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Abstract

Deep Neural Networks (DNNs) are fundamental to Artificial Intelligence
(AI) applications, demonstrating remarkable performance across a diverse range
of tasks in industries such as transportation, robotics, healthcare, and multi-
media forensics. However, as these models have developed, the resources re-
quired for their training have increased significantly, which has dramatically im-
pacted both costs and environmental sustainability. Currently, DNNs struggle
to adapt to the dynamic and ever-changing nature of our world, often necessi-
tating updates to address new situations or tasks. Traditionally, updating these
models for novel situations involves re-training them from scratch, integrating
both previous and current task data, a process known as joint-incremental train-
ing. This method exacerbates development costs and environmental impact.
Relying solely on new task data for updates leads to catastrophic forgetting of
previously acquired knowledge. To counter this, the main goal of incremental
learning is to update these models effectively and efficiently, thereby mitigating
catastrophic forgetting. Additionally, due to the high number of operations and
parameters, deploying DNNs on edge devices is challenging; thus, they are of-
ten hosted on cloud servers for inference. This cloud-based inference presents
challenges in terms of responsiveness and raises privacy concerns in real-world
applications, such as intelligent vehicles.

This thesis tackles both the challenges of incremental learning and design-
ing efficient DNNs for edge computing. For incremental learning, we propose
a method named Elastic Feature Consolidation, which contributes meaningfully
towards bridging the performance gap between existing incremental learning
approaches and joint-incremental training, focusing on using only the current
task data to prevent forgetting. We emphasize the importance of incremental
learning inMultimedia Forensics by establishing a benchmark for incremental so-
cial network identification and assessing a broad range of incremental techniques,
contributing to future research in this field. In terms of efficient architecture de-
sign, we develop effective and lightweight vehicle viewpoint estimation DNN mod-
els, optimized for edge applications in intelligent vehicles.
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Chapter 1

Introduction

Over the past decade Artificial Intelligence (AI) has emerged as a foundational ele-
ment in technological advancement, significantly influencing how companies and
users interact with a wide range of applications such as transportation, robotics, bi-
ological applications and the creation of textual and multimedia content.

In the transportation sector AI is revolutionizing vehicle operation and their inter-
action with the environment, leading to a new era in this field. By processing data
from an array of both visual and non-visual sensors, AI technologies are enhancing
the functionalities of intelligent vehicles. This includes advances in autonomous
driving [1], collision warning systems [2] and vehicle fleet management [3], lead-
ing to improved vehicle safety and greater efficiency in logistics management. Simi-
larly, in robotics the integration of AI with sensor data is boosting robotic capabilities
and refining decision-making processes in complex environments. This progress is
evident in manufacturing [4] and assembly tasks in industries like aerospace [5]
and packaging [6]. Additionally, the use of AI-driven drones in remote sensing has
become more prevalent for environmental data collection and analysis [7].

AI has also made groundbreaking contributions to medical and biological fields.
One notable example isAlphaFold2 [8], which has demonstrated outstanding perfor-
mance in predicting the 3D structures of proteins from their amino acid sequences.
This capability is revolutionary for science and medicine, addressing challenges in
protein structure identification. By reducing the time and cost of associated with
understanding new proteins and biological processes, AlphaFold2 has the poten-
tial to revolutionize fields, such as drug discovery, enhancing the ability to design
therapies and understanding complex biological systems.

