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Abstract 
The recent and more advanced applica�ons of ar�ficial intelligence (AI) reached a wide range of fields, 
transforming tradi�onal workflows, perfec�ng current techniques, and introducing new paths not previously 
feasible. The common approach to AI-based systems relies on using an appropriately annotated database to 
train a model in order to iden�fy a correla�on between the input data and the desired output. With regard 
to the biomedical field, the literature does not provide a unified framework to follow for the crea�on of these 
tools, but rather proceeds heterogeneously. In this context, this work focuses on the study and crea�on of a 
framework intended to facilitate and enable the implementa�on of performing tools based on AI in the 
biomedical field. With the aim of providing an effec�ve framework the produc�on cycle of AI-based 
applica�ons in the biomedical field has been studied. In par�cular, the framework was developed by analysing 
in detail all the implementa�on steps necessary for the development of new AI-based tools in the biomedical 
field and three main phases were iden�fied: the clinical phase, the ar�ficial intelligence engineering phase, 
and the applica�on development phase. 

This work was carried out in collabora�on with mul�ple medical research centers: the joint laboratory 
Custom3D, which brings together the Azienda Ospedaliera Universitaria Careggi and the Department of 
Industrial Engineering of the University of Florence; the T3Ddy laboratory, in collabora�on between the 
Meyer Children's Hospital and the Department of Industrial Engineering of the University of Florence; a 
collabora�on with the Center for Biomedical Technology of the Universidad Politecnica de Madrid. Within 
these partnerships, four case studies were analyzed to devise, use and refine the framework. The case studies 
concern the following medical sectors: 1) urology - with the study of renal tumors; 2) plas�c surgery - for the 
automa�on of the produc�on process of guides used for anatomical reconstruc�on of the ear; 3) psychiatry 
- for the iden�fica�on of risk factors in pa�ents with suicidal inten�ons; 4) neurology - for the evalua�on of a 
therapy for the reduc�on and control of brain tumors. 

The implementa�on of the four case studies was carried out following the phases defined in the framework 
and using best prac�ces for the implementa�on of ar�ficial intelligence models. 

With regard to the first case study a model was developed to differen�ate malignant clear cell renal cell 
carcinoma tumors and benign oncocytoma tumors, in the event that these are very small and difficult to 
interpret by expert doctors with a sensi�vity of 94.59%.  

In the second case study, two AI-based tools were created to be used in the produc�on process of surgical 
guides used by the surgeon to create anatomical replica of the pa�ent's ear. In par�cular, these tools are able 
to generate the depth map from a simple image of the ear obtained from a normal camera, without the need 
to use more complex tools such as 3D acquisi�on scanners, with final MSE (mean square error) of ~0.07 and 
an average SSIM (structure similarity) of ~0.80, and to segment and iden�fy the anatomical elements of 
interest within the depth map image of the pa�ent's healthy ear with a 90% of accuracy considering each ear 
component as an independent class. 

For the third case, a classifica�on model was developed using the clinical records of psychiatric pa�ents. This 
tool is able to differen�ate between two types of pa�ents, those admited for atempted suicide and those 
admited for suicidal idea�on with a final accuracy of ∼85%.  Through the crea�on of this tool, it was also 
possible to carry out a study on the major risk factors that dis�nguish these two types of pa�ents. 

Finally, for the last case study an applica�on was developed that allows calcula�ng the percentage of mouse 
brain volume occupied by glioblastoma mul�forme tumors, reaching an average dice score of 84.48%. All for 
the purpose of evalua�ng the effects of op�cal hyperthermia to counteract and limit the growth and 
development of tumor cells through the use of nanopar�cles of different materials. 
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1. Introduc�on 
The last decades witnessed an increasing need for the use of computer applica�ons in various sectors. These 
applica�ons aim to assist, speed up, and automate tasks and jobs, especially those that are repe��ve and 
require a certain level of precision [1]. Among these types of applica�ons, those based on ar�ficial intelligence 
(AI) are increasingly finding their space. AI has managed to emerge in recent years thanks to the high 
availability and affordability of hardware resources (GPU - Graphical Processing Unit) and the increasing 
number of public datasets, thus becoming widely used in all sectors with different methods and purposes [2]. 
These include applica�ons in the economic field for predic�ng possible market trends [3, 4], in the automo�ve 
sector for the development of self-driving cars [5], or for example in the industrial sector for predic�ng faults 
at the level of assembly line machinery [6, 7]. 

In recent years the healthcare field is rapidly progressing. In modern medicine, thanks to technological 
advancement, there are more and more tools available to doctors for faster diagnosis that is precise and 
accurate [8]. An example of this can be seen with the use of devices capable of producing diagnos�c images 
such as computed tomography (CT), magne�c resonance imaging (MRI), or ultrasound (US), which allow 
doctors to iden�fy possible suspicious masses, such as tumors, where �mely treatment, especially in cases 
where the mass is malignant, can make a big difference in the successful outcome of therapies adopted by 
doctors [9–11]. Other examples are given by all the instrumenta�on used for con�nuous pa�ent monitoring, 
which con�nuously detect pa�ent condi�ons allowing doctors to detect possible symptoms related to specific 
diseases and perform detailed tests to verify their actual presence [12, 13] . 

In this context, thanks to methodological advancements in areas such as image processing [14], signal 
processing [15], and natural language processing [16], AI is able to find wide use in healthcare. Through the 
crea�on of AI-based tools it is possible to make assisted diagnoses of diseases [17], iden�fy suspicious masses 
[18], segment areas of interest in the body for surgical planning purposes [19], predict pa�ent behavior 
affected by disorders [20], and achieve many other things with high speed and precision thanks to con�nuous 
improvement of exis�ng models and increased availability of public health databases [21]. The growing 
number of applica�ons based on ar�ficial intelligence highlights common and main challenges: the possibility 
of making these types of algorithms usable at a clinical level, overcoming ethical and regulatory issues. To this 
is added the strategic objec�ve of ensuring the use of robust, reliable, and interpretable AI models for doctors, 
as risks and prejudices due to a model trained insufficiently or on a dataset not generalizing enough for the 
cases considered are to be avoided [21]. 

The goal of this work is to leverage the best exis�ng ar�ficial intelligence techniques with the aim of crea�ng 
applica�ons that can be a cornerstone for the development of new systems to be introduced into common 
clinical prac�ce in the future, so they can be used directly by medical staff to improve the general level of 
healthcare. The idea is to provide tools to support doctors in different areas of medicine in order to simplify 
and improve medical decisions, reducing the overall �me needed to make these choices, such as in the 
diagnosis of a disease, surgical planning, or evalua�on of the results related to a new therapy. 

In this direc�on, collabora�ons between the Department of Industrial Engineering and hospitals and research 
centers have allowed the development of various applica�ons. Among these collabora�ons we find the 
Azienda Ospedaliera Universitaria di Careggi (AOUC) [22], included in the joint laboratory Custom3D, and the 
Meyer Children's Hospital in Florence [23], which led to the crea�on of the joint laboratory T3Ddy [24]. In 
both joint laboratories, doctors and engineers collaborate with the aim of introducing innova�ve and 
customized technzologies for pa�ent treatment. Another important collabora�on is with other European 
universi�es, as in the case of the Center for Biomedical Technology (CTB) [25] of the "Universidad Politecnica 
de Madrid" (UPM). Within the various collabora�ons, different types of case studies have been iden�fied. As 
for the collabora�on with AOUC, a main case study related to kidney tumors has been iden�fied. More 
specifically, two main tasks have been iden�fied: 1) being able to differen�ate, in case of kidney tumors with 



reduced size, between malignant and benign tumor; 2) knowing that we are dealing with a malignant type of 
kidney tumor, being able to diagnose its severity. In the T3Dddy laboratory, two clinical scenarios of interest 
were iden�fied, the first related to plas�c surgery for autologous ear reconstruc�on, the second concerning 
psychiatry, to be able to dis�nguish between a real atempted suicide and a fake one. Finally during 
collabora�on with CTB, the iden�fied case study concerns the evolu�on of brain tumors in rats following the 
use of new experimental therapies. For simplicity in dealing with the different case studies, since each one is 
related to a different medical area, they will from now on be iden�fied based on this last one. Consequently 
there are four case studies in total: 1) "Urology" case study for collabora�on with AOUC; 2) "Plas�c Surgery" 
case study for autologous reconstruc�on within T3Dddy laboratory; 3) "Psychiatry" case study, also in 
collabora�on with Meyer pediatric hospital; and finally 4) "Neurology" case study from the coopera�on with 
CTB. 

Regarding the Urology case study, the aim is to carry out an in-depth study of pa�ents suffering from kidney 
cancer, using only the pa�ents' diagnos�c images, with the aim of being able to classify kidney tumors into 
malignant and benign. The need is to develop a tool capable of suppor�ng the doctor during the diagnos�c 
phase, especially in cases where the iden�fica�on of a malignant tumor is very difficult. In addi�on, through 
automated grading, it is possible to obtain a real-�me response, which can be of great help when choosing 
the type of therapy or interven�on to be carried out. 

In the second case study, Plas�c Surgery, the aim is to automate the procedure previously created within the 
T3Dddy laboratory for the crea�on of guides, with the aim of helping the doctor in autologous ear 
reconstruc�on in children. The procedure is based on a first step of 3D scan acquisi�on of the healthy ear of 
the pa�ent through the usage of specific 3D scanners, followed by a second step of manual elabora�on of 
the scan where the specific ear components guides are designed and, finally, the third step in which the guides 
are effec�vely created and given to the medical staff to be used. The main challenge is to be able to obtain 
an ar�ficial intelligence-based tool capable of performing some steps of the current procedure in a completely 
automated way, mainly intending to automate the most complex processes that require the interven�on of 
expert personnel. All these aspects will be clarified and explained in detail in the specific case study chapter. 

The Psychiatry case study mainly focuses on pediatric pa�ents suffering from psychiatric disorders, due to 
which they have been led to an atempted suicide. The development of an AI-based tool aims to create an 
applica�on capable, star�ng from pa�ents' clinical data, of being able to dis�nguish between pa�ents who 
have atempted suicide and those who have only staged it to determine the severity of the pa�ent's condi�on. 

Finally, the Neurology case study aims to be able to iden�fy and quan�fy the tumor inside the rats’ brain 
through the sole use of diagnos�c images of rats. The es�mate of tumor size is used for therapeu�c research 
purposes, as CTB is developing new therapeu�c methodologies aimed at elimina�ng tumor cells without 
necessarily having to remove them surgically from pa�ents. 

The thesis is structured as follows: Chapter 2 contains all no�ons related to AI necessary for beter 
understanding concepts and technologies used for developing tools shown for each case study; Chapter 3 will 
mainly consist of process leading to idea�on and development of applica�ons for biomedical purposes; 
Chapters 4, 5, 6 and 7 detail highlighted case studies; finally, conclusions are reported in Chapter 8. 

  



2. Ar�ficial Intelligence in medical field 
Ar�ficial intelligence is a branch of computer science that in recent years has seen its interest grow 
exponen�ally, mainly thanks to the latest technologies based on natural language processing (NLP) [16], such 
as ChatGPT [26], capable of automa�cally genera�ng text by answering specific ques�ons. However, AI is born 
and used for many purposes and is not limited exclusively to NLP. Wan�ng to give a defini�on to AI, the most 
recent defini�on of the 2018 European Commission Communica�on [27] can be adopted: AI refers to systems 
that display intelligent behavior by analyzing their environment and taking ac�on – with some degree of 
autonomy – to achieve specific goals. 

Considering the AI methodologies developed in recent decades, these are all based on ‘data-driven’ 
approaches. These methodologies are included within machine learning (ML) and have the peculiarity of 
being able to automate the learning process of algorithms, automa�cally learning significant rela�onships 
and paterns from the data used [28]. Even though the most common techniques used in ML use approaches 
that are not par�cularly new, the key factor that has allowed the latest advancements has been the massive 
increase in available data [29]. 

In medicine, one of the main challenges that must be considered and overcome is the very limited availability 
of a quan�ty of correctly annotated data in most of the problems that are sought to be addressed [30]. 
Despite this challenge and other problems that limit and hinder the development of robust tools based on 
AI, such as privacy issues in the case of pa�ent data processing and ethical issues in the case of assisted 
diagnosis [31], many studies are conducted in all clinical areas [32]. Among these fields we find applica�ons 
capable of suppor�ng a complete management of health services and improving predic�ve medicine, clinical 
decision-making process and pa�ent data analysis and diagnos�cs [33–41]. In par�cular, AI systems can 
provide healthcare operators with real-�me informa�onal updates from various sources to coordinate care 
and allow appropriate health risk alerts and outcome predic�ons [33]. Such applica�ons allow hospitals and 
health services to work more efficiently, op�mizing logis�cs, training staff and analyzing electronic medical 
records [34–36]. Furthermore, by iden�fying significant paterns in data, AI can support diagnos�c and 
therapeu�c predic�ons to embrace proac�ve disease management and personalize pa�ent care plans [37, 
38]. It also has the ability to assist in health decisions, speeding up care delivery and reducing costs [32]. As 
for pa�ent data and diagnoses, AI techniques can manage vast amounts of informa�on generated by clinical 
ac�vi�es to discover useful insights for treatment [42]. This technology can also be used for rehabilita�on 
therapy, robo�c surgery, remote pa�ent monitoring and protec�on of sensi�ve data [39–41]. 

Since this work mainly focuses on the development of new AI-based applica�ons, rather than the crea�on of 
new AI techniques, it is good to explain all the concepts that are used within this document in such a way as 
to be able to understand more simply how exis�ng methodologies have been exploited and combined for use 
in specific case studies. The rest of the chapter will focus on providing all the basic technical informa�on on 
AI, especially on the methodology based on ML, and finally explain the more advanced concepts of ML that 
have been taken into considera�on. 

  



3. Basic concepts on Machine Learning 
Machine learning is a subset of AI that involves the construc�on of computa�onal models capable of learning 
and making predic�ons or decisions independently based on the data provided. These models con�nually 
improve their accuracy through learned data. Arthur Samuel, the first user of the term machine learning, 
used this phrase in 1959 to describe “the ability of computers to learn without directly programming new 
skills” [43]. 

The main types of ML are supervised, unsupervised, and reinforcement learning: i) Supervised ML assumes 
that the model has been trained on a dataset similar to the problem in ques�on, consis�ng of input data and 
corresponding output data. Once the rela�onship between input and output is learned, the model is able to 
classify new unknown datasets and make predic�ons or decisions based on them. ii) Unsupervised machine 
learning differs from supervised learning in that it uses unannotated data, which has not been previously 
labeled by humans or algorithms. The model learns from input data without expected values, and the 
available dataset does not provide answers to the assigned task. Instead of labeling or predic�ng outputs, 
this algorithm focuses on grouping data based on their characteris�cs. The goal is to teach the machine to 
detect paterns and group data without a single correct answer. It mainly relies on two methods: clustering 
and associa�on. Clustering involves grouping data based on their similari�es and differences. Associa�on is a 
method of analyzing rela�onships between data in a dataset. iii) Reinforcement learning assumes that the 
agent learns by interac�ng with the environment through a process of trial and error, without the need for 
supervised training examples. The agent selects ac�ons and observes feedback or rewards resul�ng from the 
environment. Based on these interac�ons, the agent refines an ac�on strategy or learns the value of each 
ac�on to maximize a cumula�ve reward in the long term. In some cases, the agent can also build a model of 
the environment to predict future states. This type of learning aims to op�mize agent behavior in complex 
environments through explora�on and exploita�on. It therefore differs from supervised learning as it does 
not require labeled examples, but the agent must discover the op�mal strategy on its own. 

In general it must be considered that all the problems can be seen as one of these three main tasks: 
classifica�on, predic�on, and detec�on. The classifica�on task consists of all the possible cases in which the 
goal is to obtain a well-defined category, such in the context of diagnosis, in which the objec�ve is to obtain, 
for example, a specific pathology associated with possible pa�ent’s symptoms. For the predic�on the aim is 
to guess a certain value given different interes�ng features, such as predict the possible therapy to treat some 
pathologies or predict cancer pa�ents’ life expectancy. Finally, the detec�on process primarily involves 
iden�fying elements through various methods, such as segmen�ng. A prime example of this is the 
segmenta�on of tumors in diagnos�c images, which aids in tumor iden�fica�on and preopera�ve planning. 

Added to this is the importance of the features used to train the model. These features are the independent 
variables used as inputs to the AI. Through various mathema�cal opera�ons, linear and nonlinear, these 
features produce the dependent variable, i.e., the output. Given their cri�cal role in determining the final 
output, there is a process that can be employed to create new features or modify exis�ng ones to try to 
improve the performance of the model. This process is called feature engineering, where features are 
typically created using data domain knowledge to highlight paterns important to the learning algorithm. 

A�er careful analysis, this work will mainly focus on supervised machine learning techniques for applica�ons 
in the healthcare field. Although there are valid unsupervised and reinforcement approaches, current 
literature indicates a prevalence of supervised models in this domain [44], probably due to the necessity of 
annotated datasets for this specific applica�on domain. In par�cular, as discussed later, supervised algorithms 
such as neural networks, decision trees and SVMs have been applied to mul�ple clinical tasks, from image 
diagnos�cs to risk predic�on. Therefore it is believed that, at the current state, the supervised paradigm offers 
the most relevant and concrete advantages for the development of ar�ficial intelligence systems in the 
medical-health field. Of course, being an ac�ve and rapidly evolving research field, new hybrid or 



unconven�onal approaches may emerge in the future. For these reasons, this paragraph reports the most 
common machine learning techniques typically used with a supervised learning approach. 

3.1. Basic Machine Learning techniques 
Below are all the basic machine learning techniques that will be covered in this document. The aim is to 
provide the reader with the minimum necessary tools to understand what it is discussed in the following 
chapters, without having to insert too cumbersome explana�ons in each of them. The order in which the 
different techniques are reported is based on the complexity of the algorithm. 

3.1.1. Linear Regression 
Linear regression predicts the value of a dependent variable from an independent variable. It generates a 
simple, interpretable formula for predic�ons and is widely used across a range of fields like science, biology, 
business, and behavioural science [45], an example is depicted in Figure 1.  

 

Figure 1 - Simple linear regression example: the dashed line is the linear regression line, and the equation is its formula. 

An example of the use of these linear regression algorithms is combining mul�ple linear regression to 
es�mate the caro�d-to-femoral pulse wave velocity [46]. 

3.1.2. Logis�c Regression 
Logis�c regression [47] is a supervised machine learning method used to predict the probability that an 
observa�on belongs to a par�cular class, typically binary (0/1, true/false, posi�ve/nega�ve). Unlike linear 
regression, logis�c regression is suitable for categorical dependent variables and does not require a linear 
rela�onship between independent and dependent variables. It works by modeling the probability of 
belonging to a class through the logis�c func�on, which returns values between 0 and 1, in Figure 2 an 
example. 
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Figure 2 - Simple logistic regression example: the blu points are the samples to which are associated the corrispective binary value, in 
orange the logit function. 

The parameters of the model are es�mated through the maximum likelihood method. Logis�c regression is 
used in much scien�fic research concerning medicine to classify observa�ons into groups and make 
predic�ons [48]. For example, in the medical field it can predict the presence of a disease based on symptoms 
and risk factors and differen�ate its type [49] or es�mate the probability of survival given the pa�ents' 
characteris�cs [50]. 

3.1.3. Decision Trees 
Decision trees [51] are a non-parametric supervised learning approach used for both classifica�on and 
regression tasks. The goal is to create a model that predicts the value of a target variable by learning simple 
decision rules inferred from the data features. Decision trees create a flowchart-like structure where each 
internal node represents a test on an atribute, each branch represents an outcome of the test, and leaf nodes 
represent class labels or regression values. Decision trees are easy to interpret and visualize, require litle 
data prepara�on, and can capture non-linear rela�onships.  

 

Figure 3 - Example of a decision tree trained using the iris dataset [52] 

They have been used in healthcare for diagnosis, survival analysis, risk predic�on, and treatment selec�on. 
As in the case of iden�fying homogeneous subgroups defined by combina�ons of individual characteris�cs 
[53] or to detect and predict urine infec�ons [54]. 

3.1.4. Random Forest 
Random forests [55] are an ensemble machine learning technique that operate by construc�ng a mul�tude 
of decision trees at training �me. For each tree in the forest, a random sample of the data points and features 
is used. The predic�ons from all the individual decision trees are then averaged to produce the final random 
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forest predic�on. By combining many decision trees, random forests overcome the tendency of individual 
trees to overfit their training set. The randomness introduced also decorrelates the trees so that the final 
model has reduced variance over a single es�mator. 

Random forests are robust to noise, can model complex nonlinear rela�onships, and are commonly used in 
medical applica�ons like disease diagnosis [56], like diabetes diagnosis [57], clinical risk assessment [58], 
image analysis, and biomarker discovery [59], and other cases like incident stroke prediciton [60]. 

3.1.5. K-Nearest Neighbour 
The k-nearest neighbour (kNN) [61] method is a popular method used in data mining and sta�s�cs. The kNN 
method is a type of algorithm that predicts the correct class of the test data by calcula�ng the distance 
between the test data and all the training points. It then returns the number of k (training) points that are 
close to the test data. In Figure 4 is represented an example of k-NN usage. 

 

Figure 4 - K-NN classifier example with K equal to 3 

kNN can be used for several medical applica�on, like in the classifica�on of COVID-19 cases [62] using a variant 
algorithm based on it, and in the classifica�on of three medical UCI datasets [63], containing numerical and 
sta�s�cal data [64]. 

3.1.6. Naïve Bayes 
Naïve Bayes classifiers [65] work by calcula�ng the probability of a data point belonging to each class, given 
the values of the data point's features. This is done using Bayes' theorem which states that: 

𝑃𝑃(𝐴𝐴 | 𝐵𝐵)  =  𝑃𝑃(𝐵𝐵 | 𝐴𝐴) ∗
𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵) 

Where P(I | J) is the probability that event I happens, knowing that event J has already happened, and P(I) 
the probability that event I happens. In the context of naïve Bayes classifiers, event A is the data point 
belonging to a par�cular class, and event B is the data point having certain values for its features. 

It can be used for text analysis determining whether the text is posi�ve, nega�ve, or neutral. The Naive Bayes 
classifier assumes feature independence and quickly categorises informa�on based on this assump�on. It is 
widely used in spam filtering, text classifica�on, and sen�ment analysis [66], and it can be also used in 
diagnosis of clinical disease [56]. 



3.1.7. Support Vector Machines 
Support Vector Machines [67] (SVMs) are a type of supervised learning algorithm that can be used for both 
classifica�on and regression tasks. SVMs work by finding a hyperplane in the data that best separates the 
data points into two classes. A three class example is shown in Figure 5.   

 

Figure 5 - A simple example of SVM classifier: in this simplified 2D visualization, it is possible to see how the data is divided by linear 
elements. 

Their ability to handle non-linear data and high-dimensional classifica�on tasks, makes SVMs suitable for 
processing large datasets [68]. SVMs can be used also for diagnos�c applica�on, like to diagnose diabetes 
using tongue photographs [69], diagnose heart disease and cancer [70]. 

3.1.8. AdaBoost 
AdaBoost [71], short for adap�ve boos�ng, is a machine learning algorithm used for binary classifica�on and 
regression tasks. It is a boos�ng technique that itera�vely trains mul�ple weak learners on different subsets 
of the training data and assigns higher weights to the misclassified instances in each itera�on. In subsequent 
itera�ons, the algorithm focuses more on the misclassified samples, allowing the weak learners to learn from 
their mistakes and improve on their performance. The weak learners are then combined to form a single 
strong classifier. An example is shown in Figure 6. 

 

Figure 6 - Example of an AdaBoost classifier. 



AdaBoost is widely used in computer-aided diagnosis (CAD) and can support medical prac��oners to make 
cri�cal decisions regarding their pa�ents’ disease condi�ons, such as diabetes, Alzheimer’s disease, cancers, 
and hypertension[72, 73]. 

3.1.9. XGBoost 
Extreme gradient boos�ng, also known as XGBoost, is a powerful machine learning algorithm that has gained 
significant popularity across various domains, including medicine. It is an ensemble learning method that 
aggregates the predic�ons of many individually trained weak decision trees to create a more accurate and 
more powerful model [74] and it is par�cularly well-suited for tasks with large and complex datasets [75]. 

In medicine, XGBoost has been applied to a wide range of tasks, like disease diagnosis, prognosis, treatment 
selec�on, and pa�ent outcome predic�on, such as the case of predic�ng myocardial infarc�on [76], or the 
case of treatment typology predic�on [77]. 

3.1.10. Neural Networks 
Neural networks (NN) are widely used in any kind of task nowadays, regarding classifica�on, predic�on, 
detec�on, natural language processing, speech recogni�on, and many other fields [78]. They are inspired by 
the human brain and consist of interconnected neurons that generates a response (called output) to some 
kind of s�mulus (known as input) [79]. Nowadays there exists many types of neural networks, some of the 
more common are the following: 

 Perceptron networks: the simplest type of NN, with an input and output layer composed of 
perceptrons [80]. Perceptrons assign a value of one or zero based on the ac�va�on threshold, dividing the 
set into two. 

 Layered networks (feed forward): mul�ple layers of interconnected neurons where the outputs of the 
previous layer neurons serve as the inputs for the next layer [81]. The neurons of each successive layer always 
have an input of one element more from the previous layer. Enables the classifica�on of non-binary sets, and 
are used in image, text, and speech recogni�on. 

 Recurrent networks [82]: neural networks with feedback loops where the output signals feed back 
into the input neurons. Can generate sequences of phenomena and signals un�l the output stabilizes. Used 
for sen�ment analysis and text genera�on. 

 Convolutional neural networks (CNNs) [83]: a type of neural network that is well-suited for processing 
data that has a grid-like topology, such as images. CNNs use a series of convolu�on layers to extract features 
from the input data, which are then fed into fully connected layers for classifica�on or regression. CNNs are 
widely used in computer vision tasks such as image classifica�on, object detec�on, and segmenta�on. 

 Transformer networks [84]: a type of neural network that has become popular in recent years for 
natural language processing tasks such as machine transla�on and text summariza�on. Transformer networks 
use a self-aten�on mechanism to learn long-range dependencies in the input data. 

It is important to understand that in order to learn NNs need, aside from the data, a training algorithm. From 
the possible training algorithm, the most common used are training algorithms that are composed by two 
fundamental elements: the loss func�on and the op�mizer. The loss func�on is used as a measure of how 
well the neural network’s predic�ons match the actual data, and it is used to compute the error of the model, 
that is finally used by the op�mizer to update the model’s weights. The op�mizer is an algorithm that updates 
the neural network’s weights in order to minimize the loss func�on. So far many different op�mizers have 
been realized, each with its own strengths and weaknesses. The most common are based on a gradient 
descent mechanism, like SGD [85] and Adam [86].  



