
UNIVERSITÀ

DEGLI STUDI

FIRENZE

UNIVERSITÀ

DEGLI STUDI

PERUGIA Istituto Nazionale

di Alta Matematica

Università di Firenze, Università di Perugia, INdAM consorziate nel CIAFM

DOTTORATO DI RICERCA

IN MATEMATICA, INFORMATICA, STATISTICA

CURRICULUM IN INFORMATICA

CICLO XXXVI

Sede amministrativa Università degli Studi di Firenze

Coordinatore Prof. Matteo Focardi

Optimizing Drone-Based Applications for

Delivery and Smart Agriculture
Settore Scientifico Disciplinare INF/01

Dottorando:

Lorenzo Palazzetti

Tutore:

Prof. Maria Cristina Pinotti

Coordinatore:

Prof. Matteo Focardi

Anni 2020/2023



ii



Contents

I Drone Trajectories Wind-aware and Drone-based Deliveries 15

1 How the Wind Can Be Leveraged for Saving Energy in a Truck-Drone Delivery System 17

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Truck-Drone Tandem Delivery Systems . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.2 Drone Delivery Systems Influenced by the Wind . . . . . . . . . . . . . . . . . . 21

1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 The Relative Wind and Energy Model . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.2 The Compass Rose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 The Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.1 The Minimum-energy Drone-trajectory Problem (MDP) . . . . . . . . . . . . . 25

1.4.2 Towards the MDP Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.3 The Feasibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 The MDP Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5.1 The SINGLE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5.2 The MULTI Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5.3 The FEASIBILITY Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6.1 Settings and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6.2 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6.3 Simulation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendices 45

1.A Drone-Wind Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



iv

2 On the Scheduling of Conflictual Deliveries in a Last-mile Delivery Scenario with

Truck-carried Drones 47

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.1 Single Drone Deliveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.2 Multiple Drones Deliveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Problem Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.2 System and Delivery Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.4 The Optimal Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4 Algorithms for SCDP with a Single Drone . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.1 The KNA-S Optimal Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.2 The COL-S Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4.3 The BIN-S Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Algorithms for SCDP with Multiple Drones . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.1 The KNA-M Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.2 The BIN-M Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.3 The COL-M Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6.1 The Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

II Investigating the Use of Drone in Smart Agriculture: the Single-drone
Orienteering Aisle-graph Problem and Multiple-drone Data-collection Max-
imization Problem 71

3 Drone-based Bug Detection in Orchards with Nets: A Novel Orienteering Approach 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1 Orchard Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



v

3.3.2 Cost and Reward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Proposed Algorithms for SOAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.1 The OPT Optimal Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.2 The ABP Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.3 The ABA Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.4 The GBT+ Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.5 The GBA+ Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5.1 With Synthetic Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5.2 With a Real-world Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5.3 With Real Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Wireless IoT Sensors Data Collection Reward Maximization by Leveraging Multiple

Energy- and Storage-Constrained UAVs 101

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.2 The Multiple-drone Data-collection Maximization Problem . . . . . . . . . . . . 109

4.3.3 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Solving MDMP with a Single Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.1 The RSEO-S Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.2 The MRE-S Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.3 The MRS-S Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Solving MDMP with Multiple Drones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5.1 The RSEO-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5.2 The MRE-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.3 The MRS-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.4 The SAS-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5.5 The CAA-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6.2 Results with a Single Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



vi

4.6.3 Results with Multiple Drones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

III Drone and AI Algorithms for Pest Management/Detection in Orchards
129

5 YOLO-based Detection of Halyomorpha halys in Orchards Using RGB Cameras and

Drones 131

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.1 Previous Results on HH Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 The New Dataset and its Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.1 Dataset Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.2 Evaluation of Blurriness and Brightness . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.3 Bounding Box Analysis and Labeling Phase . . . . . . . . . . . . . . . . . . . . . 140

5.4 Performance Evaluation of the Bug Detection . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.1 Adopted Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4.2 Training and Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4.3 Testing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5 Developed Client-Server Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5.1 Overview Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5.2 Server Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5.3 Client Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Appendices 155

5.A Impact of Blurriness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 The Hawk Eye Scan: Halyomorpha Halys Detection Relying on Aerial Tele Photos and

YOLOv5 159

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2.1 Data Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3 Evaluation of the Localization and Detection of the Bug . . . . . . . . . . . . . . . . . 167



vii

6.3.1 Algorithms and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3.2 Adopted Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3.3 Configuration of the Object Detectors . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3.4 Testing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Appendices 181

6.A Hardware Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.A.1 Vision Chip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.A.2 Drone Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



viii



List of Figures

1.1 Abstraction of a delivery performed by the truck-drone tandem in a supply chain

scenario. The truck moves carrying the drone; P is the delivery. . . . . . . . . . . . . 19

1.2 The wind triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Axes are labeled with the cardinal, mathematical, and meteorologic (in brackets)

directions. Note the phase (equals to 90) which represents the offset North-East

among the two ways for representing the wind (a); Relative wind ϕpr⃗q “ 90 on r⃗

when γr “ 25 and ωd “ 115 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 The relative winds on T⃗ P and P⃗ L, where the quadrants Q1 and Q4 are highlighted

in blue and red, respectively. A thorough explanation of the figure is reported in

the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 The candidate sectors: |ϕpr⃗q|σ ‰ 0 (blue) and |ϕpr⃗q|σ “ 0 (green). . . . . . . . . . . 29

1.6 Flowchart of SINGLE (a), MULTI (b), and FEASIBILITY (c). . . . . . . . . . . . . . . . . 35

1.7 SL-EW scenario: SINGLE vs SINGLE-ST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.8 SL-EW scenario: comparison between different number of sectors. . . . . . . . . . . . 38

1.9 SL-RW scenario: SINGLE vs SINGLE-ST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.10 SL-EW/RW scenarios: MULTI vs MULTI-ST. . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.11 SL-EW scenario: furthest deliveries that can be served in presence of wind (SINGLE)

and in absence of wind (SINGLE-ST) given ϕprq. . . . . . . . . . . . . . . . . . . . . . . 41

1.12 ML-EW scenario: status of deliveries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.13 The simulated algorithms under BlueSky: S stands for SINGLE. . . . . . . . . . . . . . 43

2.3.1An example delivery area A with 6 roads and 8 customers δi to serve. The depot

ψ is at p0,0q; The truck’s route is the solid line, while the drones’ routes are the

dashed lines (a); A road with a delivery δi to do: the launch δL
i and rendezvous

δR
i points are highlighted (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.2Delivery intervals corresponding to Fig. 2.3.1a (a); Interval graph G for the exam-

ple in Fig. 2.3.1a (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



x

2.6.1Performance evaluation of our algorithms. The first row compares algorithms with

a single drone, while the other two rows compare with multiple drones. . . . . . . . 67

3.1.1Orchards today use nets to safeguard their crops from pests and harsh weather

conditions by covering the top and sides of the trees. . . . . . . . . . . . . . . . . . . . 73

3.3.1An orchard Op3,4, 3q. The aisle labeled A1 and the tree labeled T3,1 are highlighted.

The light-green vertices represent the rewards, while the costs have been omitted

as they are assumed to be unitary. The vertex v1,1 constitutes the depot. . . . . . . . 77

3.5.1W1 (performance) with randomly generated synthetic data sets. . . . . . . . . . . . . 95

3.5.2W1 (running time in seconds) with synthetic data sets. . . . . . . . . . . . . . . . . . . 97

3.5.3Performance of W2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.5.4Performance (left) and running time (right) of W3. . . . . . . . . . . . . . . . . . . . . 100

4.1.1The sketched representation of our application. The surface is not flat, and there-

fore the sensors have different heights with respect to the depot. . . . . . . . . . . . . 102

4.3.1Top and side representations of the field F . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6.1Single-drone: comparison of all the algorithms when varying the drone’s altitude. . 123

4.6.2Single-drone: comparison of all the algorithms when varying the drone’s energy

and storage constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6.3Multi-drone: comparison of all the algorithms when varying the drone’s energy

and storage constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.1The training dataset in [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.1An example of image for each category. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.2Three Pentatomidae stink bugs: Halyomorpha halys (HH, left), Nezara viridula (NV,

center), and Rhaphigaster nebulosa (RN, right, never observed in the monitored

orchard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.3Dataset evaluation on blurriness, and perceived brightness for each acquisition

source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3.4Bounding boxes analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4.1Example of image augmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.2Training and validation results using blur score as splitting parameter. . . . . . . . . 147

5.4.3The main models’ pitfalls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5.1The app-architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5.2The Android application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.A.1Example of blur kernel effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



xi

5.A.2Training results using RAND split with 50% of blurred images. . . . . . . . . . . . . . 156

5.A.3Evaluation of blur impact on YOLO models using RAND split. . . . . . . . . . . . . . . 157

6.2.1Illustration on the protocol used by the drone for taking pictures inside the orchard

(numbers in meters). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2.2Overview of the main application core features. It summarizes a three-phase pro-

cess: Crop Inspection involves selecting waypoints for drone flight, Route Planning

automates flight along waypoints to capture orchard images, and Bug Scouting uses

computer vision to detect bugs in captured images. . . . . . . . . . . . . . . . . . . . . 163

6.2.3Example of drone captured images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2.4Bounding box size (left), position (right) distribution. . . . . . . . . . . . . . . . . . . 165

6.2.5Image blurriness (left), and brightness (right) evaluation. . . . . . . . . . . . . . . . . 166

6.3.1Distribution of the number of HH per image. . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3.2Training and validation sets composition. . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3.3Training and validation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.3.4Patch extraction for test images (a); and insight on the three test configurations (b).175

6.A.1Three Pentatomidae stink bugs (top): Halyomorpha halys (HH, left), Nezara viridula

(NV, center), and Raphigaster nebulosa (RN, right, never observed in the monitored

orchard); HH and its distinctive features (bottom). . . . . . . . . . . . . . . . . . . . . 182

6.A.2FoVs and AoVs from a camera (a); and two configurations (one black, one blue)

with the same FD (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.A.3The DJI Matrice 300 drone (left) and the DJI Zenmuse H20 camera (right). . . . . . 183



xii



List of Tables

1.1 The angles δ of the examples in Figure 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2 Octocopter Energy consumption µi fixing υd “ 10m{s and ωs “ 10m{s, and with

different payloads κ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1Symbol description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1Table A˚ considering the example in Figure 3.3.1 with B “ 21. . . . . . . . . . . . . . 84

3.4.2The vertices’ rewards of example Figure 3.3.1. The highlighted value has aisle

i “ 2, tree j “ 3, and observable position k “ 1, i.e., Rpv1
2,3q “ 2. . . . . . . . . . . . . 84

3.4.3Table Q considering the example in Figure 3.3.1 with B “ 21. . . . . . . . . . . . . . . 85

3.4.4Comparison between the algorithms that solve SOAP. . . . . . . . . . . . . . . . . . . . 92

4.3.1Table of Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6.1Comparison between the algorithms for solving MDMP. . . . . . . . . . . . . . . . . . 122

5.2.1Experimental results (precision among all the classes) on different testing datasets,

as reported in [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.2List of Acronyms and Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.1Dataset composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.2Dataset analysis and composition. The average (avg) is among all the pictures. . . . 140

5.4.1List of Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.2Results of YOLO models trained on different images. . . . . . . . . . . . . . . . . . . . 148

6.3.1Results X models on test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xiii



xiv



List of Algorithms

1 SINGLE (P,ω, t, r⃗, vd ,κ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 MULTI (P,ω, t,Π, vd ,κ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 FEASIBILITY (P,ω, t, r, vd ,κ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 The COL-S Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 The BIN-S Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 The KNA-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 The BIN-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 The COL-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9 The ABP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 The ABA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

11 The GBT+ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

12 The GBA+ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

13 The RSEO-S Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

14 The MRE-S Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

15 The RSEO-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

16 The MRE-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

17 The SAS-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

18 The CAA-M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xv



xvi



I dedicate this dissertation to my Granpa.

I miss you more than words can say.

Thank you for believing in my dreams.



2



Abstract

The intersection of Unmanned Aerial Vehicles (UAVs), commonly known as drones, with vari-

ous human labor-intensive activities such as last-mile delivery, agriculture, and surveillance has

emerged as a compelling frontier of research. This dissertation explores the transformative impact

of drones in two key domains: last-mile delivery and agriculture.

In the context of last-mile delivery, drones are rapidly reshaping logistics practices, offering

opportunities to overcome geographical barriers, reduce delivery times, and minimize carbon

footprints. The cost-effectiveness and adaptability of drones make them accessible to businesses

and communities. However, this transition to drone-based delivery systems is not without its

challenges. The first part of the dissertation focuses on last-mile delivery, exploring innovative

solutions to optimize operational efficiency and enhance sustainability. Chapter 1 investigates

the impact of wind dynamics on drone-based delivery systems defining a tunable model for rep-

resenting drone energy consumption according to wind conditions. Then, an algorithm to plan

minimum-energy trajectories, and one to analyze mission feasibility for drones in windy condi-

tions are proposed. Chapter 2 explores the cooperation between a truck and a fleet of drones

in the context of last-mile package delivery by introducing the Scheduling Conflictual Deliveries

Problem (SCDP). The SCDP models each delivery as an interval, and each drone as channel of lim-

ited capacity, i.e., energy, and aims to maximize the collected reward associated to each delivery,

i.e., the delivery priority. Finally, optimal and approximation algorithms are provided presented

with a thorough performance evaluation on synthetic data.

The second part of the dissertation delves into agriculture, specifically crop monitoring, using

drones to collect data efficiently from specific locations. The possibility to visualize with constant

update the crop health state helps the farmer in the decision process allowing to take actions and

measurements promptly towards the root of the problem. By discretizing the observation posi-

tions inside a crop, the monitoring task can be reduced to an Orienteering Problem (OP) where a

reward function shapes the relevance of visiting certain positions, and a cost function represents

the energy consumption due to drone operations. Indeed, solving the OP requires visiting the

subset of locations associated with the maximum relevance without exceeding the energy bud-
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get for each drone. Under this framework Chapter 3 presents a solution for the data collection

problem in a special orchard type, i.e., modern orchards protected by nets, providing a novel

data structure to model it, and introducing the Single-drone Orienteering Aisle-graph Problem

(SOAP), a specialized version of the OP. In SOAP, the objective is visiting the most relevant obser-

vation points in the orchard for collecting images without exceeding the battery capacity of the

drone. An optimal, two approximation algorithms, and two fast heuristics have been developed

to solve it. Chapter 4 continues the same research by modeling the data collection problem as

the task of offloading the data collected by a set of sensors with drones. In detail, a wireless

sensor network (WSN) strategically deployed within monitoring areas is in charge of collecting

useful information on several physics phenomena. Since the deployment area can be very large,

we rely on a set of homogeneous drones to selectively collect the data from the sensors under

two main limitations. First of all, a drone during its data harvesting mission is subjected to the

battery capacity, i.e., it has a maximum flight range. Secondly, the available memory storage is

limited, so it can store only a limited amount of data during its mission. As a result, we obtain a

novel optimization problem, the Multiple-drone Data-collection Maximization Problem (MDMP)

which represents a further generalization of the OP, where we optimize also the drone storage

capacity. The problem is proved to be NP-hard, and for it are proposed an optimal ILP solution,

an approximation, and two fast heuristics.

The third part of the dissertation focuses on smart agriculture, particularly pest detection in or-

chards. The invasive Halyomorpha Halys (in short HH), commonly known as Brown Marmorated

Stink Bug, poses a significant threat to agriculture. The dissertation details the development of an

Integrated Pest Monitoring (IPM) system, combining drones and machine learning algorithms for

pest detection, with a specific emphasis on this invasive bug. Chapter 5 concentrates on improv-

ing pest detection using machine learning models trained on field-captured images. To the best of

our knowledge, we explore for the first time the possibility to detect this invasive bug employing

a computer vision algorithms trained on images taken inside orchard aisles. The chapter covers

every phase of the training process, ending with wide performance analysis based on several fac-

tors, including variations in blurriness levels. Finally, we devise a cloud service architecture for

extending the accessibility of the algorithms devised. Chapter 6 focuses again on the creation of

a detection algorithms for scouting the HH, posing a special attention on the automatization of

the entire process, i.e., mission planning, data acquisition, and bug detection. Therefore, we first

define a drone-based protocol which allows to collect images from the top of the orchard, at an

altitude of 10 meters, pushing on strict camera settings, and photograph techniques. To the best

of our knowledge, relying on this protocol we create the first datasets for scouting HH completely
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based on drone-captured images. Then, employing a tailored training algorithm based on im-

age slicing and sub-portion attention we train several models exploiting the YOLOv5 algorithm.

Finally, we analyze performance of the networks and models predictiveness using well-known

and custom metrics. Throughout the dissertation, the fusion of technology and agriculture is

highlighted, paving the way for a more sustainable and efficient future in farming.

The research contributions discussed in each chapter have been published in various confer-

ences and journals, showcasing the practical relevance and impact of the work. Overall, this

dissertation addresses critical challenges and provides innovative solutions for the integration

of drones into last-mile delivery, agriculture, and pest monitoring, contributing to the ongoing

evolution of drone-based systems in these domains.
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Introduction

In an era defined by rapid technological advancements and innovations, the intersection of un-

manned aerial vehicles (UAVs), commonly known as drones, and the increasing difficulty for

finding workforce in a variety of everyday life activities, e.g., agriculture, delivery, and surveil-

lance, has emerged as a compelling frontier of research exploration. Indeed, The widespread

adoption of robots and artificial intelligence (AI) is revolutionizing multiple industries and will

likely reshape many aspects of our lives. Automation, industrial robots, and the forthcoming AI

revolution have already changed the nature of work and production processes. Some studies

have highlighted the positive effects on productivity, growth, and long-run outcomes [2]. This

reallocation of tasks may directly affect work-related health risks as well as workers’ perception

of job safety as robots are often used in tasks that are physically intense and may involve higher

risks. For example, the use of drones in last-mile delivery is rapidly transforming the conventional

logistics practices, and redefining the way we perceive and interact with this sector. Indeed, the

introduction of this technologies is shifting the human role from active part in the field where ev-

erything depends on the employees, to a more passive position where the activities are demanded

to the drones, and the human presence servers mainly as supervision, ensuring that every task

goes smooth. Moreover, with an ever-growing demand of efficient, timely, and sustainable deliv-

ery solutions, drones offer an unprecedented opportunity to reshape the logistics landscape. They

pose the premise to overcome geographical barriers, reduce delivery times, and minimize carbon

footprints. Furthermore, the cost-effectiveness and adaptability of drones, more and more cheap

drone models are available off-the-shelves, in this context can unlock new levels of convenience

and accessibility for customers, businesses, and communities alike.

Simultaneously, the application of drones in agriculture opens new horizons for optimizing

farming practices and increasing agricultural productivity. Through real-time monitoring, data

collection, and precision agriculture techniques, drones empower farmers to make informed de-

cisions, optimize resources allocation, and last but not least drastically reducing the time spent

for tedious tasks that require a constant human presence, e.g., field sowing, crop harvesting. To-

day more than ever, in a world where the demand for food is constantly increasing, the efficiency

7



8

and the quality of the agriculture production is a crucial challenge to pose new food production

standards, and reducing the escalation of demands.

Yet, as with any pioneering technology, the road to realizing these beneficial innovations is not

without its share challenges. Ethical, regulatory, safety, and technical hurdles loom large on the

path to the seamless integration of drones into last-mile delivery and agriculture. This dissertation

does not shy away from addressing these challenges head-on, providing a comprehensive exami-

nation of the complexities that must be navigated to harness the full potential of drones in these

two domains. Furthermore, it discusses solutions and their relative efficiency for overcoming the

aforementioned challenges acting as flywheel for further improvements.

The dissertation is organized into three parts, covering the introduction of efficient and ef-

fective solutions for improving the usage of drones in last-mile delivery, data collection for crop

monitoring, and insect detection for a pest management system. The Part I of my dissertation

embarks on a journey through two interconnected chapters, each offering a innovative perspec-

tive on the evolving world of drone-based delivery systems. In these two chapters, we explore

solutions to optimize operational efficiency in last-mile deliveries by investigating the energy im-

pact of wind on drones trajectory planning, and proposing for an optimal algorithm for mission

planning. Hence, we demonstrate that the wind, seen by many as a limitation, can be converted

to an invaluable resource for flight time extension, and as consequence, an effortlessly way to en-

hance the sustainability of last-mile package delivery. Under this framework, we navigate strictly

related critical challenges, such as the delivery feasibility analysis in cooperative scheme with a

truck and a drone. In addition, we provide rigorous algorithmic solutions towards the delivery

scheduling optimization using in a truck and drone delivery system.

More in detail, in Chapter 1, we delve into a fundamental yet often overlooked aspect of drone-

based delivery systems: the impact of wind dynamics. As drones become increasingly integral to

last-mile delivery, understanding and adapting to the influence of wind patterns become essential

for optimizing their flight endurance. Our research takes a pioneering step in this direction,

where, for the very first time, we adapt drone trajectories to harness the power of the wind.

We consider a scenario where a truck and drone work in tandem, with the drone actively re-

sponding to wind conditions to adopt the most energy-efficient trajectory between the truck’s path

and the delivery location. This novel approach gives rise to the Minimum-energy Drone-trajectory

Problem (MDP), a challenging optimization problem. MDP aims to plan minimum-energy trajec-

tories for drones, particularly when wind affects the delivery area. Within this chapter, we intro-

duce two distinct algorithms that provide optimal solutions to MDP under varying truck routes.

Additionally, we delve into the feasibility of employing drones with limited battery capacity for
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deliveries. To validate our proposed algorithms and model, we conduct numerical comparisons

using synthetic and real data, along with simulations in the BlueSky simulator.

The Chapter 2 of this dissertation delves into the intricate symbiosis between a truck and

multiple drones in the context of last-mile package delivery. Here, we introduce the Scheduling

Conflictual Deliveries Problem (SCDP). In this scenario, a truck plays a pivotal role in transporting

a fleet of drones, each tasked with package deliveries. The truck follows a predefined route,

while each delivery task is characterized by drone energy consumption, priority, and temporal

constraints tied to the truck’s route.

Our primary objective in SCDP is to optimize the scheduling of drones to maximize overall

reward, all the while adhering to strict battery capacity constraints and ensuring non-intersecting

delivery intervals. Recognizing the computational complexity of this problem, we establish its

NP-hard nature. To tackle this challenge, we present an Integer Linear Programming (ILP) for-

mulation and devise a pseudo-polynomial time optimal algorithm for the single drone scenario.

Furthermore, we offer approximation algorithms suitable for both single and multiple drone sce-

narios. To assess the practicality and performance of our proposed algorithms, we undertake a

comprehensive comparative analysis using diverse synthetic datasets.

These two chapters collectively contribute to the ongoing evolution of drone-based last-mile

delivery systems. They introduce innovative solutions, address critical challenges, and pave the

way for more sustainable, efficient, and adaptive delivery systems in the modern era.

The accomplishments discussed in Chapter 1, pertaining to wind modeling for drone delivery

and mission feasibility, were initially presented in two conference papers [3,4] and subsequently

explored in more depth in the corresponding journal publication [5]. Additionally, the code

that was developed can be found in the following GitHub repository (https://github.com/

TheAnswer96/T-ITS23_bluesky-plugin). As for the content covered in Chapter 2, which

deals with the scheduling problem within the context of last-mile deliveries, it was initially exam-

ined in two conference papers [6] and later enhanced in the subsequent journal paper [7].

The Part II of the dissertation spans over the problem of collecting data from specific loca-

tions of a crop with different degrees of drone’s mobility. As the data demanding requires to be

increasingly heavy to have a better insights and inferring accurately the crop health with extreme

precision, past solutions that rely on wireless Sensor Network (WSN) or even worse on human

has started to suffer from the burdening of the huge volume of data. The introduction of drones

for crop monitoring defines a turning point concerning performance, posing a new efficiency stan-

dard with respect to health plant operators inspection, as well as employing them as mobile sink,

i.e., a data carrier, represents the definitive crux for optimizing and extending WSN life-time. In

https://github.com/TheAnswer96/T-ITS23_bluesky-plugin
https://github.com/TheAnswer96/T-ITS23_bluesky-plugin
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principle, the problem of collecting data can be modeled as well-known optimization problem,

the Orienteering problem (OP) [8]. The OP is a routing problem in which the goal is to determine

a subset of nodes to visit, and in which order, so that the total collected score is maximized and a

given time budget is not exceeded. In the following two chapters, we consider two different data

collection problem, and by demonstrating their connection to special version of the OP, we depict

for them efficient solutions, proving by accurate simulation their valuable advancement.

In detail, in Chapter 3 we face the challenge of using drones for collecting relevant data within

special orchards, particularly common in Italy, protected by nets. To navigate this challenge,

we investigate the chance of modeling the orchard as an aisle-graph, by defining a novel data

structure, i.e., the 3D single-access aisle-graph. Then, we formalize the problem of visiting the

most relevant position of the orchard under the drone energy constraint as a novel variant of the

orienteering problem, the Single-drone Orienteering Aisle-graph Problem (SOAP). We demonstrate

that SOAP can be optimally solved in polynomial time, and more efficient solutions have been

proposed in order to deal with large problem instances. Finally, through extensive evaluation

that exploits synthetic and real-world data, we showcase the effectiveness and efficiency of our

solutions.

Chapter 4 delves into the realm of Internet of Thighs (IoT) sensors strategically deployed

within areas to be monitored. Here, we explore the possibility of employing drones in collecting

data from these sensors, under real-world constraints, e.g., drone energy and storage limitations.

We introduce the Multiple-drone Data-collection Maximization Problem (MDMP), where the objec-

tive is to plan the mission for a set of drones that maximizes the relevance of the data collected

while adhering to the energy and storage constraints. Then, an Integer Linear Programming al-

gorithm for optimally solving the MDMP is provided, as well as further suboptimal algorithms

for the single and the multiple drone scenario are presented. As already done for the previous

chapter, we validate the theoretical performance of the proposed algorithms through accurate

simulations.

The accomplishments discussed in Chapter 3, concerning the algorithm designed for optimiz-

ing the pest monitoring in a modern orchard enveloped by nets, were initially presented in two

conference papers [9,10] and subsequently explored in more depth in a scientific contribution cur-

rently submitted for possible publication in IEEE TMC Additionally, the code that was developed

can be found in the following GitHub repository (https://github.com/TheAnswer96/TMC).

The content covered in Chapter 4, which deals with the drone path optimization towards col-

lecting the most relevant data harvested from a Wireless Sensor Network (WSN), it was initially

examined in the single drone scenario in [11] and later generalized in the subsequent multiple

https://github.com/TheAnswer96/TMC
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drone scenario in the journal paper [12]. As regards the code, it can be found in the following

GitHub repository (https://github.com/TheAnswer96/JCSS).

Finally, the Part III of this dissertation delves into the prominent field of smart agriculture,

with a special focus on pest monitoring. Pest monitoring is becoming increasingly important,

and is getting through a revolution, and a modernization due to the new hot technologies, e.g.,

drones, neural networks. Agriculture, tracing its evolutionary path from the mechanical revo-

lution onwards, has witnessed a steady infusion of technological advancements, culminating in

ever-more powerful machinery and enhanced mechanical expertise. Nevertheless, it has lagged

behind other sectors of the economy in harnessing state-of-art technologies and automation as

pointed out in [13].

In the pages that follow, this dissertation concentrates its focus on the careful selection and

deployment of innovative technologies tailored to address several pressing concerns that arise in

the context of crop monitoring. Specifically, our efforts center on the development of a Integrated

Pest Monitoring (IPM) specialized for a particularly invasive and harmful insect, the Halyomorpha

Halys (HH), colloquially known as “brown marmorated stink bug” (BMSB).

This invasive species, native to regions in East Asia, including China and Japan [14], poses

a significant threat to agriculture due to its polyphagous nature, feeding voraciously on various

host plants, especially fruit-bearing trees, e.g., pear, hazelnut trees.

The emergence of the HH as a global pest is attributed to factors such as global trade, and

side effects of climate change [15, 16]. Italy, renowned for its fertile orchards, encountered the

destructive potential of HH starting by 2012, marking the official entry of this pest into European

territory. The ensuing years have witnessed substantial losses in fruit production and in trading

revenue, with 2019 estimates reaching a staggering =C588 million only in northern Italy.

Efforts to monitor and mitigate HH infestations have relied on methods ranging from traps

baited with aggregation pheromones, which have proven somewhat unreliable and sometimes

have inadvertently increased damage, to time-consuming active monitoring techniques, such as

the well-known estimation technique of frappage where a plant health operator repeatedly beat on

trees’ trunk, estimating the HH presence by counting how many specimens fall down. Attempts

to combat the HH outbreaks have, regrettably, led to a surge in the use of a broad-spectrum

pesticides, disrupting existing IPM programs, escalating producer costs, and inflicting relevant

harm not only for the consumers but also for the environment.

This part of my dissertation presents the line of research pursued as regard the Horizon 2020

HALY.ID project [17], granted with the objective of automating the monitoring activities of grow-

ers and plant health operators. The HALY.ID project aims to mimic the monitoring process just

https://github.com/TheAnswer96/JCSS
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described, exploiting innovative technologies. Under the umbrella of the project has been de-

ployed architecture which is needed to collect the required data for training the machine learning

(ML) algorithms, and to autonomously monitor the field. Furthermore, to monitor the abundance

of HH in orchards, various hardware and software solutions are proposed and implemented by

multiple research units involved in the project. One notable solution is the use of a Unmanned

Aerial Vehicle (UAV) equipped with a high-resolution camera to capture images of the insects on

trees, which are then compiled into a dataset utilized then by ML algorithms to identify the pres-

ence of HH. Also, an Internet of Things (IoT) sticky trap, and a network of IoT-based microclimate

stations are established to continuously monitor pest populations.

Under this premise, we will navigate through two pivotal chapters, each shedding light on a

unique facet of our overarching goal – the automation and the enhancement of the monitoring of

Halyomorpha halys.

In detail, Chapter 5 focuses on combining drones and Deep Learning algorithms for pest de-

tection, with a specific emphasis on the detecting the Halyomorpha Halys. While the integration

of autonomous drones and advanced vision chips into integrated pest management holds great

promise, it also brings tough challenges. In this chapter, we detail our efforts to enhance the

performance of a detection algorithm relying only a dataset comprised by only on-field captured

images. We conduct a rigorous data cleaning process based on two crucial quality parameters,

blurriness and brightness. Subsequently, we train and evaluate various ML models within the

YOLO framework, employing diverse metrics for performance comparison. Finally, we conduct a

thorough experiment designed to shed light on the role of blurriness in insect detection perfor-

mance.

Chapter 6 devotes attention on the challenging task of bug detection, i.e., Halyomorpha Halys,

exploiting a drone-based automated protocol. The chapter states a new standard for data harvest-

ing, which tackles the main limitation encountered in the previous chapter, namely flying within

orchard’s aisles. Indeed, the maneuvers of bulky drone in tight spaces represent the main culprit

of drone damages, and very often cause flight deadlock when the collision avoidance system is

engaged. For this reason, according to several optics concepts a data harvesting procedure from

the top of the orchard is defined. This procedure allows the creation of the first dataset for Ha-

lyomorpha Halys detection with high-resolution images taken from the top of an orchard by a

drone. Although the attention put to correctly adhere to all the specification of the orchard, a

cleaning procedure based on the most relevant parameters, i.e., blurriness and brightness, was

required. Then, since the bug covers a very limited portion of the images a tailored training pro-

cess based on image slicing is performed in order to put attention on sub-portion of the original
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4K image, ensuring any information loss. Finally, we evaluate the ML models trained within the

YOLO framework, employing diverse metrics for performance comparison.

As you navigate through these chapters, you witness the fusion of technology and agriculture,

paving the way for a more sustainable and efficient future in farming.

The achievements described in Chapter 5 and Chapter 6, spanning on the development and the

deployment of an insect detection algorithm trained only in-field images, were firstly published

exploiting more basic strategies in [1, 18, 19], and then, improved by employing a tailored pre-

processing, and more sophisticated techniques in the journal paper [20].
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Chapter 1

How the Wind Can Be Leveraged for Saving

Energy in a Truck-Drone Delivery System

1.1 Introduction

Recently, drones or Unmanned Aerial Vehicles (UAVs) have been widely investigated in civil ap-

plications, such as agriculture [21], environmental protection [22], task offloading [23], local-

ization [24, 25], last-mile package delivery [7, 26], and so on. In fact, drone-based solutions for

the delivery of small packages have been announced by big companies in e-commerce. Initially,

it did not seem safe or practical to have robotic objects flying in the sky, but now there are several

reasons to believe that package delivery by drones may be coming soon. In fact, new regulation

laws have been just released in 2021 by the Federal Aviation Administration (FAA), which allow

operators of small drones to fly over people and at night under certain conditions [27].

Drones are considered to be much faster than traditional trucks in some circumstances and

can also lead to a reduction in pollution and greenhouse gas emissions. For example, drones are

not delayed by rush hours in congested areas and can significantly shorten the paths to reach

customers by flying over rivers, green parks, and sea bays. So, it is highly expected that pretty

soon, if not already, companies can further extend their business by relying on drones that cross

the last mile to their customers. However, drone-based delivery systems still have to face exciting

challenges. First, due to the small size of the battery, drones (i.e., copters) have limited flight au-

tonomy, and such a limitation is more accentuated by their carried payload. Also, due to payload

constraints, drones cannot fulfill more than a single delivery at a time, so they must go back to a

depot for grabbing other packages for other customers. Finally, weather conditions, in particular

wind, must be considered during the drones’ deliveries.
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In this chapter, we concentrate on the wind challenge. Surprisingly, in the literature, the wind

has been only considered as a limiting factor for drones, to the best of our knowledge. All the

manufacturers set the maximum allowed wind speed that can be safely tolerated by their drones.

The wind as a factor that influences the aircraft’s path has been previously considered in [28].

The authors share our interest in finding the “global optimal path” in the presence of wind. How-

ever, their aim is to optimize the duration of the flight, specifically, they focus on determining

the aircraft’s minimum time path while also avoiding obstacles. The aircraft’s energy is not taken

into account. Moreover, the kind of the aircraft and its routes are not comparable with ours.

Namely, the geographical scale is completely different. The authors in [28] analyze the wind

effect on commercial planes, powered by fuel, whose routes’ lengths are much longer than ours

(i.e., ě 800km).

In this chapter we provide a proof-of-concept of how wind can help drones during deliveries.

We consider the following scenario, which is realistic in the current state of technology. We assume

drones engaged in last-mile deliveries with lightweight payloads. In a delivery, a drone can afford

to carry 1–6kg of payload in a range of 8–12km [29]. To reduce the length of the round trips

to/from the depot, inspired by big companies’ drone delivery programs, we assume that a drone

is assisted by a truck. The drone picks up the packages from the truck and flies towards the

customer, and then back to the truck, while the latter continues its journey near a series of delivery

points [30–32]. In the literature, several scenarios have been addressed using truck-drone tandem

delivery systems, but at the best of our knowledge, no one considers adapting drones’ trajectories

to wind conditions.

Motivated by the observation that when the drone operates under “tailwind” conditions (i.e.,

when the wind blows in the direction of the drone’s movement) it consumes less energy, we

explore the possibility that the drone selects the detaching point from the truck to reach the

customer following, as much as it can, the “tailwind” trajectory. We do that even at the cost of

increasing the length of the trajectory, as long as we do not lose energy. The same approach is

followed to return back to the truck (see Figure 1.1).

Under this premise, we assume that the drone’s route consists of a polygonal chain that starts

from the take-off point T on the truck’s road and returns to the landing point L passing through

the delivery point P (see Figure 1.1). Notice that, in general, the take-off and landing points do

not coincide. We only assume that the take-off point precedes the landing point on the truck’s

route. To give the drone the freedom to arbitrarily select the take-off and landing points, we

assume a rural or suburban environment, like a residential area neighborhood, where already at

low altitudes, the drone can freely move in any direction having no significant obstacles on its
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Figure 1.1: Abstraction of a delivery performed by the truck-drone tandem in a supply chain

scenario. The truck moves carrying the drone; P is the delivery.

way. We also assume a very mild truck-drone synchronization, and so, the first vehicle that arrives

at the landing point, waits for the other.

Our goal is twofold: i) to determine the take-off and landing points on the truck’s route that

minimize the energy consumed by the drone for the delivery, and ii) to study the delivery fea-

sibility because the drones are energy-constrained. The results obtained in this chapter can be

summarized as follows:

• We define the Minimum-energy Drone-trajectory Problem (MDP) whose goal is to find the

minimum-energy trajectories when the wind influences the delivery area;

• We devise two algorithms for MDP, i.e., SINGLE and MULTI which assume that the truck’s

path is a straight line or a polygon, respectively;

• We analyze the feasibility in terms of energy of sending drones for deliveries in a windy

area, by presenting the FEASIBILITY algorithm;

• We numerically compare our algorithms on synthetic and real data sets. Moreover, we

evaluate the energy spent by our solution simulating the drone’s flight in BlueSky [33].

The rest of the chapter is organized as follows. Section 1.2 surveys the related work. Sec-

tion 1.3 introduces the wind and energy models. Section 1.4 defines the MDP and details the

math that supports the SINGLE and the FEASIBILITY solutions. Section 1.5 gives the pseudo-code

and the flowcharts of the SINGLE, the MULTI, and the FEASIBILITY algorithms. Section 1.6 numer-

ically evaluates our algorithms through synthetic and real winds, and also simulates the drone’s

flight by using BlueSky. Finally, Section 1.7 offers conclusions.
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1.2 Related Work

In this section, we review works about truck-drone delivery systems with an emphasis to those

influenced by the wind.

1.2.1 Truck-Drone Tandem Delivery Systems

Recently, the problem of delivering goods with drones has been approached by several papers [31,

34]. The vast majority of them assume that the drone has a limited battery and has to return back

to the warehouse after every delivery due to the payload and energy budget constraints. Many

solutions consider drones working in tandem with a truck, and there are many ways the two

means of transportation can collaborate. Some solutions divide the deliveries between the two,

while others make them collaborate in every single mission [35–37].

The authors in [35] consider symbiotic cooperation between a truck and a drone to accomplish

a set of deliveries. Precisely, the goal is to minimize the makespan to serve all the customers by

either the truck or the drone. This problem is presented as a variant of the TSP known as the

flying sidekicks traveling salesman problem. The authors propose a hybrid heuristic divided into

three steps. Initially, the algorithm creates a TSP solution where the truck serves all the customers.

Next, the algorithm greedily assigns deliveries to the drone considering the quantity of time saved

with respect to the truck without exceeding the battery budget. Each delivery is served with a

polygonal chain that starts from and returns to a point of the truck’s route passing through the

customer. Finally, the algorithm tries to improve the solution by visiting the neighborhood of each

customer, i.e., by evaluating a different assignment for each customer. Our work is completely

different. Although like [35] we use a polygonal chain to serve a delivery customer, we select the

polygonal chain by minimizing the energy for every single delivery and not to minimize the total

makespan of all the customers. Moreover, in our solution, any position on the truck’s road is a

candidate for the take-off/landing, whereas in [35] only a subset of positions, which correspond

to points on the truck’s route, are candidates.

A similar problem is proposed in [37] where, given a fixed sequence of stops that constitute a

truck’s route and a set of customers, the goal is to find a scheduling for drones (i.e., a set of trips

defined by a drone’s take-off, customer service, and landing) so that all the customers are served

and the makespan is minimized. The authors provide a mixed-integer programming formulation

to solve the single and multiple drone scenarios. However, unlike our approach, it is not possible

to change neither the truck’s route nor the drone’s trajectories for a customer in order to increase

time savings.
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Notice that, all these works do not consider the impact of winds on energy consumption since

they are focused only on the time required to perform a delivery.

1.2.2 Drone Delivery Systems Influenced by the Wind

The impact of the wind on defining long-distance trajectories of aircraft has been considered

in [28]. Instead, the impact of winds on small and battery powered drones’ trajectory planning

has not received much attention so far.

In [3, 38, 39], the wind is introduced in the model. Precisely, the drone trajectories are rep-

resented by paths in a weighted graph whose edge weights model the energy consumed by the

drone, which depends on the carried payload and the wind speed. In [3,39] authors focus on find-

ing which is the percentage of deliveries that can be accomplished with a given energy budget

knowing the wind conditions on-the-fly. Authors of [40] extend the above solution to a multi-

depot multi-drone delivery system. Whereas in [3,39], the drone moves along predefined routes

represented by the edges of a graph given in input to the problem, in the problem proposed in

this chapter we must find the drone’s trajectory, which is the output of the problem, by leveraging

the impact of the wind.

A multi-drone delivery system dealing with wind, obstacle avoidance, and maximum energy

budget, is also proposed in [41]. A subset of feasible deliveries is initially computed offline, and

a depth-first search strategy is performed then to get the final mission plan. Their extended

work [42] considers the same setting with many clusters, in which the problem is seen as a

constraint satisfaction problem. In [43], a delivery scenario where the wind affects multiple

drones is considered. Differently from our approach, each drone can perform multiple deliveries

on the same mission. The focus is on optimizing the global mission plan. The wind influences the

energy consumption, but the drone passively suffers the wind, i.e., it does not adapt the route to

the wind, as we do.

Lastly, authors in [44] exploit the service paradigm to abstract drone’s capabilities into a drone

service. The main novelty is the creation of a test-bed that consists of an indoor replica of a city.

A drone flies over it by using different polygonal trajectories and payloads. The wind conditions

are simulated by a fan. The energy consumption is inferred from the collected data of 72 indoor

flights. The authors focus on the study of how the shape (triangular, rectangular, hovering) of the

drone’s path acts on the energy consumption.

In conclusion, the content described in this chapter is different from the surveyed papers in

many aspects. The most important difference is that in our study the battery powered drone

actively reacts to the wind and searches for the minimum energy trajectory, i.e., the trajectory as
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closer to the tailwind as possible given the truck’s movement. Computed the optimum trajectory,

we compare how much energy is saved using the found trajectory with respect to the energy spent

traversing the shortest trajectory, which is the best solution in absence of wind. Hence, the main

research gap we are filling is the formalization of a model able to handle and understand how the

wind affects the drone’s flight. Furthermore, to the best of our knowledge, this is also the first

time that wind has been taken into account while creating an algorithm to determine the optimal

drone’s route.

1.3 Background

In the background of our solution there is the wind triangle concept. In air navigation, the wind

triangle (see Figure 1.2) is a graphical representation of the relationship between the drone’s

motion and the wind. The ground vector represents the motion of the drone over the ground, and
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Figure 1.2: The wind triangle.

it is the resultant of adding the air vector, i.e., the motion of the drone through the air mass, and

the wind vector [45]. Specifically, when there is a wind and the drone wants to follow a specific

ground track, the air vector indicates the true heading and drone’s speed. The difference in angle

between heading and ground track is known as the drift angle. So, if the drone wants to follow

the desired track, it must correct its heading of an angle depending on the wind direction. Each

vector z⃗ “ pzd , zsq in the wind triangle is characterized by a direction zd and a speed zs.

We first observe that in presence of wind, varying the ground direction also varies the air

vector (see Figure 1.2). Since we aim to find the track that minimizes the energy spent by the

drone (i.e., we try many possible ground directions) and since the energy spent to fly depends on

the air vector (as we will see in Eq. (1.1)), our solution relies on the aforementioned wind triangle

construction. The second observation is that by varying the ground track, the energy changes due

to the variations in both the length of the trajectory to be traversed, and the air speed. In this
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chapter, we will show that sometimes, in presence of wind, it is convenient to leave the shorter

drone’s trajectory for a longer one that consumes less energy.

In the rest of this section, we explain how we derive the unitary energy for the ground trajec-

tories.

1.3.1 The Relative Wind and Energy Model

The wind, characterized by speed and direction, is an important variable for evaluating the drone’s

energy consumption. Usually, the weather stations record the meteorologic direction of the wind

ωme
d , i.e., the direction from which the wind originates, assuming the North as the 0˝ direction.

For instance, if the wind blows from the North to the South, a weather station records a direction

of 0˝, while if it blows from the East to the West, the weather station refers to 90˝. From now

on, to ease the notation, we indicate the angles without the degree symbol (˝). The meteorologic

direction of the wind conventionally grows clockwise in a Cartesian coordinate system xO y whose

x-axis is the North direction and the wind direction is given as the direction the wind is from.

To conform the wind to the classical Cartesian coordinate system, we convert the meteorologic

direction of the wind into the mathematical direction of the windωma
d . First,ωma

d defines the winds

blowing to the origin O of the Cartesian coordinate system and not from it. The mathematical

wind directions grow counterclockwise from the usual x-axis which is equal to the East direction.

Hence, the conversion rule from the meteorological direction of the wind to the mathematical

one is explained in [46], and it is as follows:

ωma
d “

ˇ

ˇ

ˇ ´ωme
d ` 360

loooooomoooooon

clockwise

`90
loomoon

phase

´180
loomoon

O

ˇ

ˇ

ˇ

360
“ | ´ωme

d ` 270|360.

Figure 1.3a shows the direction of the meteorological wind ωme
d “ 225 that is directed towards O

and the corresponding mathematical directionωma
d “ 45 that has O as the source. In this chapter,

from now on, we always refer to the mathematical direction of the wind.

Let us now define the global wind ω as the (mathematical) wind that blows in the delivery

area. The global wind vector ω “ pωd ,ωsq has direction ωd and speed ωs. Notice that, from

now on, we assume to leverage the built-in sensing system on the drone for estimating the global

wind vector prior to the take-off. The relative wind on r ϕpγrq has direction |ωd ´ γr |360 which is

the difference mod 360 between the direction of the global wind and the direction of the drone’s

trajectory (see Figure 1.3b).