AI is becoming increasingly influential for content creation, an area now com-
monly known as Generative AI [9]. This domain encompasses a broad spectrum of
technologies dedicated to the production anduse of textual andmultimedia content.
Central developments in this field include advancedAI chatbots like LlaMA [10] and
ChatGPT [11]. These chatbots are capable of generating complex and coherent text,
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Figure 1.1: Deep Neural Networks for visual tasks. This figure illustrates the com-
parative performance of different variants in each family of recent vision-based
models on the ImageNet-1K dataset, which contains 1.2 million images across 1,000
categories. It includes variants of the ResNet [14], ViT [15], DeIT [16], Swin Tran-
former [17], ConvNeXt [18] model families. The x-axis represents the GFLOPs of
these models, and the y-axis show their Top-1 accuracy. The size of each circle indi-
cates the number of parameters of the correspondingmodel. Darker bubbles denote
models pre-trained on ImageNet-22K, a superset of ImageNet-1K with 14 million
images and 21,841 classes. These results were extracted from [18].

but also are excellent at answering user queries and tackling complex tasks. Their
influence extends beyond mere text generation, revolutionizing customer service,
text editing, and communication strategies with more efficient and personalized in-
teractions. In the area of multimedia content, Generative AI is widely employed
in applications requiring realistic video and image content generation [12]. This is
evident, for instance, in the gaming industry, where AI systems enhance user expe-
rience by generating dynamic and realistic environments.

However, the rise of intelligent systems producing highly realistic content has
led to an increase in the fake digital content production, posing significant risks to
users. These phenomenahave serious implications, such asmisinformation, identity
theft and fraud. In response, the discipline of Multimedia forensics [13] has become
increasingly crucial. This field, focusing on the analysis of digital content to prevent
and detect criminal activities, is now heavily reliant on AI systems for identifying
fake content and tracing the origin of counterfeit or illicit material.

Deep Neural Networks (DNNs) models have become integral to modern AI ap-
plications, handling data from various modalities, such as images and sequences,
and achieving outstanding performance across a large variety of tasks. Convolu-
tional Neural Network (CNN) [14] and Vision Transformer [15] models excel at visual
tasks, including image/video classification, object detection, and visual content gen-
eration. Transformers [19] are also central to sequence-based tasks like natural lan-
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guage processing, speech recognition and sequence identification. Large Language
Models (LLMs) like GPT-4 and LlaMA-2, based on the Transformer architecture,
have shown exceptional performance in language understanding and text genera-
tion. Additionally, innovative text-to-image models such as Latent Diffusion Mod-
els [20], are revolutionizing image generation by merging the strengths of both vi-
sion and sequencemodels, creating realistic and accurate visual content from textual
descriptions.

However, despite the remarkable success of DNNs in terms of performance, they
face several significant challenges, particularly regarding adaptability and resource
efficiency. A primary issue is the large number of parameters and the high volume of
operations. As models have advanced, both the number of parameters and the num-
ber of mathematical operations required for inference have increased exponentially.
For instance, recent vision-based models have hundreds of millions of parameters
and perform hundreds of billions of floating point operations per second (see Fig-
ure 1.1 for an overview of these models). The complexity is even more pronounced
for Large Language Models, with parameters potentially reaching into the trillions.
This increase in complexity necessitates vast amounts of data, on the order of bil-
lions or even trillions of data points. Some models, like Vision Transformers, re-
quire an expensive initial pre-training phase on a huge dataset to achieve optimal
performance. This initial phase is usually performed on an auxiliary dataset and
can rely upon self-supervised techniques [21]. The requirements mentioned above
lead to long training times and the need for massive GPU clusters to train these
models in a reasonable time. Consequently, this dependency on massive computa-
tional resources not onlymakes the process time-consuming and costly, it also raises
concerns about the environmental impact and sustainability of the development of
deep learning models [22, 23].

