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A B S T R A C T   

Background: The dynamics of global, state-dependent reconfigurations in brain connectivity are yet unclear. We 
aimed at assessing reconfigurations of the global signal correlation coefficient (GSCORR), a measure of the 
connectivity between each voxel timeseries and the global signal, from resting-state to a stop-signal task. The 
secondary aim was to assess the relationship between GSCORR and blood-oxygen-level-dependent (BOLD) ac
tivations or deactivation across three different trial-conditions (GO, STOP-correct, and STOP-incorrect). 
Methods: As primary analysis we computed whole-brain, voxel-wise GSCORR during resting-state (GSCORR-rest) 
and stop-signal task (GSCORR-task) in 107 healthy subjects aged 21–50, deriving GSCORR-shift as GSCORR-task 
minus GSCORR-rest. GSCORR-tr and trGSCORR-shift were also computed on the task residual time series to 
quantify the impact of the task-related activity during the trials. To test the secondary aim, brain regions were 
firstly divided in one cluster showing significant task-related activation and one showing significant deactivation 
across the three trial conditions. Then, correlations between GSCORR-rest/task/shift and activation/deactivation 
in the two clusters were computed. As sensitivity analysis, GSCORR-shift was computed on the same sample after 
performing a global signal regression and GSCORR-rest/task/shift were correlated with the task performance. 
Results: Sensory and temporo-parietal regions exhibited a negative GSCORR-shift. Conversely, associative regions 
(ie. left lingual gyrus, bilateral dorsal posterior cingulate gyrus, cerebellum areas, thalamus, posterolateral pa
rietal cortex) displayed a positive GSCORR-shift (FDR-corrected p < 0.05). GSCORR-shift showed similar patterns 
to trGSCORR-shift (magnitude increased) and after global signal regression (magnitude decreased). Concerning 
BOLD changes, Brodmann area 6 and inferior parietal lobule showed activation, while posterior parietal lobule, 
cuneus, precuneus, middle frontal gyrus showed deactivation (FDR-corrected p < 0.05). No correlations were 
found between GSCORR-rest/task/shift and beta-coefficients in the activation cluster, although negative corre
lations were observed between GSCORR-task and GO/STOP-correct deactivation (Pearson rho=-0.299/-0.273; 
Bonferroni-p < 0.05). Weak associations between GSCORR and task performance were observed (uncorrected p <
0.05). 
Conclusion: GSCORR state-dependent reconfiguration indicates a reallocation of functional resources to asso
ciative areas during stop-signal task. GSCORR, activation and deactivation may represent distinct proxies of 
brain states with specific neurofunctional relevance.   

Abbreviations: GS, global signal; GSR, global signal regression; GSCORR, global signal correlation coefficient. 
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1. Introduction 

Human brain functionality is characterized by spatially and tempo
rally correlated low-frequency fluctuations in the blood oxygenation 
level-dependent (BOLD) signal (Choe et al., 2015). BOLD fluctuations 
can be assessed via functional Magnetic Resonance Imaging (fMRI), both 
when the individual is at rest (i.e., resting-state) and during the execu
tion of specific tasks (Ma et al., 2012; Rogers et al., 2007; Scalabrini 
et al., 2020b). In order to regulate intrinsic brain activity, BOLD fluc
tuations are functionally organized at local, long-range and global 
scales, which constantly communicate to generate complex dynamics 
(Qin et al., 2020). Recent studies attempted to characterize the 
state-dependent reconfigurations of local and long-range functional 
connectivity (FC), finding a reduced local connectivity opposed to an 
increased long-range FC from rest to task (Damiani et al., 2022; Tom
masin et al., 2018). 

In contrast, the state-dependent reconfiguration of FC dynamics at a 
global scale has been poorly investigated up to the present date. On a 
global scale, FC can be measured by the global signal correlation coef
ficient (GSCORR), that is the correlation between each voxel time series 
and the averaged global signal (GS) of the gray matter (Ao et al., 2021; 
Fox et al., 2009; Power et al., 2017; Scalabrini et al., 2020a). For this 
reason, GSCORR is also referred to as GS topography, representing an 
emerging measure for analyzing the relationship between global and 
local neural activities. Developed to gain a deeper understanding of the 
neurobiological significance of GS, GSCORR exhibits interesting physi
ological and pathological correlates opening up intriguing new frontiers 
for the neuroimaging research (Ao et al., 2021). For instance, GSCORR 
demonstrates an intrinsic architecture characterized by higher values in 
sensory cortices and lower values in high-order cortices during the 
resting state (Ao et al., 2021; Li et al., 2020; Power et al., 2017; Zhang 
et al., 2020). Furthermore, GSCORR has been found to be altered in 
states of unconsciousness, potentially linking GSCORR to brain states 
related to vigilance (Tanabe et al., 2020). Moreover, GSCORR was 
altered in various psychiatric and neurological disorders, such as pa
tients with schizophrenia, major depressive disorder, bipolar disorder, 
and epilepsy (Li et al., 2020; Scalabrini et al., 2020b; Yang et al., 2016). 

