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We use an analytical forward model based on perturbation theory to predict the neutral hydrogen (HI)
overdensity maps at low redshifts. We investigate its performance by comparing it directly at the field
level to the simulated HI from the IllustrisTNG magneto-hydrodynamical simulation TNG300-1
(L ¼ 205 h−1 Mpc), in both real and redshift space. We demonstrate that HI is a biased tracer of the
underlying matter field and find that the cubic bias model describes the simulated HI power spectrum to
within 1% up to k ¼ 0.4ð0.3Þ hMpc−1 in real (redshift) space at redshifts z ¼ 0, 1. Looking at counts in
cells, we find an excellent agreement between the theory and simulations for cells as small as 5 h−1 Mpc.
These results are in line with expectations from perturbation theory, and they imply that a perturbative
description of the HI field is sufficiently accurate given the characteristics of upcoming 21 cm intensity
mapping surveys. Additionally, we study the statistical properties of the model error—the difference
between the truth and the model. We show that on large scales this error is nearly Gaussian and that it has a
flat power spectrum, with amplitude significantly lower than the standard noise inferred from the HI
power spectrum. We explain the origin of this discrepancy, discuss its implications for the HI power
spectrum Fisher matrix forecasts, and argue that it motivates the HI field-level cosmological inference. On
small scales in redshift space, we use the difference between the model and the truth as a proxy for the
Fingers-of-God effect. This allows us to estimate the nonlinear velocity dispersion of HI and show that it is
smaller than for the typical spectroscopic galaxy samples at the same redshift. Finally, we provide a simple
prescription based on the perturbative forward model which can be used to efficiently generate accurate HI
mock data, in real and redshift space.
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I. INTRODUCTION

The main goal of current galaxy surveys is to measure
cosmological parameters using galaxy clustering as a probe
of the underlying matter density field over large volumes
and large redshift ranges. Spectroscopic galaxy redshift
surveys such as DESI [1] and Euclid [2] will measure
approximately 30 million galaxy positions, an order-of-
magnitude better than the largest currently available
spectroscopic sample of BOSS [3,4].
Another way to probe the distribution of matter is to use

neutral hydrogen (HI), relying on the technique of 21 cm
intensity mapping (IM) [5–9]. In this approach the aim is to
collect an integrated HI signal from the hyperfine spin-flip
transition of atomic hydrogen at 21 cm across different
redshifts. A number of upcoming 21 cm surveys such as
CHIME [10], HIRAX [11], SKA [12], Tianlai [13], and
proposed PUMA [14] will use the 21 cm line to probe the
large-scale clustering of HI across the wide range of
redshifts in the post-reionization (z < 6) universe, hopefully

providing some of the tightest constraints on the ΛCDM
cosmological model and its extensions.
One of the keys in achieving these ambitious goals is the

simple, reliable, and accurate theoretical description of
the nonlinear density field of HI in terms of the initial
conditions. The clustering of HI is somewhat different with
respect to the standard galaxy clustering due to the
particular form of the HI-halo connection. On average,
the total HI mass in halos increases with the halo mass as a
power law with an exponential cutoff at small halo masses.
Together with the shape of the halo mass function, this
results in an HI signal originating mainly from small and
intermediate halo masses Mh ∼ 1010–12 ½h−1M⊙�. This has
two important consequences. First, as these halos are very
abundant, the expected HI shot noise is low [15,16].
Second, the fraction of HI in central versus satellite galaxies
significantly depends on the halo mass [16,17]. For this
reason it is hard to estimate whether the Fingers-of-God
(FoG) effects in HI are larger or smaller compared to the
FoG in typical galaxy samples, even though the velocity
dispersion of HI is smaller than that of matter [16]. Finally, it
is worth noting that, in contrast to the discrete nature of*andrej.obuljen@uzh.ch
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galaxy catalogs, the observed HI is smoothed by the angular
and/or frequency resolution and therefore represented by a
continuous field.
However, despite these peculiarities, the HI is still

expected to be a biased tracer of the underlying matter
field. Since the nonlinear evolution of HI is expected to be
local in space [18] and to obey the equivalence principle,
the same bias expansion formalism developed for galaxies
(see [19] for a review) is valid for the HI as well. This
approach is inherently perturbative. Therefore, one can use
analytical techniques to find a relatively simple relation
between initial conditions and the final HI field, relying only
on the basic features of gravitational dynamics and sym-
metries of the system. The major advantage of perturbation
theory is its universality and robustness. It is valid for
any (local) baryonic physics, up to only a handful of free
nuisance parameters which capture all the intricacies of the
galaxy formation process, as formalized in the effective field
theory approach to galaxy clustering [20–26].
Nevertheless, it is useful to carefully test these predictions

against reality, since the relevant scales that determine the
range of validity of perturbation theory can depend on the
type of tracer considered. The main goal of this paper is to
provide such careful analysis for the case of HI at low
redshifts and in the context of planned IM surveys. To that
end, we use the perturbative forward modeling to predict the
HI maps and compare it to the state-of-the-art IllustrisTNG
magneto-hydrodynamical simulations which have been
instrumental in studying the clustering of HI in the late
universe [27–31]. Such field level comparison has a number
of advantages over the standard fit to the power spectrum or
other n-point functions. First, choosing the same initial
conditions for theory and simulations, one does not pay the
price of cosmic variance. Second, in order to match the two
realizations, amplitudes and phases of all Fourier modes
have to be correct. This is a much more stringent test than
looking at a particular summary statistics which unavoid-
ably involves averaging over Fourier modes. Finally, at the
field level one can also study observables such as counts in
cells, which are not simply related to the n-point functions.
For all these reasons, the field level methods have been
exploited to study the performance of perturbation theory
for dark matter [32,33] as well as biased tracers, in real and
redshift space [34,35]. In the context of HI, this approach
has already been used in several works [17,36,37], mainly at
higher redshifts (z > 2). While based on the same ideas as
in these earlier papers, our implementation of the field level
analysis is slightly different, and we will comment on these
differences in what follows. Other approaches, based on
machine learning techniques, have also been used to predict
HI at the field level [38,39].
Another important advantage of the field level com-

parison is that it provides a clear path to study the
difference between the theory and simulations. On large
scales, where the unaccounted nonlinearities are very

small, this difference is a true stochastic noise of galaxy
formation, which depends on the number density and the
type of tracers being observed. On small scales, this
difference is dominated by the nonlinear evolution and
can be used as a proxy of the truly nonlinear effects that
cannot be captured by perturbation theory. We will show
how both of these regimes can be exploited in order to gain
a deeper understanding of clustering properties of HI.
Those include measuring the true amplitude of the shot
noise and estimating the HI nonlinear velocity dispersion.
Finally, perturbation theory can provide a good starting

point to describe the HI density field even in the nonlinear
regime. This is achieved by projecting the HI map to a few
perturbative templates, allowing the coefficients in this
projection, the so-called transfer functions, to be free
functions of scale. These transfer functions are smooth
and can be fitted by low-degree polynomials. As long as this
simple expansion provides a decent phenomenological
description of the nonlinear field, the transfer functions
can be used to generate realistic HI mock data. We exploit
this fact and provide a publicly available code Hi-Fi
mocks1 that can be used by the community to efficiently
generate maps of HI whose properties resemble the one
from the IllustrisTNG simulations but with arbitrary vol-
umes, different realizations of the initial conditions, or even
slightly different cosmologies.
The outline of the paper is the following. In Sec. II we

describe the theoretical model that we use to make HI maps,
given some cosmology and a realization of the initial
conditions. In Sec. III we describe the IllustrisTNG simu-
lations that we use as a reference point of comparison. The
results in real and redshift space for the best-fit realization,
the power spectrum analysis, and counts in cells are
presented in Sec. IV. In Sec. V we discuss in detail the
HI noise properties, including the amplitude of the noise on
large scales and nonlinear velocity dispersion. In Sec. VI we
show how to create fast and accurate HI mock data based on
perturbative templates, and in Sec. VII we conclude and lay
out directions for future research.