The energy for flying a unit of distance (e.g., 1m) on a line r mostly depends on the air speed

of the drone, which in turn depends on the global wind ω “ pωd ,ωsq and on the ground vector
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Figure 1.3: Axes are labeled with the cardinal, mathematical, and meteorologic (in brackets)

directions. Note the phase (equals to 90) which represents the offset North-East among the two

ways for representing the wind (a); Relative wind ϕpr⃗q “ 90 on r⃗ when γr “ 25 and ωd “ 115

(b).

r⃗ “ pγr ,υdq, as seen in Figure 1.2. Precisely, the air speed as can be calculated as [29]:

as “

b

s2
N ` s2

E, (1.1)

where sN “ υd ´ωs cospϕpγrqq and sE “ ´ωs sinpϕpγrqq. Hence, when ωs “ 0, it holds that

as “ υd .

The energy also depends on other drone’s features like the number of rotors, and the payload

weight. There is no simple formula to calculate the unit energy as a function of the relative

wind [29], so we introduce the compass rose to discretize the relative winds and to tabulate

the energy for them. In this way, fixing the type of the drone (i.e., octocopter, quadcopter), the

drone’s ground speed vd , the payload κ, and the speed of the global windωs, we can pre-compute

the energy to traverse 1m: one energy coefficient for each sector of the compass rose (e.g., see

Table 1.2 in Section 1.6). For the sake of simplicity, when all the involved parameters are clear

from the contexts, the energy EpA⃗Bq will denote the energy spent by a drone to fly the ground

segment AB from A to B.

1.3.2 The Compass Rose

In general, weather stations store the different winds detected by applying a discretization. In

other words, given a compass rose, the winds are grouped in a finite number of sectors. To define



25

the sectors and the compass rose, we divide the turn angle at O of a conventional Cartesian

coordinate system xO y into 4t sectors, each of width σ “ 180{2t, where t is the compass rose

cardinality. Therefore, σ defines the width of each sector. Conventionally, a sector Si contains the

winds whose relative wind direction verify:
ˆ

i
180
2t

; pi ` 1q
180
2t

ȷ

0 ď i ď 4t ´ 1. (1.2)

A representative wind direction ρi, with 0 ď i ď 4t ´ 1, is associated to each sector Si. The

representative ρi is then used to compute the energy consumption of any relative wind direction

that falls in Si. The unit energy consumption for any wind in Si is denoted as µi. Basically, the

compass rose is used to bound to 4t the number of relative winds and thus the possible energy

levels, as we will see in the next section. Table 1.2 reports the values of the energy required by a

octocopter with different payloads for the 12 winds of the compass rose used in our experiments

when ωs “ 10m{s [29].

Having defined the energy consumption, we formally introduce the Minimum-energy Drone-

trajectory Problem and explain how the drone can minimize the energy consumption.

1.4 The Problem Definition

We assume the truck-drone tandem delivery system which consists of a truck that carries drones in

the delivery area. When the global wind is absent, i.e., ωs “ 0, the speed of the relative wind is

zero and the energy spent by the drone does not depend on the direction of the trajectory. Hence,

in this case, the best solution for the drone is to select the shortest trajectory from the truck’s

route to the customer. In presence of wind, the less consuming trajectory is the one parallel to the

wind (see Eq. (1.1)). However, there may be no trajectory parallel to the wind that starts from

the truck’s path and reaches the customer. In that case, the selection of the drone’s trajectory that

minimizes the energy is not trivial. In the rest of the section, we first describe the problem, then

we introduce our solution when the truck’s path is a single line.

1.4.1 The Minimum-energy Drone-trajectory Problem (MDP)

Let r be the line that represents the truck’s path. So, the truck’s path is represented by a vector

r⃗ whose direction is γr . Notice that, in this chapter we do not consider the truck’s speed. Let us

consider a delivery point P to be served by the drone. To serve P from the road r (see Figure 1.1),

the truck selects the take-off point and landing point for the drone, called T and L, respectively.

Thus, the drone detaches from the truck at T and flies on the line from T to P carrying the
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payload. After the delivery, the drone (without payload) moves back on the line from P to L,

rendezvousing at the truck again. We select the trajectories making this assumption: the drone

and the truck always move forward in the sense that the projection H of P onto the truck’s path

must follow T and precede L.

Our problem is to find the optimal composed trajectory T⃗ PYP⃗ L such that the energy consumed

by the drone to serve P is minimized under the assumption that T ď H ď L. We assume a constant

wind during the whole delivery. We call this problem Minimum-energy Drone-trajectory Problem

(briefly, MDP). In other words, we aim at minimizing the quantity EpT⃗ Pq ` EpP⃗ Lq. Changing T

and L, the slope (i.e., direction) of the segments T P and P L changes, and so, by the wind triangle

rule, the relative winds ϕpT⃗ Pq and ϕpP⃗ Lq, and their relative energy, change.
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Figure 1.4: The relative winds on T⃗ P and P⃗ L, where the quadrants Q1 and Q4 are highlighted in

blue and red, respectively. A thorough explanation of the figure is reported in the text.

In the next, we show how to solve MDP by selecting the optimum trajectory among a discrete set

of candidate trajectories.

1.4.2 Towards the MDP Solution

Considering T and L fixed on the track’s route r, we calculate the relative wind on the trajectories

T⃗ P and P⃗ L to find the energy consumption. First of all, we need to figure out whether P is to

the right or left of the truck. This can be quickly done by evaluating the sign of the determinant

of the associated matrix M “ rvpT⃗ Hq, vpT⃗ Pqs, where vpT⃗ Pq and vpT⃗ Hq are the column vectors1

1For instance, given A “ p1, 1q and B “ p3,4q, then vpA⃗Bq “ p 2
3 q.
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associated to the drone’s trajectories. Specifically, (i) P is on the left of truck (denoted as P ð r)

if detpAq ą 0; and (ii) P is on the right of truck (denoted as P ñ r) if detpAq ă 0.

In our discussion, we consider the Cartesian coordinate system x P y of the mathematical

wind, with origin in P. Let H be the projection of P on r (see Figure 1.4). Let δT and δL be

the angles formed, respectively, by the drone’s trajectory T⃗ P and P⃗ L with the truck’s route r.

Namely, δT “ =PT H and δL “ =P LH can be easily computed as δT “ arctan pPH{T Hq and

δL “ arctan pPH{H Lq. Therefore, T P “
PH

sinpδT q
and P L “

PH
sinpδLq

(see Figure 1.4). So, it is evident

that the length of the trajectories depends on the take-off or landing points and the slope of the

truck’s route r. Now, we can state the following.

Theorem 1. The relative winds on T⃗ P and P⃗ L are:

ϕpT⃗ Pq “

#

|ωd ´ pγr `δT q|360 if P ð r

|ωd ´ pγr ´δT q|360 if P ñ r

ϕpP⃗ Lq “

#

|ωd ´ pγr ´δLq|360 if P ð r

|ωd ´ pγr `δLq|360 if P ñ r

(1.3)

Proof. We prove Eq. (1.3) when P ð r (see Figure 1.4a). Consider the rotated Cartesian system

x r P yr with origin in P, x r-axis parallel to r and oriented in the same direction as r. Recall that

the yr-axis forms a 90 counter-clockwise angle with x r . Note that the angle between x and x r has

width γr . Observed that r and x r are parallel, the segment T P forms the same angle δT “ =W PQ

on x r P yr , and the angle pγr ` δT q on x P y . Hence, the direction of the relative wind on x P y is

ϕpT⃗ Pq “ωd ´ pγr `δT q. Also the returning path P⃗ L forms the angle ´δL on x r P yr . Hence, the

direction of the relative wind on x P y is ϕpP⃗ Lq “ωd ´ pγr ´δLq.

The case where P ñ r is depicted in Figure 1.4b. Eq. (1.3) can be proven similarly to the left

case.

Hence, the relative wind depends on the wind direction, the direction of the truck’s path, and

take-off and landing points.

We now analyze in which sector of the compass rose both ϕpT⃗ Pq and ϕpP⃗ Lq fall, when T and

L move on r. Let us discuss the case P ð r. When T and L move on r towards H (see Figure 1.4),

it is easy to see that δT ,δL P p0, 90s. Precisely, δT “ δL “ 90 when T H “ H L “ 0, while δT and

δL Ñ 0 when both T H and H L Ñ 8. Then, the take-off and landing drone’s trajectories T⃗ P and

P⃗ L scan, respectively, the first quadrant Q1 (shown in blue) and the fourth quadrant Q4 (shown

in red) of the Cartesian coordinate system (see Figure 1.4) with origin in P and whose x-axis

coincides with the relative wind ϕpr⃗q. Hence, observing that the relative wind on the truck’s

route is ϕpr⃗q “ |ωd ´ γr |360, the take-off trajectories scan the compass rose starting from ϕpr⃗q
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shown in blue in Figure 1.5, while the landing trajectories scan the compass rose starting from

ϕpr⃗q shown in red in Figure 1.5.

From that, Eq. (1.3) can be rewritten relatively to ϕpr⃗q:

ϕpT⃗ Pq “

#

|ϕpr⃗q ´δT |360 if P ð r Q1

|ϕpr⃗q `δT |360 if P ñ r Q4

ϕpP⃗ Lq “

#

|ϕpr⃗q `δL|360 if P ð r Q4

|ϕpr⃗q ´δL|360 if P ñ r Q1

(1.4)

As explained in Section 1.3.2, fixed T and P, the relative windsϕpT⃗ Pq andϕpP⃗ Lq experienced

by the drone are given by wind representative ρ of the sector where they reside. The sectors

visited when T and P move are listed starting from the sector Sτ where ϕpr⃗q resides, i.e., Sτ,

where τ “ t|ϕpr⃗q ´ 1|360{σu. Note that τ is computed from ϕpr⃗q ´ 1 instead of ϕpr⃗q because

sectors in Eq. (1.2) are defined left-open and right-closed. By the previous Eqs. (1.4) and (1.2), it

holds:

Theorem 2. Let τ “ t|ϕpr⃗q ´ 1|360{σu. When ϕpT⃗ Pq or ϕpP⃗ Lq scan Q1, the drone spends the

energy µi that depends on the winds Si of the compass rose whose indices i are τ ď i ď |τ` t|4t .

When ϕpT⃗ Pq or ϕpP⃗ Lq scan Q4, the drone spends the energy µi that depends on the winds Si of the

compass rose whose indices i are |τ´ t|4t ď i ď τ.

Figure 1.5 shows two examples where t “ 3 and so σ “ 30 whose crossed quadrants are

different in sectors and number. Specifically, when ϕpr⃗q “ 0, we cross the sectors S0, S1, and S2

in Q1, and S11, S10, and S9 in Q4, examining so exactly t “ 3 sectors per quadrant. Instead, with

ϕpr⃗q “ 50 we scan one more sector than before, crossing S1, S2, S3, and S4 in Q1, and S1, S0, S11,

and S10 in Q4. Table 1.1 reports the sectors and the angles δ P p0, 90s associated to each sector of

Q1 and Q4 when ϕpr⃗q “ 0 and ϕpr⃗q “ 50 (see Figure 1.5). Generalizing, when |ϕpr⃗q|σ “ 0 we

cross exactly t sectors, instead when |ϕpr⃗q|σ ‰ 0 we scan t ` 1 sectors. So, depending on which

sector T and L fall in, the µ depends on the relative wind of the scanned sectors. Finally, note

that changing r or the direction of the global wind has the same effect: ϕprq changes and so the

candidate sectors change.

The take-off/landing positions that delimit the i th sector in Q1 are those that form with γr the

δi angle so defined:

δi “

$

’

’

’

&

’

’

’

%

$

’

&

’

%

´|ϕpr⃗q|σ ` pi ` 1qσ if i ă t

90 if i “ t
if |ϕpr⃗q|σ ‰ 0

pi ` 1qσ if |ϕpr⃗q|σ “ 0

(1.5)
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Figure 1.5: The candidate sectors: |ϕpr⃗q|σ ‰ 0 (blue) and |ϕpr⃗q|σ “ 0 (green).

Similarly, the take-off/landing positions that delimit the i th sector in Q4 are those that form

with γr the δi angle so defined:

δi “

$

’

’

’

’

&

’

’

’

’

%

$

’

&

’

%

|ϕpr⃗q|σ ´ 1 ` iσ if i ă t

90 if i “ t
if |ϕpr⃗q|σ ‰ 0

pi ` 1qσ´ 1 if |ϕpr⃗q|σ “ 0

(1.6)

In the following, we generally refer to the trajectory angles in Eqs. (1.5)–(1.6) with δ (omitting

the index). We also use δT and δL when we generally refer to the angles of the take-off and the

landing trajectories, respectively. These δ angles are very important because not only delimit the

sector, but they also return the candidate trajectory in each sector. Indeed, the shortest trajectory

in a sector forms the largest angle, which is δ, with the truck’s route. Note that δ depends on

ϕprq: so the trajectories vary with the truck’s route and the wind.

Table 1.1 shows the δ angles for the example in Figure 1.5.

To complete our analysis, it remains to find T and L given δ. Given P and a take-off point T

on the route path, the length of the drone’s take-off route is PH
sinpδT q

, with δT P p0,90s. Precisely, the

drone selects T such that δT
i is maximum varying Si. The same holds for the landing points. So,

at this point, we are ready to solve MDP. Given a global wind ω, a truck’s route r⃗, and a delivery

point P, MDP aims at determining the optimal wind sectors i˚ and j˚ such that:

pi˚, j˚q “ argmin
i, j

#

µT
i

sinpδT
i q

`
µL

j

sinpδL
j q

+

HP (1.7)

where i, j are the indices of the sectors given by Theorem 2, µT
i and µL

j are the energy consumption

in these sectors Si and S j in Q1 or Q4, and HP{sinpδT
i q and HP{sinpδL

j q are the lengths of the



30

Table 1.1: The angles δ of the examples in Figure 1.5.

ϕpr⃗q “ 50 ϕpr⃗q “ 0

Q1 Q4 Q1 Q4

δi S|τ`i|4t
i δ j S|τ´ j|4t

j δi S|τ`i|4t
i δ j S|τ´ j|4t

j

10 S1 0 19 S1 0 30 S0 0 29 S11 0

40 S2 1 49 S0 1 60 S1 1 59 S10 1

70 S3 2 79 S11 2 90 S2 2 89 S9 2

90 S4 3 90 S10 3

trajectories candidates for being T⃗ P and P⃗ L in Si and S j, respectively. Recall δT and δL are given

by Eqs. (1.5) and (1.6) depending on the position of P with respect to r. Note that, the length

HP does not affect the minimum, and when δT “ 90, the minimum energy trajectory coincides

with the shortest trajectory H⃗P in absence of wind.

The SINGLE algorithm in Section 1.5 gives all the details to implement our solution.

Although the selection of the optimal trajectory for MDP is not affected by the distance of the

customer from the truck’s route, the energy changes with PH. This means that the drone’s battery

might be depleted before reaching P. Nevertheless, if P is not reachable with the minimum energy

trajectory, it is also not reachable in absence of wind, i.e., using the trajectory P⃗H of minimum

distance PH. While the best wind can be leveraged to reach customers unreachable in absence

of wind. In the next section, we consider this aspect.

1.4.3 The Feasibility Analysis

Given that drones are energy-constrained vehicles with a limited battery capacity, their flight

range is bounded. Let B be the battery budget of the drone. By Eq. (1.7), for any feasible delivery

point P, it holds:

B ě µT HP
sinpδT q

`µL HP
sinpδLq

.

Fixedωs, vd , κ, and the truck’s path r⃗, we compute the energy coefficients µT and µL that depend

on the relative wind ϕprq of the optimal trajectories of SINGLE, we have:

PM pϕprqq “ HP ď
B

µT

sinpδT q
`

µL

sinpδLq

(1.8)

i.e., PM pϕprqq represents the farthest distance reachable from the truck’s route r⃗. By varying the

wind direction and keeping all the other conditions the same, the farthest distance reachable from
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r varies because the relative wind changes, the compass rose is rotated, and the minimum energy

trajectories change. Let Pmax “ maxωd
PM pϕprqq and Pmin “ minωd

PM pϕprqq be the maximum and

minimum distance that can be reached from r with the minimum energy trajectory in presence of

any wind, respectively. Moreover, let Pst be the maximum distance reachable from r in absence

of wind. Note that Pmin ď Pst ď Pmax for any wind because Pst is one of the trajectories always

tested in presence of wind to find the best trajectory (precisely, the one with δ “ 90). Any

delivery closer than Pmin is feasible with any wind (using either the minimum energy or the

shortest trajectory), any delivery further than Pmax is not-feasible with any wind (even if the best

trajectory is implemented), while any delivery in between Pmin and Pmax is feasible only with the

minimum energy trajectory and in the presence of some wind (i.e., the wind that returns Pmax).

We use the comparison between Pmin and Pmax and the number of feasible points to evaluate the

impact of our solution. The FEASIBILITY algorithm in Section 1.5 gives all the details.

1.5 The MDP Extension

In this section, we give the pseudocode for SINGLE discussed in Section 1.4, and then we propose

the MULTI algorithm that applies MDP in the extended multi-line scenario. Eventually, we devise

an algorithm, called FEASIBILITY, for determining “a priori” the feasibility of sending a drone for

a delivery P given a drone’s budget B using SINGLE or MULTI.

In Figure 1.6, we report the flowchart of the SINGLE, MULTI, and FEASIBILITY algorithms.

1.5.1 The SINGLE Algorithm

The SINGLE algorithm optimally solves MDP when T and L are selected from a single road, re-

quiring Optq time and space, where t is the number of sectors for each quadrant. SINGLE has as

input the wind vector (ωd ,ωs), the drone’s speed vd , the payload weight κ, the truck’s road r⃗, the

cardinality of sectors t in the compass rose, and the delivery point P. The pseudocode of SINGLE

is sketched in Algorithm 1.

The SINGLE algorithm works as follows. Initially (Line 1), we perform a pre-processing phase

to compute the unitary energy costs according to the payload weight. Precisely, with 0 ď i ď

4t ´1, µT
i represents the energy spent for traversing a unitary distance when the global wind has

speed ωs, the drone moves in Si with speed vd and carries the payload κ, instead, µL
i , is the same

as µT
i but without payload. Then, we compute the relative wind ϕpr⃗q on the road r according

to the current global wind condition ω (Line 2), and also the wind sector with index τ (Line 3).

At this stage, by exploiting Eq. (1.4) we identify the quadrants for T and L to scan in order to
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Algorithm 1: SINGLE (P,ω, t, r⃗, vd ,κ)

1 µT
0 , . . . ,µT

4t´1,µL
0 , . . . ,µL

4t´1 Ð UNIT_COSTS(ω)

2 ϕpr⃗q Ð |ωd ´ γr |360

3 τÐ t|ϕpr⃗q ´ 1|360{σu

4 if P ð r then

5 i˚ Ð arg min0ďiďt

#

µT
|τ`i|4t

sin
´

δT
|τ`i|4t

¯

+

6 j˚ Ð arg min0ď jďt

#

µL
|τ´ j|4t

sin
´

δL
|τ´ j|4t

¯

+

7 let T such that T H “ HP cotpδT
|τ`i˚|4t

q

8 let L such that H L “ HP cotpδL
|τ´ j˚|4t

q

9 if P ñ r then

10 i˚ Ð arg min0ďiďt

#

µT
|τ´i|4t

sin
´

δT
|τ´i|4t

¯

+

11 j˚ Ð arg min0ď jďt

#

µL
|τ` j|4t

sin
´

δL
|τ` j|4t

¯

+

12 let T such that T H “ HP cotpδT
|τ´i˚|4t

q

13 let L such that H L “ HP cotpδL
|τ` j˚|4t

q

14 return T, L

find the sub-routes with minimum energy. In other words, we find the best indices that return

the optimal sectors for the take-off and landing sub-routes, i.e., i˚ and j˚, respectively, starting

from Sτ (Lines 5–6). Now, depending on the position of P with respect to the truck’s road r, we

can compute the optimal pair of points. If P ð r (Line 4), we calculate the best T searching in

Q1 and the best L in Q4, otherwise, if P ñ r (Line 9), we do the opposite reasoning. Eventually,

we return the best pair T and L (Line 14).

1.5.2 The MULTI Algorithm

The MDP extension to multi-line assumes that the truck’s path is a polygon. The sides of the

polygon determine the set Π of different routes on which to run the SINGLE algorithm. In this

case, we need to select not only the take-off and landing points, but also the side of the polygon

where T and L reside. Moreover, T and L can be selected on two distinct sides. The pseudocode

of MULTI is sketched in Algorithm 2.

Firstly, we build the two sets T and L which contain the set of feasible take-off and landing
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Algorithm 2: MULTI (P,ω, t,Π, vd ,κ)

1 T Ð∅,L Ð∅

2 foreach π P Π do

3 tT, Lu Ð SINGLE pP,ω, t,πq

4 T Ð T Y T,L Ð LY L

5 T Ð ´8, L Ð `8

6 for i P 0, . . . , |T | do

7 for k P i, . . . , |L| do

8 if EpT risPq ` EpPLr jsq ă EpT Pq ` EpP Lq then

9 T Ð T ris, L Ð Lr js

10 return T, L

points computed for each route π P Π (Algorithm 2, Line 1–4). After this, we compute the optimal

solution by searching among all the possible pairs pT, L) in T and L, paying attention that T

precedes L (Line 6–8). The current best pair is then saved (Line 9) and eventually returned

(Line 10). The algorithm requires Op|Π|2 ` |Π|tq time.

1.5.3 The FEASIBILITY Algorithm

The FEASIBILITY algorithm finds the two thresholds, i.e., Pmax and Pmin, used to establish the

feasibility of a delivery P regardless of the wind conditions for a given drone’s battery budget.

The algorithm considers all the winds ωd P Ω2. It takes Op|Ω|tq “ Optq time and Op1q space,

where t is the number of sectors of the compass rose. The pseudocode of FEASIBILITY is sketched

in Algorithm 3.

Note that varying ωd P Ω also varies the relative wind, but not the energy coefficients µT
0 , . . . ,

µT
4t´1,µL

0 , . . . ,µL
4t´1. Only different sectors of the compass rose will be considered for different

relative winds, as explained before. In our experiments, FEASIBILITY is then extended considering

not only the truck’s path r⃗ but all the lines Π of the sides of the truck’s polygon path. Note that

changing r, although the energy coefficient of the compass rose are the same, the trajectory angles

will change, as explained before.

2This is implemented by varying ωd with regular steps between 0 to 360.
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Algorithm 3: FEASIBILITY (P,ω, t, r, vd ,κ)

1 µT
0 , . . . ,µT

4t´1,µL
0 , . . . ,µL

4t´1 ÐUNIT_COSTS(ω)

2 HPmax Ð 0, HPmin Ð `8

3 foreach ωd P Ω do

4 ϕpr⃗q Ð |ωd ´ γr |360,τÐ t|ϕpr⃗q ´ 1|360{σu

5 ∆˚
T Ð min0ď jďt

#

µT
|τ´ j|4t

sin
´

δT
|τ´ j|4t

¯

+

6 ∆˚
L Ð min0ď jďt

#

µL
|τ` j|4t

sin
´

δL
|τ` j|4t

¯

+

7 HPM pωdq Ð
B

∆˚
T `∆˚

L

8 if HPM pωdq ą HPmax then HPmax Ð HPM pωdq

9 if HPM pωdq ă HPmin then HPmin Ð HPM pωdq

10 return Pmax, Pmin

1.6 Performance Evaluation

In this section, we evaluate the performance of our algorithms when solving MDP. Specifically,

we perform two kinds of evaluation: numerical in Section 1.6.2, and simulation in Section 1.6.3.

In the previous, we simply run our proposed algorithms by varying all the aforementioned pa-

rameters, and by relying on our ad-hoc and coded environment. In the latter, instead, we rely on

the open air simulator called BlueSky [33].

1.6.1 Settings and Parameters

We implemented our algorithms in Python language version 3.7, and run all the instances on an

Intel i7-10genK computer with 16GB of RAM3. We consider a delivery area that consists of a circle

of radius 5km whose origin coincides with the Cartesian coordinate system. When considering the

single line (SL) scenario, we simply generate a line inside the area. In this case, the truck travels

on a straight line (e.g., a highway), and deliveries take place in the area in front of such line. On

the other hand, when we consider the multi-line (ML) scenario, we randomly generate a convex

polygon with 8 sides that represent the closed path (route) of the truck to/from the depot. In

other words, there are 8 contiguous roads that the truck traverses in the delivery area. By setting

the starting point of the truck’s route as one of the vertices of the polygon, the route follows the

sequence of vertices traveled in a clockwise direction. In this case, the truck circumnavigates the

3The code is available on GitHub here: https://github.com/TheAnswer96/T-ITS23_bluesky-plugin

https://github.com/TheAnswer96/T-ITS23_bluesky-plugin
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Figure 1.6: Flowchart of SINGLE (a), MULTI (b), and FEASIBILITY (c).

area where the deliveries occur. Also, n “ 20 deliveries P1, . . . , P20 are uniformly generated inside

the delivery area.

We also consider two types of winds in the evaluation: exhaustive winds (EW) and real winds

(RW). In EW, we vary ωd with regular steps and consequently the relative wind ϕpr⃗q on r varies.

In RW, the wind varies according to the collected data at different hours of the day in two locations

in Corsica (France) during winter days. In general, such a region is characterized by low-intensity

inland wind and high-intensity sea wind. When considering the EW scenario, we vary the wind

speedωs “ t10, 20um{s and the wind direction which varies according to a step of 15˝. Moreover,

we set the wind cardinality to t “ 3. Concerning the parameters of the drone, we set the speed of

the drone υd “ t10,20, 30um{s, the weight of the payload κ “ t2, 6ukg, and the battery budget

B “ t2.5, 5,10uMJ when dealing with the feasibility.

Also, as a reference, we compare our solution (minimum energy trajectory) with respect to

the shortest trajectory, on both the single line (SINGLE-ST) and multi-line (MULTI-ST) scenarios,

where ST denotes “shortest trajectory” (i.e., the one with δ “ 90) that is optimal when the wind
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is absent. So, our numerical evaluations compare the energy required in presence of wind with

the energy required in absence of wind.

1.6.2 Numerical Evaluation

In this section, we perform a numerical evaluation concerning the proposed algorithms. We will

consider the compass rose formed by 12 sectors and hence σ “ 30 (case t “ 3). In Table 1.2,

we report the different values of µi that have been used in the experiments. We tabulated these

values since there is no simple formula to calculate them [29].

Table 1.2: Octocopter Energy consumption µi fixing υd “ 10m{s and ωs “ 10m{s, and with

different payloads κ.

payload κ payload κ

Si 0 2 6 Si 0 2 6

0 0.123 0.151 0.212 6 0.567 0.602 0.677

1 0.148 0.177 0.239 7 0.532 0.567 0.640

2 0.221 0.251 0.316 8 0.442 0.474 0.545

3 0.446 0.478 0.549 9 0.218 0.247 0.313

4 0.534 0.569 0.642 10 0.147 0.175 0.238

5 0.567 0.602 0.677 11 0.123 0.151 0.212

Single Line Exhaustive Winds Scenario

In Figure 1.7, we focus on the SL-EW scenario. In the x-axis we report the scanned wind directions

ωd , while in the y-axis we report the ratio among the energy required for performing a delivery

P in absence of wind (by invoking SINGLE-ST), and the optimal energy required in presence of

wind (by invoking SINGLE).

In the first row of Figure 1.7 we initially see that by fixing a configuration of the speed and

payload of the drone, and varying the direction of the truck’s route γr , the results are the same.

In fact, they have just shifted by 180˝. So, changing the direction of the road, the compass rose

just rotates. Namely, for instance, the values on the y-axis when ωd “ 45 and γr “ 0 are exactly

the same when ωd “ 45 ` 180 and γr “ 180. Also the lengths of the minimum trajectories are

the same because the δ angles coincide being |ϕp0q|30 “ |ϕp180q|30 “ 0. Focusing on the first

plot with γr “ 0, we can see that when the wind ωd P r90, 270s, the ratio is 1, which means that



37

0 90 180 270 360
1

3

5

7

9

ra
ti
o

γr = 0, ωs = 20m/s, κ = 6kg

υd = 10m/s υd = 20m/s υd = 30m/s

0 90 180 270 360

γr = 180, ωs = 20m/s, κ = 6kg

0 90 180 270 360
1

3

5

7

9

ωd

ra
ti
o

γr = 0, ωs = 10m/s, κ = 6kg

0 90 180 270 360
ωd

γr = 0, ωs = 20m/s, κ = 2kg

Figure 1.7: SL-EW scenario: SINGLE vs SINGLE-ST.

the two solutions work the same. In other words, the best solution provided by SINGLE forces

the drone to fly perpendicularly like SINGLE-ST. Eventually, if there is a trajectory that starts from

r and reaches P which is “more” tailwind (i.e., parallel or almost parallel to the global wind),

SINGLE finds much better solutions with respect to the shortest perpendicular ones. In particular,

it is interesting to see how much energy can be saved when υd varies in these circumstances.

In Figure 1.7, whereωs “ 20m{s, when υd “ 20m{s the minimum trajectory consumes 1{8 of

the energy in absence of wind, when υd “ 30m{s, 1{6, and when υd “ 10m{s, 1{2. This behavior

is expected and comes from the adopted drone’s energy reported for completeness in Section 1.A:

the energy does not change linearly with υd as it seems at first glance in Eq. 1.9. Indeed, the

energy gain also depends on the air-speed as and as such on the relative difference between vd

andωs as reported in Eq. (1.1). The gain is emphasized when such difference is positive, and it is

reduced when such difference is negative. When we decrease the wind speed ωs from 20m{s to

10m{s (i.e., plots of the first column), the energy saved is less because the head/tail component

decreases. Finally, for the payload weight (i.e., comparing κ “ 6kg and κ “ 2kg), the energy

saved is more when the payload is lighter.

Number of Sectors Analysis

In Figure 1.8, we analyze how the number of sectors can impact on the performance.
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Figure 1.8: SL-EW scenario: comparison between different number of sectors.

Both the x-axis and y-axis have the same meaning as those in Figure 1.7. We varied the value

of t. With t “ 2, we have 4 different classes and therefore sectors with a width of 45˝; with t “ 3,

we have 6 different classes and sectors with a width of 30˝; and finally, with t “ 6, we have 12

different classes and sectors with a width of 15˝.

The discretized angle (in more classes) makes the energy consumption calculation more accu-

rate, and therefore the used representative angle is closer to the actual experienced angle by the

drone (i.e., when t “ 6). However, when there are more sectors to deal with, the running time

for computing the correct angles in presence of wind increases accordingly. On the other hand,

when the number of classes is small, the energy consumption calculation is less accurate. So, for

this reason, we decided to use a good trade-off between performance and complexity, relying on

the average case with t “ 3.

Single Line Real Winds Scenario

In Figure 1.9, we focus on the SL-RW scenario by using real data of winds collected in a few

locations in Corsica, France. In the x-axis we report the time (hours) of a winter day, while in the

y-axis we report the same ratio as already explained in Figure 1.7.

We considered two cities that are differently affected by the wind, i.e., Cape Corse and Corte,

during a whole day, from hour 1 to hour 24, during the winter season. Cape Corse is close to the

sea where the wind strongly blows, while Corte is an inland city, and therefore the wind is much

more moderate. In the first row of Figure 1.9 we report the results when the payload is 2kg, while

in the second one when the payload is 6kg. The most interesting thing to observe is the impact

of the wind in the first two-thirds of the day in Cape Corse. So, due to the strong wind in Cape

Corse, the drone took advantage of the wind in its favor thus saving a lot of energy.

A counter-intuitive but correct behavior can be observed in Cape Corse when the drone’s



39

0 4 8 12 16 20 24
1

3

5

7

9

ra
ti
o

cape corse, κ = 2kg

υd = 10m/s υd = 20m/s υd = 30m/s

0 4 8 12 16 20 24

corte, κ = 2kg

0 4 8 12 16 20 24
1

3

5

7

9

hour (hh)

ra
ti
o

cape corse, κ = 6kg

0 4 8 12 16 20 24

hour (hh)

corte, κ = 6kg

Figure 1.9: SL-RW scenario: SINGLE vs SINGLE-ST.

speed is the highest, i.e., υd “ 30m{s. In the previous Figure 1.7 we had seen that when the

drone flies very fast, the energy saved is less. However, in Cape Corse the recorded wind from

4AM to 8AM was severely strong (even more than 30m{s « 110km{h) and the drone, although

flying at υd “ 30m{s, was able to save more energy than when it flies at the “most suitable” speed

υd “ 20m{s. So, the energy saving depends on the relationship of the wind and drone’s speed,

and not only on drone’s speed. Namely, the tailwind component is a function of ωs in Eq. (1.1).

In Corte, however, since the wind was almost absent, and therefore the unitary energy con-

sumption was almost the same for all the wind sectors, SINGLE prefers shorter routes, if not the

shortest, to save energy. Comparing the energy savings of the same experimental runs with dif-

ferent weights reveals a predictable but subtle trend. In particular, we note that carrying a 6kg

payload has a negative impact on energy consumption, and compared to carrying a 4kg payload,

we receive less energy savings from the optimal route.

Multi-line Scenario

In Figure 1.10, we focus on the ML case on both EW (first row) and RW (second row) scenarios.

On each plot, in the x-axis we report the i th randomly generated delivery point Pi. The plots to

the left report the energy, while the ones to the right report the length of the routes. The used

parameters are ωs “ 20m{s,κ“ 6kg.
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Figure 1.10: SL-EW/RW scenarios: MULTI vs MULTI-ST.

In Figure 1.10, when considering the ML-EW scenario (first row) with all the windsωd , in the

y-axis we report the average ratio (along with the 95% confidence interval) of the performance

between MULTI-ST and MULTI in terms of energy (left plot) and length of paths (right plot).

We can observe that on average, the energy saving of the 20 deliveries, when the drone’s speed

υd “ 10m{s, is pretty stable. The distribution of the deliveries shows that the ratio is between

1 and 2, which means that, considering all the winds, the shortest trajectory is not that bad.

However, when the drone’s speed increases to υd “ 20m{s, the same distribution of points is

more variable. On average, the ratio is around 3, but many values are close to 5. In these cases,

the wind helps in saving energy. About the length of the paths, the ratio is between the length

of the paths of MULTI and the length of the paths of MULTI-ST. It is interesting to see that when

υd “ 20m{s, for the randomized delivery P5 the energy saved was really large, and the length of

the path is more than twice the shortest one. On average, for this speed, the paths are around

50% longer than the shortest ones. In Figure 1.10, when considering the RW scenario (second

row), in the y-axis we report the same ratios just explained for the first row but considering all the

real winds evaluated from 10 consecutive days in Corsica. The saving is high when υd “ 20m{s.

This trend also impacts the length of the paths (second row, right plot).
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Feasibility Analysis

In Figures 1.11–1.12, we focus on the feasibility analysis in the SL/ML-EW scenario.
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Figure 1.11: SL-EW scenario: furthest deliveries that can be served in presence of wind (SINGLE)

and in absence of wind (SINGLE-ST) given ϕprq.

In Figure 1.11, we report the in the x-axis the relative wind of the truck ϕprq, while in the

y-axis the value Pmax which depends on the relative wind. Here, we consider ωs “ 10m{s and

κ “ 6kg, while we vary the size of the battery 5MJ to the left, and 10MJ to the right. Not

surprisingly, the values of Pmax with twice the battery are doubled because having more energy

available means flying more distance. About the case with 5MJ of energy, the farthest distance

that the drone can reach is around 10km whose pair of take-off and landing angles is p54,53q when

ϕprq “ 0 (in orange). On the same relative wind, the drone could have gone at a maximum of

7km far away from the truck’s road exploiting the shortest trajectory (in blue). We did not report

the pairs of angles to the plot on the right since they match the ones on the left.

In Figure 1.12, we report the in the x-axis the status of the deliveries taking into account Pmax

and Pmin, while in the y-axis the number of deliveries for that particular status, in the ML-EW

scenario. Here, we consider the size of the battery B “ 2.5MJ to the left, and 5MJ to the right. A

delivery can have one of the following status: always feasible (AF), if it is closer than Pmin; always

non-feasible (AN), if it is farther than Pmax; unknown (U), otherwise. It is really interesting to

observe the number of U and AF when comparing MULTI and MULTI-ST. In fact, when relying

on MULTI it is possible to perform at least 35% of deliveries more than those done with MULTI-

ST. Moreover, the number of non-feasible deliveries dramatically drops down when performing

MULTI.
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Figure 1.12: ML-EW scenario: status of deliveries.

1.6.3 Simulation Evaluation

For evaluating our algorithms on a simulated environment, we rely on BlueSky. BlueSky is an

open Air Traffic Simulator (ATS), and is meant as a tool to perform research on Air Traffic Man-

agement and Air Traffic Flows [33]. At the best of our knowledge, BlueSky is the only simulator in

which it is possible to simulate the flight of different aircraft by injecting the presence of the wind.

Although BlueSky can model aircraft under the effect of the wind, there is not any available op-

tion that computes the actual energy consumption of them. So, we created an ad-hoc plug-in for

BlueSky (still at a very preliminary stage though) that can estimate the energy consumed when a

drone flies. When a flight simulation is done, BlueSky creates a log file (in CSV format) in which

each line comprises different fields, like GPS coordinates, drone’s speed, global wind, and so on.

Basically, we parse the log file and for each two consecutive lines, we extract the two GPS coor-

dinates, so that we can compute the actual flown distance and the drone’s heading. Accordingly,

knowing the wind experienced by the drone, we can then precisely estimate the energy consump-

tion of it by using Eq. (10) in [29] (for completeness, reported in Eq. (1.10) in Section 1.A). Note

that, the equation in [29] considers the current wind (i.e., t “ 90) and so the energy consumption

calculation is much accurate (and slower to compute) than our proposed model.

In Figure 1.13, we report the in the x-axis the wind direction, while in the y-axis the en-

ergy consumption per unit of distance (i.e., kJ{m). The energy per unit of distance is calculated

through the ratio total flown distance to total energy consumed. Here, we have to specify two

different cases: the results shown under the suffix “model” are determined exactly as done be-
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Figure 1.13: The simulated algorithms under BlueSky: S stands for SINGLE.

fore in the numerical evaluation, while the ones under the suffix “sim” are determined inside the

BlueSky simulator. The drone’s altitude is 40m above the ground. We set the other parameters

with respect to the settings in Section 1.6.1.

The simulated results confirm the numerical ones. The difference among the simulated and

ideal perpendicular paths (SINGLE-ST model and sim) is almost zero, while slightly different is the

situation with the non-perpendicular ones. We also observe that the largest energy consumption

per meter occurs when the wind and the drone’s speed match (i.e., ωs “ υd). In general, one can

observe that the saved energy is less in the simulated environment than in the ideal numerical

environment. Except the case withωs “ υd “ 10m{s, the gap in terms of required energy per unit

of distance is ď 0.1kJ{m in favor of the ideal numerical model. This is because the simulator uses

more complicated trajectories for the aircraft while flying between two points. We have indeed

observed that the drone does turning maneuvers when changing its direction.

1.7 Conclusions

For the first time, to the best of our knowledge, we adapt the trajectory of a drone to the wind.

We consider a truck-drone tandem delivery system. The drone actively reacts to the wind by

adopting the “most tailwind” available trajectory between the truck’s path and the delivery. Two

solutions are proposed for solving MDP, i.e., when the truck moves on a line (e.g., a highway)
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in front of the deliveries, and when the truck moves on a polygon that delimits a convex area

where the deliveries take place. Currently, our proposed model presents some limitations. For

instance, if the wind dynamically changes during a delivery, the drone does not update its path in

order to save energy. Moreover, the discretization in multiple wind classes determines approxi-

mated angles if we worked in the continuous space, and sometimes the energy estimations differ

from the actual ones. Nevertheless, our proposed model has the undoubted value of showing the

positive role that the wind can play in the drone flight. In addition, even though the compu-

tations of the FEASIBILITY method are static, it can predict the mission outcome ahead of time,

independent of wind conditions, allowing the mission planner to decide whether to approve or

deny a flight. Furthermore, while the wind can vary throughout a mission, a significant shift in

both the wind’s direction and speed is not particularly truthful. Indeed, as thoroughly investi-

gated in Section 1.6.2, the majority of the delivery performed using the optimal route can be

completed successfully regardless of the wind conditions. The small number of deliveries that

are unknown or always non-feasible occurred under extremely unusual wind conditions that are

difficult to encounter in daily life.

In the future, we would like to confirm our findings by using other simulators, and eventually

extending our investigation to a test-bed made by off-the-shelf drones. We will also investigate,

in a more detailed way, the circumstances, such as the time of day, in which a mission may fail,

developing relying on our model robust algorithms able to react even to harsh wind gusts.
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1.A Drone-Wind Energy Model

The motion of drones is regulated by physical properties [29]. The total required thrust is T “

W g ` FD, where W is the total weight of the drone, g is the gravitational constant, and FD “

1
2ρ a2

s CDA is the total drag force, where ρ is the air density, as is the drone’s air speed (see

Eq. (1.1)), A “ πR2 is the cross sectional area (R is the rotor radius), and CD is the drag co-

efficient. Having computed T, we estimate the required power P for a steady flight, which

is P “ Tpυd sinpαq ` siq, where α “ arctan pFD{W gq is the pitch angle, and si, which is the

induced velocity required for a given thrust T, can be obtained by solving the implicit equa-

tion [47] si “ s2
h{

a

pυd cospαqq2 ` pυd sinpαq ` siq
2, where sh “

a

T{2ρA is the induced velocity

at hover [47]. Note that, FD and so α and P depend on the drone’s direction γr . So, fixed

ω“ pωd ,ωsq, the unitary energy µpγrq of travel along a segment r with direction γr is calculated

as follows:

µωpγrq “ P{υd . (1.9)

Therefore, the energy consumed for traversing one edge γr of length λpγrq can be expressed as:

dωpγrq “ µωpγrqλpγrq. (1.10)
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Chapter 2

On the Scheduling of Conflictual Deliveries

in a Last-mile Delivery Scenario with

Truck-carried Drones

2.1 Introduction

In this chapter, we investigate the cooperation between a truck and one or multiple drones for last-

mile package delivery. With the help of drones, delivery companies can perform more deliveries

and hence extend their revenue and business [48]. In fact, drones can deliver small packages

quickly as they can easily traverse difficult terrain [49], often using shorter routes not otherwise

possible for trucks. In this scenario, the drones fly (starting from the truck) to the assigned

locations and deliver the packages, then leave and meet again with the truck to perform new

deliveries. However, significant challenges arise due to such constraints as the drones’ high energy

consumption and their current inability to simultaneously serve multiple customers at a time [50,

51]. The premise under consideration is that a delivery company has to make several deliveries to

the customers in a city by relying on a truck carrying a fleet of drones with the same capabilities.

In this chapter, we study this problem by assuming that the main depot knows the locations

of the customers to visit and the road to travel for the truck. Therefore, before leaving the depot,

the delivery company plans the drones’ flying sub-routes to accelerate the deliveries, considering

not only the energy used by the drones but also the revenue generated. A sub-route is uniquely

identified by a starting and a rendezvous point on the truck’s route. Since drones have limited

battery capacity, a delivery has a cost in terms of the energy required, and this limits the number

of deliveries that a drone can perform. Also, conflicts among deliveries can occur if they cannot be

47
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accomplished by the same drone, i.e., if the corresponding sub-routes, and hence their delivery

intervals, intersect each other (see Figure 2.3.1a). In addition, each delivery has an associated

reward that characterizes its importance (e.g., a larger reward means higher priority). So, given

the truck’s route in the city, the goal is to plan a scheduling for the drones such that the total reward

is maximized subject to the constraints of limited drone’s battery and the conflicts among deliveries.

2.1.1 Motivations

The existing works in this area mainly study the problem of scheduling deliveries without con-

sidering neither any budget constraint for the drones nor possible conflicts among deliveries [30,

52, 53]. The absence of such details makes it harder to model real-world scenarios. Moreover,

the proposed solutions in drone-based delivery applications are often determined by heuristic or

meta-heuristic algorithms which do not provide any guaranteed results, in terms of solution’s

goodness [36,54]. In contrast, in this chapter, we incorporate the aforementioned constraints in

a last-mile delivery scenario, while also providing optimal, approximation, and heuristic solutions

for our problem.

Another interesting aspect concerns the fact that the truck’s route is already given. It is reason-

able to assume that we know the route of the truck in advance for various reasons. For example,

there can be a truck’s route that is efficient most of the time considering traffic, road condition,

and safety, and by using such a route, truck drivers can conduct their everyday delivery tasks

comfortably and safely. Given the truck’s route, we envision increasing the number of performed

deliveries by exploiting a fleet of drones and reaching additional customers that were not first

considered during the route planning. Our objective is not to change the route of the truck to

serve more customers, but rather to serve the largest number of customers in the neighborhood

of the truck’s route. Therefore, the emphasis of this chapter is to possibly increase the number of

deliveries without modifying the truck’s route.

The results of this chapter are summarized as follows:

• We define a novel optimization problem, called Scheduling Conflictual Deliveries Problem

(SCDP), and prove it to be NP-hard. We also propose an Integer Linear Programming (ILP)

formulation for SCDP.

• For the single drone case, we design optimal and approximation algorithms, while for the

multiple drones case, we propose approximation and heuristic algorithms.

• We evaluate the performances of our algorithms on synthetic datasets.
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The remainder of this chapter is structured as follows. Section 2.2 surveys the related works.

Section 2.3 introduces the SCDP showing its NP-hardness, and proposes an ILP formulation. Sec-

tion 2.4 presents algorithms for solving SCDP with a single drone, while Section 2.5 devises algo-

rithms for solving SCDP with multiple drones. Section 2.6 evaluates the algorithms on synthetic

datasets. Finally, Section 2.7 offers conclusions and future research directions.