3.2. Deep Learning 
Deep learning is a subset of machine learning based on ar�ficial neural networks with mul�ple layers that 
enable progressive extrac�on of higher-level features (also known as “deep features”) from raw input data. 
This allows the network to understand and mimic more complex and abstract behaviours [81]. Given the 
greater architectural complexity afforded by deep learning models and their ability to tackle more challenging 
tasks, numerous novel deep learning-based methods have been developed in order to effec�vely address a 
wide array of complex real-world problems. 

3.2.1. Deep Neural Network 
Deep neural networks (DNNs) are a type of machine learning model comprised of mul�ple hidden layers. 
They process informa�on from input to output, u�lizing weights and backpropaga�on to minimize errors. 
Increasing the number of hidden layers enables DNNs to achieve beter results, but also increases their 
computa�onal and memory requirements [81]. In Figure 7 is illustrated a generic structure of a DNN. 

 

Figure 7 - Generic example of a deep neural network. 

Deep Neural Networks (DNNs) have shown promising results in predic�ng drug dissolu�on �mes, 
outperforming Ar�ficial Neural Networks (ANNs) in generalizing to new data. Their applica�ons in healthcare 
are extensive, including medical imaging, diagnosis, drug development, prognosis, risk assessment, remote 
monitoring, and sports medicine [87, 88]. They have been used to analyze radiological images for detec�ng 
various condi�ons [89–91], evaluate endomyocardial biopsy data, and iden�fy hypertension from 
ballistocardiogram signals [92, 93]. DNNs are also used in diagnos�c models for diseases like cancer, diabe�c 
re�nopathy, and cardiovascular diseases [94–96]. 

3.2.2. Convolu�onal Neural Networks 
Convolu�onal neural networks (CNNs) are comprised of specific block of layers. These blocks are composed 
of three main elements convolu�onal layers, the nonlinear ac�va�on func�on (e.g. rec�fied linear unit, 
ReLU), and the pooling layer. They detect visual paterns from raw image pixels using hidden layers. The 
convolu�onal layers analyze recep�ve fields with filters [97]. Nonlinear func�ons extract meaningful features 
about image features. Pooling reduces data, selec�ng features, and speeds up computa�on, enabling CNNs 
to iden�fy similar features across an image for patern analysis [98]. A simple CNN is shown in Figure 8. 

 

… 



 

Figure 8 - Simple CNN example with a single convolutional layer. 

Convolu�onal neural networks (CNNs) have demonstrated a remarkable capacity to interpret and analyze 
medical images across a variety of tasks. For example, CNNs can match or even exceed radiologist 
performance in iden�fying pulmonary nodules or measuring coronary artery calcium on CT scans [99]. They 
are also able to classify chest x-rays and detect various lesions with a high degree of accuracy [100, 101]. 
More broadly, CNNs have achieved excellent results in medical image classifica�on, segmenta�on, 
reconstruc�on, and other areas. 

3.2.3. Segmen�ng Neural Networks  
Segmen�ng Neural Networks can be recognized by their characteris�c U shape, like the U-Net [102] shown 
in Figure 9. The U-Net model is characterized by its symmetric encoder-decoder design and minimal 
connec�ons. The encoder part of the model extracts deep features with large recep�ve fields through 
convolu�onal and downsampling layers. These features are then upscaled by the decoder to match the input 
resolu�on, allowing for pixel-level seman�c predic�on. The minimal connec�ons primarily combine high-
resolu�on features and different scales at the end, thereby reducing data loss from downsampling. 

 

Figure 9 - Original U-Net model [102]. 

U-Net has been applied in a variety of contexts and in par�cular it offers an efficient backbone for segmen�ng 
medical images and genera�ng seman�c maps to aid diagnosis. Star�ng from these reasons the 3D U-Net 
version [103] has been implemented and it is currently used in all the main segmenta�on tasks that work 
directly with diagnos�c images, like CT, MRI, US, histopathological images [104, 105]. 

3.2.4. Genera�ve Adversarial Networks 
Genera�ve adversarial networks (GANs) [106] are structured in a very par�cular way, they are based on two 
compe�ng networks: a generator and a discriminator. The first one learns to generate data that could be 
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considered realis�c, while the second one tries to dis�nguish between the data real and the generate one, 
also known as the data fake. The trained mechanism is also par�cular, and it is done by having a compe��on 
between the generator and the discriminator. The generator tries to generate data that is realis�c enough to 
fool the discriminator, while the discriminator tries to correctly iden�fy real and fake data. 

GANs have been successfully applied in medicine to generate various types of medical images, such as 
mammograms, CT scans, and MRIs. This allows for the training of models that require diverse image data. For 
example, GANs can be used to generate synthe�c medical images that can be used to train models for disease 
detec�on and diagnosis [107].  

3.2.5. Transfer Learning 
Transfer Learning [108] is one of the most used machine learning techniques in deep learning. It consists of 
developing a model for one task and then reuse it as the star�ng point for a second task. This is useful because 
it can help save �me and computa�onal resources when training a model on a new task, especially if the new 
task is similar to the original task. Transfer learning is par�cularly important in deep learning because deep 
learning models can be very computa�onally expensive to train. By using transfer learning, we can leverage 
the knowledge that a deep learning model has already learned from one task to solve a new task more quickly 
and efficiently.  

One of the most common ways to perform it, is to use a pre-trained model as a feature extractor. These 
features can then be used to train a new model for a different task. For example, we could use a pre-trained 
convolu�onal neural network (CNN) as a feature extractor to train a new model for image classifica�on. The 
CNN would have already learned to extract features from images, such as edges and shapes. The new model 
could then use these features to learn to classify images into different categories. 

Transfer learning has been used to achieve state-of-the-art results on a wide range of deep learning tasks, 
including image classifica�on [109], object detec�on [110], natural language processing [111], and machine 
transla�on [112].  

 

  



4. Ar�ficial Intelligence-based tools for biomedical applica�ons 
At the moment of realiza�on of an applica�on based on ar�ficial intelligence it is crucial to considerate the 
overall process. This means that all the steps that lead to the genera�on of the final result can be considered 
crucial, star�ng with the problem defini�on �ll the final result. This is strategic in order to avoid the arising of 
unexpected problems or misunderstandings of the real capabili�es of the final tools. 

In this work, it has been proposed, a�er a deep analysis and through a refining process carried out during the 
last three years, a framework based on three main phases for AI-based tools development, it is depicted in 
Figure 10. The phases are: the clinical phase, the ar�ficial intelligence engineering phase, and the final 
applica�on development. A complete defini�on of these three phases is generously explained below in a 
general meaning, with the aim of giving all the possible steps that could be performed to reach the final goal. 

 

Figure 10 - General framework representation: the three main phases 1) clinical phase, in which is majorly involved in the clinical 
staff; 2) artificial intelligence engineering phase, where the AI model is selected through deep analysis of the literature and after 
several testing steps; 3) application development phase, that consists of developing the final application integrating the AI model 
that will be used by the physicians. 

It must be noted that this work has not the aim to realize all the steps necessary to sa�sfy the requirements 
of the legisla�ve regula�ons and the ethical ones given the evolving situa�on present these years for this 
specific sector. 

4.1. Clinical phase 
The clinical phase consists of all the steps that need to be performed during the coopera�on of an 
interdisciplinary team comprising physicians, engineers and other possible expert correlated figures. These 
steps are the fundamental aspect to obtain a final result that could be considered valid. 

The ini�al step in this phase involves iden�fying a clinical task that could benefit from the implementa�on of 
an AI-based tool. This need typically arises from an unresolved issue or a repe��ve task that physicians have 
iden�fied for enhancement. In general, medical professionals can pinpoint crucial aspects of their clinical 
work that could be improved with AI, aiming for beter performance across all tasks. 

Upon iden�fying the poten�al task, several important mee�ngs are held to deeply understand the 
requirements and possibili�es. This phase involves clarifying several elements: the specific task that AI could 
poten�ally handle; the pathology involved; the individuals affected by this tool’s introduc�on; and the data 
available for training the AI. 

It is very important to correctly iden�fy all these elements and are cri�cal to the next step: the database 
crea�on process. Before describing this step, it is important to understand that, when dealing with any kind 
of medical data that could poten�ally reveal some type of informa�on of some pa�ents, it is mandatory to 
get the pa�ent consent. Furthermore, when doing a campaign of medical data harves�ng, diagnos�cal or 
clinical informa�on of the pa�ent, it is necessary to follow all the regula�ons for handling any kind of 
confiden�al informa�on of the country where the data is acquired. Therefore, gathering new medical data is 
a very complicated process, not only to obtain many cases, but principally doubt to all the bureaucracy 
necessary.  



There could be many ways to perform the crea�on of the database and they could be all performed in parallel 
considering the many difficul�es that usually occur for the medical tasks. All these possibili�es could be 
grouped in three main categories: i) gathering new data, performing a campaign of data gathering, in which 
the hospital involved, therefore the physicians of that hospital, do all the possible steps necessary to be able 
to gather the informa�on of the new pa�ents from the moment the campaign start; ii) gathering data from 
publicly available datasets, there exists many publicly available datasets of diagnos�c data that contain many 
kind of data; iii) request data from private study centers, try to gather data directly from other study or 
hospital centers. Considering the main goal of acquiring as much data as possible, all these ways have some 
posi�ve and nega�ve aspects, but there is not one that can be considered as the best one, notwithstanding 
further details will be discussed. The idea of crea�ng a new data gathering campaign that involves the medical 
staff’s hospital center could be considered as the best one, mainly because all the data gathered would be 
exactly as the team have decided, but this is not simple because, as said before, the �me necessary to obtain 
the concessions is undefined and could last more than the project �me itself and obviously at this it is 
necessary to add the �me necessary to effec�vely perform the new data acquisi�on process. Considering this 
aspects, the other two op�ons seem more easier to be done, but they are also very op�mis�c like in the 
request of private data in the majority of the cases drives to nothing because the centers ul�mately or does 
not answer or cannot share the confiden�al data.  Instead for what concern the research of publicly available 
dataset, it does not exist the certainty to find any dataset for the specific task planned, and if it does exist, it 
is not guaranteed that it contains the data previously decided as the data to be used. 

Given all these factors, the database crea�on process for developing AI-based solu�ons for clinical 
applica�ons is the most important and difficult step, especially being �me-consuming without the possibility 
of avoiding this step considering the importance of the typology of the final data that would be effec�vely 
gathered. 

4.2. Ar�ficial intelligence engineering phase 
Considering completed all the above steps, this phase is carried on mainly by the engineering team with the 
goal of developing the ar�ficial intelligence tool that could sa�sfy as much as possible the requirements 
decided by the mul�disciplinary team during the clinical phase. Given this, the steps during this phase will 
have a technical character.  

The first step is the database cleaning. During this step the database gathered will be cleaned and prepared 
to be effec�vely useful at prac�cal level. It is fundamental to perform this phase with a painstaking precision 
because any error will be reflected to the final results leading to possible false conclusions and requiring the 
restar�ng of the overall cycle of development. In this phase the following steps are performed: correction, 
the dataset created is checked in order to iden�fy poten�al anomalies or unacceptable values, completion, 
then it is controlled to find possible values that does not exist and to appropriately handle all these situa�ons 
deciding whether to remove the cases found or to change them in order to fit correctly the dataset structure. 
Following these two steps, the crea�on phase begins. This involves the use of feature engineering to develop 
new features. Lastly the conversion process is performed in order to obtain a domain of features that is all 
coherent, limited and well structured, e.g., all the non-numerical data is converted to numerical values, the 
categorical data is converted to a list of new binary features, the domain of each feature is scaled to be inside 
the interval [0,1] or [−1,1]. 

A�er the database cleaning the second step is typically based on the exploratory analysis of all the features 
using sta�s�cal methodologies. This is done in order to get a deeper grade of understanding of the 
informa�on available and to decide which approach could be used in the next step of this phase. Usually 
during this step, it should be possible to iden�fy possible correla�ons between the available features in order 
to obtain the desired outcomes, and in this way discard useless data. This is mainly useful for the cases in 



which there a lot of features available and there is uncertainty on which could be the most suitable to the 
problem addressed. 

Next for the third step there is the one that involves the crea�on of the model data or models data that will 
be used finally. Based on the final typology of task iden�fied that must be done, classifica�on, predic�on, or 
regression, several different machine learning models, described in the previous chapter, could be chosen. 
For this reason, the first process of this step consists of reducing the number of possible models to use to 
only the ones that are more promising, based on the main usage, the type of data available, and the state-of-
the-art on that specific task. Once the set of possible models is created, the next step is the training of the 
model followed by its valida�on. In order to perform these steps in the best possible way, there exist some 
well-known prac�ces that should be followed. These prac�ces consist of spli�ng the available data in two 
main different subsets, the set for the training process and the set for the tes�ng one, named correspondingly 
training set and tes�ng set. The training set is then divided into two subset the effec�vely used for the model 
training and the one used to validate it during the training, a�er each epoch is done. The so-called valida�on 
set is typically created using some specific split algorithm, like k-fold cross-valida�on and leave-one-out, done 
to obtain several different splits of training set and valida�on set. All these splits are used to train different 
instances of the same and to validate all of them in different sets of the same data, in order to obtain 
sta�s�cally more accurate informa�on about the effec�veness of the data and of the model selected. Once 
all the possible subsets are created, before the training of the model, it is not only mandatory but also 
strategic to decide the final metrics that will be used to evaluate the model. This ac�vity is fundamental in 
obtaining the right result when training the model, because it will be the goal of the training process to 
minimize or maximize the metrics selected. The metric that must be used depend on the task that must be 
performed, for example in the classifica�on task some metrics could be the accuracy, precision, recall, f-score, 
etc., but in regression problems other metrics are typically used like mean square error, mean absolute error, 
r-square, etc., and also for the detec�on ones some other like mean average precision, intersec�on over 
union, false posi�ve rate, etc. Thereby once the data and the metrics are ready the training is done with in 
parallel the valida�on. To obtain the best result the hyperparameters of the op�miza�on and loss func�ons 
must be tuned. Once the valida�on metrics are obtained the next step can start. The best performing model 
based on the valida�on results is selected, one per each model typology, and tested on the tes�ng set to 
iden�fy the tes�ng metrics. The real model capability is measured based on the performance resul�ng over 
the tes�ng data. This step is crucial because in case the final values are not sufficiently to sa�sfy the expected 
ability of the model, it is necessary to go back to the clinical phase to decide whether to change some aspects 
of the current task, maybe simplifying it, or to perform a new data acquisi�on step in order to have a greater 
dataset that could be more representa�ve for the given problem. 

4.3. Applica�on development phase 
This last phase consists of developing the applica�on that will be actually used for the task required. Reaching 
this last phase is not so straigh�orward, and it will not be seen in all the cases that will be presented in the 
next chapters. This is due to different factors, from the metrics not being sufficiently effec�ve in the medical 
prac�ce, or because there is not enough data to get a sta�s�cally stronger result, being in this way some 
preliminary study that will require more efforts for the data acquisi�on part.  

The first step of this phase consists mainly of integra�ng the AI model that has been elected as the best one 
with the code of an applica�on. Secondly the user interface is designed to facilitate the usage of the 
applica�on for the users. Usually this step have a prior step in which there are some mee�ngs in order to 
choose the best user interface possible based on the user needs and the feasibility of the requests. 
Subsequently the test and debugging step is performed to be sure that the final product will not fail in future 
scenarios. Finally the deployment step is done. This last step consists in releasing the final applica�on for a 
specific pla�orm, that could be a web server, the app store for mobile applica�ons or the desktop 
environment. Also this step is chosen based on the customer needs and the applica�on requirements. 



4.4. Ar�ficial intelligence pipeline defini�on 
With the idea of summarizing and facilitate the usage of all the explained phases and steps, all the above can 
be reduced inside a framework. In this way each �me an applica�on based on ar�ficial intelligence must be 
developed for a biomedical applica�on, it is possible to use the proposed framework with the goals of 
facilita�ng the crea�on of the applica�on and reaching possible state-of-the-art performance with the AI 
model following the best prac�ces exis�ng in this field. 

 

Figure 11 – Detailed view of the proposed framework, all the phases are divided into two main sub-phases with their own set of 
specific steps that must be done in order to go to the next phase.  

The complete workflow, depicted in Figure 11, is composed of these steps: the problem definition is the phase 
in which the clinical problem is defined by the coopera�on between the engineering team and the medical 
staff, iden�fying the main goal of the applica�on that would be created. Followed by these three main 
aspects: task selection, with this step the effec�vely task type is defined and so the main objec�ve of the final 
AI model that would be selected. Metrics selection is the next step and it is crucial to understand the actual 
performances of the models used on the task selected. Finally data selection, in this step the typology of the 
data that will be used as the input of the model is chosen based on the exper�se of the physicians on the 
topic addressed.  

For the database creation phase the principal aspect consist in the effec�ve crea�on of the database that will 
be used to train, validate, and test of the machine learning model. This step can be carried out by the means 
of three different procedures: the medical staff a�er ge�ng all the necessary permits start a data gathering 
campaign, in which the data of new pa�ents are acquired. Other than this, the other two ways are the public 
data gathering and the private data gathering. The final result of both these two possibili�es is the same, in 
which an already exis�ng dataset is obtained. The real difference between the two is that the private data 
gathering usually is not easily doable, and almost always ends in nothing. 

A�er crea�ng the database, the next important step is the data cleaning phase. During this phase all the data 
is prepared in order to be sure that it is really usable and does not present any kind of problem in the next 
phases. Several steps are done for this, star�ng with the data correction and completion. The data is checked 
to avoid possible inconsistencies in the values contained and if there are any missing value, in both cases a 
specific strategy is performed to replace the value or remove the sample or remove the feature. A�er this the 
data preprocessing is realized to move all the features to the same limited domain of values. Finally, the data 
splitting is done, in such a way that three different subsets are created, training, valida�on and tes�ng.  



Once the dataset is created and all the necessary are finished the following phase is the one that consists of 
the AI model creation. In this phase a�er an ini�al model selection step, in which a list of possible models is 
created to be sure to iden�fy the best model to use for the selected task. All the selected models are the used 
in the model training and validation step. As the name of this step suggests, all the models are training on 
the training set and validated over the valida�on set. The best model elected a�er the results on the 
valida�on set is used during the model testing. This last step is crucial to iden�fy the final model performance 
on unseen data, from this the life of the model is decided based on the possible criteria imposed by the 
interdisciplinary equipe. If the final results are not sufficiently sa�sfactory, usually the cycle of the life of this 
applica�on goes back to the database crea�on process, and if it is too difficult to be done, a change in the 
final task could be performed by the interdisciplinary team. 

Eventually, a�er all these steps are completed in a sa�sfactory way the final phase consists in the application 
development. During this last phase the model trained is integrated – model integration - into the final 
applica�on, with the goal of being really usable in prac�ce. This is obviously followed by the user-interface 
development, necessary in other to create a tool usable by everybody, even the ones without any kind of 
exper�se in informa�cs. Finally a�er all this is phases and steps the application deployment must be realize. 
In this latest step the applica�on is released for the specific final pla�orm in which the code should be used. 

Therefore is to be expected that this framework can be applied generally, with almost all these steps given 
the sufficient amount of �me, to all the problems in which an ar�ficial intelligence tool will be developed as 
the solu�on. In the following chapters, the framework will be applied separately to all the cases considered. 
In par�cular the following chapters will be about the following case studies: urology, with a focus on kidney 
tumors classifica�on; plas�c surgery, with the goal of automa�ng the procedure of crea�ng surgical guides 
for the surgery; psychiatry, in which the aim is to dis�nguish between fake and real suicide atempt; neurology, 
for which the objec�ve is to obtain a tool to iden�fy brain tumor cells to compute the volume of the tumor 
with to the volume of the brain. 

  



5. Ar�ficial intelligence for urology – case study kidney tumor 
The case study on kidney tumors was conducted inside the custom3D conjunct laboratory at the Department 
of Industrial Engineering of Florence (DIEF). The first case study during the overall �me of the PhD involved a 
deep study of the literature on kidney AI applica�on, which has been performed and reported here to 
understand what the state-of-the-art was and if the thought framework was good enough or it needed some 
enhancements. The task analyzed concerning the classifica�on of kidney cancer is reported. For this, the 
framework proposed and explained in the previous sec�on will be used, and therefore the structure of these 
chapters will be: explana�on of the clinical scenario, followed by the defini�on of the task to be performed 
and the data type to be used, with the descrip�on of the data gathered and available; a�er this steps, the 
proposed model is illustrated with the usage strategy, training methodology, and obtained results. Finally, 
some discussion is made for both and for the overall clinical case study. 

5.1. State-of-the-art kidney AI-based applica�ons 
Kidney diseases, such as renal tumors, acute kidney injury (AKI), and chronic kidney disease (CKD), are 
important issues for nephrology and public health worldwide, as they are associated with high mortality and 
morbidity rates [113, 114]. These diseases, if not iden�fied and treated preven�vely, can degenerate and lead 
to severe renal dysfunc�on, comorbidi�es, and, in the worst case, death [115–117]. Currently, in order to 
detect and prevent the degenera�on of kidney disease, con�nuous monitoring of specific parameters 
obtained through diagnos�c tests is performed [118]. Given that sta�s�cal models are used to deter-mine 
the actual presence or absence of disease [119], its severity [120], or its degenera�on [121], it is natural to 
think that models based on ar�ficial intelligence (AI) and machine learning (ML) [122] could also be used to 
achieve this same goal, to obtain sta�s�cally beter results or more high-performing solu�ons. 

As said in chapter two, in the last decade ML techniques have been increasingly employed in a variety of 
research areas. In this chapter, there will be examined with deeper detail the usage of ML in urology, in 
par�cular there will be examined the applica�ons that involve the kidney. 

In nephrology, ML techniques are used for several purposes: 

• segmenta�on and iden�fica�on of the anatomy of interest within the diagnos�c images (e.g., kidney 
masses such as tumors, cysts, etc.); 

• classifica�on of a kidney mass type, or of the stage in which a specific tumor is found; 
• predic�on of the evolu�on of kidney func�onality, which can highlight the presence of pathologies. 

Among others, ML techniques can be used in the analysis of suspicious renal masses. In such cases, it is 
nowadays necessary to surgically remove the tumor to iden�fy if it is of a malignant or benign nature, but, 
due to its posi�on, surgical removal is impossible without risking permanently compromising the pa�ent’s 
urological func�on. For this rea-son, by working directly with diagnos�c data and images, machine learning 
techniques can be crucial alterna�ve solu�ons for segmen�ng and iden�fying masses. 

Furthermore, some techniques can be used to help physicians to dis�nguish between par�cular cases of some 
pathologies that are very difficult to dis�nguish. In these cases, features obtained from diagnos�c exams are 
used to classify the single cases; in this way, the physicians can reach a more precise diagnosis. 

In addi�on to these applica�ons, there are also techniques realized to prescribe specific therapies, or to 
detect a pathology in advance, in order to prevent it or any of the possible degenera�ve side effects (e.g., 
chronic kidney disease, acute kidney injury). In these applica�ons are included also tasks with the aim to 
predict the compa�bility and the outcome of a surgical opera�on, such as a kidney transplant. 

Recently, the number of works related to this area has drama�cally increased, rising from a few dozen papers 
before 2018, to a few hundred presently (based on papers indexed on the Scopus® database from Elsevier). 
For this reason, it is crucial to carry out an updated survey summarizing the most promising opportuni�es 



offered by ML in this area. Accordingly, the present work aims to propose an updated and schema�c survey 
of the most effec�ve exis�ng techniques and to dra� possible future research lines based on ML. 

First, the most promising ar�cles are selected from the overall literature and classified based on their different 
applica�ons. Then there is a descrip�on and a comparison of all the used datasets rela�ve to the works 
selected. A�er that the implemented methods and the possible future developments are analyzed. Finally, 
conclusions are dra�ed based on the literature. 

The contribu�on that it is intended to make with this work is to give a macroscopic view of the exis�ng works 
concerning nephrology. In par�cular, the aim is to understand the state of the art of the methods that employ 
ML techniques to deal with some of the most common kidney diseases, repor�ng the various resul�ng 
metrics for each method. In addi�on, dimensional analysis of the various types of exis�ng datasets that have 
been used so far is carried out and a generic comparison is made from the point of view of the type of data.
  

5.1.1. Ar�cle selec�on 
A study of the literature related to publica�ons spanning from 1992 to February 2022 was carried out using 
Elsevier’s abstract and cita�on database, Scopus®, by entering keywords, “Ar�ficial Intelligence”, “Machine 
Learning”, “Kidney”, to iden�fy the most common and effec�ve ar�ficial intelligence (AI) and ML techniques 
that directly involve the kidney. In par�cular, the entered query was as follows: 

TITLE-ABS(artificial OR intelligence OR machine OR learning OR kidney) 

AND 

KEY(artificial AND intelligence AND machine AND learning AND kidney) 

(1) 

 

The research thus performed allowed the iden�fica�on of papers that use AI and ML in kidney analysis 
contexts. Figure 12 shows a significant increase in recent years (a�er 2017) in the interest and produc�on of 
papers by the scien�fic community—in general, there was an overall number of 224 papers dealing with the 
selected topic. 

 

Figure 12 – Trend of documents per year. 

To focus on the most relevant works, the literature analysis was carried out according to the following 
inclusion and exclusion criteria. 



Inclusion criteria: (1) ar�cles dealing with ML and AI techniques applied to the kidney were considered; (2) 
original ar�cles concerning one or more of the following aspects were taken into considera�on - 
segmenta�on, classifica�on, and predic�on of diseases directly related to the kidney; (3) reviews related to 
these topics were studied to perform a final check of the selected ar�cles. 

Exclusion criteria: (1) editorials, commentaries, and abstracts were not included in this study; (2) studies 
related to animals or carried out only at a laboratory level were excluded; (3) research studies that were not 
applied in clinical prac�ce were not considered. 

According to the aforemen�oned procedure, fi�y-nine studies were found to be eligible to be part of this 
survey. 