Regarding the behavioral correlates of GSCORR in cognitive tasks, to 
our knowledge, only one study examined the presence of state- 
dependent changes in GSCORR from rest to task (Zhang et al., 2020). 
Irrespectively of task design, Zhang and colleagues observed a general 
GSCORR reduction in the majority of brain regions, especially in so
matosensory areas. Of note, these results reported unchanged GSCORR 
values in brain areas that should have been engaged across tasks. One 
example is the primary visual cortex, as almost all the tasks evaluated 
included visual stimuli. However, no direct comparison between 
GSCORR and task activation was performed, leaving open questions 
regarding the relationship between these two indexes (Ao et al., 2021). 

Given the aforementioned gaps in the literature, the primary aim of 
this study was to evaluate the state-dependent reconfigurations of global 
connectivity in a sample of healthy subjects by measuring voxel-wise, 
within-group differences of GSCORR occurring from rest to a stop- 
signal task (GSCORR-shift). The secondary objective of this study was 
to explore the relationship between GSCORR and task-related BOLD 
changes. To assess this relationship, we mapped the regions with posi
tive and negative changes in the BOLD signal during a stop-signal task 
and measured the correlation patterns between GSCORR-rest/task/shift 
and the beta coefficients in these regions. 

2. Materials and methods 

2.1. Sample - participants 

This study analyzed imaging and clinical data of 130 healthy controls 
adults (HC) from the University of California, Los Angeles (UCLA) 
Consortium for Neuropsychiatric Phenomics open-access neuroimaging 

dataset (Gorgolewski et al., 2017; Poldrack et al., 2016). Participants 
were aged 21–50 years, right-handed and English-speaking. Ethnic 
category was either White, Hispanic, or Latino. A screening urinalysis 
was performed, and only individuals negative for drugs of abuse were 
enrolled (Cocaine; Methamphetamine; Morphine; THC; Benzodiaze
pines). Subjects were excluded if they had lifetime diagnoses of: 
Schizophrenia or Other Psychotic Disorder; Bipolar I or II Disorder; 
Substance Abuse or Dependence (not counting caffeine or nicotine); 
current Major Depressive Disorder; suicidality; Anxiety Disorder 
(Obsessive Compulsive Disorder, Panic Disorder, Generalized Anxiety 
Disorder, Post-Traumatic Stress Disorder), Attention Deficit Hyperac
tivity Disorder (ADHD). Participants were also excluded if left-handed, 
believed they might be pregnant, or if had other contraindications to 
scanning (e.g., claustrophobia, metal in body, body too large to fit in 
scanner). Further details about recruiting and demographics can be 
found in two works from Poldrack, Gorgolewski and colleagues (Gor
golewski et al., 2017; Poldrack et al., 2016). 

2.2. Informed consent and ethical approval 

As described in the original study, participants were given a verbal 
explanation of the study, after which written informed consent was 
signed. Procedures were approved by the Institutional Review Boards at 
UCLA and the Los Angeles County Department of Mental Health (Pol
drack et al., 2016). 

2.3. Task description 

The stop-signal task was chosen for the analysis due to its constant 
recruitment of attentive resources required across the whole scan-time. 
This characteristic made stop-signal a continuous task-state which is 
ideal to be compared to rest. The stop-signal task run lasted 386 s. 
Participants were instructed to respond as fast as they could after a ‘go’ 
stimulus was presented on the computer screen, except for the subset of 
trials where the ‘go’ stimulus was paired with a ‘stop’ signal. Go stimuli 
consisted of left- and right-wards pointing arrows to which participants 
were told to respond by pressing the respective button. For stop trials 
(25 % of total trials), a stop-signal (a 500 Hz tone presented through 
headphones) was presented with a short delay -stop-signal delay- after 
the go stimulus appeared and lasted for 250 ms. Participants were 
instructed to respond as quickly and accurately as possible in all trials, 
but to withhold their response if they heard the stop-signal. They were 
also instructed that stopping and going were equally important. Per
formance was then measured through the Stop-Signal Reaction Time 
(SSRT), an index based on the horse-race model and considered a critical 
measure of the cognitive control processes involved in stopping (Logan 
and Cowan, 1984; Verbruggen and Logan, 2009;2008). SSRT is the time 
it takes for an individual to inhibit a preplanned action in response to a 
stop signal. SSRT was computed as the quantile reaction time minus the 
mean of all stop-signal delay values; longer SSRTs corresponded to 
worse performances. To yield approximately 50 % successful response 
inhibition for the estimation of stop-signal reaction time (SSRT), the 
stop-signal delay of each Stop trial was dynamically adjusted (Band 
et al., 2003). As additional performance measure, uncorrected, we used 
mean reaction time (RT) on all correct GO trials as they were collected 
for each participant. 