II. THEORETICAL MODEL

In this section we briefly describe the perturbative model
that we use to predict HI maps at a given redshift, for a
given cosmology and initial conditions. We use the exact
same formalism of [34] in real space and of [35] in redshift
space, and we refer the reader to these papers for more
details. Before we provide the main ingredients of this
approach, let us point out that it is designed to reproduce
the correct one-loop power spectrum and the tree-level
bispectrum, including all relevant dark matter nonlinear-
ities, effective field theory counterterms, bias parameters,
and infrared resummation. Therefore, the one-loop power

1https://github.com/andrejobuljen/Hi-Fi_mocks.
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spectrum of this perturbative forward model is identical
to the one computed by the nonlinear extensions of the
Boltzmann codes, such as CLASS-PT [40], PyBird [41],
or velocileptors [42].
The main difference in making a perturbative prediction

at the field level compared to the n-point functions is the
treatment of large displacements. While by the equivalence
principle the large displacements do not affect the smooth
part of the correlation functions [43–46] and impact only
the features such as BAO [22,47–49], their effect at the field
level is much more dramatic. Inspired by the Lagrangian
perturbation theory which treats the large displacements
nonperturbatively, in this paper we use the shifted operators
of [34,35] as the building blocks for describing the HI
realizations. These shifted operators, which we denote with
the tilde signs, have the following form (in redshift space):

Õðk; n̂Þ≡
Z

d3qOðqÞe−ik·ðqþψ1ðqÞþfn̂ðψ1ðqÞ·n̂ÞÞ; ð1Þ

where q is the Lagrangian coordinate in the initial
conditions, ψ1 is the Zel’dovich displacement field, n̂ is
the line-of-sight direction, and f is the logarithmic growth
function. These operators are the building blocks in
calculating the Eulerian density field using Lagrangian
perturbation theory [50–53]. Their statistics can be calcu-
lated straightforwardly [42], and the results can be shown
to be equivalent to the IR-resummed Eulerian counterparts
[34,42]. Note that, for simplicity, we suppress the explicit
time dependence, but all quantities in this expression have
to be evaluated as functions of time. For instance, in order
to obtain the Zel’dovich displacement field, we use the
initial density field δ1 rescaled linearly to a given output
redshift (z ¼ 0, 1 in our case):

ψ1ðk; zÞ ¼
ik
k2

δ1ðk; zÞ: ð2Þ

Clearly, in order to obtain the shifted operators in real
space, one can set f ¼ 0 in Eq. (1) and drop the
dependence on the line of sight.
Let us now turn to the question of which operators we

use in our forward model. We focus on the leading orders
in perturbation theory, needed to ensure that the one-loop
power spectrum and the tree-level bispectrum are predicted
correctly. This implies that we have to keep all relevant
terms up to cubic order in small density fluctuations.
However, there is a simple trick which allows us to absorb
the contribution of the cubic operators into the scale-
dependent coefficients of the shifted linear field. To see
this, let us decompose a generic cubic operator in the
following way:

Õ3 ¼
hÕ3δ̃1i
hδ̃1δ̃1i

δ̃1 þ
�
Õ3 −

hÕ3δ̃1i
hδ̃1δ̃1i

δ̃1

�
: ð3Þ

We can define the second term in the brackets to be
orthogonal to δ̃1,

Õ⊥
3 ≡ Õ3 −

hÕ3δ̃1i
hδ̃1δ̃1i

δ̃1; ð4Þ

since, by definition, hÕ⊥
3 δ̃1i ¼ 0. This means that these

orthogonal contributions do not contribute to the one-loop
power spectrum and can be neglected at this order in
perturbation theory. The only impact of cubic operators is
through the scale-dependent coefficient multiplying δ̃1,
which we refer to as the transfer functions

β3ðk; n̂Þ≡ hÕ3δ̃1i
hδ̃1δ̃1i

: ð5Þ

These functions can be computed analytically, without the
need to perform the forward modeling for cubic operators
on the grid. In conclusion, provided that the proper
transfer functions are used, the only operators that have
to be generated at the field level are O¼f1;δ1;δ2 ≡
ðδ21 − σ21Þ;G2g, where σ21 ≡ hδ21i is the rms fluctuation of
the linear density field, while

G2 ≡
�
∂i∂j

∇2
δ1

�
2

− δ21 ð6Þ

is the second order bias operator related to the tidal field.
In some analyses we will also explicitly include O ¼ δ31.
While this operator is not needed for the model for the
reasons we have just explained, it is the only cubic term
relevant for studying the properties of the noise, given that
it has a flat autospectrum on large scales.
In order to simplify calculations in practice, it is con-

venient to use the basis of operators that are all orthogonal to
each other, such that hÕ⊥

a Õ
⊥
b i ¼ 0, for any a and b. This is

achieved by a simple linear transformation, which does not
change the statistical properties of the map. Wewill use such
an orthogonal basis in all our analyses.

A. Real-space model

Let us focus on real space first. The full HI field can be
written as a sum of two contributions,

δHIðkÞ ¼ δmodel
HI ðkÞ þ ϵHIðkÞ; ð7Þ

where δmodel
HI is the theoretical model and ϵHI is the model

error which we assume to be uncorrelated with δmodel
HI . For

example, on large scales, we expect ϵHI to be dominated
by the stochastic noise due to discreteness of galaxies as
a tracer. We follow Ref. [34] and use the following model
for the HI field in terms of shifted and orthogonalized
operators Õ⊥ðkÞ:
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δmodel
HI ðkÞ ¼ β1ðkÞδ̃1ðkÞ þ β2ðkÞδ̃⊥2 ðkÞ

þ βG2
ðkÞG̃⊥

2 ðkÞ þ β3ðkÞδ̃⊥3 ðkÞ; ð8Þ

where βiðkÞ are transfer functions. At next-to-leading order
in perturbation theory these functions have the following
form [34] (see also Appendix A):

β1ðkÞ ¼ b1 þ c2sk2 þ b2
hδ̃1δ̃2i
hδ̃1δ̃1i

þ bG2

hδ̃1δ̃2i
hδ̃1δ̃1i

þ bΓ3

hδ̃1Γ̃3i
hδ̃1δ̃1i

− b1
hδ̃1S̃3i
hδ̃1δ̃1i

; ð9Þ

β2ðkÞ ¼ b2; βG2
ðkÞ ¼ bG2

; β3ðkÞ ¼ b3; ð10Þ

where b1; c2s ; b2; bG2
; bΓ3

; b3 are constant free nuisance
parameters. Note that the parameter c2s is the sum of the
dark matter one-loop counterterm and the so-called nonlocal
bias. The shape of cubic operators Γ3 and S3 can be found in
Appendix A. Let us stress that S3 comes from the second
order displacement acting on the halo density field in
Lagrangian coordinates, and therefore, by the equivalence
principle, it is not multiplied by a new free parameter.
We would like to emphasize once again that the exact

form of the transfer function in Eq. (9) is needed in order to
have the correct one-loop power spectrum. Sometimes in
the literature the loop corrections are neglected, and β1ðkÞ is
approximated as a constant [17]. While this may be a decent
approximation at high redshifts (z > 2), the loop corrections
to β1ðkÞ in the late universe can be significant. Furthermore,
the S̃3 operator (usually neglected in the literature) is very
important in order to get reliable estimates of bias param-
eters, as an important additional cross-check that our
theoretical description makes sense. We will come back
to this point in Sec. IV when we fit the transfer functions in
real space using perturbative templates.
Finally, let us comment on evaluating β1 analytically.

The IllustrisTNG simulation that we use as a reference
point for comparison has a box size of L ¼ 205 h−1Mpc.
Given the periodic boundary conditions, this implies
that the linear power spectrum has an infrared cutoff at
kIR ¼ 2π=L ¼ 0.031 hMpc−1. In all theoretical calcula-
tions, the same cutoff has to be implemented. Note that this
implies that the typical displacements are significantly
smaller than in the real Universe. Cutting the power
spectrum below kIR, we find that the velocity dispersion
at redshift zero is σv ¼ 4.9 h−1Mpc, roughly 20% lower
than σv in ΛCDM and in excellent agreement with
measurements from Illustris. Keeping this in mind, all
correlators in Eq. (9) can still be evaluated following the
standard methods for calculating the one-loop power
spectrum in Lagrangian perturbation theory [42], using
the modified linear power spectrum with the appropriate
infrared cutoff.

B. Redshift-space model

Let us next turn to redshift space. Following [35], we can
write the perturbative model for the HI field as

δs;model
HI ðk; n̂Þ ¼ δsZðk; n̂Þ −

3

7
fG̃k

2ðk; n̂Þ þ β1ðk; μÞδ̃1ðk; n̂Þ
þ β2ðk; μÞδ̃⊥2 ðk; n̂Þ þ βG2

ðk; μÞG̃⊥
2 ðk; n̂Þ

þ β3ðk; μÞδ̃⊥3 ðk; n̂Þ; ð11Þ

where βiðk; μÞ are transfer functions which now depend on
both k and μ≡ k̂ · n̂. Here we define

Gk
2ðqÞ≡ n̂in̂j

∂i∂j

∇2
G2ðqÞ; ð12Þ

which can be used to compute the shifted operator G̃k
2ðk; n̂Þ

using Eq. (1). Note that in redshift space the model error
depends on both k and n̂ such that the full HI field can be
written as

δsHIðk; n̂Þ ¼ δs;model
HI ðk; n̂Þ þ ϵsHIðk; n̂Þ: ð13Þ

This model requires some explanations. While having
a similar structure as in real space, Eq. (11) has new
ingredients. In particular, the first line contains the
Zel’dovich density in redshift space and the shifted Gk

2

field. Note that both of these terms come without free
coefficients. While these two terms can, in principle, be
absorbed in other shifted operators (the same way as in real
space δZ is absorbed in δ̃1, G̃2, and G̃3; see [34]), we decide
to keep them explicitly. In this way it is guaranteed that β1,
β2, βG2

, and β3 have the same limit when k → 0 inde-
pendently of μ. This is important because it simplifies the
analysis of the transfer functions in the low-k limit and
allows all μ bins to be combined. Such a combination
increases the signal-to-noise ratio for the amplitude of
each β in redshift space, which in turn is important for
comparison to real-space results. This is another important
difference in our work compared to previous literature,
where the transfer functions are treated as constants

independent of μ even without keeping G̃k
2 in the model

explicitly.
One important consequence of explicitly keeping δsZ and

G̃k
2 in the model is that the low-k limits of the transfer

functions in real and redshift space are not necessarily the
same. One can show that when k → 0, the theoretical
expectation is

βreal1 ¼ βrsd1 þ 1; ð14Þ

βreal2 ¼ βrsd2 ; ð15Þ
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βrealG2
¼ βrsdG2

þ 2

7
; ð16Þ

βreal3 ¼ βrsd3 : ð17Þ

Wewill test these relations once we fit the transfer functions
in real and redshift space (see Sec. VI for comparison of
this theoretical prediction and the best-fit values of transfer
functions from simulations).
In principle, one can compute the one-loop corrections

for β1ðk; μÞ in a similar way as in Eq. (9), and we give the
equations in Appendix B. However, with the precision
available from a single box of Illustris simulation, testing
the redshift-space distortions (RSD) model by fitting this
transfer function would not be very informative. For this
reason we will provide only a phenomenological fit to
β1ðk; μÞ in this paper and leave a more detailed analysis for
when larger simulation volumes are available. All other
transfer functions are expected to be constant on large
scales, at leading order in perturbation theory.