Another significant limitation of such models is their lack of adaptability to new
tasks. The current learning paradigm of DNNs is static. DNNs are trained to per-
form a single task, using all the available examples in the training dataset before
their deployment in real world applications. Consequently, after the learning phase
the model remains unchanged and its application scope becomes fixed and even-
tually outdated and obsolete. This rigidity is a notable drawback in our dynamic
and ever-evolving world. For instance, the rise of Internet of Things (IoT) smart de-
vices across various sectors like transportation, healthcare, and robotics has led to
a considerable increase in data acquisition rates and the nature of data itself is con-
tinuously changing. As another example, in Multimedia Forensics deep learning
models are employed to identify fake content or unauthorized sharing of private
media on social networks. However, these models quickly become ineffective at
solving their tasks when the image generation techniques or social media platforms
change. Therefore, a more adaptive learning paradigm is required, allowing DNNs
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Figure 1.2: Static versus adaptive Learning. In static learning, the Deep Neural Net-
work (DNN) is trained once on a specific set of task data and then deployed for its
application. In adaptive learning, the DNN is incrementally trained on a sequence
of task data, allowing it to be deployed multiple times in its applications.

to learn incrementally from data and adapt as new task data arrive over time (see
Figure 1.2).

The current practices for managing multiple tasks over time involve either train-
ing a separate DNN for each task or reusing the initially-trained model to learn the
new tasks. The first approach significantly increases memory usage and efficiency
demands. Considering the resource-intensive characteristics of modern DNNs, this
method quickly become unsustainable as the number of tasks grows. Additionally,
it does not consider the relationships between tasks that often occur in real world
applications. For instance, in an autonomous driving system correctly localizing
vehicles can enhance the performance in determining their orientation. Moreover,
using a separate model for each task can be impractical, especially when the choice
of the appropriate model for testing is unclear, such as in scenarios where models
are updated to recognize new object categories.

A different strategy, which is more efficient in terms of parameter usage and in-
ference efficiency, involves exploiting the over-parameterization of DNNs to update
an existing model to learn new tasks. However, sequentially training the model on
the tasks, a strategy known as fine-tuning, brings its own challenges. In the standard
training scheme, DNNs lack the capability to incrementally learn over time, and they
suffer from a phenomenon known as catastrophic forgetting [24]: when a DNN, ini-
tially trained on one task, is subsequently trained exclusively on new tasks, it quickly
forget how to perform the original task. The typical approach to solving this issue is
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joint-incremental training, which involves retraining the network with both new and
old task data. While this method is optimal in maintaining performance, it leads to
several complications: the need to store an ever-increasing amount of data results
in escalating costs and data storage challenges; the training duration expands as the
number of tasks grows, becoming unsustainable in terms of cost and environment
impact; and legal challenges emerge, especially with privacy laws like the European
GDPR and the American CCPA, which grant individuals the right to request the
deletion of personal data. The use of such sensitive data for training models means
that if this data need to be removed, re-training the DNNwith a mix of old and new
data becomes impossible. Hence, a more efficient and privacy-preserving solution,
which does not require storing all past data, is required.

The concept of training a DNN on a sequential set of tasks while retaining mem-
ory of older ones is closely related to the stability-plasticity dilemma [25]. This
dilemma, significant in both neural network theory and cognitive science, poses
the challenge of balancing the retention of learned information (stability) with the
adaptation to new information (plasticity). In humans, this balance allows for the re-
tention of past experiences while adapting to new situations. However, in standard
learning, DNNs tend to exhibit high plasticity for learning new tasks but low stabil-
ity for older ones. Incremental learning is an active research field aiming to develop
DNN-based systems that achieve the right trade-off between stability and plasticity,
thereby retaining knowledge of previously learned tasks while efficiently adapting
to new tasks and addressing catastrophic forgetting.

Another significant limitation of DNNs is their deployment in real-world ap-
plications during the inference phase. Given the increasing number of operations
and parameters characterizing these models, companies typically deploy them on
cloud servers with powerful computational capabilities to provide services to their
customers, such as voice assistance [26] or text generation [11, 10]. However, cloud-
based inference suffers from issues with responsiveness, which can be a significant
constraint in, for instance, autonomous driving systems, as well as from privacy
concerns [27]. Therefore, any recent advancements in deep learning architectures
focus on designing efficient architectures for moving the inference of DNNs to edge
devices [28], although this may require sacrificing some performance.