5.1.2. Machine Learning approaches for nephrology 
In the following, the studies are grouped based on the nature of the kidney disease. In detail, the analyzed 
pathologies are “kidney masses”, “acute kidney injury”, “chronic kidney disease”, “kidney stone”, “glomerular 
disease”, “kidney transplant”, and “other kidney pathologies”. From the analysis of the selected ar�cles, three 
main research tasks are iden�fied across the applica�on areas: 

1. segmenta�on and iden�fica�on, which intends to analyze diagnos�c images with the purpose of 
highligh�ng or detec�ng one or more specific elements; 

2. classifica�on, which aims to perform a diagnosis or to determine the degree of severity of disease; 
3. predic�on, which aims to prevent or forecast some future event, e.g., predict either the degenera�on 

of a disease or the outcome of a specific therapy. 

In the next subsec�ons are reported, for each disease, a brief descrip�on of the symptoms to provide the 
reader with a simple explana�on of the clinical scenario, and the various ML techniques used in the state of 
the art, grouped according to the research tasks described above, highligh�ng the type of database used. 
Figure 13 shows a graph schema�cally outlining the several analyzed pathologies (red color). From each 
pathology, one or two branches may be amplified according to the type of data available in the available 
studies (green color), and finally from these as many branches as the ML methods used on that type of data 
for that specific renal pathology (blue color). The following sec�ons are based on the schema�za�on depicted 
in the graph. 



 

Figure 13 - Scheme of pathologies with ML techniques applied according to the type of dataset available. Kidney disease addressed in 
red; type of available data in green; ML technique used in blue. 

5.1.2.1. Kidney Masses 
Kidney masses are abnormal growths within the kidney. They are mainly subdivided into two main categories: 
solid and cys�c. Generally, the presence of a kidney mass, in vivo, is determined by relying on imaging 
techniques such as CT, MRI, or US. 

In general, cys�c kidney masses are, in most cases, benign [123], while solid kidney masses are generally 
malignant; therefore, the kidney is generally par�ally or totally removed to perform the histological exam. 
However, approximately 16% of surgically removed solid kidney masses are benign [124] and surgical removal 
would not have been necessary. Unfortunately, the dis�nc�on of the nature of the solid renal mass, using 
diagnos�c imaging, is very complex, even for specialized physicians, given the significant similari�es in the 
appearance of some types of malignant and benign renal masses, in terms of texture, size, volume, and 
posi�on. To face this challenge, modern ML techniques have been employed to process image data, proving 
to help physicians in making a more precise and accurate diagnosis. To classify and dis�nguish between 
malignant and benign masses, [125] some use a Bayesian classifier [126], a learning algorithm based on the 
sta�s�cal rela�onship between radiomics features (rela�onal func�onal gradient boos�ng), and [127] an 
algorithm based on CT texture analysis. Many works focus on the analysis of renal cell carcinoma (RCC), which 
is the cause of 80% of kidney cancer deaths [123], either to dis�nguish different types of RCCs or to 
differen�ate them from benign tumors. In [128–132], the main goal is to diagnose the most common 
malignant tumor, the clear cell RCC, using radiomic features and ML-based classifiers (e.g., random forest, 
CatBoost). Using radiomic features extracted from mul�photon microscopy images of kidney �ssue sec�ons, 
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[133] try to dis�nguish RCC chromophobes and oncocytomas, while [134] try to classify the stage of a 
par�cular type of malignant tumor, the papillary RCC, using microarray datasets [135] and clinical informa�on 
of the pa�ents. Some more recent research, such as that of [136–138], focuses not only on tumor 
classifica�on, but also on automa�c tumor iden�fica�on through diagnos�c images, by using three-
dimensional image processing with ML techniques such as 3D U-Net, and 3D V-Net; with these solu�ons, they 
are able to automa�cally segment the tumor inside the CT. Table 1 shows these works, explaining the main 
objec�ve of each one, the adopted ML techniques, the database exploited, the best result achieved, and 
finally the year of publica�on; the reported metrics should be read from the perspec�ve that the higher the 
reported value, the beter the obtained performance. 

Table 1 – Renal mass research. 

Paper Objective Method Database Results Year 
[125] Malignant renal cyst prediction Bayesian classifier [125]  AUC 0.96 2009 

[126] Identify malignant renal masses 
Statistical relational learning—RFGB: 

relational functional gradient boosting 
[126] Accuracy 82% 2018 

[127] 
Differentiate between malignant and 

benign masses 
CT texture analysis with random forest [127] 

Accuracy 90.5% 
AUC 0.915 

2020 

[128]  Diagnose ccRCC WEKA with and without SMOTE [139] 
AUC contour-focused 0.865–0.984 

AUC margin shrinkage 0.745–0.887 
2019 

[129] Diagnose ccRCC Pyradiomics and random forest [139] 

Accuracy 84.6% 
Sensitivity 90.4% 
Specificity 78.8% 

Precision 81% 

2020 

[130] Diagnose ccRCC Radiomics and CatBoost [130, 139] MR accuracy 73% internal 74% external 
CT accuracy 79% internal 69% external 

2020 

[131] Diagnose ccRCC MaZda and WEKA toolkit [131] Accuracy 85.1% 2018 

[132] Diagnose ccRCC 
Proteomics-based 
random forest and 

imaging-based VGG16 
[139] 

Proteomics accuracy 98% image 
accuracy 83% validation, 95% testing 

set 
2019 

[133] 
Differentiate between kidney 

chromophobe renal cell carcinoma and 
oncocytoma 

Linear SVM [133] Accuracy 80% 2016 

[134] 
Classify papillary renal cell carcinoma 

stages 
Feature extraction and random forest [140, 141] Accuracy 88.5% 2018 

[136] Kidney and tumor segmentation 3D U-Net [142] Mean Kidney Tumor Dice 0.9168 2019 
[137] Kidney and tumor segmentation Cascade 3D U-Net [142] Mean Kidney Tumor Dice 0.9064 2019 
[138] Kidney and tumor segmentation Multi-resolution 3D V-Net [142] Mean Kidney Tumor Dice 0.8815 2019 

 

5.1.2.2. Acute Kidney Injury 
During an episode of acute kidney injury (AKI), the kidneys show difficulty in maintaining the proper fluid 
balance in the body, due to an accumula�on of waste products. Given the speed with which it strikes and the 
damage that it causes, being able to detect it early can be of great significance. In this type of cri�cal situa�on, 
AI is demonstrated to be one of the best solu�ons to correctly iden�fy a pa�ent with AKI. In studies by [143–
145], the goal is to predict AKI based on early symptoms to prevent a possible degenera�on of the disease, 
analyzing electronic health records (HER) and other clinical data, such as laboratory tests, vital signs, and 
pa�ent demographics. AI techniques, thanks also to the speed of response, can be decisive, as in the case of 
[146], in which the authors try to detect AKI in burn pa�ents using a k-nearest neighbor classifier on numerical 
features obtained from plasma crea�nine tes�ng [147]. 

Some research, such as [148, 149], focuses on predic�ng an episode of AKI in pa�ents undergoing 
examina�ons that require contrast agents, specifically coronary angiography. It has been observed that the 
use of such agents can lead to AKI episodes; in these studies, the authors aim to predict the AKI episode with 
AI approaches by using clinical variables collected before the examina�on and by the results of the coronary 
angiography that they undergo [150]. 



Recent studies focus on predic�ng AKI episodes’ insurgence within different periods from its manifesta�on. 
The most common predic�on �me intervals vary from 48 h to a maximum of 90 days, as in [151]; in this work, 
the authors evaluate their solu�on based on the analysis of �me-series data over these �me intervals. It is 
possible to find another ex-ample in [152], in which the authors, through numerical features extracted from 
mul�ple blood tests per single pa�ent, atempt to predict AKI within 30 days from its manifesta�on. Finally, 
in [153], the authors, using daily collected pa�ents’ clinical data, propose a par�cular type of deep learning 
algorithm, based on �me series, which is able to predict AKI within 48 h from its occurrence, as well as classify 
the stage of the AKI disease if it is already present. In Table 2, analogously to Table 1, are reported all the 
related objec�ves, methods, used databases, and results. 

Table 2 - AKI research. 

Paper Objective Method Database Results Year 

[143] 
Predict AKI in  

adult and children 
Boruta [56] (selection algorithm) +  

random forest 
[154, 155] AUC 0.796 2018 

[144] 
Predict AKI in  

adult and children 
Gradient boosted machine [156] AUC 0.85 2021 

[145] Predict AKI Gradient boosted machine [145] AUC 0.76 2021 
[146] Predict AKI in burn patients K-NN [146] Accuracy 97% 2019 

[148] Predict AKI Lasso + logistic regression [157] 
AUC 0.79 

AUC 0.82 [p < 0.001] 
2019 

[149] Predict AKI RF + XGboost [149] AUC 0.843 2020 

[151] Predict AKI Streams [151] 
Accuracy 56% in 48 h 
Accuracy 84% in 30 d 
Accuracy 90% in 90 d 

2019 

[152] 
Prediction of AKI  

from blood test 
Feature selection + random forest [152] AUC 0.881 in 30 d 2021 

[153] Predict AKI Gradient boosting tree-based machines [158] 
AUC 76% in 48 h 
AUC 81% stage 2 
AUC 87% stage 3 

2020 

 

5.1.2.3. Chronic Kidney Disease 
Chronic kidney disease (CKD) is a condi�on characterized by the gradual loss of kidney func�on over �me. 
CDK damages the kidneys by decreasing their ability to filter waste from the blood. In severe condi�ons, waste 
can reach high levels and lead to the development of other complica�ons, which, in the most extreme cases, 
will require periodic medical treatment, such as dialysis, or even a kidney transplant [159]. CDK is a disease 
that can be diagnosed by physicians through the study and analysis of a variety of indices (e.g., eGFR [160]); 
thus, it is suitable for the applica�on of ML methods. An example of using AI for this purpose can be seen in 
the study by [124], where the stage of pathology is classified using radiomic features obtained from 
ultrasound images of the kidney. 

The general interest and applica�ons to diagnose CKD underwent an abrupt increase with the crea�on and 
public release in 2015 of a database containing characteris�c features (i.e., age, blood pressure, specific 
gravity, albumin, sugar, red blood cells, pus cell, pus cell clumps, bacteria, blood glucose random, blood urea, 
serum crea�nine, sodium, potassium, hemoglobin, packed cell volume, white blood cell count, red blood cell 
count, hypertension, diabetes mellitus, coronary artery disease, appe�te, pedal edema, and anemia) related 
to 400 pa�ents during the early symptoms of the disease [63]. Different methods based on the analysis and 
classifica�on of pa�ent features are adopted by [124, 161–169]. 

In addi�on to the diagnosis of CKD, there are some related studies in the literature, such as [170], in which 
the authors try to predict a possible plan for the pa�ents’ diet, given the fact that following a proper and 
suitable diet plan can help to slow down the progress of CKD [171]. In [172], since maintaining appropriate 
hemoglobin levels during treatment for CKD is cri�cal, the authors try to predict the hemoglobin level in the 
blood during anemia treatment in predialysis CKD pa�ents, to intervene more quickly. 



This informa�on, the used databases, and the obtained accuracy results are shown in Table 3, analogously to 
the others. 

Table 3 – CKD research. 

Paper Objective Method Database Results Year 

[124]  
Diagnose CKD  

based on  
patient stage 

Support vector machine—SVM [124]  
Accuracy 82% on 2 stages 

Accuracy 67.21% on 3 stages 
Accuracy 51% on 5 stages 

2014 

[161] CKD diagnosis Random forest [63] Accuracy 99.3% 2016 
[162] CKD diagnosis Decision tree C4.5 [63] Accuracy 63% 2016 
[163] CKD diagnosis SVM [63] Accuracy 98.3% 2016 
[164] CKD diagnosis k-NN with CFS and AdaBoost [63] Accuracy 98.1% 2017 
[165] CKD diagnosis Random forest [63] Accuracy 100% 2017 

[166] CKD diagnosis RPART [63] 
AUC 0.995  

Sensitivity 0.9897 
Specificity 1 

2018 

[167] CKD diagnosis PSODP + DL-RNN [63] Accuracy 99.5% 2018 
[168] CKD diagnosis PNN [77] [63] Accuracy 96.7% 2019 
[169] CKD diagnosis RFE and Random Forest [63] F1 score 100% 2021 

[170] 
Predict diet plan for  

CKD patients 
Multiclass  

Decision forest 
[63] Accuracy 99.17% 2017 

[172] 
Predict hemoglobin levels  

in CKD patients 
Extraction rule—Re-RX + 

J48graft 
[63] Accuracy 95.18% 2019 

 

5.1.2.4. Kidney Stone 
Nephrolithiasis, or kidney stones, is a condi�on characterized by the presence of deposits in the kidney, 
caused by an altera�on in the balance between the solubility and precipita�on of salts in the urinary tract 
and kidneys [173]. One crucial point is given by the fact that surgery is required in 20% of pa�ents with this 
condi�on [174]. In this context, AI is applied to iden�fy the correct type of treatment to be followed based 
on parameters such as sediment composi�on, loca�on, and size [175]. Some research focuses on the 
detec�on of kidney stones, such as [176, 177], which use radiomic features extracted from manually 
segmented CT, with the goal of the early detec�on of stone deposits before they reach a size greater than 2 
cm, allowing the use of non-invasive treatments. Other research, such as [178–180], focuses on predic�ng 
the outcome of shock wave treatment without the use of diagnos�c imaging techniques, by analyzing the 
preopera�ve parameters of pa�ents (such as age, sex, presence of related diseases, and stone characteris�cs 
including stone laterality, loca�on, and maximum length). Similar to the other tables, Table 4 reports this 
informa�on, the databases used, and the accuracy of the obtained results. 

Table 4 - Kidney stone research. 

Paper Objective Method Database Results Year 
[176] Renal stone detection Segmentation + ANN [176] Accuracy 86% 2019 

[177] Renal stones vs. phleboliths 
Radiomics +  

AdaBoost classifier 
[177] Accuracy 85.1% 2019 

[178] 
Kidney stone removal,  

prediction of postoperative 
variables 

ANN [178] Accuracy 81–98.2% 2017 

[179] 
Predict stone-free status  
after the first treatment 

Feature extraction +  
sequential forward selection +  

multiple classifier scheme 
[179] Accuracy 60% 2019 

[180] Stone-free prediction 
Light gradient boosting 

method 
[180] Accuracy 87.9% 2020 

 

5.1.2.5. Glomerular Diseases 
Glomerular diseases are diseases that affect the glomeruli, whose func�on is to filter blood and, at the same 
�me, to retain proteins and blood that the body needs. Many diseases, such as diabetes, affect kidney 



func�on by atacking the glomeruli [181]. In this regard [182–184], use methods based on the analysis of 
pa�ents’ clinical data to predict type II diabetes. Some studies focus on specific condi�ons and causes of 
glomerular diseases, such as Immunoglobulin A Nephropathy (IgAN), which is the most common biopsy-
proven primary glomerulonephri�s in the world [185]; it damages not only the kidneys, but also the immune 
system response [186]. In [187–189], the authors implement applica�ons able to predict IgAN using a renal 
immunofluorescent image obtained by fluorescence microscopes rela�ve to a renal biopsy. Other works, such 
as [190–192], focus on detec�ng type II diabetes directly from diagnos�c images, using radiomic features. 
Finally, [193] try to predict the weight of children with glomerular disease to avoid possibly dangerous weight 
loss, using diagnos�c numerical features obtained from blood monitoring and analysis. 

All the useful informa�on is reported in Table 5, analogously to the previous tables. 

Table 5 – Glomerular disease research 

Paper Objective Method Database Results Year 
[182] Predict diabetic kidney disease SVM radial [182] Accuracy 94% 2013 
[183] Predict diabetic kidney disease Unbalanced random forest [183] Accuracy 83.8% 2018 
[184] Predict diabetic kidney disease Knime + WEKA [184] Accuracy 83.5% 2019 

[187] 
Resolution image-based  

renal pathology 
Convolutional neural network [187] Accuracy > 80% 2021 

[188] 
Predict ESKD in patients with 

IgAN 
ANN [188] 

AUC 0.82 with  

5-year follow-up 

AUC 0.89 with 

10-year follow-up 

2021 

[189] 
Predict deterioration of  

kidney function  
in IgAN patients 

SVM [189] Accuracy 79.8% 2021 

[190] Diagnose glomerular disease 
Disjunctive least  

generalization—DLG 
algorithm 

[190] Accuracy 81.26–96.5% 1992 

[191] 
Detect pathogenic and  

non-pathogenic  
glomerulus and tubulus 

RatSnake—ML automatic  
segmentation 

[191] Accuracy 94.7% 2014 

[192] Diagnose glomerular disease Decision tree with  
J48 algorithm 

[192] Accuracy 89.47% 2021 

[193] 
Predict weight of  

children in renal dialysis 
ANN [193] Mean difference 0.497 2018 

 

5.1.2.6. Kidney Transplant 
Even if kidney transplanta�on is not a pathology but rather a specific surgical treatment, some authors 
considered crea�ng a dedicated sec�on since there are several studies regarding this topic, and it is one of 
the most common treatments for pa�ents with severe kidney pathologies. 

In detail, kidney transplanta�on is a surgical procedure that involves taking a healthy kidney from a living or 
cadaveric donor and implan�ng it into the recipient pa�ent. For the transplant to be successful, many factors 
must be considered, including the compa�bility of the donor with the human leukocyte an�gen (HLA) 
proteins of the recipient. Although, nowadays, there is a method that reduces the risk of rejec�on, in the case 
of mismatched HLA [194, 195], approximately 40% of donated kidneys are rejected [196]. The ML techniques 
ap-plied by [197–201] focus on predic�ng the probability of success and survival in these types of 
interven�ons using numerical features (e.g., age, sex, �me in dialysis, donor type, donor age, HLA 
mismatches, delayed gra� func�on, acute rejec�on episode, and chronic allogra� nephropathy). Table 6 
reports all the necessary informa�on, analogously to the others. 



Table 6 – Kidney transplant research 

Paper Objective Method Database Results Year 

[197] 
Predict  

transplant failure probability 
Decision tree [197] 

Specificity 73.8% 
Sensitivity 88.2% 

2010 

[198] Predict post- 
transplant survivability 

Bayesian belief network [198] 

Accuracy 52% after 1 
year 

Accuracy 56% after 3 
years 

2012 

[199] 
Classify risk levels for  
kidney graft survival  

after transplant 

ElasticNet + Bayesian belief 
network 

[202] Accuracy 68.4% 2018 

[200] Predict early transplant 
rejection 

Decision tree and random 
forest 

[200] Accuracy 85% 2019 

[201] 

Predict kidney transplantation  
compatibility 

Predict renal function 
worsening  

1 year after transplant 

Elderly KTbot [201] 
Precision 90%  

Sensitivity 71%  
F1 score 0.79 

2020 

 

5.1.2.7. Other Renal Diseases 
In this group are reported other renal diseases that do not fit within the classifica�on provided so far. These 
studies focus on uncommon objec�ves, such as [203], which aims to predict the level of hemoglobin in 
pa�ents with renal dysfunc�on, using numerical characteris�cs obtained from clinical data related to dialysis 
[204]; in [205], an applica�on is developed that intends to define the need to perform or not a renal biopsy 
by analyzing physicians’ annota�ons through a natural language processing ML algorithm; [206] try to predict 
the survival of hemodialysis pa�ents using numerical characteris�cs (age, sex, diabetes mellitus, chronic 
glomerulonephri�s or nephrosclerosis, body mass index, albumin, sodium, potassium, calcium, phosphorus, 
crea�nine, total cholesterol, etc.). In [207], the authors extract radiomics features from three-dimensional 
ultrasound images to iden�fy renal and liver �ssue in pa�ents with hydronephrosis. Finally, [208] use 
numerical features extracted from pa�ents’ EHRs with the corresponding acquisi�on �me, to predict the risk 
of stra�fica�on of renal func�on deteriora�on. 

Table 7 is presented analogously to the previous ones. 

Table 7 – Other renal diseases research 

Paper Objective Method Database Results Year 

[203] 
Predict hemoglobin in patients  

with kidney disfunction 
Data merging + clustering + 

ensemble of classifiers 
[203] 

Mean absolute error 
0.662—Italy,  

mean absolute error 
0.673—Spain 

2014 

[205] Recommend renal biopsy 
Tokenization + NLP machine 

learning classifier 
[205] 

Accuracy 83.5% 
Precision 80.6% 

2019 

[206] 
Prediction of 1-year survival  

in hemodialysis patients 
Ensemble artificial 
intelligence model 

[206] Accuracy 94.8% 2020 

[207] Detect kidney and liver tissue  
for hydronephrosis patient 

Homodyne-K feature 
extraction + random forest 

[207] Accuracy 94% 2015 

[208] 
Predict risk stratification  

of renal function deterioration 
based on eGFR threshold 

Multitask temporal-based 
classifier 

[208] 

Specificity 0.828 with 
10% threshold  

Specificity 0.786 with 
20% threshold 

2015 

 

5.1.3. Databases used in reviewed research 
In this sec�on, two tables contain informa�on about the databases used in the research considered. This 
informa�on includes the name of the database, when available, or otherwise a dis�nc�ve name related to 
the type of data and the organiza�on in which they were collected; the number of elements that make up 



the dataset; a brief descrip�on of the type of data present; the year in which the database was made public, 
when available, otherwise the year in which it was used for the first �me in a paper; and, finally, whether the 
database is open access. 

Specifically, in Table 8 are reported all databases that have as the data type diagnos�c images; this can be CT, 
MRI, US, or images obtained through analysis in the laboratory with instruments such as a digital microscope. 
This second type of technique is mainly used for the detec�on of masses or malforma�ons within the kidneys. 
It is possible to note that these types of databases have very different volumes; in the case of 3D US images, 
there are, for example, databases of nine pa�ents; for CT and MRI, there are databases with a minimum of 
50 cases up to a few hundred, and finally, with regard to other imaging techniques, there are databases from 
a minimum of 24 up to a maximum of 1321 cases. This discordance at the numerical level is given mainly by 
the effec�veness and invasiveness of the different examina�ons and therefore by the frequency of their use 
in clinical prac�ce. US is a less effec�ve imaging technique in this field, compared to CT and MRI, and, 
therefore, the studies concerning the applica�on of this technique are very small and dated. As for the 
examina�ons performed on biopsies, the number of samples is much larger because it is an examina�on that 
is compulsorily performed in every case to define with absolute certainty the type of mass removed. Among 
the reported databases, only two are publicly accessible: the CPTAC Clear Cell Renal Cell Carcinoma Discovery 
Study [139, 209], released in 2018 by the U.S. Na�onal Cancer Ins�tute, and kits2019 [142], released in 2019 
by grand-challenge.org, hosted by MICCAI. 

Table 8 – Diagnostic image databases. 

Database Number of  
Patients Description Year (First 

Use/Published) 
Open 
Access 

[125]  93 
Patients’ MDCT. Patients with complicated cysts: cyst with 

at least one focus of septa, a solid nodule, and any 
calcification or wall thickening on MDCT 

2009 No 

[126] 150 

Patients’ CT. 

100 malignant tumors: 70 clear cell renal cell carcinoma 
(ccRCC), 20 papillary renal cell carcinoma (pRCC), and 10 

chromophobe renal cell carcinoma (chRCC); 

50 benign tumors: 20 lipid-poor angiomyolipoma (lpAML), 
30 renal oncocytoma 

2018 No 

[127] 79 
84 renal masses: 63 malignant (25 clear cell RCC, 23 

papillary cell RCC, 15 chromophobe RCC), 21 benign (10 
oncocytomas, 11 fat-poor angiomyolipomas) 

2020 No 

[130] 440 440 MRI and CT of patients with ccRCC 2020 No 
[131] 54 Patients’ CT. All patients have ccRCC. 2019 No 
[139] 216 216 proteomics data and 783 slide images (524 tumoral) 2018 Yes 

[142] 300 
CT of patients with one or more kidney tumors. 

Segmentation of kidneys and tumors. 
2019 Yes 

[124]  188 

The database is composed of 40, 16, 38, 60, 28, and 6 entries 
for healthy, stage 1, 2, 3, 4, 5, respectively. These images are 

obtained from 35 observers taken at different times. The 
kidney ultrasonic images are segmented and annotated 

into three regions of interest (ROIs) 

2014 No 

[176] 200 
200 kidney stones harvested from nondestructive stone 

extraction at three different sites. Stone size was measured 
using a digital caliper 

2020 No 

[177] 412 LDCT of 235 kidney stones and 224 phleboliths 2019 No 

[178] 254 
Preoperative abdominopelvic ultrasound and intravenous 

urography or CT scan of PCNL patients. 
2017 No 

[207] 9 
This dataset contains the 3D US abdominal images from 9 

pediatric patients with hydronephrosis 
2015 No 

[191] 1321 
Biopsy images of pathogenic (338) and nonpathogenic (396) 

glomerulus and some of pathogenic (338) and 
nonpathogenic (248) tubulus 

2014 No 



[192] 584 

Renal biopsy reports, each of 4 or 5 slides with different 
stains, for each case: clinical and laboratory data, diagnostic 
hypothesis, histological biopsy study, histological report of 

glomerular disease 

2021 No 

[187] 422 
Renal immunofluorescent images obtained by fluorescence 
microscopes relative to a renal biopsy of 162 patients with 

IgAN and 260 without 
2021 No 

[133] 24 
24 unstained deparaffinized formalin-fixed kidney tissue 

sections of chRCC and oncocytoma, 12 of each type 
2016 No 

 

In Table 9 are reported all the databases exclusive of numerical type, rela�ng to in-forma�on obtained from 
diagnos�c tests, such as blood tests, gene�c tests of kidney �ssues, or data from pa�ent history. For these 
databases, the volume varies; for more complex tests, such as gene�c tests, there is a varia�on ranging from 
a few tens up to a few hundred cases; for medical histories, this ranges from a few hundred up to 269,999 
cases; for simpler diagnos�c tests, from a few tens up to several thousand cases. Of these databases, only 
three are publicly available; for some, access is limited to a specific country (in the table, these are reported 
as “only in the USA”). Among the public databases, two contain RNA sequences of renal tumors, which are 
used to iden�fy the pathological stage of the tumor. Finally, the third public database contains data on blood 
tests, pa�ent history, and informa�on about CDK-related diseases. 

Table 9 – Numerical databases. 

Database Number of  
Patients Description Year (First 

Use/Published) 
Open 

Access 

[140] 260 
Tumor RNASeq and pathological stage (I, II, III, and IV): 

Stage I—172, Stage II—22, Stage III—51, and Stage IV—15. 
2010 Yes 

[141] 34 
This dataset was obtained using Affymetrix HGU133 Plus 
2.0 array platform and includes 19 and 15 samples in early 

(excellent survival) and late (poor survival) stages of PRCC. 
2005 Yes 

[154] 269,999 

6.1% of patients in the dataset had a clinical deterioration 
event: 424 cardiac arrests, 13,188 intensive care unit (ICU) 
transfers, and 2840 deaths on the wards. For each patient, 

there are a total of 29 features. 