2.2 Related Work

This section reviews the literature related to the problem of delivering packages with a truck carry-

ing one or multiple drones, categorizing the works based on whether the deliveries are scheduled

to a single or multiple drones. We recall that our proposed model considers both scenarios.

2.2.1 Single Drone Deliveries

The truck-drone cooperation in the last-mile delivery has been investigated for the first time when

the flying sidekicks traveling salesman problem (FSTSP) has been introduced in [30]. The FSTSP

is a particular case of the TSP, where drones take off from the truck, fly to deliver packages to

customers, and go back to the truck in another place. Both vehicles can perform deliveries, but

each has to stop waiting for the other at the rendezvous location. The authors propose a mixed-

integer linear programming formulation (MILP) and two heuristic solutions for solving the FSTSP.

Differently from us, they do not take into account any reward and conflicts among deliveries, also

because the truck and the drone can do multiple trips to/from the depot.

In the work [52], a single drone carried by a truck performs all the required deliveries. Dif-

ferently from us, once any delivery has been performed, a drone can immediately recharge its

battery. This means that all deliveries are feasible and, accordingly, no scheduling is required.

The heuristic algorithm proposed in [36] initially focuses on the truck’s route and then im-

proves the solution by considering the possible drone’s sub-flights. A TSP solution for the truck

only that fixes the order in which all the customers are served, is at first computed. Then, short

drone sub-routes are greedily created by excluding some customers from the truck’s route in order

to reduce the overall makespan (i.e., the time difference between the start and end of a delivery

sequence). However, the truck or the drone has to wait for the other at the rendezvous positions.

Also, as we do, the truck is not allowed to go back on its route.

In the delivery system in [55], a truck carries a drone to deliver packages to customers. The

objective is to minimize the total tour duration to serve all the customers. Differently from us,

here there can be incompatible customers for the drone (e.g., package too heavy, or customer too
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far). So, the authors propose a MILP formulation based on timely synchronization of the truck

and the drone trajectories. They also introduce a dynamic programming recursion based on an

exact branch-and-price approach capable of optimally solving small instances.

2.2.2 Multiple Drones Deliveries

The investigated problem of delivering goods is further extended by considering also a fleet of

drones, and numerous research works have been published.

In [54], the authors consider a scenario with multiple rechargeable drones. Drones can only

carry one package at a time and have to return to the truck’s roof to charge their battery after each

delivery. The speed is the same for both drones and trucks, but their mobility metric is different

(Euclidean metric for drones, Manhattan metric for the truck). The authors present a heuristic to

solve the problem of finding a good schedule for the truck and all the drones that minimizes the

average delivery time of the packages. In the chapter, we do not consider the replenishment of

batteries for drones, and also we optimize the reward and not the average delivery time.

A similar work to ours is proposed in [37]. The authors consider a predefined truck’s route,

and the problem is to optimize the planning of drones to/from the truck while serving the cus-

tomers. However, unlike us, they need to determine the launch and meeting points between

drones and the truck, while in our investigation these points are given in input. Furthermore,

these points are calculated in such a way that the intervals generated do not intersect with each

other, thus making all deliveries conflict-free. Importantly, the authors assume that drones do not

have battery constraints. While their goal is to reduce total makespan, our goal is to maximize

the reward for deliveries.

The delivery with a truck and drones with a rechargeable station is presented in [53]. The

station can recharge multiple drones, and it is located near customer areas and away from the

main depot. After having determined the lower bound of the number of drones that the station

can handle, the authors show that this problem is a combination of TSP and parallel identical

machine scheduling problems. Through this approach, they successfully reduce the complexity

of the problem and obtain an exact solution. Differently from us, their goal is to minimize the

overall makespan, under the assumption that the deliveries are equally relevant (each delivery

has the same reward), and that all the deliveries are conflict-free.

A hybrid truck-drones scenario is presented in [56], where the authors, differently from us,

propose to simultaneously employ trucks, truck-carried drones, and independent drones to con-

struct a more efficient truck-drone parcel delivery system. A novel routing and scheduling algo-

rithm is proposed to solve the hybrid parcel delivery problem.
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In [57] a clustering approach is proposed to find locations for a truck in which it stops and

deploys drones to deliver packages to near locations. In these cases, the total delivery time is

determined by the longest flight time among drones in each cluster. The authors aim at minimizing

the total delivery time by having a truck moving among the centers of clusters as drones operate

in each cluster. However, all the deliveries can be performed since conflicts among them are not

contemplated.

Last but not least, the seminal FSTSP has been extended, by the same authors in [58], for

multiple drones (mFSTSP). A MILP formulation only suitable for small inputs, as well as faster

heuristics for any input, have been devised to reduce the overall makespan.

2.3 Problem Formulation

In this section, we first introduce the problem’s underlying assumptions, then present the system

and delivery models, and formally define the Scheduling Conflictual Deliveries Problem (SCDP).

We also show that SCDP is NP-hard.

2.3.1 Problem Assumptions

In this chapter, we make a few problem assumptions listed as follows:

• The drones deliver a single package at a time due to stringent payload constraints. In other

words, a drone cannot carry more than a single package.

• The route of the truck is already pre-planned and it is given. Therefore, the truck cannot

dynamically make detours or modifications.

• Each drone has only a single battery. Although a drone can perform multiple single deliv-

eries with the same battery, it cannot swap or recharge its battery for additional deliveries.

2.3.2 System and Delivery Model

A drone’s delivery is done by planning a sub-flight that passes through three points. Specifically,

the drones take off (with packages) from the truck which continues to drive in the city, deliver

packages to the customers, and return to the rendezvous locations with the truck again.

Let A be the 2-D delivery area representing our last-mile delivery (application) scenario. Let

ψ P A be the depot from where the deliveries start. The position of the depot is located at pxψ, yψq,

assumed to be at the origin of the Cartesian coordinate system in p0, 0q. Such a delivery area also
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comprises roads and customers’ positions. At the depot, a truck is in charge of transporting a

fleet of m drones d1, . . . , dm with the same capabilities used for deliveries in A. The truck does not

perform deliveries; it only carries the drones within A. Let ρ j be a straight road delimited by two

endpoints λ j and λ j`1, where j “ 0, . . . , r and tλ1, . . . ,λru Ă A. The truck leaves ψ visiting λ1

along ρ0 “ ψλ1, then λ2 along ρ1 “ λ1λ2, and so on, up to λr , and eventually going back to

ψ. These segments make a polygon (cycle) C formed by the sequence λ0,λ1, . . . ,λr ,λr`1 such

that λ0 “ λr`1 “ ψ. Let D “ tδ1, . . . ,δnu Ă A be the set of n distinct points or locations to

be served (i.e., the customers) by the drones. Each customer’s (delivery) point δi has a pair of

coordinates pxδi
, yδi

q P A, for i “ 1, . . . , n. Figure 2.3.1a illustrates the delivery area A with roads

and customers.

For each customer’s location δi, let δL
i and δR

i be respectively the launch point and rendezvous

point of the drone on the truck’s route. For any delivery δi, both the δL
i and δR

i are already known

and given in input. In the example in Figure 2.3.1b, the truck travels from λ j to δL
i carrying the

drone, which in turn takes off at δL
i flying towards δi delivering the package, and finally continues

flying towardsδR
i . In the meanwhile, the truck continues its route reaching other endpoints. When

both the truck and the drone arrive at δR
i , the former gathers again the drone and they continue

to travel up to point λ j`1. Note that δL
i and δR

i can lie on different roads. In general, δL
i lies

on road ρ j while δR
i lies on road ρz, where 0 ď j ď z ď r (see Figure 2.3.1a). Note that, since

the truck’s route is predefined, it is forbidden for the truck to travel back and forth for picking

up the drones. This is our most important assumption which impacts the problem definition and

depends on the fact that the truck is, in some sense, an opportunistic means of transportation for

the drones. The truck has its own route due to other assigned tasks or because it is moving on a

track, as it is common for emerging means of transportation with low greenhouse gas emissions.

In any case, the truck cannot change its route.

Let wi ě 0 be the energy cost (or weight) for a drone in terms of energy spent to perform a

single delivery δi flying to/from the truck. Although the wi associated with the delivery δi can

be derived leveraging either the equations reported in [29] or in Chapter 1, it is worth pointing

out that the algorithms provided in the following guarantee a fixed approximation regardless the

energy cost distribution. Let B ě 0 be the drone’s energy budget in terms of battery capacity

which limits the total number of feasible deliveries. A drone can perform multiple individual

deliveries with a single battery of initial capacity B. Each delivery can be performed if it requires

less energy than the residual energy budget. In other words, if the drone’s current residual energy

is not enough for additional flights, it is not possible to perform further deliveries unless a new

battery is swapped. We do not consider the possibility to exchange the battery. We assume that
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Figure 2.3.1: An example delivery area A with 6 roads and 8 customers δi to serve. The depot ψ

is at p0, 0q; The truck’s route is the solid line, while the drones’ routes are the dashed lines (a); A

road with a delivery δi to do: the launch δL
i and rendezvous δR

i points are highlighted (b).

drones have to rely only on one battery charge. We remark that, in the multiple drones case, each

drone has its own battery of capacity B.

Let pi ě 0 be the reward for executing a delivery δi. The reward characterizes premium users

as having higher priority than regular users. For instance, delivery companies offer different sub-

scriptions according to the following rule: “The more you pay, the faster you receive your parcels”.

In our context, the higher the priority of delivery δi, the larger the reward value pi. Hence, to

satisfy the premium users, the scheduling for the drones needs to prioritize the deliveries, guar-

anteeing first the ones belonging to the premium users (because they have more reward) and

second the ones from regular users.

Deliveries are characterized by intervals along the truck’s route. For any delivery δi, the launch

and rendezvous points δL
i and δR

i define the drone’s delivery interval Ii “ rδL
i ,δR

i s. We assume that

the truck visits first δL
i and then δR

i , so δL
i ď δR

i . Let I “ tI1, . . . , Inu be the interval set associated

with the deliveries, where 1 ď i ď n. Two intervals Ii and I j are said to be compatible if their

intersection is empty, i.e., Ii X I j “ ∅, for i ‰ j; otherwise, the two intervals are in conflict. In

other words, Ii and I j are compatible if δR
i ď δL

j or δR
j ď δL

i . This is reasonable with the fact that if

a drone is still performing a delivery, i.e., it is still in flight, it cannot start a new delivery without

first reaching the truck. A subset S Ď I is said to be compatible if Ii X I j “∅ for any pair Ii, I j P S.

In other words, a drone can perform any subset of such deliveries as long as it has enough battery.

Precisely, a given compatible S Ď I is feasible if the energy cost CpSq “
ř

IiPS wi ď B (the energy

budget). The reward of a feasible set S is PpSq “
ř

IiPS pi.

Recall that m is the number of drones. Two feasible subsets Sp, Sq Ď I can be assigned to two

drones dp and dq, with 1 ď p ­“ q ď m, if Sp X Sq “ ∅. Assuming that S “ tS1, . . . , Smu consists of
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m feasible sets assigned to the drones td1, . . . , dmu, the overall reward PpSq is defined as the sum

of the reward of each drone, i.e., PpSq “
řm

j“1

ř

IiPS j
pi.

Table 2.3.1 reports the adopted terminology in this chapter.

Table 2.3.1: Symbol description.

Symbol Description

A 2-D delivery area

ψ depot from where the deliveries start

m number of drones

d1, . . . , dm ID of each drone

ρ j straight road delimited by two endpoints

λ j endpoint of a road

C cycle of the truck

n number of deliveries

δi a delivery

pxδi
, yδi

q location of a delivery

D “ tδ1, . . . ,δnu set of deliveries

δL
i launch point of the drone on the truck’s route for δi

δR
i rendezvous point of the drone on the truck’s route for δi

wi energy cost for a drone to perform delivery δi

B energy budget for a drone for all the deliveries

pi reward for executing a delivery δi

Ii “ rδL
i ,δR

i s delivery interval of a delivery δi

I “ tI1, . . . , Inu interval set associated with the deliveries

CpSq energy cost function for a given subset of deliveries S Ď I

PpSq reward function for a given subset of deliveries S Ď I

2.3.3 Problem Definition

Let us now formally define the delivery scheduling problem.

Problem 1 (Scheduling Conflictual Deliveries Problem (SCDP)). Let δ1, . . . ,δn be the set of n

deliveries, m the number of drones, and B the drone’s battery budget. The objective of SCDP is to
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find a family S˚ “ tS˚

1 , . . . , S˚

mu Ď I of m feasible subsets with S˚

p X S˚

q “∅, for 1 ď p ­“ q ď m, such

that the overall reward PpSq is maximized. Specifically,

S˚
“ argmax

S“tS1,...,SmuĎI
PpSq such that CpSiq ď B @i “ 1, . . . , m

In the following we show the NP-hardness of SCDP, even for the single drone case.

An alternative way to define the set of deliveries and constraints is to observe that the set of

intervals I can be described as an interval graph. In SCDP, the set D determines the set of intervals

I that can be pairwise compatible or in conflict with respect to their launch and rendezvous points.

Given an instance of SCDP, we can visualize the intervals and their compatibility along a temporal

line. Figure 2.3.2a shows the intervals corresponding to Figure 2.3.1a, in which I2 is in conflict

with both I1 and I3, whereas I1 and I3 are compatible.

λ0

I1

I2
I3

I6
I4 I5

I7

I8

(a)

I1 I4 I5 I8

I2 I3 I6 I7

(b)

Figure 2.3.2: Delivery intervals corresponding to Fig. 2.3.1a (a); Interval graph G for the example

in Fig. 2.3.1a (b).

A simple way to figure out if two intervals are in conflict or not is by considering the interval

graph representation. Formally, in the undirected interval graph, G “ pV, Eq, the vertex-set V “

I , where each vertex uniquely corresponds to an interval Ii P I , for i “ 1, . . . , n; and an edge

pIi, I jq P E indicates that the deliveries δi and δ j are not compatible, implying Ii X I j ‰ ∅. For

example, in Figure 2.3.2a, I1 and I3 can be executed without conflicts, i.e., pI1, I3q R E; while I2

is not compatible with both I1 and I3, implying pI2, I1q, pI2, I3q P E. Note that vertex I6 has four

conflicts because its degree is 4.

In the following we demonstrate that SCDP is an NP-hard problem by showing that the classic

0–1 Knapsack Problem (KP) is a special case of SCDP when intervals are conflict-free.

Theorem 3. SCDP is NP-hard.

Proof. We start proving that the simpler scenario of SCDP with a single drone is NP-hard. Our

approach is by reduction from KP, known to be NP-hard [59] and defined as follows. Given a set

X “ t1, . . . , nu of n items, where each item i is associated with a cost wi and reward pi , and a

knapsack of capacity c, the KP is to find a subset of X that maximizes the sum of the rewards,
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satisfying the capacity constraint. Given an instance of KP, we translate it as an instance of SCDP

as follows: we first set the energy budget of SCDP equal to the capacity constraint of the knapsack,

i.e., B “ c. Then, we create a set of deliveries D starting from the set of items X as follows: for

each item i P X , create a delivery δi P D with equal cost and reward. We create deliveries with cost

wi and reward pi. Finally, we create each interval Ii “ rδL
i ,δR

i s with constant span s ą 0, defining

its launch and rendezvous point as δL
i “ δR

i´1 ` s and δR
i “ δL

i ` s, respectively, assuming that

I1 “ r0, ss. Hence, we can observe that the deliveries are pairwise compatible in the corresponding

SCDP instance. Thus, a solution for KP is a solution for SCDP and vice versa. This reduction takes

polynomial time. Now, since the case with a single drone is NP-hard, also the general multiple

drones case of SCDP is NP-hard.

2.3.4 The Optimal Algorithm

For optimally solving SCDP in the general case with m drones, we can use an ILP formulation.

We enumerate the deliveries as N “ t1, . . . , nu, and drones as M “ t1, . . . , mu. Let zi j P t0,1u be

a decision variable that is 1 if the delivery j P N is accomplished by the drone i P M; otherwise

it is 0. Therefore, the ILP formulation is given by:

max
řm

i“1

řn
j“1 p jzi j (2.1)

subject to:

řn
j“1 w jzi j ď B, @i P M (2.2)

řm
i“1 zi j ď 1, @ j P N (2.3)

zi j ` zik ď 1, @i P M; @ j, k P N s.t. I j X Ik ‰∅ (2.4)

zi j P t0, 1u, @i P M, @ j P N (2.5)

The objective function (2.1) aims to maximize the overall reward using a fleet of m drones.

About the constraints, (2.2) states that each drone has a capacity budget of B in terms of en-

ergy; (2.3) forces each delivery to be executed by at most one drone; and (2.4) avoids the fact

that two incompatible deliveries are performed by the same drone. (2.5) simply sets the domain

of the decision variable.

In the next following, we propose algorithms for solving SCDP in scenarios involving single and

multiple drones. From now on, we will interchangeably use the terms “delivery” and “interval”.
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2.4 Algorithms for SCDP with a Single Drone

This section proposes three algorithms for SCDP with a single drone (with -S suffix) – an opti-

mal knapsack-based algorithm (KNA-S), and two approximation algorithms, i.e., a coloring-based

(COL-S) and a bin packing-based (BIN-S) whose computational time complexity is polynomial.

KNA-S can be performed only when B P N, and it is suitable only for small values of B. For larger

values of B, we devise COL-S and BIN-S. Namely, COL-S first partitions the deliveries into sets of

conflict-free deliveries and then extract from them the subset of deliveries with the maximum re-

wards feasible with the available energy budget; whereas BIN-S first extracts the most profitable

set of conflict-free deliveries and then partitions them based on the energy availability.

2.4.1 The KNA-S Optimal Algorithm

We propose a pseudo-polynomial time algorithm based on dynamic programming that optimally

solves SCDP with a single drone, called KNA-S, requiring Opn log n ` nBq time and OpnBq space.

We remark that, in this case, due to the dynamic programming approach, we require that both

weights wi and budget B must be integers to let the algorithm return the optimal solution.

Before proceeding, let σpiq be the largest index 1 ď j ď i ´ 1 such that Ii X I j “ ∅, and

δpiq “ 0 if no interval j ă i is disjoint from i. We prove the following property: if the set of

intervals is sorted in non-decreasing order of the rendezvous points along the truck’s route, i.e.,

δR
i ď δR

i`1, then the intervals intersecting with any given interval Ii are adjacent in the ordering.

Our proposed dynamic programming solution exploits this property as follows: for each interval

Ii, we can find the largest index σpiq that precedes i without intersecting with it.

Lemma 1. Let the set of intervals I be sorted in the non-decreasing order of rendezvous points, i.e.,

δR
1 ď . . . ď δR

n. Given an interval Ii, there exists an index σpiq ă i such that Ik X Ii “ ∅ @k P

1, . . . ,σpiq ´ 1 and Ik X Ii ‰∅ @k P σpiq, . . . , i.

Proof. (by contradiction) Assume there exist indices ℓă κă σpiq such that the intervals between

κ and σpiq do not intersect with Ii but Iℓ X Ii ‰ ∅. That is, Ik X Ii “ ∅ @k P κ, . . . ,σpiq ´ 1 and

Iℓ X Ii ‰ ∅. This implies that δR
ℓ

ą δL
i since the intervals intersect with each other, and δR

k ă δL
i

for all k P κ, . . . ,σpiq ´ 1. So, δR
ℓ

ą δR
k , which contradicts that I is sorted in non-decreasing order

of rendezvous points. In other words, ℓă κă σpiq implies δR
ℓ

ă δR
κ

ă δR
σpiq.

Let us now introduce our novel KNA-S algorithm for SCDP based on dynamic programming.

During the initialization phase, a table M of size n ˆ B is created and the set of intervals is sorted

in non-decreasing order of rendezvous points. To compute the value in each cell of M , we define
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a function gpi, bq as the maximum reward achievable by considering the first i sequences and

budget b. Hence, we set Mri, bs “ gpi, bq for 0 ď i ď n and 0 ď b ď B. To compute gpi, bq using

dynamic programming, for each set of sequences t0, . . . , iu and for each budget b “ 0, 1, . . . , B, we

first set Mr0, bs “ Mri, 0s “ 0 for each i, b. Then, for each subsequent row and column, Mri, bs

is the maximum between the solution gpi ´ 1, bq with an equal budget that does not consider

element i, and the reward of element i plus the optimal solution compatible with i. For the

latter, it is necessary to find a solution that satisfies both the budget constraint and the possible

intersections with the newly added element i. Precisely,

gpi, bq “

$

’

’

’

’

&

’

’

’

’

%

0 if i “ 0 or b “ 0

gpi ´ 1, bq if wi ą b

maxtgpi ´ 1, bq, pi ` gpσpiq, b ´ wiqu otherwise

Note that the above definition exploits the optimality of the sub-problems gpi ´ 1, bq and

gpi, bq. To efficiently implement the σ function a preprocessing phase is required. First, let us

order the set of launch and rendezvous points associated with the intervals in non-decreasing

order; then consider an empty stack and a pointer to the beginning of the ordered set. If the

element indexed by the pointer is a rendezvous point, insert the associated interval on the stack

and move the pointer by one position. Otherwise (launch point), associate the interval at the top

of the stack as the predecessor σpiq of the interval i associated with the launch point indexed

by the pointer and move the pointer one position. If the stack is empty, σpiq “ ∅ is associated.

Finally, each interval has an associated predecessor. This procedure requires Opn log n`nq to sort

the launch and rendezvous points and to associate the predecessors, while it takes Opnq space.

Theorem 4. KNA-S optimally solves SCDP with a single drone in Opn log n ` nBq time.

Proof. For the correctness of optimality, we use induction. The base case i “ 0 is trivial since

there is no interval to include in the solution. Thus, Mr0, bs “ gp0, bq “ 0.

Inductive Step: When computing Mri, bs, by the induction hypothesis, Mri ´ ℓ1, b ´ ℓ2s for

any 1 ď ℓ1 ď i and 0 ď ℓ2 ď b are already computed correctly. There are two possible cases. If

wi ą b, then Mri, bs “ Mri ´ 1, bs “ gpi ´ 1, bq which was optimum by induction hypothesis;

thus Mri, bs is optimum since it is not possible to add interval Ii. Otherwise, if wi ď b we have

Mri, bs “ maxtgpi ´ 1, bq, pi ` gpσpiq, b ´ wiqu. Moreover, as before, gpi ´ 1, bq is optimum by

induction. As proven in Lemma 1, the set of sequences I1, . . . , Iσpiq contains all the sequences that

do not intersect with Ii. Hence, by induction, gpσpiq, b ´ wiq contains the optimal solution for

the set of intervals I1, . . . , Ii´1 that is also feasible with Ii. The time complexity depends on the
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preprocessing which is Opn log nq to compute the predecessor, and on the running time OpnBq

since the size n ˆ B of table M . This permits us to calculate in constant time function σpiq for

each interval, and hence we can fill each cell of table M in constant time.

Given that the time complexity of the optimal KNA-S algorithm is pseudo-polynomial time in

the budget size B, in the following, we search for faster solutions that sacrifice the optimality.

2.4.2 The COL-S Approximation Algorithm

The COL-S approximately solves SCDP with a single drone, requiring Opn log n ` hpnqq time and

Opnq space, where hpnq is the time required by a subroutine used in it.

The idea of COL-S is that we first adopt an optimal polynomial-time vertex graph coloring

algorithm for interval graphs to divide the set of intervals into several subsets based on the mini-

mum coloring of I [60]. Each color represents a subset of deliveries without conflicts that can be

assigned to a single drone. Then, we find a solution for SCDP for each subset, that is, we select

the most profitable subset of deliveries in each subset of independent deliveries subject to the

energy budget constraint. Finally, we return the solution with the maximum reward among all

the colors. The pseudo-code of COL-S is given in Algorithm 4.

First, we find an optimal vertex-coloring for the graph induced by I dividing the set of intervals

tI1, . . . , Inu into χ distinct subsets. Recall that, a vertex coloring is an assignment of labels or

colors to each vertex of a graph such that no edge connects two identically colored vertices. The

minimum number of colors for a feasible vertex coloring in a graph G is called the chromatic

number of G, denoted χpGq. Moreover, a k-coloring of a graph G is a feasible vertex coloring

that assigns the integers 1, . . . , k (the colors) to the vertices of G. Finding the minimum number

χ of colors for proper coloring in arbitrary graphs is an NP-hard problem, but it is solvable in

polynomial time for the special case of interval graphs [60].

Algorithm 4: The COL-S Algorithm

1 C1, . . . , Cχ Ð coloringpIq

2 for i P 1, . . . ,χ do

3 Si Ð maxSPCi :CpSqďB PpSq

4 return SOL Ð maxiP1,...,χ PpSiq

To implement coloring (Line 1, Algorithm 4), let us first order in a list the set of launch and

rendezvous points associated with the intervals in non-decreasing order. Then consider a pointer

i initialized to the first point of the ordered set of launch and rendezvous points, and a min-heap
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data structure that stores the colors available. The min-heap is initialized with only one color,

which is the first color made available. The coloring algorithm proceeds by moving the pointer

on the sorted list. If the element pointed by the pointer is a launch point, the available color in the

heap with the minimum index is associated with interval i that starts at the pointed launch point.

If the element pointed by the pointer is a rendezvous point, the color used for the interval i that

finishes is inserted in the heap and made available in the min-heap for further intervals. Finally,

move the pointer of one position. After extracting, if the heap is empty, insert a new color (i.e.,

a new available integer not used until now). Note that the overall time complexity is Opn log nq

where n is the number of intervals (i.e., deliveries) to be served.

The coloring procedure (Line 1) takes in input the set of intervals I , and returns as output

χ subsets C1, . . . , Cχ of deliveries, where χ is the chromatic number of the graph1 associated with

the intervals I . That is, the coloring partitions I into χ subsets of conflict-free deliveries, one for

each color. After coloring is performed, for each subset Ci, find a subset Si Ď Ci with maximum

reward such that CpSiq ď B (Line 3). Note that, subsets Si for each i are feasible solutions for

SCDP. Finally, we return the solution SOL with the maximum reward among all the subsets Si

(Line 4).

It is worth noting that finding an optimal set Si is equivalent to solving a Knapsack problem

(KP) with budget B on the elements Ci, which is an NP-hard problem, but which can be approxi-

mated in polynomial time.

Theorem 5. COL-S provides a solution for SCDP for a single drone with an approximation ratio of
α
χ , where χ denotes the chromatic number of the interval graph induced from the deliveries in I, and

α is the approximation ratio of an algorithm that maximizes KP.

Proof. Suppose we have a proper χ-coloring of the set I that partitions the interval sequences

into χ color classes, namely C1, . . . , Cχ . Let Si denote the set with maximum reward in color

class Ci, (Line 3, Algorithm 1). Then, let SOL “ maxiP1,...,χ PpSiq be the set with maximum

reward among all sets Si such that CpSiq ď B. Let OPT be an optimal solution for the SCDP on

the interval set I . Clearly, the intervals selected by OPT are partitioned among χ colors, i.e.,

OPT “ Y1ďiďχpOPT X Ciq. We first note that PpOPT X Ciq ď PpSiq for i P 1, . . . ,χ. It follows

directly, if either OPT X Ci “ Si or OPT X Ci “∅. Otherwise we could have pOPT X Ciq XSi ‰∅.

In this case, PpOPT XCiq ą PpSiq will contradict that Si is the subset of Ci with maximum reward

since Si “ maxSĎCi
PpSq.

Recall that finding an optimal set Si is equivalent to solve the KP for elements Ci with budget

B, which is an NP-hard problem. For each set Ci, let us consider two solutions Si and S˚

i for the

1Recall that the graph has a vertex for each delivery, and an edge between any two intervals that overlap.
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problem of maximizing the reward in Ci, where S˚

i is the optimal solution to this problem and Si

is an α-approximation to S˚

i . Thus,

PpSOLq “
1
χ

χ
ÿ

i“1

PpSOLq ě
1
χ

χ
ÿ

i“1

PpSiq ě
α

χ

χ
ÿ

i“1

PpS˚

i q ě
α

χ

χ
ÿ

i“1

PpOPT X Ciq ě
α

χ
PpOPT q.

Once the optimal coloring has been computed, there are C1, . . . , Cχ partitions where χ denotes

the minimum number of subsets without conflicts. Then, the next phase is to determine a subset

Si for each Ci such that the reward is maximized with the constraint of the maximum allowed

budget (Line 3). In other words, we need to solve the KP on each subset Ci whose size is ni “ |Si|,

and
řχ

i“1 ni “ n. According to Theorem 5, the COL-S algorithm can solve SCDP (with a single

drone) guaranteeing a lower bound of αχ with respect to the optimal solution, where the parameter

α depends on how we determine the different subsets Si.

A few words to help analyze α and hpnq in the time complexity. An approach is to rely on a

fully polynomial time approximation scheme (FPTAS) with α“ 1´ε, where 0 ă εă 1, requiring

a computational time of Õpni ` p
1
εq2.5q [61], where the Õ notation hides poly-logarithmic factors

in ni and 1
ε [61]. So, a fast greedy strategy for the fractional knapsack problem can be exploited

which guarantees α “ 0.5 [62]. Finally, to maximize α keeping polynomial the time complexity

of the algorithm, it is possible to exploit the submodularity property2 thus obtaining a solution

that guarantees α“ 1´e´1 « 0.63 [64] taking Opn5
i q time for each Ci and overall Opn5q time. As

a last remark we note that, in the case all the deliveries require the same cost, i.e., w j “ γ P Ně0,

for 1 ď j ď ni, α“ 1 because it is simply required to sort the ni elements of Ci in non-decreasing

order by the reward and then pick the first tB{γu elements. Overall this takes Opnq time using

the selection algorithm to locate the item of rank tB{γu in each Ci in Opniq, for 1 ď i ď n [65].

2.4.3 The BIN-S Approximation Algorithm

The BIN-S approximately solves SCDP with a single drone, requiring Opn log n ` hpnqq time and

Opnq space, where hpnq is the time required by a subroutine used in it.

The algorithm relies on the Bin Packing Problem (BPP). Recall that, the BPP is an optimization

problem in which items of different sizes must be packed into a finite number of bins or containers,

each of a fixed given capacity, in a way that the number of used bins is minimized. Both COL-S and

BIN-S search for conflict-free subsets of intervals but use different strategies: BIN-S selects a subset

of independent intervals that maximize the reward and, on this, refines the intervals’ selection to

2Submodularity [63] Given a finite set X “ tξ1, . . . ,ξnu, a set function F : 2X Ñ R is submodular if for any

S Ď T Ď X and ξ P X zT , FpS Y ξq ´FpSq ě FpT Y ξq ´FpTq.
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satisfy the budget constraint. In more detail, we optimally compute the maximum reward subset

of compatible intervals of I in polynomial time by solving via dynamic programming the Weighted

Interval Scheduling Problem (WISP). Then, we optimize the interval selection returned by WISP

by grouping the solution in bins of size (energy cost) at most B via a greedy implementation

of the BPP. Finally, BIN-S outputs the bin with the maximum reward between all the bins. The

pseudo-code of BIN-S is given in Algorithm 5.

Algorithm 5: The BIN-S Algorithm

1 SOLmax Ð weighted-interval-schedulingpIq

2 S1, . . . , Sη Ð bin-packingpSOLmaxq

3 return SOL Ð maxiP1,...,ηPpSiq

Initially, we find the subset with maximum reward of compatible deliveries SOLmax by execut-

ing the optimal algorithm for the WISP [66] on the set I in input (Line 1, Algorithm 5). Then, by

invoking bin-packing on SOLmax, we get η bins S1, . . . , Sη such that CpSiq ď B (Line 2), where

η is the optimum (minimum) number of required bins. On each bin, deliveries are compatible

with each other. Eventually, the bin with maximum reward, SOL, is returned in output (Line 3).

Note that finding the optimal division of deliveries into S1, . . . , Sη bins is equivalent to solving

BPP with budget B on the subset of deliveries SOLmax. However, since BPP is strongly NP-hard,

we only consider polynomial time β-approximated solutions for it, which in turn also affects the

approximation ratio of BIN-S. Recall that an approximated version of bin-packing returns a

solution with a number of bins that is no more than β ě 1 times the optimal number η of bins.

Theorem 6. BIN-S provides a solution for SCDP for a single drone with an approximation ratio of
1

rβηs
, where η denotes the optimal number of bins, and β is the approximation ratio of an algorithm

that minimizes BPP.

Proof. Let SOLmax be the subset of compatible intervals of I with maximum reward Pmax, and OPT

be the optimal solution for SCDP. Suppose we have an optimal solution for BPP on SOLmax which

partitions I into η bins S1, . . . , Sη such that CpSiq ď B. By the pigeonhole principle [67] there exists

at least one î such that PpSîq ě
Pmax
η . Let Sî be the solution SOLB of BIN-S for SCDP, and recall

that Pmax ě OPT by definition since Pmax does not consider the budget constraint. Since we rely

on a β-approximation algorithm for BPP, the returned number of bins is rβηs. Hence:

PpSOLBq ě
Pmax

η
ě

Pmax

rβηs
ě

OPT
rβηs

ùñ
PpSOLBq

PpOPT q
ě

1
rβηs

.

Notice that the guaranteed approximation bound of BIN-S depends on the number of bins

returned by the algorithm used to solve BPP, which in turn depends on β . Trivially, β “ 1 if we
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perform an optimal and computationally expensive algorithm for BPP. Another approach is to

rely on the approximation algorithm devised in [68] that gives β « 1.6 taking Opn log nq time but

with a potential unbounded space complexity without any further assumption. The Best-Fit (BF)

algorithm guarantees β “ 1.7 in Opn log nq time and Opnq space [69]. A faster algorithm that

provides β “ 2 with both Opnq time and space, is Next-Fit (NF) [70]. However, in this chapter,

we prefer BF since it has the best trade-off.

2.5 Algorithms for SCDP with Multiple Drones

This section proposes three algorithms for SCDP with multiple drones (with -M suffix) – a knapsack-

based approximation algorithm (KNA-M), a bin packing-based approximation algorithm (BIN-M),

and a coloring-based heuristic algorithm (COL-M). Note that, these algorithms have been devised

and adapted from the original single-case drone algorithms in Section 2.4.

2.5.1 The KNA-M Approximation Algorithm

Based on dynamic programming, the KNA-M algorithm solves SCDP with multiple drones, requir-

ing Opmpn log n ` nBqq time and OpnBq space.

The idea behind KNA-M is that we sequentially run an optimal strategy (i.e., KNA-S) on the cur-

rent residual intervals for each drone. Then, we find a global solution for SCDP which comprises

all the previously computed solutions. The pseudo-code of KNA-M is given in Algorithm 6.

Algorithm 6: The KNA-M Algorithm

1 Î Ð I

2 for i P 1, . . . , m do

3 Si Ð KNA-Sp Îq, Î Ð ÎzSi

4 return SOL Ð tS1, . . . , Smu

First, the set Î characterizing the current residual intervals is initialized with all the intervals I

(Line 1, Algorithm 6). Then, recalling that there are m drones, we iteratively (Line 2) invoke the

optimal solution KNA-S on Î (Line 3), which contains the intervals (deliveries) that have not been

assigned to drones yet. This step makes an intermediate solution Si at each iteration for the i th

drone. So, the current set of intervals available for the remaining drones is decreased (Line 3). Fi-

nally, the returned solution is simply the union of the previously computed sub-solutions (Line 4).

The guaranteed approximation ratio of KNA-M is proven in Theorem 7.



64

Theorem 7. The KNA-M algorithm provides a solution for SCDP for multiple drones with an approx-

imation ratio of 1
m , where m denotes the number of drones.

Proof. Let SOL “ tS1, . . . , Smu be the solution returned by KNA-M and let OPT “ tO1, . . . , Omu be

an optimal solution for the SCDP on I . By construction of the solution SOL, we have PpS1q ě

. . . ě PpSmq. Note that having PpS jq ě PpSiq, for i ă j, will contradict that Si is the subset with

maximum reward at step i of algorithm KNA-M. Moreover, since S1 is the optimal solution with

one drone, PpS1q ě PpOiq, @i P t1, . . . , mu. Thus,

PpSOLq ě PpS1q “
1
m

m
ÿ

i“1

PpS1q ě
1
m

m
ÿ

i“1

PpOiq “
1
m
PpOPT q.

The KNA-M algorithm takes Opmpn log n ` nBqq time, and OpnBq space.

2.5.2 The BIN-M Approximation Algorithm

Similarly to KNA-M, BIN-M iterates the BIN-S algorithm m times, every time working on the re-

maining deliveries to find a solution that approximates SCDP. BIN-M solves SCDP with multiple

drones in Opmpn log n ` hpnqqq time and Opnq space. The pseudo-code of BIN-M is similar to

the one already shown in Algorithm 6. The only difference resides in Line 3, where in BIN-M is

iteratively invoked BIN-S. The pseudo-code of BIN-M is given in Algorithm 7.

Algorithm 7: The BIN-M Algorithm

1 Î Ð I

2 for i P 1, . . . , m do

3 Si Ð BIN-Sp Îq, Î Ð ÎzSi

4 return SOL Ð tS1, . . . , Smu

Similarly to Theorem 7, it can be proven:

Theorem 8. The BIN-M algorithm provides a solution for SCDP for multiple drones with an approx-

imation ratio of 1
rmβη1s

, where m denotes the number of drones, η1 is the optimal number of bins,

and β is the approximation ratio of an algorithm that solves BPP during the first iteration.

2.5.3 The COL-M Heuristic Algorithm

The heuristic algorithm COL-M solves SCDP with multiple drones in Opmpn log n`hpnqq time and

Opnq space. The idea behind COL-M is that we sequentially perform a conflict-free coloring using
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COL-S on the current residual intervals, so we assign a drone for each sub-partition. Then, we

find a global solution for SCDP comprising the previously computed solutions. The pseudo-code

of COL-M is given in Algorithm 8.

Algorithm 8: The COL-M Algorithm

1 Î Ð I , m1 Ð m, SOL Ð∅

2 while Î ‰∅ do

3 tS1, . . . , Sχu Ð COL-Sp Îq

4 sortpSiq s.t. PpSiq ě PpSi`1q

5 SOL Ð SOL Y tS1, . . . , Smintχ,m1uu

6 Î Ð Îz
Ť

Si , m1 Ð m1 ´ mintχ, m1u

7 return SOL

The set Î and the number m1 of available drones are first initialized (Line 1). Next, until Î is not

empty (Line 2), an optimal coloring is performed to generate S1, . . . , Sχ (Line 3), which are sorted

in non-decreasing order by the total reward (Line 4). Now, depending on the number of current

available groups χ and drones m1, we assign the best mintχ, m1u groups to drones (Line 5). After

that, we update the current solution SOL and the number of available drones (Line 6).

2.6 Performance Evaluation

In this section, we compare the performances, in terms of obtained reward, of the three proposed

heuristics for solving SCDP with a single drone and multiple drones cases.

2.6.1 The Settings

In the last-mile delivery area A, we assume for the truck a randomly generated trip of 300km,

which is a reasonable distance for a single working day [71]. The locations of the n “ t25,50, 75,100u

deliveries are uniformly generated at random in A. The truck carries a total of m “ t1, 3,5u drones

that fly at a constant speed ds “ 20m{s [29]. We set the drone’s battery B “ 5MJ [29]. We set

the drone’s payload to dp “ 5kg [29]. With respect to these parameters, the energy cost wi for

performing a delivery is computed according to the energy model presented in [29, 72], which

depends on the distance to travel, the total mass of the drone plus the payload, and the drone’s

speed. Notice that, the payload weight affects exclusively the outbound trip since after serving

the customer the drone will not carry any more a package.
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About the rewards assigned to each delivery, we randomly generate them as an integer number

between r1,100s according to the Zipf distribution [73] varying the θ parameter in t0, 0.4,0.8, 1.0u.

When θ “ 0, the rewards are uniformly distributed in r1, 100s; when θ ě 0.8, there are a few

rewards with a large probability and many rewards occurring a few times. The energy costs and

the delivery intervals are uniformly generated according to the Uniform distribution, assuming

four energy/delivery-interval configurations Σi (from Σ1 with low variability to Σ4 with high vari-

ability). In this case, the delivery interval Ii of a given delivery δi is simply the length between

δL
i and δR

i on the truck’s road. With regard to the configurations, in Σ1 the maximum energy cost

is 2.5MJ and the maximum delivery interval is 1.5km, in Σ2 this pair is 5MJ and 10km, in Σ3 we

have 7.5MJ and 20km, and finally in Σ4 we have 30MJ and 30km. Note that, Σ1 and Σ2 always

admit feasible deliveries, while the other two do not. Moreover, Σ4 allows very long delivery

intervals. Finally, once the delivery intervals are generated, each launch point δL
i is uniformly

generated between λ0 and λr`1 minus the length of the interval Ii.

When evaluating the performances of our algorithms presented in Sections 2.4–2.5, we com-

pare COL-S and BIN-S with respect to the optimal solution in the single drone scenario provided

by KNA-S, and we compare KNA-M, BIN-M, and COL-M with respect to the optimum solutions in

the multiple drones scenario obtained from the ILP formulation. Also, as a reference for com-

parison (as baseline), we propose three greedy heuristic algorithms for single and multiple drone

scenarios. Specifically, Greedy Closest Rendezvous Point (GCRP) repeatedly selects the compatible

interval with the closest rendezvous point δR
i , Greedy Smallest Weight (GSW) repeatedly selects

the compatible interval with the smallest energy cost wi, Greedy Largest Reward (GLR) repeatedly

selects the compatible interval with the largest reward pi. In the case of multiple drones, these

heuristics are repeated on the residual subset of deliveries not yet assigned to the drones.

2.6.2 Experiment Results

Figure 2.6.1 illustrates the performances, in terms of collected rewards, of our algorithms on

synthetic data. Specifically, in the first row, we present the results for SCDP with m “ 1 (single

drone), whereas in the other two rows we illustrate the results for SCDP with m “ 3 and m “ 5

drones, respectively. The x-axis reports the four different configurations energy/interval Σi, while

the y-axis shows the ratio between the reward reported by any algorithm and that by the optimum

algorithm. Clearly, the ratio is less than or equal to 1.
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Figure 2.6.1: Performance evaluation of our algorithms. The first row compares algorithms with

a single drone, while the other two rows compare with multiple drones.

Single drone scenario

When m “ 1, the best performing algorithms are COL-S, BIN-S, and GLR-S in general, which

substantially take into account the rewards in their delivery selection rule. Instead, GSW-S and

GCRP-S, whose selection rule is unlinked to the rewards, show the worst performance. This trend

is particularly emphasized for the Zipf parameter θ “ 0.8. In this case, there are a few large-

value rewards and many small-value rewards. Thus, GLR-S is facilitated in its choice. When

the rewards are uniformly distributed (θ “ 0), COL-S guarantees better performance than GLR-

S, probably because the solution considers also the compatibility of the intervals, and not only

blindly the reward. In fact, while COL-S first selects the optimal sets of compatible intervals and

then chooses the best one (with the largest overall reward), GLR-S could blindly select only a few

large intervals, among the best ones in terms of reward, compromising the possibility to extend

the goodness of the solution even if the drone has more energy to spend. Instead, in presence of

unbalanced rewards (θ “ 0.8), GLR-S exhibits the best solution because the algorithm can select

the most profitable intervals without any other consideration. The performance jump of GLR-S is

high when θ “ 0.8. The difference between the two approximation algorithms COL-S and BIN-S

is large when the variability is low (e.g., Σ1) with COL-S that obtains « 85% of the optimum,
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while BIN-S gets « 55% of the optimum reward. However, when the variability is higher (e.g.,

Σ4), they almost perform the same (with BIN-S slightly better than COL-S). Another aspect to

consider is the global loss of performance when n increases. This is probably due to the increase

of conflicts among the intervals, and therefore sub-optimal algorithms can suffer when selecting

the deliveries for the drone without any conflict. Obviously, the ratio of KNA-S is always 1 since

it is optimal.

Multiple drones scenario

In the multiple drone scenario, i.e., for m “ t3,5u, we observe that GCRP-M and GSW-M perform

poorly, as in the single drone scenario. Accordingly, those strategies that select intervals (deliver-

ies) taking into account either weight or rendezvous time do not perform well. The approximation

algorithm KNA-M has an extremely good performance collecting ě 95% in any configuration. Al-

though the guaranteed approximation ratio of KNA-M is 1
m , where m is the number of drones,

its performance is much better than that threshold. This suggests to us that the approximation

analysis for KNA-M can be probably improved. Experimentally, we have observed that KNA-M

often returns the optimum, while in other cases there is only a little loss of performance, like

« 3% in average. Since KNA-M sequentially performs an optimal strategy on the residual subset

of deliveries, almost always the reward obtained by the first drone is much larger than that of the

second drone, and so on, while the reward that all the drones get in the optimal solution is more

or less equally distributed among them (it is indeed pretty balanced). This last observation can

help us find the optimal solution for the multiple drones case. Differently from the single drone

case when BIN-S was employed, BIN-M performs much better in the multiple drones case when

the variability is low (e.g., Σ1). We get this behavior because most likely intervals in conflict can

still be assigned to different drones, and the effect of having many intersections is less important.

On the other hand, the COL-M heuristic algorithm consolidates the good performance obtained in

single drone case by COL-S. In particular, we observe a quite stable trend on the four configura-

tions which degrades on average variability configurations, i.e.,Σ2 andΣ3. This happens probably

because the coloring procedure, which computes χ feasible set of intervals, does not consider the

reward to solve conflicts, therefore it may wrongly select low reward intervals at expense of more

valuable intervals. However, COL-M experimentally guarantees « 80% of the optimum in any

configuration. Finally, we observe that the performances of our proposed algorithms with m “ 5

drones are slightly better than those with m “ 3. This is probably because the residual intervals

can be assigned to other independent drones without conflicts. Notice that, we did not consider

experiments with more than 5 drones because it would have been impractical to get the optimal
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solution computed by the CPLEX solver.