In this thesis, we address both the challenges of incremental training and design-
ing efficient DNNs for inference phases in edge-computing applications. In the area
of incremental learning, we investigate the major causes of catastrophic forgetting
and methods to mitigate it. Furthermore, we explore the application of incremental
learning in the real-world scenario of Multimedia Forensics. Regarding the design
of efficient architectures, we develop effective and lightweight vehicle viewpoint es-
timationDNNmodels, suitable for edge applications in the intelligent vehicle sector.

This thesis introduces threemajor original contributions, summarized as follows:
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• Elastic Feature Consolidation for Exemplar-Free Incremental Learning: we
propose Elastic Feature Consolidation, a novelmethod for exemplar-free class in-
cremental learning that relies on a pseudo-metric in the feature space, named
Empirical Feature Matrix, and leverages past DNN features, called prototypes,
to incrementally train amodel. Ourmethod achieves notable improvements in
terms of the stability-plasticity tradeoff with respect to recent methodologies.

• Incremental Learning in Social Network Identification: we propose realis-
tic incremental scenarios for social network identification (namely Incremental
Social Version Classification and Incremental Social Platform Classification). We
develop a suitable architecture for this task and evaluate several incremental
learning methods, including Elastic Feature Consolidation, to build a bench-
mark and draw attention to this topic for future research.

• Vehicle Viewpoint Estimation fromMonocular Cameras: we propose neural
networks that are both lightweight and effective for vehicle viewpoint estima-
tion in intelligent vehicle systems, specifically designed for edge-computing
applications. By combining object detection information and incorporating
geometric constraints into the training loss, we significantly enhance the per-
formance of viewpoint estimation. Although we have not yet evaluated incre-
mental learning methodologies in the field of intelligent vehicles, we plan to
address this in future work.

The rest of this thesis is organized as follows:

• In Chapter 2 we introduce some required background related to incremental
learning, focusing on the main learning paradigms, the causes of forgetting,
and recent advancements in this field. From a high-level perspective, we de-
scribe both exemplar-free and exemplar-based class incremental learning al-
gorithms, and delve deeper into some foundational approaches that have in-
spired the most recent state-of-the-art methods.

• In Chapter 3, we introduce Elastic Feature Consolidation (EFC), an exemplar-
free class incremental learningmethod that regularizes drift in directions highly
relevant to previous tasks and employs prototypes to reduce forgetting. This
method exploits a tractable second-order approximation of feature drift based
on an Empirical Feature Matrix (EFM). The EFM induces a pseudo-metric in
feature space of the CNNs, which we use to regularize feature drift in impor-
tant directions and to update Gaussian prototypes used in a novel asymmetric
cross-entropy loss. We perform an extensive evaluation of this method on sev-
eral datasets, both in Warm-Start scenarios, characterized by a large number
of classes in the first task, and Cold-Start scenarios, where insufficient data is
available in the first task to learn a high-quality backbone.
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• In Chapter 4, we introduce the problem of incremental Social Network Iden-
tification in Multimedia Forensics. Various forensic methods based on DNNs
address the problem of Social Network Identification from images. However,
the constant emergence of new social platforms and updates to existing ones
render these methods ineffective. Therefore, we propose the evaluation of two
realistic incremental learning scenarios: Incremental Social Platform Classifi-
cation and Incremental Social VersionClassification. We evaluate awide range
of incremental learning methodologies in these scenarios to understand the
effectiveness of incremental learning solutions in updating a DNN when new
social platforms emerge or existing platforms are updated.

• Finally, in Chapter 5, we present the problem of vehicle viewpoint estimation
using monocular cameras. Estimating the viewpoint of vehicles from monoc-
ular images is a crucial component for autonomous driving systems and fleet
management applications. We introduce lightweight and effective convolu-
tional neural networks that employ logit smoothing techniques and utilize a
Siamese loss to enforce geometric constraints during training. Byutilizing both
image and vehicle coordinate information, these networks provide good per-
formance in vehicle viewpoint prediction in terms of accuracy, memory foot-
print, and inference time. The last two properties, in particular, make these
models well-suited for deployment on edge devices.