2014 No 

[156] 108,441 
Australian and New Zealand Society of Cardiac and 

Thoracic Surgeons Database registry recorded 110,342 
cardiac surgery events in 108,441 unique patients. 

2018 No 

[145] 780 

Medical data collected by natural language process module 
from EMRs including demographic data, daily 

documentation, laboratory and imaging results, anesthesia 
records, medications, interventions, and diagnosis. TRIPOD 

guidelines were followed. 

2021 No 

[146] 50 

Serial creatinine testing of patients with ≥20% total body 
surface area (TBSA) burns at risk for AKI. AKI was defined 

using the Kidney Disease: Improving Global Outcomes 
(KDIGO) criteria. 

2019 No 

[158] 153,821 
153,821 patients from 6 different sites. Each patient had a 

mean of 67 (SD = 46) clinical facts per day. 
2020 

No (only 
in USA) 

[149] 671 

Information related to demographic characteristics, clinical 
condition, preoperative biochemistry data, preoperative 

medication, and intraoperative time-series hemodynamic 
features (systolic blood pressure (SBP), diastolic blood 

pressure (DBP), mean arterial blood pressure (MAP), and 
heart rate (HR)) from electronic medical records and records 

on intraoperative variables. 

2020 No 

[152] 51,869 618,719 blood test occurrences for 51,869 distinct patients. 2021 No 

[63] 400 
The CKD dataset was collected from 400 patients from the 

University of California, Irvine Machine Learning 
Repository. 

2015 Yes 

[179] 254 
This dataset includes information on preoperative, 

intraoperative, and postoperative parameters from 254 
patients who underwent kidney surgery. 

2019 No 



[188] 1015 

The variables contained per IgAN patient are age, sex, 
hypertension, serum creatinine, daily proteinuria, kidney 
biopsy, therapy—RASBs or corticosteroids. The primary 

outcome is ESRD, dialysis, or transplantation. 

2020 No 

[189] 80 
Features of 80 IgAN patients: secondary IgA deposition, 

eGFR, MEST-C scores. 
2021 No 

[190] 284 38 features for each patient and biopsy diagnosis. 1992 No 

[197] 194 
Features for each patient: age, sex, time in dialysis, donor 
type, donor age, HLA mismatches, delayed graft function, 
acute rejection episode, and chronic allograft nephropathy. 

2010 No 

[198] 7348 A total of 793 pre- and post-transplant variables per patient. 2004 
No (only 
in USA) 

[155] 6564 
First 12 h of 6564 HER from critically ill children admitted to 
a pediatric ICU without evidence of AKI; 4% of the patients 

developed AKI by 72 h. 
2016 No 

[151] 2642 
The dataset contains the data relative to 1781 patients pre-
implementation and 861 patients post-implementation of a 
digital intervention system, with the relative alert severity. 

2019 No 

[180] 358 

This dataset includes 42 features including the two target 
variables, stone-free and one-session success, for all 358 

cases. The number of cases with stone-free and one-session 
success was 253 (70.7%) and 154 (43.0%). 

2020 No 

[157] 1250 
Several serum markers per patient undergoing angiography 

as clinical standard care. 
2015 

No (only 
in USA) 

[200] 80 
80 patients who received HLA-incompatible renal allografts; 

14 features measured before transplantation. 
2019 No 

[201] 118 Medical records of 18 elderly and 100 younger patients. 2020 No 

[182] 1386 

Anthropometric measurements and blood pressure (BP), 
drug use and past medical history, physical assessment for 
retinopathy, sensory neuropathy, and peripheral arterial 

disease. eGFR calculated using the Chinese-modified 
Modification of Diet in Renal Disease equation. 

2013 No 

[183] 1000 
1000 T2DM patients’ data collected by the IRCCS (Istituto di 

Ricovero e Cura a Carattere Scientifico) of the Hospital of 
Pavia. 

2018 No 

[184] ∼32,000 
Diabetes of type 2 patients with a 24-month analysis 

window. 
2019 No 

[205] 3149 

This dataset contains a total of 3149 admission notes from 
the nephrology department. For the ground truth, there are 
recommendations given by physicians in first-day progress 

notes. 

2019 No 

[208] 6435 
Electronic health records of patients with hypertension, 

diabetes, or both. 
2015 No 

[202] ∼31,000 

United Network for Organ Sharing, a private, non-profit 
(UNOS) dataset including information on all kidney 

waiting-list registrations and transplants that had been 
recorded in the U.S. 

2014 
No (only 
in USA) 

[203] 13,011 125 features from dialysis clinical practice of 13,011 patients. 2014 No 

[193] 14 
ESRD patients on chronic hemodialysis or hemodiafiltration 

weighing 20 kg or more. 2018 No 

[206] 79,860 
Various features for each patient are presented with the 
relative risk score based on mass, serum albumin level, 

cholesterol level, and creatinine. 
2020 No 

 

5.1.4. Discussion 
A�er having reported in the previous sec�ons the exis�ng methods in the literature to address renal 
pathologies with machine learning methods and analyzed the available databases, we summarize in this 
sec�on what has been found for each pathology; in par�cular, the limita�ons of the studies carried out so far 
and possible future developments will be indicated. 

Regarding renal masses, the goal of the analyzed works is to find a method to non-invasively discriminate 
benign and malignant masses [127], and ar�ficial intelligence has the poten�al to become a very important 



tool for assisted diagnosis. This is mo�vated by the results of iden�fied research, in which are obtained 
accuracies ranging from 79% [130] to a peak of approximately 90% [127]  (these results are from private 
single-center databases). Currently, the gold standard for the detec�on of a renal mass is based on the 
analysis, by an experienced physician, of CT images before and a�er dosing with a contrast medium [210]. AI 
can perform the discrimina�on func�on because it can analyze diagnos�c images, such as CT, at a very high 
or equal level of detail as an expert [211]. This is because it can also take into account mul�dimensional 
characteris�c features, such as texture. However, using CT, the various parameters used for the acquisi�on 
and the �ming with which it is done assume an important role [127]. In fact, from the ar�cles analyzed, it 
emerges that, according to the CT acquisi�on phase taken into considera�on, the results obtained change; 
specifically, the most used phase is the cor�comedullary phase [128]. Furthermore, as regards the use of CT 
for the extrac�on of characteris�c features, the literature considers the three-dimensional use of CT to be 
beter and more representa�ve [212], but in the research iden�fied [125–134], to reduce the workload of 
manual segmenta�on and facilitate the repeatability of this opera�on, a limited number of slices or only the 
two-dimensional slice containing the largest por�on of the mass considered is used. In addi�on to how CT is 
used, it is also important to control the method by which features are extracted; in some research [126, 127, 
129–134], radiomic features are used, a�er manual segmenta�on by at least one experienced physician, to 
classify tumors. One of the major limita�ons introduced, in doing so, is the bias of the operator who performs 
the segmenta�on [213]. For this reason, more recent studies [136–138] have focused on overcoming manual 
segmenta�on by crea�ng deep learning algorithms capable of automa�cally segmen�ng kidneys and tumors 
present in CT; the results obtained from these studies are posi�ve, as they achieve a mean kidney tumor size–
mean per CT of the tes�ng set of (Kidney Sørensen-Dice + Tumor Sørensen-Dice)/2 [142], with a maximum of 
0.9168. In par�cular, one solu�on proposed in the literature to deal with operator-introduced bias is for a 
team of clinicians to collaborate on the kits2019 database in a way that reduces the risk of bias as much as 
possible. 

Regarding AKI, this pathology is very widespread, with consequences that, if not treated in �me, can even 
lead to death. Currently, there is no specific interven�on that can prevent AKI; there are only general 
measures that can be taken to delay more cri�cal procedures such as surgery [153]. For this reason, most of 
the recently developed research focuses on predic�ng the prognosis of this disease [143–146, 148, 149, 151–
153], being able to predict AKI with good accuracy even 30 days in advance [152]. The solu�ons implemented 
depend not only on the task but also on the actual number of data available for each pa�ent [214]. 
Maintaining a large amount of data for each pa�ent has an economic cost and features used in one center 
may not be available in other centers [143]. ML techniques can outperform clinical tools used to es�mate AKI 
risk, as we see in [144], with an AUC of 0.85. The performance of solu�ons exploi�ng ML for the predic�on 
of AKI is posi�ve: AUC 0.76 [145], in liver transplant pa�ents; 97% accuracy [146] and AUC 0.76 [153], for burn 
pa�ents; AUC [0.79–0.843] [148, 149], for pa�ents undergoing coronary angiography. However, de-spite the 
various exis�ng applica�ons, there is a lack of a ML-based predic�on systems that can be recognized as state 
of the art for AKI predic�on [145]. 

Regarding CKD, this is a very common type of disease, which, if detected in �me, can be managed through 
periodic therapies. Thanks to the University of California, Irvine (UCI), which made public the database known 
as UCI CKD [63] (containing 24 characteris�cs, derived from pa�ent history and diagnos�c tests, plus 
informa�on regarding the presence or absence of CKD), many studies have been developed to diagnose CKD. 
Since this database was made public, various studies have used it to test mul�ple different types of solu�ons, 
obtaining increasingly impressive results for accuracy (63–100%) [161–165, 167, 168, 170, 172], AUC (0.995) 
[166], and F1 score (100%) [169]. Being the only public database available for this pathology, the research has 
been mainly focused on the analysis of numerical features; this is also due to the fact that pa�ents suffering 
from CKD, or otherwise at risk, cannot undergo all the exis�ng diagnos�c imaging techniques. In this case, 
techniques that require the use of radia�on, such as CT, are strongly discouraged, because they can easily 
worsen the pa�ents’ condi�on. Therefore, imaging techniques such as US, used in [124]  with 82% accuracy 



in predic�ng the stage of CKD, and MRI are preferred. The later has been shown to have the ability to allow 
assessment of both renal func�on and structure [215]. Major future developments may shi� in this direc�on 
and focus on the development of methods that take advantage of MRI to be able to determine CKD. 

If radia�on imaging techniques cannot be used to determine CKD, the same is not true for detec�ng and 
analyzing kidney stones. In par�cular, for kidney stones, it is possible to use not only CT but also low-dose CT 
(LDCT), which exposes the pa�ent to approximately five �mes less radia�on than regular CT [216]. The 
independence of the dosage used to acquire CT is demonstrated in several studies: in [176], ML techniques 
are applied to process LDCT and CT and iden�fy the composi�on of a kidney stone, achieving 86% accuracy 
for both assays used; in [177], LDCT is analyzed to differen�ate between kidney stones and phleboliths in 
pa�ents with acute flank pain, with 85.1% accuracy. The applicability of these methods ensures that low-dose 
radia�on CT acquisi�ons can be used for the detec�on of a kidney stone, reducing any risks associated with 
the radia�on expo-sure of normal CT. In addi�on to the detec�on and analysis of kidney stones, researchers 
are also studying the predic�on of success in removing a kidney stone. Successful selec�on of the most 
appropriate method can lead to a higher rate of kidney stone clearance, lower risk of associated morbidi�es, 
higher probability of survival, faster recovery, and lower overall cost of care [217]. Depending on the 
procedure chosen [179, 180], and for the predic�on of stone removal, there is 60% accuracy [179] for 
predic�ng success a�er the first treatment, and 87.9% for predic�ng success when a shock wave is used for 
kidney stone clearance [180]. Accuracies ranging from 81% to 98.2% have been obtained for predic�ng a 
pa�ent’s condi�on and possible complica�ons following renal stone removal [178]. 

Since glomerular disease is a condi�on that worsens over �me, the machine learning techniques 
implemented are primarily focused on predic�ng the prognosis of the condi�on and iden�fying the 
consequences caused by the presence of the disease [87–89,92–98]. The most common glomerular disease 
prevalent in the world is Immunoglobulin A Nephropathy (IgAN) [218]. IgAN is caused by renal dysfunc�on 
and can be diagnosed by diagnos�c imaging of the kidney, par�cularly immunofluorescence imaging. Some 
re-searchers have focused on diagnosing IgAN from diagnos�c images with different resolu�ons, with an 
accuracy of at least 80% [187] and an accuracy of 80.27% [190], using only clinical and laboratory analysis 
data. Around 30–40% of IgAN pa�ents carry the risk of the disease degenera�ng into ESRD (end-stage renal 
disease) [188]; for this reason, some re-search tries to predict this degenera�on to allow the efforts of 
physicians to focus mainly on pa�ents who are more at risk, as, for example, in [188], where it predicts the 
degenera�on of the disease in the next 5 years, with AUC of 0.82, and a�er 10 years with AUC of 0.89, and 
as in [189], with 79.8% accuracy. Another par�cular type of glomerular disease is caused by diabetes. Since 
diabetes is very common, it is very important to prevent its de-genera�on into diabetes kidney disease, and 
in [87–89], the authors focus precisely on this aspect by crea�ng algorithms that can predict the prognosis, 
with an accuracy of 83.5–94%. 

Regarding the literature inherent to renal transplanta�on, it is possible to iden�fy three possible applica�ons 
of AI [218]: (i) diagnosis, using AI to diagnose the level of transplant risk by detec�ng parameters associated 
with renal transplant rejec�ons, and iden�fying abnormal paterns within them, as in [199], with 68.4% 
accuracy, and in [201]; (ii) prescrip�on, using AI to prescribe postopera�ve therapies [219] to prevent 
complica�ons or rejec�on, or to prescribe diets that may improve quality of life a�er renal transplanta�on 
[220]; (iii) predic�on, using AI to predict mortality, and possible rejec�on, as in [197], with 73.8% specificity 
and 88.2% sensi�vity; in [198], with 56% accuracy over a 3-year �meframe from possible rejec�on, and in 
[200], with 85% accuracy. It is important to note that for this specific task, the main limita�on for the 
applica�on of AI is given by the fact that the type of database is very pa�ent-specific [103–106], as the values 
are highly dependent on both the recipient and the donor(s) available, resul�ng in a limita�on that makes it 
difficult to generalize the solu�ons devised [221]. 

Before concluding, we believe that it is also necessary to analyze the ML algorithms used in nephrology, to 
address a possible reader interested in a specific type of algorithm rather than another, depending on the 



type of applica�on that they would like to achieve. First of all, it is possible to no�ce that all the ML algorithms 
used are based on the use of supervised learning techniques. This is mainly due to the fact that the realized 
tasks are formulated and viewed in the form of classifica�on problems. In par�cular, with regard to the 
research iden�fied in this work, in Table 10, all the methods used have been grouped by algorithm type. 

Table 10 – Searches grouped by type of ML algorithm applied. 

Method—ML Algorithm (Based) Authors Year 

Bayesian classifier 
[125]  2009 
[198] 2012 
[199] 2018 

Logistic regression 
[148] 2019 
[201] 2020 

Decision tree 
[162] 2016 
[192] 2021 
[197] 2010 

Random forest 

[207] 2015 
[161] 2016 
[165] 2017 
[143] 2018 
[134] 2018 
[132] 2019 
[200] 2019 
[127] 2020 
[129] 2020 
[169] 2021 
[152] 2021 
[183] 2018 

SVM 

[182] 2013 
[124] 2014 
[133] 2016 
[163] 2016 
[189] 2021 

ANN 

[176] 2019 
[178] 2017 
[193] 2018 
[188] 2021 

Ensemble of classifiers 

[179] 2019 
[206] 2020 
[203] 2014 
[164] 2017 
[146] 2019 
[177] 2019 
[172] 2019 
[131] 2018 
[184] 2019 
[128] 2019 
[126] 2018 
[144] 2021 
[145] 2021 
[153] 2020 
[180] 2020 
[149] 2020 
[130] 2020 

DNN 

[191] 2014 
[208] 2015 
[205] 2019 
[151] 2020 
[190] 1992 
[166] 2018 
[167] 2018 
[168] 2019 
[132] 2019 
[187] 2021 



[136] 2019 
[137] 2019 
[138] 2019 

 

From the table, it can be observed that the simplest and most common classifica�on algorithms, such as 
random forest and support vector machine, and ensemble algorithms, such as gradient boos�ng machine, 
are the most used in these types of studies. However, more complex ML algorithms, such as ar�ficial neural 
network, and deep neural networks, such as convolu�onal neural network, autoencoder, and more 
sophis�cated approaches based not only on feature or image analysis, but also on natural language 
processing and the temporal evolu�on of features (temporal-based approaches, e.g., recursive neural 
network) are not missing. This could be due to the lack of very large public databases that would allow beter 
use of the more complex ML techniques [222]. 

It is also possible to note that the methods applied by the authors differ mainly with respect to the type of 
the used data and the techniques of analysis and data processing. In par�cular, in cases where the database 
is composed exclusively of numerical features, derived from pa�ents’ medical records, classifiers such as 
support vector machine, random forest, and ar�ficial neural network are the most frequently applied. 
Whenever diagnos�c images are present, instead, the type of ML technique varies according to the 
preprocessing applied to the data. In the case of minimal or null preprocessing, techniques such as 
convolu�onal neural network are used, in which the model directly analyzes the image and finds the most 
relevant features in order to classify it. Instead, when algorithms are used for the extrac�on of radiomic 
features from specific anatomical regions, algorithms generally applied to numerical features are used; in 
par�cular, ensemble algorithms are exploited, which typically, in these cases, guarantee a beter result in 
terms of metrics. 

Finally, for the evalua�on of algorithms’ performance, the authors feel that it could be misleading to compare 
methods applied to the same objec�ve based on the values obtained from the evaluated metrics computed 
with different data. However, it is possible offer some considera�ons about the various metrics used, in order 
to understand in which cases some metrics are used instead of others. Since the most commonly used metrics 
are accuracy and AUC, we consider it appropriate to briefly discuss what the differences are: accuracy is a 
metric that represents the ra�o of the number of correctly predicted samples to the total number of samples 
present; AUC, on the other hand, represents the area under the receiver opera�ng characteris�c (ROC) curve 
that shows, for different probability thresholds, the rela�onship between the false posi�ve rate (ra�o of the 
number of false posi�ves to the total number of nega�ve cases) and the true posi�ve rate (ra�o of the number 
of true posi�ves to the total number of posi�ve cases). Looking at the two defini�ons, it may be deduced that 
the accuracy is a more intui�ve metric and therefore more frequently used, but its simplicity has drawbacks, 
since it cannot be used in all cases—for example, in the case of unbalanced datasets, where it is preferable 
to use metrics such as the F1 score or AUC, or in case it is desired to take into account the probability 
associated with the various classes predicted, in which case only AUC takes this aspect into account. With the 
above in mind, the use of AUC is strongly recommended as it encapsulates increasingly confident informa�on 
than accuracy alone. 

Despite the limits of this work, given the con�nuous evolu�on of research in this area, based on what has 
been analyzed so far, it is possible to conclude that, given the many exis�ng applica�ons of ML in nephrology, 
AI has great poten�al and versa�lity in this field. An example of a possible applica�on for kidney image 
analysis can be based on the combina�on of the mul�ple methodologies that currently exist, such as the use 
of deep learning to detect kidneys and tumors [38–40], followed by the use of other machine learning 
techniques to classify the nature and/or severity of tumors, or the presence of any kidney disease and/or 
other possible masses. However, this does not mean that limita�ons are not s�ll present. Most of the studies 
iden�fied end before moving to a clinical trial, remaining only single-center retrospec�ve studies, reducing 



their external validity [223, 224]. Consequently, the main and most urgent gap that should be addressed as 
soon as possible is that of the public availability of data; this will not only allow studies to be compared with 
each other but will ensure that there are improvements in nephrology itself [114]. To this end, the guidelines 
for conduc�ng clinical trials in nephrology, reported at the Kidney Disease-Improving Global Outcomes 
(KDIGO) conference, could be followed [221]. 

5.1.5. Final remarks 
Fi�y-nine, from a total of 224, studies concerning the applica�on of ML techniques for the segmenta�on, 
predic�on, and classifica�on of renal diseases were analyzed. First, the studies were divided, analyzed, and 
presented based on the addressed pathology and the main goal of the research. Then, the existent datasets 
were analyzed in terms of data typology, size, and public availability; the main concept derived from this 
analysis is the importance of a large dataset and public availability to allow research to go as far as possible 
for a specific objec�ve. Finally, the various pathologies were discussed in terms of what does not exist and 
what can be done to achieve further developments in this specific sector. In conclusion, from the analysis of 
the literature, it can also be noted how the introduc�on of modern ML techniques in the nephrological field 
allows the achievement goals not obtainable with tradi�onal techniques, such as speeding up and automa�ng 
CT segmenta�on processes, the possibility to perform non-invasive and reliable diagnosis, and to create 
predic�ve models - for example, to evaluate surgical or transplant outcomes and create predic�ve models to 
monitor pa�ent’s parameters in order to act promptly. 

Among all the works analyzed, it can be seen that the prac�cal purposes of the use of AI in urology range 
from the diagnosis of a disease, to the analysis of diagnos�c images, to the predic�on of prognosis, etc., and 
generally aim to aid doctors in making more accurate decisions, without atemp�ng, in any way, to replace 
them [225–228]. The physician’s atendance remains essen�al both from a human point of view, in 
establishing a deep doctor-pa�ent bond of trust that can improve the success of any therapies and treatments 
[229], and from an ethical and accountable point of view for diagnoses [230]. 

  



5.2. Kidney tumor classifica�on 
According to GLOBOCAN 2020 es�ma�ons, renal tumors are among the most prevalent cancers in the world 
and reach a mortality rate of 42% [231]. Renal tumor is a par�cular type of kidney mass that can be either 
malignant or benign. The majority of malignant renal tumors are RCC, a type of malignant tumor (carcinoma) 
that originates from the glandular epithelial cells of the kidney and has the poten�al to invade the 
surrounding �ssues tending to metastasize to other anatomical sites [232], being the cause of 80% of renal 
cancer deaths [123]. As for benign renal tumors, one of the most common is oncocytoma, which is 
characterized by the presence of large cells with abundant eosinophilic granular cytoplasm [233]. Although 
oncocytoma does not entail long-term risks [234], it accounts for approximately 16% of surgically removed 
renal masses [235] because of its high similarity to clear cell RCC [236]. In fact, currently the standard 
procedure for the treatment of renal tumor involves the use of diagnos�c imaging techniques to determine 
the presence of suspicious renal masses and their characteriza�on by analyzing the �ssues with visual 
inspec�on, comparing the mass-related parameters obtainable from the diagnos�c image (e.g., size, shape 
of the mass, etc.) [237]. Unfortunately, dis�nguishing the nature of a renal mass is a very complex task even 
for an experienced physician due to the similarity between oncocytomas and RCCs at the radiological imaging 
level [236]. Therefore, the best current method to diagnose the nature of the tumor is based on histological 
analysis of the �ssue of the mass [238] collected by biopsy a�er a radical nephrectomy of the kidney 
containing the mass or a par�al nephrectomy of the tumor [239].  

Being able to detect a renal tumor in advance and being able to classify it correctly would be a crucial step, 
as it would allow the introduc�on and use of medical procedures that can safeguard the pa�ent's life and 
renal func�on [240]. In fact, when a mass is iden�fied with certainty as benign, the surgical solu�on can be 
avoided and treatment involves con�nuous monitoring and control. Therefore, it becomes strategic to be able 
to implement an analysis tool, which can overcome these limita�ons. Given the wide use of ML techniques 
in image analysis and their evolu�on in the analysis of diagnos�c images [211, 241–243] the idea behind this 
work is to rely on these techniques for the realiza�on of this tool. ML procedures generally change according 
to the type of available data. In par�cular, for medical ML applica�ons usually the available data can be of 
two types: (i) clinical informa�on, derived from rou�ne clinical examina�ons, e.g. blood tests and medical 
history, (ii) informa�on derived from diagnos�c images, from specific clinical examina�ons, such as CT and 
MRI. With regard to diagnos�c images, there are various approaches and the most common is based on 
iden�fying, by manual segmenta�on, the areas of interest within the CT and extrac�ng from it specific 
features (e.g. texture, size, volume, etc.), named radiomic features. In addi�on, there is also the possibility of 
directly using diagnos�c images with deep learning algorithms to extract characteris�c features, called deep 
features. While the radiomic features are more interpretable, the effort required in terms of segmenta�on is 
considerable and the results can vary depending on how this is performed, as proved in [128]. 

In this work the available data is a set of CTs from renal cancer pa�ents. Using these data, this paper proposes 
two approaches for the classifica�on of renal tumors, with a special focus on the dis�nc�on between 
oncocytomas and clear cell RCCs, to provide an assisted diagnosis tool. The two approaches were developed 
and compared, seeking to create a tool that could be generalizable, updateable to new data, and fully 
automa�c (without the need to manually segment regions of interest). It has been paid close aten�on to the 
results analysis and comparison between the two approaches, trying to eliminate bias caused by unbalanced 
data and incorrect readings of output values. Moreover the focus was placed on building an algorithm capable 
of extrac�ng in a fully automated framework both radiomic and deep features, exploi�ng automa�c CT 
segmenta�on using a Convolu�onal Neural Network (CNN). The obtained results show that automa�c 
segmenta�on can be used as a star�ng point for the extrac�on of radiomic features for this type of task, and 
also that the obtained deep features are sufficiently representa�ve. In par�cular, comparable results were 
obtained with the two types of features, achieving an accuracy above 85% for both methods. 

 



5.2.1. Background exis�ng methods 
Various techniques have been developed to be able to dis�nguish malignant and benign renal tumors through 
the use of ML-based techniques that have evolved over �me along with ML algorithms and their image 
processing capabili�es [244–246].  

Early works in the literature with significantly relevant results use radiomic features extracted directly from 
manually segmented areas within diagnos�c images such as CT and MRI. Relying on the use of radiomic 
features, in [247] star�ng from the CT slice on which the size of the mass is largest, 5 to 10 slices were selected 
to extract the features to be used with a random forest classifier with the purpose of classifying various solid 
renal masses (oncocytomas, ccRCC, cysts, and papillary RCC). In order to iden�fy the actual value of texture 
analysis, in [248] are extracted radiomic features from 10 consecu�ve CT slices to be used with a support 
vector machine classifier to analyze the radiomic features related to each of the 10 slices with a majority 
vo�ng algorithm to decide the actual tumor class. [126] aims to inves�gate the usefulness of rela�onal 
sta�s�cal machine learning algorithms to differen�ate benign and malignant tumors, using radiomic features 
extracted from CT, analyzing the slice in which the tumor diameter is largest to obtain the two-dimensional 
features and the en�re volume to derive the three-dimensional ones. [249] is among the first research for 
this specific task to compare the ability in differen�a�ng benign and malignant solid renal masses of 
experienced radiologists and machine learning algorithms trained on radiomic features extracted from tumor 
CT by MCNemar test [250]. Unlike other works, [251], extracts radiomic features from contrast-enhanced MRI 
images related to 3 consecu�ve slices to differen�ate various types of renal tumors, selected from the sec�on 
where the tumor area is largest, using them with a random forest classifier.  [126, 247–249, 251] follow a 
similar pipeline: manual segmenta�on of the tumor within the diagnos�c images by one or more experts with 
an internal valida�on by another expert; feature extrac�on; selec�on of the most relevant features using 
specific algorithms (e.g., recursive feature elimina�on); feature processing, with the aim of normalizing the 
values (e.g., z-score normaliza�on); classifier training; and finally, valida�on with algorithms specific to the 
iden�fied method (k-fold cross valida�on).  