2.4. Preprocessing 

fMRI data were preprocessed with AFNI software (Bowring et al., 
2021; Cox, 1996; Cox and Hyde, 1997). The structural and functional 
reference images were co-registered (Saad et al., 2009). The first 4 
frames of each fMRI run were removed to discard the transient effects in 
amplitude observed until magnetization achieves steady state (Cab
allero-Gaudes and Reynolds, 2017). Slice timing correction (Kon
stantareas and Hewitt, 2001) and despike methods (Satterthwaite et al., 
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2013) were applied. Rigid-body alignment of the structural and func
tional image was performed. The anatomical image was then warped to 
the Montreal Neurological Institute standard space (MNI152_T1_2009c) 
template provided with the AFNI binaries. Spatial smoothing was 
applied using a Gaussian filter with full width at half maximum (FWHM) 
kernel sizes of 6 mm. Bandpass within the standard frequency range 
(0.01–0.1 Hz) was performed (Shirer et al., 2015). Each of the voxel time 
series was then scaled to have a mean of 100. To control for non-neural 
noise, regression based on the 6 rigid body motion parameters and their 
6 derivatives was applied, as well as mean time series from 
cerebro-spinal fluid masks (Fox et al., 2005; Vovk et al., 2011) and 
eroded by one voxel (Chai et al., 2012). For GSCORR analysis, regression 
of white matter artifacts was performed through the fast ANATICOR 
technique provided by AFNI (Jo et al., 2010) to further improve motion 
correction, censoring of voxels with a Framewise Displacement (FD) 
above 0.5 mm was applied to the timeseries (Power et al., 2014). A strict 
control of motion was performed, as subjects with >2 mm or >2◦ of 
motion and/or more than 20 % of timepoints above FD 0.5 mm in rest or 
task run were excluded (Damiani et al., 2022). 

2.5. Primary analysis: GSCORR 

The global signal (GS) was calculated for each participant by aver
aging the fMRI signals of all the gray matter voxels. For each voxel, the 
GS topography (i.e., GSCORR) was calculated as the Pearson correlation 
coefficient between the time series of the voxel and the GS time series 
(Fox et al., 2009; Power et al., 2017; Scalabrini et al., 2020b). The 
Pearson correlation coefficients were computed for the rest and task run 
and then transformed through Fisher z transformation for statistical 
analysis (GSCORR-rest and GSCORR-task respectively) (Cole et al., 
2016; 2014). Voxel-wise differences between GSCORR-rest and 
GSCORR-task, i.e. GSCORR-shift, were evaluated through a paired t-test 
(task minus rest). Results were masked using a gray matter mask derived 
from the MNI template of choice. For all primary and secondary ana
lyses, the significance threshold was False Discovery Rate-corrected p 
value (FDR-p) of 0.05 with a minimum cluster size > 30 significant 
voxels, calculated by the three nearest neighbors, to further strengthen 
the robustness of our results (Zhu et al., 2019). 

2.6. Secondary analyses 

2.6.1. GSCORR-shift computed as rest – task residual 
Fair and colleagues introduced the concept of task residual BOLD 

activity, suggesting that this measure should represent the spontaneous 
signal of the brain during a “task state” (Fair et al., 2007). Task residual 
activity is obtained by removing from the task time-series the 
task-related activation using a General Linear Model (GLM). As GSCORR 
was computed using task time-series where task-related activity was not 
regressed out, to compare GSCORR-task with GSCORR on task residuals 
(GSCORR-tr) would allow to quantify the impact of the task-related 
activity during the trials. 

After obtaining GSCORR-tr, a t-test between GSCORR-tr and 
GSCORR-rest was performed to obtain task residual GSCORR-shift 
(trGSCORR-shift). A congruence between GSCORR-shift and 
trGSCORR-shift maps would confirm the existence of a task-oriented 
state, characterized by the continuous engagement of attentional re
sources and readiness to respond, in the context of the stop-signal task. 
As suggested by Zhang and colleagues, such task-oriented state would be 
trial-independent (Zhang et al., 2020). 

2.6.2. Task activation analysis 
We planned to model the following task conditions for each subject: 

successful “go” condition (“GO”), unsuccessful “go” condition (“MISS”), 
successful “stop” condition (correct rejection, “STOPcor”), and unsuc
cessful “stop” condition (“STOPincor”). However, as observed by a 
previous study, MISS conditions were excluded from the analysis due to 

the very low number of events per subject (Cao and Cannon, 2021). GO, 
STOPcor and STOPincor conditions were therefore convolved with a 
hemodynamic response function and included in a general linear model 
together with other regressors such as 6 rigid body parameters and their 
6 derivatives, mean time series from cerebro-spinal fluid and white 
matter masks eroded by one voxel and FD-based censoring (see above) at 
each time point. A gray matter mask was then applied on the resulting 
activation maps. 