C. Numerical implementation

We first generate a Gaussian linear density field using the
same initial conditions (IC) as were used for the full
hydrodynamical simulation (IllustrisTNG). We use a regular
2563 grid at the initial redshift zini ¼ 127, using the linear
power spectrum and random seed of TNG. We use the same
ΛCDM cosmology as TNG: ΩΛ ¼ 0.6911, ΩM ¼ 0.3089,
Ωb ¼ 0.0486, σ8 ¼ 0.8159, ns ¼ 0.9667, and h ¼ 0.6774,
in agreement with the results from Planck [54].
We generate a catalog of particles positioned on a regular

2563 grid within the simulation box (L ¼ 205 hMpc−1),
which results in a particle separation Δq ¼ 0.8 hMpc−1.
At each particle’s Lagrangian position q we compute the
following: the displacement field ψ1ðqÞ, δ1ðqÞ, δ21ðqÞ, and
G2ðqÞ. We then displace the particles by the displacement
field ψ1ðqÞ and place the displaced particles on the same
regular grid using the cloud-in-cell (CIC) mass assigning
scheme [55]. To obtain the shifted overdensity fields δ̃1, δ̃2,
G̃2, and δ̃3, we additionally weight displaced particles by
the appropriate weights δ1ðqÞ, δ21ðqÞ, G2ðqÞ, and δ31ðqÞ,
respectively. We apply the same smoothing to δ1 when
computing the shifted cubic term δ̃3 [34].
In redshift space, we follow a similar procedure, except

that the displaced particles are additionally shifted along
the line of sight. We choose the simulation z axis to be the
line of sight (ẑ), and for this choice the total displacement
along the line of sight is then ð1þ fÞψzz, where f is the
logarithmic growth rate [35]. Furthermore, we compute

the Gk
2 term in Fourier space in the initial conditions as

Gk
2ðk; n̂Þ ¼ μ2G2ðkÞ, before shifting it the usual way to

obtain G̃k
2.

III. SIMULATED HI FIELD

In this section we describe the simulations used to
obtain the evolved HI field. We use the IllustrisTNG
simulations [27–31]. We focus on the largest simulation
box with the highest resolution, TNG300-1, with a box
size L ¼ 205 hMpc−1. We note that the main results in
Ref. [16] were obtained from a smaller simulation,
TNG100-1 (L ¼ 75 hMpc−1), with higher mass resolu-
tion, which allowed one to probe the HI distribution within
smaller halos. However, for our work we need larger scales
for two reasons. One reason is that the Zel’dovich
displacement field receives a significant contribution from
modes comparable to or larger than the size of the smaller
box; thus, a larger box is needed to properly account for the
large modes. Another reason is that we want to measure
the performance of the model on large, BAO scales
≈100 h−1 Mpc relevant for future 21 cm IM surveys,
which again requires a larger box. Furthermore, we shall
focus on outputs at z ¼ 0 and z ¼ 1 as these are the key
redshifts for several future surveys.
We compute the HI masses in postprocessing following

the approach from Ref. [16]. We then assign the particles
weighted by their HI masses on a regular 2563 grid using
the CIC mass assignment scheme [55]. We correct for the
CIC window to obtain the final HI overdensity field in real
space. Similarly, in order to obtain the HI overdensity field
in redshift space, we apply the RSD shift along the line of
sight prior to mesh assignment. We caution the reader that
the HI simulation results are not fully converged against
resolution (see Appendix A in [16]).
In order to compare to the standard HI shot noise

estimates, we make use of halo catalogs with total HI
masses obtained from the same simulation TNG300-1. The
halos were identified using the Friends-of-Friends (FOF)
finder, and the total HI mass per halo is computed by
summing the HI masses of all the particles within each
FOF halo [16].

IV. RESULTS

In this section we test how well the perturbative forward
model matches the simulations, and we present some
results. Our main analysis is performed at the field level,
where we fit the entire perturbative realization to simula-
tions without restricting ourselves to any summary statistics.
The key object in this approach is the mean-square error/
residual power spectrum, in general given by

Perrðk; n̂Þ≡ hjδtruthHI ðk; n̂Þ − δmodel
HI ðk; n̂Þj2i: ð18Þ

This definition implies that the error contains everything
that is not included in the model; therefore, it does not
correlate with δmodel

HI . Consequently,

Ptruth
HI ðk; n̂Þ ¼ Pmodel

HI ðk; n̂Þ þ Perrðk; n̂Þ: ð19Þ
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In order to obtain the best-fit model, we minimize Perr in
each ðk; μÞ bin. Since the model is linear in transfer
functions, this minimization is equivalent to a linear regres-
sion in every bin. For the orthogonal basis of operators, the
estimate of transfer functions is straightforward,

βiðk; μÞ ¼ hO⊥
i ðk; n̂ÞδtruthHI ðk; n̂Þ�i=hjO⊥

i ðk; n̂Þj2i: ð20Þ

Note that in real space the Perr and the transfer functions βi
are functions of the wave-number amplitude k only.
Before diving into the details, let us comment on

general expectations for the behavior of the transfer
functions. On large scales, where the model is known
to be correct, transfer functions are simply numbers, and
they do not depend on scale. On the other hand, deeply in
the nonlinear regime where the model is completely
wrong, transfer functions approach zero. This can be seen
directly from Eq. (20), if one assumes that the truth does
not correlate with the model on very small scales. In the
intermediate regime, the transfer functions can be mod-
eled by perturbation theory, and we will test these
predictions in this section.
Let us also comment on the expected size of the error

Perr. Even if the model is perfect, we still expect the

nonzero error for realistic biased tracers, which comes from
the sampling noise due to the finite number of objects in
simulations or galaxy catalogs. Therefore, on large scales,
we expect the amplitude of the noise to have a flat power
spectrum, with the amplitude approximately equal to 1=n̄,
where n̄ is the mean number density of galaxies. On the
other hand, approaching the nonlinear regime, the error
power spectrum can become dominated by the true non-
linearities not captured by the model. These include higher
order terms in perturbation theory as well as nonperturba-
tive contributions such as 1-halo terms. We will exploit this
fact in redshift space to estimate the size of the nonlinear
velocity dispersion for HI.

A. Results in real space

Let us begin presenting our results starting from real
space. Minimizing the error power spectrum as explained
above, we measure the transfer functions in all k bins. In
Fig. 1 we show a 2D slice of the simulated HI overdensity
field in comparison to the best-fit cubic model and the
residual at redshifts z ¼ 0 and z ¼ 1. We can see a general
agreement between the simulation and best-fit model.
Notable differences in the residuals are present at nonlinear
scales and match the positions of large overdensities. These

FIG. 1. Real-space slices in the y-z plane of the simulated HI overdensity field (left), the best-fit cubic bias model (middle), and the
residuals (right), at z ¼ 0 (top) and z ¼ 1 (bottom). All density fields are smoothed with a R ¼ 1 h−1 Mpc 3D Gaussian filter, while the
depth of each slice is 20 h−1 Mpc.
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differences are slightly more pronounced at later times, as
expected from the nonlinear evolution. We note that a part
of the difference is due to the accumulated projected error,
given the thickness of the slice, which is 20 hMpc−1.
A more quantitative way to compare the two maps is to

calculate the cross-correlation coefficient between the
simulated HI field and the best-fit model:

rHI ≡ hδtruthHI δbest-fit�HI i
ðhjδtruthHI j2ihjδbest-fitHI j2iÞ1=2 : ð21Þ

We show the quantity 1 − r2HI in Fig. 2, which can be equal
to Perr=Ptruth using Eq. (19) (see Appendix B in Ref. [34]).
It is clear that for both z ¼ 0 and z ¼ 1 the quadratic and
cubic bias models have much better cross-correlation
coefficients than the linear bias model, even on the largest

scales where the linear theory is supposed to work well. We
will come back to this peculiar feature of HI clustering and
discuss it in detail in Sec. V. It is important to note that the
major source of disagreement between the simulations and
the model on large scales is the sampling noise and not the
failure of perturbation theory to predict the correct reali-
zation of the maps.
In order to see this more explicitly, we measure the best-

fit power spectrum as well as the model error power
spectrum. The results are shown in Fig. 3. As previously
mentioned, the model error power spectrum is expected to
be flat if all the relevant higher order terms are properly
accounted for. Indeed, we find that using either the quadratic
or the cubic model results in almost scale-independent Perr.
On large scales we also find an excellent agreement between
the power spectra in simulations and for the best-fit cubic
bias model. Note that the sum of the model and error power

FIG. 2. Relative error of the best-fit model Perr compared to the true HI power spectrum Ptruth. This coincides with 1 − r2HI, where rHI is
the cross-correlation coefficient between simulations and the model. We show this quantity for different bias models: linear, quadratic,
and cubic, at z ¼ 0 (left) and z ¼ 1 (right). We find that using quadratic or cubic models significantly decreases the relative error
compared to the linear bias model.