In recent years, thanks to the increase in compu�ng power due to the large-scale deployment and 
affordability of GPUs, studies began to introduce the use of deep learning algorithms using CNN capable of 
performing direct image processing. [252] studies the diagnos�c value and feasibility of a renal tumor 
classifier based on deep learning, taking advantage of a CNN (Incep�on v3 [253]), and the four phases of 
tumor CT. [254] introduces a mixed classifier that is divided into three main branches: one using a logis�c 
regression classifier with radiomic features, and the other two using a CNN (ResNet50 [255]) by taking as 
input an image related to a slice of the tumor in which the three channels R, G, and B are matched to the 
axial, sagital, and coronal gray-scale slice in which the tumor had the largest diameter, following the 2.5D 
model [256].  

A compact view of the performance and methods found in the state of the art can be seen in Table 11; the 
performances are given only as a reference since the results are not directly comparable as the used 
databases are different. For each paper is indicated the used model or classifier, the addressed task, the type 
of input, the amount of data, and a brief summary of how the data were used and how the results were 
obtained (in cases where a standard procedure was not followed). In addi�on, the metrics obtained for each 
classifier are provided. For consistency, only the results related to classifica�ons that involved oncocytomas 
and ccRCC are reported.  

Table 11 Comparison of state-of-the-art algorithms to distinguish malignant and benign renal tumors through the use of ML-based 
techniques. 

Paper Model Data Type DB 
Classifica�on 

Task 

Metrics 

Sensitivity Specificity Accuracy F-Score AUC PPV NPV 



[247] 

RF 
CT 

Arterial Phase 

24 Onco 

25 ccRCC 

Onco 81% 97,80% - - - - - 

ccRCC 93,50% 95,10% - - - - - 

Summary 
The authors consider individual slices containing the element of interest as a single input. The percentages in the results are 
rela�ve to the number of total slices and not on the actual number of masses studied. Results refers to the slices of the tes�ng 
set composed by 4 oncocytomas and 5 ccRCC. 

[248] 

SVM 
(linear) 

CT 

Portal venous 
phase 

46 ccRCC 

63 other 
RCC 

10 Onco 

ccRCC vs all - - - - 91% - - 

Onco vs all - - - - 86% - - 

Summary 
The authors considered 10 slices containing tumor per CT. From these they extracted 43 texture features to be used with a 
classifier. The results are reported on all cases despite using 5-fold-cross valida�on. 

[126] 

RFGB CT - 4 phases 

70 ccRCC 

30 other 
RCC 20 
angio 

30 Onco 

Benign vs 
Malignant 

- - 82% 87% 83% - - 

Summary 
The authors use the slice where the tumor diameter is largest to obtain 2D features and use the en�re volume for 3D ones. 
This process is repeated for each CT stage, and the obtained features are concatenated to form a single descriptor. 

[249] 
SVM 

CT 

Arterial phase 

190 ccRCC 

64 other 
RCC 

26 angio 

10 onco 

ccRCC vs (angio 
and onco) 

86.3% 83.3% 85.8% 91.1% - 96.5% 53,6% 

Summary The authors analyze radiomic features extracted from tumor CT by MCNemar test. Metrics are considered on the full dataset. 

[251] 

RF MRI 

90 ccRCC 

22 other 
RCC 

30 onco 

onco vs ccRCC 67,3% 88,9% 79,3% - - - - 

Summary 
The authors analyze features extracted from 3 consecu�ve slices of an MRI star�ng with the slice where the tumor has the 
largest diameter 

[252] 

Incep�on 
V3 

CT mul�phases 
128 ccRCC 

51 onco 
ccRCC vs Onco 88,3% 52,9% 75,4% - - 80,3% - 

Summary 
The authors create RGB images to be used as network inputs by inser�ng one slice per phase into the R-G-B channels. Different 
combina�ons have been tested varying the phases and the type of slice, but the results refer only to the best ones. 

[254] 

LR + 2x 
ResNet50 

MRI 

425 ccRCC 

230 others 
RCC 

92 Onco 

406 Angio 

Benign vs 
Malignant 

40,81% 92,06% 69,64% 54,05% - 80% 66,67% 

Summary The authors use the 3 slices in which the tumor is largest on the axial, coronal, and sagital axis, fi�ng them into the three R-
G-B channels to create the images to be used as input. An ensemble model is built using 2 Resnet50, one trained with MRI T1C 



and the other with MRI T2WI, and a logis�c regression classifier trained with radiomic features extracted from the lesion 
present in the MRI. 

 

5.2.2. Materials 
In this work, a new framework for the study and analysis of diagnos�c images for the classifica�on of renal 
tumors through the use of ML techniques was developed and validated. Specifically, CTs of renal tumor 
pa�ents with proven histological findings were used, no other data types are included in the study, and all 
data was provided or retrieved anonymized. It is important to point out that CTs performed with contrast 
agents are mul�phase, i.e., mul�ple acquisi�ons are performed, up to a maximum of 4 phases for the kidney, 
depending on the �me elapsed since contrast agent injec�on: i) before the use of contrast agent unenhanced 
phase, ii) a�er 30 seconds cor�comedullary (or arterial) phase, iii) a�er 90 seconds nephrographic phase, iv) 
excretory phase. Given the possibility of having mul�ple phases, it is necessary to keep in mind that it is not 
always possible to have them all available, as they are acquired according to the clinics' individual protocols.  

The informa�on was retrieved from two different sources: (1) “Careggi” Florence Hospital (Azienda 
Ospedaliera Universitaria Careggi - AOUC) [22], (2) the 2019 Kidney Tumor Segmenta�on Challenge (kits2019) 
[257]. The data from AOUC are related to 61 pa�ents of which 29 with ccRCC and 34 having an oncocytoma, 
with one or more acquisi�on phases and histological result. On the other hand, as for the kits2019 data, these 
are publicly accessible [258], and are related to 300 pa�ents with at least one renal tumor, in par�cular there 
is the CT of the arterial phase for each pa�ent, the histological result and some informa�on about the 
pa�ents, e.g. if they are smokers, if they have other diseases, if they have already had surgery, gender, more 
informa�on can be found in [259]. Details of the data available for this study can be seen in Table 12. 

Table 12 - Dataset included in the study. 

Data source 
Number of 
Pa�ents 

Data Descrip�on 

AOUC 61 
CT  

mul�phase 

The data are referred to pa�ents with only one kidney 
tumor that can be an oncocytoma or a ccRCC. In both 
cases the size is limited to a few millimeters. The data 
have been acquired using different scanners and different 
protocols, for this reason for each pa�ent there could be 
from 1 to 4 phases. 

KITS2019 300 
CT 

cor�comedullary 

The data are referred to pa�ents with at least one kidney 
tumor of any kind. The size is heterogeneous, but all the 
CT are referred to the same phase. The data in this 
dataset have been acquired from two different clinics and 
with different scanners. 

 

To standardize the type of available data, the following choices were made: (1) use only diagnos�c images, 
discarding any registry data, and the corresponding histologic result as the ground truth. In par�cular for data 
from AOUC, for pa�ents in whom more than one acquisi�on phase was present, the cor�comedullary phase 
was chosen, being the one known to be most used for diagnos�c imaging in the case of CT contrast enhanced; 
(2) only pa�ents with a single renal tumor of ccRCC or oncocytoma type were considered, discarding any 
pa�ents with mul�ple renal tumors or renal tumors of different nature at the same �me. As a result, the final 
database comprises 271 pa�ents. Figure 14 shows the database informa�on used in this study a�er 
appropriate exclusions.  



 

5.2.3. Methods 
At a general level, the structure of the implemented applica�on can be divided into two modules (Figure 15): 
(i) the feature generator that is in charge of crea�ng, from the pa�ents' CTs, a database of features extracted 
with specific algorithms; (ii) the classifier in charge of dis�nguishing the type of the tumor by the analysis of 
the extracted features.  

 

Figure 15 - General structure of the application. 

In par�cular, in the feature genera�on process the extrac�on of two different types of features was 
implemented, one based on sta�s�cal methods (radiomic features) and the other based on deep learning 
(deep features). Finally, classifica�on algorithms of different nature were examined with the aim of iden�fying 
the best performance for feature type. 

In the following sec�ons, the radiomic and deep feature extrac�on methods are explained in detail, specifying 
with which algorithm and techniques they were obtained and how they were processed before being included 
in the final database.  

5.2.3.1. Radiomic Features Extraction – Type 1 Features 
The main goal of radiomics is to extract quan�ta�ve and ideally reproducible features from diagnos�c images, 
thereby including complex paterns that are difficult to recognize or quan�fy by the human eye [260]. 
Radiomic features represent proper�es related to the characteris�cs of �ssues and lesions present in 
diagnos�c images e.g., heterogeneity, shape, etc., and within a sufficiently large dataset these data turn out 
to be minable, i.e., usable to uncover hidden paterns to discover diseases or implement specific therapies. 

Broadly speaking, radiomic features can be divided into sta�s�cal features, e.g., histograms, texture analysis, 
analysis by parameterized models, analysis by transforma�ons (Fourier, Gabor, Haar, etc.), and shape-derived 
features, which can be extracted either two- or three-dimensionally.  

The commonly used procedure for radiomic feature extrac�on consists of the following steps: (1) deciding 
which is the region or volume of interest (ROI) (2) segmenta�on – manual or automated – of the area of 
interest within each slice under considera�on; (3) feature extrac�on using specific algorithms; and (4) feature 
post-processing comprising one or more of the exis�ng feature processing techniques, e.g., feature 

Figure 14 - CT dataset composition derived from the union of AOUC and KITS2019 data. 



harmoniza�on, selec�on, and reduc�on [261]. A�er these steps the features are ready to be used with a 
sta�s�cal model to accomplish the required task. 

Several strategies have been proposed to define the por�on of anatomy from which to extract radiomic 
features. In this work the standard procedure that takes into account the whole region is considered along 
with the strategy that uses only the slice with maximum tumor size on the three CT planes. 

In order to automa�cally iden�fy and segment ROIs, avoiding �me-consuming and non-reproducible 
processes, it was decided to use the nnU-Net [136] trained to segment kidney and kidney tumors. 

Regardless of the procedure used to obtain radiomic features, they must go through a pre-processing step 
before they can be used. This consists of a normaliza�on process according to the following equa�on 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑋𝑋−𝜇𝜇
𝜎𝜎

 , in which the normalized value is obtained by dividing the subtrac�on between the original value (X) and 
the mean value of the data (µ) by the value of the standard devia�on of the data (σ). This is equivalent to 
performing a z-score normaliza�on. 

In addi�on, given the high number of extractable features, a feature selec�on algorithm, namely recursive 
feature elimina�on (RFE), was applied to reduce the number of features to be analyzed and consider only the 
most significant ones. Specifically a variant of RFE was used which exploits an SVM and has been shown to be 
more efficient when analyzing biomedical data [262]. The number of selected features ranged from a 
minimum of 5 to a maximum of 45. 

5.2.3.2. Deep Features Extraction - Type 2 Features 
Deep features correspond to the output of a layer belonging to a deep neural network. The "depth" of these 
features will depend solely on the depth level of the layer from which they are extracted. "Depth" is directly 
propor�onal to the level of detail and inversely propor�onal with generalizability; therefore, the deeper the 
extracted features the greater the level of detail of these features and the lower the level of generalizability.  

Taking into considera�on the defini�on of deep features and how they are obtained, it was considered as one 
of the main strategic elements the choice of the deep neural network to be used for feature crea�on. A 
network trained in a task similar or at least related to the one addressed was selected for this purpose. 
Specifically, the nnU-Net [136] was used in its variant trained with the goal of segmen�ng from a CT the 
kidneys and kidney tumors.   

A�er some careful evalua�ons, it was decided to use this network, which, by iden�fying the loca�on of kidney 
and kidney tumors, allows deep features to be extracted directly from these regions, providing characteris�c 
and specific details useful in classifying the type of tumor. 

In order for the model to analyze a CT with any number of slices, a patches approach was exploited, by which 
the CT is divided into sub-por�ons called patches. Each patch generated goes through various convolu�onal 
blocks un�l it reaches a minimum size of 320x4x4x4, which corresponds to the lowest point of the nnU-Net. 
With the aim of iden�fying the most specific features, the level chosen for feature extrac�on is the one in 
which the achieved dimension is the smallest possible and consequently the number of features is also the 
smallest possible. By doing so, it is possible to obtain features for each of the patches and consequently for 
the en�re CT. Finally, by reverse mapping the patches using the final output of the network (the segmenta�on 
of the tumor and kidney) all features related to patches in which no parts of the tumor are present are 
discarded. The deep feature extrac�on procedure just described can be seen in Figure 16. 



 

Figure 16 - Deep feature extraction scheme. 

Once the deep features matrices are obtained, a processing of the matrices is carried out, with the aim of 
obtaining a single vector of unique size independent of the size of the CT input to the network. This processing 
consists of the following steps for each CT: for each matrix of deep features obtained from the single patch, 
of size 320×4×4×4, these are transformed into vectors of size 20480×1 and join together to create a matrix of 
size N×20480×1, with N equal to the number of patches considered valid; once this matrix is made to obtain 
a single vector, a sta�s�cal opera�on is used to reduce the informa�on into a single vector, of size 20480×1 
to be used as input for a final classifier. Figure 17 illustrates this feature reduc�on procedure. 

 

Figure 17 - Feature reduction procedure. 

Figure 18 shows the framework for extrac�ng the two types of features and thus crea�ng the dataset 
exploi�ng in both cases the nnU-Net for automa�c CT segmenta�on. 



 

Figure 18 - Feature extraction process. 

5.2.3.3. Classification 
At this stage, the previously generated data is divided to form two sets, the training set (66.79%), and the 
tes�ng set (33.21%). The training set was further divided into two sets by k-fold cross-valida�on (k=5). The 
most common types of classifiers (random forest (RF), k nearest neighbor (K-NN), support vector machine 
(SVM), ar�ficial neural network (ANN)) were tested.  

Concerning the parameters and variances of the classifiers, for RF it was set an internal decision tree number 
of 1000, with a minimum number of splits of 2 and Gini impurity as the criterion for measuring the quality of 
splits. Considering K-NN the number of k neighbors varied between 2 and 8. For SVM it was decided to test 
the possible variants of the kernels, namely linear, polynomial (by varying the degree from 2 to 5), radial basis 
func�on, and sigmoid. Finally, with regard to the ar�ficial neural network an approach based on the following 
thumb rule on the number of hidden nodes to be used for this type of classifier was used: 

 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≤  �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

 

With 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 equal to the number of input features and 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛equal to 1. The number of internal 
nodes in the network is limited to reduce the risk of overfi�ng the model on the training set. Regarding the 
number of layers and the distribu�on of these nodes, a trial-and-error strategy was implemented, thanks to 
which it was possible to iden�fy the best configura�on taking into account the tradeoff between sensi�vity 
and specificity while looking at the balanced_accuracy: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 

 



𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

2
 

 

With TP = malignant tumors correctly classified, TN = benign tumors correctly classified, FP = benign tumors 
incorrectly classified, and FN = malignant tumors incorrectly classified. 

Table 13 provides a schema�c of the above to summarize the used strategies for each classifier and input data 
type. 

Table 13 - Classifier parameters for the training phase 

Classifier Descrip�on 

RF 
Up to 1000 predictors, with a minimum number of splits of 2, based on 
Gini impurity criterion for split. 

KNN K ∈ [2,8], Euclidean distance used as weight for the query result. 

SVM 
Linear, polynomial, radial basis function, and sigmoid kernels used, for 
the polynomial the grade varied from 2 up to 5. 

ANN 
Number of nodes decided using the Formula above, the input nodes 
depend on the number of input features and the number of output 
nodes is 1, because it is a binary classification task. 

 

In Figure 19 it is shown in detail the workflow of the implemented applica�on.  

 

Figure 19 - Classification workflow 

Once the various predictors were trained, a sta�s�cal analysis of the metrics of interest was performed. 
Specifically, the most common metrics, i.e. accuracy and precision, were studied, and in addi�on, sensi�vity 
and specificity were analyzed, as the former allows to get a sense of the predictor's ability to be able to 
correctly iden�fy malignant tumor [263], the later refers to the classifier's ability to correctly discard benign 
tumors. A sensi�vity of 100 percent ensures certainty in the case of nega�vity that a pa�ent is "healthy", 
conversely a specificity of 100 percent in the case of posi�vity ensures certainty that the pa�ent is "sick". The 
goal to be pursued in this study is to seek the best possible trade-off between sensi�vity and specificity while 



trying to obtain a sensi�vity that is as close to 100% as possible. This means that the solu�on sought will have 
the fewest number of malignant cases misclassified as benign at the expense of benign cases iden�fied as 
malignant. In other words the goal is not to misclassify a malignant case, since on a prac�cal level it would 
bring the greatest disadvantage to the pa�ent. 

5.2.4. Results 
Below are the results obtained through the use of the previously described approaches. All reported 
numerical results refer to the tes�ng set. 

Regarding the use of radiomic features, in par�cular the case where total tumor segmenta�on is used, Table 
14 shows the best results obtained by the individual classifiers, specifying for each the number of features 
selected through the use of RFE. In par�cular, it is possible to see that in terms of sensi�vity classifiers such 
as K-NN, SVM, and RF achieve beter results than ANN, reaching about 96% at the expense, however, of 
specificity, in which only the ANN classifier is able to reach 58.82% with a sensi�vity of 87.84%. In terms of 
accuracy the various classifiers all stand more or less in the same range between 81% and 85%, and in terms 
of precision only the ANN manages to reach 90%. Finally, considering the metric related to balanced accuracy 
we see that the best s�ll turns out to be ANN reaching 73.31%. 

Table 14 - Performance of the classifiers used with the radiomic features of the testing set, considering the approach with complete 
tumor segmentation 

Classifier RFE Sensi�vity Specificity Accuracy Precision 
Balanced 

Accuracy 

K-NN (K=4) 20 94.59% 41.18% 84.62% 87.50% 67.89% 

SVM (Linear) 43 94.52% 29.41% 82.22% 85.19% 61.97% 

RF 7 95.95% 17.65% 81.32% 83.53% 56.80% 

ANN 40 87.84% 58.82% 82.42% 90.28% 73.31% 

 

Whereas, considering using only the segmenta�on rela�ve to the slice where the area is largest in the three 
dimensions, the best obtained results are shown in Table 15. As in the previous case K-NN, SVM and RF 
achieve beter results in terms of sensi�vity than ANN, with results ranging from 87% up to about 95 percent. 
For specificity there is a maximum of 56.25% achieved by ANN. On the other hand, with regard to the other 
metrics these do not turn out to be so distant from each other, in par�cular it can be seen that compared to 
the previous approach there is a general decline in performance, except for RF which achieves beter 
performance than it did before, while s�ll remaining at a lower level than the best model in the previous case. 

Table 15 - Performance of the classifiers used with the radiomic features of the testing set related to the approach with single slices 
of maximum area in the three axes 

Classifier RFE Sensi�vity Specificity Accuracy Precision 
Balanced 

Accuracy 

K-NN (K=2) 9 87.01% 43.75% 79.57% 88.16% 65.38% 

SVM (Linear) 39 93.51% 12.50% 79.57% 83.72% 53.00% 

RF 31 94.81% 31.25% 83.87% 86.91% 63.03% 



ANN 32 80.26% 56.25% 76.09% 89.71% 68.26% 

 

Finally, the results obtained from the approach using deep features are discussed. It is possible to see by 
analyzing Table 16 how in this case sensi�vity results exceed 94% for both KNN, RF and ANN, specificity 
peaking with ANN at 52.94%, and accuracy and precision between 78% and 87% the former and between 
85% and 90% the later. Finally, balanced accuracy peaks with ANN at 73.77%. 

Table 16 - Performance of classifiers using deep features obtained from the proposed approach 

Classifier Sensi�vity Specificity Accuracy Precision 
Balanced 

Accuracy 

K-NN (K=6) 95.95% 31.25% 84.44% 86.59% 63.60% 

SVM (Linear) 86.49% 43.75% 78.89% 87.67% 65.12% 

RF 97.26% 29.41% 84.44% 85.54% 63.34% 

ANN 94.59% 52.94% 86.84% 89.74% 73.77% 

 

5.2.5. Discussion 
To further discuss the proposed solu�ons Table 17 shows all the metrics regarding the performance of the 
best solu�ons obtained, taking into considera�on the trade-off between sensi�vity and specificity, thus 
selec�ng the best classifiers on the basis of the maximum value of balanced accuracy.  

Table 17 - Best performance for each of the tested methods, selecting the classifiers with the best balanced accuracy for the three 
types of features considered: for all three cases this was found to be the ANN classifier 

Method Sensi�vity Specificity Accuracy Precision Balanced 

Accuracy 

Radiomic 
feature - 
standard 
procedure 

87.84% 58.82% 82.42% 90.28% 73.31% 

Radiomic 
feature - 
maximum 
tumor size 

80.26% 56.25% 76.09% 89.71% 68.26% 

Deep feature 94.59% 52.94% 86.84% 89.74% 73.77% 

 

From the table it is possible to compare the two solu�ons that exploit radiomics: it can be seen that the use 
of all spa�al informa�on can result in increased performance for all metrics, especially if we consider 



sensi�vity and accuracy with more than 6 percentage points for both metrics. This result emphasizes the 
importance of features derived from the en�rety of the analyzed tumor mass, which is lost in the second 
radiomic approach where only the planar informa�on is considered. Comparing the results obtained by 
radiomic features and deep features it is possible to note some important aspects: i) taking into account the 
trade-off between sensi�vity and specificity in the case of deep features the best balanced accuracy, of 
73.77%, is obtained, taking more into account sensi�vity, than specificity, reaching 94.59% and 52.94%, 
respec�vely. Which, on the other hand, is not the case in the two previous cases as in the best of the two a 
maximum of 87.84% sensi�vity is achieved and specificity peaks at 58.82%. So, if we take into considera�on 
the use of balanced accuracy as a tool to realize the trade off between sensi�vity and specificity we have that 
the best approaches, with directly comparable results, are the use of deep features and the use of radiomic 
features extracted with the first approach described. 

     Objec�ve comparisons with the other state-of-the-art approaches are difficult to make due to the diversity 
of the datasets used, both in terms of numerosity and from the point of view of the representa�veness of the 
tumor kinds. Also to be considered is the fact that the numerical results in the state of the art, Table 11, can 
also be calculated by making various considera�ons depending on how the data were used. Notwithstanding 
this, the results can be compared by checking if at least the final metrics follow a similar behaviour, for 
example with the solu�ons using a workflow similar to the one proposed. In Table 18, the metrics for [252] 
and our solu�on are shown. The table shows all the metrics available, and it is possible to see how the 
behaviour is similar between the two methods, with sensi�vity being the metric with the highest value and 
specificity the worst. It is also possible to see that our approach obtains beter values in most of the metrics, 
with the excep�on of specificity is comparable. Considering the numerosity of the two datasets used, it is 
possible to see that in both cases the number of oncocytomas is significantly lower than in ccRCC, thus most 
likely being the cause of the low specificity value in both cases. 

Table 18 - Metrics of one of the best approach in literature and of the best approach realized in this work 

Method 
Metrics 

Sensitivity Specificity Accuracy F-Score AUC PPV NPV 

[252] 88.30% 52.90% 75.40% - - 80.30% - 

Our 94.59% 52.94% 86.84% 93.58% 71.34% 89.74% 69.23% 

 

A major problem that was addressed during the training of the classifiers was the imbalance of the available 
dataset, with the number of ccRCC cases being about 4:1 in propor�on to oncocytomas, which was solved 
through the use of an appropriate weight for the elements belonging to the various classes. Indeed, one of 
the main future developments will be to try to reduce this imbalance and increase the number of cases 
available as much as possible so that it will be more sta�s�cally significant. In addi�on, with the introduc�on 
of new cases, it is expected that the deep features-based solu�on, as it is based on feature extrac�on 
exclusively based on deep learning, will be able to generalize more across the two tumor types and thus be 
able to achieve higher results than currently achieved. Other future developments will focus on using this 
type of approach for a larger number of renal tumor types, or considering using other deep neural network 
variants that can iden�fy other tumors. In addi�on, one can also consider mixing radiomics with deep learning 
approaches, or approaches in which one previously demarcates the area of interest to use convolu�onal 
neural networks only on the marked input with the aim of directly classifying the nature of the tumor. 



5.2.6. Final Remarks 
In this work, a comparison was made on the use of two dis�nct types of features, radiomic and deep, obtained 
by automated procedures, with the aim of being able to build a tool that can provide support at the medical 
diagnos�c level. Specifically with regard to radiomic features, two methods were tested that take inspira�on 
from the state of the art. Instead, for deep features, a new method of extrac�on from pa�ent CTs was 
proposed with an approach based on the exclusive use of a deep neural network (nnU-net) capable of directly 
segmen�ng diagnos�c images, minimizing the human interven�on required to iden�fy areas of interest 
within the diagnos�c type images. Comparing the various features is not only useful in understanding the 
feasibility of using tools based on them, but also in tes�ng the actual validity of the proposed new method. 
To do this, once the features for the available CTs were obtained, performance was compared through the 
use of the most common classifica�on methods (RF, KNN, SVM, ANN). In par�cular, it was possible to note 
that the use of radiomic features with classifiers such as RF, KNN, and SVM allows us to maintain a sensi�vity 
in most cases beter than ANN, at the expense, however, of specificity, which is why considering balanced 
accuracy, ANN turns out to be the best for both approaches. On the other hand, if we consider all the 
proposed features, the best results are obtained by ANN with 73.77% balanced accuracy, 94.59% sensi�vity, 
52.94% specificity and 86.84% accuracy. 

