “growth”). 

Next, a 1D array (an intensity profile perpendicular to the edge) is filled with values from the 

image. These values are sampled at sub-voxel posiƟons (using tri-linear interpolaƟon) as the 

array’s elements will not in general fall exactly at voxel grid posiƟons. The length of the array 

is preset to a fixed number of millimeters (typically ± 3); the extent will also be limited by the 

presence of a second edge, for example, the far side of a sulcus, in order to prevent other 

nearby edges from confusing the moƟon esƟmaƟon. A second 1D array is filled with values 

from exactly the same image posiƟons from the (common-space registered) image from Ɵme 

point two. 

Figure 7: Example slices through an image aŌer edge point detecƟon, 
and also example perpendicular image profiles. 
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Edge moƟon is now esƟmated by finding the relaƟve shiŌ, between the arrays, which produces 

the maximum correlaƟon (to sub-voxel accuracy using interpolaƟon of the correlaƟon scores). 

However, before the correlaƟon, each array is pre-processed in two ways. 

First each profile is convolved with a differenƟaƟng kernel, as it makes sense to correlate the 

derivaƟves (edge-enhancements) of the two 1D image profiles rather than the raw image 

values; if there are intensity or contrast differences between the two images, the posiƟon of 

maximum correlaƟon could be skewed, but this effect is much reduced if correlaƟng edge-

enhanced versions of the profiles. Thus this method requires no (intensity) normalisaƟon of 

the images, and is not sensiƟve to problems arising from intensity inhomogeneiƟes across the 

images. The second process is the mulƟplicaƟon of each profile by a high-power exponenƟal 

profile (smoothed sharp cutoff); this acts as a prior on the expected moƟon by weighƟng the 

correlaƟon score, so that higher moƟons are less likely than small ones - this helps reduce the 

effect of large moƟon mismatches (which otherwise make a large contribuƟon to error in the 

overall method). This can be viewed as a Bayesian prior: 

𝑃(𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡|𝑑𝑎𝑡𝑎) ∞ 𝑃(𝑑𝑎𝑡𝑎|𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)𝑃(𝑑𝑖𝑠𝑝𝑙𝑎𝑚𝑒𝑛𝑡) 

( 1-1 ) 

where the first term on the right can be thought of as the raw correlaƟon score, and second 

term is the prior on the displacement between the profiles 

𝑃(𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)  ∝ 𝑒
ିௗ௜௦௣௟௔௖௘௠௘௡௧ర

ଶఙర  

( 1-2 ) 
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which has σ set to a suitable length such as 7mm. Because the posterior on the displacement 

is simply used to find the maximum probability the constants of proporƟonality are 

unimportant. 

Thus, the opƟmal displacement is found for each edge point, and, as stated earlier, the 

direcƟon of the edge normal determines whether atrophy or “growth”1 is taking place at this 

point. The posiƟon of opƟmal displacement is esƟmated to sub-voxel accuracy by fiƫng a 

quadraƟc through the correlaƟon values at the peak and its two neighbours. Figure 8 shows 

example profiles from one edge point with a slight shiŌ between Ɵme points, and the 

derivaƟves of these profiles. 
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For example, slices showing atrophy as blue edge points and “growth” as red, see Figure 9. 

 

 

 

Figure 8: Example profiles from one edge point with a slight shiŌ between 
Ɵmepoints, and the derivaƟves of these profiles. 
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Percentage Brain Volume Change Quantification 

Brain atrophy is conveniently quanƟfied by a single number such as the percentage brain 

volume change (PBVC). The iniƟal value obtained from the change image is the sum of all edge 

point moƟons (linear voxel units), which, when mulƟplied by voxel volume, gives the total BVC. 

This is one possible measure, as would be a PBVC derived directly from this. However, a more 

invariant measure is obtained by dividing this volume by the number of edge points found 

Ɵmes the voxel “area”. (Note, the final stages of SIENA are always carried out with cubic voxels, 

so there is no confusion about the definiƟon of area here.) This measure is then the mean 

perpendicular brain surface moƟon. The reason why this is preferable to the total volume 

change is that it is not (to first order) dependent on the number of edge points found. As the 

number of edge points depends on slice thickness (see below - typically by a factor of two 

between 1mm slices and 6mm) and (to a lesser extent) other scanning details, it is a good idea 

Figure 9:Example slices showing atrophy as blue edge points and “growth” as red. 
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to normalize for the number of points found. Finally, if it is required to convert the mean 

surface moƟon to a PBVC, the raƟo of the brain volume to the brain surface area needs to be 

esƟmated. 

In this formulaƟon: 

𝑙 =  
𝑣∑𝑚

𝑎𝑁
 

( 1-3 ) 

where 𝑙 is the mean surface moƟon, ∑m is the edge moƟon (voxels) summed over all edge 

points, v is voxel volume, N is the number of detected edge points and a is voxel CSA. Thus, 

% 𝑏𝑟𝑎𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =  
100𝑙𝐴

𝑉
=  

100𝑙𝑓𝑉

𝑉
= 100𝑙𝑓 

( 1-4 ) 

where A is the brain surface area (actual, i.e., not aN), V is the actual brain volume, f is the 

raƟo of actual area to volume. 

It is possible to find f directly for any given image without knowing A or V; if a single image is 

scaled by a known amount and then compared with the unscaled version using the above 

change analysis, the correct PBVC is known from the scaling that was applied, and the 

measurement of 𝑙 then allows f to be found. It varies across scanners, slice thicknesses and 

pulse sequence, but normally lies between 0.1 and 0.2mm−1. Applying this method (referred 

to as self-calibraƟon) helps reduce bias (systemaƟc error) in the reported esƟmates of PBVC. 

The complete SIENA method is summarized in Figure 10. 
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Figure 10: Overview of SIENA method 
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1.2.2.2 BSI 

“BSI” refers to Boundary ShiŌ Integral, is a widely recognized technique [12] to measure 

atrophy directly from the difference image of the registered serial MR images [12,13]. 

The BSI algorithm assumes that a change in volume of a soŌ Ɵssue object must be associated 

with an exact shiŌ in the boundary of that object. The shiŌ of the Ɵssue boundary results in 

an exactly equivalent shiŌ of the signal which is constructed from the MR samples [12]. 

Hence, if the baseline scan and follow-up scan are registered, in the area around the boundary 

of the registered scans Ibase and Ireg, the intensiƟes of Ibase(x; y; z) and Ireg(x; y; z) should shiŌ by 

an amount corresponding to the posiƟon shiŌ; this permits the precise measurements of 

boundary shiŌs by determining intensity shiŌs in the boundary region. The change in volume 

can thus be esƟmated by compuƟng the integral of all of the boundary shiŌs. 

If ibase(x) is the MR signal along the cord boundary at the locaƟon x of the baseline scan and 

ireg(x) is the MR signal at locaƟon x of a registered follow-up scan on which there has been a 

boundary shiŌ of ∆ω from the baseline, then these two MR signals can be related by ireg(x) = 

ibase(x+∆ω) in the region of the cord boundary [12]. Moreover, if the intensity changes 

monotonically across the cord boundary, then ibase(x) and ireg(x) will take the form shown in 

Figure 11. We can therefore define inverse funcƟons xbase(i) and xreg(i), related by xreg(i) = xbase(i) 

- ∆ω. 
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A simple esƟmate of ∆ω can be obtained using ∆ω = xbase(i) - xreg(i), where i may be any value 

within the intensity range of the cord boundary region [IR, IS]. In 3D T1 weighted spine MR 

images, the cord is brighter while the CSF is darker, thus IR is the intensity on the CSF side of 

the boundary and IS is the intensity on the cord side of the boundary. A more robust esƟmated 

can be obtained by averaging the esƟmates of ∆ω over an intensity range [I2, I1], as shown in 

EquaƟon ( 1-5 ). 

∆𝜔 =
1

𝐼ଵ − 𝐼ଶ
න (

ூభ

ூమ

𝑥௕௔௦௘(𝑖) −  𝑥௥௘௚(𝑖))𝑑𝑖 

( 1-5 ) 

where IR ≤ I2 < I1 ≤ IS. 

Figure 11: Example of an idealized one dimensional cord boundary shiŌ between the 
intensity ibase(x) along x axis on baseline scan, and the intensity ireg(x) along x axis on 
registered follow-up scan. An esƟmate of the shiŌ along x axis, ∆ω, may be obtained as the 
shaded area divided by the intensity range (I1 - I2). This strategy can be extended to three 
dimensions to esƟmate the cord volume loss ∆ν. 
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EquaƟon ( 1-5 ) can alternaƟvely be expressed as an integral with respect to x over the 

boundary, as wriƩen in EquaƟon ( 1-6 ). EquaƟon ( 1-5 ) and EquaƟon ( 1-6 ) are equivalent by 

considering that both integrals evaluate the area of the shaded region in Figure 11. 

∆𝜔 =
1

𝐼ଵ − 𝐼ଶ
 න (𝐶𝑙𝑖𝑝(

௕௢௨௡ௗ௔௥௬

𝑖௕௔௦௘(𝑥), 𝐼ଵ, 𝐼ଶ) − 𝐶𝑙𝑖𝑝(𝑖௥௘௚(𝑥), 𝐼ଵ, 𝐼ଶ))𝑑𝑥 

( 1-6 ) 

where IR ≤ I2 < I1 ≤ IS, and 𝐶𝑙𝑖𝑝(𝑎; 𝐼ଵ; 𝐼ଶ) = ൝
𝐼ଶ

𝑎
𝐼ଵ

      
𝑎 < 𝐼ଶ

𝐼ଶ  ≤ 𝑎 ≤  𝐼ଵ

𝐼ଵ >  𝐼ଵ

 

If we extend this strategy to three-dimensions and determine the integral numerically by 

evaluaƟng the integrand at small sampling intervals, the volume change can be calculated as 

shown in EquaƟon ( 1-7 ). 