FIG. 3. Real-space power spectrum: simulated (blue solid line), best-fit cubic model (blue dashed line), and error power spectra
Perr at z ¼ 0 (left) and z ¼ 1 (right). We show Perr for the different bias models used: cubic (solid orange line), quadratic (dashed
orange), and linear (dotted orange line). We also show Perr when using the best-fit PT template based transfer functions for the cubic
bias model (thin red line).
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spectrum is equal to the simulated power spectrum by
construction.
It is instructive to see how different nonlinear terms in the

model contribute to the model power spectrum. In Fig. 4 we
show the relative contributions to the best-fit power spec-
trum of each of the operators. We find that at both redshifts
the linear term (δ̃1) dominates the signal. At z ¼ 0 the
quadratic term (δ̃2) contributes ∼10% or more on small
scales, while the tidal field (G̃2) is relevant at the level of
1%–10% on all scales. The picture changes at z ¼ 1, where
the quadratic term contributes 1%–10% on all scales, while
all higher order terms are below the subpercent level. It is
important to stress that the hjδ̃⊥2 j2i contains a large con-
tribution which has a flat power spectrum. Indeed, this is the
reason why including the quadratic operators significantly
reduces the error power spectrum compared to the simple
linear bias model. Therefore, the fact that hjδ̃⊥2 j2i is larger
than other nonlinear terms and even comparable to hjδ̃1j2i
on small scales for z ¼ 0 should not be seen as a failure of
perturbation theory but rather as a success in describing the
true dynamics of HI clustering at the field level.

B. Best-fit transfer functions

So far we have compared the best-fit perturbative
forward model and simulations and found excellent agree-
ment between the two. However, the transfer functions that
we used to minimize the mean-squared error have been
completely free in each k bin. One may wonder if such
large freedom is justified. In other words, if the transfer
functions are very scale dependent or cannot be predicted in
perturbation theory, this would undermine the success of
the perturbative forward modeling.
In this section we address this issue by comparing the

measured best-fit transfer functions to perturbation theory
predictions. As we have already discussed, below the
nonlinear scale the transfer functions should be described

by a handful of free (bias) parameters. We use the model
from Sec. II A to test this prediction and measure the bias
parameters. In this model only the first transfer function
β1 is scale dependent, while others are treated as constants.
As this model is valid only in the perturbative regime, for
the purposes of comparison we include only scales below
k < 0.4 hMpc−1. We fit jointly all transfer functions βiðkÞ
weighting each k bin by k to account for the different
number of modes. The results are shown in Fig. 5, where
dashed lines represent the best-fit curves, while the best-fit
values of the parameters are provided in Table I. We
also perform a convergence test with respect to our grid
size choice and show that our results are converged in
Appendix C.
As we can see, the analytical prediction provides a decent

fit for the transfer functions on scales k < 0.4 hMpc−1.
Note that the points in the first few bins have a large scatter,
as a consequence of the numerical noise, given that we use
only a single realization in simulations. This scatter could,
in principle, be reduced by averaging over several realiza-
tions of the simulated HI field or using simulations with
much larger volumes. It is also instructive to look at the
values of the best-fit parameters. For consistency of the
theory, the bias parameters measured in transfer functions
should have the same values as those inferred using other
methods, such as separate universe simulations [56–58].
While direct comparison with the biases for dark matter
halos is not fully appropriate for HI, we can see from Table I
that the values of b1, b2, and b3 are close to the expectation
for halos with Mh ∼ 1011 ½h−1M⊙�, which dominantly
contribute to the HI signal. This is yet another confirmation
that our perturbative framework is consistent.
Having obtained the best-fit PT template model for

transfer functions, we are able to construct an approximate
HI field using shifted operators and the best-fit βiðkÞ
model. We test the performance of such an approximate
model, hereafter the PT template model, by measuring

FIG. 4. Relative contribution of different terms of the best-fit power spectrum using the cubic bias model in real space. Different panels
correspond to different redshifts at z ¼ 0 (left) and z ¼ 1 (right).
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Perr. The results are shown in Fig. 3 by a thin red line. We
find that using only six free parameters gives results
similar to the case of free transfer functions in each k
bin, albeit with somewhat larger errors on small scales.
Note that differences in the error power spectrum on large
scales are a consequence of the numerical noise and the
fact that we fit the noisy data with a smooth function,
unlike for the free transfer functions case where all bins are
independent.
Finally, in Fig. 6 we show the fractional deviation of Perr

from a constant when using the PT template model. In
comparison with the free transfer functions, the results
show similar behavior albeit with a larger scatter. As we
already explained, this scatter is a result of the numerical
noise. The fractional deviation of Perr from a constant can
also be seen as the relative error on the overall power
spectrum model

Perr − const
Ptruth
HI

¼ Ptruth
HI − ðPmodel

HI þ constÞ
Ptruth
HI

: ð22Þ

The value of the constant is chosen as an average plateau
of PerrðkÞ on k ¼ 0.1–0.3 hMpc−1. We can see that the
perturbation theory model describes the power spectrum
well for k < 0.4 hMpc−1, with subpercent relative error.
Due to the noise in the measurements coming from a single
realization, it is hard to estimate the true amplitude of the
error as a function of scale. We leave this for future work
when more simulation boxes or larger volumes will be
available. Let us only note that on general grounds we
expect the error power spectrum to be scale dependent
around the nonlinear scale, with relative corrections of the
order of ðk=kNLÞ2. Including such terms in the error model
would further improve the agreement with the simulated HI
power spectrum.

C. The 21 cm IM surveys

It is useful to contrast the performance of the perturbative
model that we tested in the previous section to the expected
noise levels from future 21 cm IM surveys. These surveys
are typically split into two main categories: single dish and
interferometric experiments. The main difference between
these is the range of scales they probe, with the former
mainly probing large scales due to the size of the beam,
especially at higher redshifts, while the latter are more
sensitive to smaller scales. As we are interested in testing

TABLE I. Best-fit transfer function parameters from the PT
model at different redshifts obtained using kmax ¼ 0.4 hMpc−1.

z 0 1

b1 0.600 1.204
c2s 0.316 0.338
b2 −0.292 −0.352
bG2

0.444 0.443
bΓ3

−0.826 −1.361
b3 −0.002 −0.136

FIG. 5. Transfer functions βiðkÞ in real space for the cubic bias model at z ¼ 0 (top) and z ¼ 1 (bottom) (lines with different colors).
We show the best-fit PT prediction (dashed lines) obtained using scales below kmax ¼ 0.4 hMpc−1 (vertical dotted lines). We also show
the fits obtained using the following polynomials: β1ðkÞ ¼ a0 þ a1kþ a2k2 þ a4k4 and βiðkÞ ¼ a0 þ a2k2 þ a4k4 for higher order
transfer functions (black solid lines) (see Table III).
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the performance in the nonlinear regime, we focus on the
interferometric approach. We follow the experimental setup
similar to those of HIRAX [11] and Stage-II survey such as
PUMA [14]. These surveys consist of square, compact
arrays of, respectively, 32 × 32 and 256 × 256 dishes with
a diameter of Ddish ¼ 6 m.
In this paper we consider an idealized setup, in which

we neglect the impact of foreground cleaning [59–62] and
the foreground wedge [63–66], and assume an idealized
measurement. Even though this is not realistic, our main
purpose is to demonstrate that even with such optimistic
assumptions, the standard one-loop perturbative model is
sufficiently accurate for upcoming 21 cm IM surveys.
Having this in mind, the total error in the power spectrum
measurements depends only on the cosmic variance and
thermal noise. We first focus on instrumental thermal
noise. Temperature fluctuations from the instrument and
its surroundings, as well as the sky temperature fluctua-
tions, add power to the visibility measurements. The power
spectrum of the observed 21 cm signal contains the thermal
noise power spectrum

P21ðk; μÞ ¼ PHIðk; μÞ þ Pthermalðk; μÞ: ð23Þ

We estimate it following the approach in Refs. [9,67,68],

Pthermal ¼
T2
sysðzÞX2ðzÞYðzÞλ421ðzÞS21
A2
effFOVðzÞt0npolnðu; zÞ

: ð24Þ

In the expression above the system temperature Tsys is
the sum of amplifier noise, background sky, and ground
temperatures, i.e., Tsys ¼ Tamp þ Tsky þ Tgnd. We assume
the following [14]: Tamp ¼ 62 K, Tgnd ¼ 33 K and