Taking into considera�on all the results obtained and especially taking into account that the best metrics 
obtained for deep features are similar to or beter than those obtained by exploi�ng the radiomic features 
approaches, it is possible to conclude that the deep features obtained according to the method presented in 
this ar�cle are valid for differen�a�ng renal tumors, especially in cases where only the CT of a pa�ent with 
renal cancer is available.  

 

  



6. Ar�ficial Intelligence for plas�c surgery – case study autologous ear 
reconstruc�on 
This case study concentrates mainly on the realiza�on of AI-based tools in order to realize a beter workflow 
star�ng from another already exis�ng and created inside the T3Ddy lab [24]. For this reason, it is focused 
mainly on the automa�za�on of two main task that usually requires external interac�on performed by an 
expert engineer. First an introduc�on to the specific case study analyzed is reported, then the two tools 
realized are presented, which are one for the genera�on of the ear depth map star�ng from images and the 
second one is for the automa�c segmenta�on of the ear components. More in par�cular both the tools will 
be analyzed following the proposed framework, so the specific task is iden�fied, with its corresponding metric 
and its specific data type. Then for each one the data gathered will be presented and where it is significant 
the corresponding processing will be described. Finally for both the model proposed and the rela�ve results 
will be displayed and discussed. 

6.1. Autologous Ear Reconstruc�on 
In recent years, personalized medicine has rapidly transformed the healthcare sector by overcoming the 
paradigm of standardized medicine. This approach offers treatments built on the specific characteris�cs of 
each pa�ent, which has proven to make treatment more effec�ve and outcome more predictable in many 
medical fields [264]. In par�cular, the surgical field has significantly benefited from the crea�on of medical 
devices tailored to each pa�ent using modern 3D modeling and manufacturing techniques [265]. In par�cular, 
autologous ear reconstruc�on (AER) surgical procedure is also taking advantage of these technologies in order 
to personalize and improve the treatment. The AER procedure is performed in case of total or par�al absence 
of the external ear and involves: 1) the harvest of car�laginous material from the costal region of the pa�ent 
2) the manual modeling of the �ssue in order to create a framework that reproduces the features of the ear 
and 3) the inser�on of this framework in correspondence of the pathological auricular region in a 
subcutaneous pocket [266]. To ensure the harmony of the pa�ent's face a�er surgery, the framework is 
modelled using the contralateral mirrored ear as guide. The procedure is very complex for the surgeon who 
has to manually model the car�lages to reproduce the auricular anatomy and the final outcome is therefore 
strongly related to the "ar�s�c skills" of the physician performing the surgery. For this reason, in the last years 
several techniques are being inves�gated to realize surgical aids able to support and help the physician in this 
procedure [267]. Recently 3D acquisi�on and CAD-based modeling approaches have allowed great progress 
in the realiza�on of guides for AER outperforming the results obtained using two-dimensional aids [268, 269].  

The AER surgical procedure involves the realiza�on of a 3D structure of the ear, obtained by carving and 
sculp�ng the pa�ent's costal car�lage, and its implant in a subcutaneous pocket located in the auricular 
pathological region. According to the technique proposed in [266], the auricular elements to be reconstructed 
are helix, an�helix, tragus-an�tragus (colored elements in Figure 20), plus a support base. 

 

Figure 20 - Anatomical elements of the ear. 

The result of the surgery, however, strongly depends on the surgeon's manual skills in modeling auricular 3D 
geometries. The surgery aims at achieving a result that ensures symmetry of the face with the contralateral 
ear, but the opera�on is a real challenge for the surgeon since the geometry of the ear is actually very difficult 
to reproduce. In order to help the surgeon in this procedure it had been studied and realized 3D printed 



surgical guides that provide a simplified representa�on of the pa�ent's ear anatomy and guide the surgeon 
in cu�ng the different anatomical elements. An example of the cu�ng guides is shown in Figure 21. The 
realiza�on of the pa�ent-specific medical devices involves the acquisi�on of the 3D anatomy of the healthy 
ear (with op�cal scanning techniques or from CT scan), a mirroring opera�on to obtain the target anatomy to 
be reconstructed, and the CAD modeling with appropriate modeling tools. 

 

Figure 21 - Example of CAD models of the surgical guides created by simplifying the original anatomy. 

In detail, the CAD procedure is performed on the correctly oriented 3D model, i.e. the ear must be oriented 
in such a way that all the elements involved in the reconstruc�on are visible to the user view point (coincident 
with one of the global reference system planes e.g. the XY-plane), then the procedure takes place on the 2D 
sketch created on such plane (example in Figure 22). On the so defined sketch, through well-known CAD 
opera�ons, the printable models of the surgical guides are created. 

 

With the aim of making the physician autonomous in the realiza�on of pa�ent-specific cu�ng guides for AER 
surgery, the research vision is to develop so�ware tools for designing the semi-automa�c design of the 
medical devices’ CAD models. The development of tools easily manageable at hospital level would allow to 
realize a streamlined and fast produc�on process, to be used within the common clinical prac�ce. To this end, 
through a so�ware rou�ne, the CAD modeling of the surgical guides was automated [270]. In par�cular, two 
new automa�za�ons have been proposed, the first one based on the necessity of a 3D model to obtain depth 
informa�on, and the second one based on the fact that the algorithm requires the contours of each 
anatomical element as input. 

  

Figure 22 - Main phases of the manual modelling procedure of the surgical guides. a) initial anatomy orientation; b) result of the cad 
modelling procedure. 



6.2. Ear depth map genera�on 
With the idea of making the process of acquisi�on and realiza�on of the depth map more accessible to non-
expert users such as hospital staff, this work focuses on the development of a system based on deep learning 
techniques that, through a single RGB image of the ear, can create the depth image which by defini�on is an 
image that contains informa�on about the distance of the surfaces of objects in the scene from a point of 
view. 

Searching for geometric rela�onships between objects in the scene by using neural network-based 
approaches is a topic extensively inves�gated in the literature [271, 272]. This is because depth percep�on is 
a key component for example for autonomous systems that interact in the real world, such as warehouse 
robots, self-driving cars, etc. [272]. Many systems study the arrangement of objects in the scene, but they are 
usually applied to external scenario contexts that require a much lower resolu�on compared to the one 
required for the applica�on under considera�on. For this reason, the systems available in the literature are 
not directly applicable for the realiza�on of depth maps of the auricular anatomy. Accordingly, the present 
work focuses on the study of alterna�ve approaches suitable to create depth maps with higher resolu�on. In 
addi�on, to make the realiza�on of the depth map as simple as possible this work focuses on approaches 
based on monocular depth es�ma�on [273, 274], in which the depth image is created from a single photo. 
This aspect is of considerable relevance if we contextualize the acquisi�on of the ear on pediatric subjects 
(generally uncoopera�ve) and in a hospital environment (not always equipped with modern acquisi�on 
technologies). 

The devised approach, detailed in the following chapters, takes as input the side picture of the face of subject 
and returns the depth map of the ear using three different architectures: 1) a Faster Region-based 
Convolu�onal Neural Network (R-CNN) [272] that has the task of isola�ng the ear region from the face image; 
2) a cycle Genera�ve Adversarial Network (GAN)[275] that takes as input the cropped anatomical region and 
creates the depth map; 3) a seman�c-aware approach [276] to refine the depth map created in the previous 
step. If on the one hand the use of Faster R-CNN is well established for this type of task (object recogni�on), 
to determine the architecture for the crea�on of the depth map it was necessary to study the recent literature 
in order to iden�fy the best approach. The cycle GAN architecture was iden�fied as the best choice as it 
supports rela�vely high resolu�ons compared to other approaches [274], not negligible aspect for the success 
of the workflow. 

6.2.1. Data descrip�on 
The present work is intended to use machine-learning systems for the crea�on of a depth map of a human 
ear from a single RGB image with a level of accuracy acceptable for the crea�on of custom surgical guides for 
auricular reconstruc�on.  

In order to train and test the system, a subset of the ND-Collec�on F [277] and ND-Collec�on G [278] made 
available by the University of Notre Dame was employed, containing depth maps and corresponding 2D 
images of 302 and 235 human subject profiles, respec�vely.  

6.2.2. Model descrip�on 
Considering the difficulty of the task it has been decided to create a customized workflow to reach the final 
goal and Figure 23 shows the general structure defined to create the depth map of the ear region from a 
profile photo. 

 

Figure 23 - General structure diagram: profile image of a person given as input to the R-CNN that extracts the ear, that it is used by 
the Cycle GAN to make the depth map, which is finally adjusted using a semantic-aware module. 



All the architectures used are explained in more detail following the order presented in the workflow. 

6.2.2.1. Faster R-CNN 
The first step of the workflow involves the extrac�on of the ear region from the RGB images and from the 
depth map images in order to use all the resources on the crea�on of the ear depth map without considering 
the remaining por�on of the scene. To do this, the algorithm is based on the use of a R-CNN, which was 
trained specifically for the detec�on of ears, implemen�ng procedures known in the literature to train this 
type of network to specific tasks [279].  

R-CNNs are a class of techniques that share the common trait of using deep models to pursue object 
detec�on. An R-CNN model first selects several proposed regions from an image and then labels their 
categories and bounding boxes. Then, a CNN is used to perform features extrac�on for each region and use 
them to predict the regions' categories. In our case, a Faster R-CNN Incep�on v2 [253], with the architecture 
illustrated in Figure 24, was used; the specific CNN architecture used is the Incep�on v2. This paper does not 
report implementa�on details of these architectures as they are well known in the literature. 

 

Figure 24 - Faster R-CNN for ear detection 

6.2.2.2. Cycle GAN 
The region of the ear cropped from the original image is used to train a cycle GAN that has the task of crea�ng 
the depth image from the single photo. The GAN is a class of machine learning frameworks, in which two 
neural networks contest with each other in a game (zero-sum game) [280]. The cycle GAN, depicted in Figure 
25, is a varia�on that combines the proper�es of condi�on constraints and cycle consistencies to use the GAN 
architecture in Image-to-Image transla�on task effec�vely.  

Cycle GANs can be used to alter a given input image to a distribu�on of the target domain. Specifically, an 
image is taken from input domain X and transformed into an image of the target domain Y without a one-to-
one mapping between the images. A generator is used to map the image to the target domain and the quality 
of the result image is checked using a discriminator which pushes the generator to perform beter. 

 

Figure 25 - Simplified scheme of a cycle GAN architecture. 

6.2.2.3. Depth Map Refinement 
Finally, to increase the defini�on and accuracy of the generated depth maps, a seman�c-aware module is 
used, which receives as input both the RGB image and the es�mated depth map. The module uses the RGB 
image to get the seman�c context, that is used to create several masks which are used to perform a max 
pooling opera�on over the pixels inside the same mask within the es�mated depth map. This approach has 
already been used in the literature to correct errors generated in depth images [276]. 



Figure 26 shows an example of the en�re process applied to a profile photo, showing the results for each 
step. 

 

Figure 26 - An example of the output of each module. 

6.2.3. Results 
In this sec�on the results obtained through the proposed architecture are shown, divided in two sec�ons: the 
first one related to the ear detec�on task, and the second one related to the depth map genera�on from RGB 
images. For both tasks the dataset was randomly split into two parts, 70% for training, and 30% for tes�ng. 

6.2.3.1. Faster R-CNN 
The Faster R-CNN architecture was implemented exploi�ng the Tensorflow APIs [281] and the model was 
fine-tuned over the ear dataset. To generate the labels for the training, it was used the free so�ware LabelImg 
[282]. 

The obtained results are shown in Figure 27. The first graph shows how the loss of the network decreases 
with the increasing number of training epochs. In the second graph is represented the func�on AP@0.75IOU 
[283].  The AP represents the Average Precision (AP) of the network, i.e. the average of the precision scores. 
The AP@0.75IOU corresponds to the AP considering only the bounding boxes for which the Intersec�on Over 
Union (IOU) is greater than 75%, where IOU is computed as follow: 

 

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩ 𝐵𝐵𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∪ 𝐵𝐵𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ)

 

At the end of the overall training process an AP of 97.63% is reached over the tes�ng set. 

 
(a) 



 
(b) 

Figure 27 - Graph of the loss (a) and of the average precision (b) achieved by the Faster R-CNN. 

Figure 28 shows an example of the output at this stage where, from the profile, the ear region is detected. 

 

Figure 28 - Output of the Faster R-CNN module. 

6.2.3.2. Cycle GAN and Depth Map Refinement 
The architecture of the cycle GAN was realized by exploi�ng a standard PyTorch implementa�on of the 4 
necessary components, the two Generators and the two Discriminants. The Adam op�mizer was exploited as 
suggested by Goodfellow et al. [280]. Regarding GAN results, it is quite complex to evaluate the accuracy of 
the generated images since there is no standard measure described in literature [284].  

Considering the difficulty in evalua�ng the results of GAN architectures, in this work it was decided to use 
two standard metrics, the mean square error (MSE) and the structural similarity (SSIM), o�en used to assess 
the quality of images a�er they have undergone changes. The MSE indicates the cumula�ve error between 
the generated image and the original image therefore lower values indicate more similar images [285]. SSIM 
in recent years has become an accepted standard among image quality metrics. This technique evaluates the 
visual impact of changes in image luminance, contrast and structure [286], and can assume values in the 
range [0,1]. MSE and SSIM values were evaluated comparing the original image and the output image at the 
final step, i.e. a�er the depth map refinement with the seman�c-aware adjustment module implemented 
using the code available in [276]. 

Figure 29 shows a qualita�ve comparison of the output and original depth maps. The MSE and SSIM values 
were averaged over the test data resul�ng in an average MSE of ~0.07 and an average SSIM of ~0.80. 



  

  
Figure 29 - A subset of the depth map generated on the test set. 

6.2.4. Discussions 
Autologous ear reconstruc�on has been the subject of several studies in the literature involving medical and 
engineering fields. The great interest is due on one hand to the importance from the psychological point of 
view of a sa�sfactory outcome for the pa�ent, on the other hand to the intrinsic difficulty in the manual 
construc�on of the ear reported by surgeons. Work is being carried out on the development of a user friendly 
and fast system for the fabrica�on of pa�ent-specific devices that can assist the physician during surgery. In 
this context, this work aimed to define a system to create depth map images of the pa�ent's ear from a single 
profile photo. The analysis of the literature revealed the lack of approaches that can provide a sufficiently 
detailed depth map. In this work the most suitable architectures for the purpose were first iden�fied, they 
were then implemented and trained on a specific dataset and the interfaces between the different 
architectures were defined in order to obtain an efficient workflow. The results obtained for the single steps 
were shown and the quality of the result was quan�ta�vely evaluated in terms of MSE and SSIM, obtaining 
sa�sfying results considered suitable for the final applica�on. The implemented system cons�tutes a 
disrup�ve innova�on that considerably streamlines the workflow currently foreseen for the realiza�on of 
surgical guides. Future developments envisage the evalua�on of the depth maps produced by the network 
by performing an acquisi�on campaign on an adequate number of subjects, reconstruc�ng the corresponding 
point clouds from the depth images by controlling the intrinsic acquisi�on parameters. 

  



6.3. Ear components iden�fica�on 
The first AI-based automa�on is a 2D segmenta�on algorithm star�ng from the depth map of the ear, 
obtained from the correctly oriented 3D model. As well-known the depth map is an image that contains 
informa�on rela�ng to the distance of the surfaces of scene objects from a viewpoint. Therefore, the 
proposed algorithm exploits the 2D characteris�cs of the depth map, which contains, in its defini�on, depth 
informa�on defined by the 3D model. 

In this perspec�ve, a first segmenta�on so�ware was proposed by [287], where state-of-the-art segmenta�on 
algorithms based on image processing techniques were analyzed, without being able to find a suitable 
algorithm to perform segmenta�on of ear elements. As a result, a very accurate ad-hoc algorithm based on 
image processing techniques was developed, which however requires se�ng some ini�al parameters. To 
overcome this shor�all, the feasibility of using deep learning techniques, specifically the U-Net architecture, 
for the ear segmenta�on is evaluated. 

6.3.1. Data descrip�on 
The dataset for training and tes�ng the network consists of 131 ear depth maps. To create the dataset were 
used 62 computerized tomographies of the head (CTs) and 18 ear scans (the number of retrieved scans 
exceeds 131 since not all CT scans allow both le� and right ear anatomies to be used due to the pa�ent's 
posi�on during the scan or to congenital malforma�ons of ear). In detail, the anonymized CT scans were 
retrieved from the CQ500 dataset [288] and further processed with the Mimics Materialise so�ware package 
[289] to obtain the 3D model of the ears. The remaining 18 ear models were already in 3D form as they were 
obtained with a professional 3D scanner. The dataset can be considered heterogeneous since the ear 
cons�tutes a biometric element whose shape and size are independent of age, gender, and ethnic group 
[287]. Star�ng from such three-dimensional models of the ear, to create the depth maps of the dataset was 
used the algorithm implemented in [287] able to properly orient the ear and create the depth map. The depth 
maps were then manually annotated in collabora�on with a physician. For this feasibility study, it was decided 
to combine in a single element i) the tragus with the an�tragus elements and ii) the an�helix with the 
triangular fossa and the root of the helix. Moreover, to implement a more comprehensive algorithm to be 
used in a variety of applica�ons, the concha element (blue in Figure 30) is also considered. Figure 30 shows 
the target segmenta�on of the anatomical elements and an example of manual annota�on. 

 

Figure 30 – In the left picture the ear elements definition and in the right an example ear manual segmentation. 

6.3.2. Model architecture 
The neural network model chosen for the ear segmenta�on is based on the U-Net architecture [102]. 

A U-Net consists of an encoder (downsampler) and a decoder (upsampler); in fact the original architecture of 
the network consists of a contrac�on path and an expansion path. As for the contrac�on it follows the typical 
architecture of convolu�onal neural networks, i.e. repeated applica�on of two 3x3 convolu�ons followed by 
a rec�fied linear unit (ReLU) and a 2x2 max pooling opera�on with stride 2 for downsampling. At this stage, 
each downsampling step doubles the number of channels. The expansion path consists of an upsampling of 
feature maps followed by a 2x2 convolu�on which halves the number of channels, a concatena�on with the 
corresponding feature map of the contrac�ng path, and two 3x3 convolu�ons followed by a ReLU. As a final 
layer, a 1x1 convolu�on is used to map each component feature vector to the desired number of classes. The 



U-Net also provides skip connec�ons in the encoder decoder architecture, this way fine-grained details can 
be retrieved in the predic�on. 

In this work, a modified version of the standard U-Net was used. As said, in the first half of the network the 
characteris�cs of the input images are extracted using the encoder. Since the task of the encoder is to extract 
generic characteris�cs, the ini�al learning phase based on random input parameters can be replaced with a 
pre-trained model in order to learn robust features and reduce the number of trainable parameters. More 
precisely, the intermediate layers outputs of a pre-trained MobileNetV2 model [290] are used as the encoder. 
As for the decoder, it follows the general structure of the original U-Net. The final transposed convolu�on has 
six output channels, since there are six possible labels for each pixel, corresponding to the four anatomical 
elements (see Figure 20), the rest of the ear anatomy and the background. The network architecture is shown 
in Figure 31. As far as training is concerned, taking advantage of the use of already pre-trained levels, it is 
necessary to train only the decoder and the final classifier levels. Moreover, a data augmenta�on process was 
applied on the dataset by mirroring all training images and changing the image brightness. The orienta�on 
varia�ons were not tested since the segmenta�on task is embedded within a workflow that provides for 
robust automa�c orienta�on of the 3D model prior to crea�ng the depth map, thus resul�ng in the 
standardiza�on of the orienta�on of the images to be segmented. Taking advantage of transfer learning and 
data augmenta�on, it is possible to obtain good results by using a reduced number of input data. 

 

Figure 31 - Architecture of the implemented network: U-Net model with MobileNetV2 backbone in order to obtain better results with 
a lower number of training samples. 

6.3.3. Results and discussion 
The neural network was implemented with Tensorflow [291] using the high-level API Keras. The Adam 
op�mizer was used and as loss the sparse categorical crossentropy was evaluated, since there are more than 
two classes as network output. To train the network the dataset was divided as follows: 70% of the data are 
used as the training set, 15% composes the valida�on set, and the remaining 15% is used as tes�ng set. The 
number of epochs was set to 15, considering that subsequently the accuracy of the network remains stable 
and the loss increases as shown in Figure 32. In par�cular, in Figure 32 is possible to observe the loss trend 
(a) and the accuracy trend (b) obtained during the 15 epochs of the training phase, both for the training set 
and the valida�on set. As can be seen in the graphs the network reaches an accuracy over 95% a�er few 
epochs on both sets, reaching finally an accuracy of about 99% on the training set and about 97% on the 
valida�on set. In Figure 32a it can be seen how the loss on the training set has a decreasing trend as the 
training epochs increase and how this does not happen in the valida�on set: for this reason, and to avoid 
overfi�ng, it is not necessary to carry out a higher number of training epochs. 



 
(a) 

 
(b) 

Figure 32 - a) loss and b) accuracy graphs for the training epochs. 

The network was developed using Colab (a service provided by Google) as it offers many advantages including 
free access to GPUs so as not to overload personal machines, but with all the disadvantage of not being able 
to choose and therefore not having a fixed configura�on of processing machine. For this reason with the aim 
of providing reference �mes, both in terms of training �me and predic�on �me, a fixed configura�on was 
also used. In par�cular, the machine has a Nvidia GeForce MX150 GPU. Figure 33 shows the average 
predic�on �me, calculated on all the dataset images, and the average �me per epoch, calculated on 1000 
epochs.  

  
(a) (b) 

Figure 33 - Average prediction time a) and average time for epoch b) obtain with Nvidia GeForce MX150 GPU. 

Figure 34 shows some of the segmenta�ons predicted by the network (predicted mask) compared with the 
corresponding ground truth (true mask).  



 

Figure 34 - Subset of network experimental results 

The network is able to achieve excellent performance, as can be seen both from the accuracy values in Figure 
32 and qualita�vely in Figure 34. These results are in any case strongly related to the ear's posi�on within the 
image: the correct segmenta�on is in fact strongly dependent on the correct orienta�on of the ear and, at 
the moment, the network is not able to produce correct segmenta�ons with input scans not correctly 
oriented, both on the frontal plane and in space before crea�ng the depth map. 

6.3.4. Final remarks 
The increasing use of ar�ficial intelligence techniques in the medical field has allowed the development of 
fast, accurate, and reliable systems to support clinical prac�ce, including the use of convolu�onal neural 
networks for automated medical image segmenta�on. This work demonstrates the poten�al of using a U-Net 
architecture for ear segmenta�on, which can recognize anatomical elements to assist with autologous ear 
reconstruc�on surgery. The network was trained on depth map images and achieved 97% accuracy in 
segmen�ng the ear into main components. In parallel, we developed an innova�ve system to create pa�ent-
specific ear depth maps from profile photos in order to streamline the surgical planning process. Quan�ta�ve 
evalua�on showed the depth maps provide sufficient detail for the applica�on. Future work will focus on 
extending the datasets to improve robustness, evalua�ng network performance on non-oriented ears, 
reconstruc�ng 3D point clouds from the depth maps, and transla�ng the systems to clinical use. The ul�mate 
goal is to provide an integrated, fast, and user-friendly pla�orm to design custom surgical guides that can 
assist physicians during autologous ear reconstruc�on. 

 

  



7. Ar�ficial intelligence for psychiatry – case study suicidal pa�ents 
Also this case study is developed inside the T3Dddy laboratory [24] and in this case the psychiatry department 
of the Meyer Hospital [23] is involved. The tool has been developed with the main objec�ve of been an 
extension to the informa�on obtainable from the standard psychology procedures. This means that the goal 
is to analyze the clinical features of the pa�ents to increase the knowledge of the current pa�ent state. The 
specific study is based on the iden�fica�on of suicidal pa�ents that have effec�vely tried to suicide and 
dis�nguish the ones that only faked to do it. This chapter similarly to the previously ones is structured based 
on the proposed framework, with the first part rela�ve to the clinical phase and the later one to the ar�ficial 
intelligence engineering phase. So firstly the clinical scenario of this specific case study will be introduced to 
give the reader a litle deeper understanding on what the problem is, then the specific task and data used are 
defined and finally all the ar�ficial engineering phase is illustrated with a sta�s�cal analysis on the data 
available and all the part rela�ve to model selec�on, training, evalua�on and final tes�ng is reported. Finally 
some remarks are made in the results and discussion subchapters. 

7.1. Suicidal pa�ents 
The World Health Organiza�on recognizes suicide as a cri�cal public health issue [292]. Suicide is one of the 
leading causes of death across all age groups, but it is par�cularly important during developmental stages 
because the sharpest increase in suicide-related deaths happens during the transi�on from adolescence to 
early adulthood, and even in most subjects who atempt suicide later in life, suicidal thoughts and behaviors 
o�en begin before the age of 25 [293]. The prevalence of suicidal idea�on and atempted suicide increases 
drama�cally during adolescence [294] and it represents the second leading cause of death among youth of 
10–19 years old [295]. 

Regarding the terminology used in the suicide literature, there is s�ll no agreement. The most prevalent 
tendency is to label a variety of occurrences with a spectrum of symptom severity and sharing the same 
proximal and distal risk variables as suicidal behaviors and thoughts (SBTs) [294–296]. Although SBTs are 
closely related to one another, they differ in terms of lethality, strength of inten�on, and prevalence. Suicidal 
idea�on is a risk factor for suicidal behavior later on: those who have previously entertained suicidal thoughts 
have a 12-fold increased chance of trying suicide by the �me they are 30 [297]. Suicides can be prevented to 
some extent in any age group. Preven�on techniques necessitate coordinated and integrated measures 
combining healthcare, educa�on, poli�cs, and the media due to their mul�faceted e�opathogenesis [292]. 

WHO Member States have pledged to strive toward the global goal of lowering the suicide rate in na�ons by 
one-third by 2030 under the WHO Mental Health Ac�on Plan 2013–2030 [298]. The WHO also emphasized 
the importance of iden�fying persons who are at risk, developing preventa�ve plans, and pu�ng certain 
therapeu�c approaches into prac�ce by iden�fying early indicators of suicide tendencies [292, 298]. 

Ar�ficial intelligence has shown itself to be a successful method in recent years for automa�ng the analysis 
of medical data, iden�fying suicidal behaviors among adolescents in mental hospitals [299] and extrac�ng 
novel combina�ons of biomarkers helpful for early diagnosis [300–303]. 