In addition to computing BOLD activation with positive beta co
efficients, we also considered BOLD deactivation measuring the negative 
beta coefficients. The physiological basis and precise meaning of nega
tive beta coefficients remains a topic of ongoing debate, and up to the 
present day the literature has provided insufficient information con
cerning its dynamics in stop-signal tasks (Nakata et al., 2019). Several 
mechanisms have been proposed to explain negative beta coefficients, 
including: (a) the "blood steal" phenomenon, whereby a decrease in 
blood flow occurs in regions adjacent to activated regions with increased 
blood flow and supplied by a common artery (Harel et al., 2002; Kan
nurpatti and Biswal, 2004); (b) the “neural inhibition hypothesis” 
(Buzsáki et al., 2007; Devor et al., 2008; Shmuel et al., 2002; Sten et al., 
2017), according to which negative BOLD responses are caused by local 
neural inhibition, as a result of interhemispheric transcallosal inhibition 
(Allison et al., 2000; Hamzei et al., 2002; Stefanovic et al., 2004; Sten 
et al., 2017; Tzourio-Mazoyer et al., 2015; Yuan et al., 2013; Zeharia 
et al., 2012) or task-related deactivation of associated areas belonging to 
an irrelevant sensory modality (Sadato et al., 1998, 1996; Sten et al., 
2017). While considering these premises that highlight the functional 
relevance of negative beta coefficients, for practical reasons we will refer 
to these values using the term “deactivation”. 

The clusters of areas that resulted significantly activated or deacti
vated during the execution of the stop-signal task were extracted as 
masks. This analysis was performed for the three trial conditions, 
namely: STOPcor, STOPincor and GO. The surviving clusters of voxels 
for each trial were overlapped to produce: a) one mask constituted by 
regions showing activation across the three different conditions; b) one 
mask constituted by regions showing deactivation across the three 
different conditions. 

2.6.3. GSCORR relationship with task-related changes in BOLD activity 
Aside from providing a precise mapping of the regions involved in 

the processing of stop-signal tasks, the generation of maps across the 
three conditions allowed to compare GSCORR and task activation 
measures. In fact, GSCORR is computed across all task states and does 
not distinguish GO, STOPcor and STOPincor responses. To quantify the 
level of association between GSCORR and activation/deactivation, the 
following values were extracted in areas of overlap between activation 
and deactivation for each subject: a) GO, STOPcor and STOPincor trials 
beta coefficients; b) GSCORR-rest, GSCORR-task and GSCORR-shift. 
Finally, Pearson’s correlation coefficients were calculated between 
beta coefficients and GSCORR-rest/task/shift. Bonferroni correction for 
multiple comparisons was performed. This analysis offered not only the 
possibility to compare GSCORR with BOLD changes, but also to map the 
brain regions that are recruited during each of the three task conditions. 
Finally, to facilitate the topographic comparison between GSCORR-shift 
and clusters of common activation/deactivation during the task, we 
created two maps comparing GSCORR-shift with activation and deac
tivation. The thresholds for this analysis were set at FDR-p = 0.05 with a 
minimum cluster size > 30 significant voxels, calculated by the three 
nearest neighbors. These maps are available in Supplementary materials 
(eFig.4). 

2.7. Sensitivity analyses: global signal regression (GSR) analysis and 
performance correlation 

(i) Whether preprocessing should include GSR or not is controversial 
(Murphy and Fox, 2017; Shirer et al., 2015); in particular, GSR was 

S. Damiani et al.                                                                                                                                                                                                                                



NeuroImage 291 (2024) 120585

4

shown to significantly influence GSCORR analyzes (Scalabrini et al., 
2020a, 2020b). In order to account for the GSR effect, primary analyses 
were repeated after the regression of the gray matter averaged time 
series. Due to the global nature of the GSCORR index, we expected a 
reduction or absence of significant findings in the GSR-related analysis. 

(ii) In order to evaluate the behavioral correlates of GSCORR, SSRT 
and RT scores were introduced as covariates using the option -covariate 
in the 3dttest++ AFNI command to explore how this measure covaried 
with GSCORR-rest, GSCORR-task, and GSCORR-shift on a voxel-wise 
level. The -covariate option produced 3 whole-brain maps as output. 
Each map refers to one of the paired t-test parameters (map1: covariance 
with GSCORR-rest; map2: covariance with GSCORR-task; map3: 
covariance with GSCORR-shift). Covariance voxel-wise maps thus 
showed the significant regions of covariance between GSCORR and 
performance (SSRT and RT). As no significant differences were observed 
at FDR-p = 0.05, uncorrected p = 0.05 thresholds were adopted for the 
results of this explorative analysis. Results are available in Supplemen
tary materials. 