Tsky ¼ 2.7þ 25

�
ν21ðzÞ

400 MHz

�
−2.75

K; ð25Þ

where ν21ðzÞ ¼ ν0=ð1þ zÞ is the observed frequency of
the HI line emitted at redshift z, with ν0 ¼ 1420 MHz
being the rest-frame frequency of the 21 cm line. Similarly,
λ21ðzÞ ¼ λ0ð1þ zÞ is the observed wavelength of the HI
emission from redshift z, with λ0 ¼ 21 cm. In addition, X

is the comoving radial distance, and YðzÞ ¼ cð1þzÞ2
ν0HðzÞ . These

terms are used to convert the angular and frequency space
to the physical space. The total survey area S21 is assumed
to be 15000 and 20000 deg2 for HIRAX and Stage-II
surveys, respectively. Furthermore, we assume an effective
area per beam given by Aeff ¼ πðDdish=2Þ2, with each dish
having an isotropic primary beam with the field of view
FOV ¼ ð1.22λ21ðzÞ=DdishÞ2. For the number density of
baselines nðu; zÞ we use an approximation from Ref. [14]
with the parameters of a square array, where u ¼ L=λ21 is
the baseline separation vector between two antennae in
units of the observed HI wavelength. Finally, we assume
npol ¼ 2 as the number of polarizations per antenna and an
observing time of t0 ¼ 1 yr.
The power spectrum of the thermal noise from Eq. (24) is

scale dependent through an uneven distribution of baselines
which measure fluctuations on different spatial scales. This
makes Pthermal dependent on both k and μ. In particular,
the lack of baselines with large separations results in high
thermal noise power on small scales. In this way the
thermal noise we include accounts for the availability of
scales each survey will be able to probe.
The second component of the error in our idealized setup

is the cosmic variance. For concreteness we imagine a slice
of a survey centered at z ¼ 1 with the survey area S21. The
Gaussian contribution to the covariance matrix is given by

FIG. 6. Fractional deviation of the error power spectrum Perr from a constant using free transfer functions βiðkÞ (solid lines) and a PT
template fit with six free parameters (dashed lines), at z ¼ 0 (left) and z ¼ 1 (right). Note that this quantity is identical to the relative
error of the perturbative model compared to the simulated HI power spectrum. The blue shaded region shows �1% of Ptruth

HI .
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Ck;k0 ¼
ð2πÞ3
Vsurvey

P2
21

2πk2Δk
; ð26Þ

where Vsurvey is the comoving volume of the slice we
consider and PHI is the HI power spectrum. We choose a
redshift bin width of Δz ¼ 0.2 and Δk ≈ 0.03 hMpc−1, the
same k binning that we have used throughout the paper.
The expected uncertainty from the combined cosmic

variance and thermal noise for the two different setups that
we consider is shown in the top panel of Fig. 7, with
the same k binning as we used for PHI. To obtain only the
k-dependent part of the thermal noise power spectrum, we
compute the monopole part of Pthermal in each k bin. We can
see that the theoretical uncertainties are within the obser-
vational noise in the perturbative regime. For a HIRAX-like
survey this is true even on smaller scales. A more quanti-
tative way to test the significance of the deviation of theory
from simulations is to calculate the signal to noise for this

difference given the error bars. We plot such cumulative
signal to noise for a HIRAX-like survey in the bottom panel
of Fig. 7. The perturbation theory model is clearly consistent
with the data for k < 0.4 hMpc−1, and on smaller scales the
significance of the difference compared to the truth never
exceeds the 3σ level due to increasing thermal noise. In a
realistic data analysis, where cosmological parameters are
varied as well, we expect this difference to be even smaller.
Therefore, this result can also be interpreted as a hint that the
current level of theoretical modeling discussed in this paper
is sufficient to analyze the data from the upcoming HI
surveys such as HIRAX.
We would like to emphasize that these results should be

taken with a grain of salt. Given a relatively small volume of
the IllustrisTNG box and a single realization, the numerical
noise in the transfer functions and the best-fit model, clearly
visible in Fig. 7, can impact the signal-to-noise estimate. For
this reason we do not explicitly show the cumulative signal-
to-noise estimate for the Stage-II surveys that have much
smaller error bars. Also, note that our choice of Δz in this
exercise is somewhat arbitrary. In the real data analysis the
choice of Δz will be driven by the compromise between
increasing the cosmological volume in each z bin and
probing the redshift evolution across the bin. While specific
choices in the future are likely to be different, we follow
what is done in the galaxy power spectrum analysis of the
most recent galaxy surveys such as BOSS [3].

D. One-point probability distributions

So far we have mainly focused on the power spectrum as
the standard observable used in cosmological data analy-
ses. However, as we pointed out in the Introduction, one of
the advantages of the field level method is that it allows us
to predict other, very different, summary statistics. As an
illustration we will focus on the one-point probability
distribution function (PDF). The one-point PDF of HI from
TNG100-1 has also been studied in Ref. [69]. Here we test
our perturbative prediction for the one-point PDF by
comparing the histograms of smoothed density fields from
simulations and the best-fit cubic bias for various smooth-
ing scales. The results are shown in Fig. 8.
For large smoothing scales the agreement between the

two is rather good, particularly at z ¼ 1, even for relatively
large overdensities. Focusing on smaller smoothing scales,
we find that the best-fit model tends to overpredict the
number of pixels near the mean density (δ ∼ 0) and
underpredict the number of highly overdense pixels.
This is very much in line with what is expected from
perturbation theory, as it is unable to account for the
compactness of highly nonlinear objects, such as halos. In
conclusion, this is yet more evidence that the perturbative
description of the HI field works as expected, predicting
the one-point PDF correctly, including the proper shape of
the distribution even in the tails, for smoothing scales as
small as R ¼ 5 h−1Mpc.

FIG. 7. Top panel: similar to Fig. 6 at z ¼ 1 but comparing to
the expected performance of different 21 cm IM surveys. The
blue line is the relative error of the best-fit cubic bias model with
free transfer functions. The solid red and dashed gray lines show
the expected uncertainty after including the thermal noise and the
cosmic variance for a HIRAX-like experiment and the Stage-II
experiment, respectively. The blue shaded region represents�1%

of Ptruth
HI . Bottom panel: cumulative signal-to-noise ratio squared

ðS=NÞ2 for detecting deviation of the best-fit cubic bias model
from the true HI power spectrum as a function of kmax for a
HIRAX-like survey.
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E. Redshift space

Let us finally turn to redshift space. We can, in principle,
repeat every analysis we did for real space, and this would
lead to similar results. In this section we briefly present the
most important tests of the perturbative forward model—
comparison of theory and simulations at the level of the
map and power spectrum.
In Fig. 9 we show a 2D slice of the simulated HI

overdensity field in redshift space in comparison to the

best-fit cubic model and the residuals at redshifts z ¼ 0 and
z ¼ 1. As in the case of real space, we see a general
agreement between the simulation and the best-fit model.
Notable differences in the residuals are again more pro-
nounced on small scales, and they match the locations of
large overdensities.
In order to compare the anisotropic redshift-space power

spectrum to the theoretical prediction, we measure it in the
three wide μ bins centered around μ ¼ 0.17, μ ¼ 0.50, and

FIG. 8. Histogram of the true, best-fit, and residual HI overdensity fields using the cubic bias model at two redshifts: z ¼ 0 (top panel)
and z ¼ 1 (bottom panel). Different panel columns correspond to applying a 3D Gaussian filter to residuals with varying smoothing
scales R. Top rows in each panel show the simulated (blue) and the best-fit model (black lines) HI overdensity distribution. We find that
the (cubic) bias model provides a good description of the simulated HI one-point PDFs, especially on larger smoothing scales. Bottom
rows show the best-fit field level residuals (blue) compared to a Gaussian distribution with matching variance and zero mean. Using
larger smoothing scales R, the residuals (or model errors) are nearly Gaussian, with larger deviations present in a small fraction of pixels.
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μ ¼ 0.83. The results are shown in Fig. 10. Even though the
measurements have a large scatter, we find that perturbation
theory predicts the measured power spectrum well on large
scales. Looking at the error, we can see that it is still flat in k
on large scales, with similar amplitude (in all bins) as in real
space, as expected. On small scales the deviation from a flat
power spectrum is more prominent than in real space. This

is a consequence of the nonlinear velocity, which can
produce large distortions in redshift space. We will com-
ment more on this scale dependence in Sec. V and use it to
estimate the nonlinear HI velocity dispersion.
In Fig. 11 we show the redshift-space transfer functions

βiðk; μÞ. We find that these transfer functions are rather
smooth, both in k and μ. On large scales, β1 and βG2

have

FIG. 9. Similar to Fig. 1, but now in redshift space: real-space slices in the y-z plane of the simulated HI overdensity field (left), the
best-fit cubic bias model (middle), and the residuals (right), at z ¼ 0 (top) and z ¼ 1 (bottom). All density fields are smoothed with a
R ¼ 1 h−1 Mpc 3D Gaussian filter, while the depth of each slice is 20 h−1 Mpc. The line of sight is along the ẑ direction.