2.7 Conclusion

This chapter investigated the Scheduling Conflictual Deliveries Problem (SCDP) to study the co-

operation between a truck and multiple drones in a last-mile package delivery scenario. After

showing that SCDP is an NP-hard problem, we proposed an ILP formulation that is suitable for

small instances in input. We also gave an optimal pseudo-polynomial time algorithm for the single

drone case and also provided additional time-efficient approximation and heuristic algorithms for

the single and multiple drones cases. Finally, we evaluated the performances of the proposed al-

gorithms on synthetic datasets. In future work, it would be interesting to investigate multi-depot

multi-truck scenarios or allow drones to perform multiple deliveries at the same time or recharge

their battery on charging stations. We also plan to study a more realistic dynamic environment,

dealing with network communications between the depot and ground-air vehicles, and address-

ing possible delays and new/canceled deliveries. To address these challenges, we plan to develop

online strategies to reschedule deliveries on the fly. Moreover, the SCDP assumes that the route

of the truck is already pre-planned and it is given. This is however not always possible, since

traffic, accidents, and road work may affect the original planned route. For this reason, a further

extension of our problem might be to adjust the truck’s route to optimize the expected minimum

number of drones to be employed. It is worthy of investigations the package allocation problem

derived from the possibility of the drone to carry more than one package at a time.
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Chapter 3

Drone-based Bug Detection in Orchards

with Nets: A Novel Orienteering Approach

3.1 Introduction

The focus of this chapter is to examine the use of a drone equipped with image/video capabilities

to detect pests in an orchard in a timely manner. Traditional field scouting for pest infestations

is a time-consuming procedure. By utilizing drones for inspections, trees can be thoroughly and

frequently examined through high-resolution imagery of all areas, including the top and bottom,

tasks that would be challenging by leveraging on ground robots. With this information, combined

with contextual data, early detection of pest infections can be achieved, leading to a reduction in

the use of insecticides or biopesticides [74].

Figure 3.1.1: Orchards today use nets to safeguard their crops from pests and harsh weather

conditions by covering the top and sides of the trees.

73



74

Orchards and vineyards are typically composed of multiple rows of trees arranged in straight

lines, referred to as aisles. To protect crops from hail, many orchards have nets installed on top

of the trees, as shown in Figure 3.1.1. These nets not only protect crops from adverse weather

but also help reduce pest damage by making it more difficult for insects to enter and infest the

trees [75,76]. However, the nets can also restrict the movement of drones, limiting them to flying

only along the aisles and making the trajectories to cover the entire orchard much longer. In other

words, the limited space between the treetops and the presence of the nets both pose significant

risks to the drones’ propellers. In order to suitably model the mobility of the drone, we propose

a novel graph-based 3D data structure called 3D single-access aisle-graph, briefly orchard. Such

a data structure models the 3D constrained flight of a drone inside orchards wrapped with nets.

The objective of the drone is to capture pictures from various observable positions of the trees

modeled as vertices of the orchard. The edges of the graph represent the horizontal and vertical

drone movements.

The main challenge addressed in this chapter is how to overcome the limitations of drone

battery life when capturing images and videos of large orchards to detect bugs. The energy con-

sumption of a drone does not only depend on the size of the orchard but also on the payload being

carried, such as the weight of an RGB, or a multi- or hyper-spectral sensor. Also, obtaining high-

quality images and videos requires the drone to fly at significantly slower speeds or even hover in

place, which can lead to longer coverage times and increased energy consumption compared to

regular flight.

Given these limitations, we propose of prioritizing some observable positions on trees in the

orchard by assigning a deterministic “reward” value to each location, and select the drone trajec-

tory that maximizes the overall reward under the energy limitation. The reward value associated

with the locations can be determined by analyzing historical data on bug presence, weather con-

ditions, and incorporating entomological knowledge. For instance, entomologists observed that

bugs show a stronger preference for staying at the border of the orchard rather than in the mid-

dle [77], or tend to favor medium-high light exposure particularly during the early morning or

late afternoon [78]. So, large reward can be appropriately assigned to the areas of the orchard

where the likelihood of bug observations is the highest.

In this chapter, the objective is to determine a partial traversal of the orchard graph (i.e., an

energy feasible drone’s route to scout bugs) visiting the vertices (i.e., the locations) that overall

return the largest reward. The Orienteering Problem (OP) can be used as a framework to model

this problem by leveraging the novel graph-based 3D data structure and the concept of reward.

Our results are summarized as follows:
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• We introduce a novel graph-based 3D data structure called 3D single-access aisle-graph,

briefly orchard, that models the mobility of drones inside orchards with nets. The ver-

tices of the graph are weighted with a reward value which is based on the suggestions of

entomologists and historical data.

• We propose an optimization problem, called Single-drone Orienteering Aisle-graph Problem

(SOAP1), in which a single drone is in charge of planning an energy-feasible route inside

an orchard in order to maximize the total collected reward.

• We design five algorithms to solve SOAP, i.e., a dynamic programming-based optimal algo-

rithm (OPT), two approximation algorithms (ABP and ABA), as well as two fast heuristics

(GBT+ and GBA+).

• We assess the effectiveness of our algorithms by testing them on both synthetic and real-

world data, tailored to our specific problem.

The chapter is structured as follows: Section 3.2 reviews the related work. Section 3.3 for-

mally defines SOAP. Section 3.4 presents the optimal, approximation, and heuristic algorithms for

solving SOAP. Section 3.5 evaluates the goodness of our algorithms. Finally, Section 3.6 proposes

conclusions and future research directions.

3.2 Related Work

The OP is a particular extension of the well-known Traveling Salesman Problem (TSP), in which

cities have profits or rewards in addition to the cost of moving from one to another. The main

goal of the TSP is to find the most cost-effective cycle that visits all the cities only once, whereas

the objective of the OP is to find a cycle that visits a specific subset of the cities, to maximize

the sum of profits from those visited cities, and ensure that the predetermined cost budget is

not exceeded. The OP has been first introduced in [80] and proven to be NP-hard and APX-hard

in [80] and [81], respectively. Many variations of the OP have been proposed in the literature,

such as the rooted and unrooted versions, directed and undirected edges, planar graphs, and

multi-robot scenarios. For a survey of different formulations, the reader is referred to [82]. Due

to its intrinsic computational complexity, many heuristic solutions have been proposed in the

literature, and exact solutions have been proposed but do not scale to problem instances with

tens of thousands of vertices. A different line of research has aimed at developing approximation

1Insecticidal soap is used to control many plant insect pests [79].
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algorithms for OP, often providing specialized results applicable only to restricted versions of the

problem, such as a 4-approximation for the rooted version of the problem [83] and p1 ` ϵq-

approximation algorithm for the case where the graph is planar and fully connected [84]. Also

this chapter provides optimal and approximation algorithms for OP in a special class of graphs.

The OP in aisle-graphs has been first studied in [85]. The authors plan a path of a robot in a

vineyard to control the amount of water given to the vines and ensure the optimal moisture level.

The vineyard is modeled by a 2D aisle-graphs with two accesses (one access on each endpoint

of the aisle). The authors propose two greedy heuristic algorithms, GFR and GPR, to tackle this

problem which allow to traverse subsets of full or partial aisles, respectively. The time complexity

of GFR and GPR are Opm2q and Opm2nq, respectively, given that m is the number of aisles and n

is the number of vertices (i.e., trees) in each aisle. Furthermore, the same authors in [86] study

the problem of routing multiple robots, proposing three algorithms that combine GFR and GPR

both in series or in parallel.

The authors in [87] improve on the results presented in [86]. They introduce an optimal

algorithm called OFR-I, which improves on GFR by determining the optimal solution for the full-

row policy with a time complexity of Opm ¨ max n, log mq. Additionally, they propose HGC, which

outperforms GPR but at the cost of a larger time complexity. Also, in two other papers, [88,89], the

authors introduce a 2D aisle-graphs with only one access for each aisle and propose approximation

and greedy algorithms for OP.

None of the surveyed papers address the specific aspect of 3D mobility of vehicles, such as

drones, as we do in this chapter. In fact, we propose an optimal solution of OP for a variation of

aisle-graphs with single access, incorporating the additional third dimension.

The OP has been also studied considering different stochastic costs to traverse the edges of

the orchard [90–92]. However, due to the regularity of the actual orchards there is no substantial

difference in the cost for moving from one vertex of the tree to another one, from one tree to

another one, or from one aisle to the adjacent one. In any case, the movements involve reposi-

tioning over a few meters, employing a stop-and-go procedure. Hence, in our model, we have

considered the energy cost for each edge constant, and hence unitary.

Finally, the authors in [93] study the OP applied to aerial 3D scanning. Although the problem

may appear similar to ours since it considers the 3D scenario, their primary objective in terms of

coverage differs from ours since the main goal is to cover the entire area.
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3.3 Problem Definition

In this section, we formally present the orchard graph model, including the cost and reward

functions, as well as the problem that we aim to solve.

3.3.1 Orchard Graph Model

A 3D single-access aisle-graph, briefly orchard, and denoted by Opm, n, lq is a graph data structure

G “ pV, Eq represented by the set of vertices V and edges E that characterize the orchard where

we plan to work into. Given the orchard Opm, n, lq, let m be the number of rows (aisles), let

n be the number of columns, and finally let l be the number of possible observable positions on

each tree. However, rows are all connected only via the first column (also called backbone) (see

Figure 3.3.1) and for this reason, it is referred as 3D single-access aisle-graph. Since on each row

there are n trees, then the orchard has exactly mn trees and mnl different positions to be observed

by the drone.
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Figure 3.3.1: An orchard Op3, 4,3q. The aisle labeled A1 and the tree labeled T3,1 are highlighted.

The light-green vertices represent the rewards, while the costs have been omitted as they are

assumed to be unitary. The vertex v1,1 constitutes the depot.

The set of vertices is defined as V “ V T Y V P where V T is the actual set of tree roots of

the orchard and V P is the set of observable positions of the drone. Specifically, the former is
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V T “ tvi, j|1 ď i ď m, 1 ď j ď nu while the latter is V P “ tvk
i, j|1 ď i ď m, 1 ď j ď n, 1 ď k ď lu.

Similarly, the set of edges is defined as E “ ET Y EP where ET indicates inter-tree connections,

while EP indicates intra-tree connections. In particular, ET is defined as follows: each vertex vi, j

with 1 ď i ď m and 1 ă j ă n has two edges, one toward vi, j´1 and the other toward vi, j`1; each

vertex vi,1 with 1 ă i ă m has three edges: one toward vi´1,1, one toward vi`1,1, and one toward

vi,2. Therefore, the edges connected to the corner vertices v1,1 are vm,1 are well defined.

Concerning EP , each vertex vk
i, j for any i, j with 1 ď k ă l has two edges, one toward vk´1

i, j

and the other toward vk`1
i, j forming a connected list. As per convention, let v0

i, j be equivalent

to vi, j. Therefore, each tree placed in vi, j has an edge in its associated list. In the orchard, let

ri “ vi,1, . . . , vi,n represent the i th row, where 1 ď i ď m, and let c1 “ v1,1, . . . , vm,1 be the backbone,

which is the only column connecting all rows together. Also, let Ai be the i th 2D single-access aisle-

graph, or aisle, of O with n rows and l columns, where the vertices in the columns represent the

observable positions, and 1 ď i ď m (see A1 in Figure 3.3.1). So, Opm, n, lq consists of m 2D single-

access aisle-graphs, one for each aisle. Let Ti, j be the tree in the orchard rooted at vi, j formed by

the sequence of vertices v1
i, j, . . . , v l

i, j, where 1 ď i ď m, 1 ď j ď n (see T3,1 in Figure 3.3.1). Finally,

the main vertex, called depot, is located at v1,1.

An example of an orchard with dimensions Op3, 4,3q is presented in Figure 3.3.1. The orchard

comprises 3 rows (aisles), 4 columns (number of trees per aisle), and 3 observable positions for

each tree. Therefore, there are 12 trees with a total of 36 observable positions. The main vertex

v1,1 constitutes the depot, and it is depicted in dark gray representing the initial and final location

of the drone, and the root of the first tree T1,1 of the aisle A1. Moreover, the root of the trees are

illustrated as the brown vertices, while the observable positions are represented by the light green

vertices. It is important to note that the drone is unable to fly crossing the row of trees due to the

tree’s foliage, and it also cannot fly over the aisles as it is restricted by the nets (see Figure 3.1.1).

3.3.2 Cost and Reward Functions

In this section, we present the cost and reward functions that will be utilized to assign values

(edges and vertices) to the orchard graph.

Cost Function

In an orchard, a drone is responsible for performing tasks such as taking pictures or videos on a

specific subset of observable positions on trees. The drone is an energy-constrained flying vehicle,

with a battery capacity of B ě 0 in terms of energy. As the drone moves along edges, it expends

energy from its battery. To model this energy consumption, we define the edge cost function
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C : E Ñ R`, which represents the energy cost of flying along any edge e P E. As said, all the

movements involve a repositioning of a few meters, with a stop-and-go procedure, and therefore

we consider the edge cost function to be constant, i.e., Cpeq “ ψ for all e P E, with a given

value of ψ P N. In more detail, during the process of capturing pictures, the drone needs to

remain stationary for a certain duration to stabilize the camera and ensure proper focus, thus

consuming extra energy. Therefore, when moving between two adjacent vertices of the same

tree, the additional energy required for the slightly longer hovering duration, combined with

the slightly shorter repositioning time, results in energy consumption equivalent to that required

when transitioning between two different trees or two different aisles. Therefore, for the purpose

of simplifying the problem, the energy required for moving along edges of the graph can be

assumed to be unitary regardless of the traveled distance. So, since any constant ψ does not

change the optimal solution, we assume unitary costs, i.e., ψ“ 1.

Reward Function

Let R : V Ñ R` be the reward function that models the relevance of doing a specific task on

vertices. The reward function provides meaningful values only for the set of observable positions

V P while providing zero values for the set of trees, so Rpvq “ 0 for any v P V T . According to the

definition of OP, the drone can only collect the reward associated with a vertex on its first visit

during a single mission (flight). Specifically, subsequent visits during the same mission to the

same vertex do not yield any rewards. However, when the drone repeatedly travels on the same

edge during the same mission, the energy cost is taken into account each time.

As aforementioned in Section 3.1, assigning rewards to vertices is a crucial aspect in this

context and the orchard’s traversal of the drone varies depending on the specific reward instance

being addressed. However, the reward settlement is an aspect that falls outside our research. Our

OP algorithms receive in input the rewards and return the optimal/sub-optimal traversal for the

received rewards. The assigned reward values to the vertices remain constant during the drone’s

route planning process, and as such, there is no need to update the drone’s route while it flies. If

the rewards change, the path has to be recomputed from scratch. However, the rewards are not

derived in real-time.

It is worth noting that in our context, larger rewards indicate areas of the orchard with a higher

probability of finding bugs. Such areas are defined by leveraging the expertise of entomologists

and data analysts. Different periods of the season and various hours of the day are associated with

appropriate rewards. The reward decision can be adjusted based on historical data from climate

or micro-climate weather stations. Therefore, studying time series data can aid in predicting bug
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abundance on specific days of the year, facilitating the adjustment of reward values assigned to

vertices accordingly. For example, there might be a higher occurrence of bugs in spring and late

summer/early fall, and the bug abundance peaks can be determined using information collected

throughout the bug population’s lifecycle [94,95]. Additionally, on those days, the sun exposure

of the trees can serve as an indicator of larger rewards [96]. During the fruit growing season,

the tree sites where the fruits grow would have larger rewards compared to the trunk. In the

experiments in Section 3.5, since we have not collected yet enough data in the HALYomorpha

halys IDentification (HALY.ID) European research project [17] to analyze time series, we will

assign larger reward to the border areas of the orchard as suggested by the entomologists, to the

areas where the pheromones to attract the bug are installed, or to the areas largely exposed to

the sun.

3.3.3 Problem Formulation

In this chapter, we study the use of a drone to take photos or record videos inside an orchard to

detect bugs. The collected media will then be processed to evaluate the insect abundance, but this

task is not within the scope of this chapter. Given an orchard Opm, n, lq with m rows, n columns,

and l observable positions in each tree, and a battery capacity B ě 0, the goal of Single-drone

Orienteering Aisle-graph Problem (SOAP) is to find a suitable cycle for the drone that starts and

ends at the depot v1,1 such that the collected reward is maximized and its energy cost is not larger

than B. In fact, SOAP is a specific case of the OP problem.

The orchard data structure is basically a tree data structure (see Figure 3.3.1), and therefore

cycles do not exist. In fact, given a subset of vertices X Ď V , there is a unique minimum cycle trip

to/from the depot that connects all the vertices in X because the structure is loosely connected.

The subgraph induced by the vertices of X is a tree rooted in v1,1. For a given X Ď V , let CpX q

be the minimum overall flying cost for the drone defined as the sum of the costs on edges for the

unique path for connecting all the vertices in X . Similarly, let RpX q represent the overall attainable

reward which is the sum of the rewards of each vertex in set X , as well as any other rewards in

the unique cycle induced by the vertices in set X .

Given any subset of vertices X in O, SOAP aims to select a subset S that maximizes the reward,

under the constraint that the cost of flying to connect all locations in S does not exceed a given

budget B. Formally:

S “ arg max
X ĎV

tRpX q | CpX q ď Bu, (3.1)

where R is the reward function to maximize, C is the flying cost function, and B is the given
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budget.

Since we assume unitary costs on edges, the minimum budget B in input must be ě 2 (so,

βmin “ 2), needed to at least visit the closest vertex from the depot, i.e., v1
1,1, which is adjacent

to it. In other words, B “ 2 guarantees a non-trivial round trip in O. On the other hand, the

budget B is upper bounded and cannot be larger than the budget that ensures a sequential and

full visit of the orchard, i.e., βmax “ m2pn ´ 1q ` 2pm ´ 1q ` mn2l, where the first term is the

cost of traveling (back and forth) through all rows, the second term is the cost for traveling the

backbone, and the third term is the cost of visiting all the trees in O. Any budget larger than βmax

would result in a waste of energy. Hence, a meaningful value of budget is βmin ď B ď βmax, and

asymptotically2 it holds that B “ Opmnlq.

3.4 Proposed Algorithms for SOAP

In this section, we present five algorithms that are able to solve SOAP. Specifically, we devise a

polynomial-time optimal algorithm, called OPT, two approximation algorithms, called Approxi-

mation Best Point (ABP) and Approximation Best Aisle (ABA), respectively, and two time-efficient

greedy heuristic algorithms, called Greedy Best Tree (GBT+) and Greedy Best Aisle (GBA+), re-

spectively.

Observe that the running time for the path computation (i.e., the execution time of the algo-

rithms that solve our problem) do not weight on the energy of the drone because the drone itself

is not responsible for computing its own route planning. In fact, this task is delegated to an exter-

nal entity such as a edge/cloud service. The drone’s trajectory, outputted by the OP algorithms, is

then transferred and stored in the drone’s memory. So, the only energy depleted by the drone is

that used to load the trajectory in its local memory, and it is independent of the solver algorithm

used.

3.4.1 The OPT Optimal Algorithm

In order to optimally solve SOAP, we propose a dynamic programming algorithm, called OPT. It

exploits four tables.

For each tree Ti, j with 1 ď i ď m, 1 ď j ď n, the first table T stores the cumulative reward that

can be collected given a budget 2k with 0 ď k ď l from the depot in vi, j. Obviously, Tri, j, 0s “ 0

by convention. Then, we can fill the remaining cells of the table as follows: Tri, j, ks “ Tri, j, k ´

2The order of magnitude O not to be confused with the orchard O.
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1s`Rpvk
i, jq. The OPT algorithm utilizes this table to make a decision on the number of consecutive

vertices that will be included in the solution for each tree. The table T has a size of mnpl ` 1q.

Noting that any edge is traversed twice as there is only one path in the orchard to reach any

vertex, any solution spends an even amount of budget. Without loss of generality, we calculate

the optimal solution up to B
2 and we count just one unit of budget for any edge traversal.

For each aisle Ai, the second table A stores the best solution so far computed, with 1 ď i ď m

and any budget i ´ 1 ď b ď t
B
2 u. Indeed, for each aisle Ai, the algorithm must make a choice on

which trees to include in the solution and how much budget to devote specifically to each tree. In

fact, if the solution considers visiting vertices belonging to the tree Ti, j, the drone must traverse

all the trees from 1 to j ´ 1 in the aisle Ai, possibly without taking any vertex in some of those

trees. So, we create a table A of size m ˆ n ˆ pnl ` pn ´ 1qq where:

Ari, j, bs “ max
0ďkďl

tAri, j ´ 1, b ´ k ´ 1s `Tri, j, ksu. (3.2)

Observe that Ari, j, bs considers visiting the aisle Ai up to the tree Ti, j, and clearly when k “ 0 no

vertices of that tree are visited.

Then, for each aisle Ai with 1 ď i ď m and any budget i ´ 1 ď b ď t
B
2 u, the third table A˚

memorizes which is the maximum reward by varying the last tree visited:

A˚
ri, bs “ max

1ď jďn
tAri, j, bsu. (3.3)

Note that the table A˚ has a size of n ˆ pnl ` pn ´ 1qq.

Finally, the OPT algorithm has to decide which aisles to select, and for each of these, up to

which tree to visit. Considering that to reach the aisle Ai the drone must fly the backbone portion

c1 in front of the rows 1, . . . , i ´ 1 up to row i, the optimal solution considering Ai is defined by

the optimal solution that includes up to the aisle Ai´1, possibly without taking any tree in some of

the aisles A1, . . . , Ai. For this purpose, we create the fourth table Q. To find the final solution, we

first calculate the maximum reward with a given budget b assuming that one will fly up to row i.

Qri, bs “ max
0ďb1ďmintb´i´1,nl`n´1u

tQri ´ 1, b ´ 1 ´ b1
s `A˚

ri, b1
su. (3.4)

Then, among Qri, bs, we determine the absolute maximum reward with a budget bounded by B

as:

max
1ďiďm,0ďbďt

B
2 u

tQri, bsu. (3.5)

Note that the size of table Q is m ˆ tB{2u.

The OPT algorithm takes OpmnlBq time. However, since the maximum non-trivial budget is

upper bounded by βmax “ Opmnlq, then OPT has time complexity Opm2n2l2q.

Accordingly, by the above discussion, we can state that:
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Theorem 9. The OPT algorithm optimally solves SOAP.

Proof. Let us define Tri, j, ks as the optimal reward that can be achieved given a budget 2k in the

tree Ti, j starting from an initial vertex vi, j. Let Ari, j, bs be the optimal reward that can be attained

given a budget b on only the aisle Ai, and must traverse the vertices vi,1, . . . , vi, j, i.e., the aisle up

to the tree Ti, j. Moreover, let A˚ri, bs be the optimal solution in the only aisle Ai with budget b.

Finally, let us define Qri, bs as the optimal solution on aisles A1, . . . , Ai and budget b.

Let us note that we do not need to prove the optimality of tables T and A˚, since the values

stored in these two tables are computed through an exhaustive search. This, in the following, we

will prove only the correctness (via induction) of table A and Q.

Let us start with A. For the base case, for any i, j, and b “ 0 the value is 0 since no budget can

be allocated to any tree. Concerning the inductive step, when computingAri, j, bs by the induction

hypothesis, we have that Ari, j ´ 1, b ´ k ´ 1s for any 1 ď k ď l are already computed correctly.

Since any optimal solution Ari, j, bs visits only the aisle Ai in increasing index order, up to

any tree Ti, j, and must thus traverse the vertices vi,1, . . . , vi, j, Ari, j, bs is built starting from a sub-

problem that traverses the vertices vi,1, . . . , vi, j´1 and some vertices of tree Ti, j. Then, Ari, j, bs is

based on a sub-problem that considers up to the vertex vi, j´1 on the aisle Ai, leaves pk ` 1q units

of budget to reach tree Ti, j (1 unit of budget), and can allocate budget k to tree Ti, j. Recall that

table Tri, j, ks already contains the optimal solution for tree Ti, j on aisle Ai with budget k. Hence,

the value of Ari, j, bs in Eq. (3.2) is correct.

Now, assume by contradiction, that there exists a solution A1ri, j, bs ą Ari, j, bs, and that is

the first time that Eq. (3.2) does not provide the optimum. Let vertex vi, j be the vertex reached

by A1ri, j, bs in aisle Ai. The solution A1ri, j, bs gains Tri, j, ks and the reward of a sub problem

Ari, j´1, b´k´1s, which is optimal. That is, A1ri, j, bs´Tri, j, ks “ Ari, j´1, b´k´1s, and also

Ari, j, bs´Tri, j, ks “ Ari, j´1, b´k´1s, thus A1ri, j, bs “ Ari, j, bs contradicting the assumption

that A1ri, j, bs ą Ari, j, bs. Finally, since we do not know in advance the best solution inside the

aisle Ai, the optimal solution with budget b is found by computing the maximum between all

1 ď j ď n, and stored in table A˚ri, bs.

To prove the correctness of Q we can use similar arguments and the fact that the values in this

table are based on the optimality of A˚.

Let us illustrate OPT using the example in Figure 3.3.1 and given a budget of 21. For conve-

nience, we report the vertices’ rewards of Figure 3.3.1 in Table 3.4.2. We compute the output of

the tableQ (see Table 3.4.3) assuming to have already computed the values A˚ri, bs by exploiting

Eq. (3.3), for 0 ď i ď 2 and 0 ď b ď 10, outlined in Table 3.4.1.
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Table 3.4.1: Table A˚ considering the example in Figure 3.3.1 with B “ 21.

0 1 2 3 4 5 6 7 8 9 10

1 0 3 5 10 18 21 26 33 37 40 43

2 0 7 14 15 22 27 31 32 35 39 40

3 0 1 8 12 17 20 27 29 37 40 46

Let us compute the best solutions when considering only the first aisle A1. Qr1,1s “ 3 because

in the first aisle and budget 2 (recall that the second index in Q is halved, so 1 means budget 2)

only the vertex v1
1,1 can be visited, which has a reward of 3. Qr1, 2s “ 5 since the drone can visit

both v1
1,1 and v2

1,1. It is worth noting thatQr1, 3s “ 10 has two options, either fully visiting the first

tree T1,1 (3 ` 2 ` 5 “ 10) or visiting the vertices v1
1,2 and v2

1,2 from the second tree (2 ` 8 “ 10).

Using the same reasoning, Qr1,4s “ 18 up to the last value Qr1,10s “ 43, which is given by

v1
1,2, v2

1,2, v3
1,2, v1

1,3, v2
1,3, v2

1,4, v3
1,4. This means that Qr1, bs “ Ar1, bs, for any b.

Table 3.4.2: The vertices’ rewards of example Figure 3.3.1. The highlighted value has aisle i “ 2,

tree j “ 3, and observable position k “ 1, i.e., Rpv1
2,3q “ 2.

j

1 2 3 4

i

1 k

1 3 2 8 2

2 2 8 7 8

3 5 8 4 1

2 k

1 7 8 2 1

2 7 5 6 1

3 1 4 1 9

3 k

1 1 7 4 9

2 7 1 8 4

3 4 9 8 6

Let us calculate the optimal solutions by including A2 as well. From this point on, we have to

reallocate the budget between the new current aisle and the previous ones. To compute Qr2, 1s,

we need to evaluate the best solution when allocating a budget of 2 for A2 (and 0 for A1) and

the best solution when providing a budget of 0 for A2 (and 2 for A1). In this case, Qr2,1s “

maxt0,3u because with budget 2, we cannot visit any observable position in A2 (this is the reason

we have 0) while the best solution assigning budget 2 up to the previous aisle was 3: hence the

maximum is 3. For Qr2,2s we have an additional comparison. In fact, we can use the budget in
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different ways such as: devoting 4 only to A2, spending 2 on A1, or allocating 4 for A1. Hence,

Qr2, 2s “ maxt7, 3,5u because in the first case, we can visit v1
2,1 whose reward is 7, in the second

case we cannot obtain any reward from A2 but the best solution so far calculated up to A1 with

budget 2 gives 3, and in the third case 0 reward from A2 and the best solution with budget 4 was

with reward 5. Thus, the highest value among these is 7. With the same reasoning, Qr2, 3s “

maxt14, 10,3, 5,10u “ 14 up to the last value Qr2, 10s “ 47 obtained assigning budget 4 to A2

and budget 7 to A1.

The same reasoning applies when taking into account A3. In fact, for example, in Qr3, 2s we

compare the best solutions assigning budget 4 for only A3, or budget 2 for A3 and the best solution

with budget 2 up to A2, or the best solution with budget 4 up to A2. Hence, Qr3,2s “ maxt0, 3,7u

because in the first case we cannot visit any observable position in A3, in the second case, we

already know that with a budget of 2 the best solution gives 3, while in the third case the best

solution is 7. Therefore, the highest value obtained is 7. The last value of A3 is Qr3,10s “ 47.

Table 3.4.3: Table Q considering the example in Figure 3.3.1 with B “ 21.

0 1 2 3 4 5 6 7 8 9 10

1 0 3 5 10 18 21 26 33 37 40 43

2 0 3 7 14 18 22 27 33 37 40 47

3 0 3 7 14 18 22 27 33 37 40 47

In conclusion, the total reward obtained is 47 with B “ 20. As seen in Table 3.4.3, 14 units of

the budget are allocated for A1 and 4 units for A2 as can be seen in Table 3.4.1.

3.4.2 The ABP Approximation Algorithm

In this section, we devise the first approximation algorithm, called Approximation Best Point (ABP).

The main idea behind this algorithm is that we repeatedly (and greedily) select the “most

convenient” vertex among the remaining ones, i.e., the vertex whose ratio between its reward

and the budget spent to reach it is the largest. The pseudo-code of ABP is given in Algorithm 9.

At the beginning, the solution Ŝ is clearly empty (Algorithm 9, Line 1). Moreover, the set of

available vertices Ω to be visited is initialized with the set of observable positions V P (Line 2).

Then, the main cycle is repeated while the residual budget B is larger than 0 (Line 3). At each

iteration of the cycle, the greedy rule selects the reachable vertex that has the largest ratio among

the incremental reward, and the incremental additional cost for reaching it (Line 4). If there is

such a vertex, say vk
i, j, the drone decides to visit vk

i, j as well as the vertices not already visited
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Algorithm 9: The ABP Algorithm

1 Ŝ Ð∅

2 ΩÐ V P “ tvk
i, j|1 ď i ď m, 1 ď j ď n, 1 ď k ď lu

3 while B ą 0 and vk
i, j ‰∅ do

4 vk
i, j Ð argmax

vPΩ

RpŜYvq´RpŜq

CpŜYvq´CpŜq
s.t. B ´ CpŜ Y vq ě 0

5 Sk
i, j Ð tv1

i, j , . . . , vk
i, ju XΩ

6 Ŝ Ð Ŝ Y Sk
i, j , B Ð B ´ pCpŜ Y Sk

i, jq ´ CpŜqq

7 ΩÐ ΩzSk
i, j

8 return Ŝ

on the unique and minimum length path toward vk
i, j. Formally, the drone visits the subset Sk

i, j

of vertices in tv1
i, j, . . . , vk

i, ju that still belong to the set Ω of not visited vertices (Line 5). Then,

we update the current solution Ŝ, and the residual budget B (Line 6). Also the set Ω is updated

(Line 7). Otherwise, if there is no vertex to be visited (i.e., vk
i, j “∅), the algorithm stops cycling.

Finally, the solution is returned (Line 8).

In order to derive the approximation bound, we recall the fundamental definition of submod-

ularity:

Definition 1 (Submodularity [63]). Given a finite set V “ tv1, . . . , vnu, a set function f : 2V Ñ R

is submodular if for any X Ď Y Ď V and v P V zY , the marginal gain satisfies:

f pX Y vq ´ f pX q ě f pY Y vq ´ f pY q

A function f : 2N Ñ R is monotone modular if the marginal gain equates the above inequality,

i.e., f pX Y vq ´ f pX q “ f pY Y vq ´ f pY q. A modular function is obviously also submodular.

Precisely, it is known by [63] that an algorithm that maximizes the objective function by using

a greedy rule that iteratively selects elements with the largest submodular marginal gain can

achieve a p1´
1
e q-approximation guarantee, where e is the Euler’s number. However, if the goal is

to consider, in addition to a modular reward, a modular cost function as a constraint, a generalized

greedy rule that iteratively selects the element with the largest ratio of the submodular marginal

gain over the submodular cost achieves 1
2p1 ´

1
e q-approximation guarantee [97].

Theorem 10. The ABP algorithm provides a 1
2p1 ´

1
e q-approximation.

Proof. The result follows immediately from the approximation guarantee studied in [97]. Since

both the reward function R and the cost function C in ABP are modular (namely, there is only one

path between any two vertices [89]), the 1
2p1 ´

1
e q-approximation bound is therefore guaranteed.
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Some considerations about the time complexity of the ABP algorithm. Recalling that our

orchard O has m rows (hence m aisles), n columns (i.e., n trees), and l observable positions

for each tree, at each iteration, the vertex that has the largest ratio (Line 4) is selected among

an upper bound of mnl possible vertices. The calculation of the marginal reward gain and the

marginal additional cost has a constant-time complexity [89], so the time complexity is Opmnlq.

Concerning the main loop (Line 3), it depends on the budget B, and it is executed no more than B
2

times because at each iteration one moves at least one position ahead (and we have to consider the

returning path also). Accordingly, the time complexity of the ABP algorithm is OpBmnlq, exactly

the same as the optimal OPT. Due to βmax, the algorithm ABP has time complexity Opm2n2l2q.

However, due to its simplicity, ABP is actually much faster than OPT, as we will see in Section 3.5.

We now illustrate how the ABP algorithm works with the example in Figure 3.3.1. We consider

an instance with a given energy budget of B “ 21. The algorithm begins to consider the ratios

starting from the first v1
1,1 which has a reward of 3 and costs 2, since the solution is empty now,

and therefore the ratio is 1.5. For the second vertex v2
1,1, its reward is 2 and costs 4, so the ratio

is 0.5. This is repeated for all vertices in Ω. The largest ratio is given by the vertex v1
2,1, with

reward 7, cost 4, and hence ratio 1.75. So, v1
2,1 is added to the solution. The next vertex to be

selected is v2
2,1 with the ratio 3.5 because its reward is 7 and an additional cost of 2. In the end,

the algorithm guarantees 41 as a total reward with an overall cost of 20.

3.4.3 The ABA Approximation Algorithm

In this section, we devise the second approximation algorithm, called Approximation Best Aisle

(ABA), that solves SOAP. The main idea behind this algorithm is that we repeatedly (and greed-

ily) select the “most convenient” aisle among the remaining ones. The pseudo-code of the ABA

algorithm is reported in Algorithm 10.

Let Bi “ 2ln ` 2pn ´ 1q ` 2pi ´ 1q be the required budget for fully visiting the aisle Ai from

the depot [89]. The ABA algorithm assumes that B ě Bm, i.e., the farthest aisle Am can be fully

visited by the drone. This algorithm returns the best solution among two sub-solutions Ŝ1 and Ŝ2,

initially empty (Algorithm 10, Line 1).

The algorithm creates the first solution Ŝ1 by selecting the aisle with the maximum reward

among those that can be fully visited by the drone (Line 3). Note that by our assumption any

aisle can be fully visited.

In order to build the second solution, for each individual aisle A1, . . . , Am we compute the

optimal solution invoking the solver OPTSA proposed in [89], which solves the OP problem on

any two dimensional aisle-graph consisting of a single aisle and the tree positions. These optimal
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Algorithm 10: The ABA Algorithm

1 Ŝ1 Ð∅, Ŝ2 Ð∅

2 Ω“ tS˚
1 , . . . , S˚

mu Ð OPTSA ptA1, . . . , Amu, Biq

3 Ŝ1 Ð argmax
S˚

i PΩ

RpS˚
i q

4 do

5 S˚
γ Ð argmax

S˚
i PΩ

RpS˚
i q

CpS˚
i q

s.t. B ´ CpS˚
i q ě 0

6 Ŝ2 Ð Ŝ2 Y S˚
γ , B Ð B ´ CpS˚

γ q,ΩÐ ΩzS˚
γ

7 while B ą 0 and Ω‰∅

8 if B ą 0 then

9 Ŝ2 Ð Ŝ2 Y AugmentpBq

10 return arg maxtRpŜ1q,RpŜ2qu

m solutions S˚

i , with 1 ď i ď m, are stored in Ω (Line 2). The time complexity of OPTSA is OpBinlq

where Bi is upper bounded by Opnl ` mq [89] and it is the budget required to select the entire

aisle i, with 1 ď i ď m. Then, ABA starts to create the second solution Ŝ2, so the main cycle

starts depending on the residual budget B (Line 4). Here, the greedy rule is to select the aisle Ai

that has the largest ratio “cumulative reward” (i.e., RpS˚

i q) to “needed budget for it” (i.e., CpS˚

i q)

(Line 5). The selected aisle is denoted by S˚

γ
. Thus, the solution Ŝ2 is augmented with S˚

γ
, and

the residual budget and the set of the residual pickable aisles are updated too (Line 6). The cycle

stops when the residual budget is not sufficient to select another entire aisle or when the set Ω

is empty. To complete the solution, any subset of positions reachable with the residual budget is

suitable (Line 9). Eventually, the best solution among Ŝ1 and Ŝ2 is returned (Line 10).

Theorem 11. ABA provides a solution for SOAP with an approximation ratio of 1
m .

Proof. Let SOL be the set of aisles that the ABA algorithm greedily selects, and let OPT be the

global optimal solution of the same instance. Moreover, let RpŜ1q be the total reward obtained by

the ABA algorithm by doing the selection in Line 3, and for any i “ 1, . . . , m let RpOPTiq be the

total reward that the optimal algorithm obtains on the single aisle Ai. So, we have the following:

RpSOLq ě RpŜ1q “
1
m

m
ÿ

i“1

RpŜ1q ě
1
m

m
ÿ

i“1

RpS˚

i q

ě
1
m

m
ÿ

i“1

RpOPTiq “
1
m
RpOPT q.

Indeed, if it had been that RpS˚

i q ă RpOPTiq, then the OPTSA algorithm would not have returned

the local optimal solution on the aisle Ai.
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Some considerations about the time complexity of the ABA algorithm. Computing for m times

the optimal solution for each aisle Ai has a time complexity of OpmBinlq since the solver OPTSA

takes OpBinlq time for each aisle Ai. However, in this case Bi is upper bounded by Opnl `mq, and

therefore Line 2 has a time complexity of Opmn2l2 ` m2nlq. The main loop in Line 4 is iterated

for no more than m times because the cardinality of the set Ω “ m, and the maximum extraction

in Line 5 asymptotically takes Opmq. Hence, the total time complexity of the ABA algorithm is

Opmn2l2 ` m2nlq “ Opmnl maxtnl, muq. Whenever B ą maxtnl, mu, this algorithm is faster than

OPT and ABP. However, its approximation ratio is worse than that of ABP if m ě 6.

Let us illustrate the ABA algorithm with the example in Figure 3.3.1. We take into account a

budget of 21 although ABA would have expected, at least, a budget equal to 34 (i.e., able to fully

visit the last aisle). The algorithm begins by considering the optimal solutions of all the aisles.

For A1 the total attainable reward is 58, for A2 it is 52, and finally, for A3 it is 68. The aisle with

the most cumulative reward is A3, but as previously said the drone does not have a sufficient

budget for it. Thus, Ŝ1 remains empty. Since the budget is 21 ă 34, only sub-optimal solutions

can be taken into account, evaluating Ŝ2. Hence, for the first aisle, the total attainable reward is

43 and costs 20, while for the second aisle the reward is 39 with costs 18 plus 2 for moving in

the backbone, and finally, for the third aisle, the reward is 37 with cost 16 plus 4. Accordingly,

the three ratios are in sequence 2.15, 1.95, and 1.85, respectively. Therefore, the algorithm will

pick the first one. After this selection, the algorithm exits returning a solution with 43 as a total

reward with an overall cost of 20.

3.4.4 The GBT+ Heuristic Algorithm

In this section, we propose a heuristic algorithm called Greedy Best Tree (GBT+), which solves

SOAP in polynomial time. The algorithm involves visiting an entire aisle or discarding it. The

strategy is to only consider fully visited aisles in the final solution. At each step, the aisle with the

highest reward-to-cost ratio is chosen. If there is not any fully visitable tree with the residual bud-

get, we allow to partially visit a single tree in order to avoid the wastage of budget, augmenting3

so the solution. The algorithm finishes when B “ 0. The pseudo-code of the GBT+ algorithm is

reported in Algorithm 11.

Initially the solution Ŝ is empty (Algorithm 11, Line 1), and the main loop starts to cycle

(Line 2). The drone will focus on a specific group of trees that it must visit in their entirety. This

means that once the drone begins observing a position v1
i, j on a tree Ti, j, it must continue to the

final observable position v l
i, j. Therefore, for each tree Ti, j, the algorithm will initially calculate

3This is the reason behind the “+” after the algorithm’s name.
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Algorithm 11: The GBT+ Algorithm

1 Ŝ Ð∅

2 while B ą 0 do

3 Ti, j Ð arg max
Ti, jRŜ

RpTi, jq

CpTi, jq
s.t. B ´ CpTi, jq ě 0

4 if Ti, j ‰∅ then

5 Ŝ Ð Ŝ Y Ti, j , B Ð B ´ CpTi, jq

6 else

7 Ŝ Ð Ŝ Y AugmentpBq, B Ð 0

8 return Ŝ

the total rewards and costs for visiting the entire tree, including the cost of traveling to that tree

based on the current solution. In Line 3 we compute RpTi, jq which is the sum of the rewards of

vertices for the tree Ti, j, and CpTi, jq which is the total cost for completely visiting the same tree

also considering the (possible additional) traveling cost for reaching that tree given the current

solution. The algorithm then selects the tree Ti, j with the highest ratio of rewards to costs (of

Line 3), and updates the current solution and budget accordingly (Line 5). This process is repeated

until the budget is fully utilized. If no more trees can be chosen, the solution is improved by

selecting any accessible vertex, at which point the remaining budget will be exhausted and the

process ends. The final solution is then returned.

Concerning the time complexity of GBT+, recall that a tree comprises l vertices. GBT+ requires

to precompute the sum of rewards and costs only once, requiring Opmnlq in time. Given a budget

B, the main cycle is repeated for Op
B
l q times. Since the number of trees in the orchard is mn, the

time complexity of GBT+ is Opmnl `
B
l mnq. Hence, GBT+ has time complexity Opmn maxtl, B

l uq

which is always faster than all the previous algorithms. However, no any guarantee on the solution

quality is provided.

Let us illustrate GBT+with the example in Figure 3.3.1 when B “ 21. We consider the rewards

and costs of each tree one by one. The first tree T1,1 has a total reward of 10 and cost of 6, resulting

in a ratio of 1.67. The second tree T1,2 has a total reward of 18 and cost of 8, and so a ratio of 2.25,

and so on. When evaluating all the trees, we found that T1,2 has the highest ratio, and therefore,

it is added to the solution. After the first selection, we re-evaluate the remaining trees. For T1,1

we have again the same ratio of 1.67. The tree T1,3 has reward 19 and now costs 8 (ratio of 2.37),

because we already considered the cost for reaching T1,2, and so on. Now, the tree with the largest

ratio is T1,3, and it is selected. Finally, this algorithm returns 37 as the total reward and 16 as the
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cost. Notice that it remains a 21 ´ 16 “ 5 residual budget which is not sufficient for visiting any

other tree as a whole. So, in the augmenting phase the algorithm picks the “most profitable” tree

among the “closest” ones (i.e., T1,1) with respect to the current solution (Ŝ “ tT1,2, T1,3u). Since

the residual budget is 5, on T1,1 the algorithm can only select the first two vertices, i.e., v1
1,1 and

v2
1,1, collecting additional reward 5. Now, the total obtained reward is 42 with a cost of 20.

3.4.5 The GBA+ Heuristic Algorithm

In this section, we propose another heuristic algorithm, called Greedy Best Aisle (GBA+), which

can solve SOAP in polynomial time. The algorithm’s strategy is to only consider fully visited aisles

in the solution, so either visit an entire aisle or discard it. The algorithm selects the aisle with the

highest ratio of rewards to costs at each step. The algorithm finishes when B “ 0. As previously

described for GBT+, we allow to partially visit a single aisle in order to avoid the wastage of

budget, augmenting so the solution. The pseudo-code of GBA+ is given in Algorithm 12.

Algorithm 12: The GBA+ Algorithm

1 Ŝ Ð∅

2 while B ą 0 do

3 Ai Ð arg max
AiRŜ

RpAiq

CpAiq
s.t. B ´ CpAiq ě 0

4 if Ai ‰∅ then

5 Ŝ Ð Ŝ Y Ai , B Ð B ´ CpAiq

6 else

7 Ŝ Ð Ŝ Y AugmentpBq, B Ð 0

8 return Ŝ

Initially, the solution Ŝ is empty (Algorithm 12, Line 1), and the main cycle starts (Line 2).