∆𝑣 =
𝐾

𝐼ଵ − 𝐼ଶ
 𝑋 ෍ (𝐶𝑙𝑖𝑝(𝐼௕௔௦௘(𝑥, 𝑦, 𝑧), 𝐼ଵ, 𝐼ଶ) − 𝐶𝑙𝑖𝑝൫𝐼௥௘௚(𝑥, 𝑦, 𝑧), 𝐼ଵ, 𝐼ଶ൯

௫,௬,௭∈୉

) 

( 1-7 ) 

where K is the unit voxel volume, E is the set of voxels in the border region of the cord, Ibase(x; 

y; z) and Ireg(x; y; z) are the voxel intensiƟes on the registered baseline and follow-up scans at 

(x; y; z), and the intensity range of the integral [I2; I1] is referred to as the intensity window. 

Finally, the evaluaƟon of BSI requires the appropriate selecƟon of an intensity window. The 

intensity window [I2; I1] should be selected such that it falls enƟrely within the intensity 

transiƟons associated with the boundaries of the structure of interest. 

When applied to MRI image, the two T1-weighted images are co-registered using an affine 

registraƟon that correct for rotaƟon, translaƟon, scaling and minimize the standard deviaƟon 
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of the raƟo image [24]. The registered scans are then differenƟally bias-corrected [25] before 

calculaƟng the BSI. The method defines a region that lies near the borders of the baseline and 

registered repeat brain masks. The BSI technique is based on integraƟng the differences in 

intensiƟes over this region. Scan intensiƟes are normalised by dividing each scan by its 

respecƟve mean, calculated over the interior region. The intensiƟes are bounded by a clipping 

funcƟon based on a pre-defined upper and lower intensity for each scan. Dividing the 

integrated differences by the span of the clipping funcƟon provides a measure of the global 

brain volume loss (Figure 11). The absolute scaling of the BSI (that allows a final % brain volume 

change to be esƟmated) is calibrated using manual measurements of brain volume on each 

scan. The Figure 12 shows an example of the enƟre workflow on a brain analysis. 

 

  

Figure 12: BSI pipeline. Source: Prados et al. 2015 
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1.2.3 Challenges in spinal cord imaging 

MRI is also the method of choice in invesƟgaƟng disorders of the SC in a fairly quick and non-

invasive fashion. Based on the magneƟc properƟes of the hydrogen atoms, abundant in the 

human body in fat and water, various MRI contrasts may be generated and deliver anatomical 

detail, informaƟon on structural composiƟon and Ɵssue funcƟon [26–28]. For that purpose, a 

number of different MR-sequences and contrasts are used including relaxaƟon Ɵme-weighted 

(T1, T2, T2*), proton-density weighted, magneƟzaƟon prepared rapid gradient echo, fast-spin 

echo, phase-sensiƟve and short tau inversion recovery techniques [29]. 

However, in contrast to brain MRI, the environment of the SC presents addiƟonal challenges 

for MRI methods [26–28]. Greatest challenge is the inhomogeneous magneƟc field across the 

SC due to the different magneƟc properƟes of the surrounding Ɵssues, e.g. CSF, fat, vertebral 

bones, and air-Ɵssue interfaces. This may lead to image distorƟons and a loss of spaƟal 

resoluƟon. Further, the SC is a fairly thin and curved structure with a maximal antero-posterior 

diameter of 8.3 ± 1.6mm at the C1 level and maximal latero-lateral diameter of 13.3 ± 2.2mm 

at the C5 level [2,30–33], which results in parƟal volume effects (a mix of Ɵssues with different 

relaxaƟon properƟes in one voxel) at the SC/CSF borders [26–29]. Another challenge is the 

cord’s physiological movement in the spinal canal as a result of cardiac-induced pulsaƟle CSF 

moƟon, respiratory moƟon, and swallowing resulƟng in MRI moƟon arƟfacts [34–36]. Contact 

of the SC with some point of the osseous canal, which parƟally eliminates contrast between 

the SC and its surroundings further hampers assessment. Furthermore, osteophytes of the 

spinal column can cause focal changes in CSF flow dynamics within the spinal canal causing so 
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called CSF flow arƟfacts. Finally, so-called “Gibbs truncaƟon arƟfacts” are very common in SC 

MRI resulƟng in high signal in the center and dark edges of the SC. 

Another limitaƟon is the currently insufficient contrast between SC GM, WM and CSF on 

convenƟonal SC MRI. Only recently, advanced MRI sequences were able to overcome those 

obstacles providing images with sufficient signal- and contrast-to-noise raƟos between SC 

compartments in 3 Tesla MRI machines. 

Despite anatomical and methodological challenges, SC MRI is essenƟal in clinical rouƟne and 

can be generally assessed in two ways: qualitaƟvely or quanƟtaƟvely. QualitaƟve SC MRI 

assessment involves neuroradiologists searching for MRI signal intensity changes within the 

SC in order to disƟnguish normal SC Ɵssue from focal intramedullar pathology such as 

demyelinaƟon, edema, or inflammaƟon e.g. in MS lesions (Figure 13). This is currently the sole 

use of SC MRI in clinical seƫngs. However, some of the disorders affecƟng the SC do not 

present with focal abnormaliƟes in the sense of hypo- or hyperintense lesions on MRI but are 

rather characterized by neurodegeneraƟon of various aeƟologies leading to neuronal loss and 

shrinkage, Wallerian degeneraƟon and axonal loss (e.g. spinal muscular atrophy, amyotrophic 

lateral sclerosis). Others do manifest with MRI intensity changes indicaƟng inflammatory and 

demyelinaƟng lesions, which -however- do not represent the enƟre underlying SC pathology 

and oŌen do not serve as reliable biomarkers (e.g. MS, human-T-cell lymphotropic virus type-

1 (HTLV-1) associated myelopathy). Nevertheless, the aŌermath of those neurodegeneraƟve 

and demyelinaƟng processes is Ɵssue shrinkage and can be assessed in vivo on MRI as SC 

volume loss. Hence, cross-secƟonal or longitudinal quanƟtaƟve measurements of SC volume 

and/or CSA indirectly deliver addiƟonal valuable informaƟon regarding mechanisms of 
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neuropathology, that cannot be appreciated with the naked eye in qualitaƟve assessments of 

SC MRI. Nonetheless, this is not part of clinical rouƟne for the Ɵme being yet. 

 

 

1.2.4 Brief overview of Spinal Cord methods 

The purpose of this chapter is to present background informaƟon on SC image segmentaƟon, 

laying the groundwork of our tool, SIENA-SC. 

ImplemenƟng image segmentaƟon techniques to quanƟfy the SC volume and CSA have been 

introduced since 1996 [37]. Despite that, computer-based SC segmentaƟon remains 

demanding in part due to limitaƟons hampering SC MR-imaging (as menƟoned in chapter 

Figure 13: MulƟple sclerosis SC lesions in sagiƩal images acquired with: a) Proton-density-weighted, b) T2-
weighted, c) phase-sensiƟve inversion recovery and d) short tau inversion recovery imaging. Source: Tsagkas et 
al. 2019. 
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1.2.3). A big number of semi- and fully automaƟc techniques have been proposed [38]. The 

most important include acƟve contours of surfaces [39–41], level sets [42], parƟal volume 

modeling [43], gradient vector flow [44], atlas-based approaches [45,46], and tubular 

deformable models with variable required user interacƟon from manual idenƟficaƟon of the 

SC centerline [41] to the idenƟficaƟon of mulƟple [40] or single [39,46] anatomical landmarks, 

with completely automated approaches presented only recently (Figure 14) [47]. In the past, 

SC atrophy was usually determined by assessing the CSA of the cervical cord, usually at the 

C2/C3 level, which has been shown to correlate with clinical measures, although 

reproducibility was limited and depending on data quality as well as reposiƟoning [37,48,49]. 

However, unƟl now only a few of those methods have been validated and/or evaluated on 

paƟent follow-up data to demonstrate the applicability in longitudinal trial seƫngs with up to 

two years follow up Ɵme [37,41,47,50–52]. 

For the purpose of this thesis, chapter 1.2.4.1 presents the current most used and relevant 

segmentaƟon-based methods, chapter 1.2.4.2 presents the aƩempts provided for the 

longitudinal SC atrophy esƟmaƟon. 
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1.2.4.1 Spinal Cord SegmentaƟon method 

The tools described in this secƟon provide the CSA as metric of measurement. When using 

segmentaƟon methods for longitudinal SC atrophy calculaƟon, thus providing an indirect 

esƟmaƟon, the rate of atrophy is esƟmated by numerical subtracƟon of SC CSA measurements 

calculated at different Ɵme-points. For instance, percent change of cord area is calculated 

using the following formula ( 1-8): 

 

Figure 14: A-C shows a SC segmentaƟon performed with an acƟve surface method, while D-F demonstrates a fully 
automaƟc SC segmentaƟon. Source: Yiannakas et al. 2016 
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𝑎𝑡𝑟𝑜𝑝ℎ𝑦 = 100 ∗
(𝑓𝑜𝑙𝑙𝑜𝑤 𝑢𝑝 𝑎𝑟𝑒𝑎 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑟𝑒𝑎)

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑟𝑒𝑎
 

( 1-8) 

Years between baseline and follow-up scans can also be included in the denominator of the 

formula, if there is variability of the interval between scans [53,54]. 

1.2.4.1.1 Jim 

Jim provide a toolbox for medical image analysis. Within the JIM tool, the ASM is a surface-

based method that semi-automaƟcally outlines the cord, aŌer marking the centre of the SC 

[41,55]. The ASM has provided more prompt and repeatable measures of the SC volume, 

compared with manual methods [56]. The ASM offers a considerable reducƟon in user 

interacƟon Ɵme, and can be performed over long spinal segments. The user needs to idenƟfy 

landmarks at the extremes of the region to study, and, then, mark the centerline of the cord. 

SagiƩally-acquired images are then reformaƩed to the axial plane to obtain five conƟguous 3 

mm slices; the program automaƟcally calculates the radius and the centre of each axial slice 

and, finally, the CSA is obtained by averaging these conƟguous slices [41]. Jim is not provided 

free of charge and it hasn’t been used in this thesis. 