FIG. 10. Redshift-space power spectrum: simulated, best-fit model, and error power spectrum Perrðk; μÞ at z ¼ 0 (left panel) and z ¼ 1
(right panel). The power spectra are measured in three wide μ bins (different shading).
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the same value in each μ bin, as a consequence of our

choice to keep δsZ and G̃k
2 explicitly in the model for the HI

field in redshift space. As expected, β2, βG2
, and β3 are

rather flat on large scales, and they can be approximated as
being constant. The first transfer function β1 is more scale
dependent, as expected, but the measurements in different μ
bins on large scales are very noisy, not allowing for a robust
test of the perturbative model in redshift space. For this
reason, we will use a simple phenomenological fit for β1 to
account for the k and μ dependence. We will come back to

this and discuss details in Sec. VI. The bottom line is that,
in the same way as in real space, the transfer function
behavior on large scales is compatible with perturbation
theory expectations.
Similarly to what we did for real space, in Fig. 12 we

show the relative error of the model after subtracting a
constant Perr piece. The value of the constant is chosen as
an average plateau of Perrðk; μÞ on k ¼ 0.1–0.3 hMpc−1

scales in each μ bin. As before, the fractional deviation of
Perrðk; μÞ from the constant allows us to infer at which

FIG. 11. Redshift-space transfer functions βiðk; μÞ for the cubic bias model at z ¼ 0 (top) and z ¼ 1 (bottom) (lines with different
colors). We show the best-fit transfer functions (black solid lines) using the following polynomials: β1ðk; μÞ ¼ a0 þ a1kþ a2k2 þ
a4k4 þ a22ðkμÞ2 þ a44ðkμÞ4 and βiðk; μÞ ¼ a0 þ a2k2 þ a4k4 þ a22ðkμÞ2 þ a44ðkμÞ4 for higher order transfer functions (see Table III).
Different shading corresponds to different μ bins in all panels. For comparison we also show the low-k values using polynomial fits in
real space (a0 values from Table III) (dotted lines).

FIG. 12. Fractional deviation from the constant of the error power spectrum Perr using the cubic bias model in redshift space with free
transfer functions βiðk; μÞ at z ¼ 0 (left) and z ¼ 1 (right). The blue shaded region represents �1% of Ptruth

HI .
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scales we expect our PT model to break down. We can see
that the cubic model is able to accurately model the true HI
power spectrum within 1% up to kmax ∼ 0.3& 0.4 hMpc−1

at redshifts z ¼ 0 and 1, respectively. We can also see that
the model is accurate up to smaller scales (higher ks) for
lower μ bins, as these modes are less affected by the
nonlinear RSDs.

V. HI NOISE PROPERTIES

We have argued in the Introduction that one of the main
advantages comparing the theory and simulations at the
field level is that such a procedure allows us to clearly
isolate the model error. Understanding the properties of this
error is equally important as having a good model, both for
standard analyses based on n-point functions and for the
more ambitious methods such as field-level forward mod-
eling. In this section we study the properties of the error in
detail and comment on its peculiarities in the case of the
HI field.

A. Non-Gaussianity of the error

We first look at the one-point PDF of the model error. As
we have seen in Sec. IV D, the cubic bias model provides a
good description of the simulated HI field. However, we
can also study the properties of the model error distribu-
tion. To obtain the model error distributions we compute
the histogram of the residuals (δtruthHI − δmodel

HI ) for different
3D Gaussian smoothing scales, and we show the results in
the bottom panels of Fig. 8. We estimate the level of non-
Gaussianity by comparing the model errors to the Gaussian
distribution with matching variance and zero mean. We
find that using smaller smoothing scales, the model error
distribution deviates from the Gaussian distribution, espe-
cially in the tails. This means that assuming a Gaussian
likelihood in the data analysis at the field level is not

adequate. However, these deviations become smaller, and
the model errors become nearly Gaussian when larger
smoothing scales (R ¼ 5 or 10 h−1 Mpc) are used. Some
discrepancies in the tails of the distributions are still
present, although the number of discrepant pixels is
relatively small.

B. Amplitude of the noise on large scales

In the previous section we found the noise power
spectrum to be flat in k. Here we want to discuss its
amplitude in detail. Naively, one may think that the only
fluctuations on large scales are the linear modes (multiplied
by the linear bias) and random fluctuations due to the
discreteness of the bias tracer. It is then natural to define the
HI stochasticity as the power spectrum of the following
difference: δtruthHI − b1δm. Using the best-fit value for b1, this
can be expressed in terms of the HI-matter cross-correlation
coefficient rHI;m [16,70]:

PHI −
P2
HI;m

Pm
¼ PHIð1 − r2HI;mÞ; ð27Þ

where PHI;m and Pm are the HI-matter cross and matter
power spectra, respectively. Note that the stochasticity is
equivalent to Perr for the linear bias model.
However, the measured amplitude of the stochasticity is

significantly larger than the naive sampling noise, given
by 1=n̄, where n̄ is the number density of MHI-weighted
halos [16]. We call this quantity MHI-weighted sampling
noise and compute it following Eq. (26) from Ref. [16].
Furthermore, we find good agreement between MHI-
weighted sampling noise and the amplitude of the high-k
plateau of the MHI-weighted halo power spectrum, similar
to what was found in the case of TNG100-1 [16]. The
discrepancy between stochasticity and sampling noise is
well known for small-mass halos [16,34,71,72], and we

FIG. 13. Redshift-space error power spectrum Perrðk; μÞ at z ¼ 0 (left panel) and z ¼ 1 (right panel). The black solid lines show the
best-fit model for Perr from Eq. (28) using kmax ¼ 0.4 hMpc−1 (vertical dotted line). All power spectra are measured in three wide μ bins
(orange lines), and different shadings and line widths correspond to different μ bins.
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show the measurements for Illustris in Fig. 14. This
discrepancy between the MHI-weighted sampling noise
and stochasticity clearly indicates that something is incon-
sistent in the simple picture we have just described.
The resolution of this problem was given in [34].

Through the nonlinear bias operators, such as δ2, the galaxy
density field on very large scales receives contributions from
small but perturbative modes. These long-wavelength fluc-
tuations have a flat power spectrum which is indistinguish-
able from the sampling noise, but it can have much larger
amplitudes for very dense tracers.
To explicitly test this hypothesis, we can compare the

error power spectrum in the model, which includes quad-
ratic biases to the MHI-weighted sampling noise. This is
shown in Fig. 14. In the full quadratic and cubic model, Perr
is indeed comparable to the Poisson noise. This means that
at the map level, perturbation theory correctly predicts the
modes which lead to large stochasticity.
This has several important implications. First, the non-

linear bias is needed in order to have the correct map, not
only on small scales in order to improve the model but also
on large scales in order to consistently predict all long-
wavelength modes. Second, when calculating the covari-
ance matrix for the power spectrum, the total noiselike
contribution is much larger than the MHI-weighted sam-
pling noise, and indeed, it is given by the stochasticity.
While in simulations we were exploiting the fact that we
knew the initial conditions, which allowed us to disentangle
the contributions to the noise from the nonlinear bias and
Poisson sampling, in a real analysis the initial conditions
are unknown; as a consequence, the two contributions to
the noise power spectrum are indistinguishable. This is an
important observation since it implies that the realistic
values for the amplitude of the noise in the HI power
spectrum Fisher forecasts are given by stochasticity, which
can be an order of magnitude larger than what is usually
assumed [14,67], making the forecasts overly optimistic.

Finally, one can ask if an alternative analysis can be done
such that the “true” noise, close to the MHI-weighted
sampling noise, is the only price to pay in the total error
budget. After all, since the long-wavelength fluctuations
induced by the nonlinear bias are predictable, should they
be used as a signal rather than treated as the noise? While
this cannot be done in the power spectrum analysis, it is
possible to achieve it by including higher order n-point
functions or with the full forward modeling at the field
level. As explained in [73], this situation is similar to the
BAO reconstruction, where the information at the map level
is used to sharpen the BAO peak, which can be measured in
the two-point function only with limited precision.

C. Nonlinear velocity dispersion estimates

As we already emphasized, the error on small scales can
be dominated by the nonlinearities that are not taken into
account in the model. The dominant nonlinearities in
redshift space are Fingers of God induced by the nonlinear
velocity dispersion σv;NL. Their effect on the noise is to
introduce a characteristic scale and angular dependence
proportional, at leading order, to 1

2
σ2v;NLfμ

2k2. We can use
this fact to estimate the nonlinear velocity dispersion from
the error power spectrum. We use the following model:

Perrðk; μÞ ¼ cϵ;1

�
1þ 1

2
σ2v;NLfμ

2k2
�
; ð28Þ

where cϵ;1 and σv;NL are free parameters. We obtain the
best-fit values by fitting Perrðk; μÞ and weighting each k-bin
by k. We show the best-fit model of Perr in Fig. 13, while
the best-fit values at both redshifts are presented in Table II.
We find that the constant part of Perr is in agreement

between real and redshift space. Our estimate of σv;NL shows
that the HI nonlinear velocity dispersion is smaller than for
the typical galaxy samples at similar redshifts [35,74], in line

FIG. 14. HI noise power spectrum estimates: Perr using the cubic bias model (orange), HI stochasticity PHIð1 − r2HI;mÞ (green), and the
MHI-weighted sampling noise (gray dashed). For comparison we show the simulated and best-fit PHI (blue lines) models. We find Perr is
almost an order of magnitude smaller than HI stochasticity on the largest scales at both redshifts, while at z ¼ 1, Perr is smaller than the
usually assumed HI noise power spectrum, MHI-weighted sampling noise.
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with the conclusions of previous studies [16]. However,
this measurement has to be taken with a grain of salt, given
the large numerical noise in the measured Perrðk; μÞ on
large scales.