The drone will start to consider only a subset of aisles visited as a whole. Basically, it follows

the same reasoning as done for GBT+, with the only difference that instead of selecting full trees

Ti, j here we select full aisles Ai. The most profitable aisle Ai in terms of ratio reward/cost, i.e.,

RpAiq{CpAiq, is greedily selected (Line 3). As usual, when considering the cost, we also consider

the possible additional traveling cost (in the backbone) for reaching the picked aisle Ai. Then,

we pick the best aisles until the budget is finished. It is worth noting that GBA+ can end up with

a significant amount of budget, although not enough to visit an entire aisle. Thus, the algorithm

can extend the solution by exhausting the budget, e.g., by selecting a portion of any reachable

unexplored aisle.
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Some considerations about the time complexity of the GBA+ algorithm. GBA+ requires pre-

computing the sum of rewards and costs only once, requiring Opmnlq in time. Given a budget

B, the main cycle is repeated for Op
B
nl q times. Since the number of aisles in the orchard is m, the

time complexity of GBA+ is Opmnl `
B
nl mq, which is bounded from above by the time complexity

of GBT+.

Let us illustrate the GBA+ algorithm with the example in Figure 3.3.1. We consider B “ 21.

For the whole aisle A1, the total reward is 58 with a cost of 30 and a ratio of 1.93. For A2, the

total reward is 52 with cost 32 and ratio 1.73, and for A3, the total reward is 68 with cost 34

and ratio 2.27. So, the most profitable aisle is A3. However, its cost of 34 is larger than the

available budget of 21. So, GBA+ needs to augment the solution by selecting the most profitable

and closest available aisle, in this case A1. In the augmentation phase, the algorithm sequentially

selects the first vertices of the aisle until there is budget. Specifically, the picked vertices are the

ones belonging to the trees T1,1 and T1,2 plus the individual vertices v1
1,3 and v2

1,3. Such a visit has

a cost of 20, and the total reward is 43.

In Table 3.4.4, we summarize the running time and the performance of the presented algo-

rithms. Note that all the time complexities are polynomial because a budget βmax “ Θpmnlq is

sufficient to traverse the entire orchard.

Table 3.4.4: Comparison between the algorithms that solve SOAP.

Algorithm Time Complexity Approx. ratio

OPT OpBmlnq 1

ABP OpBmlnq
1
2p1 ´

1
e q

ABA Opmn2l2 ` m2nlq 1
m

GBT+ Opmnl `
B
l mnq –

GBA+ Opmnl `
B
nl mq –

3.5 Performance Evaluation

Our algorithms have been implemented in C++14 and run on an Intel i7-10genK computer with

16GB of RAM4. We assessed the performance of five algorithms for solving SOAP, i.e., OPT, ABP,

ABA, GBT+, and GBA+, by evaluating the total rewards obtained with respect to the optimal one.

4The code will be available on GitHub here: https://github.com/TheAnswer96/TMC

https://github.com/TheAnswer96/TMC
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We also evaluated the experimental running time. Note that when we refer to “running time”,

we mean the time required by the computer to compute the drone trajectory, and we do not refer

to the drone flying time which is related to the budget B given in input to the problem. Indeed,

the chapter contributes to understanding the complexity of finding the drone trajectory and its

impact on the collected reward. While the drone trajectory is currently computed offline by an

external service, one can envision a future scenario where such a service needs to be provided to a

community of farmers. Consequently, it is crucial to minimize the computational effort as much as

possible, while ensuring that the collected reward, which will guide farmers in their decisions on

orchard interventions, remains uncompromised. Furthermore, in countryside regions dedicated

to intensive orchards, the values of m and n can become very large. Therefore, it is worthwhile

to study lightweight optimization solvers that offer a tradeoff between the running time and the

collected reward performance.

We conducted tests on three distinct reward workloads, labeled W1, W2, and W3:

• W1: large data set of rewards randomly generated;

• W2: small data set of rewards referring to monitoring insects collected in a case-study or-

chard, and

• W3: large data set of rewards referring to spraying management in smart agriculture.

We ran each algorithm in various scenarios, varying the number of rows m, the number of

columns n, the number of observable locations l, and the distribution of rewards by adjusting

appropriate parameters. For each scenario, the algorithms have been tested varying the drone’s

budget B “ 5%,10%, 15%,20%, 40%,60%, 80% (plotted on the x-axis) as a percentage of a given

maximum βmax budget. On the y-axis, we plot the ratio ρ of the total reward collected by the

tested algorithm to the total reward collected by OPT.

For W1, for each value of B, we plot the average of the results from 33 workload instances

along with their 95% confidence interval on the y-axis. To evaluate the workload W2, we create

the data set of rewards using prior knowledge of the orchard and the position of the pheromones.

Lastly, for W3, we use 10 reward instances from a spraying application for smart agriculture that

has been adapted for SOAP. In principle, W1 is created to evaluate the robustness of the algorithms

using random rewards based on a specific random distribution. On the other hand, W2 and W3

are constructed to emulate a real-world scenario where the rewards of vertices are determined

based on bug monitoring and spraying management, respectively.
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3.5.1 With Synthetic Data set

In our experimental workload W1, we utilized the ZipF distribution [73] to randomly generate

rewards on vertices by varying the θ parameter. This allowed us to study the impact of reward

variability on our algorithms. Our evaluation assumed rewards in the range of r0, 100q and var-

ied θ as t0,0.8, 2u. When θ “ 0, the rewards are distributed uniformly across all values. As

the value of θ increases, the distribution of rewards shifts toward smaller rewards being more

frequent than larger ones. In particular, θ “ 2 represents a very high variability with a very few

items having large rewards and a plethora of small rewards. To vary the layout of the orchard,

we set the number of rows as n “ t50,25u, the number of columns as m “ t25,50u, and the

number of observable locations as l “ t3,5u. Note that these three distributions of rewards may

correspond to three moments of the season. θ “ 2 indicates the early days of the season when

the overwintered bugs emerge and require exposure to the sun to find energy. During this time,

the bugs are primarily found on the treetops, exposed to the sun. θ “ 0.8 corresponds to the end

of the season when the bugs are attached to the mature fruits on the trees, and θ “ 0 represents

spring, where no pests have emerged yet, and any spot could potentially hide one. The results

of the evaluation of synthetic data sets can be seen in Figure 3.5.1.

Impact of θ

To start, we examine the effect of θ . As we can see, the plots to the left have θ “ 0, the ones

to the center have θ “ 0.8, while the others to the right have θ “ 2. From the left to the right,

the variability of the reward increases. Although the two greedy algorithms GBT+ and GBA+

work almost the same when θ “ 0, whose gap is about 10% in favor of GBT+, their behavior is

much different when θ increases. When θ “ 2, the GBA+ algorithm tends to select large areas

of the orchard that have many low reward vertices, resulting in the budget being wasted due to

the high variability of the reward and lack of adherence to any locality rule. Despite the GBT+

algorithm having the same logic as GBA+, it is much more conservative than GBA+ because in

its selection rule it considers much smaller portions of the orchard, and therefore the chance of

wasting energy is more limited. In fact, one can observe that the gap between the two heuristics,

with θ “ 2, is pretty large and it is up to 40% with a low budget. A similar general behavior can

be observed with the two approximation algorithms ABP and ABA. Indeed, ABA works similarly

to GBA+, while ABP is much more accurate than GBT+ in its greedy selection.

The ABP algorithm is particularly efficient when the variability is high with θ “ 2, whose

performance is close to the optimal one for larger values of B. It is important to point out that in

Figure 3.5.1 we plot the ratios of the total collected reward among the compared algorithm and
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Figure 3.5.1: W1 (performance) with randomly generated synthetic data sets.

the optimal one. It could be counter-intuitive to see that an algorithm has a “drop” in performance

when the budget increases (e.g., ABP from B “ 40% to B “ 60% of βmax). Obviously, the R
function to maximize is monotone non-decreasing. However, this does not guarantee that also

the ρ function is monotone non-decreasing.

Best performing algorithms

In general, among the approximation algorithms and the heuristics, the best-performing algorithm

in term of collected reward is ABP. Indeed, when the assigned budget is very large (say, 80%),

often it reaches the optimal solution. However, when the budget is small (say, ď 40%), sometimes
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GBT+ matches ABP. This is particularly emphasized when θ “ 0.8, where the gap between the

two is almost negligible. Although GBT+well performs with a low budget, its performance slowly

degrades when the available budget increases. This is primarily because GBT+ is essentially a

greedy strategy and it may make poor choices resulting in most of the budget being wasted.

Comparing the two heuristics GBT+ and GBA+, we can see that in general GBT+ obtains better

performance than GBA+. However, when the budget is very large (say, 80%), the two heuristics

almost work the same. When the budget is limited, GBT+ can choose the most beneficial tree

based on the current budget, while GBA+ is more constrained by the budget and is forced to

select a nearby aisle regardless of its reward.

In Figure 3.5.1 we can also observe that ABA is no worse than GBA+. This is due to the

fact that the approximation algorithm ABA knows the sub-optimal solutions of each aisle for any

value of budget. Finally, the two approximation algorithms ABP and ABA show a big gap when

the budget is very small (say, ď 10%), while their performance almost converge when the budget

is large (say, 80%).

Concerning the guaranteed approximation bounds, both are largely beyond their aforemen-

tioned thresholds. In particular, ABP always guarantees a ratio of at least 0.9 ě 0.32 «
1
2p1 ´

1
e q.

Impact of the tree length

By increasing the number l of observable positions, we see that the performance of the algorithms

slightly differs. In particular, the performance of GBT+ in terms of ρ partially decreases. This is

mainly because the drone has to visit a tree much deeper, which results in possibly unnecessary

energy consumption. On the other hand, the ABP algorithm is much more resilient in this aspect

because it would only select the most appropriate observable position on such trees, instead of

visiting them completely. Counter-intuitively, GBA+ improves its performance when l increases.

Probably, it is more convenient to visit a longer aisle completely than to waste energy traveling

toward many other deeper trees on different aisles.

Impact of the orchard size

We also compare the performance of two different layouts: one with more columns than rows

(m ă n) and another with more rows than columns (m ą n). The results indicate that in the

former case (m “ 25, n “ 50) the performance is generally slightly better than in the latter case

(« 5%). This difference in performance is probably influenced by the energy required for the

drone’s backbone flight.
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Figure 3.5.2: W1 (running time in seconds) with synthetic data sets.

Running time

In Figure 3.5.2 we plot the experimental running time τ in the y-axis (in seconds, represented

in logarithmic scale), varying the orchard parameters n, m, and l while keeping fixed θ “ 0.

The first important observation here is that the heaviest algorithm, as expected, is the optimal

one (OPT), with computations up to 1.5s. As noticed in Section 3.4, ABP is much lighter than

OPT. Although the two algorithms have the same asymptotical time complexity OpBmnlq, ABP

is « 15-20 times faster than OPT because it just repeats the selection of the maximum in a large

set. The ABA algorithm is even 2 times lighter than ABP, however, its performance in terms of

reward has a drop of « 40% on the same instances. Finally, GBA+ is the fastest in absolute, but

it is much more profitable to perform GBT+ due to its good trade-off performance/running time.

To conclude, when m and n are fixed and l increases, the experimental running time τ obvi-

ously increases. However, fixing l and swapping m and n, the running time is more when there

are more rows than columns.

3.5.2 With a Real-world Scenario

To evaluate the performance of our algorithms in a real-world setting, we create a workload called

W2. This use-case experiment is in the context of the HALY.ID project [17] that aims to scout the

brown marmorated stink bug (BMSB), i.e., the Halyomorpha halys bug. The orchard used for the

use-case, located in Carpi, Modena, Italy, has 12 rows and 15 columns, with a total of 180 pear

trees, and we set 3 observable positions per tree, resulting in an Op12, 15,3q configuration.
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In our small-scale preliminary use-case [9], our goal is to detect the presence of the BMSB by

leveraging two different strategies. In this workload, we concentrate the rewards in (i) a few trees

where the pheromones are located, (ii) at the border of the orchard, (iii) in the East side of the

orchard, and (iv) on the West side of the orchard following the insights provided by entomologists.

The results are reported in Figure 3.5.3.
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Figure 3.5.3: Performance of W2.

Figure 3.5.3 (top-left) depicts the results when only a small number of trees have been treated

with pheromones. We set three observable positions on each tree: bottom, middle, and top. We

redistributed the rewards in this way to encourage the drone to prioritize the tops of the trees,

as this is where pests are most likely to be found according to entomological knowledge. To be

specific, we redistributed the rewards on each tree vi, j by allocating 20%, 30%, and 50% of the

reward to v1
i, j, v2

i, j, and v3
i, j, respectively, by utilizing pheromones.

The more penalized algorithm is GBA+which is forced to follow an aisle even if the pheromones

have been located in only one tree of that aisle. The selection of the best aisle alleviates the bad

performance result for ABA.

The three plots of Figure 3.5.3 (top-right and bottom) report the results when the rewards

are distributed as suggested by the entomologists experience. In the “Borders” case, the reward

is assigned with several rays of decreasing relevance, so that the trees that fall on the perimeter

of the orchard will have larger reward values, while the more internal trees will receive less

reward accordingly. Notice that once again the larger values of reward are assigned to the highest

observable positions of the trees. In this case, all the algorithms reach more than 80% of OPT

with a significant stable trend through the diverse budgets. Hence, the choice of the algorithm is
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not decisive in determining how to intervene in the orchard.

Then, in the “East” (resp., “West”) scenario larger values of reward are distributed, assuming

left as the East, from the left (resp., right) to the right (resp., left) respecting the distribution of

the bugs in the morning (resp., afternoon). This paradigm is not artificial since orchards are built

in order to provide an adequate level of sunlight from morning to afternoon. Therefore, focusing

on the East scenario, the trees that lay on the left part of the orchard have larger values, with

their values that smoothly diminish moving towards the right border. Also in these two cases, the

highest observable positions will have more reward than the lowest ones. It is evident that the

algorithms that select entire aisles are penalized with respect to the others. On the other hand,

ABP and GBT+ once again confirm their notable results. Hence, in this case, as in the Pheromones

case, it is always preferable a tree-wise greedy selection instead of an aisle-wise greedy selection.

3.5.3 With Real Data set

In the workload W3, we employed a real data set obtained from a different smart agriculture

application [89] to evaluate our algorithms on larger orchards. The field is made up of 137ˆ107

trees. The data set, as it was originally, had only one reward for each tree which represented

the water needed by the tree. To make it suitable for our spraying application, we divided each

tree into three observable positions: bottom, middle, and top, and we redistributed the rewards

accordingly. Therefore, the resulting orchard is Op137, 107,3q. A unique characteristic of the

workload W3 is that the requirement for pesticide (i.e., reward) is divided into macro areas that

encompass several trees. As before, the rewards change gradually on each tree vi, j by putting

20%, 30%, and 50% of the reward to v1
i, j, v2

i, j, and v3
i, j, respectively,

Figure 3.5.4 (left) shows the results in terms of ρ. Differently from what happened before for

all other scenarios, in W3 the GBT+ algorithm performs very well with B ď 40%βmax, outperform-

ing the approximation algorithm ABP. This is probably because the reward in such areas smoothly

increases or decreases, and therefore the drone has the convenience to visit trees completely, as

GBT+ does. The opposite trend can be observed with the two algorithms that have the “aisle” as

a greedy selection rule. As usual, ABA always outperforms (or equals) the greedy GBA+.

Finally, Figure 3.5.4 (right) depicts the results, in terms of τ, of the proposed algorithms.

Here, since the size of the orchard is much larger, the OPT algorithm returns the optimal solution

in « 1s with a very low budget (B “ 5%), while requiring « 100s with a very large budget

(B “ 80%). On these larger instances, we can observe the goodness of the ABP algorithm, which

obtains very good solutions requiring about a 100th of the running time of the optimal solution.

The two heuristics GBT+ and GBA+ return both a solution within a fraction of a second and
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Figure 3.5.4: Performance (left) and running time (right) of W3.

therefore they are particularly suitable when the size of the orchard starts to be quite large (and

hence heavy) for GBT+ or ABP.

3.6 Conclusion

In this chapter we introduced a new problem, SOAP, and a 3D graph model that represents the

drone movements in really constrained orchards. We first proposed a polynomial-time algorithm

to optimally solve SOAP and then two approximation algorithms along with other two heuristic

algorithms with a much reduced computational time cost. We analyze both theoretically and via

numerical evaluation the proposed algorithms using both synthetic and re-interpreted real data

sets. In general, we found that the solutions that make choices based on tree granularity are

better than those that work at aisle granularity in all scenarios, but especially in the real-world

scenario. In particular, the greedy algorithm GBT+ is light and performs well. However, when

the size of the orchards is large, OPT has definitely much better performance. For large orchards,

the approximated ABP solution conjugates good reward- and light time-performance.

Further research could include studying the online SOAP for which the reward values are

discovered when the drone flies and hence the drone route has to be recomputed online. Also

symbiotic systems involving multiple drones and ground devices, including battery recharging

stations for drones, might be of future interest.



Chapter 4

Wireless IoT Sensors Data Collection

Reward Maximization by Leveraging

Multiple Energy- and Storage-Constrained

UAVs

4.1 Introduction

In this chapter, we consider that a set of multiple homogeneous drones is responsible for collect-

ing data from ground IoT sensors. An example of a data collection scenario using two drones

is depicted in Figure 4.1.1. We assume that a set of heterogeneous ground sensors is randomly

deployed on an area for sensing particular phenomena. Due to the fact that the deployment

area can be very large, the sensors cannot directly transfer their perceived data to the depot. In

our proposed architecture, drones flying over the area are responsible for performing a mission

(a route) to/from the depot, with the objective of selectively collecting the data from the sen-

sors. However, the drones themselves are limited in terms of energy battery (when flying and

hovering) and available memory storage (when collecting data). In principle, due to the two

limitations mentioned above, drones cannot collect all the data from all deployed sensors, but

they have to plan a proper route and use parsimoniously both their available energy and storage.

Moreover, in harsh environments, the drones could not immediately transmit the collected data

to the cloud/depot because the Internet connectivity can be absent, and hence they need to keep

the data to their storage, which is limited in capacity, until they finally reach the main depot.

In our proposed context, certain sensors’ data are more critical and should be collected with
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Figure 4.1.1: The sketched representation of our application. The surface is not flat, and therefore

the sensors have different heights with respect to the depot.

higher priority than others. This implies that some data are more relevant and important than

others. Moreover, since some older data can be lost if not offloaded in a timely manner, it is crucial

to consider data more relevant if stored in a sensor that has less space left. Therefore, the farmer

of the field to be monitored must prioritize these sensors over others, based on the criticality of

the data and the likelihood of data loss. To model the relevance and consequent prioritization of

data to be collected by drones, a specific reward is assigned to each sensor data based on the data

relevance. Urgent data requiring immediate analysis is given a higher reward than regular data,

and data that may be lost due to the shortage of available local storage is also prioritized.

The primary goal pursued in this chapter is maximizing the total reward obtained by collecting

the most relevant data using a fleet of drones. However, this must be achieved while ensuring

that the energy cost of each drone’s mission does not exceed the battery budget, and that the

total collected data do not exceed the storage limit on each drone. To the best of our knowledge,

this is the first time that a fleet of homogeneous drones is in charge of collecting data from a

set of heterogeneous ground sensors while simultaneously taking into account both the available

energy and storage for the drones.

The contributions of this chapter are summarized below.

• We define a novel optimization problem, called Multiple-drone Data-collection Maximization
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Problem (MDMP), whose goal is to collect the most relevant data by leveraging drones, i.e.,

maximizing the total obtained reward, while ensuring that each drone’s mission energy cost

does not exceed the battery budget, and the total collected data do not exceed the storage

limit on each drone;

• We formally prove that MDMP is NP-hard (even for the single-drone scenario) because the

Team Orienteering Problem (TOP) can be seen as a particular instance of MDMP;

• We devise an Integer Linear Programming (ILP) formulation for optimally solving MDMP,

only suitable for small-sized inputs;

• We propose approximation and heuristic algorithms for obtaining suboptimal solutions for

the single- and multiple-drone scenarios for inputs of any size;

• We thoroughly evaluate the performance in terms of collected reward of our algorithms on

randomly generated synthetic data.

The rest of the chapter is organized as follows. Section 4.2 reviews the related work. Sec-

tion 4.3 formally defines MDMP showing its NP-hardness, and proposes the ILP-based optimal

algorithm for it. Section 4.4 and Section 4.5 present suboptimal approximation and heuristic

algorithms for solving MDMP for the scenario of a single and multiple drones, respectively. Sec-

tion 4.6 evaluates the effectiveness of our algorithms on randomly generated synthetic data, and

Section 4.7 offers conclusions and future research directions.

4.2 Related Work

Many papers have been proposed in the realm of data collection in sensor networks with the help

of drones.

In [98, 99], the authors consider the problem of scheduling the flight of a drone in charge to

maximize the utility due to the data collected in a sensor network composed by homogeneous

sensors deployed on a flat surface. The drone has the ability to simultaneously collect data from

multiple sensors and its hovering time depends on the size of data to be collected. The authors

discretize the possible hovering points for the drone in order to limit the number of them. A similar

scenario is also considered in [100], in which the objective is to find the tour that maximizes the

utility of the collected data considering the data transfer divided into time slots of equal width.

Furthermore, the paper in [101] considers the problem of determining the minimum number

of UAVs to be deployed to collect all the data from sensors on a flat area without exceeding a

given budget time. Two algorithms are proposed to solve the problem. In contrast to the three

previously mentioned works, we consider several crucial factors that have been not accounted for,
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namely the presence of heterogeneous sensors at different elevations, the energy consumption

required for flight, the drone’s storage capacity limitation, as well as the presence of a fleet of

multiple drones. Furthermore, to prevent potential bandwidth saturation, we do not permit the

simultaneous collection of data from multiple sensors. These considerations are of significant

importance when designing a drone-based data collection system, and in this chapter we address

these challenges in a comprehensive manner.

The problem of scheduling the UAV’s tour which minimizes the maximum energy consump-

tion for all the sensors is studied in [102]. The authors jointly consider the sensors’ wake-up and

the UAV’s path by formulating a mixed-integer non-convex optimization program, and a subopti-

mal algorithm which iteratively applies a successive convex optimization technique. The authors

in [103] propose a clustering algorithm and meta-heuristics to address a similar problem where

the sensors are deployed in a hilly terrain, and the single UAV is not energy-constrained. In

contrast to the above papers, which consider homogeneous sensors relying on continuous com-

munications or even not energy-constrained drones, we propose approximation and time-efficient

heuristic solutions for a system with multiple drones and heterogeneous sensors. Additionally, all

the previous works only offer computationally expensive exact solutions or meta-heuristic solu-

tions, whereas we also propose more time-efficient deterministic methods.

The problem of maximizing the freshness of the data collected by a UAV has been studied

in [104]. In particular, two problems of Age-of-Information (AoI) data collection are formulated

to minimize both the sensors’ maximal and average AoI. In [105], the authors propose a frame-

work for controlling the flight speed of the UAV to improve the fairness of data collection. They

formalize fairness as a metric that depends on the energy level of the sensor nodes and on the

amount of data to be sent to the UAV. Specifically, since only cluster heads have to transfer data

collected via multi-hop from the other nodes to the UAV, their fairness is the least. Therefore,

the authors develop a method which controls and adjusts the UAV’s speed according to the intra-

cluster density of sensors, and the distance from the UAV and each sensor. However, unlike our

this chapter which deals with multiple drones each with energy and storage constraints, the au-

thors do not consider the energy consumption and the storage availability of the single drone in

their approach.

The authors in [106] present an optimization problem where a drone is in charge to collect

data from a set of ground sensors. Here, the locations where the drone has to stop are not known

in advance, and they are computed according to a clustering scheme. The goal is to determine

the single drone’s path such that the drone’s energy is minimized. When computing the path, a

trade-off between the flight duration and the communication reliability is required. The problem
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is solved relying on ILP formulations. A similar approach is proposed in [107], in which the

goal is only to minimize the flight time of the single drone. The problem is optimally solved

by performing a brute-force algorithm plus two heuristic algorithms. The above papers differ

from our approach in that they only utilize a single drone, and they do not take into account data

relevance in their modeling. Consequently, their objective is to maximize the quantity of collected

data, whereas our approach is a more generalized version in which are involved multiple drones,

and incorporated data relevance as a factor in our optimization.

In [108], the data collection problem is investigated under a “security” point of view. In fact, a

fleet of drones is responsible for selectively collect data from a set of ground sensors, with the main

goal to guarantee the security of the stored data. Different metrics are optimized in [108], such

as computational cost, energy consumption, and communication overhead. The optimization

function used in their approach did not take into consideration any kind of relevance of the data,

as well as the storage of the drones.

The authors of [109] investigate data collection in a wireless sensor network by using multiple

drones. Two main issues are addressed: (1) how to ensure seamless synchronization among

sensors and drones at each transit, and (2) how to compute energy-efficient schedules for the

sensors and feasible trajectories for the drones. To solve the problem, a joint wake-up scheduling

and drone path planning optimization problem is formulated; eventually, simulations are also

proposed. Similarly, in [110] drones are used to gather data from a set of ground sensors that

rely on a Long Range Wide Area Network (LoRaWAN) protocol. The proposed problem takes into

account three objectives, such as: (1) minimize the total drone’s flying time, (2) collect all data

packets from all nodes, and (3) minimize the nodes’ energy consumption. Differently from our

approach, the authors focus on prolonging the lifetime of the sensor network by only considering

the limited battery capacity of the drones, without accounting for the storage constraint or the

relevance of the collected data.

Finally, a recent work in [111] proposes an optimization problem to find a sequence of loca-

tions that the drone should follow inside the monitored area, so that the overall time to collect

data is minimized. Unlike us, the authors only use a single drone and collect data from all sen-

sors, without considering the relevance of their data or selecting a subset of sensors based on

their relevance.
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4.3 Problem Definition

In this section, we introduce the system model, define our novel problem for data collection in an

IoT sensor network by leveraging drones, prove its NP-hardness, and devise the optimal solution

for it by formulating an ILP.

4.3.1 System Model

Let F be the field, whose center O “ p0, 0,0q is the depot, to be monitored by a set V “ tv1, . . . , vnu

of n heterogeneous IoT ground sensors. Each sensor vi P V is randomly deployed in F , and its

position is px i, yi, ziq with respect to O. The field F can be seen as a complete graph G “ pV, Eq

where the set V is the set of vertices/sensors, and the set E represents the edges/connections

among each pair of sensors. The sensors collect data like the temperature, pressure, or even

pictures or videos to be saved on their local storage of size Wi, assumed to be different for each

sensor. In fact, tiny sensors that record text data have a small storage, but camera sensors that

have to store large videos, need a much larger storage. Since Wi is limited, sensors have to

periodically transfer the recorded data to external devices. Let 0 ă wi ď Wi be the size of the

data that each vi needs to transfer. As mentioned above, the data are modeled by a relevance, and

the relevant data should be prioritized when ground sensors have to start data transfer. This is

modeled by associating a reward ri ą 0 to each sensor vi. Data that need immediate analysis are

prioritized with a higher reward than standard data, and data that may be lost, e.g, caused by any

data overwritten, due to limited storage capacity are also associated with high priority. So, the

more is the reward, the more relevant is to off-load the data to an external device. Importantly,

given an instance of the problem, the relevance does not change, and remains the same until the

mission is completed.

The external devices that collect sensor data are a set of l homogeneous drones denoted as

D “ td1, . . . , dlu. The flight mission of each drone starts and finishes at O. The drones fly at a

fixed altitude h above the ground and have a communication range with a radius R. So, a drone

dk P D can collect data from a sensor vi if }dk ´ vi}2 ď R, i.e., if their relative Euclidean distance

is within the communication range. In this chapter, we neglect communication issues such as

shadowing, fading, or multipath propagation. Moreover, we assume that the drones and the

sensors are always in line of sight and hence no obstacles are present. We also assume that the

drones cannot collide among them or with any sensor. In fact, by opportunely tuning the heights

at which drones fly, we can assume that drones cannot collide. However, for the sake of clarity, we

simply consider the same height for all the drones even though collisions are still not addressed.
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Figure 4.3.1: Top and side representations of the field F .

The drones are allowed to hover only at specific locations over F , called waypoints, repre-

sented by a set P of possible positions. Firstly, P contains all the positions of the projected sensors

at height h, i.e., @vi “ px i, yi, ziq P V we have pi “ px i, yi, hq P P. P also contains other points as

follows. For each sensor vi, we define an admissible region in which the drones can actually com-

municate with it. Such a region is delimited by a circumference Ci of radius ď
a

R2 ´ ph ´ ziq
2.

To be more precise, a drone flying at a height h has a communication sphere of radius R which

intersects the ground level (h “ 0) forming a circumference Cd of radius ď
?

R2 ´ h2. A sensor

can communicate with a drone if the center of Ci is inside the circumference Cd . E.g., in Fig-

ure 4.3.1 the sensor v4 and the drone d can communicate. In general, the number of possible

drone waypoints can be unbounded. Therefore, in order to bound the number of waypoints for

the drone [100], for each pair of sensors vi and v j, we add in P all the possible intersections p1
i, j

and p2
i, j between Ci and C j (see Figure 4.3.1). Also the depot O “ p0 P P. So, given the n sensors,

the number of waypoints is m “ |P| ď n ` npn ´ 1q ` 1, because two sensors can generate no

more than two intersections.

Each individual drone is constrained by the limited energy of its battery that consumes when

moves between locations and when hovers at waypoints. Sensors can start the data transfer pro-

cedure only when the drone hovers at waypoints. Hence, the sensors cannot transfer the data if a

drone is currently moving even if their relative distance is within the communication range. We

also assume that a drone cannot concurrently collect data from multiple sensors, but separately

one at a time. So, if two sensors v1 and v2 are in range with a drone (say da), only one (say v1) can

transfer the data, while the other (say v2) has to wait until v1 finishes the procedure. However,

if there is another drone (say db) in range with v1 and v2, and v1 is transmitting towards da, db

could collect the data from v2 at the same time because there is not any conflict nor any queue

among them. Moreover, we do not allow for a partial transferring, so when a sensor v1 starts to
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transfer data to a drone da, da necessarily must hover at the waypoint until the data is completely

collected. This also means that a sensor v1 cannot transfer a portion of data to a drone da, and

the remaining portion to another drone db.

Given a waypoint pi P P, let Qi be the set of ground sensors possibly in range with any drone,

i.e., covered by a drone if it flies in pi. So, each sensor vk P Qi can communicate with a drone in

pi because }pi ´ vk}2 ď R.

Let E F ppi, p jq be the drone required flying energy for moving from pi to p j, which depends on

the Euclidean distance between waypoints, i.e., }pi ´ p j}2, and on the energy per unit distance

parameter αą 0, so that:

E F ppi, p jq “ α ¨ }pi ´ p j}2. (4.1)

Let EHppi, tq be the required drone’s hovering energy for statically staying at the waypoint pi

for t time slots, which depends on the number of time slots, i.e., t, and on the energy per time

slot parameter β ą 0, so that EHppi, tq “ β ¨ t. However, for a given pi, the number of the needed

time slots t depends on the size of the data to be collected from the sensors in Qi. Recall that

there are multiple drones, and a sensor can transfer its data to at most one drone. So, we have

Qi Ě
Ťl

j“1 Q j
i , where Q j

i is the subset of sensors that the drone d j needs to collect the data from.

Moreover, Qi is a partition and hence we also have Qa
i X Qb

i “ ∅ for any a ‰ b. Thus, if there

are sensors vk P Q j
i Ď Qi, the cumulative data to transfer to the drone d j from the sensors in Q j

i

at the waypoint pi is
ř

vkPQ j
i
wk. So, the required time depends on the total quantity of data to

be transferred, and on the data-transfer rate parameter γk ą 0 for the sensor vk, so that we can

finally redefine the hovering energy function as:

EH
pQ j

iq “
ÿ

vkPQ j
i

β

γk
wk. (4.2)

Let M “ tM1, . . . , Mlu be the set of the l drones’ missions. Each individual mission M j, accom-

plished by the drone d j, is formed by a sequence of distinct waypoints to be visited to/from the

depot O “ p0; i.e., M is a sequence p0, . . . , pi, . . . , p0. For each waypoint pi, the drone d j actually

obtains the data from a subset Q j
i Ď Qi of sensors due to its storage limitation. Finally,

CM j
“ CF

M j
` CH

M j
(4.3)

is the total mission cost (in terms of energy) of the mission M j, where CF
M j

is the flying cost, and

CH
M j

is the hovering cost. Notice that, the communication effort required for the drone is included

as a function proportional to the time. Therefore, given the sequence of consecutive waypoints
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ppi, pkq P M j, the flying and hovering energy costs are, respectively,

CF
M j

“
ÿ

ppi ,pkqPM j

E F
ppi, pkq (4.4)

CH
M j

“
ÿ

piPM j

EHpQ j
iq (4.5)

The other aspect to consider is the overall transferred data from the sensors to the drones.

Namely, let UM j
be the total used storage by the drone d j when doing the mission M j, i.e.,

UM j
“

ÿ

piPM j ,vkPQ j
i

wk. (4.6)

Finally, let RM j
be total obtained reward by the drone d j when doing the mission M j, i.e.,

RM j
“

ÿ

piPM j ,vkPQ j
i

rk. (4.7)

Note that, when l “ 1, Eqs. (4.3) (4.6) (4.7) can be rewritten as CM , UM , and RM , respectively.

Concerning the drones’ constraints, let E ą 0 be the available energy budget on the battery

for performing a mission, i.e., each drone has its own energy budget E because the drones are

assumed to be homogeneous. Moreover, let S ą 0 be the available storage budget on the mass

storage for collecting the sensors’ data. Again, each drone has its own storage budget S. So, for

each drone d j, it is jointly required that:

CM j
“ CF

M j
` CH

M j
ď E (4.8)

UM j
ď S. (4.9)

In this chapter, we assume that any mission formed by only a single waypoint is feasible for both

energy and storage for a single drone. Specifically, all sensors in the vicinity of such a waypoint

can safely offload their data to a drone.

4.3.2 The Multiple-drone Data-collection Maximization Problem

In this chapter, we present the Multiple-drone Data-collection Maximization Problem (MDMP)

whose goal is to find a set of routes for the drones to/from the depot, and a selection of sensors

to assign to each drone, such that the sum of the total collected reward is maximized, and both the

energy and storage budgets on each drone are not exceeded. Given the set V of n sensors, the set D

of l drones, and the energy and storage budgets of the drone E and S, respectively, the objective

is to determine the optimal set of missions M˚ such that:

M˚
“ argmax

ÿ

d jPD

RM j
: CM j

ď E, UM j
ď S. (4.10)
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Now, we are in a position to show that:

Theorem 12. The MDMP is NP-hard.

Proof. The classical Team Orienteering Problem (TOP), which has been proven to be NP-hard [112],

can be seen as a particular instance of MDMP. Recall that in TOP the goal is to find a set of suitable

closed routes for a given fleet of vehicles inside a weighted graph such that the sum of the total

collected reward on visited vertices is maximized, and the traveling route cost of each vehicle

along edges is within the given budget in input. However, in TOP, there is no storage constraint.

So, we can reduce any instance of TOP to MDMP as follows: The total available storage constraint

for a single drone can be relaxed by setting S “ `8. Concerning the reward, in TOP there is no

choice to perform in each waypoint. This corresponds to assume that Q j
i “ Qi in MDMP, i.e., we

select for the drone d j all the reachable sensors at pi P P. After these modifications, any instance

of TOP is exactly an instance of MDMP. So MDMP is NP-hard. When only one drone is considered,

TOP becomes the Orienteering Problem (OP) which has been shown to be NP-Hard [112]. Hence,

even for the single-drone scenario, MDMP is NP-Hard.

In the next section, we will present the optimal algorithm capable of optimally solving MDMP.

4.3.3 ILP Formulation

The MDMP can be optimally solved using an ILP formulation. We enumerate the sensors as

V “ t1, . . . , nu, the waypoints as P “ t0, . . . , mu (0 is the depot), and the drones as D “ t1, . . . , lu.

Let x k
i j P t0, 1u be a decision variable that is 1 if the sensor i P V transfers its data to the drone

k P D at the waypoint j P P; otherwise, it is 0. Let yk
η j P t0, 1u be a decision variable that is 1

if the drone k P D travels from the waypoint η P P to the waypoint j P P; otherwise it is 0. Let

1 ď uk
i ď m be a dummy variable that indicates the temporal order of the waypoints visited by

the drone k P D, i.e., uk
η

ă uk
j waypoint η is visited by the drone k before the waypoint j [8]. So,

the ILP formulation is:

max
l

ÿ

k“1

n
ÿ

i“1

m
ÿ

j“0

ri x
k
i j (4.11)

subject to:

l
ÿ

k“1

m
ÿ

j“0

x k
i j ď 1, @i P V (4.12)

m
ÿ

j“1

yk
0 j “

m
ÿ

η“1

yk
η0 “ |D|, @η, j P Pzt0u, @k P D (4.13)
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Table 4.3.1: Table of Notation.

Symbol Description

F field to be monitored by the drone

V “ tv1, . . . , vnu set of n ground sensors

px i, yi, ziq position of sensor vi with respect to the center of the field O

G “ pV, Eq complete graph representing F

E set of edges/connections among sensors in V

Wi local storage of sensor vi

wi ď Wi size of data that sensor vi needs to transfer

ri reward associated with sensor vi (relevance)

D “ td1, . . . , dlu set of l drones

h altitude of the drones above the ground with respect to O

R communication range radius

P set of possible drone waypoints

pi a waypoint representing the position of projected sensor vi

Ci communication circumference of sensor vi

p1
i, j, p2

i, j intersection points between Ci and C j

m number of waypoints in P

Qi set of sensors possibly in range with a drone when flying in pi

E F ppi, p jq drone required flying energy for moving from pi to p j

α energy per unit distance

EHppi, tq required drone’s hovering energy for staying at pi for t time slots

t number of time slots in which the drone hovers

β energy per time slot

Q j
i subset of sensors that drone d j in pi needs to collect the data from

γk data-transfer rate for sensor vk

EHpQ j
iq redefined hovering energy function

M “ tM1, . . . , Mlu set of the l drones’ missions

CM j
total mission cost (in terms of energy) of the mission M j

CF
M j

flying cost of mission M j

CH
M j

hovering cost of mission M j

UM j
total used storage by drone d j when doing the mission M j

RM j
total obtained reward by drone d j when doing the mission M j

Eą 0 available energy budget on the battery for performing a mission

Są 0 available storage budget on the mass storage for collecting the sensors’ data

M˚ optimal set of missions
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yk
j j “ 0, @ j P Pzt0u, @k P D (4.14)
m

ÿ

η“1

yk
ην

“

m
ÿ

j“1

yk
ν j “ max

iPV
x k

iν, @ν P P , @k P D (4.15)

uk
η

´ uk
j ` 1 ď mp1 ´ yk

η jq, @η, j P Pzt0u, @k P D (4.16)

1 ď uk
η

ď m, @η P Pzt0u, k P D (4.17)
n

ÿ

i“1

m
ÿ

j“0

wi x
k
i j ď S, @k P D (4.18)

m
ÿ

j“0

˜

n
ÿ

i“1

hi x
k
i j `

m
ÿ

η“0

fη j y
k
η j

¸

ď E, @k P D (4.19)

The objective function is represented by Eq. (4.11) which maximizes the overall reward. About

the constraints, Eq. (4.12) states that each sensor can transfer its data no more than one time;

Eq. (4.13) forces that the each drone’s route begins and ends at the depot; Eq. (4.14) forbids

self loops; Eq. (4.15) guarantees that each generated path is a simple cycle which contains the

selected sensors; Eq. (4.16) ensures that no more than a single loop is allowed for each drone [8];

Eq. (4.17) indicates the temporal order of the visited waypoints, i.e., uk
η

ă uk
j if pη is visited before

p j by the kth drone [8]; Eq. (4.18) guarantees the storage constraint of each drone. In other words,

the constraint guarantees that each drone cannot offload an amount of data larger than the storage

capacity; Eq. (4.19) guarantees the energy constraint of each drone, where hi “ EHppi, wiq ě 0

is the drone’s hovering cost for transferring the data from sensor i, and fl j “ E F ppl , p jq ě 0 is the

drone’s flying cost for moving from waypoints pl to p j.

We denote this formulation by OPT. Since OPT is only suitable for small inputs, in the follow-

ing, we propose faster suboptimal algorithms suitable for any input. Specifically, in Section 4.4

we first devise algorithms for the particular case of a single drone, while in Section 4.5 we propose

algorithms for the general case of multiple drones.

Table 4.3.1 summarizes the notation that has been adopted in this chapter.

4.4 Solving MDMP with a Single Drone

In this section, we propose an approximation algorithm, called Reward-Storage-first Energy-then

Optimization (RSEO-S), and two greedy heuristic algorithms, called Max ratio Reward-Energy

(MRE-S), and Max ratio Reward-Storage (MRS-S), respectively, in order to solve MDMP with a

single drone, i.e., l “ 1. Note that the suffix “-S” stands for “single-drone”. Moreover, in this

section we denote M as the single-drone mission, while in the next section we will denote M as

the set of missions of the fleet of drones.
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4.4.1 The RSEO-S Algorithm

In this section, we devise an approximation algorithm that suboptimally solves MDMP with a

single drone, called Reward-Storage-first Energy-then Optimization (RSEO-S). It is split into two

phases. In the first phase, we select a subset of sensors such that the collected reward is maximized

while ensuring that the storage requirement is met. Once the selection of sensors is done, we

choose the minimum number of waypoints capable of covering all the selected sensors. At these

waypoints, we compute the minimum energy-cost traveling route to/from the depot. Notice that

the resulting route might be energy-unfeasible. If it is so, in the second phase we reduce the main

route into a smaller one by removing the waypoint that reduces the least the lost reward. So,

after the removal of the waypoint (along with two edges), we need to add an edge so that the

path remains closed. This strategy is repeatedly done until we reach an energy-feasible route.

The pseudocode of RSEO-S is given in Algorithm 13.

Algorithm 13: The RSEO-S Algorithm

1 V 1 Ð knapsackpV,Sq

2 P 1 Ð min-set-coverpV 1, Pq

3 M Ð traveling-salesmanpP 1q

4 while CM ą E do

5 p Ð arg minpiPM RM ´RMztpiu

6 M Ð Mztpu

7 return M

The objective is to maximize the reward by considering the drone’s storage, and initially ne-

glecting the drone’s energy. This is realized by approximating three classical NP-hard subprob-

lems, namely the knapsack, the min-set cover, and the traveling salesman.

The RSEO-S algorithm works as follows. Let us now focus on the first phase. We initially

determine a subset of sensors V 1 Ď V such that the obtained reward is maximized and the storage

constraint S is satisfied by invoking the knapsack procedure [113] (Line 1). In the knapsack pro-

cedure, we are given a collection of objects (sensors), each one associated with a size (data) and a

reward (relevance), and we are asked to select a subset such that the total reward is maximized,

while the total size occupied does not exceed that of the knapsack (drone’s storage capacity).

Let V 1 be the set of selected sensors and P be the family of subsets derived from the waypoints.

Then, recalling that a sensor can be reached from multiple waypoints, we minimize the number

of waypoints to visit to cover the entire set V 1 by invoking the min-set-cover procedure [113],

determining so a subset of P 1 Ď P of waypoints with cardinality |P 1| ď |V 1| (Line 2). In the min-
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set-cover procedure, we are given a set V 1 (sensors) and a family of subsets on P (waypoints),

and the requirement is to select the minimum number of subsets whose union equals V 1. Finally,

since the drone has to perform a mission M to/from the depot visiting the waypoints P 1, we try to

minimize the energy required by performing the traveling-salesman procedure [113] (Line 3). In

the traveling-salesman procedure, we are given the set of points |P 1| (waypoints) in the Euclidean

plane and a starting position p0, with the requirement to traverse a tour starting and ending in

p0 so that all points are reached once and the traveled distance (energy) is minimized.

If the mission M is energy-feasible, then M is returned, otherwise we have to reduce M by

removing a vertex (along with two edges) during the second phase. From all the waypoints that

form M , we remove the one that minimizes the loss of reward associated to the that waypoint

(Line 5). When we remove such a waypoint, we need to add an edge that ensures the existence

of a closed path to/from the depot. This is repeated until M is energy-feasible. Eventually, the

solution M is returned (Line 7).

Theorem 13. RSEO-S solves MDMP with a single drone with an approximation ratio of ψ

µφ where

µφ is the number of waypoints returned by aφ-approximation algorithm for the min-set-cover whose

optimal solution has µ elements, which cover the sensors selected by a ψ-approximation algorithm

for the knapsack.

Proof. The solution M depends on the computed cycle starting from the knapsack invocation

(that returns a subset V 1 Ď V of sensors), which in turn depends on the ψ-approximation algo-

rithm for solving it [113]. Recall that, ψ ď 1 because the knapsack is a maximization problem.

Then, in order to reduce the number of waypoints from which we collect the data, we rely on

a φ-approximation version of the min-set-cover that returns at maximum |P 1| ď µφ ď |V 1| ď n

waypoints [113], where µ is the minimum number of waypoints able to cover V 1. Recall that

φ ě 1 because the min-set-cover is a minimization problem. If the resulting cycle given by the

traveling-salesman [113] is energy-feasible, the approximation ratio of RSEO-S would be directly

ψ, otherwise we need to prune some vertices reducing so the goodness of the solution. So, as-

suming RpSOLq, RpOPTKPq, and RpOPT q as the reward collected by the solution M , by the

knapsack, and by the optimum algorithm, respectively, we can now prove that:

RpSOLq ě
ψ

µφ
RpOPTKPq ě

ψ

φµ
RpOPT q.

The first inequality holds since we rely on aψ-approximated solution provided by knapsack. More-

over, according to our assumption, the drone actually selects at least one waypoint. Therefore,

by selecting the best waypoint among the µφ ones, the collected reward of RpSOLq is at least a
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fraction 1
µφ of the ψ-approximated solution of the knapsack. Finally, since RpOPT q ďRpOPTKPq

is clearly true, the last inequality is also satisfied.