One of the primary issues in suicidology in this scenario is iden�fying risk variables for the passage from 
suicidal thinking to atempted/failed suicide. Suicide and self-harming behaviors that are not meant to be 
fatal must be recognized from one another. These behaviors include, for instance, bravery exercises and, 
among minors, the generally prevalent prac�ce of refraining from suicidal self-harm, which frequently 
func�ons to control nega�ve emo�ons [304]. Moreover, there is a common propensity in clinical prac�ce to 
differen�ate between failed and atempted suicides. Atempted suicides are defined as those occurrences 
that, even in the presence of a proven suicidal purpose, do not result in death because low-cost method 
lethality is used uninten�onally or because the subject ends the event before it is deadly owing to their own 
voli�on. However, despite confirmed suicidal inten�onality, high lethality, method choice, and other factors, 



failed suicides are defined as incidents that do not result in death due to chance circumstances, irrespec�ve 
of the subject's decision [305] (e.g., third par�es intervening). 

In order to examine risk factors for SBTs and assess the dis�nc�ons between suicidal idea�on and 
atempted/failed suicide in children and adolescents admited to the Child and Adolescent Psychiatry 
Emergency Unit (CAPEU) of the Meyer Children's Hospital in Florence, this case study combined clinical 
evalua�on, sta�s�cal analysis, and a neural network approach. A neural network technique can be used to 
predict or categorize a certain behavior, and the variability found in SBT pa�ents may be u�lized to train a 
mul�variate model. One of the primary goals of this work is to develop an instrument that can detect 
individuals who are at-risk and provide a probabilis�c indicator of the characteris�cs of a suicide episode. 

7.2. Data gathering 
For this specific case study, the data gathering procedure was approved by the Pediatric Ethics Commitee of 
the Tuscany Region (number 112/2022). In this single-center retrospec�ve observa�onal cohort study, 237 
pa�ents who were hospitalized to the Meyer Children's Hospital's CAPEU for SBTs between January 1, 2016, 
and June 30, 2020, were included. The sequen�al pa�ent enrollment reduced the selec�on bias [306]. The 
following two requirements had to be met for inclusion: (1) a mental diagnosis in line with the Diagnos�c and 
Sta�s�cal Manual of Mental Disorders DSM-5 criteria [307]; and (2) the need for inpa�ent treatment for the 
par�cipants. The exclusion criteria were intellectual impairment and neurological illnesses ranging from 
moderate to severe. As part of the study methodology, every par�cipant completed a thorough diagnos�c 
evalua�on that collected psychopathological and sociodemographic data. From each pa�ent's medical 
records (clinical so�ware C7), we retrospec�vely gathered clinical data, including sex, date of birth, age at 
first hospital admission, ethnicity, family characteris�cs, type of school, academic performance, method, 
previous treatments, hospitaliza�on outcome, and past stressful or trauma�c events (STEs). A trauma�c or 
stressful event that happens during childhood or adolescence and may have a detrimental effect on a person's 
neurobiological or psychosocial development is known as a STE [307, 308]. 

Furthermore, we split the sample into two groups according to the admission referral's jus�fica�on. The first 
group, referred to as "suicidal voli�on pa�ents," contained people with unstructured suicidal thoughts and 
had low-damaging SBTs. Those with suicidal intent and a high risk of injury were included in the second group, 
who were hospitalized for atempted or unsuccessful suicide (henceforth referred to as "suicidal mo�va�on 
pa�ents"). All inves�ga�ons, including sta�s�cal and neural network ones, focused on this classifica�on. The 
Kiddie Schedule for Affec�ve Disorders and Schizophrenia-Present and Life�me Interview [309] and the DSM-
5 [310] served as the founda�on for psychiatric diagnosis. SBT phenomena were assessed using the Italian 
version of the Columbia-Suicide Severity Ra�ng Scale (C-SSRS), which is administered to psychiatric residents 
during the first two days of their admission to the mental hospital. We dis�nguished between the existence 
of suicidal thoughts, the degree of idea�on, self-harming acts, and suicide atempts using the C-SSRS scores 
[311]. Based on actual fatality or medical harm, the lethality of suicide atempts was categorized as shown in 
Table 19. 

Code Lethality of suicide atempts 
0 No suicidal idea�on or suicidal behavior with no damage 
1 Thoughts of death but not suicidal idea�on and not suicidal behavior 

2 Sporadic unstructured suicidal idea�on or minor suicidal behavior, such as superficial self-cu�ng 
with minor physical damage (slight bleeding, scratching, bruising) 

3 Unplanned suicidal idea�on or persistent thoughts of death or suicidal behavior with moderate 
physical damage, need for medical aten�on (e.g. second-degree burns, major vessel bleeding) 

4 

Ac�ve suicidal idea�on with some intent to act, without specific plan or preparatory acts or 
behavior (anything beyond verbaliza�on or thought, like assembling the specific method (e.g. 
buying pills or a gun) or preparing for death by suicide (e.g. giving things away, wri�ng suicide 
notes) 



5 Ac�ve suicidal idea�on with a specific plan and intent or suicide atempt with minor physical 
damage and medical hospitaliza�on required 

6 Repeated major self-injurious behaviors, suicide atempts with severe physical harm and 
repeated suicide atempts 

Table 19 – Codification of lethality of the suicide attempts from the less severe (0), to the most lethal (6). 

7.3. Sta�s�cal Analysis 
Sta�s�cal analysis envisaged the extrac�on of absolute and rela�ve frequencies for the categorical variables 
and the evalua�on of mean and standard devia�on for the numerical variables. Pearson’s chi-squared test 
(𝜒𝜒2) [312] was performed to assess the sta�s�cal significance of the observa�ons. In par�cular, the 
independence or link between the available categorical data and the variable referral reason for admission 
was assessed. In order to pass the test, two-entry tables known as con�ngency tables between two variables 
must be created. In these tables, the number of cases with posi�ve values of the two variables (joint 
frequencies) is recorded in the cells defined by the intersec�on of rows and columns. 

The 𝜒𝜒2 test assumes as a null hypothesis that the two variables are sta�s�cally independent, whilst the 
alterna�ve hypothesis is that there is a rela�onship between the two variables. The 𝜒𝜒2 test uses the 𝜒𝜒2 
distribu�on to decide whether to reject the null hypothesis and is widely used to verify if the frequencies of 
the observed values fit the theore�cal frequencies of a fixed probability distribu�on. The 𝜒𝜒2 test makes it 
possible to establish, a�er se�ng the maximum permissible error, whether discrepancies between observed 
and theore�cal frequencies are due en�rely to chance or are jus�fied by sta�s�cal dependence. The tolerated 
error was set at 5% [313]. To carry out this test, each variable of interest was transformed into a dichotomous 
variable (e.g. the variable “Presence/absence of previous specialist care” was analyzed as “Caretaking YES/ 
Caretaking NO”) and its dependence on the variable referral reason for admission was evaluated, which was 
also transformed into a dichotomous mode (“suicidal mo�va�on pa�ents” versus “suicidal voli�on pa�ents”). 

7.4. Neural network approach 
Sta�s�cal analysis evaluated the single variables independently and did not allow the crea�on of a predic�ve 
model that considers different factors at the same �me and therefore predicts a possible suicidal event based 
on the available informa�on. This failure could be overcome with the use of ar�ficial neural networks, which 
had the advantage of not requiring the assump�on of a linear rela�onship between values and could be used 
for modeling predic�on problems that had several characteris�cs following undefined func�ons [314, 315]. 

A neural network is an interconnected system of perceptron. The perceptron is a type of binary classifier that 
maps its inputs into an output value calculated with an ac�va�on func�on (𝜒𝜒) that evaluates the scalar 
product between the input vector (x) and a vector of weights (w) added to a constant bias value (b). The 
ac�va�on formula is therefore: 

𝑓𝑓(𝑥𝑥) =  𝜒𝜒 (〈w, x〉 + b) 

By modifying the vector of the weights w through a specific learning algorithm, it is possible to modulate the 
output of a perceptron, with the aim of obtaining learning proper�es. Several layers of perceptrons form a 
neural network. 

Preparation of data. The prepara�on of data is a crucial step for the success of the system as it can strongly 
influence the results of the analysis and the simplicity of the data management. The dataset based on the 
medical records at the CAPEU of the Meyer Children’s Hospital contains 53 variables, including numerical data 
(e.g. age) and categorical features (e.g. na�onality), that is variables represented by labels with predefined 
values. In this work the pre-processing of data involved: (1) normaliza�on of numerical data in the interval 
[−1, 1], with the aim of avoiding features with wider ranges weighing more on the output; (2) one-hot 
encoding of categorical features (for each example all bits are set to 0 except one, which indicates the 
category to which it belongs) was applied to avoid the forced crea�on of ordinality rela�ons where these do 



not exist; (3) dichotomous variables that assumed value {0,1} were remapped to [−0.5, 0.5] to avoid the risk 
of se�ng some weights to zero. 

Feature selection. The size of the dataset a�er the above-men�oned preprocessing required a feature 
selec�on phase to reduce the network inputs. In general, feature reduc�on processes are applied to avoid 
resource consump�on by weak features, op�mize model performance by avoiding the noise generated by 
unnecessary fields, and generally iden�fy the strongest predictors. A widely used technique for this task is 
recursive feature elimina�on (RFE) [316]. Given an external es�mator that assigns weights to features, and a 
desired number of features to select, the goal of feature selec�on is to select features by recursively 
considering smaller and smaller sets of features. The es�mator chosen in this work is Random Forest Classifier 
[317] a machine learning method that generally works well with high-density problems and allows non-linear 
rela�onships between predictors. In our work, the desired number of features was fixed at 30. Minimizing 
the number of features is a prac�ce generally executed to facilitate the learning process, but at the same 
�me, it is necessary to avoid reducing the amount of input informa�on too much. In the present study, the 
value of 30 features was empirically found, as the minimum number of features required by the network to 
maximize accuracy. 

Model architecture. As men�oned above, a neural network is a mul�layer system of perceptrons, the choice 
of the number of neurons in the hidden layers is a very important part of the decision on the overall 
architecture of the neural network. Using too few neurons in the hidden layers causes so-called underfi�ng, 
i.e. when there are too few neurons in the hidden layers to adequately detect signals in a complicated data 
set. Using too many neurons in the hidden layers can cause several problems. First, it can cause overfi�ng, 
i.e. when the neural network has such a high informa�on processing capacity that the limited amount of 
informa�on in the training set is not enough to train all the neurons in the hidden layers. An excessive number 
of neurons in the hidden layers may also increase the �me required to train the network. A trade-off must be 
reached between too many and too few neurons in the hidden layers. There are many rules of thumb for 
determining the correct number of neurons to use in the hidden layers [314]. However, choosing an 
architecture for the neural network usually comes down to trial and error. The choice of the number of 
neurons during the neural network’s trial and error process can be guided by some considera�ons regarding 
the network’s ability to learn the complexity of the problem. Also, for the learning algorithm that defines the 
data model by changing the weights, an empirical procedure is generally used [314].  

Itera�ve empirical tests were performed to iden�fy the final and op�mized configura�on of the neural 
network by varying both the number of neurons per layer and the number of hidden layers. The best 
configura�on consists of a single layer with 15 neurons and uses the Adam Op�mizer [86]. In this research, 
neural networks were used as a tool to predict the type of suicidal behavior (“suicidal mo�va�on pa�ents” 
versus “suicidal voli�on pa�ents”), and therefore the variable referral reason to admission was considered as 
the single variable in the output layer. Model evalua�on. The loss graph and the accuracy parameter were 
used to assess the learning ability and accuracy of the network. The loss value indicates the op�miza�on 
error, so a gradual decrease in this func�on is to be expected. The accuracy of a model is usually determined 
a�er the model parameters are learned and fixed and no learning is taking place and indicates the percentage 
of the number of correct predic�ons. O�en to evaluate the performance of a model and its generaliza�on 
ability an approach involving dividing the data into three parts, Train, Valida�on and Test, is followed. 
However, this technique generally does not work well in cases where large datasets are not avail-able. Thus, 
when limited datasets are available, as is the present case, spli�ng the dataset may result in some useful 
informa�on being excluded from the training procedure and the model failing to learn the data distribu�on 
correctly. Therefore, a�er this first stage of model evalua�on, the K-fold Cross-valida�on (CV) method was 
used to validate the network’s generaliza�on ability. In K-Fold CV, the “K” parameter decides the number of 
folds into which the dataset will be divided. Each fold has a chance to appear in the training set (K-1) �mes, 
which ensures that every observa�on appears in the dataset, thus allowing the model to beter learn the 



distribu�on of the underlying data. The results of the K-fold test were also compared with the es�ma�on 
obtained by leave-one-out cross-valida�on (LOOCV), a computa�onally expensive version of cross-valida�on 
in which K = N and N is the total number of examples in the training dataset. In other words, each sample in 
the training set is assigned an example to be used alone as the test evalua�on dataset. This procedure is rarely 
used for large datasets because it is computa�onally expensive, but it can be used in the case presented in 
this ar�cle. Thus, a comparison could be made between the average classifica�on accuracy for different values 
of K and the average classifica�on accuracy of LOOCV on the same dataset. 

7.5. Results 
Statistical analysis 

The main descrip�on of the popula�on considered in this clinical case is summarized in Table 20. 

 Total pa�ents 
N = 237 

Pa�ents 
N = 111 

Suicidal voli�on pa�ents 
N = 126  

Features N (%) (%) (%) p-value 
Patients 2016-2020 42.62 21.09 21.51 0.478 

Female 74.69 33.76 40.93 0.386 
Age 125 6.30 4.64 1.68 0.034 
Italian 57.38 26.16 31.22 0.655 

Resident in Florence 31.64 12.23 19.41 0.086 
Parental divorce/death 42.60 21.09 21.51 0.478 

Only child 21.52 9.28 12.23 0.550 
Maternal PD 33.75 15.19 18.56 0.686 
Paternal PD 35.85 17.29 18.56 0.747 

Family history of SBTS 8.00 3.79 4.21 0.961 
Poor school performance 20.68 11.39 9.28 0.193 

School failure 17.30 8.86 8.43 0.536 
Bullying 38.40 17.29 2.09 0.665 

RCCI 17.30 6.75 10.54 0.270 
Winter/spring ADM 58.65 28.27 30.37 0.616 

School day ADM 69.20 30.80 38.39 0.283 
Self-cutting 41.34 4.21 37.13 0.000 
Intoxication 27.43 24.47 2.95 0.000 
Previous IS 83.54 39.24 44.30 0.926 
Previous AS 23.62 14.34 9.28 0.017 

Previous specialist care 83.54 35.86 47.67 0.007 
Drug 61.60 27.00 34.60 0.241 
MD 55.27 27.00 28.27 0.489 

DICCD 8.01 6.33 1.69 0.003 
ID 2.90 0.42 2.54 0.080 

Anxiety 24.05 11.39 12.65 0.926 
ND 12.23 7.17 5.06 0.175 

Substance abuse 5.90 2.95 2.95 0.807 
RCCI after discharge 24.05 13.08 10.97 0.190 

Table 20 - Summary of the clinical data of 237 patients involved in this study 

This study included 237 hospitaliza�ons per SBT and represented 33.86% of the total hospitaliza�ons of the 
CAPEU. In addi�on, 14.77% of pa�ents exhibited SBTs twice or three �mes during the study period. Regarding 



temporal trends, the hospitaliza�on per-centage for SBTs switched from 26.92% in 2016 to 52.83% in the first 
half of 2020. Specifically, hospitaliza�ons are shown in Table 20. 

The female/male ra�o among our popula�on was 2.9:1 (177 females and 60 males), whilst the age ranged 
between 7.4 and 17.9 years (mean 15.44 ± 1.67). Age-related stra�-fica�on showed that 43.04% (102 
pa�ents) of SBTs occurred in 16 to 18-year-old pa�ents, followed by 14 to 16-year-olds (37.13%; 88 pa�ents), 
12 to 14-year-olds (16.88%; 40 pa�ents) and those less than 12 years old (2.95%; 7 pa�ents). We detected a 
female prevalence in pa�ents older than 12 years old (75.65%; 173 females) and a male prevalence (57.14%; 
4 males) in subjects younger than 12 years old. 

The most common referral reasons were, in order of frequency, suicidal idea�on (53.16%; 126 pa�ents), 
followed by atempted suicide (32.07%; 76 pa�ents) and failed suicide (14.77%; 35 pa�ents). Forty-eight-
point-five percent of the en�re popula�on (105/237) showed a family history of neuropsychiatric disorders, 
5.5% of them (13 pa�ents) having a family history of suicidal behaviors. In our study, 81.01% (191 pa�ents) 
of the popula�on reported one or more STEs during their life. Previous suicidal behaviors were a common 
finding and 64.98% (154 pa�ents) revealed a lifelong history of non-suicidal self-injury. 

The most frequent diagnosis at discharge was mood disorder (55.27%; 131 of pa�ents), with a significant 
prevalence in females (70.99%), followed by feeding and ea�ng disorders (11.81%; 28 of pa�ents) and trauma 
and stress-related disorders (9.70%; 23 of pa�ents). Considering all pa�ents, 162 (68.35%) showed 
comorbidi�es: anxiety disorder (16.88%; 40 pa�ents), mul�morbidity (14.77%; 35 pa�ents) and 
neurodevelopmental disorder (6.33%; 15 pa�ents). Sixty-one-point six percent (146 pa�ents) already had a 
drug prescrip�on in mono and polytherapy including atypical an�psycho�cs (39.24%), mood stabilizers 
(33.76%), an�depressants (29.96%), and anxioly�cs (21.52%). Most pa�ents (83.54%; 197 pa�ents), when 
admited, were already on psychiatric or psychological care. “Suicidal voli�on pa�ents” versus “suicidal 
mo�va�on pa�ents”. Comparing pa�ents admit-ted for “suicidal voli�on” (53.16%; 126/237) and subjects 
hospitalized for “suicidal mo�va�on” (46.84%; 111/237), we found sta�s�cally significant differences in the 
method of suicide and previous specialist care (see Table 20). Furthermore, a correla�on between people 
admited for “suicidal mo�va�on” and aged younger than 12.5 years old, 𝜒𝜒2(1, N =  237)  =  4.516, p =
 .034, previously atempted suicide, 𝜒𝜒2(1, N =  237)  =  5.672, p =  .017, intoxica�on, 𝜒𝜒2(1, N =
 237)  =  64.651, p <  .01, and disrup�ve, impulse-control or conduct disorder diagnosis, 𝜒𝜒2(1, N =
 237)  =  8.554, p =  .003, was demonstrated. A higher risk in the group of “suicidal voli�on,” instead, was 
demonstrated for self-cu�ng behavior, 𝜒𝜒2(1, N =  237)  =  90.047, p <  .01, and previous specialist care, 
𝜒𝜒2 =  (1, N =  237)  =  7.373, p =  .007 (see Table 20). 

Artificial intelligence: Neural network approach. The dataset, consis�ng of 237 subjects, was divided into a 
train set (166 cases, equivalent to 70% of the total) and a test set (71 cases, equivalent to 30% of the total) to 
train and test the implemented network. The number of epochs fixed at 100 allows us to avoid the 
phenomenon of data overfi�ng. This phenomenon occurs when the weight model follows the test set too 
specifically and cannot adapt to other examples, which leads to a loss of accuracy. The network described 
achieved a final accuracy of 86.7% (Figure 1).  



 

Figure 35 - Neural network approach: Graph showing loss (mean squared error) and accuracy versus number of training epochs. The 
highest accuracy peek achieved is 89%  

K-fold CV and LOOCV generally produce a less biased model than other methods as they ensure that every 
observa�on in the original dataset has a chance to appear in the training set and the test set. Some�mes the 
value obtained with LOOCV is considered to be the “ideal” value achievable by the model despite the fact 
that in general LOOCV can be subject to high variance (so that very different es�mates would be obtained if 
the es�ma�on were repeated with different ini�al samples of data from the same distribu�on) or overfi�ng 
since the model is being provided with almost all of the training data to learn and only a single observa�on 
to evaluate. In the present case, for K = 5 the model obtains an average accuracy of 84%, which is consistent 
with the ideal line obtained with LOOCV, i.e. indica�ng the model’s stability in predic�ng with this accuracy 
value, which is slightly lower than that obtained in the previous test. 

7.6. Discussion 
Overall, out of 700 inpa�ents admited to CAPEU between January 2016 and June 2020, 33.86% were for STBs 
with a significant increase over the years and hospitaliza�on for SBTs switched from 26.92% in 2016 to 52.83% 
in the first half of 2020. More than 75% of pa�ents were female, except for subjects younger than 12 years 
old, who showed a male/female ra�o of 1.3:1. Male prevalence in younger pa�ents seems to be related to 
the common finding of Disrup�ve, Impulse-control and Conduct-Disorders, which are known to have a male-
prevalence [318]. 

The greatest incidence of SBTs is observed in spring and winter (56.96% of cases), probably due to the 
poten�ally stressful role of school. This data, already highlighted by the interna�onal literature [319], is 
confirmed by the higher incidence of SBTs during weekdays (69.20%) compared to weekends and school 
holidays (30.8%). In addi�on, school difficul�es are the second leading cause of triggering SBTs (8.44). More 
than 14% of our pa�ents had a second or third re-hospitaliza�on for SBTs. Determining the rate of 
rehospitaliza�on with a diagnosis of suicidal idea�on or atempted suicide within a year could be useful for 
the implementa�on of preven�ve measures. The presence of psychiatric disorders in 99.58% of pa�ents could 
be related to their enrollment in an emergency department of a mental health third-level center. Addi�onally, 
mood dis-orders are the most frequent diagnosis at discharge, o�en associated with anxiety, behavior and 
ea�ng disorders. In our sample, 68.35% of pa�ents had one or more psychiatric comorbidi�es confirming that 
suicidal risk is strictly connected with the number of psychiatric diagnoses [320]. 

Suicidal idea�on was the main reason for hospitaliza�on in our series (45.15%), followed by suicide atempts 
(32.07%). Pa�ents with suicide atempts/failed suicide did not show an increased presence of suicidal 
behaviors such as previous idea�on or self-cu�ng, unlike pa�ents with suicidal idea�on. Furthermore, suicide 



atempts in the group of pa�ents hospitalized for atempted suicide occurred mostly through intoxica�on 
(voluntary drug inges�on), and this figure is also consistent with that of other studies [321]. 

However, it appears that more pa�ents with “suicidal voli�on” than those with “suicidal mo�va�on” have 
greater access to previous specialist treatments. This datum is coherent and explicable with the fact that in 
many psychiatric illnesses with developmental onset and in par�cular, depressive disorder and bipolar 
disorder, acute psycho�c dis-order, postrauma�c stress disorder, ea�ng disorders, anxiety, personality 
disorders with high impulsivity, and chronic or repe��ve suicide may be a component of the syndrome [322]. 

Our observa�on of a strong correla�on between age <12.5 years and a higher risk of “suicidal mo�va�on” is 
scarcely observed in the literature. Consistent with this finding, a few other studies have iden�fied a similar 
prevalence of suicidal idea�on in boys and girls through age 12 and a higher prevalence of suicide atempts 
in boys than in girls in this age group [323]. It may be related to a higher rate of diagnoses of Disrup�ve, 
Impulse Control and Conduct Disorders and underrepor�ng of thoughts of death and suicidal idea�on in this 
age group. 

Children with these condi�ons may have a diminished view of their emo�ons and an understanding of their 
own frustra�on, which can lead them to internalize their difficul�es and experience self-harming thoughts 
and impulsive behaviors. This may be related to their difficulty recognizing or communica�ng their distressing 
thoughts and some�mes referral adults and clinicians may have difficulty assessing the nature and intent of 
their behavior. Accurate es�ma�on of suicidal risk remains one of the most difficult and most important tasks 
that clinicians face. Es�ma�on of suicidal risk also requires taking into considera�on specific factors 
associated with the progression from suicidal idea�on to atempted suicide. 

Finally, the informa�on collected in the database for each pa�ent has proved to be relevant for the crea�on 
of a predic�ve model using machine learning tools. Although it is not possible to trace the characteris�cs of 
greatest impact clearly and directly a�er RFE, we can state that the informa�on used to train the model is 
significant, as it yields an accuracy ranging between about 84 and 86%, on a rela�vely small input case study, 
proving to be a reliable monitoring and predic�on tool. This work has, therefore, allowed the development 
of a key instrument able to predict, with good reliability, a suicidal event, giving the possibility to define a new 
interven�on strategy, thus preven�ng and reducing the risk of suicide. 

7.7. Final remarks 
This study reveals a significant increase in the hospitaliza�on rate for SBTs among females aged 16–18 years 
old at the CAPEU of the Meyer Children’s Hospital. Risk factors include males under 12 years with disrup�ve, 
impulse control and conduct dis-order, individuals using intoxica�on as a suicide method, those with previous 
suicide atempts, and those with prior specialist care. Early iden�fica�on of suicide risk factors during 
childhood and adolescence is crucial. This study contributes to knowledge and preven�on efforts, u�lizing 
machine learning techniques. 

The limita�on of the study is the retrospec�ve nature of the study; however, it is a single-center recruitment, 
and all pa�ents have been inves�gated with a standardized protocol. 

Future work to improve the study is needed for further explora�on, and it will have to consider a greater 
number of subjects in order to improve the performance of ar�ficial intelligence. 

 

 

 

  



8. Ar�ficial intelligence for neurology – case study glioblastoma mul�forme 
in rats 
This last case study is inserted in the coopera�on born inside the visi�ng period of my PhD research to the 
CTB of the UPM in Madrid. The need of this group was to automa�ze a process performed to evaluate the 
effec�veness of the new technology implemented by this center used to treat the brain tumor, glioblastoma 
mul�forme, without the need for a surgery. A�er a further explana�on of the clinical problem, the AI tool 
developed will be presented as follows, remembering the AI framework: the clinical scenario to which the 
case study belongs is presented, the task to be addressed, with the rela�ve metric and the u�lized data type 
are described; the data used are illustrated and presented with the necessary processing; the model used is 
presented and the final applica�on developed is shown and described. 

8.1. Glioblastoma mul�forme 
Glioblastoma mul�forme (GBM) is one of the most aggressive types and the most common primary brain 
tumors [324]. It is also the deadliest form of glioma, accoun�ng for approximately 45% of all brain tumors, 
with a median overall survival �me ranging from 14.6 to 20.5 months. This is given by several characteris�cs 
of GBM, among which are its rapid growth, invasiveness and resistance to treatment [324]. For these reasons 
the treatment is complex and challenging, and so several standard treatments exist, including surgery, 
radia�on therapy and chemotherapy [325]. However these treatments are o�en ineffec�ve, and the 
recurrence rate is high given the GBM’s ability of invading surrounding brain �ssue.  