1.2.4.1.2 Spinal cord toolbox 

The Spinal Cord Toolbox (SCT) is a free open-source soŌware dedicated to the processing of 

SC MR images. SCT contains a lot of funcƟons for working on the SC in several different fields 

[57]. Most of the funcƟons in the SCT are the state-of-the-art in their field. A lot of recent 

works in the SC domain have used the SCT in their research [58]. SCT works on Unix 
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environment. The tool is freely available at 

hƩps://spinalcordtoolbox.com/user_secƟon/installaƟon.html. 

In this thesis, we used SCT as the basis for the development of our tool for three main reasons. 

First, the SCT proposes two algorithms for the SC segmentaƟon and both of them are quite 

recent. The large amount of studies using the SCT to achieve their results is a good hint about 

the quality of the proposed algorithms [47,57,59]. Moreover one of those algorithms is based 

on deep learning techniques that allows a total automated segmentaƟon also from brain MRI 

images. 

Second, the segmentaƟon algorithm inside SCT showed to have same sensiƟvity as the AcƟve 

Surface Model (ASM) within JIM (hƩps://www.xinapse.com/) but has higher inter-rater 

repeatability and is more Ɵme-efficient [47]. 

Third, the SCT and its algorithms are open-source and very easy to use. Moreover, it has an 

acƟve community of developers which make sure that the SCT stays at the top of the current 

techniques. 

1.2.4.1.2.1 Sct_propseg 

This algorithm has been developed in 2014 by researchers from Polytechnique Montréal and 

the University of Montréal [59]. It is totally automaƟc and is designed to segment the enƟre 

SC (Figure 15). 

The algorithm consists in the iterated propagaƟon of a deformable 3D mesh which ends up 

corresponding to the SC. It is divided into two modules: the detecƟon and the propagaƟon 

module. 
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The detecƟon module consists in finding SC posiƟon and orientaƟon. The module is divided in 

three phases followed by a validaƟon step. It starts by the automaƟc selecƟon of an axial slice 

(e.g. the middle one). Using the symmetry of the body, the medial antero-posterior line that 

passes through the SC is detected. The medial antero-posterior line posiƟon is computed by 

maximizing the mutual informaƟon between the two parts of the image separated by the line 

(the line defines the middle of the symmetry). A restrained image is then created by cropping 

a region of 5 cm length in the leŌ-right direcƟon of the symmetrical line. Due to the circular 

shape of the SC, the second phase consist in performing a circular Hough transformaƟon [60] 

on the cropped image. Since other circular shape structure can be present on the image only 

circles embedded in other circles are kept (the SC lies in the spinal canal). Note also that a 

stretching factor is applied on the Hough transformaƟon in order to detect ellipƟcal shapes 

which correspond more to the SC shape in certain parts. Finally those two steps are repeated 

on 10 axial slices, 5 rostral and 5 caudal to the starƟng plane (each separated by several 

millimeters) in order to improve detecƟon rate. The neighbouring points (between different 

slices) of the detected structures are then connected. It is assumed the longest connected 

chain is the SC. In order to ensure the SC was detected, a validaƟon step is executed. This 

validaƟon uses a classificaƟon method based on easily computable metrics. 
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Using the informaƟon collected in the detecƟon module, a triangular tubular mesh is created. 

During the propagaƟon module this mesh will be transformed to correspond in the best way 

possible to the SC. This iteraƟve process is divided in two phases. 

The first phase consists in selecƟng the most promising points where the mesh has to be 

deformed. The second phase consists in the use of acƟve contour techniques where each 

selected point is displaced to minimize an energy funcƟon. Once the mesh is deformed one 

secƟon Mi of it is duplicated and translated in order to propagate the mesh. A different energy 

term is maximized in order to determine the orientaƟon of the mesh at the new points. The 

process is mainly inspired from the work of Kaus et al. [61]. For computaƟonal conveniences 

Figure 15: Workflow of the detecƟon module. Source:Kaus et al 2003 
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the iteraƟve process is first computed on a low-resoluƟon mesh and second on a refined mesh 

interpolated from the first mesh once it has been deformed and propagated. This provides a 

complete automated algorithm for the segmentaƟon of the SC (Figure 16).  

 

 

1.2.4.1.2.2 Sct_deepseg 

Researchers of the University of Montreal have developed in 2019 a new segmentaƟon 

algorithm for the SC using deep learning and U-net architecture [62]. It contains also a model 

designed for the detecƟon of SC sclerosis.  

Figure 16: PropagaƟon of the deformable mesh. Source: De Leener, Kadoury, and Cohen-
Adad 2014. 
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The new segmentaƟon algorithm is divided in two different convoluƟonal structures which 

are applied one aŌer the other to the image. 

On classical MR images, SC voxels represent less than 1% of the total amount of voxels. The 

role of the first CNN is to find the center of the SC such that the image is then cropped around 

it in order to remove the useless informaƟon. This CNN uses 2D convoluƟon and is a slightly 

derivaƟon of the classical U-net architecture (Figure 17). The number of downsampling steps 

is reduced from 4 to 2. This is possible because the convenƟonal convoluƟon are replaced by 

dilated convoluƟon in the contracƟon secƟon. A dilated convoluƟon is a convoluƟon which 

uses a sparse filter which provides an exponenƟal expansion of the recepƟve view (the 

"window" of pixels that is scanned through the filter for each convoluƟon). Due to the larger 

recepƟve view, this process captures more contextual informaƟon compared to a classical 

convoluƟon with the same amount of parameters in the filter. As the dimensions of the 

feature maps will decrease quicker aŌer each convoluƟonal layer, it allows to use less 

downsampling steps . The CNN creates a predicƟon mask which indicates the degree of 

confidence each voxel is part of the SC. The centerline of the SC is then computed using OpƟC. 

This is a fast globalcurve opƟmisaƟon algorithm, which regularises the centerline conƟnuity 

along the Superior-to-Inferior axis [63]. 
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The second CNN uses 3D convoluƟons and is computed in a volume around the SC centerline. 

From the volume, 3D patches of size 64x64x48 are extracted.  

Intensity normalizaƟon is applied on the patches to homogenise the intensity distribuƟon on 

standardised intensity range [64].  

This CNN is a 3D derivaƟon of the 2D U-net architecture, with 3D convoluƟon[65]. The role of 

this CNN is to segment the SC. Its output is a binary mask with same dimensions as the input 

image. The full deepseg framework can be applied through a SCT funcƟon on NIFTI image and 

allows different opƟons choices such as the contrast of the image. 

Figure 17: A 2D dilated convoluƟon with a recepƟve view of size 5x5 and a 
filter of 9 parameters (output image in green). Source:
hƩps://towardsdatascience.com/types-of-convoluƟons-in-deep-learning-
717013397f4d 
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The training has been divided by MRI contrast (T1,T2 and T2*) in order to make trained models 

available for each contrast. A dataset containing 1943 images (151 for T1, 904 for T2 and 888 

for T2*) and coming from 30 different centers has been used for the training of the models. 

The training set contains very heterogeneous images in resoluƟon and orientaƟon which 

allows the algorithms to work on almost every MR image. An example of the cord detecƟon 

module is showed in Figure 18. 

 

 

 

1.2.4.2 Spinal Cord RegistraƟon method 

RegistraƟon based methods have the great advantage of providing a direct esƟmaƟon of the 

rate of atrophy. To date, GBSI is the only one freely available soluƟon for longitudinally 

assessing SC using a pure registraƟon-based approach [66].  

Figure 18: The journey of an image through deepseg. Source:Gros et al 2019. 
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1.2.4.2.1 GBSI 

The GBSI is an extension of the BSI algorithm already used for the longitudinal brain atrophy 

esƟmaƟon. The pipeline used to test the performance of GBSI is applicable to datasets with 

T1-weighted images (brain or dedicated spine acquisiƟon), with idenƟcal acquisiƟon 

parameters, ideally using 1 mm isometric voxels, at two Ɵme-points for each subject. A graphic 

overview of the pipeline is illustrated in Figure 19 and further detailed below. 

The first step is the manual or automaƟc segmentaƟon of the SC from T1-w images. 

AŌerwards, the extracted masks are used to compute a ring surrounding the SC to scale the 

signal intensity of the images accounƟng for the presence of the noise floor [67]; for this step 

the signal intensiƟes in the whole 3D volume are corrected using a fast version of the adapƟve 

non-local means filter algorithm [68]. Then, an intensity inhomogeneity correcƟon is applied 

to the 3D data using the N4 algorithm [69]. Once images are corrected for noise and intensity 

non-uniformiƟes, both SC Ɵme-points are straightened using a specific soŌware available 

within the SCT [70]. Both SCs are then registered to the half-way space using a symmetric, 

affine and inverse-consistent method [71]. To reduce the residual bias field and homogenise 

the grey scale between both registered Ɵme-points, a symmetric differenƟal bias correcƟon is 

applied [25]. Finally, the GBSI is computed on a voxel-by-voxel basis as the difference in 

intensity between the baseline and the follow-up image within a clipped window and can be 

obtained from the two k-means class values. The clipped window goal is to catch the difference 

between Ɵssue intensiƟes at the two Ɵme-points, reducing the background influence. Then 

the intensity differences are weighted by the probabilisƟc XOR mask voxel-wise. PCVC was 
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calculated by dividing the GBSI value by the binarized, straightened and registered baseline 

cord mask volume. 

 

 

1.2.4.2.2 Reg 

The Reg method is composed of the following main steps: 1) iniƟal segmentaƟon, 2) image co-

registraƟon, and 3) final cord segmentaƟon. The general workflow is illustrated in Figure 20. 

The first part of the process is manual, then it will proceed in a total automaƟc way. The 

analysis starts when the operator puts the landmark to idenƟfy the approximate center line of 

the SC at both Ɵme points. The marking of the cord center is refined using an approach similar 

to that described by Gros et al [63]. The cord is then segmented using the AS method [41]. The 

cord masks obtained were then dilated by a distance of 2 mm, and an annulus surrounding the 

Figure 19: Pipeline for the longitudinal spinal cord assessment using GBSI. Source: Prados 2020. 