In the next, we discuss the time complexity. In this chapter, we rely on the greedy strategy for

fractional knapsack which requires Opn log nq time and also guarantees a 1
2 -approximation [113],

i.e., ψ “
1
2 . Recall that |P 1| ď |V 1| ď n. To implement min-set-cover we rely on a greedy strategy

which takes Opm|V 1|q (because m is the cardinality of the subsets of sensors given by the way-

points) and guarantees a plog |V 1|q-approximation [113], i.e., φ “ log |V 1|. Regarding traveling-

salesman, we exploit Christofides’ 3
2 -approximation algorithm [113] (although it does not affect

our ratio), which takes Op|P 1|3q. Finally, since M comprises of Op|P 1|q edges, and considering that

at each iteration we remove one vertex, the time required by the loop (Line 4) is Op|P 1| log |P 1|q.

Thus, the overall time complexity of RSEO-S is Opn log n ` m|V 1| ` |P 1|3 ` |P 1| log |P 1|q “ Opn3q,

and our approximation bound is bounded from below by Ω
´

1
2µ log |V 1|

¯

.

4.4.2 The MRE-S Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with a single drone,

called Max ratio Reward-Energy (MRE-S). MRE-S greedily adds, to the current solution the sensor

whose ratio between the reward and the additional energy cost with respect to the current drone

mission is the largest. When computing this ratio for any new sensor, we also have to consider

the energy for going back to the depot, since the drone cannot remain without energy. Moreover,

a sensor can be selected only if the current drone’s residual storage is enough. The pseudocode

of MRE-S is given in Algorithm 14.

Algorithm 14: The MRE-S Algorithm

1 M Ð∅, P̂ Ð tp0, p1, . . . , pnu Ď P

2 while P̂ ‰∅ do

3 p Ð arg maxpiPP̂
ri

CMYtpi u´CM

4 if CMYtpu ď E and UMYtpu ď S then

5 M Ð M Y tpu

6 P̂ Ð P̂ztpu

7 return M

Initially, the solution M is empty, and a subset of waypoints P̂ perpendicular to the sensors

is created (Algorithm 14, Line 1). Then, the main cycle starts (Line 2) evaluating all possible

waypoints P̂. Among them, we select the waypoint pi whose sensor vi has the largest ratio between
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the reward and the additional energy cost with respect to the current drone’s mission (Line 3).

This greedy selection is justified by the fact that we aim at maximizing the reward while trying

to keep low the energy consumption. Then we evaluate whether p can be added to the current

solution M without violating both the energy and storage constraints (Line 4). In any case, p

will not be considered anymore and removed from P̂ (Line 6). Finally, the solution M is returned

(Line 7).

Regarding the time complexity of MRE-S, since the number of waypoints is n ` 1 (because

we only considered waypoints perpendicular to the sensors), the main loop is repeated Opnq

times (Line 2). Since the selection of the best waypoint (Line 3) takes into account at most Opnq

waypoints in each iteration, the total time complexity of the MRE-S algorithm is Opn2q.

4.4.3 The MRS-S Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with a single

drone, called Max ratio Reward-Storage (MRS-S). MRS-S, similar to MRE-S, is based on the highest

reward-to-storage ratio (instead of reward-to-energy). The Line 3 in Algorithm 14 is replaced by

p Ð argmaxpiPP̂
ri
wi

. Once the selection is done, MRS-S tries to add p to the solution by evaluating

if the energy and storage constraints are satisfied or not. In either cases, p will not be considered

anymore. Eventually, the solution is returned.

Unlike MRE-S, all ratios can be initially calculated once, and hence we can sort them in a

decreasing manner, which takes Opn log nq. So, at each iteration of the algorithm, we extract the

current best one in constant time. Therefore, its time complexity is Opn log n ` nq “ Opn log nq.

4.5 Solving MDMP with Multiple Drones

In this section, we extend the previous three algorithms for the single-drone case (in Section 4.4)

to multiple-drones to solve MDMP in the general case, specifically the heuristic algorithms RSEO-

M, MRE-M, and MRS-M, respectively. Moreover, we present two heuristic algorithms called Span

And Split (SAS-M), and Clusterize And Assign (CAA-M). Note that the suffix “-M” stands for “multiple-

drone”.

4.5.1 The RSEO-M Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with multiple

drones, called RSEO-M. It extends the RSEO-S algorithm to a multiple-drone scenario, so they
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work similarly. In fact, the idea is to initially select and assign a subset of sensors to each drone

such that the sum of the total collected reward is maximized while ensuring that the storage

requirement is met (neglecting so the energy). Furthermore, as for RSEO-S, for each drone, we

reduce the number of required waypoints to cover its assigned subset of sensors, then we compute

a tour that connects all the waypoints and eventually shrink that tour if it is energy-unfeasible.

The pseudocode of RSEO-M is given in Algorithm 15.

Algorithm 15: The RSEO-M Algorithm

1 M Ð∅

2 V 1 “ tV 1
1, . . . , V 1

l u Ð multi-knapsackpV,S, lq

3 foreach V 1
j P V 1 do

4 P 1
j Ð min-set-coverpV 1

j , Pq

5 M j Ð traveling-salesmanpP 1
jq

6 while CM j
ą E do

7 p Ð argminpiPM j
RM j

´RM jztpiu

8 M j Ð M jztpu

9 M Ð MY tM ju

10 return M

The RSEO-M algorithm works as follows. Initially, the solution is empty (Algorithm 15, Line 1).

Then we determine a collection of subsets of sensors V 1 “ tV 1

1, . . . , V 1

l u such that the sum of the

reward obtained from each V 1

j is maximized and the storage constraint S is satisfied, by invoking

the multi-knapsack procedure [114] (Line 2). The multi-knapsack procedure is a generalization of

the knapsack procedure extended to multiple knapsacks. After that, for each knapsack V 1

j (Line 3)

assigned to the drone d j, we reduce the number of required waypoints (Line 4), we connect all

of them (Line 5), and possibly shrink the tour created if it exceeds the energy budget (Line 6).

Eventually, the solution is returned (Line 10).

In the next, we discuss the time complexity. In the RSEO-M algorithm we need to invoke the

multi-knapsack procedure at the beginning, which is an NP-hard problem [114]. In particular,

Chekuri et al. proposed a p1 ´ εq polynomial-time approximation scheme (PTAS) which takes

nOp1{ε8 logp1{εqq time [115, 116]. However, in this chapter we decided to rely on the fast heuristic

algorithm proposed by Martello et al. whose time complexity is Opln2q [117,118]. The other sub-

procedures, i.e., min-set-cover and traveling-salesman, are executed l times, but on inputs smaller

than those in the RSEO-S algorithm, and in the worst case, the loop in (Line 3) takes Opln3q time.

In conclusion, the overall time complexity of the RSEO-M algorithm is Opln3q.
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4.5.2 The MRE-M Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with multiple

drones, called MRE-M. It extends the MRE-S algorithm to a multiple-drone scenario, and there-

fore they work similarly. In fact, MRE-M greedily adds to the current drone’s solution among the

available l ones, the waypoint whose ratio between the overall obtainable reward and the ad-

ditional energy cost with respect to the current drone’s mission is the largest. Basically, MRE-M

sequentially invokes MRE-S for each drone at the residual waypoints. The pseudocode of MRE-M

is given in Algorithm 16.

Algorithm 16: The MRE-M Algorithm

1 M Ð∅, P̂ Ð tp1, . . . , pnu

2 foreach d j P D do

3 M j Ð MRE-SpP̂ Y tp0uq

4 M Ð MY tM ju, P̂ Ð P̂zM j

5 return M

The MRE-M algorithm works as follows. Initially, the solution is empty (Algorithm 16, Line 1),

and the set of current waypoints is also created. Then, for each drone d j (Line 2), we iteratively in-

voke the MRE-S algorithm on the current set of waypoints P̂ (Line 3). Specifically, we sequentially

return an energy- and storage-feasible drone’s mission M j for each drone to/from the depot, and

then we add it to the set of missions M, as well as we update the remaining waypoints (Line 4).

Eventually, the solution is returned (Line 5).

The MRE-S algorithm takes Opn2q time. Therefore, since the MRE-M algorithm sequentially

invokes MRE-M l times, in the worst case, the cost of MRE-M is Opln2q.

4.5.3 The MRS-M Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with multiple

drones, called MRS-M. It extends the MRS-S algorithm to a multiple-drone scenario, and therefore

they work similarly. It exactly works as the MRE-M algorithm, with one exception, i.e., the Line 3

in Algorithm 16 is replaced by M j Ð MRS-SpP̂q.

Since MRS-S is repeated l times, its time complexity is Opln log nq.
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4.5.4 The SAS-M Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with multiple

drones, called Span And Split (SAS-M). The idea is to initially create a path that connects all the

vertices (sensors) plus the depot. This path is nothing but the sequence of vertices obtained by

visiting the minimum spanning tree, rooted at the depot itself. Such a path exists because we

assume that any two vertices can be connected following the straight line that connects them in

the Euclidean plane. Then, we split the obtained path into a set of energy- and storage-feasible

tours to be assigned to the drones. The pseudocode of SAS-M is given in Algorithm 17.

Algorithm 17: The SAS-M Algorithm

1 M Ð∅

2 T Ð min-spanning-treepGq

3 N Ð tree-visitpT, p0q

4 while N ‰∅ do

5 L Ð create-tourpN , p0q

6 M Ð MY tLu, N Ð NzL

7 M Ð best-l-missionspMq

8 return M

The SAS-M algorithm works as follows. Initially, the solution is empty (Algorithm 17, Line 1).

Then, we determine the minimum cost tree T in terms of drone’s traveling energy that connects

all the sensors V plus the depot p0, by invoking the min-spanning-tree procedure (Line 2). In the

min-spanning-tree procedure, since we are given a weighted graph G with weights on edges that

represent the energy cost of flying between any two sensors, the objective is to select the tree that

spans all vertices while minimizing the total flying/traveling energy cost on the edges. Once the

tree is built, we perform a tree-visit procedure, and a sequence of vertices N is generated in output

(Line 3). After that, we begin splitting the sequence of vertices N in tours to/from the depot p0

(Line 4). Specifically, through the create-tour procedure (Line 5), starting every time at the point

p0, we try to create a tour L by selecting the next available vertex v P N not already taken in other

tours. A vertex v can be added to the current tour L if the travel cost to visit v and go back to

p0, plus the hovering cost at v, is within the energy budget (as well as the whole collected data

is within the storage budget); otherwise, the current tour L is closed (Line 6). When N “ ∅, we

assign the best l tours in terms of the collected reward to the l drones (Line 7), and eventually

we return the solution (Line 8).

In the next, we discuss about the time complexity. The min-spanning-tree procedure that
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we have used in this chapter is Kruskal’s implementation and requires Op|E| log nq time [66],

where |E| is the number of edges of the (complete) graph. The tree-visit procedure visits the

minimum spanning tree T . In this chapter, we implemented the Depth-first search (DFS) and

the Breadth-first search (BFS): both take time Opnq on trees [65]. Now, the cycle in Line 4

sequentially considers the vertices given by the tree-visit procedure, one at the time. The vertices

are n. Whenever a vertex is not anymore neither energy- nor storage-feasible, the current tour

is closed (create-tour procedure). Hence, the cycle in Line 4 costs Opnq. Finally, the selection of

the best l submissions costs Opn log nq due to the sorting procedure. In conclusion, the SAS-M

algorithm costs Op|E| log n ` n ` n log nq “ Opn2 log nq since |E| “ Opn2q.

4.5.5 The CAA-M Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with multiple

drones, called Clusterize And Assign (CAA-M). The idea is to initially split the set of vertices into l

partitions (one for each drone) trying to balance the total energy cost. Then, we make each par-

tition energy- and storage-feasible by invoking the previous RSEO-S algorithm. The pseudocode

of CAA-M is given in Algorithm 18.

Algorithm 18: The CAA-M Algorithm

1 M Ð∅

2 V 1 “ tV 1
1, . . . , V 1

l u Ð clusterizepV, lq

3 foreach V 1
j P V 1 do

4 M j Ð RSEO-SpV 1
j ,E,Sq

5 M Ð MY tM ju

6 return M

The CAA-M algorithm works as follows. Initially, the solution is empty (Algorithm 18, Line 1).

Then we split the set of sensors V into l partitions by performing the clusterize procedure (Line 2).

The clusterization phase takes into account the energy cost, so the hope is to determine clusters

that are immediately energy-feasible regardless of the storage constraint. In other words, each

cluster should be considered a neighborhood. This is in contrast to the RSEO-M algorithm, in

which the “clusterization” given by the multi-knapsack procedure guarantees to have storage-

feasible tours, while neglecting their energy cost. Therefore, each cluster V 1

j should be adequately

reduced in terms of storage, and shrunk in terms of energy cost, through the RSEO-S algorithm

(Line 4). Finally, the solution is returned (Line 6).
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In the next, we discuss about the time complexity. The clusterize procedure is an implemen-

tation of k-means clustering, which aims to minimize the sum of the squares of the distances be-

tween each point and its closest center by locating k cluster centers. This can be achieved through

various methods, including Lloyd’s local search algorithm, MacQueen’s algorithm, and Hartigan-

Wong’s algorithm [119]. In this chapter, for its implementation easiness, we utilized Lloyd’s im-

plementation through the clusterize procedure, which has a time complexity of Opnlq [120].

Then, recalling that the RSEO-S algorithm costs Opn3q, the cost of running it l times is Opln3q.

So, the final time complexity of the CAA-M algorithm is Opln3q.

4.6 Performance Evaluation

In this section, we evaluate the performance, in terms of the reward obtained, of the algorithms

presented to solve MDMP. We implemented1 our algorithms in Python language version 3.9, and

run all the instances on an Intel i7-10genK computer with 16GB of RAM. However, the ILP-based

optimal OPT algorithm is implemented using IBM’s ILOG CPLEX Optimizer solver v22.1 with

Python used to wrap the objective and constraints and invoke the parallel solver.

In Section 4.6.2 we present the results with a single drone scenario, while in Section 4.6.3

we present the results with a multiple drone scenario. For the previous scenario, we compare

the RSEO-S, MRE-S, and MRS-S algorithms with respect to OPT (the optimal one), while in the

latter one, we compare the RSEO-M, MRE-M, MRS-M, SAS-M, and CAA-M algorithms with respect

to OPT.

In Table 4.6.1, we compare the algorithms presented evaluating their time complexities.

4.6.1 Settings

The field F is a square of the side 5km, where the depot is located at the center of it. We uniformly

generate n “ t10, . . . , 200u sensors whose height is ´5m ď zi ď 5m. We also have a fleet of

l “ t1, 2,3, 4u drones that will be used to collect data. Each sensor has 100MB ď wi ď 1GB data

to transfer. This is a reasonable assumption because text data and picture data have different sizes

in general. Moreover, each sensor has an associated reward 1 ď ri ď 10 that models the relevance

of the data, so ri “ 1 models the lowest priority, while ri “ 10 models the highest priority. Both

wi and ri are generated according to the Uniform distribution.

The drones fly at a fixed altitude h “ t10, . . . , 45um and have a fixed communication range of

R “ 50m [121]. Their storage is S“ t2, . . . , 16uGB and their battery capacity isE“ t2.5, 5,10uMJ [29].

1The code is available on GitHub here: https://github.com/TheAnswer96/JCSS

https://github.com/TheAnswer96/JCSS
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Table 4.6.1: Comparison between the algorithms for solving MDMP.

Algorithm Section Time Complexity

Single-drone

RSEO-S 4.4.1 Opn3q

MRE-S 4.4.2 Opn2q

MRS-S 4.4.3 Opn log nq

Multiple-drone

RSEO-M 4.5.1 Opn3q

MRE-M 4.5.2 Opln2q

MRS-M 4.5.3 Opln log nq

SAS-M 4.5.4 Opn2 log nq

CAA-M 4.5.5 Opln3q

We fix an average energy consumption for flying α “ 200J{m and hovering β “ 700J{s [122].

The data transfer rate between drones and sensors is set to γi “ 9MB{s (Wi-Fi 4 standard) re-

gardless of the actual distance.

In the next plots, each algorithm is tested with different configurations of parameters, and we

plot the average of the results on 33 random instances along with their 95% confidence interval.

The optimal OPT is only run with small instances in input. In particular, when we run the OPT

algorithm, we report in the y-axis the ratio ρ “
RpSOLq

RpOPTq
, i.e., the ratio among the total reward

collected by the compared algorithm, and the total reward collected by the optimal algorithm.

Clearly, 0 ď ρ ď 1 because MDMP is a maximization problem. However, for larger instances in

input, the OPT algorithm starts to be unsuitable due to the large number of variables/constraints,

and therefore we only compare the other proposed approximation and heuristic algorithms. Ob-

viously, since we do not compute the optimal solution, we report in the y-axis only the collected

reward RpSOLq for each algorithm.

4.6.2 Results with a Single Drone

In this section, we evaluate our algorithms when solving MDMP with a single drone scenario. In

Section 4.6.2, we assess the impact of drone altitude, while in Section 4.6.2, we assess the impact

of energy and storage constraints.

Impact of the Altitude

In this section, we evaluate the impact of the altitude of the single drone.
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Figure 4.6.1: Single-drone: comparison of all the algorithms when varying the drone’s altitude.

In Figure 4.6.1, we vary the altitude of the drone h “ t10, . . . , 45um in the x-axis, while we

report the ratio ρ in the y-axis. We fixed small instances with n “ t10,15, 20u sensors, since we

also executed the OPT algorithm. In particular, since n is small, we have chosen small values for

energy and storage constraints, i.e., E“ t2.5,5uMJ and S“ t4,8uGB, respectively, obtaining so 4

different combinations of energy-storage. The plots in Figure 4.6.1 are organized in 3 rows, i.e.,

the first row shows the result with n “ 10, the second and the third show n “ 15 and n “ 20,

respectively; while the 4 columns show the combinations of energy-storage mentioned above.

The first observation in Figure 4.6.1 is that, by fixing a particular energy-storage setting, the

results slightly change when we vary the height of the drone, with a few exceptions. The altitude

parameter affects the number of waypoints that the drone can consider. In fact, the higher is the

drone’s altitude, the less is the number of intersections among the sensors, and hence the less

will be the actual number of waypoints. Regardless of the drone’s height, we can see that the

RSEO-S algorithm poorly performs when the energy budget is small (E “ 2.5MJ). This is due to

the fact that its initial strategy is aimed at finding a good partition of sensors such that the storage

constraint is met. The selected sensors can belong to much different sub-areas of the field, and

therefore the energy required for visiting all of them could be not sufficient. When the energy is

doubled (E“ 5MJ), however, the drone has much higher chances of finding a suitable route that
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can cover all the selected sensors and for this reason the RSEO-S algorithm performs better.

It is also interesting to see a counter-intuitive behavior with regard to the storage constraint.

In fact, when the energy is small (E “ 2.5MJ), the more storage availability does not affect the

results, neither positively nor negatively. This can be justified by the fact that when the drone

has a limited battery, the resulted mission cannot be very long, and hence the larger availability

of the storage is not detrimental. Instead, when the energy is larger (E “ 5MJ), a larger storage

(S“ 8GB) slightly worsens the performance in terms of ratio. This is probably because the drone

can visit more sensors flying longer routes, but the more availability of storage is not optimally

exploited by the suboptimal algorithms.

The two greedy heuristic algorithms MRE-S and MRS-S perform more or less the same, with

MRE-S that always outperforms MRS-S when varying the drone’s height. When the energy is small

(E “ 2.5MJ), the gap between the two strategies is more evident. In fact, MRE-S considers the

energy budget when it builds the drone’s mission. However, the time complexity of MRS-S is the

lowest among all compared algorithms and often shows good enough performance.

In conclusion, since the height of the drone does not heavily affect the performance of our

proposed algorithms, in the following, we consider a reasonable drone’s height fixed to h “ 20m.

Impact of the Energy and Storage Constraints

In this section, we evaluate the impact of energy and storage constraints for a given drone’s

altitude, i.e., h “ 20m. In particular, we considered many more sensors in this comparison and

therefore we do not execute the optimal OPT algorithm when n ě 25.

In Figure 4.6.2, we fix the drone’s altitude to h “ 20m. We set the number of sensors n “

t10, . . . , 200u on the x-axis, while we report the reward collected in the y-axis. Moreover, we set

the drone’s energy E “ t2.5, 5,10uMJ and storage S “ t2, 4,8, 16uGB. The plots in Figure 4.6.2

are organized in 3 rows and 4 columns, i.e., fixing the energy values on rows, and the storage

values on columns.

In Figure 4.6.2 we can observe how the energy influences the performance of the algorithms.

In particular, it is interesting to see the behavior when the energy E changes from 2.5MJ to

10MJ, specifically for n “ t10, 15,20u, i.e., the cases where we also performed the optimal OPT

algorithm. Let us now focus on the case with S“ 8GB. In fact, when E“ 2.5MJ, the gap between

the optimal algorithm and the other suboptimal ones is limited. Instead, when E “ 5MJ, such

a gap is much more evident than before. However, when E “ 10MJ, the gap is reduced and,

in addition, RSEO-S matches OPT. This is due to the fact that the RSEO-S algorithm can avoid

pruning the sensors if the energy budget is very large.
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Figure 4.6.2: Single-drone: comparison of all the algorithms when varying the drone’s energy

and storage constraints.

Another interesting aspect to discuss is the collected reward when the number of sensors

increases from n “ 100 to n “ 200. In fact, the total collected reward by the RSEO-S algorithm

slightly decreases when n “ 200. Recall that the strategy of RSEO-S is to consider the waypoints as

a whole. Therefore, since the area of the field F is the same, when the number of sensors increases,

the density of them in F also increases accordingly. As a consequence, the number of intersections

dramatically increases and the hovering time on these will increase as well. Furthermore, during

the pruning phase of RSEO-S, a certain number of waypoints, densely populated by sensors, will

be discarded in order to keep the route within the energy constraint. Therefore, the final energy-

feasible route will be sacrificed too much and there is a serious possibility that a residual energy

budget can exist. In fact, we have experimentally observed that when n “ 200, the residual non-

used energy battery is a little bit larger than the cases when n “ 100. This problem could be

partially avoided by implementing a route reward-increasing phase in order to regain the unused

energy, but this would not improve the guaranteed approximation ratio provided by the algorithm

proved in Theorem 13.

In general, MRE-S outperforms MRS-S, especially when storage availability is high. Instead,

for small storage in the input (Sď 4GB), the performance of MRS-S is better than that of MRE-S.
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Despite its relatively poor general performance, the MRS-S algorithm is still worthy due to its

lower time complexity with respect to that of MRE-S.

4.6.3 Results with Multiple Drones

In this section, we evaluate our algorithms when solving MDMP with a multiple-drone scenario.
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Figure 4.6.3: Multi-drone: comparison of all the algorithms when varying the drone’s energy and

storage constraints.

In Figure 4.6.3, we fix the drone’s height to h “ 20m. We set the number of sensors n “

t10, . . . , 200u on the x-axis, while we report the collected reward on the y-axis. We set the

drone’s energy E “ t2.5, 5,10uMJ and the storage S “ t2,4uGB. The small values of the storage

are justified by the fact that here we employ a fleet of l “ t2,3, 4u drones, and hence drones can

have less capabilities. The plots in Figure 4.6.2 are organized in 3 rows and 4 columns, i.e., fixing

the number of drones on rows, and the energy-storage combinations on columns. Due to the

large number of constraints, the optimal OPT algorithms has been executed only for the smallest

instances.

The general trend that we can observe in Figure 4.6.3 is that when the energy is very small

(E “ 2.5MJ), the best performing algorithm is CAA-M, while when the energy increases to E “

5MJ, the best algorithm is SAS-M (when the BFS visit is implemented), and finally when the

energy increases to E “ 10MJ, the best algorithm is RSEO-M. With respect to SAS-M, we can

see a symmetric behavior with respect to the energy in the input. In fact, when the energy is
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small, the DFS version of SAS-M outperforms the BFS one, while with more energy it happens the

opposite. In the latter case, the gap between the two visit strategies is more evident. We can also

observe that the performance of SAS-M increases when the number of drones l also increases.

Probably, this is justified by the fact that the DFS version tends to balance the distance of the

sensors in each partition, whereas the BFS version is inclined to aggregate sensors into partitions

with incremental distance from the depot. Therefore, when the budget is limited, the balanced

nature of SAS-M DFS determines more profitable partitions, vice versa, it tends to “waste” energy

by including very far sensors. The opposite reasoning can be applied for SAS-M BFS.

The RSEO-M algorithm’s performance is poor when the energy level is low (Eď 5MJ). How-

ever, when there is more energy available (E “ 10MJ), the algorithm significantly improves.

This trend is consistent with observations from the single drone scenario, where limited energy

availability negatively affects the construction of an energy-feasible route for each drone. In con-

trast, if there is a large amount of energy available, the sub-sets of sensors returned through the

multi-knapsack procedure become much easier to visit. Therefore, the algorithm’s performance

is dependent on the availability of energy, and it is more efficient when there is a higher energy

level.

Finally, with respect to greedy heuristic algorithms, the MRE-M algorithm confirms to be a valid

choice, although in the combination E “ 10MJ,S “ 2GB its performance is not so good. This is

because there is a high availability of energy, but a very low availability of storage. The other

greedy solution, i.e., MRS-M, is almost always outperformed by MRE-M, but its time complexity

is the lowest, and this is a good trade-off when the number of sensors and drones increases.

4.7 Conclusion

In this chapter, we investigated the problem of using a fleet of drones to collect data from IoT

ground sensors deployed in a field to be monitored. As an example, in a smart agriculture sce-

nario, a fleet of drones is in charge of retrieving data from many sensors to detect the presence

of insects in orchards. The drones are constrained by both the available energy battery and the

storage. The data that sensors have to offload to the drones is characterized by a size, and by a

reward that models its relevance. The proposed problem is MDMP, whose goal is to plan a suit-

able set of missions for the drones such that the sum of the overall collected reward is maximized

and the energy and storage constraints on each drone are both satisfied. We formally proved that

MDMP is NP-hard, and presented an ILP formulation that optimally solves it. We also devised

time-efficient approximation and heuristic algorithms capable of suboptimally solving MDMP.
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In future work, we would like to incorporate communication issues between drones and sen-

sors, as well as a more realistic environment with obstacles. Then, in order to evolve the MDMP

towards a more realistic scenario and adjust the scheduling to user demands, we plan to consider

a heterogeneous fleet of drones, taking into account the possibility to collect different amounts

of data or offloading with diverse technologies and rates. Moreover, we can allow drones to fly

at different altitudes during the same mission, for example, to cover more sensors or to improve

air-to-ground communications. Finally, we plan to build a preliminary real test-bed with a single

drone to collect data from real IoT sensors that store text and image information.
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Chapter 5

YOLO-based Detection of Halyomorpha

halys in Images taken inside the Orchards

5.1 Introduction

In February 2021, the Horizon 2020 HALY.ID project [17] was granted with the objective of au-

tomating the monitoring activities by growers and plant health operators by July 2024. The main

idea is to minimize or eliminate the reliance on traditional monitoring devices and activities, such

as traps, visual sampling, sweep netting, and tree beating, while proposing an efficient and effec-

tive automated monitoring process for scouting the HH. Indeed, this chapter focuses on detecting

the presence of HH. To achieve this, we start by creating a dataset of on-site images, primarily

taken by drones as well as other devices. We enhance the dataset’s quality by filtering out un-

suitable images by evaluating blurriness and brightness parameters. Subsequently, we employ

the YOLO framework to train several machine learning (ML) models using our curated dataset.

These models are properly trained to recognize HH, and we assess their performance using var-

ious metrics, which yield positive outcomes. We conclude that by appropriately configuring the

vision chip and optimizing the drone’s positioning, issues of blurriness and brightness can be ef-

fectively mitigated and, under reasonable thresholds, are not limiting factors for the drone usage

in bug detection.

Contributions and Chapter Organization

Our results are summarized as follows:

• We create the first dataset1 for HH using on-site images primarily captured by drones. We
1Currently, the dataset is kept private as per the HALY.ID consortium agreement. It can be only released on explicit
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enhance the dataset’s quality through a preliminary screening process aimed at removing

noisy and biased images before conducting ML training. More specifically, we suggest using

on-site images taken by the DJI Matrice 300 drone or other digital devices not only for

testing but also for training purposes. Furthermore, to ensure confidence in image quality

assessment, we evaluate blurriness and brightness using metrics from existing literature.

• We train multiple ML models using the YOLO framework2 on our built dataset in order to de-

tect the HH. When building our ML models, we apply three distinct approaches for training

and validation that use three selections of images of different quality. We obtain satisfactory

results by evaluating different metrics such as precision and recall, significantly improving

on previous results.

• We develop a cloud-based service which can be reached from the field during drone mission

for performing real-time detection of the HH.

The chapter is structured as follows: We present the relevant related work in Section 5.2. The

description of the created dataset is given in Section 5.3, while Section 5.4 covers the conducted

ML experiments. Finally, conclusions are drawn in Section 5.6. We further investigate in 5.A the

influence of blurriness and brightness on image quality in the HH detection experiments.

5.2 Related Works

Drone have undergone significant advancements, particularly in agriculture, revolutionizing farm-

ing practices by delivering cost savings, operational efficiency, and increased profitability. Re-

jeb al. [124] conduct a thorough bibliometric review to consolidate and structure the academic

literature on agricultural drones, unveiling current research trends. By employing bibliometric

techniques, the analysis highlights key areas such as remote sensing, precision agriculture, deep

learning, ML, and the Internet of Things as pivotal in the field of agricultural drones.

The utilization of drones in the field of agriculture can be advantageous in various ways. It can

be used in conjunction with satellites to create vegetation indicators [125–127], or for monitoring

wildlife and cows [128,129], just to mention a few. The use of drones can result in the capture of

a vast amount of imagery, and when combined with ML algorithms, it can make the system faster

and more accurate than human observers in monitoring and estimating animal populations. Not

request to HALY.ID’s Board. It will be made public for research purposes once the project concludes.
2We decide to employ YOLO as the object detector due to its excellent performance as demonstrated in [123] for

HH detection in an artificial dataset.
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only expensive drones, vision-based systems, and embedded electronics suitable for developed

countries have been used for precision agriculture, but also low-cost solutions, such as AgriQ,

proposed by De Oca et al. [130]. AgriQ comprises a drone, a multispectral imaging system, vision

algorithms, autonomous trajectory planning, a budget-friendly multispectral imaging system, and

open-source software to compute valuable information for farmers. Experiments show AgriQ’s

superior cost-effectiveness and performance compared to other commercial systems.

As for ML, there has been a growing emphasis on employing ML techniques for monitoring

insect species. Traditional methods such as support vector machine, adaptive boosting, artificial

neural network [131–134], and deep learning techniques based on convolutional neural networks

(CNNs) [135–137] have demonstrated very good results in insect monitoring. For instance, a

novel approach that involves the early detection and continuous monitoring of adult-stage white-

flies (Bemisia tabaci) and thrips (Frankliniella occidentalis) in greenhouses has been proposed

in [132]. The approach is based on an image-processing algorithm and artificial neural networks.

The developed identification algorithm achieves good results. This proposed approach has the

potential to improve IPM strategies and reduce the use of harmful chemicals in greenhouse agri-

culture.

The chapter combines the use of new technologies, like drones with ML techniques to de-

tect HH. To the best of our knowledge, only a limited number of studies have showcased the

direct detection of insects through aerial surveys conducted with drones in open fields. In fact,

drones can be equipped with specialized cameras capable of capturing high-resolution images of

small objects, and can leverage GPS technology for efficient positioning. One of these studies

aims to determine the effectiveness of drones in detecting the immobile stage of the Monema

flavescens [138]. The results indicate that an aerial survey performed with a drone at a height of

3m above the tree canopy is more efficient and successful in identifying butterfly cocoons than a

ground survey. Also, the captured images demonstrate the ability to differentiate between open

and closed cocoons. So, the authors highlight the potential of drones for detecting insects directly

in agriculture.

In the rest of this section, we present the state-of-the-art on HH detection. This section of-

fers motivations for the achievements of this chapter, which finally improves the HH detection

algorithms.

5.2.1 Previous Results on HH Detection

In the initial phase of the HALY.ID project, several attempts to scouting HH using different imaging

technologies have been pursued. Ferrari et al. [139] evaluate the use of NIR-HSI as a potential
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technology for detecting HH specimens on various vegetal backgrounds that can mimic field con-

ditions. From a set of hyperspectral images comprising HH, two chemometric approaches have

been used to develop classification models. The results demonstrate the potential of NIR-HSI

combined with chemometric analysis and CNNs to detect HH accurately, even when mimicking

different background conditions. Although this technology holds the potential to become an ef-

fective tool for IPM in the agricultural sector, it is currently not ready for field deployment due to

its prohibitive cost. Additionally, several preliminary studies using RGB cameras have also been

conducted to detect HH. Trufelea et al. [140] propose to train a CNN to recognize different in-

sects, including HH, Pyrrhocoris apterus, and Nezara viridula. Most of the images are from the

Maryland Biodiversity database [141], and others from a custom dataset built by professional

cameras. Similarly, Ichim et al. [142] investigate the identification of HH with four CNNs. The

dataset is built on two public datasets with many different insects specimen, plus a custom dataset

collected with a DJI Mini 2 drone containing HH. The networks demonstrate strong performance

only when evaluated on images resembling those in the public dataset. Finally, Sava et al. [123]

assess the effectiveness of the YOLO [143] framework, employing region-based CNNs (R-CNN),

for HH detection. Multiple models are trained, validated, and tested only using the Maryland

dataset [141].

Table 5.2.1: Experimental results (precision among all the classes) on different testing datasets,

as reported in [1].

Row Dataset P

1 hh_unimore_rgb_lab-images_july2021_scaled 0.97

2 2021-09-01-by-smartphone_scaled 0.79

3 farmer_scaled 0.82

4 drone-camera_2021-08-30_scaled 0.28

5 drone-camera_2021-08-31_scaled 0.36

6 drone-camera_2021-09-01_scaled 0.30

7 drone-camera_2021-09-03_scaled 0.32

While the performance shown in [123, 140, 142] is indeed promising on Maryland dataset,

the authors did not test their models on datasets constructed from on-site images or, if they did,

they obtained poor results. So, the primary objective became the training of ML models on on-site

images which is what any monitoring system should do. To do this, in our previous work in [1]

we adopted a lightweight deep neural network (DNN) called CenterNet [144], trained solely on

images captured by a DJI Matrice 300 drone in a first-person view mode. Unfortunately, the
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performance was extremely unsatisfactory. To improve on the performance, an additional semi-

artificial dataset was generated which included the silhouette and appearance of the HH extracted

randomly from images with varying orientations and random backgrounds, sourced from public

datasets (see Figure 5.2.1). After training CenterNet on the semi-artificial dataset, it was then

tested on various other datasets whose results are reported in Table 5.2.1 [1]. The results indicate

that the precision (P) is high for images captured with smartphones and even better for images

obtained from professional cameras in the laboratory. However, the performance is considerably

lower when using images taken with the drone. One could be tempted to brutally ascribe the

poor results to the low resolution of the drone images. However, when observed with the naked

eye, the images taken by the drone generally appear good, and even excellent in the portion of

the photo where the bugs reside. Hence, we suspect that the decline in performance is primarily

due to the disparity between the training and testing datasets.

(a) Silhouette on a background. (b) Drone’s taken image.

Figure 5.2.1: The training dataset in [1].

Motivations. Considering the differences in results between [1] and [123,140,142], we attribute

the variations in performance to the neural network used, and to the fact that we did not use

the same image type for both training and testing like in [123, 140, 142]. Therefore, in this

chapter we propose the utilization of on-site images taken by the DJI Matrice 300 drone or other

digital devices not only for testing, but also for training. Moreover, to ensure confidence in the

image quality and evaluate it, we assess the blurriness and brightness using metrics proposed

in the literature. Specifically, we employ the no-reference blurring metric proposed in [145]

and the brightness metric proposed by the International Commission on Illumination Laboratory

(CIELAB) [146]. Our final goal is to substantially improve the performance of the HH detection

algorithm, thus improving the rows of Table 5.2.1 that refer to drone images.

In the following section, we will present and explain the process we undertook to create the

dataset utilized for the recognition of HH in the field.
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At last, for easy reference, we report in Table 5.2.2 the list of acronyms adopted in this chapter.

Table 5.2.2: List of Acronyms and Descriptions.

Acronym Description

HH Halyomorpha halys

NV Nezara viridula

BMSB Brown Marmorated Stink Bug

IPM Integrated Pest Management

NIR-HSI Near-Infrared Hyperspectral Imaging

ML Machine Learning

DNN Deep Neural Network

YOLO You Only Look Once

CNN Convolutional Neural Network

TL Transfer Learning

IoU Intersection over Union

5.3 The New Dataset and its Analysis

In this section, we present the dataset that we created. We begin by explaining the composition

of the dataset in Section 5.3.1. In Section 5.3.2 we investigate the blurriness and brightness of

the selected images to objectively evaluate their quality. Finally, in Section 5.3.3 we examine the

size of the bugs in the images, as this factor will play a crucial role in the labeling procedure.

5.3.1 Dataset Composition

One of the primary goals of the HALY.ID project was to develop a comprehensive and collaborative

dataset of on-site images containing stink bugs. This dataset would serve as a valuable resource

for computer vision algorithms to effectively identify the presence of the bugs in orchards.

During the first year of the summer campaign of the project, we acquired a total of 1,234

on-site images plus 34 high-quality images from the Internet. Table 5.3.1 reports the composition

of the created dataset categorized in four different classes, namely, drone (see Figure 5.3.1a),

smartphone (see Figure 5.3.1b), laboratory (see Figure 5.3.1c), and Internet images (see Fig-

ure 5.3.1d). As a result, our initial dataset consisted of a total of 1, 268 images. From them, we

discarded the images without HH. Furthermore, several images were excluded due to low quality
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(a) On-site image with drone. (b) On-site image with smart-

phone.

(c) Laboratory image. (d) Maryland dataset image.

Figure 5.3.1: An example of image for each category.

issues. So, the final dataset has 677 images, out of which 83% where captured in the orchard,

12% in the laboratory, and 5% from other dataset in Internet.

The created dataset contains two classes of stink bugs: the invasive species, Halyomorpha

halys (HH), and the most common stink bug in Italian orchards, Nezara viridula (NV), as shown

in Figure 5.3.2. The HH and NV are quite different. From our dataset consisting of 677 images,

there are 1,803 actual distinct instances of bugs, divided in 1, 502 HH and 301 NV specimens.

So, the scope of our algorithms is not only to detect a “stink bug”, but also to classify it as either a

HH or a NV. Although the classification is not a trivial task, the detection of the bugs is definitely

an even more challenging task.

5.3.2 Evaluation of Blurriness and Brightness

As previously mentioned, the constructed dataset is heterogeneous as it has been assembled from

diverse sources. Consequently, there is a significant amount of variability in the image quality,

including variations in resolutions, aspect ratios, and other factors that could represent a bias for

the computer vision algorithms, such as non-optimal blurriness and brightness [1]. Regarding the

blurriness, some of the images taken during the drone’s flight are out of focus due to the camera’s
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Table 5.3.1: Dataset composition.

Class Total With HH Used

Drone images 855 653 289

Smartphone images 299 274 274

Laboratory images 80 80 80

Total on-site 1234 1007 643

Internet images 34 34 34

Total 1268 1041 677

Figure 5.3.2: Three Pentatomidae stink bugs: Halyomorpha halys (HH, left), Nezara viridula (NV,

center), and Rhaphigaster nebulosa (RN, right, never observed in the monitored orchard).
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auto-focusing mechanism. In fact, when shooting images at small distances, there is a possibility

that the camera may fail to accurately focus at the intended distance, leading to out-of-focus im-

ages. Regarding the brightness, we have observed the presence of certain pictures with excessive

exposure in certain areas or even throughout the entire image. This issue is likely attributable to

the fact that the majority of the images have been captured during the peak hours of the day (late

morning and early afternoon) in summer, when the sun is at its brightest. Additionally, it is not

uncommon for the shadows created by the trees to cause an imbalanced distribution of light, re-

sulting in excessive contrast along the edges of the image. So, with the purpose of avoiding biased

training, a preliminary screening procedure has been applied by utilizing established no-reference

estimators from the literature for both blurriness [145] and perceived brightness [146].
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Figure 5.3.3: Dataset evaluation on blurriness, and perceived brightness for each acquisition

source.

Figure 5.3.3 illustrates an analysis of the images in the dataset in terms of blurriness and

perceived brightness according to the acquisition source. In detail, on the x-axis we list the

blurriness scores, while the brightness scores are represented on the y-axis. The blurriness-metric

is a score in the range r0, 1s: 0 represents blurred image, whereas 1 sharp image. Similarly,

the brightness-metric is a score in the range r0, 1s: 0 represents under-exposition perception,

whereas 1 means over-exposition. Hence, the images with the best metrics (blurriness closer to

1, brightness closer to 0.5) will stay in the middle-right portion of the plots.

The laboratory set (Figure 5.3.1c) is the most uniform according the two metrics. This is be-

cause the images have been taken in a light controlled environment, and keeping a fixed view of

the target. The drone set (Figure 5.3.1a) reports higher values of brightness than the laboratory

ones because the images have been taken outside. Nonetheless, we notice that overall the dots

(images) are clustered together in a limited area with a few outliers due to the blurriness score.

This is due to the fact that the images have been shot under similar distance and focal length
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conditions. However, a few outliers exist because the drone’s auto-focus can be inaccurate, as

previously explained. The smartphone set (Figure 5.3.1b) exhibits the largest variance among

blurriness scores. This is because the set comprises images taken by different operators, mainly

farmers that helped in collecting images, using different devices, each equipped with diverse im-

age sensors. Moreover, differently from the images collected with the DJI Matrice 300, no specific

programmatic policy governed the image capture process. As for the Internet set (Figure 5.3.1d),

it exclusively contains macro photos. In this case, the stink bug specimen occupies a significant

portion of the image, and is the only element in focus. The low blurriness scores in this set occur

when the stink bug occupies a limited area within the image. This is the only set that has quite

high values for brightness, which seem to depend on the prevalence of white inside the picture.

As a conclusion, as summarized in Table 5.3.2, the drone set offers on average good quality, also

in comparison with the other sets.

Table 5.3.2: Dataset analysis and composition. The average (avg) is among all the pictures.

Set num.
blurriness brightness

perc.
avg min max avg min max

Drone 289 0.69 0.05 0.92 0.40 0.24 0.69 43%

Smartphone 274 0.48 0.03 0.84 0.44 0.28 0.90 40%

Laboratory 80 0.66 0.38 0.84 0.33 0.21 0.45 12%

Internet 34 0.49 0.10 0.86 0.52 0.28 0.91 5%

Total 677 100%

5.3.3 Bounding Box Analysis and Labeling Phase

In Figure 5.3.4 (first row), we provide insights into the size distribution of the different bounding

boxes for the two stink bug classes. The x-axis (y-axis) represents the width (height) in pixels

of the drawn bounding boxes. In Figure 5.3.4 (second row), we show the distribution of the

bounding box positions relative to the examined pictures. Essentially, these plots display the

center position of each bounding box as a percentage with respect to the width and height of the

picture.

Concerning the size distribution in Figure 5.3.4 (first row), since the dataset is heterogeneous,

the dimension of the HH varies from, approximately, 30 ˆ 30px to 1000 ˆ 1000px. Differently,

the NV samples have a limited bug size variance. Notice that the majority of images (97%) which

contain NV have been taken using the drone, and the remaining 3% using smartphone cameras.
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Figure 5.3.4: Bounding boxes analysis.

However, although there is a large variance in the bug size, more than 50% of instances are in

the range of 200 ˆ 200px. This is because the drone images have been taken with a strictly

configured setting. Moreover, the drone set exhibits the smallest bounding boxes and the least

variability in size. The smartphone set has a larger variability in the size, with bounding box sizes

up to 1200ˆ900px. We also find that the largest NV instances are in this particular set. However,

we can note that the more is the bounding box size, the more rarefied are the instances in the

plot. The laboratory set contains bounding boxes which are very similar with respect to their side

sizes. Finally, considering the Internet set, we observe that it contains the largest bounding boxes

of the built dataset regarding the HH. Indeed, this tiny set is characterized by high resolution

macro images, where the bug represents the target of the shot.

Regarding the position distribution in Figure 5.3.4 (second row), the drone set highlights a

strong variability for bug positions for both the classes. Even if the majority of the bugs approx-

imately reside in the center of the images, there are some instances whose bounding boxes are

located at the borders of the image. Since the position of the bugs in the orchard is unpredictable,

the drone images capture a wider range of bug sizes and positions. A similar behavior is exhibited

for the smartphone set. To conclude, both the laboratory and the Internet sets are characterized
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by a very stable positioning of the bugs in which the bugs approximately cover the center of the

image.

In the next section, we evaluate our computer vision algorithms from the created dataset in

order to detect the stink bugs.

5.4 Performance Evaluation of the Bug Detection

In this section, we detail and discuss the performance evaluation of the HH detection. We give

an overview of the adopted metrics for the comparison in Section 5.4.1. We then thoroughly

compare and analyze the training and validation results in Section 5.4.2, and the testing results

in Section 5.4.3.

For easy reference, Table 5.4.1 reports the used Symbols along this section.

Table 5.4.1: List of Symbols.