Chapter 2

Incremental Learning Background

In the recent years, Deep Neural Networks (DNNs) have achieved remarkable suc-
cess, often matching or even surpassing human performance in a wide range of
tasks. Notable examples include excelling in vision tasks like object recognition,
object detection, and image segmentation, as well as demonstrating proficiency in
sequence prediction and the generation of textual, voice, and multimedia content.
This exceptional capability has firmly establishedDNNs as a cornerstone in artificial
intelligence (AI) applications.

However, the effectiveness of DNNs comes with its own set of challenges, pri-
marily centered around two key aspects: scalability and adaptability. The inherent
nature of DNNs demands an extensive dataset for robust generalization to unseen
data. While amassing large amounts of data is feasible in some cases, practical lim-
itations such as limited time and financial constraints or stringent data privacy reg-
ulations may make it impossible to collect a massive quantity of data. Moreover, a
significant challenge arises when the distribution of some or all the data changes,
requiring updates to the model. The laborious, expensive, and wasteful process of
reusing the entire dataset for these updates, an approach known as joint incremental
training, highlights fundamental scalability and privacy issues in the field of deep
learning.

Furthermore, if a DNN is initially trained for a specific task and is transitioned
to a different task by naively adapting the existing network to the novel task, an
approach called fine-tuning, the new model encounters significant difficulties. Un-
like the human brain, which exhibits remarkable plasticity in learning new tasks
while maintaining stability in remembering old tasks, DNNs suffer from the so-
called problem of catastrophic forgetting [24]. Thismeans that when aDNN is trained
on one task and then trained on one or more new ones, it quickly forgets how to per-
form the initial task.

Incremental Learning (sometimes referred to as Continual or Lifelong Learning)
is a machine learning paradigm that treats DNNs as systems with the capability to

13
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Figure 2.1: An Incremental Learning Agent. The agent processes a continuous data
stream segmented into tasks, each representing a different classification problem,
to train each modelMk. Its primary goal is to acquire new knowledge at each task
Tk, while preserving previous learning to avoid catastrophic forgetting via an incre-
mental learning algorithm. This is achievedwithout retaining all data fromprevious
tasks. During the inference phase the agent uses the trained model to perform any
of the learned tasks.

continuously acquire knowledge across a multitude tasks over time [29]. The core
concept underlying incremental learning is that not all data is accessible from the
initial stage, and that the network learns from an infinite data stream evolving over
time. In this chapter, we describe incremental learning systems, the major causes of
catastrophic forgetting and latest advances in this field.

2.1 Incremental Learning Systems
In incremental learning, the primary objective is for a learning agent (depicted in
Figure 2.1) to continuously acquire new knowledge from a flowing data streamwhile



2.1 Incremental Learning Systems 15

retaining previously acquired information, thus mitigating the issue of catastrophic
forgetting. This process must be conducted efficiently, without the need to store and
utilize all the data previously encountered.

More specifically, the learning agent interacts with the data stream, which is di-
vided into discrete tasks. At each time step k, an incremental learning algorithm lever-
ages the current task Tk to train a DNN modelMk. The primary aim of this train-
ing is to learn the new task while preserving knowledge of previous ones (i.e. to
effectively mitigate catastrophic forgetting). Once the training phase is complete,
the agent can deploy the model for inference, enabling it to execute the tasks it has
learned. Moreover, the agent transitions to acquire new knowledge by discarding
old task data and proceeding to process the next task Tk+1 in the data stream, subse-
quently re-initiating the incremental algorithm from the previously trained model.

In the following sections, wewill provide amore detailed description of the com-
ponents characterizing incremental agents, including the data stream, the incremental
learning algorithm, and the inference phase.