Pag. 64 / 132 
 

cord was formed by an exclusive OR operaƟon (XOR) between the original cord outlines and 

the dilated outlines in order to assess the signal intensiƟes within the CSF surrounding the 

cord. The standard deviaƟon (SD) of the CSF signal was used as a measure of the noise level in 

a nonlocal means noise reducƟon filter [72], which was applied to the original axial cord 

images before they were segmented once again using the low number of cord shape 

coefficients, but this Ɵme the segmentaƟon was used to produce a straightened cord image of 

the region between the superior and inferior cord landmarks for both Ɵme points [41]. 

In the second step, the two straightened cord images are registered to a half-way space and a 

symmetric differenƟal bias correcƟon is applied [25]. At this point there is a further 

improvement where any slight residual misregistraƟon along the cord are removed using an 

in-plane-only registraƟon procedure with translaƟons along x and y, and rotaƟon on the z-axis. 

Now the two straightened cord images are  precisely aligned, with cord centroids at the origin 

in the straightened cord space, and the two registered straightened cord images were pixel-

by-pixel intensity averaged, and the AS method was used to give iniƟal approximate cord 

outlines. Then, these outlines were used to iniƟalize the final cord segmentaƟons of the two 

straightened cord images separately. 

The overall mean PCVC between the most superior and most-inferior overlapping registered 

slices was calculated as the average of the values for the two images processed in forward and 

reverse order ( 1-9 ): 

𝑃𝐶𝐴𝐶 = (100 ∗
(𝐶𝑆𝐴ி௎ − 𝐶𝑆𝐴஻௅)

𝐶𝑆𝐴஻௅
 

( 1-9 ) 
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where CSABL is the mean cord CSA in the baseline image and CSAFU is the mean cord CSA in the 

follow-up image. 

Although it falls into the category of registraƟon-based tools, the final computaƟon of atrophy 

is done in the same way as segmentaƟon methods. 

 

  

Figure 20: SchemaƟc representaƟon of the main steps of preprocessing performed by the registraƟon (Reg) method on 
pairs of 3D T1-weighted baseline and follow-up scans. Manual and fully automated steps are represented in yellow and 
light blue boxes, respecƟvely. FU = follow-up; AS = acƟve surface. Source: Valsasina et al 2015. 
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1.3 Role of spinal cord in neurological diseases 

The SC is affected by inflammatory and neurodegeneraƟve processes leading to irreversible 

Ɵssue loss in several neurological condiƟons, such as MS [54], NMO [73–75], and human T- 

lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spasƟc paraparesis [76]. 

Moreover, SC atrophy is associated with more severe clinical features in amyotrophic lateral 

sclerosis [77–79], SC injury [80], and Friedreich’s ataxia [81], and with worse recovery from SC 

surgery [82]. There is also preliminary evidence of SC atrophy in Alzheimer’s disease [83], and 

in HunƟngton disease [84], suggesƟng that SC atrophy can be part of more widespread 

neurodegeneraƟve diseases. 

In one study involving 19 paƟents with SC injury, SC atrophy was shown to correlate with motor 

and sensory deficits [85].Notably, Lundell et al. showed that anterio-posterior width (APW) 

and leŌ right width (LRW) of the cord can be used to assess sensory and motor funcƟon 

independently. In another study, atrophy was shown to correlate with American Spinal Injury 

AssociaƟon (ASIA) score in a chronic SC injury populaƟon, independently from DTI and 

magneƟzaƟon transfer measurements[86]. SC atrophy has also been demonstrated in paƟents 

with amyotrophic lateral sclerosis [87]. Notably, Cohen-Adad et al. showed an associaƟon 

between muscle deficits and local SC atrophy, suggesƟng that atrophy is a sensiƟve biomarker 

for lower motor neuron degeneraƟon. The authors tested the specificity of atrophy at a given 

vertebral level (between C4 and C7) in relaƟon to muscle deficits and motor-evoked potenƟals 

using a stepwise linear regression model. They demonstrated that deficit of the deltoid muscle 

(at the C5 spinal level, equivalent to the C4 vertebral level) was associated with atrophy at the 

C4 vertebral level, and that deficit of the abductor pollicis brevis or adductor digiƟ minimi (at 
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the C8 spinal level, equivalent to the C7 vertebral level) was associated with atrophy at the C7 

vertebral level. 

In MS, SC atrophy is one of the long-term sequelae, parƟcularly in the most disabling forms of 

the disease, with the cervical cord being most affected. The main cause is thought to be 

Wallerian degeneraƟon as a result of changes that occur in the brain, rather than Ɵssue loss 

due to primary cord pathology. However, only moderate correlaƟons have been found 

between cervical cord atrophy and convenƟonal and advanced MRI measures of brain damage 

[88,89], suggesƟng that degeneraƟve and inflammatory processes typical of MS affect the cord 

and the brain with dynamics that are parƟally independent. As explained previously, the SC is 

the main pathway for informaƟon connecƟng the brain with the peripheral nervous system, 

thus SC atrophy has a major impact on paƟents’ clinical status. 

Since we validate our soŌware using MS subjects, the following paragraph 1.4 will be 

dedicated on the MS pathology. 
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1.4 MulƟple Sclerosis 

1.4.1 IntroducƟon 

MS is a chronic inflammatory demyelinaƟng and neurodegeneraƟve disease of the CNS, 

potenƟally causing any neurological deficit [90,91]. Previous studies have implicated a 

combinaƟon of geneƟc and environmental factors in the-pathogenesis of MS, with chronic 

inflammaƟon and neurodegeneraƟon mediated by the paƟent’s immune system [92,93]. 

1.4.2 Epidemiology 

According to the most recent Global Burden of Disease Study esƟmates (2016), MS is the most 

common immune-mediated disease of the CNS, with over 2.2 million cases world-wide, 

corresponding to 10% increased prevalence from 1990 [94]. North America, Western Europe 

and Australasia hold higher prevalence rate (91-164 cases per 100,000), compared with Africa 

(2-3 cases per 100,000) [94]. On the contrary, incidence of MS has been relaƟvely stable or 

slightly increased over the past four to five decades [94]. As such, the rising prevalence mostly 

reflects improved survival, with a global mortality rate for MS being decreased by 11% 

between 1990 and 2016 [94]. 

Clinical onset is generally in early adult life, though there is increased awareness of 

presentaƟon in childhood [90]. Prevalence of MS is similar in preteen boys and girls, but 

progressively increases through lifeƟme among women, with a 2:1 sex raƟo in favor of women 

in the sixth decade of life [94]. As discussed above, the life expectancy for a person with MS is 

relaƟvely unimpeded by the disease, with a 5 to 10-year reducƟon versus non-affected 

individuals [95]. However, MS is one of the leading causes of disability from CNS disease among 
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young adults, and has a severe impact on quality of life, made further strenuous by a relaƟvely 

young average age of onset [90,94]. 

1.4.3 Pathology 

The most typical pathology signs of MS is the presence of demyelinaƟng lesions in the WM 

and GM, in the brain and in the SC [96–100]. DemyelinaƟng lesions generally originate around 

venules, where accumulaƟon of inflammatory lymphocytes can be observed [101,102], along 

with astrocyƟc response and macrophages/microglia infiltrates to the acƟve injury site, 

eventually resulƟng into glioƟc scars [103]. Acute inflammatory demyelinaƟon is clinically 

associated with the acute onset of new neurological symptoms (i.e., clinical relapse) [104–

106]. 

Neuro-axonal loss is another prominent hallmark of MS and is a key factor of irreversible 

disability accrual [107]. In the early stages of the disease, axonal loss is generally seen in areas 

of pathological demyelinaƟon, in associaƟon with inflammatory infiltrates consisƟng of 

macrophages/microglia and lymphocytes [108]. During the course of the disease, axonal loss 

can occur in areas of prolonged demyelinaƟon without acƟve inflammaƟon, suggesƟng that 

axonal survival is related to the presence of myelin support [109–112]. Notwithstanding this, 

the presence of chronically demyelinated axons suggests that demyelinaƟon does not 

necessarily leads to neuro-axonal loss [110,113,114]. In advanced MS, axonal loss results into 

shrinking of the brain parenchyma (i.e., atrophy), and is associated with impaired funcƟon of 

macrophages/microglia and astrocytes, and with increased oxidaƟve stress and mitochondrial 

damage. In parƟcular, demyelinaƟon and subsequently impaired axonal dysfuncƟon increase 
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the energy demand, further contribuƟng to altered metabolism, neuronal dysfuncƟon and, 

ulƟmately, axonal loss [115–117]. 

The mechanisms by which demyelinaƟon and axonal loss occur are profoundly heterogeneous 

and involve a variety of cellular subsets [90,118,119]. The sequence of pathological events 

might include perivenular infiltraƟon of macrophages, CD8+ T lymphocytes and CD4+ T 

lymphocytes and B lymphocytes, with profound blood brain barrier (BBB) leakage, giving rise 

to classical acƟve demyelinated plaques  [119–124]]. As the disease progresses, infiltrates of T 

and B lymphocytes, acƟvaƟon of microglia/macrophages and astrocytes, and mitochondrial 

dysfuncƟon become obvious throughout the brain parenchyma, also in the absence of major 

BBB damage [120,125], with formaƟon of aggregates of inflammatory cells in the form of 

meningeal follicle-like structures, and expansion of previously-exisƟng WM and GM lesions 

[116,117,119–121,126–129] . These changes ulƟmately lead to progressive demyelinaƟon, 

axonal loss and neurodegeneraƟon in the brain and the SC [116,117,119,126,129] . 

InflammaƟon, demyelinaƟon, and axonal loss can be measured in vivo by using MRI [130]. 

1.4.4 Imaging biomarker in MS 

During the last 20 years, over a dozen DMTs received the approval for the treatment of RRMS, 

being facilitated by screening the anƟ-inflammatory acƟvity of putaƟve treatments using 

acƟve MRI lesions as outcomes in phase 2 trials [131,132]. On the contrary, the paucity of 

acƟve medicaƟons for both PPMS and SPMS is striking [90,133]. In view of this, the Progressive 

MS Alliance recently suggested to develop and validate biomarkers of progression that could 

make clinical trials for progressive MS less Ɵme and resource-consuming, when compared with 
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convenƟonal clinical measures [134]. This could be achieved with the idenƟficaƟon of reliable, 

repeatable and sensiƟve-to change imaging outcomes [54,135]. 