Symbol Description

TP True Positive

FP False Positive

FN False Negative

τ IoU threshold

γ Confidence parameter

P Precision

R Recall

m0.5
3 Mean Average Precision Pascal VOC challenge

m0.95
4 Mean Average Precision MS COCO challenge

BEST Training set with the least blurred images

WORST Training set with the most blurred images

RAND Training set built without any policy

S YOLO’s small split

M YOLO’s medium split

X YOLO’s extra large split

3Also known as mAPr0.5s.
4Also known as mAPr0.5 : 0.05 : 0.95s.
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5.4.1 Adopted Metrics

YOLO detects the stink bug by returning a prediction box Bp that “detects” the bug and its type.

During the labeling phase, each bug is associated with a ground truth box Bg t . For each Bp, the

IoU is defined as the ratio between the intersection area between Bp and Bg t , and the union area

between Bp and Bg t , i.e., IoU “
A pBpXBg t q

A pBpYBg t q
, where A is the area. Note that if the prediction box

detects a bug where there is none (i.e., the case of no-overlap with a Bg t), the area of Bg t is

assumed to be zero. A prediction box is considered a detection box if the IoU is above a threshold

τ. If not differently stated, we assume τ“ 0.5. We define:

1. True Positive (TP): A correct detection (i.e., a prediction box with IoU ě τ) and object

class identified.

2. False Positive (FP): A wrong detection (i.e., a prediction box Bp ‰ 0 with IoU ă τ). Note

that this includes the case that the algorithm identifies a Bp which does not overlap any Bg t .

Namely, if Bg t “ 0, we have IoU “ 0.

3. False Negative (FN ): A ground truth not detected, i.e., missed detection Bp “ 0. Since

Bg t ą 0, it holds that Bp Y Bg t ą 0.

Note that, since Bg t Y Bp ­“ 0, the denominator of IoU is always different from 0, and IoU is

correctly defined.

Our experiments consider two stink bug classes: HH and NV. We measure the performance

on the test set for each class, as well as for the combined performance of the two classes, by

considering four metrics. Concerning the first two, we have precision (P) and recall (R), computed

as follows:

P “
TP

TP ` FP
, R “

TP

TP ` FN
, (5.1)

where TP , FP , and FN are computed by fixing τ “ 0.5. Note that TP ` FN at the denominator

of R is the number of stink bugs, i.e., the number of ground truth boxes computed during the

labeling process. Precisely, when R refers to HH (respectively, NV), TP ` FN is the number of HH

(respectively, NV) found in the training set. When R refers to all classes, TP ` FN is the number

of HH Y NV found in the training set.

Furthermore, we compute the mean AP m0.5 (Pascal VOC challenge [147]) also known as

mAPr0.5s, and m0.95 (MS COCO challenge [148]) metrics, also known as mAPr0.5 : 0.05 : 0.95s).

These metrics refine the notions of true-positive and false-positive by using the confidence param-

eter γ, i.e., a likelihood value returned by the network.
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Fixed a confidence threshold τγ, only the prediction boxes with γě τγ are considered. A TP is

then a prediction box with IoU ě τ and γ ě τγ. Moreover, a FP is a prediction box with IoU ă τ

and γě τγ.

To compute the mτ metric with τ “ 0.5, denoted as m0.5, the refined precision and recall

values are computed with the IoU threshold τě 0.5 and varying the confidence threshold τγ. For

each τγ, only the prediction boxes that satisfy γě τγ are considered. Then, among such images,

the values TP and FP are determined based on the IoU condition. Consequently, the relative

precision and recall values are recomputed. Then, a curve is built by plotting for each value of

the recall (on the x-axis) the corresponding precision value on the y-axis and the approximated

area of such a curve is returned as the mean average precision value m0.5. The term “average”

comes to the fact that the area of the curve refers to several values of confidence values. Note

that when τγ decreases, the recall score cannot decrease because the TP cannot decrease and

the denominator (TP ` FN ground truth) remains the same; while the behavior of precision is

not predictable because both TP and FP cannot decrease, no claims can be made about the recall

ratio.

Later on, in our discussion, we say that an object detector is confidence-robust if the precision

is little affected by the variations of the confidence level. If so, it means that all the prediction

boxes have a high confidence level, and the precision level remains almost constant. In other

words, an object detector is robust if the mτ score with τ “ 0.5, i.e., m0.5 and the P value, are

close. The m0.95 metric repeats the computation of mτ by changing τ between 0.5 ď τ ď 0.95,

with steps of 0.05; and returns the average of all the computed values mτ. From now on, we say

that the detector is IoU-robust if the average precision is little affected by the IoU variations. If

so, the actual IoU value of the prediction boxes is high (close to 1) for all the images. Hence, if

the object detector is IoU-robust, the m0.95 and m0.5 scores are close.

In the rest of this section, we report first the metrics for the training and validation phases

(Section 5.4.2) followed by those for the final HH detection on the testing set (Section 5.4.3).

During this analysis, we consider three models trained with three different splits, BEST, RAND,

and WORST. As we will see, the best results in training and validation will be obtained by the

RAND model, thus confirming that the quality of the selected images is overall stable.

5.4.2 Training and Validation Results

Before testing the computer vision algorithms, a suitable training phase of the networks is re-

quired. The entire dataset has been split into three parts: a training set consisting of 407 images

(60%), a validation set with 135 images (20%), and a testing set with 135 images (20%). In order
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to investigate the claim that “the less blur an image has, the more accurate the prediction will

be” [1], the 542 images from the both training and validation sets have been organized accord-

ing to three different policies (BEST, WORST, and RAND) depending on a blurriness score [145].

Specifically, the least (respectively, most) 407 blurred images are selected and denoted as the

BEST (respectively, WORST) training group, while in the RAND training group these images are

simply randomly selected. Then, for each group, its validation set is built using the remaining

135 unselected images. These three groups will be used to train different object detectors, as

explained below.

Figure 5.4.1: Example of image augmentation.

We also performed an augmentation phase. For each image, three new images obtained by

random transformations are also included. Figure 5.4.1 shows an example of three different

transformations such as mosaic enhancement and HSV-saturation (left), scale-in and transforma-

tion (middle), and combination of mosaic enhancement and scale-out (right). Since different

images differ for their size, and since that TL uses weights obtained from the COCO dataset [149]

which is composed by pictures with a size of 640 ˆ 640px, we decided to scale down all the pic-

tures to this particular value. This process is divided into two sub-phases: initially, the images are

cropped in a square shaped eventually padded with white color, and subsequently scaled down

to the fixed side length of 640px without losing the original ratios.

Each augmented training group will be used to validate and train an object detector based on

a YOLO model. We trained the following versions of YOLO-v5, namely, small (S), medium (M),

and extra large (X ). Furthermore, the models are trained by exploiting the pre-trained weights

of COCO dataset, thus implementing the TL. We trained each model by setting a few parameters5

such as batches with 32 pictures, 200 epochs, learning rate equals to 10´2, SGD optimizer [150],

and image size of 640 ˆ 640 pixels. Finally, nine object detectors are obtained because the S,

M, and X YOLO models are trained with the three RAND, BEST, and WORST groups with TL

5For the training parameters, we refer to the YOLO’s yaml file named hyp.scratch-low [143].
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mechanism.

In Figure 5.4.2 we report the training and validation performance of the resulting YOLO mod-

els. For all the models and for all the training splits, Figure 5.4.2a shows the training performance

in terms of loss functions, while Figure 5.4.2b shows the specific metrics used for the validation

performance (i.e., P, R, and m0.5). These are reported on the y-axis, while the epochs on the

x-axis.

Concerning Figure 5.4.2a, in each of the three plots nine curves are shown: one curve for each

combination of training split (RAND, BEST, WORST) and YOLO model (S, M, X ). The first plot

reports the box loss, namely the function which establishes how well the model guesses bounding

boxes coordinates. We observe that the models converge to a loss close to 0 fairly quickly. All the

three training groups converge faster when the X model is used. The classification loss, which

measures how well the model distinguishes between different classes, and the objectness loss,

which is roughly speaking the confidence that some object exists in a given box, rapidly converge

for all the models and all the groups. One can notice that the objectness loss, although it reaches

a plateau, remains slightly higher than 0.

Focusing on Figure 5.4.2b, the three rows report the precision, recall, and mean AP achieved

by the YOLO models during the validation phase (see Eq. (5.1)). The first column depicts the

results of the three models trained on the RAND split, while the central and the last columns show

the results for the BEST and the WORST split, respectively. Notice that the used metrics are values

averaged on the two classes HH and NV to be recognized. In all the rows, the models trained on

the RAND split reach better performance, faster than the models trained on the BEST and WORST

splits, where the X is always the best. While the three groups behave almost the same for the

P metric, the R and m0.5 performance of WORST and BEST are worse than those of RAND. The P

curves of WORST and RAND fluctuate much more than those of R and m0.5.

Summarizing, we note that all the models obtain a satisfactory performance with both the

loss functions and metrics. Also, they stabilize their trends reaching a plateau in 200 epochs; we

can state that 200 epochs represent a reasonable trade-off between quality of the solution, and

training time. Furthermore, we observe that the models trained on randomly selected images

(RAND) reach the best results on all the metrics with a stable and smooth trend. The models

trained on the WORST split exhibit the worst performance, while the BEST split allows the models

to place in between the RAND and the WORST splits. Finally, focusing on the size of the models,

we can notice that the larger is the model, the higher is the score, and this remark is valid for

each metrics, and for each split considered.
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Figure 5.4.2: Training and validation results using blur score as splitting parameter.
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5.4.3 Testing Results

Finally, we validate all the models on the testing set, without applying any transformations.

RAND split

Mod. HH Class NV Class All Classes

P R m0.5 m0.95 P R m0.5 m0.95 P R m0.5 m0.95

S 0.84 0.74 0.80 0.52 0.77 0.66 0.70 0.38 0.80 0.70 0.75 0.45

M 0.92 0.75 0.85 0.58 0.91 0.77 0.82 0.51 0.92 0.76 0.83 0.55

X 0.92 0.78 0.85 0.60 0.92 0.79 0.83 0.59 0.92 0.79 0.84 0.60

BEST split

Mod. HH Class NV Class All Classes

P R m0.5 m0.95 P R m0.5 m0.95 P R m0.5 m0.95

S 0.77 0.72 0.77 0.48 0.86 0.67 0.72 0.36 0.81 0.69 0.75 0.42

M 0.90 0.73 0.81 0.56 0.89 0.67 0.72 0.36 0.89 0.73 0.81 0.54

X 0.98 0.71 0.84 0.59 0.99 0.83 0.86 0.62 0.97 0.77 0.85 0.61

WORST split

Mod. HH Class NV Class All Classes

P R m0.5 m0.95 P R m0.5 m0.95 P R m0.5 m0.95

S 0.89 0.74 0.81 0.54 0.80 0.70 0.71 0.38 0.84 0.72 0.76 0.46

M 0.95 0.73 0.84 0.58 0.94 0.77 0.81 0.52 0.95 0.75 0.82 0.55

X 0.95 0.77 0.86 0.61 0.95 0.85 0.87 0.60 0.95 0.81 0.86 0.60

Table 5.4.2: Results of YOLO models trained on different images.

Table 5.4.2 reports the results on the testing sets. In general, looking at all the three groups,

we can observe that the M and X models obtain a performance above 89% for all the classes.

The R metric scores for the same models varies between 73% and 85%. Both HH and NV classes

are recognized with a good balance between P and R. For the HH class and RAND split, P is

always above 92%, and hence approximately a tenth of the HH bugs is misclassified. However, R

is only above 75%, which indicates that the models tend to miss the HH achieving more FN . The

NV class has higher P than HH, although obtains a worse performance on R. This means that the

NV individuals are rarely misclassified, although they are often unrecognized.

Generally, the m0.5 of the HH class is higher than that of the NV class, and the difference
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between m0.5 and P is smaller for the HH class than for the NV class. This means that the models

for the HH class are more confidence-robust than those for the NV class. Instead, the difference

between the m0.95 from m0.5 is high for both the classes, meaning that there is a high variations in

the IoU size of the prediction boxes. The results on the “ALL Classes” confirm the above results.

The models are not IoU-robust because the m0.95 and m0.5 scores significantly differ. Instead, the

models are relatively confidence-robust since the distance between P and m0.5 is moderate.

Looking at the metrics, there is a dominance of the X model, which confirms the behavior

of the training. Namely, concerning the BEST split, it reaches the highest values for P on both

the classes HH and NV (98% and 99%, respectively) with the X model. However, with the same

model, the BEST split reports the worst R scores, except for the NV class. One possible interpreta-

tion is that when presented with very sharp images, the model can establish a strong understand-

ing of the distinctive features of stink bugs, and it almost never misclassifies. However, it lacks of

flexibility in the decision, and it misses several bugs.

The RAND split is the set of images that guarantees the most balanced P and R values. This is

likely due to the random selection, which enables the networks to train on a more diverse set of

samples. As a result, they acquire a higher level of generality that aids in the training process. As

regard the WORST split, it surprisingly reaches really good results. In particular, we can observe

that results of the S model dominate those of the S model with the BEST and RAND sets, but in

general there is no dominance. We believe that these results simply confirm that there is not a

marked gap between the best and the worst samples in our dataset, as shown in the previous

Section 5.3.2). In other words, the quality of our dataset is on average good.

HH_Adult 1.0

HH_Adult 1.0

HH_Adult 1.0

(a) Camouflage background.

HH_Adult 0.8 HH_Adult 0.9

HH_Adult 1.0

HH_Adult 0.8

(b) Dense targets scenario.

Figure 5.4.3: The main models’ pitfalls.

Finally, we complete our result analysis by pointing out the main limitations, in terms of per-

formance, behind our proposed detection models. As previously said, the poorest metric is the R,

i.e., how many bugs are effectively detected. We obtained low values such as 0.71 and 0.66 for
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the HH and NV class, respectively. Figure 5.4.3, which depicts two images on which the models

were tested, highlights the main pitfalls found during the testing process. Inside the images, in

green are reported the correctly detected bugs, whereas in red are highlighted the missed ones,

i.e., the FN . One of the most relevant issue behind the R deterioration is related to target speci-

mens which camouflages with the background due to their color. In detail, Figure 5.4.3a clarifies

this particular pitfall. Certainly, we can observe that the failure to detect HH is mainly because its

color is excessively similar to that of the underneath branches. Moreover, its perspective does not

allow to identify all the HH main features, e.g., the paws. As regard to the second most common

pitfall, it is strictly related to the “region proposal mechanism” adopted by YOLO-v5. Indeed,

the system divides the image into a grid. Each of these grid cells predicts a certain amount of

bounding boxes and confidence scores. Then, a suppression procedure is applied to remove the

duplicates based on IoU between boxes and confidence score. Due to this suppression strategy,

YOLO struggles to detect small objects cluttered together in a limited portion of the image. As

shown in Figure 5.4.3b, there is a group of HH particularly close to each other, and although the

majority are quite visible at the naked eye, only a subset of them were correctly detected. The

model probably misses a bunch of HH because of the YOLO’s suppression algorithm. Concerning

the P metric, the very few encountered FP are strictly related again to the color issue. In partic-

ular, some spots on the tree branches very similar to the HH were recognized as such, but since

the number of FP is very limited this issue is quite negligible.

In conclusion, we obtained a significant improvement in the results if we compare them with

respect to the first approach reported in Table 5.2.1 (data from [1]). Specifically, our images are

captured with the drone and thus our results are comparable with those reported in Rows 4-8 of

Table 5.2.1. This achievement is due to the quality of our dataset 6 and the fact that both the

testing and training sets comprise images captured under similar conditions.

5.5 Developed Client-Server Application

In this section, we present a client-server application that can be run in the orchard in order to

detect the presence of bugs.

6In 5.A, we intentionally blur the images of the RAND split. We show that by increasing the percentage of blurred

images on the RAND split, all the metrics deteriorate.
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5.5.1 Overview Architecture

The main idea of the application is to build an almost real-time mechanism capable of detecting

(as well as counting) the bugs in the field. We specify “almost” because we do not detect bugs

from the live video stream, but only from immediately-after taken pictures by the clients. A client

can be any device with an attached camera (such as smartphones, tablets, as well as drone)

and network capabilities. Basically, the application comprises two components: a server, and a

client. The server contains the trained models previously discussed in Section 1.5, and it listens to

requests sent by one or more clients. On each request, the client encapsulates the captured images

to be evaluated by one of the different ML algorithms stored inside the server. Once the server

finalizes to process the request, it replies to the client by sending back the possible detected bugs

(in the form of the found bounding boxes coordinates) along with the computed confidence.

Figure 5.5.1: The app-architecture.

The architecture of the client-server application is shown in Figure 5.5.1.

5.5.2 Server Side

The server component is in charge of providing a stink bug detection to the clients that make

requests. In other words, it remains passive until a client makes a request formed by a set of taken

images, and a specific model to be queried. The server publicly exposes a Flask service, which is a

micro web framework written in Python. Flask is a Python-based web framework that falls under

the category of micro-frameworks as it does not demand any specific tools or libraries [151].

We relied on it simply for its simplicity, i.e., it does not require particular tools or libraries. The

Flask service listens to incoming requests through HTTP POST requests. In fact, by using POST

requests the client can enclose the captured images in the body of the request message, which is
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fundamental in this case. So, the client can perform an HTTP POST request through a particular

URL (in the form of url/model:port) along with the enclosed images inside the message body.

Concerning the model string inside the URL, we can use any of the models shown in Section 1.5

(e.g., xl-blur-model or m-blur-model). At this point, when the client triggers the particular

exposed service, the server performs the image recognition procedure by relying on the trained

models. This is done by PyTorch [152]. In the case that the model detects the presence of bugs,

a set of coordinates that characterize the bounding boxes along with the computed confidence

value are sent back to the client that made the request.

5.5.3 Client Side

The client component is in charge of taking pictures, and send requests to the server in order to

detect the presence of stink bugs in the orchard. Due to the fact that the server component is de-

coupled in this architecture, different devices with different technologies can perform requests to

the server. In other words, any device able to do HTTP POST requests. In the realm of the HALY.ID

project, the client can be either a drone, smartphone, or tablet, or simply a laptop/computer. For

smartphones and tablet we implemented an Android-based Java application that can be installed

on Android devices, while for the latter ones we implemented an HTTP-based web application.

In either case, the application can take/pick pictures and select a model to be queried via POST

requests.

The application that runs on the DJI Matrice 300 has been written in Java language by lever-

aging the DJI Mobile Software Development Kit (MSDK) V4. The MSDK V4 allows to develop

custom Android- or iOS-based applications to be installed on mobile devices directly connected

to the drone’s remote controller. With such applications the drone can perform automatic flights

at different waypoints without the direct intervention of the drone pilot, and can freely move

the gimbal and take pictures by setting suitable camera parameters (e.g., focal length). In other

words, the application communicates with the remote controller via USB cable which in turn

wirelessly communicates with the DJI Matrice 300 drone (and hence with the DJI Zenmuse H20

camera). Although the Android application is mainly developed for autonomous flights (i.e., path

planning, taking pictures, and performing HTTP POST requests to the server), it also allows to

manually pick previously stored pictures to send them to the server with the same paradigm.

Basically, the Android application works as follows. Initially, it allows the user to specify the

waypoints inside the orchard where the drone needs to take the pictures. On each waypoint, the

drone stops and takes around 20 adjacent pictures at different spots of the trees making a grid of

4 cells by suitably rotating the drone’s gimbal. Then, the taken pictures are sent to the server.
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(a) (b)

Figure 5.5.2: The Android application.

5.6 Conclusion

In this chapter, we undertook the study of a system with the ultimate goal of automating the

HH pest scouting in orchards by leveraging RGB cameras, drones, and ML algorithms. We ini-

tially focused on constructing a suitable dataset of images featuring the HH, and enhancing its

quality through a preliminary screening process. Subsequently, adopting the YOLO framework,

we trained and evaluated several ML models on the RAND split and employing diverse metrics

to comprehensively evaluate their performance. We also assessed the potential impact of blur-

riness on HH detection, training the aforementioned models on both the BEST and the WORST

splits. Our methodology exhibited significant improvements over the results reported in [1] for

two main reasons. Firstly, we harnessed on-site images for training, and, secondly, we introduced

a novel pre-processing procedure based on a blurriness metric, which further strengthens the ef-

fectiveness of the computer vision algorithms. Our results are highly satisfactory and underscore

the critical significance of meticulous dataset construction, model training, and image analysis in

the successful implementation of ML for HH recognition. The main limitations encountered with

our models can be addressed by introducing a detection system that runs on patches instead of

entire images in order to improve the attention on small specimens, and to reduce the probability
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of suppressing good detections. Furthermore, in order to further improve the precision rate, we

plan to plug on top of the YOLO head an additional classification network which will parse the

returned detections by distinguishing between stink bug or no stink bug, namely discern between

stink bug or tree flaws and shadows.

Further research and developments are required to complete a fully autonomous orchard mon-

itoring, which can be extended to other invasive and emergent pests. To progress towards this

goal, several key areas need attention. For instance, the development of a client-server appli-

cation that leverages the bug-detectors like those previously described for real-time detection is

crucial. This application would enhance the practicality and accessibility of the monitoring sys-

tem. Additionally, integrating bug-detectors with microclimate weather observations to build an

HH prediction model holds immense potential. This integration can provide valuable insights into

the pest population dynamics, enabling proactive decision-making and pest management strate-

gies. Continued research efforts are essential to identify novel approaches that can complement

the existing methods and contribute to more effective IPMs.



Appendix

5.A Impact of Blurriness

The experiments in Section 5.4.3, where the three splits were arranged based on their blurriness

scores, seem to suggest that the presence of out-of-focus regions within an image does not pose

an issue for the detection. This is evident as the results of the WORST split are not significantly

different from the BEST split, and overall, the RAND split achieves the best performance. So, it is

worth to explore the impact of blur by deliberately blurring a certain percentage of photos from a

specific split. By following this approach, we aim to disprove that increasing levels of blur would

paradoxically enhance the detection performance.

Figure 5.A.1: Example of blur kernel effects.

So, we repeat the training of the three YOLO networks by using transformed training and val-

idation set with increasing percentage of blurred images. Figure 5.A.1 depicts the impact of blur

kernel effects. For each previously created split, we intentionally introduce blur to 50% and sub-

sequently 100% of the samples. Figure 5.A.2 displays the training performance of the RAND split

with 50% of the images transformed. The first row illustrates the loss functions, namely bound-

ing box loss, classification loss, and objectiveness loss. The second row presents the validation

metrics, including P, R, and m0.5.
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Overall, the training behavior of the models on transformed images is similar to what has

already been observed in Figure 5.4.2. Indeed, as regard to the loss functions, we can observe

that all of them converge very close to 0 after a few epochs. The X model demonstrates a ten-

dency to converge faster compared to the other two networks. Conversely, the S model is the

slowest in terms of convergence. When considering the validation performance, we observe a

rapid stabilization of all metrics, although each line exhibits some noise in its trend. Hence, we

can conclude that, from a training perspective, the introduction of 50% induced blur does not

significantly affect the learning performance of the networks. The behavior remains the same

even when more blurred images are introduced. Also the training results of the models trained

on 100% blurred images do not display any significant discrepancies. So, we avoid to plot them.
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Figure 5.A.2: Training results using RAND split with 50% of blurred images.

Figure 5.A.3 presents the performance evaluation metrics of the three YOLO networks, consid-

ering different percentages of forced blur in the training set with 0%, 50%, and 100% of blurred

images. Each row of plots in Figure 5.A.3 corresponds to a different group of results, namely HH,

NV, and all the classes (ALL), respectively, while each column represents the evaluation metrics.

In each plot, the amount of blur imposed on the training set is fixed on the x-axis, while the y-axis

represents the scores obtained by the models.

In principle, we can observe that as the percentage of blur increases, the performance of

the networks tends to decrease for each model. When analyzing the behavior of the networks

based on their size, we find that X achieves the highest results, while S demonstrates the lowest

performance, as previously observed. Regarding the precision, all three lines consistently decline

as the percentage of blurred images increases, specifically for the HH class. This pattern is also

observed in the other rows of the plot. However, we observe the opposite trend for the S network
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and the NV class. We observe a significant increase of 1% in precision when using a training set

with 100% blurring. Similarly, when the models are trained on a set with 50% blurred images,

we observe a smoother, but still noticeable, increase in precision for M and X models. This

can be attributed to a degradation in recall, causing the models to become more selective in

detecting stink bugs. Consequently, they only predict the clearest targets, resulting in a reduction

in false positives and an improvement in precision. The recall is the metric most impacted by

blur. For all network sizes, we observe a drop of 2% in recall when using a training set with 100%

blurring. This behavior is expected since the ability to recognize unclear objects diminishes. When

examining the two mean average precision metrics we observe a consistently decreasing trend,

confirming that blurring progressively reduces the recognition capacity of the networks.
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Figure 5.A.3: Evaluation of blur impact on YOLO models using RAND split.

In summary, the results suggest that blurring has a detrimental effect on the recognition ca-

pacity of the networks, as indicated by the decreasing trend in all precision metrics.
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Chapter 6

The Hawk Eye Scan: Halyomorpha Halys

Detection Relying on Aerial Tele Photos and

YOLOv5

6.1 Introduction

During the second season in 2022, significant progress was achieved by focusing on a fully drone-

based dataset and leveraging an Android-based application for automatic drone image acquisition.

Due to the limitations encountered in the previous data harvesting campaign (Chapter 5), a novel

and more reliable protocol was mandatory. These advancements have led to improved outcomes

and more efficient data collection for monitoring HH infestations in orchards.

More in details, during the first campaign of the HALY.ID project, the drone acquisition pro-

tocol was entirely designed by mimicking the phytosanitary operators, therefore, the drone was

driven inside orchard aisles to collect images at several heights of pre-configured waypoints placed

in correspondence of the trees. Since the aisles’ width is poorly wide, and the size may vary during

a mission for the presence of protruding branches, the drone experienced some difficulties in its

maneuvers. Precisely, the drone experienced sudden blocks which caused a partial or even worse

a complete deadlock. Behind this behavior there are the multiple and simultaneous contribution

of the inaccurate GPS tracing, the irregular shape of trees, and the gross sensitivity of the collision

avoidance system.

In addition to that, as a consequence of the irregular shape of trees many images taken

emerged out-of-focus. Considering that the DJI Zenmuse H20 is a bridge camera built for long

range imaging, the resulting DoF in a narrow space is too low, i.e., short distance between the DJI
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Zenmuse H20 and the subject. Hence, even the presence of a very tiny object in the foreground

can affect the camera focus mechanism, distorting the output image.

The primary objective of the current chapter is defining a new protocol robust against the

issues encounter during the first year of the project which can ensure a risk-free flight also in

particularly cluttered environments, such as, an orchard. To achieve this, we devise a drone

acquisition protocol tailored for our DJI Zenmuse H20 which exploits aerial imaging at 10m.

Specifically, the idea is to perform a mission above the orchard at a certain altitude determined

by optics law, and which follows a specific path established at the beginning. In this manner,

the drone movements are free from obstacle presence, inaccurate GPS mapping, as well as, the

quality of the images improves because the altitude of the drone and its position is tuned accord-

ing to the camera properties. Then, for the purpose of effectively validating the quality of the

images collected we devise a thorough analysis on several image features, e.g., blurriness, HH

size, emphasizing the usability for Machine Learning tasks. Subsequently, since our last goal is to

automatize the entire monitoring process, we propose various computer vision detectors, based

on the YOLO framework, trained using image slicing, and three different training sets. Finally,

we depict the models performance according both state-of-art and novel metrics, and by varying

relevant parameters in the context of object detection, such as, Intersection over Union (IoU),

likelihood, highlighting strengths and weaknesses of the networks.

The contributions of this chapter are summarized below.

• We define a novel drone image acquisition protocol for scouting the HH in orchards based

on aerial tele-imaging.

• We create the first dataset based on aerial images for HH detection, and completed with both

an analysis of the key features, e.g., HH average size and position, and an image quality

assessment, i.e., blurriness and brightness evaluation.

• We create several ML models using the YOLO framework on our built dataset in order to

detect the HH. When building our ML models, we apply image slicing to avoid information

loss, and three distinct approaches for training and validation that use three percentage of

negative samples.

• We thoroughly evaluate models performance according to both state-of-art and custom met-

rics by varying IoU and likelihood thresholds.

The chapter is structured as follows:

Section 6.2 introduces the novel dataset and the computer vision algorithms developed for this
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purpose. Section 6.3 examines and discusses the performance of the YOLO-based algorithm on

the generated dataset. Finally, Section 6.4 summarizes the main findings and outlines potential

future directions. We further motivate the hardware selection, and the selection of the image

acquisition parameters for implementing our IPM in 6.A.

6.2 Dataset

In this section, we present the dataset that we created. We begin by explaining the composition

of the dataset in Section 6.2.1. Then, in Section 6.2.2, we examine the main features that char-

acterize our dataset, such as the size of the bugs in the images. We highlight how to deal with

labeling according to this factors.

6.2.1 Data Harvesting

In order to autonomously detect the HH on orchards by using drones and computer vision algo-

rithms, a suitable dataset of images containing the HH is required. We relied on the DJI Matrice

300 drone which can be used in combination with the DJI Zenmuse H20 camera, as discussed in

the Section 6.A.1. Our objective is to design a mission for the drone that encompasses a prede-

fined path from the initial point to various locations within the orchard. Since the space between

orchard’s aisles are particularly cramped, the DJI Matrice 300 must fly above the aisles in order

to avoid undesired blocks due to the dense foliage and the detect-and-avoid system. Figure 6.2.1

details how the drone flies inside the orchard. According to DJI, the DJI Zenmuse H20 camera

needs to be positioned at a sufficient distance from the target, typically at least 8m, in order to

capture satisfactory pictures with proper focus. So, since the distance among two consecutive

rows is 4m, we decided to fly the drone at 10.5m so that the minimum distance from it and the

canopy of the trees is at least 8m.

The images obtained from this process are subsequently utilized to construct a dataset, which

serves as the foundation for training the computer vision algorithms. So, we have developed

a drone application that enables the creation of missions and facilitates the execution of specific

tasks within the orchard. So far, we have mainly studied and then implemented the aisle-missions

with drones [9,10].

Figure 6.2.2 gives an overview [9] of the different stages comprising our Android-based ap-

plication. We divide the process into three main phases. In the initial phase, Crop Inspection,

we employ a first-person view to thoroughly survey the orchard whose primary goal is to select

a subset of geo-localized points (waypoint) that will be employed for planning the flight. In the
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Figure 6.2.1: Illustration on the protocol used by the drone for taking pictures inside the orchard

(numbers in meters).

second phase, Route Planning, we aim to automate the drone’s flight along a designated path pass-

ing through the previous waypoints in order to capture images within the orchard. Finally, the

third phase, Bug Scouting, involves the processing of the captured images whose goal is to detect

the presence of bugs though computer vision algorithms. Currently, this phase involves post-

processing. However, it is worth noting that the computer vision algorithm can be integrated into

the application we are developing to guide the drone.

During the Crop Inspection phase, we leverage the expertise of plant operators and entomol-

ogists to establish a proper first-person-view route. Our objective is to assign higher priority to

surveying the boundaries of the orchard, while giving less priority to the central areas. This de-

cision is based on the operators’ knowledge that HH tends to favor locations closer to roads or

hedges, making it slightly more challenging to detect HH in the middle of the orchard.

In the Route Planning phase, our goal is to compute the drone path including the necessary

actions such as capturing pictures at specific locations. To do this, we build a polygonal chain that

the drone will follow, using the selected waypoints from the previous phase. At these waypoints,

the drone stops to fulfill specific tasks. The drone adjusts its yaw angle and camera angle while

setting the focal length to achieve the desired field of view (FoV) given the oblique distance from

the tree. Changing the yaw angle, change the oblique distance from the canopy and the drone.
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Route PlanningCrop Inspection  ScoutingBug

Figure 6.2.2: Overview of the main application core features. It summarizes a three-phase pro-

cess: Crop Inspection involves selecting waypoints for drone flight, Route Planning automates flight

along waypoints to capture orchard images, and Bug Scouting uses computer vision to detect bugs

in captured images.

Hence, to maintain a consistent FoV to guarantee the desired image resolution, the focal length

needs to be properly set. During picture capturing, the camera benefits from a stable configuration

thanks to the presence of a 3-axis gimbal stabilization system. To be more precise, at any waypoint,

the drone virtually creates a grid of 4ˆ5 cells comprising of 20 pictures, each with different focal

length in order to keep the same FoV.

The Bug Scouting phase focuses on analyzing the captured pictures and examining the results

to assess the presence of HH within the orchard. To initiate this phase, we begin by constructing

a dataset1 (detailed in Section 6.2), which is then utilized to train a detection system through

computer vision algorithms (results in Section 6.3.1). In our ultimate goal, this detection algo-

rithm will be employed for real-time HH detection. However, at present, our main objective is to

conduct extensive testing of the detection algorithm to gain confidence in the feasibility of our

overall goal.

6.2.2 Data Analysis

The dataset is built using images captured by a drone in an automatic manner from the top of an

orchard focusing on a single category of stink bugs. It consists of images depicting the current most

harmful stink bug found in Italian orchards, namely the Halyomorpha halys (HH). The dataset

comprises a total of 402 annotated images, each containing instances of the HH class. However,

1Currently, the dataset is kept private as per the HALY.ID consortium agreement. It can be only released on explicit

request to HALY.ID’s Board. It will be made public for research purposes once the project concludes.
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when considering all the images, there are actually 546 distinct occurrences of HH specimen. The

two images reported in Figure 6.2.3 offer a glimpse of the complexity of the detection task to face.

Indeed, all the images are characterized by a cluttered background made mainly by foliage which

camouflages the target, i.e., the HH.

Figure 6.2.3: Example of drone captured images.

However, although the dense and intricated background, the images collected through the

proposed protocol present significant similarities (Section 6.2.1). The homogeneous nature of

the constructed dataset, derived solely from the drone camera, plays a significant role in shaping

characteristics. Indeed, with a single source for image collection, the dataset exhibits standard-

ized image features, such as images shape, bug aspect ratio. These dataset features provide a

likely simplified training process and make easier for computer vision algorithms to learn mean-

ingful features from them. Besides the intrinsic features of the images, we observe a consistent

similarity between the samples concerning the scenery captured. Concerning this behavior, this is

a direct consequence of the stringent protocol built for the data acquisition. Since the drone keeps

its distance from the trees constant for the entire mission, and a mission has a limited duration

in term of times, i.e., more or less 50 minutes, this allows to retain the environment condition,

e.g., light exposition, fixed with almost the same frame subject. It is important to remark that the

redundant nature of data collected represents an advantage for the detection algorithms. Specif-

ically, by providing every time a frame with mostly the same background and image conditions

will allow to improve their detection performance, even if the models have not generalized well

their knowledge during training.

In the following, we are going to survey the dataset from different perspectives in order to

understand its quality, and peculiarities. We start our analysis by examining both the size and

the the position distributions of our target, i.e., the HH. Figure 6.2.4 reports the bounding boxes
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size, and position distribution of the annotated HH, respectively. Specifically, for each bounding

box, the left plot shows on the x-axis (y-axis) its width (height) expressed in pixels (px), whereas

the right plot shows its relative coordinates, i.e., x and y components of bounding boxes’ center,

defined in percentage with respect to the image size.
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Figure 6.2.4: Bounding box size (left), position (right) distribution.

In principle, we can observe that bounding boxes are small-sized, and with limited varia-

tions (Figure 6.2.4, left). Indeed, their size varies between a minimum of 33 ˆ 45px up to a

maximum of 183 ˆ 132px. The perception of the small-sized bounding boxes becomes stronger

when their size is compared with the entire image size, i.e., 5184 ˆ 3888px. Notice that labeling

process was performed by an human operator using the well-known open source cloud service

makesense.ai [153]. Moreover, paws and antennae were included in the annotations, thus the

quantity of pixels attributable to the HH diminishes further. In addition, as a result of the con-

strained acquisition process, the variability in the bounding box sizes is minimized. Indeed, by

keeping the same distance from trees, the specimen photographed in the same pose will be almost

same sized. On the other hand, specimen captured with different poses will experience variation

in their size. Notice that the majority of the HH annotated in the dataset are captured with a back

perspective , namely a dorsal perspective of the bug. This behavior is highlighted by the clustered

nature of the plotted points. Only a few points lay out of the cluster center supporting our claim.

Concerning the relative position of the bounding boxes, specifically the center of the bounding

boxes, a huge variability is experienced (Figure 6.2.4, right). This is due to the fact that the

position of the bugs cannot be established a priori during the flight. In fact, bugs may change

several times their position inside the orchard seeking warm temperature, or food. Moreover, the

drone has a pre-planned route for taking pictures, and therefore the bugs can be anywhere. For
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this reason, the points scattered in the Figure 6.2.4 (right) span practically throughout the entire

plot surface.

As aforementioned, the built dataset exhibits limited variation as it is derived from a single

source, i.e., the drone. This limited variation results may introduce bias in computer vision al-

gorithms, as indicated in [1]. Moreover, considering that the acquisition process can be affected

by various factors, such as failures in the auto-focus protocol and drone flickering during image

capturing, we decide to validate the images collected using well-known no-reference estimators

from the literature. Specifically, we utilized estimators for both blurriness [145] and perceived

brightness [146].

An insight on the perceived blurriness, and brightness is depicted in Figure 6.2.5. In particular,

the plot on the left shows the blurriness levels of the collected images, wheres the right one reports

the brightness achieved. In both the plots, on the x-axis are displayed the images, while on the

y-axis the metric scores. The blurriness score falls in the range r0, 1s, where 0 indicates a totally

blurred image, and 1 represents an extremely sharp one. Similarly, the brightness metric is a score

ranging from 0 to 1, where 0 states absent lights, and 1 denotes dazzling light. Consequently,

images with favorable metrics should have a blurriness score close to 1 and a brightness score

around 0.5.
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Figure 6.2.5: Image blurriness (left), and brightness (right) evaluation.

From an analysis of blurriness levels (Figure 6.2.5, left), we can notice that all the images

achieve satisfactory results, with a stable score around to 0.6. This results were quite predictable

because the drone acquisition protocol was strictly configured taking into account optics law, and

exploiting also RTK and gimbal stabilization. Indeed, both the RTK and the gimbal stabilization
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avoid undesired out-of-focus during unexpected shacking, as well as camera settings settled ac-

cording to the well-known hyperfocal focus technique allows obtaining the entire scene captured

sharp. Notice that, the small variations shown is a directed consequence of the focus technique

applied. In detail, The hyperfocal distance is the distance between the camera and the optimal

point of focus, and is different for every focal length and aperture setting you use, and when a

lens is set at the hyperfocal distance, depth of field extends from half this distance to infinity.

Therefore, blurred parts occur every time one or more objects stand before the hyperfocal dis-

tance. Since trees may have irregular shapes, and the DJI Zenmuse H20 has a limited DoF due to

its bridge camera nature, not pruned branches or simply branches moved by the wind may show

up closer than expected causing blurred areas in the taken images.

A very similar behavior is shown for brightness (Figure 6.2.5, right). However, in this case

differently from the blurriness, since the brightness depends mostly on the environmental light

condition, the trend depicted in the plot is almost entirely constant. Indeed, we observe a quite

stable trend settled to 0.4 very close to the optimal value, i.e., 0.5. This is due to the scarce

variability of light experienced during a mission. Considering that a drone flight is at most 50

minutes, the light levels may not vary consistently in this very short period of time. As directed

consequence camera settings settled at the beginning remain optimal for the almost the total of

the mission.

To summarize, the dataset demonstrates a satisfactory quality on average as regards blurriness

and brightness. The dataset’s metrics confirm the effectiveness of the parameters established

using both the DJI Matrice 300 and its camera, the DJI Zenmuse H20, and the choices made for

the navigation protocol. Additionally, despite the constrained acquisition protocol, the dataset

ensures a notable variance in bug position and pose, resulting in a suitable set of samples for

training our models.

6.3 Evaluation of the Localization and Detection of the Bug

In this section, we detail and discuss the performance evaluation of the HH detection. We revise

the main technology adopted for solve our task in Section 6.3.1. We give an overview of the

adopted metrics for the comparison in Section 6.3.2. We then thoroughly compare and analyze

the training and validation results in Section 6.3.3, and the testing results in Section 6.3.4.
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6.3.1 Algorithms and Tools

In this section, we provide a concise overview of both the YOLO algorithm and the widely adopted

technique known as “Transfer Learning” (TL) that we employed in our approach to detect stink

bugs.

The YOLO algorithm, the latest iteration of the YOLO (You Only Look Once) series introduced

initially by [154] and more recently enhanced by [143], serves as the core of our experimenta-

tion. This deep learning-based architecture, built upon the PyTorch framework, plays a pivotal

role in our research. What sets this family of algorithms apart is their unique approach to object

detection, reframing it as a regression problem rather than a classification task. This is achieved

by spatially separating bounding boxes and assigning probabilities to each detected image using

a single Convolutional Neural Network (CNN). One of the standout features of YOLO is its effi-

ciency—it offers a lightweight and speedy solution, demanding considerably less computational

resources compared to other contemporary state-of-the-art models, all while maintaining com-

petitive performance [143]. Notably, it boasts the capability to process images at a remarkable

rate of 45 frames per second, making it particularly well-suited for real-time bug detection, even

on edge-computing devices potentially embedded within the drone itself.

Given our constraints of a limited image dataset and computational power, we made the strate-

gic decision to approach the training phase either from scratch or by adopting the TL paradigm [155].

TL is a valuable technique in computer vision that allows us to leverage aspects of a pre-trained

computer vision model that has been extensively trained on a vast repository of images. We

can then apply this knowledge to a new model, even when only a limited number of images

are available for the new task at hand. This process involves selecting and transferring relevant

components from the existing machine learning model to address a novel, potentially related

problem.

Central to Transfer Learning is the concept of generalization—only knowledge that can be

applied effectively to another model in diverse scenarios or conditions is transferred. This flexi-

bility allows models developed through TL to adapt to changing conditions and varying datasets.

Unlike models created from scratch, which are tightly bound to the specifics of their training data,

TL-based models are more versatile and can be harnessed across a range of different scenarios and

datasets. This adaptability and the ability to extract valuable insights from a pre-trained model

are pivotal in our quest to identify stink bugs efficiently and effectively.
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6.3.2 Adopted Metrics

Before delving into the training and test details, let clarify some essential definitions. As previously

mentioned, our detection algorithm is YOLO, and to assess its accuracy in detecting stink bugs,

we employ the same metrics previously introduced in Section 5.4.1. Hence, we will evaluate the

trained networks using the precision score (P), the recall score (R), the mean average precision

in its two most common forms, namely the mAP0.5 (m0.5) [147], and mAP0.5:0.95 (m0.95) [148],

respectively. However, considering the complexity of task we introduce an additional version of

the mean average precision. In detail, we introduce a novel mean average precision, the m0.25,

which is a mAP computed similarly to m0.95 but starting from an IoU equal to 0.25. Notice that

the reasoning behind this metric is strictly tied to the complexity of the recognition. Indeed, since

the size of the HH, namely our target, is limited, the m0.95 may have a lack of expressiveness.

Moreover, differently from other kind of detection problem, here is more relevant to identify all

the HH individuals instead of meticulously contour the insect. Hence, we decided to reduce the

IoU threshold for highlighting in a clearer way the intrinsic recognition ability of our models.

In the upcoming sections, we will elaborate on how we trained our neural networks using the

YOLO models.

6.3.3 Configuration of the Object Detectors

In order to train our models we partition the dataset in the following way, 70% is allocated for

training, 20% for validation, and 10% for testing. Hence, the original 402 images are grouped in

282 images for training, 80 for validation, and 40 for testing.

Given that the HH area occupies only a minuscule fraction of the entire image, it becomes

evident that directly inputting the raw image into the neural network yields unpromising results.

Moreover, as emphasized by the authors in [19], the primary cause of performance degrada-

tion is the loss of information resulting from image scaling. Indeed, neural networks grapple

with high-dimensional data, making their training on large and intricate datasets computation-

ally demanding. Nevertheless, since the image is 5184 ˆ 3888px, shrink it to 640 ˆ 640px makes

practically invisible tiny objects as the HH. To mitigate the risk of losing crucial features due to

image scaling, we have chosen to implement a slicing procedure. Therefore, we deal with high

resolution images by cropping them in equally sized patches. This approach enables us to reduce

the training complexity and put network’s attention on specific sub-portions of the image. In view

of this, we decide to extract from the images relevant patches of size 640 ˆ 640px. Notice that

the chosen patch size represents a good trade off between prediction time for the entire image,



170

and network performance. Indeed, 640 ˆ 640px represents the input setting optimized by YOLO

developers, and the size settled for the network weights pre-trained on MS-COCO dataset [148].

Concerning the extraction procedure, we decide to rely on a randomized approach. Basically,

the idea behind this procedure is randomly extract sub-portions of size 640 ˆ 640px until the

desired number of samples is reached. In detail, we extract randomly patches from original images

looking for HH instances, in case surround one of them the relative annotation file is created

according to the relative position of the HH inside the patch. By this procedure we obtain 8,000

patches for the training, and 800 for the validation set. Note that, each patch contains exactly

one HH. The latter decision was driven by the Figure 6.3.1.
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Figure 6.3.1: Distribution of the number of HH per image.

Figure 6.3.1 provides a good insight into the number of HH occurrences per image. The

distribution is aggregated according to the split applied. The bar plot shows that the occurrence

of HH is relatively rare in our dataset, with most images containing only one instance. In principle,

the more HH in an image, the rarer the occurrence of such an image. Moreover, we notice that the

percentage of images aggregated per number of HH inside remains stable with limited variations

in all three sets. The analysis made emphasizes the predominance of background pixels against

HH ones. Hence, it is reasonable to include exactly one HH per patch.