Given the limited success of current methods, research is progressing in other direc�ons with the aim of 
finding an effec�ve therapy, such as tomotherapy, hyperthermia, and oncoly�c virotherapy. Among the 
possible new therapies the one considered in this work is op�cal hyperthermia. This technique is based on 
hea�ng the tumor �ssue to temperatures ranging from 40 to 45°C, which can induce the apoptosis process 
and slowdown intracranial glioma progression [326]. More specifically, this therapy has been carried out by 
the CTB on rats to which the GBM was previously stereotaxically inoculated in the previous two weeks and 
finally using gold nanorods the hyperthermia was performed. Given the innova�ve aspects of this treatment 
that does not need to perform a surgical procedure or a radiotherapy it is important to understand the 
effec�veness of the overall procedure using some specific metrics, such as volume of the GBM and percentage 
of brain volume occupied. 

8.2. Automa�c glioblastoma mul�forme volume computa�on in rats’ brain 
In order to compute the volume of 3D structures obtained by means of MRI images, it is necessary to have 
the 3D delinea�on, also called segmenta�on. In literature, there are many cases of automa�c segmenta�on 
of tumors [327–329], but for the majority of them, the studies are based on human databases. This is one of 
the main reasons why, based on deep research of the literature, it does not exist a public available tool to 
automa�cally segment and compute the volume of GBM tumors in rat’s brain. Even if there are not research 
that deal directly with this problem, in the literature there exist some studies that try to segment the rat’s 
brain from the MRI, such as in the case of [330], in which the authors proposed a framework that used a 
mul�-atlas similarity-based and mul�-label fusion algorithm for the propaga�on of the segmenta�on to 
perform the segmenta�on of mul�ple brain areas. Also, in most recent years the proposed solu�ons are based 
on machine learning algorithms, more specifically deep learning algorithms that uses as baseline the 3D U-
Net model [331–334], other solu�ons exist that uses genera�ve adversarial networks such as [335]. 
Furthermore, public dataset contains MRI data of rats, but there are three main problems, firstly they mainly 
consist of rats that do not have a GBM developed in the brain, secondly there are no segmenta�on provided, 
finally they are not coherent and consistent with the type of data produced by our laboratory. 

The aim of this work is to develop a completely automated tool through the use of deep learning to compute 
the volume of a GBM brain tumor, and the volume of the brain itself, to obtain the percentage of the brain’s 



volume occupied by the GBM. The 3D U-Net model has been selected and trained over two different 
strategies, based on the type of used input to automa�cally segment both brain and tumor. The best results 
were obtained using the nnU-Net framework with an ensemble of the trained models with a tes�ng dice 
score of 99.07% for the brain segmenta�on and of 97.47% for the tumor segmenta�on. A 3D Slicer’s extension 
has been implemented to create an easy to use and fast tool. 

8.3. Materials 
All the procedure of data acquisi�on, star�ng from the rats’ management, the therapeu�c approach, to the 
final MRI acquisi�on of the rats. Here there will be discussed only the steps that follow the data acquisi�on, 
in order to compute the volume and the percentage of brain volume occupied. 

A total of 26 MRI of rats with a GBM tumor were acquired, obtained from 19 different rats. For each MRI both 
the TC1 and TC2 phases were available (an example is depicted in Figure 36) the first one is useful to examine 
the normal anatomy of the brain, and the later is used to detect the pathological changes in the neural �ssue 
[336]. The dimensions of the diagnos�c images are of 170x170 with a total number of 15 slices and a spacing 
of 0.1 mm x 0.1 mm x 1.0 mm. 

 

 

Through manual segmenta�on a ground truth of the brain and the GBM of each MRI was realized by a team 
of experts to reduce poten�al biases. In par�cular it was done using the "3D Slicer" so�ware [337], combining 
manual segmenta�on with the tools provided by the program (e.g., "grow from seed", "smoothing", and "fill 
holes"). 

8.4. Ini�al Analysis 
A first analysis phase on the available data was done to understand the range of possible approaches that 
could be used for this specific task. In par�cular, it was used the ground truth segmenta�on of the tumors 
and the brains in order to analyze the overall pixels’ distribu�on. In Figure 37 are shown, for a subset of the 
available data and only for the TC1 phase, the pixels’ intensity distribu�on, normalized through min-max 
normaliza�on, rela�ve to the ground truth of the tumor segmenta�on (a) and of the brain segmenta�on 
without the tumor’s pixels (b). From the two graphs is possible to see that the distribu�on of the brain pixels 
is similar for all the cases having the majority of the values below 0.6, but if we check the tumor’s pixel 
distribu�on there is just one case that could be easily divided from the tumor, instead for the majority of the 
tumors they would have a pixels’ distribu�on indis�nguishable from the brain’s one. From this it is possible 
to understand that this problem is not straigh�orward, not solvable with a threshold-based approach, given 
the variability on the tumors’ pixel distribu�ons. 

Figure 36 Representation of a single slice corresponding to the MRI of one rat with GBM: (a) TC1 phase in which it can be noted 
like the GBM has a brighter color than the brain; (b) TC2 phase where it can be observed how the brain contours are crisper; (c) 
the ground truth manual segmentation of the brain and of the GBM. 



 

 

Looking at the TC1 phase pixels’ intensity distribu�on it seems difficult to apply a sta�s�cal-based approach, 
and checking the one of the TC2 phase, depicted in Figure 38, it seems impossible to dis�nguish the tumor 
from the brain just using the pixel values. This is a very important aspect that must be taken into considera�on 
at the moment of strategy development. 

 

Figure 38 The TC2 phase distribution of the pixels’ intensity inside the ground truth of the tumor (a)  and of the brain (b) removing the 
tumor ground truth values. To increase the readability of the graphics it has been decided to plot only a small randomly selected subset 
of the dataset. The tumors intensities values and the brain ones belong practically to the same identical interval without showing 
differences in the behavior for all the cases. 

Other than this, another challenge is given by the fact that the dataset has very few cases, this problem must 
be taken into account par�cularly to avoid crea�ng solu�ons that will not be able to generalize well the GBM 
characteris�cs and therefore be useless. 

8.5. Methods 
As stated in the introductory sec�on, the aim of this work is to create an automa�c system that is able to 
compute the volume of GBM in rat MRI. Also the problem of compu�ng the volume of the brain occupied by 
the GBM will be addressed and therefore taken into account in algorithm selec�on phase. The main difficulty 
for this task consists in the segmenta�on of the interes�ng areas (GBM and brain), once this is done the 

Figure 37 The TC1 phase distribution of the pixels’ intensity inside the ground truth of the tumor (a) and of the brain (b) removing 
the tumor ground truth values. To increase the readability of the graphics it has been decided to plot only a small randomly selected 
subset of the dataset. The tumors intensities values belong to the interval of values greater than 0.2, and the brain intensities are 
mainly below 0.6. Even if some cases could seem to be easily split with a threshold, the majority of the tumors pixels overlaps with 
the relative brain pixels. 



computa�on of the volume is straigh�orward knowing the spacing of the diagnos�c images. In par�cular it 
will be simply computed using the following formula: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

where 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 is the number of all segmented voxels, and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the size of the single voxel simply 
obtaining by mul�plying the pixel size in both dimensions with the slice thickness.  

Being this an automa�c segmenta�on task and knowing the par�cularity and the challenges of this type of 
dataset, considering the literature on segmen�ng tumors and brains, an AI-based solu�on seems to be the 
most appropriate op�on. Considering the limited cases available the U-Net model is the best choice, being 
able to achieve good performances even in these situa�ons [102]. More in detail the 3D U-Net [338] was 
chosen, considering the type of input and with the aim of elaborate the full images without dividing it into 
single slices, trying to achieve beter results. The goal is to select and implement the best version of the 3D 
U-Net for this specific problem and since several implementa�ons of the 3D U-Net exists, it was chosen to 
compare the results obtained using the 3D U-Net with varia�onal autoencoders (VAE) [339]  provided by the 
MONAI API [340] and the 3D U-Net implementa�on of the no-new-Net (nnU-Net) framework [341]. The 3D 
U-Net with VAE was selected because the combina�on between U-Net and VAE has the poten�al to improve 
the final segmenta�on performance in small dataset scenarios by leveraging the genera�ve ability of the VAE 
to augment the data and reduce overfi�ng [342].  The nnU-Net was picked because it is able to obtain state-
of-the-art performance in the vast majority of biomedical imaging segmenta�on tasks with its par�cular type 
of training that is able to handle any diagnos�c image shape type as input, its data augmenta�on policy, the 
preprocessing and the final postprocessing. 

A�er choosing the model, there was a main aspect to take into account which is the type of chosen input: 
considering the above, the TC1 phase of the MRI is a necessary input to give relevant informa�on to the 
model in order to iden�fy the tumor; instead for what concern the TC2 it is useful only to have a beter 
delimita�on of the brain and it could discarded.  

Given the type of available data and chosen architecture, two different strategies were selected in order to 
determine the best input that should be used. The two strategies vary by the type of the used input as shown 
in Table 21. The main difference between them is given by the fact that the first one uses as input only the 
TC1 phase of the MRI, the second uses all the available informa�on. 

Strategy Input Task 
Tumor and Brain – TC1 MRI TC1 Segmenta�on of tumor and brain 
Tumor and Brain – TC1 TC2 MRI TC1 & TC2 Segmenta�on of tumor and brain 

Table 21 The two strategies developed in this study: the first one is the only that has the aim of segment purely the tumor not 
considering the brain, and as the second one it uses as input just the TC1 phase of the MRI; the second and the third one have the 
same task, but the last strategies uses as input both the TC1 and TC2 

Another important aspect is the fact that some MRI in the dataset corresponds to the same rat (taken in 
different days). They were not removed considering that there is a clear difference between the two (an 
example is visible in Figure 39) but they were handled with a specific criterion detailed in the following. The 
dataset to train and test the model was split into two main sets, the training set, that will contain 24 cases, 
and the tes�ng case that will contain 2 cases. In addi�on to this, the training set was used with a k-fold cross-
valida�on (k=4, so 18 cases for training and 6 to validate) method to obtain sta�s�cally accurate results. All 
the splits were not completely random but made in such a way that all the MRI data rela�ve to one specific 
rat are always in the same set and the 2 cases in the tes�ng set are rela�ve to two different rats.  



 

  

To compare the two different implementa�ons of 3D U-Net the average dice score was used obtained using 
the k-fold cross-valida�on. To evaluate the capability of the best proposed solu�ons on the tes�ng set in order 
to pick the best solu�on not only the dice score, but also the jaccard score, precision, recall, and false posi�ve 
rate (FPR) was computed. 

8.5. Results 
The results obtained during the training phase of all the strategies are depicted in Table 22. For each one of 
the strategies is reported for the specific framework, the considered output and the dice score obtained for 
each one of the k-folds and the average of the folders dice scores. 

Strategy Framework Output 
Metrics Validation 

K-Fold 0 1 2 3 

Tumor and Brain  
TC1 

MONAI 

Brain 
Dice Score 82.20% 81.91% 88.06% 90.07% 

Average 
Dice Score 85.56% 

Tumor 
Dice Score 40.4% 4561% 47.06% 48.40% 

Average 
Dice Score 45.37% 

nnU-Net 

Brain 
Dice Score 95.62% 94.09% 95.00% 94.72% 

Average 
Dice Score 94.86% 

Tumor 
Dice Score 83.40% 88.60% 83.31% 82.62% 

Average 
Dice Score 84.48% 

Tumor and Brain 
TC1 TC2 

MONAI 

Brain 
Dice Score 94.85% 90.12% 91.85% 90.85% 

Average 
Dice Score 91.92% 

Tumor 
Dice Score 66.83% 64.37% 64.05% 43.33% 

Average 
Dice Score 59.65% 

Figure 39 Example of GBM evolution over one week of time for one rat: (a) is the first MRI made to the rat, (b) is 
the second MRI made to the rat after one week from the other one. 



nnU-Net 

Brain 
Dice Score 97.00% 96.45% 95.66% 95.09% 

Average 
Dice Score 96.05% 

Tumor 
Dice Score 84.91% 87.98% 84.66% 81.80% 

Average 
Dice Score 84.84% 

Table 22 Results of the training phase: per each strategy the dice score evaluated on the validation set of each folder is reported in 
such a way that it is divided by the framework used and the considered output. 

The results obtained using MONAI are for the mean dice score of brain segmenta�on 85.56% (C.I. ±3.51, 𝛼𝛼 = 
95%) using only TC1 phase and 91.92% (C.I. ±1,18, 𝛼𝛼 = 95%) using both phases and for GBM segmenta�on 
an average of 45.37% (C.I. ±2.97, 𝛼𝛼 = 95%) with TC1 59.65% (C.I. ±9.29, 𝛼𝛼 = 95%) with TC1 and TC2. In 
contrast, using nnU-Net the results, obtained with the strategy "Tumor and brain - TC1," are 94.86% (C.I. 
±5.40, 𝛼𝛼 = 95%) for brain segmenta�on and 84.48% (C.I. ±2.35, 𝛼𝛼 = 95%) for tumor segmenta�on. Finally, 
for the last strategy with CT2, the average dice score of nnU-Net for brain and tumor segmenta�on is 96.05% 
(C.I. ±0.72, 𝛼𝛼 = 95%) and 84.84% (C.I. ±2.14, 𝛼𝛼 = 95%), respec�vely. 

Reaching the nnU-Net model the best performances for any type of strategy it has been decided to pick it as 
the best model, more in detail the ensemble of the trained models has been evaluated on the tes�ng set. 
The tes�ng cases given the limited size of the available data is composed just by two cases shown in 

 

Figure 40, in which the first two images (a) and (b) represent the TC1 and the TC2 of the first rat, RatTest1, 
that is a rat with a GBM developed and a good MRI acquisi�on for both phases; the (c) and (d) images in the 
last row, of RatTest2, show and example of rat with GBM, but with an error in the acquisi�on of the TC2 
phase. 



 

Figure 40 The slices of the two rats' MRIs of the testing set: (a) and (b) are respectively the TC1 and TC2 phases of RatTest1;(c) and 
(d) the TC1 and TC2 of RatTest2. From (d) it can be seen that the image of the TC2 phase is a little bit noisy, this could influence 
negatively the results when it is used. 

The metrics are reported in Table 23 for both cases, also the results for the RatTest2 of the last strategy are 
not considered valid because the TC2 image contains noise due to the acquisi�on, and this would nega�vely 
affect the comparison. 

Strategy Output 

Metrics Testing 

Dice Score Jaccard Score Precision Recall FPR 
Rat 

Test1 
Rat 

Test2 
Rat 

Test1 
Rat 

Test2 
Rat 

Test1 
Rat 

Test2 
Rat 

Test1 
Rat 

Test2 
Rat 

Test1 
Rat 

Test2 

Brain 
and 

Tumor 
TC1 

Brain 99.29% 98.84% 98.59% 97.71% 99.55% 98.26% 99.03% 99,43% 0,07% 0,30% 

Tumor 98.27% 96.66% 96.60% 93.54% 97.43% 93.82% 99.12% 99,68% 0,10% 0,39% 

Brain 
and 

Tumor 
TC1 TC2 

Brain 96.55% - 93.33% - 96.45% - 96.65% - 0.57% - 

Tumor 97% - 94.18% - 97.48% - 96.53% - 0.09% - 

Table 23 Metrics of the ensemble nnU-Net model evaluated over the testing set for each strategy considered and divided into tasks, 
‘-‘ no meaningful data. 

Finally, considering that the first strategy yields the best results, in Figure 41 displays the segmenta�on 
outcome obtained by applying the nnU-Net model to the two tes�ng cases. 



 

Figure 41 The results relative to the usage of the nnU-Net with the "Brain and Tumor TC1" strategy for both the testing cases: under 
the images there are the volumes computed. 

8.6. Discussions 
From the results is possible to see how using deep learning, in par�cular using the 3D U-Net proposed by 
nnU-Net, it is possible to segment diagnos�c images of rats’ brains with a high level of accuracy and detail. 
Even if this study is limited by the number of used cases, through the use of k-fold cross-valida�on it has been 
demonstrated that the performances are good and the results obtained are considerable as a valid star�ng 
point to correctly compute the volume. Considering the metrics measured it is possible to say that the nnU-
Net framework obtains easily beter results than the MONAI implementa�on. Furthermore, comparing the 
results obtained with the nnU-Net between the two strategies it seems like the usage of the TC2 does not 
provide enough informa�on to be deeply influent in the segmenta�on task, or at least in this limited dataset 
it does not show interes�ng improvements when it was used. For this reason, the “Brain and Tumor TC1” is 
the best strategy so far, being more consistent considering all the possible situa�ons. 

 Addi�onally, further steps were performed in order to made a usable tool, i.e. a 3D Slicer extension has been 
implemented. The extension is able to use any of the proposed strategies with the ensemble of the 
corresponding models and can work with GPU or directly on the CPU, with an approximate �me of one minute 
on a small budget GPU, such as the NVIDIA MX150, and about three minutes on a CPU Intel Core i7-8550U. 
Once the segmenta�on is done a table is created containing the volume expressed in 𝑚𝑚𝑚𝑚3 of the GBM, of 
the brain and finally the percentage of brain occupied by the GBM. In Figure 42 is shown an example of usage 
of the extension having as input the RatTest1 and using as strategy “Brain and Tumor TC1”. 



  

Figure 42 An example of the extension’s functioning. In the blue box are reported the field of the extension that must be filled in order 
to specify (a) the data path containing the rats’ MRI folders and the folder name relative to the MRI saved with the standard bruker 
format; (b) the folder containing the checkpoints of the usable models, the strategy to be used (by default the “brain and tumor TC1”) 
and if it is present and usable an NVIDIA GPU; (c) the output path that will contain the starting MRI and the final segmentation both 
as nifti files, and the final computed values of the volumes of the brain and the GBM, and the percentage of the brain’s volume occupied 
by the GBM. In the white box the visualization of the MRI used as input, with the automatically created segmentation superimposed 
to check if it is consistent with the MRI. Finally, in the green box a table is generated containing the computed tumor and brain volumes 
and the percentage of the brain occupied by the tumor. 

Using this extension, it is possible not only to automa�ze a very �me consuming and repe��ve task, but also 
enable the usability of an objec�ve system that can be used even by non-expert operators to obtain in a few 
minutes the desired result, also using low-budget devices. Furthermore, having the possibility of using this 
extension within 3D Slicer enable the use of the other tools of the same, and in the cases in which the final 
results is no good enough it can be manually refined to obtain a beter final result. Considering that this 
extension could be beneficial for others study, it will be freely available on request. Furthermore, being 
publicly available it is really simple to change the model used to generate the segmenta�on if beter proposal 
might arise. Future steps will aim to the acquisi�on of new data to increase the number of case studies and 
to improve the performance of the model proposed. Finally, given the efforts made to collect and to label the 
data used in this study, and also given the value of the data availability it has been decided to publicly release 
the dataset used with its ground truth. 

8.7. Final remarks 
This study demonstrates the poten�al of deep learning, specifically the 3D U-Net architecture, for accurate 
automated brain tumor segmenta�on in rat MRI data. Although limited by sample size, the nnU-Net 
framework achieved high Dice similarity scores, outperforming the MONAI implementa�on. Mul�-contrast 
MRI incorpora�ng T2 and TC2 did not substan�ally boost segmenta�on performance versus T1 alone in this 
small dataset; the T1-only strategy provided the most consistent results. To enable easy quan�fica�on of 
tumor volumes, an automated segmenta�on pipeline was developed as a 3D Slicer extension, allowing quick 
analysis even on low-power devices. While addi�onal data is needed to op�mize and thoroughly evaluate the 



deep learning models, this pilot study shows the feasibility of leveraging ar�ficial intelligence for glioblastoma 
quan�fica�on in rodent models. The annotated MRI dataset and ground truth labels have been publicly 
released to facilitate future research. In conclusion, deep learning-based segmenta�on approaches show 
strong poten�al for efficient quan�ta�ve analysis of preclinical brain tumor studies, though larger datasets 
and con�nued algorithm refinement is warranted to improve generalizability. 

 

  



9. Conclusions 
Considering the growth of AI research and its ubiquitous usage in all the fields exis�ng with its great 
capabili�es of adapt to very complex problems, AI is becoming increasingly used in the research field for 
medical related tasks. This work analyzes the implementa�on of AI-based tools for medical scenarios with 
the aim of crea�ng a general framework useful for the realiza�on of every applica�on that use AI with a 
clinical field. The common approach to realize these tools involves the crea�on of a specific task-oriented 
dataset, followed by the selec�on and the training of an AI model. 

Aiming to the goal of implemen�ng AI-based tools that could be usable in clinical prac�ce and used directly 
by the clinical equipe, a framework of the overall development of the applica�on has been designed to define 
all the phases that should be followed in order to obtain a valid final result. The following are all the phases 
taken into account: the defini�on of the clinical problem challenged, with the analysis of the type of task, 
metrics, and data necessary; the crea�on of the database, considering all the data gathering approaches; the 
cleaning of the data, removing not-valid values, replacing missing one and preprocessing the data to be 
usable; the crea�on, training, and tes�ng of the AI model; finally, the implementa�on of the final applica�on 
with the user-interface and the AI model ready for the usage of the clinical staff. 

The proposed framework has been tested, given all the expected and unexpected limita�ons, in four case 
studies iden�fied in collabora�on with different groups that vary depending on the case study, like the 
hospital Careggi in the Custom3D joint laboratory, the hospital Meyer in the T3Ddy joint laboratory, and the 
Biomedical Technology Center at the Universidad Politecnica de Madrid. These case study are: 1) the analysis 
of kidney tumor with the coopera�on of the urology department of AOUC; 2) the automa�za�on of the design 
of surgical cut guides with the coopera�on of the plas�c surgery department of Meyer; 3) dis�nguishing 
between possible suicidal pa�ents to understand their mind health in collabora�on with the psychiatry group 
of Meyer; 4) the automa�c computa�on of the brain tumor in rats through the usage of automa�c 
segmenta�on with the collabora�on of the CTB. 

Regarding the urology case, a�er a very specific overview and an in-depth study of the state of the art 
regarding ar�ficial intelligence applica�ons, an AI-based tool was created following the described framework. 
In par�cular, regarding the classifica�on between benign and malignant renal tumor. More specifically, for 
the first case, more types of metrics were taken into considera�on for the final evalua�on of the results, but 
the model's sensi�vity was considered a priority as it is able to give a very precise measure of how many cases 
of malignant tumors are correctly classified. To perform this task, it was decided to use only the diagnos�c 
images (CT) of the pa�ents, in par�cular a total of 271 CT scans of different pa�ents were collected, of which 
221 ccRCC and 50 oncocytomas. Star�ng from these data, deep features and radiomic features were obtained 
using a 3D U-Net. Using these features, two appropriate classifiers were trained, and the best one, an ANN 
based on the use of deep features, obtained the following final performance 73.77% balanced accuracy, 
94.59% sensi�vity, 52.94% specificity and 86.84% accuracy. 

In the case of plas�c surgery, the aim was to create tools capable of automa�ng an already exis�ng procedure, 
but fundamentally dependent on the presence of highly expert and specialized personnel. The iden�fied tasks 
were two: the genera�on of depth map type images and the segmenta�on of the anatomical elements of the 
ear. For the genera�ve task, MSE and SSIM were used to evaluate the result, having to deal only with RGB 
images made using a simple camera. In par�cular, 302 correlated RGB images of specific depth maps were 
collected; these were specifically labeled to be able to train a first model, a Faster R-CNN, to iden�fy the ear 
within the images and thus be able to actually use it to train a Cycle GAN model to map only the RGB ear to 
its equivalent depth map. A final AP of 97.63% was obtained for the Faster R-CNN and for the final depth map 
generated through Cycle GAN an MSE of ~0.07 and an average SSIM of ~0.80. As for the segmenta�on of the 
ear anatomy, the results were evaluated through the model's accuracy in classifying the individual pixels 
corresponding to the various ear components. In par�cular, for this specific case, depth maps were used 



directly, for a total of 131 depth maps. The model used is a modified version of the U-Net which was able to 
achieve a final accuracy of 97%. 

Moving on to the psychiatry case, the task of classifying between pa�ents with real suicidal inten�ons and 
not was iden�fied. Accuracy was used as a measure of the results obtained and only clinical data rela�ng to 
pa�ents were used. A total of 237 pa�ents were examined, and an ANN was used for the final classifica�on 
which achieved an overall accuracy of about 86%. 

Finally, regarding the case study related to neurology, star�ng from the objec�ve of calcula�ng the percentage 
volume of the mouse brain occupied by glioblastoma mul�forme tumors, the closely related task of 
segmen�ng the brain and tumor of rats having to deal exclusively with MRI was iden�fied. The average dice 
score was used to evaluate the final segmenta�ons obtained. In par�cular, a total of 26 MRI scans were 
obtained from 19 mice. A 3D U-Net was trained for this task obtaining an average dice score of 96.05% for 
brain segmenta�on, and an average dice score of 84.84%. Finally, an applica�on was created for the use of 
this tool, to speed up the crea�on of the graphical interface and the visualiza�on of the results, it was 
developed as an extension for 3D Slicer, and it is able through simple steps to generate the required 
segmenta�ons, show them to the user and calculate the required volume. 

9.1 Limita�ons and future works 
Despite the efforts made to ensure the accuracy and relevance of the results, this work has certain limita�ons 
that must be acknowledged. It must be considered that the applica�on of AI techniques in clinical prac�ce is 
s�ll an emerging field, and as such, the models and algorithms used may require further valida�on and 
op�miza�on. Except for the plas�c surgery task, the others have been explored with a limited dataset, which 
may affect the generalizability of the results. 

Future works in the future will concentrate on overcoming the above limita�ons by adding an external 
valida�on step that verifies the reliability and efficacy of the proposed tools using larger datasets. Another 
fundamental aspect that must be addressed is the ethical one. As said in previous chapters the ethical aspect 
of the use of the tools implemented in the clinical environment has not been considered, as none of them 
have actually been used in the clinical environment and mainly because the development of AI-based 
technologies has evolved at a much faster pace than legisla�on and consequently, at the �me the overall 
work was carried out, there was no well-defined regula�on for this technology. Therefore, it is necessary to 
concentrate in great detail in order to make the models more explicable in order to facilitate their 
understanding and, consequently, to create tools that meet all possible requirements imposed from an ethical 
point of view. Complementary to these wider advances, new developments in the sectors under 
considera�on will be made. In the case of kidney cancer, for example, the inten�on is to create a tool that 
can predict the grade according to the WHO/ISUP criteria for malignant kidney tumors.  
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