2.1.1 Partitioning the Data Stream into Tasks

A widely accepted formalization within the incremental learning community in-
volves the conceptual division of the evolving data stream into distinct tasks as time
progresses. We can define a task as a tuple Tk = (Xk,Yk), where Xk = (x1

k , ..., xnk
k )

represent the data samples and Yk = (y1
k, ..., ynk

k ) represent their corresponding la-
bels, with nk the number of samples of task k. Incremental learning traditionally
relies on labeled data, with most algorithms designed within a supervised frame-
work. However, recent research [30, 31, 32] is exploring ways to adapt these al-
gorithms for unsupervised settings, where data labels are not mandatory. For the
purposes of this thesis, we maintain the assumption of working with labeled data
and focus on the supervised incremental learning paradigm.

Regarding the content of a task, theoretically the samples Xk can encompass var-
ious data types, and the corresponding labels Yk can be either discrete for classi-
fication tasks or continuous for regression tasks. However, it is important to note
that the predominant body of research in the field of incremental learning primar-
ily concentrates on image classification tasks, where the data samples are images,
and the labels are discrete. Consequently, each task Tk is treated as a classification
task, characterized by Ck classes. In this thesis, we also assume that the labels are
discrete, thus focusing on classification tasks. Moreover, in the field of incremental
learning, the most common assumption is that tasks are characterized by a disjoint
set of classes, which means Ci ∩ Cj = ∅, i ̸= j. In this thesis, we also adopt this as-
sumption. However, it is worth mentioning that some studies explore incremental
scenarios involving class overlap [33, 34].
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Figure 2.2: An Incremental Learning Algorithm. A model Mk is sequentially
trained over a set of tasks, minimizing at the same time the catastrophic forgetting.
Training involves three key phases: Pre-training for initial setup,Train-loop for iter-
ative learning and minimizing forgetting, and Post-training for consolidating task-
specific knowledge.

The concept of task division implies that, at each time step, the learning agent re-
ceives a batch of data, and these data segments are defined bywhatwe refer to as task
boundaries. In incremental learning, a common distinction is made between training
task boundaries and test task boundaries, depending on whether the data stream is be-
ing used by the learning agent for training or inference. In the upcoming sections,
wewill explore how the incremental learning algorithm and the inference phase are
impacted when the learning agent is aware of task boundaries during both training
and inference, compared to situations where this awareness is lacking.

2.1.2 Incremental Learning Algorithms
The goal of an incremental learning algorithm is to sequentially train a Deep Neural
Network, denoted asMk, on a set of K tasks, where ideally K can be infinite, while
simultaneously mitigating catastrophic forgetting (as illustrated in Figure 2.2). The
incremental modelMk at task k consists of a feature extraction backbone fk(·; θk),
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shared across all tasks, with parameters θk updated during training, and a classifier.
In this sectionwe describe the classifier and the feature extractor of the incremen-

tal model, then outline the primary operations of an incremental algorithm. Finally,
we will discuss the impact of knowing the task boundaries during training on the
learning algorithm.
Classifier. Common classifiers include the Softmax-based classifier and the Near-
est Mean Classifier (NMC). We define Mk = ∑k

j=1 |Cj| as the cumulative count of
classes encountered up to and including task Tk. Here, Cj represents the set of new
classes introduced in task j, and the summation accounts for the total number of
unique classes seen over all tasks from 1 to k.

The Softmax-based classifier uses learned parametersWk ∈ Rn×Mk , known as head
weights. Here n is the feature space dimension. These parameters expand with each
new task as additional classes are introduced. We use the notation Wk−1 ∈ Rn×Mk−1

to represent the weights accumulated until the k− 1 task, and Wk−1:k ∈ Rn×|Ck|, the
weights added for the last task. This classifier employs a Softmax activation function
to output probabilities p(y|x; θk, Wk). The model’s output for a sample x after task t
is the composition of the feature extractor and classifier, expressed as:

Mk(x; θk, Wk) ≡ p(y|x; θk, Wk)

= softmax(W⊤k fk(x; θk))

= softmax([Wk−1 | Wk−1:k]
⊤ fk(x; θk))

= softmax(zk(x; θk, Wk)) ∈ RMk
,

(2.1)

where zk(x; θk, Wk) represents the output logits of modelMk for sample x. The final
prediction is obtained by computing the argmax of the Softmax output.