Several brain MRI measures are able to reflect the inflammatory and neurodegeneraƟve 

pathology of MS [136,137]. Brain lesion count and volume are robust markers of inflammaƟon 

and demyelinaƟon, and are important outcomes in both RRMS and progressive MS trials [9]. 

Following recent improvements in analysis methods, brain atrophy has gained relevance, in 

light of its strong associaƟon with disability accrual [9,135]. Advanced brain MRI techniques, 

such as magneƟzaƟon transfer raƟo (MTR), diffusion tensor imaging (DTI) and magneƟc 

resonance spectroscopy (MRS), have been included in few trials so far, and hold promise for 

the future, as they can reflect specific pathological changes targeted by neuroprotecƟve 

treatments, such as improved myelinaƟon measures within lesional Ɵssue, following 

treatment [135,138]. Positron emission tomography (PET) and opƟcal coherence tomography 

(OCT) are also emerging as candidate imaging outcomes of MS progression [135]. 

More recently, improvements in MRI acquisiƟon protocols and post-processing have overcome 

some of the limitaƟons associated with imaging the SC, a small and mobile structure at risk of 

moƟon artefacts from breathing, cardiac movement, CSF pulsaƟon and blood flow [53,54]. 

ConvenƟonal SC MRI provides informaƟon on focal lesions, which are necessary for the 

diagnosis and prognosis of MS and is commonly used in the clinical seƫng [9,139]. SC volume 

loss is the result of demyelinaƟon, neuro-axonal loss, oligodendrocyte damage, and gliosis, 

ulƟmately resulƟng in chronic motor, sensory and autonomic dysfuncƟon [37,140], and will be 

at the very centre of this thesis. Advanced SC MRI techniques assess the type and extent of SC 
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abnormaliƟes, but, as discussed below, their use is currently limited to specialized centres for 

research purposes [54]. 

Overall, looking at the paradigm of treatment development for PPMS and SPMS, the number 

of imaging outcomes included in clinical trials has almost doubled from 2.3±1.5 in the decade 

1996- 2006, to 4.1±2.6 in most recent years (2007 to current) [135]. 

1.4.5 Role of spinal cord imaging in MS diagnosis 

The 2017 revised McDonald criteria confirmed that MRI is the most useful paraclinical test to 

aid the diagnosis of MS and can be used to establish disseminaƟon of lesions in space (DIS) 

and Ɵme (DIT) [141]. The SC is one of the four areas of the CNS where lesions with 

characterisƟcs typical of MS are scored to confirm DIS. Prior to the 2017 McDonald criteria, 

only asymptomaƟc SC lesions were scored for DIS, which led to the high specificity of the DIS 

criteria; in order to facilitate the scoring of the criteria, and avoid discussing which lesion is the 

symptomaƟc one in cases of mulƟple lesions occurring in the same CNS locaƟon, the 2017 

revised criteria do not disƟnguish anymore between symptomaƟc and asymptomaƟc lesions 

when tesƟng the DIS criteria. In parƟcular, the inclusion of SC symptomaƟc lesions for DIS or 

DIT increases diagnosƟc sensiƟvity, with liƩle or no reducƟon in specificity [142–144]. 

Whilst brain MRI is recommended in all paƟents who are undergoing invesƟgaƟons for the 

diagnosis of MS, SC MRI is advisable when: (1) The clinical presentaƟon suggests a SC lesion; 

(2) The clinical presentaƟon is suggesƟve of PPMS; (3) Brain MRI is normal, but there is a strong 

clinical suspicion of MS; (4) Brain MRI findings are inconclusive (e.g., age-related vascular 

changes) [141,145,146]. Therefore, SC MRI is generally recommended in paƟents with SC CIS 

and in those with non-spinal MS not fulfilling the DIS criteria. It is debated whether all the 
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remaining CIS paƟents, who have non-spinal MS and fulfil DIS criteria on brain MRI brain, 

should undergo SC MRI [147]. 

More recently, paƟents with clinical features typical of MS, but showing evidence of pathology 

exclusively in the SC, even with a single lesion, and whose MRI does not fulfil the DIS criteria, 

have been described as two novel clinical enƟƟes: (1) Progressive solitary sclerosis, when 

insidiously progressive upper motor neuron impairment can be aƩributed to an isolated 

demyelinaƟng lesion within the CNS (within the SC in 90% cases) [148]; and (2) Pure spinal MS, 

when relapsing episodes of short-segment myeliƟs occur over Ɵme, in the absence of typical 

brain or opƟc nerve lesions [149]. Progressive solitary sclerosis and pure spinal MS are 

proposed novel MS phenotypes, characterised by a predominant SC pathology. MyelocorƟcal 

MS is another suggested pathology subtype of MS where axonal loss in the WM occurs in 

absence of obvious demyelinaƟon, but is sƟll lacking further pathology and clinical validaƟon 

[113]. 

1.4.6 Spinal Cord Atrophy in MS 

SC atrophy is a common and clinically relevant aspect of MS. An increasing number of studies 

have focused on the importance of SC atrophy as a biomarker of disability progression and as 

an outcome measure in clinical trials. 

SC atrophy is the consequence of different pathological processes, including axonal transecƟon 

and associated neuro-axonal loss, demyelinaƟon, loss of oligodendrocytes, gliosis, and, 

ulƟmately diffuse Ɵssue injury [98,99,150–154]. Although these pathological abnormaliƟes 

occur within focal lesions, extensive Ɵssue abnormaliƟes are also present in the normal-

appearing SC of MS paƟents, and this finding may explain why SC atrophy occurs 
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independently of SC lesions [98–100,110,155–158]. AddiƟonally, SC atrophy also occurs, at 

least in part, independently of brain pathology [156,159,160]. 

SC atrophy is generally measured as CSA at the cervical level, which is least affected by 

movement artefacts, yields the most reproducible results, and provides the best clinical 

correlates [161–165]. The most common levels are C1-C2 and C2-C3, but measurements can 

be also made between C1 and C7 [166]. Atrophy assessment can be done on a variety of 

sequences, mainly 3D T1-weighted and T2*- weighted gradient echo sequences on different 

MRI scanners (e.g. Philips, Siemens, GE) [37,41,167]. 

1.4.7 Spinal cord atrophy in disease phenotypes 

SC atrophy occurs even in early stages of MS and has been detected in paƟents with CIS [167–

170]. In CIS paƟents who were followed-up for 5 years aŌer onset, the lowest rate of SC 

atrophy (-0.1% a year) was observed in those who remained CIS, whilst the highest rate (-1.4% 

a year) was detected in paƟents who developed MS and had an EDSS at the last Ɵme point 

equal or greater than 3 [171]. In general, a high rate of SC atrophy is observed in the 

progressive forms of MS, especially SPMS (-2.2% per year) [150,166,169,170,172]. Overall, in 

clinically-definite MS, the rate of cord atrophy has been reported to vary between 1 and 5% 

per year [37,150,173–175]. A mulƟcentre study has detected a rate of -1.22% per year in 

paƟents with stable MS and -2.01% in paƟents who deteriorated over Ɵme [166]. InteresƟngly, 

there is a significant development of SC atrophy in early PPMS paƟents when compared with 

healthy controls over only 1-year follow-up, but not in paƟents with established SPMS, who 

had a higher disability and more atrophic cord than early PPMS paƟents [176]. Although the 

rate of atrophy may vary slightly between studies, because of different cohorts and different 
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methods, it is consistently higher than the rate of brain atrophy, which is known to be around 

-0.5% per year in MS paƟents [177]. A recent meta-analysis of twenty-two longitudinal studies 

assessing SC atrophy in all MS subtypes revealed a pooled rate of SC atrophy of -1.78% per 

year, that increased to - 2.08% per year when considering progressive paƟents alone [161]. 

Only few studies have examined cervical cord atrophy in NMOSD and reported conflicƟng 

results. Some studies found more pronounced SC atrophy in AQP4 posiƟve paƟents than MOG 

paƟents [73], and in MS than NMOSD [74], whereas another study found similar reducƟons of 

CSA in NMOSD and MS [75]. 

1.4.8 Spinal cord atrophy and MS disability 

Several studies have shown associaƟons between: (1) the extent of SC atrophy at a single Ɵme 

point and concurrent disability [178], and (2) the rate of SC atrophy over Ɵme and disability 

progression [51,89,167,170,179,180]. A recent study has reported that every 1% increase in 

the annual rate of SC volume loss is associated with a 28% risk of developing disability 

progression in the subsequent year [181]. In a longitudinal cohort of non-spinal CIS, upper cord 

cross-secƟonal area (UCCA) decrease was associated with 5-year increased disability, 

measured by EDSS [180]. Overall, SC atrophy can account for 77% of disability progression aŌer 

5 years [171,178,182]. Within EDSS, the sub-scores that reflect the neurological funcƟons 

mediated by SC pathways, such as the pyramidal, sensory, bowel and bladder funcƟonal 

scores, correlated with SC atrophy [52]. Higher SC atrophy rate is associated with worsening of 

more specific measures of motor disability, such as the 9HPT and the T25FWT [178,181]. 