VI. HI MOCK DATA

In all previous sections we focused on modeling based
on perturbation theory. However, inspired by the perturba-
tive templates (shifted operators), we can try to see how
well such a simple description works even on scales where
perturbation theory formally does not apply. In other
words, we can think of shifted operators as a phenomeno-
logical basis in which we can decompose the nonlinear
field, with a set of smooth transfer functions. Even though
unjustified in the perturbative framework, such an approach
can be useful as a simple tool to easily generate realistic HI
fields with HI clustering properties similar to the ones of
TNG simulation, even on small scales beyond kNL. In this
section we show how to do this.
For producing mocks, we will focus on scales up to

kmax ¼ 1 hMpc−1. The two main observations to keep in
mind are that the measured transfer functions are smooth
and that they do not vanish at small scales, indicating that
the HI field still correlates with the perturbative templates.
Given the smoothness of the transfer functions, we can
describe them using simple, low-order polynomials in k
and μ. In the case of real space we use the following model:

βreal1 ðkÞ ¼ a0 þ a1kþ a2k2 þ a4k4;

βreali≠1ðkÞ ¼ a0 þ a2k2 þ a4k4: ð29Þ

Note that in βreal1 we also include the term linear in k. This is
needed since several terms in Eq. (9) have very mild scale
dependence around k ∼ 0.1 hMpc−1, given the form of the
loop corrections and the ΛCDM linear power spectrum. In
the case of redshift space we include μ-dependent terms
equally for all transfer functions,

βrsdi ðk; μÞ ¼ βreali ðkÞ þ a22ðkμÞ2 þ a44ðkμÞ4: ð30Þ

The polynomial coefficients ai and aii are free param-
eters for each transfer function βi, in both real and
redshift-space models. The total number of free parame-
ters in the cubic bias model is thus 13 (4þ 3 × 3) for real
and 26 (6þ 4 × 5) for redshift space, at a single redshift.

We obtain the values of these parameters by doing the
least-square fits to the measured transfer functions,
weighting each k bin by k. The polynomial fits for real
and redshift space are shown in Figs. 6 (black solid lines)
and 11 (dashed lines), respectively. All the best-fit
parameter values are shown in Table III. We find that
this simple model provides a good description of the
measured transfer functions at both considered redshifts
and for our choice of kmax ¼ 1 hMpc−1.
Before we move on, let us comment on the inferred

values of transfer function parameters in the low-k limit. As
we argued in Sec. II B, we expect certain relations between
real- and redshift-space transfer functions on large scales.
This expectation turns out to be correct. As we can see in
Table III, the following approximate relations hold

β1∶ areal0 ≈ arsd0 þ 1; ð31Þ

β2∶ areal0 ≈ arsd0 ; ð32Þ

βG2
∶ areal0 ≈ arsd0 þ 2

7
; ð33Þ

β3∶ areal0 ≈ arsd0 ; ð34Þ

TABLE II. Best-fit parameters of the Perrðk; μÞ model at
different redshifts obtained using kmax ¼ 0.4 hMpc−1.

z 0 1

cϵ;1 ½h−3 Mpc3� 80.6 34.8
σv;NL ½h−1 Mpc� 2.87 2.54

TABLE III. Best-fit parameters of the transfer functions
when using the polynomial model in real and redshift space
βiðk; μÞ at different redshifts obtained using kmax ¼ 1 hMpc−1

(see Figs. 5 and 11).

Redshift space Real space

z 0 1 0 1

β1 a0 −0.28 0.27 0.69 1.28
a1 0.09 0.09 −1.04 −0.52
a2 0.40 0.08 1.19 0.46
a4 −0.17 −0.04 −0.28 −0.02
a22 −0.53 −2.11 � � � � � �
a24 0.33 1.78 � � � � � �

β2 a0 −0.17 −0.20 −0.31 −0.35
a2 −0.02 −0.002 0.14 −0.001
a4 0.02 0.01 −0.03 0.03
a22 0.22 −0.13 � � � � � �
a44 −0.13 0.45 � � � � � �

βG2
a0 0.09 0.04 0.44 0.47
a2 0.54 −0.09 0.05 −0.38
a4 −0.34 0.16 −0.12 0.26
a22 −0.42 0.62 � � � � � �
a44 −0.20 −1.02 � � � � � �

β3 a0 −0.07 −0.16 0.001 −0.16
a2 −0.12 −0.02 −0.06 0.24
a4 0.11 0.02 0.03 −0.14
a22 −0.10 −0.26 � � � � � �
a44 0.23 0.48 � � � � � �
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both at z ¼ 0 and z ¼ 1. Even though the agreement is not
perfect, up to Δa0 ∼ 0.1, the real-space and redshift-space
results are compatible, given the large numerical noise at
low k in the measured transfer function. This is yet another
confirmation of the consistency of the theory.
So far we have only considered the part of the HI

signal that comes from the model prediction and correlates
with the IC. However, we also need to include the stochastic
part in order to generate realistic HI mock data. For this
purpose, we generate 3D fields with the power spectrum
matching the inferred Perr. In real space we generate a noise
realization with a flat power spectrum amplitude of Perr ¼
ð68.53; 33.00Þ ½h−3Mpc3� at z ¼ ð0; 1Þ, respectively. These
amplitudes correspond to the Perr plateau between scales
k ¼ 0.1–0.3 hMpc−1. In redshift space we generate a noise
realization with the power spectrum constructed with a
polynomial fit to the inferred Perrðk; μÞ (see Fig. 13). For the
polynomial model we use the following ansatz,

Perrðk;μÞ ¼ a0þa2k2þa3k3þa4k4þ
X4
i¼2

aiiðkμÞi; ð35Þ

and perform a weighted least-squares fit up to kmax ¼
1 hMpc−1, weighting each k bin by k as before. The
best-fit parameter values are shown in Table IV. Note that
this is different from the model that we used in Eq. (28),
where the goal was to estimate HI velocity dispersion and
where we used only the scales in the perturbative regime.
With the polynomial model that we use here, the goal is to
generate the most realistic noise in redshift space and be
able to use it even on smaller scales. Finally, having
generated the noise fields, we add them to the signal fields
to obtain the final HI mock data in either real or red-
shift space.
We can now use these fits to generate HI mock data.

Since we measure the transfer functions without cosmic
variance (using the same IC for the model and the simulated
field), the transfer functions and their smooth polynomial
fits can be applied to realizations with different IC as the
dependence on IC is in the shifted fields. For any given
realization of IC, we can then generate orthogonalized
shifted fields and simply multiply them by the best-fit
transfer function polynomials in order to obtain the HI
signal map [cf. Eqs. (8) and (11)]. The code we use in this
paper, Hi-Fi mocks, performs this procedure exactly.

This procedure has several free parameters. One is the
grid size used to generate shifted fields, and the other is the
box size. In our fiducial analysis we use Nmesh ¼ 2563,
which results in ≈16 million particles. Given the size of
the TNG300-1 simulation (L ¼ 205 h−1Mpc), this con-
figuration makes generating HI mock data achievable even
on personal computers in a short amount of time, and the
full HI mock data can be obtained on a modern laptop in a
few minutes. We note that for larger box sizes, a larger grid
size is needed in order to accurately probe smaller scales.
This makes computation times longer and the memory
load larger.
We can contrast this procedure to the more standard

way of generating HI mock data using N-body simulations
and techniques such as halo occupation distribution,
subhalo abundance matching, and semianalytical models.
This is usually done by populating dark matter halos
with HI mass after running the full N-body simulation.
Approximate approaches to the full N-body simulations,
such as COLA [75] or FastPM [76], are able to accelerate
this step. However the main bottleneck is when running
halo finder on top of simulation outputs, which takes a
comparable computational time. This step is not differ-
entiable, which makes using the forward model in this setup
unfeasible. Approaches based on machine learning tech-
niques have been used to generate HI fields in cosmological
boxes from dark matter fields [38]; however, these require
training and testing, and at the moment, we lack the
interpretability. On the other hand, our method is computa-
tionally cheap as it does not require running N-body
simulations or halo finders; in addition, it requires no
training, and in the low-k limit, it is based on perturbation
theory. Furthermore, it can be easily calibrated to other
hydrodynamical simulations or simulations with different
baryonic feedback prescriptions.

VII. CONCLUSIONS

In this paper we tested a perturbative forward model
against the simulated HI at the field level. We found
excellent agreement on large scales, with subpercent
precision for k < 0.3 hMpc−1 in real and redshift space,
at redshifts of z ¼ 0 and z ¼ 1. This is confirmed by
looking at different statistics, such as cross-correlation
between the maps, the HI power spectrum, and one-point
probability distribution functions of the HI field. We also
studied the properties of the HI noise. We confirmed the
well-known fact that the stochasticity for HI can be much
larger than the MHI-weighted sampling noise, and we
explained the origin of this discrepancy. We argued that
this has an important implication for the HI power
spectrum Fisher matrix forecasts and that it motivates
the field level inference. Finally, using perturbation theory
as an inspiration for the basis of templates at the field level,
we found a phenomenological fit for the HI maps and

TABLE IV. Best-fit parameters using the polynomial fit from
Eq. (35) to model Perrðk; μÞ at different redshifts.
z a0 a2 a3 a4 a22 a33 a44