3. Results 

3.1. Descriptive statistics 

23 subjects were excluded from the analyses due to excessive motion 
in either rest or task run. A total of 107 subjects were finally selected. 
The sample was composed of 52 % males; had an average age of 30.85 ±
8.6 years; the mean SSRT was 213.28 ± 40.35 ms; the mean RT was 
213.28 ± 112.36 ms. 

3.2. GSCORR-shift 

GSCORR-shift (GSCORR-task vs GSCORR-rest) map is shown in 
Fig. 1. We found a reduction of GSCORR during task in bilateral insula, 
bilateral somatosensory cortex, bilateral auditory cortex, bilateral sec
ondary visual network areas, bilateral middle temporal gyrus, bilateral 
fusiform gyrus, right inferior frontal gyrus. Increased GSCORR values 
were found in associative areas such as left lingual gyrus, bilateral dorsal 
posterior cingulate gyrus (dPCC), bilateral cerebellum areas, bilateral 
thalamus, bilateral posterolateral parietal cortex (PLPC). The 
trGSCORR-shift map (see Fig. 1) exhibited a very similar pattern to that 
of GSCORR-shift. Notably, a general enhancement in the signal-to-noise 
ratio was observed in trGSCORR-shift compared to GSCORR-shift. 
However, this enhancement was especially relevant in specific clusters 
of subcortical areas including the cerebellum. 

3.3. Task-related BOLD changes 

Figs. 2 and 3 display the regions respectively showing activation or 
deactivation during GO, STOPcor and STOPincor task conditions. 

The regions showing activation across all the three trials included left 
Area 6 of Brodmann (including: supplementary motor areas, SMA; pre- 
supplementary motor areas, pre-SMA) and inferior parietal lobule (IPL) 
(including: supra-marginalis gyrus; left superior temporal gyrus). 

The regions showing deactivation across all the three trials involved 
bilateral posterior parietal lobule, bilateral cuneus and bilateral pre
cuneus, left middle frontal gyrus. 

While STOP conditions were mainly linked to activations, the GO 
condition mainly produced deactivation. Activation/deactivation maps 
for all task conditions have been provided as NIFTI files in the Supple
mentary materials. 

3.4. Relationship between GSCORR and task-related BOLD changes 

eFig. 4 shows the conjunction map between GSCORR-shift and areas 
showing activation/deactivation during the task. GSCORR-shift exhibi
ted minimal overlap with both activation and deactivation clusters. 

Specifically, a small overlap between negative GSCORR-shift and acti
vation clusters was visible in left Inferior Parietal Lobule (IPL) and left 
Brodmann area 6. Concerning GSCORR-shift/deactivation overlaps, the 
map only showed very restricted area in left precuneus (positive 
GSCORR-shift) and right cuneus (negative GSCORR-shift). 

Tables 1A and 1B show correlation analysis between GSCORR values 
and the beta coefficients for the regions showing either activation or 
deactivation across all the three task conditions. 

We found significant correlations only in areas showing common 
deactivation, where GSCORR-task values exhibited a negative correla
tion with GO beta coefficients (r = − 0.299; uncorrected p = 0.002, 
corrected p = 0.018) and STOPcor beta coefficients (r = − 0.273; un
corrected p = 0.005, corrected p = 0.040). Marginal significances, not 
surviving Bonferroni correction, were also found in areas of common 
deactivation for GO beta coefficients and GSCORR-rest (r = − 0.210; 
uncorrected p = 0.031), STOPincor and GSCORR-rest (r= − 0.251; un
corrected p = 0.013) and STOPincor and GSCORR-task (r= − 0.198; p =
0.042). Marginally significant correlation was also found in areas 
showing common activation for STOPcor beta coefficients and GSCORR- 
shift values (r = 0.245; uncorrected p = 0.011). See Table 1. 

3.5. Sensitivity analyses 

The analyses conducted after GSR showed that GSCORR-shift was 
largely inferior in magnitude compared to the GSCORR-shift measured 
without GSR (eFig. 1). However, the global pattern was still character
ized by a predominance of areas with negative GSCORR-shift. Interest
ingly, the regions where GSCORR-shift was significant in GSR were 
almost complementary to the ones observed in the no-GSR analysis. 

The covariance analyses between GSCORR-rest/task/shift and SSRT 
found minimally significant results even when adopting the 
uncorrected-p threshold of 0.05. However, at the same threshold of 
uncorrected-p = 0.05, RT showed both positive and negative correla
tions with GSCORR-rest, GSCORR-task, and GSCORR-shift. Voxel-wise 
findings are reported in eFigs. 2 and 3. 