During the extraction procedure we notice that a lot of empty patches are cropped before a

positive patch, i.e., a patch with at least one HH inside. Such phenomena happens due to the fact

that our targets, i.e., the HH, are spread inside the images very sparsely. Therefore, the low prob-

ability of encounter an HH during the slicing procedure or during a drone mission suggests that

the models should get used to face low positive samples. Due to this fact neural networks may

benefit from training sets with negatives samples, i.e., without any HH inside. For this reason,

we create three different sets which differ from the percentage of negative samples. Figure 6.3.2
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depicts the composition of the three mentioned training sets. The set T0 contains 100% positive

samples both in the training and the validation set, whereas T50, and T75 are comprised by 50%,

and 75% of negative samples, respectively. Notice that, the strategy for extracting negative sam-

ples coincides exactly with the one used for positive samples. The only difference is, in this case

we look for patches without any HH annotated inside.
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Figure 6.3.2: Training and validation sets composition.

As mentioned, we employ the TL paradigm for training YOLO models. However, since the

task is particularly challenging and our hardware not enough powerful we decide to train our

models avoiding random weights, i.e., from scratch. The pre-trained weights used were obtained

from an intense learning procedure over the well-known MS-COCO dataset [148]. Moreover, we

augment the number of training samples by generating three additional images for each training

image through random transformations. These transformations involve variation in image hue,

saturation, and value (HSV), translation, scaling, flipping, and mosaic techniques, ensuring no

image is generated in the same way. Every transformation is computed at each epoch on-the-fly

exploiting the well-known Python Library Albumentation [156].

The YOLO object detectors are trained using an NVIDIA RTX 3060 with 12GB of VRAM. We

rely only on the most powerful YOLO model, i.e., X . Each model underwent training with batches

of 32 images for 200 epochs, using learning rate of 10´2, SGD optimizer [150], and an image size

of 640 ˆ 640px. The Intersection over Union (IoU) is set to 0.5 to align the predicted bounding

boxes with the ground truth better. Notice that, we configure and permit the early stopping for
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the training process. Early stopping is a form of regularization used to avoid overfitting when

training a learner with an iterative method, such as gradient descent. The implementation of this

method has a twofold impact, avoid overfitting, and simultaneously optimize the resource usage.

Evaluation of experimental results is based on four metrics [157]: precision rate (P), recall

rate (R), mean average precision at IoU equals to 0.5 (mAP0.5), and mean average precision with

IoU from 0.5 to 0.95 (mAP0.95). In Figure 6.3.3, we report the training performance of the resulting

models. Each plot displays on the y-axis the score, and on the x-axis the epochs. The score

assumes the meaning of loss function on the first row, where are plotted the values of the most

significant loss function, i.e., box loss, classification loss, and objectness loss. On the other hand,

through the second row the score represents the value of the metric totalized during the validation,

i.e., P, R, and mAP0.5. Before diving in the performance analysis, it is worth to note that, lines

plotted may not span over the 200 epochs. This behavior does not represent an issue, and it is a

direct consequence of the early-stopping mechanism settled at the beginning.
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Figure 6.3.3: Training and validation results.

In Figure 6.3.3 (top-left), we observe the box loss representing the model’s ability to predict

bounding box coordinates. All the models reach a low box loss rapidly, although the X75 converges

faster. This behavior is probably due to fact that, X75 is the model trained upon the training set

with the minimum number of positive samples, i.e., T75. Therefore, this means that is simpler

to seek a function that fits all the boxes. However, it is important to remark that after almost 50

epochs every model reaches a value very close to 0. Concerning the classification loss (Figure 6.3.3,

top-center) the functions trends are constant, i.e., equal to 0. This is a direct consequence that

there is not a classification problem in our task. Indeed, we have only bug specimen to recognize,
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i.e., the HH. In Figure 6.3.3 (top-right) is reported the the objectness loss, which is roughly speak-

ing the confidence that some object exists in a given box, rapidly converge for all the models and

all the groups. One can notice that the objectness loss, although it reaches a plateau, remains

slightly higher than 0.

The remaining three plots reported in the second row display the metrics achieved by the

models during validation phase. In principle, all the models achieve good performance and tend

to stabilize after a few epochs. Although they evolve with a similar trend, every model stands out

because of some peculiarities. As regards the precision P (Figure 6.3.3, bottom-left), the model

X0 registers immediately the highest value maintaining it up to roughly 100 epochs. After that,

X0 becomes unstable with multiple peak and drops. This behavior is due to the complexity of the

detection task, and the noise featured on the HH annotated. In other words, since the annotations

in the training set have several aspect ratio, shapes, levels of occlusion, and so on, the learning

procedure experienced good results with a more general recognition function which becomes

every epoch more complex in order to fit with all samples. This means that once the function

reaches a good level of knowledge every alteration may represent a huge drop or improvement

for P. Differently, X50, and X75 perform with a smoother trend. Indeed, X50 quickly increases

the P value, and reaches a plateau at « 0.83 after 20 epoches. The same reasoning can be

applied for the model X75, although its trend grows slowly after an initial huge jump. It seems

that the learning process improves its performance on P by including new images previously not

handled. In Figure 6.3.3 (bottom-center) are depicted the R trends observed during the validation

step. The behavior of the three models moves with the same reasoning stated for the P aside

a few difference. In particular, X0 achieves the best R score at the beginning, and then, after

a rugged descending trend, stabilizes at « 0.58 score. Again, this may follow by the fact the

T0 is the set of images with the maximum number of HH instances, thus the most complex to

approximate. The model X50 similarly performs better at the very first 30 epochs, following with

slight descending bending. The X50 in contrast with X0 is characterized by a smoother trend. In

principle, the observed curves behavior, namely a raising trend at beginning and a subsequent

descending trend, is a direct consequence in view of the P performance. Indeed, we can note

that the P lines move complementary with respect to R lines. Probably, at the very fist stage of

the learning process the algorithms tend to predict with more optimism, at the cost of poorer P.

On the other hand, increasing the epochs back-propagation takes action to improve the overall

performance diminishing slightly models optimism in bounding box proposal. X75 is the model

which registers the best R score during the training phase. However, the observations made for

the other models still remain valid also for it. Concerning the mAP0.5 (Figure 6.3.3, bottom-right),
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the very last parameter used to understand models performance during training, we can notice

that every model has an initial settling period with a consequent stabilization comprised between

0.60 and 0.72 score. Since mAP0.5 is a metric to estimate P and R performance under several

confidence levels, it is quite clear from lines behavior that all the models are confidence-robust.

Summarizing, we note that all the models obtain satisfactory performance with both the loss

functions and metrics. Although some models portend that increasing the number of training

epochs will result an increment of metrics performance, we observe that only one metric of the

three analyzed has an ascending trend. For this reason, since most of the metrics stabilize their

trends reaching good performance within the epoch range, we can state that 200 epochs rep-

resent a reasonable trade-off between quality of the solution, and training time. Furthermore,

we observe that the models trained on increasingly amount of negative samples, i.e., training set

with higher percentage of empty images, reach overall the best results on the metrics with a stable

and smooth trend. On the under hand, the models trained on higher amount of positive samples

exhibit the “worst” performance, with a notable unstable and rugged trend.

6.3.4 Testing Results

For evaluating the detection ability of the trained models we use the remaining 10% of the dataset,

i.e., 40 images. In this case, differently from training, and validation we extract the patches from

the test set by applying a regular grid of cell 640 ˆ 640px. Figure 6.3.4a depicts the procedure

applied to slice in patches an image. Since both the side sizes of the collected images are not

divisible by 640, the very first step is applying a black padding on both the sides. This ensures

that every image can be always partitioned in patches all of the same size. Then, the slicing

procedure is applied, and simultaneously the bounding boxes, i.e., the HH instances, encountered

are adapted according to the patch size, and their relative position. In this way, employing this

extraction procedure a new test set of 1,920 patches is obtained. As consequence of the slicing

procedure, some instances are splitted in two different patches. In detail, of the 71 original

instances contained in the input test set, 20 of them were cut due to the slicing. It is worth noting

that, the annotations have been made by an expert operator directly on the entire images. As

a consequence, any operation performed over the annotation files starts from the entire image

and it is strictly related to its original size. Since that slicing procedure may partially include HH

into a patch, we apply a thresholding strategy that considers a valid annotation the only one with

at least the 50% of the original pixels. In case an HH is cut exactly 50% between two patches,

a random selection of only one half is performed. For this reason we decide to create three

different sets of annotations in order to understand more deeply the strengths and the limitations
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of the models.

(a)

Test Set 1
positive: 71

Test Set 2

All
images

Only

Positives I

images: 1920

empty: 1849

positive: 71

images: 71

empty: 0

positive[%]: 3.7

empty [%]: 96.3

positive[%]: 100

empty [%]: 0

Test Set 3 positive: 91

images: 91

empty: 0

positive[%]: 100

empty [%]: 0

Only

Positives II

(b)

Figure 6.3.4: Patch extraction for test images (a); and insight on the three test configurations (b).

Figure 6.3.4b illustrates the composition of the three test sets. The first set, named all images,

contains both positive and negative patches. However, since some HH instances fall between two

patches, it would be unfair to search for 91 HH instances instead of the original 71. Due to this

fact, we retain all the instances which fall inside a patch up to half of their original size. It is

important to note that if an HH occurrence is exactly halved between two patches, we randomly

select only one of the two portions. Additionally, we retain all the instances that reside entirely in

one patch. Therefore, the all images test set comprises 1, 920 patches, with 71 of them containing

exactly one HH instance, and the remaining 1,849 being empty. The all images test set allows

us to measure the models performance in real-life scenario. Next, we create a second test set,

named positive patches I, which contains the 71 positive patches from the all images set. This set

is designed to assess the true precision of the models and allows for a comparison of sensitivity

to false positives (FP) with and without negative patches. In other words, the positive patches

I set is a way to estimate the theoretical performance of our models, that is, a measurement in

a controlled environment where the amount of pixels without the HH is balanced. Finally, we

establish a third set, called positive patches II, which contains 91 positive patches. Essentially, this

set includes all patches that contain a portion of an HH, regardless of its size. In this case, the

purpose of this set is to evaluate the models’ ability to detect occluded bug instances.

Table 6.3.1 presents the testing results of the YOLO models trained using TL with pre-trained

weights under several combination of IoU and confidence thresholds. In particular, Table 6.3.1

reports the metrics score achieved by the X model trained on the three training sets, i.e., T0, T50,

and T75. In addition to the metrics discussed in Section 6.3.2, we report also the number of true

positives (TP), false positives (FP), and false negatives (FN). Then, to ensure an overall picture
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of detector performance we vary two IoU value, i.e., 0.25, and 0.5, in combination with two

confidence threshold, i.e., 0.3, and 0.1. Notice that, we report only the most significant results

for the sake of ease.

In principle, the results obtained for the set all images consistently yield lower scores compared

to the other two sets. This is expected, given that the all images set is the largest one. When

comparing the overall performance between only positives I and only positives II, we observe that

only positives I consistently exhibits higher values of R (recall) but consistently underperforms

in P (precision) scores. This discrepancy arises from differences in the number of occurrences.

The set with more HH instances will naturally result in at least the same number of HH instances

being detected compared to the smaller set, consequently yielding a higher P score. On the other

hand, the smaller set enables models to miss fewer instances, leading to a higher R score. Let us

observe that in the context of scouting a bug it is better to prefer precision to recall. Namely, it is

more acceptable to lose some bugs than raise unjustified alerts.

Concerning the results with respect to the percentage of negative samples in the training

set, the best performance is achieved when using T75 as the training set, which has the highest

percentage of empty images. This outcome can be attributed to the fact that the majority of

the extracted patches are empty, with very few containing a bug. Consequently, an increasing

percentage of empty images during training prepares the detector to handle the low presence

encountered in the test sets.

As a direct consequence, the models are less proned to propose a large number of bounding

boxes, thereby reducing the number of false positives (FP). Moreover, the scarcity of positive

samples in the training set encourages the models to better generalize their knowledge, leading

to a reduction in the number of false negatives (FN ). Therefore, in the opposite way, reducing the

number of negative samples in the training set results in decreased overall model performance,

as indicated in Table 6.3.1.

In terms of Intersection over Union (IoU), it is evident that the models are heavily dependent

on its value from two perspectives. Initially, we observe that metrics are generally higher when

the IoU threshold is set to a low value. This is expected, as HH instances are relatively small

in comparison to the entire scene, making it easier to achieve true positives (TP) with bounding

boxes that intersect minimally with the ground-truth. However, we can also observe that the

models are not so IoU-robust, as evidenced by the disparity between mAP0.25 and mAP0.95, both

of which significantly differ from the P score. This suggests that the majority of the predicted

bounding boxes exhibit low levels of IoU with the ground-truth.

Regarding the confidence robustness of the models, they generally perform well. Focusing on
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conf IoU model set TP FP FN P R m.5 m.25 m.95

0.
3

0.
5

X0

all patches 33 30 38 0.52 0.47 0.43 0.28 0.2
only positives I 33 5 38 0.87 0.47 0.45 0.3 0.21
only positives II 35 5 56 0.88 0.38 0.38 0.24 0.17

X50

all patches 34 30 37 0.53 0.48 0.4 0.26 0.19
only positives I 34 2 37 0.94 0.48 0.47 0.31 0.22
only positives II 36 2 55 0.95 0.4 0.4 0.25 0.18

X75

all patches 38 33 33 0.54 0.54 0.43 0.27 0.2
only postives I 38 2 33 0.95 0.54 0.53 0.34 0.24
only positives II 40 2 51 0.95 0.44 0.43 0.27 0.19

0.
25

X0

all patches 34 29 37 0.54 0.48 0.44 0.28 0.2
only positives I 34 4 37 0.89 0.48 0.47 0.3 0.21
only positives II 36 4 55 0.9 0.4 0.39 0.24 0.17

X50

all patches 34 30 37 0.53 0.48 0.4 0.26 0.19
only postives I 34 2 37 0.94 0.48 0.47 0.31 0.22
only positives II 36 2 55 0.95 0.4 0.4 0.25 0.18

X75

all patches 38 33 33 0.54 0.54 0.44 0.29 0.2
only positives I 38 2 33 0.95 0.54 0.52 0.34 0.24
only positives II 40 2 51 0.95 0.44 0.43 0.27 0.2

0.
1

0.
5

X0

all patches 35 83 36 0.3 0.49 0.45 0.29 0.2
only postives I 35 6 36 0.85 0.49 0.48 0.31 0.22
only positives II 37 6 54 0.86 0.41 0.39 0.25 0.18

X50

all patches 39 76 32 0.34 0.55 0.43 0.28 0.2
only postives I 39 4 32 0.9 0.55 0.54 0.35 0.25
only positives II 42 4 49 0.91 0.46 0.45 0.28 0.2

X75

all patches 48 151 23 0.24 0.68 0.49 0.32 0.22
only positives I 48 6 23 0.89 0.68 0.65 0.43 0.3
only positives II 50 6 41 0.89 0.54 0.53 0.34 0.24

0.
25

X0

all patches 36 82 35 0.31 0.51 0.46 0.29 0.2
only positives I 36 5 35 0.88 0.51 0.49 0.31 0.22
only positives II 38 5 53 0.88 0.42 0.41 0.25 0.18

X50

all patches 39 76 32 0.34 0.55 0.43 0.28 0.2
only positives I 39 5 32 0.89 0.55 0.54 0.35 0.25
only positives II 42 5 49 0.91 0.46 0.45 0.28 0.2

X75

all patches 49 150 22 0.25 0.69 0.5 0.32 0.22
only positives I 49 5 22 0.91 0.69 0.67 0.42 0.3
only positives II 51 5 40 0.91 0.56 0.54 0.34 0.24

Table 6.3.1: Results X models on test sets.
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mAP0.5, when examining the all images set, its value is nearly equal to P. This suggests that the

detector predicts bugs with high confidence levels. However, the P achieved by the other two

test sets is roughly twice the values of mAP0.5, indicating that the slightly more than half of the

detection possess a high level of confidence. Although, the latter consideration, the performance

related to the confidence are more than satisfactory if considered in view of the task’s complexity.

In conclusion, a significant improvement in the results has been achieved when compared

to the initial approach outlined in [19]. Specifically, employing a slicing mechanism for both

training and testing, along with the introduction of negative samples, has enabled the models to

outperform the state-of-the-art results on the dataset presented in [19]. This achievement can

be attributed primarily to the slicing procedure, which allows the models to analyze images at

different scales, eliminating the information loss issue highlighted in [19]. Moreover, although

the observed performance are a little bit the ones achieved in Chapter 5 it is important to point

out that in this latter case the image acquisition must be at supervised, or even worse completely

manual. For this reason, the preliminary results presented in this section stand as a promising

starting point for automated IPM.

6.4 Conclusion

In this chapter, we presented methodologies employed in a drone-based application designed to

automate HH pest scouting in orchards. We created a novel dataset of images containing HH

specimens by using the DJI Zenmuse H20 and the DJI Matrice 300. We devised an Android-

based application in order to automatize the collection of images in orchards, incorporating a

novel custom navigation protocol that involves capturing images from a top perspective. Unlike

previous efforts [1,140], the developed navigation protocol effectively overcomes the challenges

associated with drone size, which previously hindered safe movements through orchard aisles,

as well as ensuring high-quality images. The experiments conducted with the YOLO algorithm

for HH detection using a dataset comprised exclusively of DJI Matrice 300 images showcased

promising results, demonstrating the feasibility of automated recognition of the HH in challenging

scenarios.

As future works, current results suggest that elaborating images with attention on portions,

thus computing detection on patches, could represent a potential strategy to enhance the perfor-

mance even further. So, we plan to investigate the impact of the patch size on the detection perfor-

mance. Moreover, it is worth to compare the performance of our models with further single-shot

detectors, in turn the most recent releases of the YOLO framework, i.e., YOLOv7, and YOLOv8,
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and two-shot detectors, such as Faster-RCNN [158], as well as, make a try with the novel detec-

tion transformer, or zero-shot detectors [159]. Moreover, since both the DJI Zenmuse H20 and

DJI Matrice 300 emerge as promising solutions for stink bug scouting, we would like to consider

the possibility of integrating multispectral sensors cameras.

In conclusion, our research runs as a catalyst for computer scientists to investigate technol-

ogy transfer within the realm of sustainable agriculture. By continuing to explore and develop

innovative solutions, we can collectively contribute to the promotion of sustainable practices and

resilience against pest-related challenges.
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Appendix

6.A Hardware Selection

In this Appendix, we discuss the essential hardware requirements of a vision chip (Section 6.A.1),

and the selection of a drone capable of carrying the camera (Section 6.A.2) and able to follow a

certain navigation protocol tunable according to the orchard shape and requirements.

6.A.1 Vision Chip Selection

In the HALY.ID project we aim to monitor and hence to capture stink bugs of size 1cm ˆ 1.4cm

on pictures with all their peculiar features visible. HH belongs to the Pentatomidae family, and

for reliable monitoring it is necessary to distinguish it from other specimens of the same family

that can occasionally be found in orchards [160], such as the green bug Nezara viridula (NV), and

Raphigaster nebulosa (RN), which due to its gray-marbled coloring can easily be confused with

HH (see Figure 6.A.1, top). So far, only NV and HH specimens have been found in our monitored

orchard. Figure 6.A.1 (bottom) reports the main characteristics of HH. It has striped bands on

the antennae, the head is rectangular, there are five clearer dots, aligned and well marked, both

on the pronotum disc and at the base of the scutellum (the triangular shaped structure between

the wings), and a typical pattern of the connexivum (the flattened lateral edge of the abdomen)

with checkered medial triangular shaped spots.

It is evident that a suitable camera/drone combination is detrimental in order to scout the

presence of these bugs. Therefore, we need to evaluate some chip vision variables and parameters

with respect to the Optics theory. According to Optics theory, the minimum distance between two

distinguishable points is called the resolution distance σ. It can be defined as the size of the

view that is impressed in a single pixel. In order to identify the small characteristics of HH (see

Figure 6.A.1, bottom), a picture with σ “ 0.2mm is desirable so as each feature falls in one or

more pixels and hence it is distinguishable. However, if the resolution is reduced to σ “ 0.2mm,

each characteristic would be spread across multiple pixels, making it still visible.
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Figure 6.A.1: Three Pentatomidae stink bugs (top): Halyomorpha halys (HH, left), Nezara viridula

(NV, center), and Raphigaster nebulosa (RN, right, never observed in the monitored orchard); HH

and its distinctive features (bottom).

The Field of View (FoV) is the size of the view that includes the subject that will be reproduced

on the chip. There are three types of field of views (FoVs): Horizontal, Vertical, and Diagonal,

i.e., HFoV, VFoV, and DFoV (briefly FD), respectively. The DFoV summarizes both the HFoV and

the VFoV, and it is used to simplify the image analysis. Similarly, the size of the image sensor chip

is typically described using three dimensions: the width (nh), the height (nv), and the diagonal

(nd). The solid angle at the lens, opposite to the FoV, is called Angle of View (AoV), and for the

analysis we use the Diagonal AoV (briefly DAoV) αd . To guarantee the σ distance resolution,

we aim to acquire photos with FD “ σnd , which is the largest diagonal view able to distinguish

features of size σ with a chip of size nd .

When the HALY.ID project began in February 2021, the vision chips commonly embedded in

medium/small commercial drones had a chip resolution (i.e., number of pixels) of 12MP. Such

chips, with nd “ 5000, were mounted on two drones, i.e., DJI DJI Phantom 4, a medium range

drone, whose weight is 1830g, with diameter of 35cm (excluded propellers), and DJI DJI Mini 2,

a mini lightweight drone (ă 250g) with diameter of 26cm (including propellers). These drones

have an embedded camera with a predefined DAoV of αd “ 94˝ for the DJI Phantom 4, and

αd “ 83˝ for the DJI Mini 2. Fixed αd , the FD that satisfies the desired resolution σ is achieved

at the distance µ “
FD

2¨tanpαd {2q
“

σnd
2¨tanpαd {2q

. So, the DJI Phantom 4 and DJI Mini 2 can achieve the

desired FD “ 0.2 ¨ nd “ 1000mm at a distance µ ď 466mm and µ ď 565mm, respectively, from

the view subject (the bug), i.e., both « 0.5m. As the distances are below the range of the drones’

obstacle avoidance systems (usually 1m), they will prevent them from approaching the subject

too closely, which may result in the acquired photos not providing the desired resolution.

Since the aforementioned embedded cameras are not suitable for our goal, we then consider
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Figure 6.A.2: FoVs and AoVs from a camera (a); and two configurations (one black, one blue)

with the same FD (b).

the CMOS chip of the DJI DJI Zenmuse H20 (Figure 6.A.3, right) camera. This is an RGB camera

mounted as an external payload on the DJI Matrice 300 (Figure 6.A.3, left). The chip has effective

20MP, precisely nv “ 3888, nh “ 5188, and nd “ 6483 pixels, and height v “ 5.70mm, width

h “ 7.60mm, and diagonal δ “ 9.60mm. The DJI Zenmuse H20 camera is a zoom camera

whose focal length varies from 6.83 to 119.94mm, and its DAoV αd varies from 4˝ to 66.6˝. So,

the largest diagonal view that guarantees σ “ 0.2mm is FD “ 0.2 ¨ 6483 “ 1296mm. Varying

αd , FD can be achieved at different distances from the subject. For example, in Figure 6.A.2b

the blue and black triangles in front of the lens represent two images with the same FD, but

different distances (µ1 and µ). Fixed αd , FD that satisfies the desired resolution σ is achieved at

the distance µ “
FD

2¨tanpαd {2q
“

σnd
2¨tanpαd {2q

. Since the DJI Zenmuse H20 is a zoom camera, fixed the

desired resolution σ “ 0.2, for each αd between 4˝ and 66.6˝, the desired FD “ 1296mm can be

achieved selecting a suitable distance between 18.5m and 0.98m.

So, we eventually adopted the DJI Zenmuse H20 camera which achieves the desired σ in a

large range of distances.

Figure 6.A.3: The DJI Matrice 300 drone (left) and the DJI Zenmuse H20 camera (right).
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6.A.2 Drone Selection

From the above discussion about the camera, we selected the DJI Matrice 300 drone [10] (6.3kg)

which is able to carry the DJI Zenmuse H20 (« 0.7kg) as a payload, and utilizes it. The DJI

Matrice 300 has a collision avoidance system that prevents it from approaching any target within

1m. In addition, with open propellers, it has a diameter of « 1m. Therefore, the minimum width

of a single aisle inside an orchard should be ě 3m, considering the size of the drone as well as the

collision avoidance system. Moreover, the DJI Matrice 300 is equipped with real-time kinematic

positioning (RTK), which allows for extremely accurate global positions from satellites, in the

order of 1.5cm of displacement. While this level of accuracy would be beneficial if more flight

space were available, the distance between trees on adjacent rows is typically 3.5–4m, and the

available room can sometimes decrease below the required 3m, especially when a long time has

passed since pruning. So, often it is required to take pictures from different angles instead of in

front of the trees.



Conclusions

Nowadays, we are living a turning point for the adoption of a plethora of technologies which

are revolutionizing our daily life. Among these innovations, drones are rapidly imposing in a

lot of common applications, especially in last-mile delivery, and smart agriculture. Indeed, they

are reshaping the current logistics methods by overcoming geographical constraints, shortening

delivery times, and lowering carbon footprints. As well as, the introduction of drones in smart

agriculture applications redefines the concept of performance, posing a new efficiency standard

with respect to human.oriented solutions.

Along this dissertation we have explored several problem that arise in the dynamic intersection

between UAVs and human intensive activities. Starting from Part I, we have delved into the

drone last-mile delivery scenario, proving the efficiency and effectiveness of the proposed methods

towards the optimization of drone trajectories into a windy environment by solving the MDP.

Moreover, we have addressed, by proposing several algorithms, the optimization of the delivery

scheduling assuming the cooperation between a fleet of drones and a truck.

In the Part II we have explored novel routing problems that arise in the context of smart

agriculture, proposing for them tailored solutions.

Finally, in the Part III we have investigated the prominent field of Pest monitoring using the

synergic combination of drones and artificial intelligence. Specifically, our efforts center on the

development of a Integrated Pest Monitoring (IPM) specialized for a particularly invasive and

harmful insect, the Halyomorpha Halys (HH), colloquially known as “brown marmorated stink

bug” (BMSB).

As future works, the very first extension could be towards the integration of the monitoring

algorithms proposed in Part I as navigation aware methods for the Android application devised

in Part II. Another interesting innovation could be the porting of computer vision algorithms on

an embedded system board, e.g., a NVIDIA Jetson, to perform real-time detection in the field

hidebound by an internet connection requirements. Finally, it worth to extend the achievements

obtained in Part I into the framework of a dynamic environments where wind conditions, and

user demands may vary during a mission.

185



186



Publications

Journal Articles

1. Francesco Betti Sorbelli, Federico Corò, Punyasha Chatterjee, Sajjad Ghobadi, Lorenzo

Palazzetti, and Cristina M. Pinotti, “A Novel Graph-Based Multi-Layer Framework for Manag-

ing Drone BVLoS Operations”. In: IEEE Transactions on Network and Service Management

(TNSM)2.

2. Francesco Betti Sorbelli, Federico Corò, Sajal K Das, Lorenzo Palazzetti, Cristina M Pinotti,

“Drone-based Bug Detection in Orchards with Nets: A Novel Orienteering Approach”. In: ACM

Transactions on Sensor Networks (TOSN)3.

3. Francesco Betti Sorbelli, Lorenzo Palazzetti, Cristina M Pinotti, “YOLO-based Detection of

Halyomorpha halys in Orchards Using RGB Cameras and Drones”. In: Computers and Elec-

tronics in Agriculture (CEA).

4. Francesco Betti Sorbelli, Alfredo Navarra, Lorenzo Palazzetti, Cristina M. Pinotti, and

Giuseppe Prencipe. “Wireless IoT Sensors Data Collection Reward Maximization by Leveraging

Multiple Energy-and Storage-Constrained UAVs”. Journal of Computer and System Sciences

(JCSS), 2023.

5. Francesco Betti Sorbelli, Federico Corò, Sajal K Das, Lorenzo Palazzetti, Cristina M Pinotti.

“How the Wind Can Be Leveraged for Saving Energy in a Truck-Drone Delivery System”. IEEE

Transactions on Intelligent Transportation Systems (T-ITS).

6. Francesco Betti Sorbelli, Federico Corò, Sajal K Das, Lorenzo Palazzetti, Cristina M Pinotti.

“On the Scheduling of Conflictual Deliveries in a last-mile delivery scenario with truck-carried

drones”. In: Pervasive and Mobile Computing (PMC) (2022).

2This paper is not mentioned along the dissertation, and is currently under review.
3Currently under review with minor comments.

187



188

Conference and Workshop Proceedings

1. Francesco Betti Sorbelli, Lorenzo Palazzetti, Cristina M Pinotti, “A Drone-Based Automated

Halyomorpha Halys Scouting: A Case Study on Orchard Monitoring”. In: IEEE International

Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) (2023)

2. Francesco Betti Sorbelli, Lorenzo Palazzetti, Cristina M Pinotti, “Preliminary Results for Ha-

lyomorpha Halys Monitoring Relying on a Custom Dataset”. In: IEEE International Workshop

on Metrology for Agriculture and Forestry (MetroAgriFor) (2023).

3. Dinca Alexandru, Popescu Dan, Maria Cristina Pinotti, Ichim Loretta, Lorenzo Palazzetti,

Angelescu Nicoleta, “Halyomorpha Halys Detection in Orchard from UAV Images Using Con-

volutional Neural Networks”. In: IWANN International Work Conference on Artificial Neural

Networks (2023).

4. Lennart Almstedt, Davide Baltieri, Francesco Betti Sorbelli, Davide Cattozzi, Daniele Gian-

netti, Amin Kargar, Lara Maistrello, Alfredo Navarra, David Niederprüm, Brendan O’Flynn,

Lorenzo Palazzetti, Niccolo Patelli, Luca Piccinini, Cristina M Pinotti, Lars Wolf, Dim-

itrios Zorbas, “Technological Innovations in Agriculture for Scouting Halyomorpha halys in

Orchards”. In: 5th International Workshop on Intelligent Systems for the Internet of Things

(ISIOT) (2023).

5. Francesco Betti Sorbelli, Punyasha Chatterjee, Federico Corò, Lorenzo Palazzetti, Cristina

M Pinotti, “A Novel Multi-Layer Framework for BVLoS Drone Operation: A Preliminary Study”.

In: IEEE INFOCOM DroneCom 2023 workshop (2023).4

6. Francesco Betti Sorbelli, Alfredo Navarra, Lorenzo Palazzetti, Cristina M Pinotti, Giuseppe

Prencipe “Optimal and Heuristic Algorithms for Data Collection by Using an Energy-and Storage-

Constrained Drone”. 18th International Symposium on Algorithms and Experiments for

Wireless Sensor Networks, (ALGOSENSORS 2022) September 8-9, 2022.

7. Francesco Betti Sorbelli, Federico Corò, Sajal K. Das, Emanuele Di Bella, Lara Maistrello,

Lorenzo Palazzetti, Cristina M. Pinotti “A Drone-based Application for Scouting Halyomor-

pha halys Bugs in Orchards with Multifunctional Nets”. The 20th International Conference

on Pervasive Computing and Communications (PerCom 2022) March 21-25, 2022.

8. Francesco Betti Sorbelli, Federico Corò, Sajal K. Das, Lorenzo Palazzetti, and Cristina M.

Pinotti. “Greedy Algorithms for Scheduling Package Delivery with Multiple Drones”. In: 23rd

4This paper is not mentioned along the dissertation.



189

International Conference on Distributed Computing and Networking (ICDCN), New Delhi,

India, January 4-7, 2022.

9. Francesco Betti Sorbelli, Federico Corò, Sajal K Das, Lorenzo Palazzetti, Cristina M Pinotti

“Drone-based optimal and heuristic orienteering algorithms towards bug detection in orchards”.

18th Int. Conf. on Distr. Computing in Sensor Systems (DCOSS 2022) May 30 - June 1,

2022.

10. Francesco Betti Sorbelli, Federico Corò, Sajal K. Das, Lorenzo Palazzetti, and Cristina M.

Pinotti. “Cooperative Truck-Drone Scheduling Approach for Last-Mile Deliveries”. In: Italian

Conference on Theoretical Computer Science (ICTCS short paper), September 13-15, 2021.

11. Lorenzo Palazzetti, Cristina M. Pinotti, and Giulio Rigoni. “A run in the wind: Favorable

winds make the difference in drone delivery”. 17th International Conference on Distributed

Computing in Sensor Systems (DCOSS), July 14-16, 2021.

12. Lorenzo Palazzetti. “Routing Drones Being Aware of Wind Conditions: a Case Study”. 17th

International Conference on Distributed Computing in Sensor Systems (DCOSS), July 14-

16, 2021.



190



Bibliography

[1] Lennart Almstedt et al. Technological innovations in agriculture for scouting halyomorpha

halys in orchards. In 2023 19th International Conference on Distributed Computing in Sensor

Systems (DCOSS), pages 1–8, 2023.

[2] Georg Graetz and Guy Michaels. Robots at Work. The Review of Economics and Statistics,

100(5):753–768, 12 2018.

[3] Lorenzo Palazzetti. Routing drones being aware of wind conditions: a case study. In 2021

17th Intl. Conf. on Distributed Computing in Sensor Systems (DCOSS), pages 343–350. IEEE,

2021.

[4] Lorenzo Palazzetti, Cristina M Pinotti, and Giulio Rigoni. A run in the wind: favorable

winds make the difference in drone delivery. In 17th Intl. Conf. on Distr. Comp. in Sensor

Systems (DCOSS), pages 109–116. IEEE, 2021.

[5] Francesco Betti Sorbelli, Federico Corò, Lorenzo Palazzetti, Cristina M. Pinotti, and Giulio

Rigoni. How the wind can be leveraged for saving energy in a truck-drone delivery system.

IEEE Transactions on Intelligent Transportation Systems, 24(4):4038–4049, 2023.

[6] Francesco Betti Sorbelli, Federico Corò, Lorenzo Das, Sajal K Palazzetti, and Cristina M

Pinotti. Cooperative truck-drone scheduling approach for last-mile deliveries. In 22nd

Italian Conf. on Theoretical Computer Science (ICTCS), 2021.

[7] Francesco Betti Sorbelli, Federico Corò, Sajal Das, Lorenzo Palazzetti, and Cristina Pinotti.

On the scheduling of conflictual deliveries in a last-mile delivery scenario with truck-carried

drones. Pervasive and Mobile Comp., page 101700, 2022.

[8] Pieter Vansteenwegen et al. The orienteering problem: A survey. European Journal of Op.

Research, 209(1), 2011.

191



192

[9] Francesco Betti Sorbelli, Federico Corò, Sajal K Das, Emanuele Di Bella, Lara Maistrello,

Lorenzo Palazzetti, and Cristina M Pinotti. A drone-based application for scouting haly-

omorpha halys bugs in orchards with multifunctional nets. In 2022 IEEE International Con-

ference on Pervasive Computing and Communications Workshops and other Affiliated Events

(PerCom Workshops), pages 127–129. IEEE, 2022.

[10] Francesco Betti Sorbelli, Federico Corò, Sajal K Das, Lorenzo Palazzetti, and Cristina M

Pinotti. Drone-based optimal and heuristic orienteering algorithms towards bug detection

in orchards. In 18th Intl. Conf. on Distributed Computing in Sensor Systems (DCOSS). IEEE,

2022.

[11] Francesco Betti Sorbelli, Alfredo Navarra, Lorenzo Palazzetti, Cristina M Pinotti, and

Giuseppe Prencipe. Optimal and heuristic algorithms for data collection by using an

energy-and storage-constrained drone. In International Symposium on Algorithms and Ex-

periments for Wireless Sensor Networks, pages 18–30, Cham, 2022. Springer International

Publishing.

[12] Francesco Betti Sorbelli, Alfredo Navarra, Lorenzo Palazzetti, Cristina M. Pinotti, and

Giuseppe Prencipe. Wireless iot sensors data collection reward maximization by leveraging

multiple energy- and storage-constrained uavs. Journal of Computer and System Sciences,

139:103475, 2024.

[13] Kirtan Jha, Aalap Doshi, Poojan Patel, and Manan Shah. A comprehensive review on au-

tomation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture,

2:1–12, 2019.

[14] Anne L Nielsen and George C Hamilton. Life history of the invasive species halyomorpha

halys (hemiptera: Pentatomidae) in northeastern united states. Annals of the Entomological

Society of America, 102(4):608–616, 2009.

[15] Lara Maistrello, Paride Dioli, Moreno Dutto, Stefania Volani, Sara Pasquali, and Gianni

Gilioli. Tracking the spread of sneaking aliens by integrating crowdsourcing and spatial

modeling: the italian invasion of Halyomorpha halys. BioScience, 68(12):979–989, 2018.

[16] Sibylle Stoeckli et al. Current distribution and voltinism of the brown marmorated stink

bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-

resolution CLIMEX model. International Journal of Biometeorology, 64:2019–2032, 2020.

[17] HALY.ID. Project. https://www.haly-id.eu, 2022.



193

[18] Francesco Betti Sorbelli, Lorenzo Palazzetti, and Cristina M Pinotti. A drone-based au-

tomated halyomorpha halys scouting: A case study on orchard monitoring. In 2023 5th

IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). IEEE,

2023.

[19] Francesco Betti Sorbelli, Lorenzo Palazzetti, and Cristina M Pinotti. Preliminary results for

halyomorpha halys monitoring relying on a custom dataset. In 2023 5th IEEE International

Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). IEEE, 2023.

[20] Francesco Betti Sorbelli, Lorenzo Palazzetti, and Cristina M. Pinotti. Yolo-based detection

of halyomorpha halys in orchards using rgb cameras and drones. Computers and Electronics

in Agriculture, 213:108228, 2023.

[21] S Ahirwar, R Swarnkar, S Bhukya, and G Namwade. Application of drone in agriculture.

International Journal of Current Microbiology and Applied Sciences, 8(1):2500–2505, 2019.

[22] Timothy S de Smet, Alex Nikulin, et al. Successful application of drone-based aeromagnetic

surveys to locate legacy oil and gas wells in cattaraugus county, new york. Journal of Applied

Geophysics, 186(C), 2021.

[23] Abegaz Mohammed Seid et al. Multi-agent drl for task offloading and resource alloca-

tion in multi-uav enabled iot edge network. Trans. on Network and Service Management,

18(4):4531–4547, 2021.

[24] Francesco Betti Sorbelli, Sajal K Das, Cristina M Pinotti, and Giulio Rigoni. A comprehen-

sive investigation on range-free localization algorithms with mobile anchors at different

altitudes. Elsevier PMC, 73:101383, 2021.

[25] Angelo Trotta, Fabio D Andreagiovanni, Marco Di Felice, et al. When uavs ride a bus:

Towards energy-efficient city-scale video surveillance. In INFOCOM 2018, pages 1043–

1051. IEEE, 2018.

[26] Francesco Betti Sorbelli, Cristina M Pinotti, and Giulio Rigoni. On the evaluation of a

drone-based delivery system on a mixed euclidean-manhattan grid. IEEE Transactions on

Intelligent Transportation Systems, 2022.

[27] David Schneider. The delivery drones are coming. IEEE Spectrum, 57(1):28–29, 2020.



194

[28] Brunilde Girardet, Laurent Lapasset, Daniel Delahaye, and Christophe Rabut. Wind-

optimal path planning: Application to aircraft trajectories. In 13th Intl. Conf. on Control

Automation Robotics & Vision, pages 1403–1408. IEEE, 2014.

[29] Joshuah K Stolaroff, Constantine Samaras, Emma R O’Neill, et al. Energy use and life cycle

greenhouse gas emissions of drones for commercial package delivery. Nature communica-

tions, 9(1):1–13, 2018.

[30] Chase C Murray and Amanda G Chu. The flying sidekick traveling salesman problem:

Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging

Technologies, 54:86–109, 2015.

[31] Alena Otto, Niels Agatz, James Campbell, Bruce Golden, and Erwin Pesch. Optimization

approaches for civil applications of unmanned aerial vehicles (uavs) or aerial drones: A

survey. Networks, 72(4):411–458, 2018.

[32] Nils Boysen, Stefan Fedtke, and Stefan Schwerdfeger. Last-mile delivery concepts: a survey

from an operational research perspective. OR Spectrum, pages 1–58, 2020.

[33] Jacco M Hoekstra and Joost Ellerbroek. Bluesky atc simulator project: an open data and

open source approach. In 7th Intl. Conf. on Research in Air Transportation, volume 131,

page 132. FAA/USA/Europe, 2016.

[34] Niels A.H. Agatz, Paul Bouman, and Marie Schmidt. Optimization approaches for the

traveling salesman problem with drone. ERIM Report Series Reference No. ERS-2015-011-

LIS, 2018.

[35] Júlia Cária de Freitas and Puca Huachi Vaz Penna. A variable neighborhood search for flying

sidekick traveling salesman problem. Intl. Trans. in Operational Research, 27(1):267–290,

2020.

[36] Gloria Cerasela Cri̧san and Elena Nechita. On a cooperative truck-and-drone delivery sys-

tem. Procedia Computer Science, 159:38–47, 2019.

[37] Nils Boysen, Dirk Briskorn, Stefan Fedtke, and Stefan Schwerdfeger. Drone delivery from

trucks: Drone scheduling for given truck routes. Networks, 72(4):506–527, 2018.

[38] Ty Nguyen and Tsz-Chiu Au. Extending the range of delivery drones by exploratory learn-

ing of energy models. In Autonomous Agents and MultiAgent Systems, pages 1658–1660.

IFAAMAS, 2017.



195

[39] Francesco Betti Sorbelli, Federico Corò, Sajal K Das, and Cristina M Pinotti. Energy-

constrained delivery of goods with drones under varying wind conditions. IEEE Trans.

on Intelligent Transportation Systems, 22(9):6048–6060, 2020.

[40] Arindam Khanda, Federico Corò, Francesco Betti Sorbelli, Cristina M Pinotti, and Sajal K

Das. Efficient route selection for drone-based delivery under time-varying dynamics. In

2021 IEEE 18th Intl. Conf. on Mobile Ad Hoc and Smart Systems (MASS), pages 437–445.

IEEE, 2021.

[41] Amila Thibbotuwawa, Grzegorz Bocewicz, Peter Nielsen, and Banaszak Zbigniew. Planning

deliveries with uav routing under weather forecast and energy consumption constraints.

IFAC-PapersOnLine, 52(13):820–825, 2019.

[42] Amila Thibbotuwawa, Grzegorz Bocewicz, Grzegorz Radzki, Peter Nielsen, and Zbigniew

Banaszak. Uav mission planning resistant to weather uncertainty. Sensors, 20(2):515,

2020.

[43] Grzegorz Radzki, Peter Nielsen, Grzegorz Bocewicz, and Zbigniew Banaszak. A proac-

tive approach to resistant uav mission planning. In Conf. on Automation, pages 112–124.

Springer, 2020.

[44] Jermaine Janszen, Babar Shahzaad, et al. Constraint-aware trajectory for drone delivery

services. In ICSOC. Springer, 2021.

[45] Thomas Kirschstein. Energy demand of parcel delivery services with a mixed fleet of electric

vehicles. Cleaner Engineering and Technology, 5:100322, 2021.

[46] John M. Wallace and Peter V. Hobbs. Atmospheric science: An introductory survey. Amster-

dam: Elsevier Academic Press., 2006.

[47] Wayne Johnson. Helicopter theory. Courier Corporation, 2012.

[48] Kenzo Nonami. Drone technology, cutting-edge drone business, and future prospects. Jour-

nal of Robotics and Mechatronics, 28(3):262–272, 2016.

[49] Ross Arnold et al. Experimentation for optimization of heterogeneous drone swarm con-

figurations: terrain and distribution. In Artificial Intelligence and Machine Learning for

Multi-Domain Operations Applications III, volume 11746, page 1174625. International So-

ciety for Optics and Photonics, 2021.



196

[50] Jaihyun Lee. Optimization of a modular drone delivery system. In 2017 Annual IEEE Intl.

Systems Conf., SysCon 2017, Montreal, QC, Canada, April 24-27, 2017, pages 1–8. IEEE,

2017.

[51] Iman Dayarian, Martin Savelsbergh, and John-Paul Clarke. Same-day delivery with drone

resupply. Transportation Science, 54(1):229–249, 2020.

[52] Neil Mathew, Stephen L Smith, and Steven L Waslander. Planning paths for package de-

livery in heterogeneous multirobot teams. IEEE Transactions on Automation Science and

Engineering, 12(4):1298–1308, 2015.

[53] Sungwoo Kim and Ilkyeong Moon. Traveling salesman problem with a drone station. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 49(1):42–52, 2018.

[54] Rami Daknama and Elisabeth Kraus. Vehicle routing with drones. CoRR, abs/1705.06431,

2017.

[55] Roberto Roberti and Mario Ruthmair. Exact methods for the traveling salesman problem

with drone. Transportation Science, 55(2):315–335, 2021.

[56] Desheng Wang et al. Routing and scheduling for hybrid truck-drone collaborative parcel de-

livery with independent and truck-carried drones. Internet of Things Journal, 6(6):10483–

10495, 2019.

[57] Yong Sik Chang and Hyun Jung Lee. Optimal delivery routing with wider drone-delivery

areas along a shorter truck-route. Expert Systems with Applications, 104:307–317, 2018.

[58] Chase C Murray and Ritwik Raj. The multiple flying sidekicks traveling salesman problem:

Parcel delivery with multiple drones. Transportation Research Part C: Emerging Technologies,

110:368–398, 2020.

[59] Silvano Martello, David Pisinger, and Paolo Toth. New trends in exact algorithms for the

0–1 knapsack problem. European Journal of Operational Research, 123(2):325–332, 2000.
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