0 77.3 99.1 −232.3 111.8 463.6 −1282.1 861.9
1 36.6 16.4 −50.8 29.1 106.4 −317.6 206.7
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provided a simple and efficient code to generate mock HI
data for arbitrary initial conditions and volumes. Our
results can also be seen as an important validation step
for the HI modeling; they show that the currently existing
pipelines for galaxy clustering analysis based on pertur-
bation theory can, in principle, be applied to the neural
hydrogen as well.
There are several interesting directions to explore in the

future, and we mention some of them here. First, we can use
our Hi-Fi mocks code to generate realistic synthetic data
in large volume boxes. The same code can be used to
produce many realizations needed to estimate the covari-
ance matrix. The currently existing pipelines for the power
spectrum analysis can then be applied to these synthetic
data. The resulting errors on the cosmological parameters
would be the most realistic estimates of the constraining
power of the HI power spectrum, even though they are in a
very idealistic setup. A step towards a more realistic analysis
requires inclusion of foregrounds, wedge, and thermal
noise, all of which can be added to the perturbative forward
model. We leave this for future work.
Another direction is to explore the alternative summary

statistics in more detail. We have already presented the
results for one-point PDFs. Using predictions for the maps,
one can also study to what extent perturbation theory
predicts the size function of voids, the nearest-neighbor
distribution, etc.
A natural question to ask is whether the perturbative

forward model can be used to reconstruct the initial
conditions. The simplest way would be to use perturbative
inversion at the field level. This is along the lines of
advanced reconstruction algorithms based on perturbative
expansion, such as [77]. Alternatively, one can use full
forward modeling, where the posterior for cosmological
parameters is obtained by marginalizing over all ampli-
tudes and phases of the initial conditions. The perturbative
approach is useful in this context because it provides a
simple, differentiable, forward model. In the future we plan
to use our model for full field level inference.
It is worth mentioning that our analysis is based on a

particular set of subgrid models used in the IllustrisTNG
simulation. It is known that other hydrodynamical simu-
lations show different baryonic effects [78] on the matter
field. Therefore, our results may change if other simulation
or different astrophysical models are used. However, the
effect of baryons is typically important on smaller scales,
outside the validity of perturbation theory. Therefore, while
the particular values of transfer functions will change when
using different simulations, we do not expect this to limit
the method or change our main results. In the future, we
plan to repeat our analysis for simulations with larger
volumes, more redshifts, or different baryonic physics. This
would lead to less noisy estimates of the transfer functions
and provide an estimate of the impact of different galaxy
formation scenarios.
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APPENDIX A: TRANSFER FUNCTIONS
IN REAL SPACE

In this appendix we derive the form of the real-space
transfer functions used in the main text. The starting point
for our forward model is

δHIðkÞ ¼
Z

d3qð1þ δLHIðqÞÞe−ik·ðqþψðqÞÞ; ðA1Þ

where the HI field in Lagrangian coordinates q is
expressed as

δLHIðqÞ ¼ bL1δ1ðqÞ þ bL2 ½δ2ðqÞ − σ21� þ bLG2
G2ðqÞ þ bL3δ3ðqÞ

þ bLG2δ
½G2δ�ðqÞ þ bLG3

G3ðqÞ þ bLΓ3
Γ3ðqÞ

þ bL∇2∇2δ1ðqÞ: ðA2Þ

The first line contains the linear and quadratic operators
defined in the main text. Assuming the following form of
bias operators,

OðkÞ ¼
Z
p1;p2;p3

ð2πÞ3δDðk − p1 − p2 − p3Þ

× Fs
Oðp1; p2; p3Þδ1ðp1Þδ1ðp2Þδ1ðp3Þ; ðA3Þ

2https://www.tng-project.org/data.
3https://pylians3.readthedocs.io/en/master.
4https://github.com/mschmittfull/perr.
5https://github.com/mschmittfull/lsstools.
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where Fs
O is a symmetrized kernel, the nontrivial cubic

terms in the bias expansion have the following kernels:

FG3
¼ 3

2

ðp1 · p2Þ2
p2
1p

2
2

−
ðp1 · p2Þðp1 · p3Þðp2 · p3Þ

p2
1p

2
2p

2
3

−
1

2
; ðA4Þ

FΓ3
¼ 4

7

�
1 −

ðp1 · p2Þ2
p2
1p

2
2

��ððp1 þ p2Þ · p3Þ2
jp1 þ p2j2p2

3

− 1

�
: ðA5Þ

Finally, the last term in Eq. (A2) is a higher derivative bias.
Even though it is linear in δ1, this term is suppressed by the
derivatives. Note that it has the same form as the leading
order counterterm for the dark matter field.
The nonlinear displacement ψðqÞ can be expanded in

perturbation theory, too. The leading term is Zel’dovich
displacement ψ1ðqÞ. Being the largest contribution, it
should be kept in the exponent, while higher order terms
can be expanded. These higher order terms will mainly lead
to operators which have the same form as in the bias
expansion (but with fixed constants) and therefore can be
absorbed in the bias coefficients. One exception is the
second order shift acting on the HI density field, producing,
at cubic order,

S3ðqÞ≡ ψ2ðqÞ · ∇δ1ðqÞ: ðA6Þ

Such a term cannot be written as a linear combination of
bias operators and has the following kernel:

FS3
¼ −

3

14

�
1 −

ðp1 · p2Þ2
p2
1p

2
2

� ðp1 þ p2Þ · p3
jp1 þ p2j2

: ðA7Þ

The uniform density displaced by Zel’dovich displace-
ment in Eq. (A1) is just the Zel’dovich field, which can be
written in perturbation theory as

δZðkÞ ¼
Z

d3q

�
δ1 þ

1

2
G2 −

1

3
G3

�
e−ik·ðqþψ1Þ; ðA8Þ

where all fields in the integrand depend on q.
In conclusion, the real-space model can be expressed in

terms of the shifted bias operators and S3. The transfer
function in Eq. (9) is then given by the sum of the linear
bias, the higher-derivative bias (and dark matter counter-
term), and a set of all quadratic and cubic operators that
correlate with δ̃1. Note that those do not include G̃3, ˜G2δ,
and δ̃3 since their correlation with δ̃1 either vanishes or
renormalizes the linear bias.

APPENDIX B: TRANSFER FUNCTIONS
IN REDSHIFT SPACE

In this appendix we review the forward model in
redshift space and give formulas for the transfer functions.
In redshift space, the displacement in the exponent

contains an additional term, with projected velocity along
the line of sight,

δsHIðk; μÞ ¼
Z

d3qð1þ δLHIðqÞÞe−ik·ðqþψðqÞþẑ·ψ̇ðqÞ
H ẑÞ: ðB1Þ

Using the same bias model in Lagrangian space as before
and expanding all nonlinear displacement terms in the
exponent, we get the following expression [35]:

δsHIðk; n̂Þ − δsZðk; nÞ þ
3

7
fG̃k

2ðk; nÞ

¼
Z

d3q

�
δLHI −

3

14
G2 −

3

14
ð1þ bL1 Þδ1G2 þ

1

6
Γ3 þ

1

9
G3

−
3

7
fbL1δ1G

k
2 −

5

8
fΓk

3 þ
1

3
fGk

3 −
9

14
fK3 −

3

14
f2δk1G

k
2

− R½2�
ij ψ

i
2∂jðð1þ bL1 Þδ1 þ fδk1Þ

�
e−ik·ðqþR½1�ψ1Þ; ðB2Þ

where the operators projected along the line of sight are
defined in the following way:

Okðq; zÞ≡ ẑiẑj
∂i∂j

∇2
OðqÞ; ðB3Þ

and the matrix R½n� is given by

R½n�
ij ðẑÞ≡ δij þ nfẑiẑj: ðB4Þ

We also define

K3ðq; zÞ≡ ẑiẑj
∂i∂m

∇2
δ1ðqÞ

∂m∂j

∇2
G2ðqÞ: ðB5Þ

The first line in Eq. (B2) contains the terms that we model
in the main text as a linear combination of shifted operators.
The second line is the same as in real space. The third line
contains new cubic operators with projection along the line
of sight. Finally, the last term is the anisotropic second order
shift which acts on the linear field. Note that for the new
cubic operators in redshift space, there are no new free
parameters. This is consistent with the fact that velocities
induced by gravity do not depend on the type of tracer.
Using Eq. (B2) it is easy to read off the form of the

transfer function βrsd1 ðk; μÞ in redshift space. It has the
following form:

βrsd1 ðk; μÞ ¼ βreal1 ðkÞ þ
X
i

hδ̃1Õk
i i

hδ̃1δ̃1i
− b1

hδ̃1S̃rsd
3 i

hδ̃1δ̃1i
; ðB6Þ

where Õk
i runs over all new cubic operators with projections

along the line of sight, including the appropriate coefficients
as given in Eq. (B2), and S̃rsd

3 is the operator in the last line
of Eq. (B2).
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APPENDIX C: CONVERGENCE TEST
WITH RESPECT TO GRID SIZE

In this appendix we demonstrate the convergence with
respect to the grid size of our results on the scales we focus
on. Throughout this work we use Nmesh ¼ 256 grid cells
per side (or equivalently the cell size of 0.8 h−1Mpc) to
analyze simulated and predicted HI fields. This choice
determines the validity of our analysis. In order to test
whether our results have converged, we repeat our analysis
using different numbers of grid cells per side. In particular,
we use lower (Nmesh ¼ 128) and higher (Nmesh ¼ 512)
resolution and compare the resulting transfer function in
Fig. 15, focusing on redshift z ¼ 1. As expected, we find
significant differences on very small scales and also when
using a lower resolution grid. However, for the fiducial grid
size and on scales k < 1 hMpc−1 that we focus on in this
work, we find our results have converged.
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