4. Discussion 

Our primary findings showed non-uniform, state-dependent 
GSCORR reconfigurations, highlighting a negative GSCORR-shift (task 
< rest) in the majority of sensory and temporo-parietal regions, as 
opposed to a positive GSCORR-shift (task > rest) in associative regions. 
Although separate regions were involved in the processing of STOP and 
GO conditions, a few areas were recruited in all the stop-signal trials. 
Activation in these regions did not correlate to GSCORR-rest/task/shift. 
Conversely, small but reliable negative associations were observed be
tween deactivation and GSCORR-task. 

4.1. State-dependent GSCORR reconfiguration 

The primary aim of this study was to evaluate state-dependent 
reconfigurations of whole-brain, voxel-wise GSCORR. According to the 
current knowledge, FC reconfiguration dynamics from rest to task 
involve a generalized reduction in ReHo (Damiani et al., 2022; Tom
masin et al., 2018), a reduction in within-network FC (Cole et al., 2019; 
Tommasin et al., 2018), and an increase in between-networks FC (Cole 
et al., 2019; Tommasin et al., 2018). The present findings add important 
information concerning the state-dependency of global connectivity by 
observing two state-dependent reconfiguration patterns of GSCORR. 
The first dominant pattern showed widespread GSCORR reductions in 
somatosensory and auditory regions. This pattern has also been 
observed by Zhang and colleagues across several tasks, suggesting a 
common and unspecific trend when transitioning from rest to task states 
(Zhang et al., 2020). 

Nonetheless, the current study is the first to describe a second 
pattern, that is a GSCORR increase in associative subcortical (thalamus 
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Fig. 1. GSCORR-shift and trGSCORR-shift maps. Whole brain, voxel-wise z maps displaying areas of significant differences at the paired t-test between: (A) GSCORR- 
task and GSCORR-rest (i.e. GSCORR-shift); (B) GSCORR-tr and GSCORR-rest (i.e. trGSCORR-shift). 
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and cerebellum) and cortical regions (dPCC and PLPC) during the stop- 
signal task. The thalamus, as a gateway to the cortex, plays a crucial role 
in cognitive control, regulation of thoughts and actions, and goal- 
directed behaviors (Hwang and D’Esposito, 2022). The cerebellum, 
traditionally known for its role in motor coordination, has been 
increasingly recognized for its involvement in cognitive, behavioral 
processes and to play a role in cognition, emotion, and autonomic 
function (Rapoport et al., 2000; Schmahmann, 2019). PLPC is a 
higher-level association area, suggested to play a role in the executive 
control of attention, sensory integration and problem solving (Marek 
and Dosenbach, 2018; Middag-van Spanje et al., 2022; Thomson and 
Jaque, 2017). Finally, dPCC is one of the most important functional hubs 
belonging to the default mode network (Leech and Sharp, 2014), which 
was found to be associated with an increased metabolism during 
cognitive tasks (Rogan et al., 2022), rapid adjustments to visuospatial 
needs (Vogt and Palomero-Gallagher, 2012) and the modulation of 
attentional focus (Leech and Sharp, 2014). Considering these two 
opposite patterns, a reallocation of resources from sensory to associative 
regions during the execution of this attention-demanding task can be 
postulated. This hypothesis is further supported by previous evidence 
suggesting that at rest - when associative areas are less recruited than 
during tasks - GSCORR values are higher in sensory than associative 
regions (Liu et al., 2018; Yang et al., 2016; Zhang et al., 2020). 

In the next chapter we will delve deeper into the relationship be
tween GSCORR and brain activation by exploring the functional re
lationships between the regions with positive GSCORR-shift and those 
that were activated during the task. 

4.2. Task-related BOLD changes 

The current analysis revealed two well-distinguished clusters of 
BOLD task-related changes, one for the GO-baseline and one for the 
STOP(cor/incor)-baseline contrast, as previously observed (Zhang and 
Li, 2012a). These clusters are evident in both activation and deactivation 
maps and show opposite directions. Despite the many overlaps between 
STOPcor and STOPincor maps, very limited overlaps were found be
tween GO and STOPcor maps, reflecting the presence of two separate 
systems operating for the response elicitation and inhibition. A few 
overlaps were found, however, between GO and STOPincor maps. This 
may reflect the fact that, during STOPincor trials, inhibition was not 
efficient and could not avoid the elicitation of the motor system. 

Specifically, two regions (left-pre SMA and left IPL) were activated 
across the three task conditions. The novelty of the present findings 
resides in the observation of task>rest contrasts, while the majority of 
the literature reports comparisons between the trial conditions (e.g. 
STOPcor>STOPincor contrasts). However, we know from the available 

Fig. 2. BOLD activation map during stop-signal task. Whole brain, voxel-wise map showing areas activating during the stop-signal trials (GO, STOP correct and STOP 
incorrect, FDR-p = 0.05). Red regions are the ones exhibiting activation across all the three trias. 
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Fig. 3. BOLD deactivation map during stop-signal task. Whole brain, voxel-wise map showing areas exhibiting deactivation during the stop-signal trials (GO, STOP 
correct and STOP incorrect, FDR-p = 0.05). Red regions are the ones exhibiting deactivation across all the three trials. 