AssociaƟons between the development of SC atrophy and disability progression are 

parƟcularly strong in PPMS [172]. 
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1.4.9 Spinal cord atrophy in clinical trials 

Since SC atrophy rates are two-to-three Ɵmes higher than brain atrophy (-1.78% vs -0.5% per 

year), in parƟcular in progressive MS [161,183], and the SC is a very eloquent site of pathology 

in MS, SC atrophy has been considered as an exploratory outcome measure in phase 2 and 

phase 3 clinical trials, especially in paƟents with progressive MS, although much less frequently 

than brain atrophy [9]. However, clinical therapeuƟc trials that incorporated SC atrophy as an 

outcome measure did not demonstrate beneficial drug effects on this metric [184–186]. In 

addiƟon to the possibility that the medicaƟons tested were not effecƟve, there may be other 

reasons for these negaƟve results, related to methodological difficulƟes of calculaƟng SC 

atrophy; these include: movement artefacts and subsequent image noise; the limited spaƟal 

resoluƟon of MRI scanners, which is an important issue, given the small cord size; mulƟcentre 

design, with inter-site variability related to the use of different scanners with different 

acquisiƟon seƫngs; and inter-study variability related to the use of different methods to 

calculate SC area [187,188]. Also, SC normalisaƟon using the intracranial volume, which aims 

to reduce the effect of biological condiƟons unrelated to the disease, has been suggested  

[50,162,163], but it is not always performed. 

There have been encouraging results from a recent, single-centre, study employing SC atrophy 

[176,188]. If paƟents at the early stage of PPMS, with mild disability and a non-atrophic cord 

are selected, the sample size necessary to run a trial over only 1 year is achievable [176]. 
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2 Aims of thesis 

IdenƟfying reliable imaging outcome measures is a cornerstone for improving the 

understanding of the disease mechanisms and for monitoring the clinical course of 

neurological diseases and its response to treatment [9,54]. 

Against this background, this thesis will focus on: 

1) Develop a novel method, SIENA-SC, for the longitudinal assessment of SC atrophy by 

adapƟng a well-established registraƟon-based method already use for the 

quanƟficaƟon of brain atrophy. The enƟre pipeline is fully described in Chapter 3. 

2) Test the robustness and the reliability of SIENA-SC on a cohort of HCs. Hereby, we 

compared precision and repeatability of SC atrophy measurements obtained with one 

segmentaƟon method (CSA change obtained with sct_propseg), a registraƟon-based 

methods (GBSI) and our novel registraƟon-based method. The experiment is fully 

described in Chapter 4. 

3) Validate SIENA-SC using a cohort of pathological subjects and evaluate SC atrophy as a 

potenƟal valuable biomarker. This experiment is presented in Chapter 5 and consists 

of the applicaƟon of SIENA-SC to a cohort of MS subjects to further evaluate the ability 

of the soŌware to discern physiological and pathological rate of atrophy and its 

treatment effect with the study of the sample size. Results will be compared among 

the three methods, SIENA-SC, GBSI and CSA change. 

Finally, Chapter 6 summarizes the development of SIENA-SC, the limitaƟons of the study and 

possible future direcƟons. 
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3 Proposed Methods: SIENA-SC 

SIENA-SC [189] is applicable to T1-weighted brain images, with idenƟcal or similar acquisiƟon 

parameters, ideally using 1 mm isometric voxels, at two Ɵme-points for each subject. A graphic 

overview of the pipeline is presented in Errore. L'origine riferimento non è stata trovata. and 

further detailed below. 

3.1 Step 1: Cropping the field of view of brain images 

The first step is intended to constrain the field-of-view (FOV) of the input images to the SC 

area. In order to do this, we choose the brainstem from the MNI atlas as the neurological 

reference of the bounding box to crop the FOV of the images. The brainstem was resampled 

from the atlas in MNI space to the naƟve T1-weighted images and then eroded 5 Ɵmes. The 

last slice of the masks was taken as a reference point to remove all the regions above the 

boƩom of the brainstem. This step was performed to isolate the cord secƟon and to improve 

the performance of the segmentaƟon and the following registraƟon step of the SC. 

3.2 Step 2: Spinal cord segmentaƟon 

The crucial step to obtain a total automated pipeline is the automated localizaƟon of the SC. 

For the purpose of this study and to avoid any manual intervenƟon we used the fully automaƟc 

deep learning algorithm provided by SCT library (sct_deepseg) [62] described in chapter 

1.2.4.1.2.2. This segmentaƟon is computed separately and independently for each Ɵme-point, 

over all the visible SC. The obtained cord masks were used as input to perform intensiƟes 

correcƟon in step 2. 
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3.3 Step 3: Image Denoising 

The extracted masks serve the purpose of compuƟng a ring surrounding the SC, allowing for 

the scaling of signal intensity in the images while considering the presence of the noise floor 

[67]. To achieve this, the original T1-weighted images undergo denoising using a fast variant 

of the adapƟve nonlocal means filter algorithm. This denoising process employs the mask 

derived from the segmented SC [68]. Specifically, the standard deviaƟon of the signal within a 

ring located in the CSF is calculated to determine the root power of the noise, which is then 

used to account for the existence of a noise floor. To ensure accuracy, any voxel values within 

the extracted ring that exceeded 2 standard deviaƟons above the mean were disregarded. This 

step prevents the inclusion of values originaƟng from nerve roots or other erroneous signal 

intensiƟes. Finally, the ring within the CSF was derived by dilaƟng twice the SC mask, followed 

by the subsequent subtracƟon of the mask itself. 

 

3.4 Step 4: Image inhomogeneity correcƟon 

The 3D MRI data undergoes an intensity inhomogeneity correcƟon using the N4 algorithm 

[69], specifically within the region defined by the two-Ɵme dilataƟon of SC masks. The 

correcƟon process incorporates the following parameters: full width at half maximum (FWHM) 

of 0.05, a convergence threshold set at 0.0001, and a maximum number of iteraƟons capped 

at 1000 [14]. This applicaƟon of the N4 algorithm ensures that intensity variaƟons within the 

SC region are appropriately addressed and miƟgated. 



Pag. 80 / 132 
 

3.5 Step 5: RepeƟƟon of Spinal Cord segmentaƟon 

In order to enhance the segmentaƟon accuracy and minimize bias caused by significant change 

in intensiƟes caused by MRI arƟfacts between scans, we repeated the segmentaƟon on the 

denoised and inhomogeneity corrected input images using a propagaƟon segmentaƟon 

algorithm [59]. To facilitate this process, we used the SC centerline derived from the previously 

computed masks as the input for the method. 

3.6 Step 6: SC straightening 

To eliminate any variaƟons in cord curvature between Ɵme-points caused by posiƟoning in the 

scanner, we employ a reliable and precise approach to straighten the MRI images. This involves 

uƟlizing the SC segmentaƟon previously computed and employing a robust and accurate tool 

part of the SCT soŌware package [57,70]. This approach preserves the SC's topology, crucial 

for measuring even the most delicate alteraƟons in SC edges when employing SIENA-SC. 

3.7 Step 7: Half-way space registraƟon 

To prevent the introducƟon of biases that may arise from registering one Ɵme-point to 

another, the images are registered to the halfway space through an affine transformaƟon 

[16,190,191]. This step employs an inverse-consistent and symmetric algorithm [71]. The SC 

mask dilated unƟl covering the vertebrae is used to provide a non-moving reference in the 

registraƟon algorithm. AŌer acquiring the transformaƟons, both the images and their 

corresponding masks from each Ɵme-point are linearly resampled to the shared halfway space 

using a nearest neighbor interpolaƟon. This ensures accurate alignment and facilitates 

subsequent analyses by establishing a consistent reference frame. 
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3.8 Step 8: Refinement of the resampled cord masks 

Two addiƟonal refinements of the SC masks were performed at this stage. First, as resampling 

a mask into a different image space could result in loss of accuracy, we performed a smoothing 

of the border of the masks using a diamond-connecƟvity of the voxels. Second, the resampled 

segmentaƟon masks on the halfway space were merged and the longer mask not covering the 

cord region in both images has been cut. In this way we are sure that the masks cover the same 

length between the two Ɵmepoints. This was performed because the SC secƟon can vary by 

the number of slices between Ɵmepoints (e.g. different orientaƟon, different posiƟoning of 

the subject in the scanner), thus the final computaƟon is performed on the same region of 

interest. 

Finally, the obtained masks were then transferred to the algorithm for the computaƟon of the 

atrophy.  

3.9 Step 9: Atrophy computaƟon 

As a final step, the PCVC was esƟmated between the two aligned cord images following SIENA 

algorithm principles. To achieve this, the mean perpendicular surface moƟon from the 

generated edge points masks were esƟmated ignoring the flow in z direcƟon (in order to have 

a 2D evaluaƟon of atrophy along the cord) and finally converted to a PCVC. 

To make the PCVC esƟmaƟon robust, SIENA method internally corrects for possible small 

differences on image resoluƟon and/or misalignment by calculaƟng a calibraƟon factor. Briefly, 

two PCVCs are calculated between the original image and a couple of arƟficial images obtained 

by varying the dimension of voxels (one increasing and one decreasing from the same scale 
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factor). These two PCVC are then averaged. Given that the “nominal” PCVC is known, once 

fixed the scale factor,  a calibraƟon factor can be obtained by dividing the “nominal” changes 

by the averaged PCVC. Now, given that the calculated PCVC depends also on the number of 

edge points and that this number is roughly 100 smaller for SC than for brain image, we 

accordingly changed the scale factor by dividing for 100. The raƟonale of this approach in 

described in the next chapter 3.10. 

To increase robustness, the “forward” and “backward” PCVC was calculated for each pair of 

images swapping baseline and follow-up images. The average value of the “forward” and 

“backward” atrophy results was the final PCVC. 

 

 

Figure 21: SIENA-SC image processing pathway. 
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3.10 CalibraƟon Factor 

To find the correcƟon factor relaƟng the self-calibraƟon used in the brain atrophy esƟmaƟon 

with that used for SC atrophy, we employed the math already exposed in Smith et al. [7] and 

explained in chapter 1.2.2.1. 

In detail, the fb self-calibraƟon of the brain is comprised between 0.1 and 0.2 mm-1 and it is 

related only to the actual area of studied surface following the formula: 

𝑝𝑏𝑣𝑐 =
100𝑙𝐴

𝑉
=

100𝑙𝑓𝑉

𝑉
= 100𝑙𝑓 

( 3-1 ) 

where 𝑙 is the mean surface displacement of the border, A and V are the brain surface and 

volume and f is the self-calibraƟon for the brain. 

Given that f is independent from volume, to assess the fsc for SC we have simply made the raƟo 

between the area of SC and area of brain from 100 randomly selected healthy volunteers of 

our populaƟon.  