Table 1A 
Correlation maps between GSCORR and beta coefficients in the mask of regions 
showing activation across the three different trial conditions (n = 107).  

Whole brain, voxel-wise 
significant regions  

GSCORR- 
shift 

GSCORR- 
rest 

GSCORR- 
task 

GO trials beta coefficients r 0.095 − 0.087 0.010  
p value 0.334 0.373 0.923  
p value 
corr 

1.000 1.000 1.000 

STOPcor trials beta 
coefficients 

r 0.245* − 0.128 0.125  

p value 0.011 0.192 0.201  
p value 
corr 

1.000 1.000 1.000 

STOPincor trials beta 
coefficients 

r 0.109 − 0.006 0.108  

p value 0.267 0.953 0.271  
p value 
corr 

1.000 1.000 1.000 

r = Pearson correlation coefficient; p value= uncorrected p value; p value corr=
Bonferroni correction for multiple comparison; Shift=task-rest difference; 
STOPcor= Stop correct; STOPincor= STOP incorrect 

* uncorrected p value<0.05. 

Table 1B 
Correlation maps between GSCORR and beta coefficients in the mask of regions 
showing deactivation across the three different trial conditions (n = 107).  

Whole brain, voxel-wise 
significant regions  

GSCORR- 
shift 

GSCORR- 
rest 

GSCORR- 
task 

GO trials beta coefficients r − 0.093 ¡0.210* ¡0.299**  
p value 0.343 0.031 0.002  
p value 
corr 

0.686 0.186 0.018 

STOPcor trials beta 
coefficients 

r − 0.121 − 0.152 ¡0.273**  

p value 0.215 0.119 0.005  
p value 
corr 

0.645 0.476 0.040 

STOPincor trials beta 
coefficients 

r 0.035 ¡0.241* ¡0.198*  

p value 0.725 0.013 0.042  
p value 
corr 

0.725 0.091 0.210 

r = Pearson correlation coefficient; p value= uncorrected p value; p value corr=
Bonferroni correction for multiple comparison; Shift=task-rest difference; 
STOPcor= Stop correct; STOPincor= STOP incorrect 

* uncorrected p value<0.05 
** Bonferroni correction p value<0.05 
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evidence that SMA has been linked to performance-monitoring and the 
dynamic update of motor schemes (Cao and Cannon, 2021; Fauth-Bühler 
et al., 2012; Hughes et al., 2013), while IPL influences working memory 
and response inhibition (Chambers et al., 2009; Ray Li et al., 2006). 
Although some studies identified IPL and pre-SMA as part of the inhi
bition circuit activated during STOPcor trials, other studies observed 
that the involvement of this network goes beyond inhibition, as it is also 
recruited during positive behavioral responses (GO trials). The presence 
of BOLD-changes within the same regions (i.e. IPL and SMA) during both 
GO and STOP trials suggests that a common neural network may 
intervene in the phase immediately following the appearance of the first 
signal, when the subject is still uncertain about whether to press the 
button (GO trial) or inhibit the response (STOP trial) (Chikazoe et al., 
2009). 

4.2.1. Activation and GSCORR 
Turning the attention to the GSCORR-activation relationship, the 

regions exhibiting a significant positive GSCORR-shift were not the same 
showing an activation throughout the task (eFig. 4). This is because 
GSCORR-shift and BOLD task-related changes provide information on 
different neurofunctional domains. A positive GSCORR-shift identifies 
regions whose activity becomes more prominent on the global signal 
during task execution, regardless of the specific type of trial. Thus, 
GSCORR-shift reflects a process that occurs across trial-types because 
this very process does not depend on the specific trial, but on the fact 
that the subject is in a task-oriented state. Activation, on the other hand, 
appears to be a trial-dependent measure, identifying regions that 
respond to specific stimuli such as GO or STOP prompts. Additionally, 
GSCORR-shift includes all the time points in the rest and task runs, while 
activation compares the stimulus-induced signal with the “rest” BOLD 
values of the intertrial interval. However, this rest period is different 
from the one observed during a resting-state run, as it could be 
considered a "task-oriented state" where the subject reflects on a recently 
completed trial and expects further prompts. Coherently with this hy
pothesis, no significant correlation between GSCORR (rest/task/shift) 
and activation (GO/STOPcor/STOPincor) was observed. 

The presence of a task-oriented state is further confirmed by the fact 
that the GSCORR-shift findings are topographically similar, although 
further enhanced, when using task residuals. In trGSCORR-shift, the 
activity related to single trials is indeed regressed out. In fact, task re
sidual activity can be considered as the spontaneous signals during a 
task state. In light of these results, GSCORR mirrors the task- 
engagement, that is, the predisposition of the individual to react to 
task-related stimuli (Zhang and Li, 2010, 2012b). The behavioral rele
vance of such attentional shift from rest to task is supported by the fact 
that correlation analyses with performance indices (i.e., SSRT and RT) 
identified behavioral correlates of GSCORR (eFigs. 2 and 3). 

4.2.2. Deactivation and GSCORR 
Although the information from previous literature is too scarce to 

allow direct comparisons, it is noteworthy that deactivation displays 
stronger correlations with GSCORR compared to activation. Specifically, 
during the task, areas showing deactivation are more functionally 
correlated with the global signal. There are at least two possible ex
planations for this association. Firstly, one of the most important the
ories about negative beta-coefficients describes them as the result of 
local neural inhibition (Sten et al., 2017). Therefore, specific areas may 
require local inhibition in order to increase their global connectivity. 
Secondly, the increased global connectivity of a region implies that this 
region is more influenced by distant areas that, in our specific case, may 
be inhibitory. Future studies on the interplay between local and global 
connectivity are required to shed further light on these intriguing 
possibilities. 

A last but fundamental observation can be derived from our sensi
tivity analyses. In fact, GSCORR-shift pattern after GSR was not only 
reduced, but also complementary to the map observed without GSR 

(eFig. 1). These findings are consistent with the hypothesis advocating 
for the informative nature of the global signal (Scalabrini et al., 2020b; 
Zhang et al., 2020). Besides, they confirm that inclusion and exclusion of 
GSR are two potentially complementary preprocessing methods whose 
use depends on the specific research questions (Murphy and Fox, 2017). 

4.3. Future directions 

GSCORR assesses the strength of association between regional brain 
activity and the global signal. However, recent studies focused instead 
on characterizing the temporal dynamics underlying the association 
between local and global connectivity in fMRI analyses (Amemiya et al., 
2014; Kavroulakis et al., 2021; Lv et al., 2013; Mitra et al., 2014). This 
approach is defined as time-shift analysis or lag-structure analysis (Mitra 
et al., 2014) and explores how local-to-global correlations change when 
shifting the lag between the local and the global timeseries. As GSCORR 
can be defined as a zero-lag time-shift analysis, the present study lays the 
groundwork to better interpret task-related activation/deactivation 
when taking into account the temporal structure of brain dynamics. 

In light of the magnitude of the GSCORR findings for the stop-signal 
task, we also expect this brain dynamic to be characteristic of all the 
conditions requiring a continuous engagement. Future studies may try to 
replicate the present findings in other tasks that are more intermittent or 
less attentionally demanding in order to test whether GSCORR-shift is 
subject to similar changes or not. These observations would further help 
to differentiate trial-independent modulations from trial-dependent 
ones. 

4.4. Limitations 

Although the main dataset on which analyses were performed was of 
high quality, no other sample available online included both rest and 
stop-signal task runs. Therefore, the replicability of the present findings 
could not be tested. The replication crisis is well documented in psy
chology and psychiatry and requires collaborative efforts to ensure data 
sharing and harmonized infrastructures (Salazar de Pablo et al., 2021). 

This study primarily provides correlational data, thereby restricting 
our capacity to infer causality between GSCORR and changes in task- 
related activation/deactivation. Future studies could delve into the 
contribution of connectivity measures to task-related BOLD changes, for 
example, by employing linear regression models (Yuan et al., 2013). In 
particular, we found a significant correlation between GSCORR and 
deactivation, whose causal relationship could yield interesting results. 

Of note, these results are not generalizable to the task condition in 
general, as our analyses exclusively focused on a specific type of task (i. 
e., the stop-signal). Predicting the outcomes of analyses applied to tasks 
beyond the stop-signal task presents a challenge, compounded by the 
scant literature on the GSCORR-task (and GSCORR-shift) measures. 
Zhang et al. identified a consistent pattern of GSCORR-shift across seven 
diverse tasks (emotional, reward-learning, language, motor, relational 
reasoning, social cognition, visual N-back), calling for the involvement 
of GSCORR-shift not only across trials within the same task, but also 
across tasks (Zhang et al., 2020). 

As discussed in Section 2.7, the interpretation of our results must 
acknowledge the limitations associated with the use of "global signal" 
approaches. For this reason, we have presented the results both with and 
without GSR (Murphy and Fox, 2017; Shirer et al., 2015). 

5. Conclusions 

The state-dependent reconfiguration of GSCORR suggests a reallo
cation of functional resources to associative areas during a stop-signal 
task. Findings showed that GSCORR and task-related BOLD changes (i. 
e. activation and deactivation) represent distinct neurofunctional 
proxies of brain activity, shedding new light about the functional 
meaning of deactivation. 
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