From the brain mask volume as obtained with BET, we derived the “nominal” radius of the 

brain (rb), by approximaƟng the brain itself to a sphere. 

From this value, we obtained the brain surface (sb) following this formula: 

𝑠௕ =
(𝑟௕ − 1)ଷ

𝑟௕
ଷ

 

( 3-2 ) 
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From the actual volume of SC, derived by mask obtained from SCT and using Lsc, the length in 

mm of the SC mask we obtained the “nominal” SC radius rsc and from this the nominal SC 

surface ssc . 

𝑆௦௖ = 𝐿௦௖ ∗ 𝜋(𝑟௦௖
ଶ − (𝑟௦௖ − 1)ଶ) 

( 3-3 ) 

Finally, the correcƟon factor between the self-calibraƟon of the brain and the self-calibraƟon 

of SC has been obtained averaging 𝑆௦௖
𝑆௕

ൗ  . 

This value ranged from 0.01 and 0.02 and we opted for using a correcƟon factor of 0.01, thus 

𝑓௦௖ = 0.01 ∗ 𝑓௕. 
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4 Experiment 1: Robustness 

The first experiment concerns the study of the robustness of SIENA-SC compared with other 

two methods, GBSI and CSA change, to evaluate the longitudinal SC atrophy. 

4.1 PopulaƟon 

We used two different MRI datasets (Table 1): 

1. A single centre test dataset with HCs acquired twice on the same day to assess the 

reproducibility of the atrophy measurements. In this dataset it is expected to see an 

absence of cord atrophy. 

2. A longitudinal mulƟ centre dataset with HCs. 

4.1.1 Scan rescan dataset 

Thirteen healthy subjects (mean age: 39 ± 9,4 years) underwent a brain MRI acquisiƟon using 

a 3 T Philips at Meyer Hospital in Florence. For each subject the MRI scans were acquired twice 

on the same day with reposiƟoning of the subject in-between acquisiƟons. 3D T1-weighted 

brain images were acquired in sagiƩal orientaƟon with 1mm isotropic voxel. The goal of the 

use of this dataset was to assess the scan-rescan repeatability of the automated soŌware. We 

compared the PCVC measurement evaluated with SIENA-SC, GBSI and CSA change. 

4.1.2 Healthy Control dataset 

190 mulƟcenter subjects (mean age: 74 ± 5,7 years) with an average follow-up of 1,2 ± 0,2 

years freely available from ADNI website (hƩps://adni.loni.usc.edu/). 
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All subjects had two brain 3D T1-w images acquired using a 3T MRI scanner, sagiƩally oriented 

and with 1 mm isotropic voxel. 

 

 Number (Female) Mean (SD) Age, 
years  

Mean (SD) Follow-up   

Scan-rescan dataset 13 (6) 39 ± 9.4 0* 

Healthy Control 
dataset 190 (99) 74 ± 5.7 1.2 ± 0.2 

Table 1: PopulaƟon demographic 

 

4.1.3 StaƟsƟcal analysis  

The staƟsƟcal analysis was performed using MATLAB Release R2020a. Significance level was 

set to P < 0.05. The results are shown in mean, standard deviaƟon, and standard error. All the 

atrophy measurements were yearly normalized before performing staƟsƟcs, except for the 

scan-rescan dataset. 

Paired t-student was employed to compare PCVC in scan-rescan dataset. 

Pearson’s correlaƟon has been used to evaluate the degree of concordance between the 

different measurements obtained by the different methods. The Bland Altman plot was used 

to test for the presence of systemaƟc bias. 
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PCVC obtained from CSA measurements was calculated as the CSA difference between two 

consecuƟve Ɵme-points CSA, divided by the first Ɵme-point and mulƟplied by 100. 
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4.2 Results 

4.2.1 Scan - rescan dataset 

SIENA-SC showed lower measurement error (mean: -0.06%; SD: ±0.18; SE: 0.03) compared to 

GBSI (mean: -0.12%; SD: ± 0.73; SE: 0.13 ; p<0.005) and CSA change (mean: 0.58%; SD: ± 2.2; 

SE: 0.32 ; p<10E-10). GBSI showed lower measurement error compared with CSA (p<0.01).  SE: 

Standard Error. (Figure 22). 

 

4.2.2 Comparison between methods using Healthy Controls 

On the HCs dataset, the annualized PCVC showed no degree of atrophy using all the three 

methods (SIENA-SC: -0.05% ± 0.45 ; GBSI: -0.08% ± 1.6; CSA: 0.005% ± 3.1). 

T-test analysis did not show any difference in the measurements obtained with the three 

methods (SIENA-SC vs GBSI: p=0.85 ; SIENA-SC vs CSA change: p=0.78 ; GBSI vs CSA change: 

p=0.73). 

Figure 22: Boxplot showing the comparison of the measurements using SIENA-SC, GBSI and 
CSA change. The line inside the boxes indicates the median value. Results are shown in 
absolute values 
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4.2.2.1 SIENA-SC vs GBSI 

SIENA-SC correlaƟon with GBSI: r=0.48, p<0.05, mean absolute difference= -0.02%. The least-

squares fit between SIENA-SC and GBSI is esƟmated at y=1.42x (R2=0.16). See Figure 23 for a 

direct SIENA-SC vs. GBSI plot and a Bland Altman of the same data. The strong asymmetry in 

both the plot is driven by the differences in standard deviaƟon between the two methods. 

 

 

4.2.2.2 SIENA-SC vs CSA change 

CorrelaƟon between SIENA-SC and CSA change measurements: r=0.29, p<0.05, mean absolute 

difference=0.06%. The least-squares fit between SIENA-SC and CSA change is esƟmated at 

y=2.02x + 0.12 (R2=0.09). See Figure 24 for a direct SIENA-SC vs. CSA plot and a Bland Altman 

of the same data. The strong asymmetry in both the plot is driven by the differences in 

standard deviaƟon between the two methods. 

Figure 23: ScaƩer plot (on the leŌ) showing PCVC evaluaƟon from SIENA-SC (x) and GBSI (y). The doƩed line shows 
ideal agreement of x=y. The conƟnuous line shows the least-squares fit between SIENA-SC and GBSI. Bland Altman 
plot (on the right) showing the difference between SIENA-SC and GBSI 
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4.2.2.3 GBSI vs CSA change 

CorrelaƟon between GBSI and CSA change measurements: r=0.33, p<0.05, mean absolute 

difference= 0.09%. The least-squares fit between GBSI and CSA change is esƟmated at y=0.63x-

0.06 (R2=0.11). See Figure 25 for a direct GBSI vs. CSA change plot and a Bland Altman of the 

same data. 

  

Figure 24: ScaƩer plot (on the leŌ) showing PCVC evaluaƟon from SIENA-SC (x) and CSA change (y). The doƩed 
line shows ideal agreement of x=y. The conƟnuous line shows the least-squares fit between SIENA-SC and CSA 
change. Bland Altman plot (on the right) showing the difference between SIENA-SC and CSA change. 

Figure 25: ScaƩer plot (on the leŌ) showing PCVC evaluaƟon from GBSI (x) and CSA change (y). The doƩed line 
shows ideal agreement of x=y. The conƟnuous line shows the least-squares fit between GBSI and CSA change. 
Bland Altman plot (on the right) showing the difference between SIENA-SC and CSA change. 
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4.3 Main findings 

SIENA-SC showed a consistent higher robustness than GBSI and the CSA change when PCVC 

from scan rescan were assessed, while no differences were found between the three methods 

in the longitudinal dataset of HC. This is expected, due to the small biological variaƟon of SC 

volume in HC. However, compared to GBSI and CSA change, SIENA-SC demonstrated a smaller 

dispersion of the data, as esƟmated by the standard error. 

The higher robustness of SIENA-SC and GBSI, when compared with CSA on a scan-rescan 

dataset, can be explained by a beƩer ability of registraƟon-based methods to account for 

parƟal volume effects [192]. Such effects can cause segmentaƟon errors and variability when 

calculaƟng CSA. Indeed, convenƟonal segmentaƟon-based methods rely on numerical 

differences between areas obtained from hard segmentaƟon at each Ɵme-point, which can 

lead to indirect esƟmates of atrophy and greater variability, especially when using scans with 

different intensity scales, different voxel sizes or other confounding effects like subject’s 

reposiƟoning, cord curvature or noise. The similar approach between SIENA-SC and GBSI can 

also explain the moderate correlaƟon between the two methods, correlaƟon that becomes 

weaker when they are compared with CSA (SIENA-SC: R=0.29, GBSI: R=0.33). Thus, our analysis 

confirmed the already known bigger reliability of registraƟon-based methods compared with 

the segmentaƟon-based ones [53]. 

Although sharing some of the pre-processing steps, the higher robustness and sensiƟvity 

shown by SIENA-SC compared with GBSI could rely on the different approaches used to derive 

changes in atrophy from local intensiƟes variaƟons. SIENA-SC reduces the impact of local 

random fluctuaƟons in voxel intensiƟes by comparing the profiles of the intensity derivaƟves, 
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and not directly assessing the differences in voxel intensiƟes. On the other hand, GBSI reduces 

the global differences in two SC images through a prior intensity normalizaƟon and then 

directly compares the voxel intensiƟes. This approach might be influenced by local fluctuaƟons 

in voxel intensiƟes, not fully recovered aŌer the global intensity normalizaƟon and leads to 

assume that SIENA-SC could be less biased by sources of variability in MRI signal. In other 

words, GBSI approximate the brain volume change by measuring the intensity difference while 

SIENA measure the intensity profile distance between each corresponding pair of edge voxels 

of the rigidly registered baseline and repeat images. Indeed, both these two techniques 

significantly reduce the variance from segmentaƟon errors by assessing the changes directly 

using intensity informaƟon. 
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5 Experiment 2: SensiƟvity and sample size 

5.1 PopulaƟon 

The second experiment aims to study the sensiƟvity of SIENA-SC in order to disƟnguish the 

physiological and pathological rate of atrophy. 

5.1.1 MulƟple Sclerosis subjects 

We add a dataset of MS subject to the HC dataset used in the experiment 1. PopulaƟon of the 

experiment 2 is summarized in Table 2. 

MS data: 65 subjects acquired at two Italian sites: 10 subjects from Meyer Hospital in Florence 

(mean age: 40 ± 12,9 years; follow-up: 1,2 ± 0,4 ) and 55 subjects from University Hospital in 

Verona (mean age: 39 ± 11,3 years; follow-up: 1,4 ± 0,7). 

All subjects had two brain 3D T1-w images acquired using a 3T MRI scanner, sagiƩally oriented 

and with 1 mm isotropic voxel. Details of the MRI acquisiƟon are in Table 3. 

 Number (Female) Mean (SD) Age, 
years 

Mean (SD) Follow-up 

HC dataset 190 (99) 74 ± 5.7 1.2 ± 0.2 

MS dataset 
Center 1: 10 (7) 

Center 2: 55 (45) 
40 ± 12.9 

Center 1: 1.2 ± 0.4 

Center 2: 1.4 ± 0.7 

Table 2: PopulaƟon demographics. Center 1: Florence. Center 2: Verona. *Scan-rescan MRIs were performed on 
the same day 



Pag. 94 / 132 
 

 

Site Field 

Strength 

Manufacturer Scanner 

Model 

Echo 

Time 

RepeƟƟon 

Time 

Flip 

Angle 

Pixel 

Bandwidth 

Slice 

Thickness 

Spacing 

Between 

slices 

Florence 3T Philips Achieva 0,004s 0,01s 8 175 1 1 

Verona 3T Philips Achieva 0,004s 0,008s 8 191 1 1 

Verona 3T Philips Ingenia 0,004s 0,008s 8 191 1 1 

Table 3: Scanner acquisiƟon details for Florence and Verona Sites 

 

5.2 StaƟsƟcal analysis  

The staƟsƟcal analysis was performed using MATLAB Release R2020a. Significance level was 

set to P < 0.05.  

A linear regression model has been used to measure the sensibility of the methods in 

discriminaƟng HC subjects from MS paƟents. SIENA-SC, GBSI and CSA change were  the 

dependent variable, group (HC or MS), age and sex were the covariates. Results are shown as 

the coefficient of PCVC change in MS paƟents, 95% confidence interval and p-values. 
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To evaluate the precision of each method, we computed the sample size for an hypotheƟcal 

trial with 80% power at the 5% significance level and looking for 50%, 70% and 90% treatment 

effects. 

As for the experiment one, PCVC obtained from CSA measurements was calculated as the CSA 

difference between two consecuƟve Ɵme-points CSA, divided by the first Ɵme-point and 

mulƟplied by 100. 
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5.3 Results 

5.3.1 Comparison between HCs and MS 

The linear regression model adjusted by group (HC and MS), age and sex, showed a different 

rate of atrophy in MS paƟents compared to the HC using the three methods: SIENA-SC (Coeff: 

-0.54, 95%CI=[-0.87, -0.21],  p<0.001); GBSI (Coeff: -0.84 ; 95%CI=[ -1.81, 0.12 ], p=0.08); CSA 

change (Coeff: -1.92 ; 95%CI=[ -3.82,  -0.016 ], p=0.048). Raw values of the results are 

illustrated in Table 4 and Figure 26. 

 HC MS p-value 

Annualized SIENA-SC [SE] -0.05 ± 0.45 [0.03] -0.6 ± 0.77 [0.09] <0.001 

Annualized GBSI [SE] -0.08 ± 1.6 [0.12] -1.14 ± 1.56 [0.19] 0.08 

Annualized CSA change [SE] 0.005 ± 3.1 [0.22] -1.52 ± 3.44 [0.42] 0.048 

Table 4: Table showing the raw mean values, standard deviaƟon, and standard error of PCVC obtained with the 
three methods. SE: Standard Error. 
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Figure 26: Boxplot illustrates the comparison of the annualized percentage cord area changes obtained using 
SIENA-SC, GBSI and CSA change between healthy control and mulƟple sclerosis subjects. 
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5.3.2 Sample size 

Considering the sample size esƟmaƟon per arm for a clinical trial where SC atrophy could be 

an outcome to measure the response to treatment, SIENA-SC showed the lowest number of 

MS paƟents needed to observe an effect over this hypotheƟcal treatment (Table 5 and Figure 

27).  

SoŌware Effect size % Sample Size [CI] (MS Subjects) 

SIENA-SC 50 54 [39 to 95] 

 70 146 [107 to 217] 

 90 1290 [933 to 1986] 

GBSI 50 62 [36 to 135] 

 70 167 [86 to 478] 

 90 1483 [714 to 4287] 

CSA 50 171 [59 to 5628] 

 70 472 [157 to 2700] 

 90 4224 [1859 to 8991] 

Table 5: EsƟmated sample size per arm with all the three methods (Power= 80%, 5% Significance level). 
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Figure 27: Plot showing the sample size power for different effect size for each method (SIENA-SC: 
conƟnuous red line ; GBSI: blue dash-dot line ; CSA: green doƩed line) 
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5.4 Main findings 

There have been few clinical trials and observaƟonal studies in MS that used SC atrophy as an 

outcome measure, because of the large sample size required when using the available CSA 

method [9,135,193]. 

To provide evidence that SIENA-SC could be applied to neurological diseases, in this 

experiment we applied SIENA-SC, GBSI and the CSA change on a dataset of MS paƟents from 

two centers. As explained in chapter 1.4, SC atrophy is a well-known feature in MS since the 

early stages and monitoring cervical SC atrophy may be clinically relevant, due to its correlaƟon 

with increased disability. 

In our populaƟon, SIENA-SC was able to significantly disƟnguish between MS and HC 

(p<0.001), compared with GBSI (p=0.08). Although CSA changes narrowly obtained 

significance (0.048), both CSA and GBSI showed higher standard error than that from SIENA-

SC. These results imply that SIENA-SC measurements are more precise, thereby holding 

promise for future MS research on SC imaging. 

SIENA-SC yielded increased staƟsƟcal power to detect 50-70-90% treatment effects than those 

provided by GBSI and CSA change, anyway, both the registraƟon-based methods 

outperformed the results obtained by the atrophy changes measured with CSA. Specifically, 

SIENA-SC provided a three-fold smaller sample size than that obtained with CSA, while only 

slightly smaller than the one esƟmated by GBSI. Overall, the sample size esƟmates for SC 

atrophy measurements with SIENA-SC are of the same order of magnitude as those for brain 

atrophy obtained with registraƟon-based methods [15,194,195]. 
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This preliminary analysis is promising and seems to indicate SC atrophy as evaluated by SIENA-

SC a suitable endpoint in clinical trials and in observaƟonal datasets.  
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6 General discussion 

This study shows the feasibility of SIENA-SC, a fully automated, easy-to-use, tool to calculate 

the PCVC using brain MRI acquisiƟons, thus translaƟng the behavior of the original SIENA 

method from brain to SC. Assessing SC atrophy from brain scans, the scan Ɵme for MRI and 

the associated cost could be significantly reduced, also relieving paƟents’ burden. Moreover, 

SIENA-SC allows to obtain PCVC without extensive computer engineering experience and 

reduce inter-operator variability. To obtain this, a novel opƟmized pre-processing procedure, 

consƟtuted by integraƟng and opƟmizing some previously developed rouƟnes, was ideated 

and tested. 

SIENA-SC starts with a pre-processing based on an arƟficial-intelligence freely available tool 

[62]. This step eliminates the iniƟal operator intervenƟon necessary for the idenƟficaƟon of 

the iniƟal mask of the spine. This approach is valid by itself, making fully automated also the 

two methods, GBSI and CSA, compared with SIENA-SC. Indeed the same generated cord masks 

have been used for the atrophy assessment in all the three methods. In order to reproduce 

the SIENA methodology for the analysis of SC atrophy, we opƟmized a registraƟon procedure 

between two longitudinally acquired images. This step was implemented using jointly, for each 

Ɵmepoint, images and masks of the dilated cord up to the vertebra, to provide the registraƟon 

tool a non-moving reference. Finally, SIENA-SC derives the percentage change in atrophy 

through an indirect approximaƟon of the local edge displacement, using the differences 

between the derivaƟves of the intensiƟes between the 2 images and a calibraƟon factor that 

depends on the size of the SC and serves to reduce the variability introduced by the intrinsic 

differences between the two images. 
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6.1 LimitaƟon 

This study is a proof-of-concept of the use of SIENA-SC. We mainly focused on the creaƟon of 

the method and the iniƟal validaƟon of its robustness and sensiƟvity. These results should be 

confirmed on larger datasets of brain MRI images with a visible cervical cord and tested in 

different neurological diseases. 

6.2 Future direcƟons 

The easy use of SIENA-SC could allow the evaluaƟon of physiological changes in large data sets 

of HCs, defining normaƟve values as already demonstrated for the brain atrophy using the 

SIENA method [196]. Furthermore, new studies using data sets of neurological paƟents 

supplied by clinical informaƟon should beƩer explore the method's sensiƟvity in idenƟfying 

pathological deviaƟons from normality. Finally, SC atrophy could be combined with other 

clinical and brain MRI outcome measures to further improve the surveillance of the clinical 

course in neurological diseases [139,197,198]. Indeed, combined endpoints have become 

increasingly common, and the inclusion of SC atrophy could further improve staƟsƟcal power 

and clinical correlates. 

6.3 Conclusion 

In this study, we presented SIENA-SC, a new method to assess SC atrophy longitudinally. 

The soŌware is fully automated, easy to use and has been specifically designed, but not 

limited, to work on rouƟnely acquired brain MRI sequences, such as MPRAGE[6]. 
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SIENA-SC offers reliable, sensiƟve and consistent quanƟtaƟve measurements of longitudinal 

SC volume change. 

This study provides evidence that SIENA-SC can be considered as a precise and reliable tool for 

calculaƟng MS-related SC atrophy in clinical trials and in observaƟonal datasets or in other 

neurological disease where SC plays a determinant role. 
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