The Nearest Mean Classifier operates with class means or prototypes, denoted as
P1:k = {p1, .., pMk}, where each pi ∈ Rn. These prototypes are the average of feature
vectors extracted from all examples of each class observed up to the current task.
The model output for a sample x after task t is determined by computing a distance
d between the feature vector fk(x; θk) and all the accumulated prototypes:

Mk(x; θk) ≡ dP1:k( fk(x; θk))

= [d( fk(x; θk), p1), . . . , d( fk(x; θk), pMk
)] ∈ RMk

.
(2.2)

Both the prototypes and the features are ℓ2-normalized, which we do not write ex-
plicitly to avoid a cluttered notation. The final prediction is computed by consider-
ing the argmin of the distance between the normalized feature and prototypes.

From a notational perspective, for simplicity through the rest of this thesis, we
will write fk(x) = fk(x; θk) and zk(x) = zk(x; θk, Wk), omitting the explicit men-
tion of the dependence on the weights θk and Wk when it is not necessary for the
discussion.
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Feature Extractor. The prevalent practice for defining and initializing feature
extractor fk involves is to use ResNet-style architectures [14], with ResNet18 and
ResNet32 being particularly popular choices. These architectures are favored pri-
marily due to their fewer number of parameter relative to othermodels in the ResNet
series. This characteristic enables thorough evaluation of various techniques and fa-
cilitate extended training across long sequence of tasks.

Regarding initialization, the standard practice for training the model involves
starting from scratch. This means that the weights of the feature extractor are ran-
domly initialized before the first task. This approach is preferred because random
initialization, as opposed to initializing with pre-trained weights on a large dataset,
ensures that the evaluation of incremental learning performance is free from the in-
fluence of previously acquired knowledge [35]. Consequently, this leads to a more
fair and accurate assessment of the incremental algorithm’s capabilities, particularly
in terms of managing catastrophic forgetting and effectively learning new tasks.

However, recent developments of self-supervised learning [21] and the outstand-
ing performance of Vision Transformer(ViT) [15] have significantly influenced incre-
mental learning research. Unlike traditional CNNs, ViTs have demonstrated supe-
rior performance, albeit with a high demand for data and computational resources
for effective training convergence. Consequently, recent studies are increasingly ex-
ploring the application of pre-trained ViT architectures in incremental learning [36,
37].
Training Phases. During the training process, at each distinct time step k, the agent
reads the training task data and initializes the training of the modelMk (see Figure
2.2). This process is organized into three fundamental phases:

1. Pre-training phase. In this initial phase, the agent collects and stores essential
information from the data necessary for initializing the model. This includes
the number of classes Ck for a Softmax-based classifier and performs initial
setup tasks, including parameter initialization and configuring network archi-
tecture.

2. Train-loop phase. During this phase, the model undergoes repeated training
sessions employing specific techniques aimed at minimizing catastrophic for-
getting. The choice of these techniques depends on the particular incremental
learning strategy adopted. Amore in-depth exploration of these methods will
be detailed in Sections 2.3 and 2.4.

3. Post-training phase. In this phase, the agent focuses on preserving key infor-
mation from the current task to mitigate catastrophic forgetting in subsequent
phases. This preserved information, usually referred to asmeta-knowledge [38],
includes theweights of themodel trained up to the current point, among other



2.1 Incremental Learning Systems 19

Task 
Agnostic

Evaluation

Task Incremental Learning (a)

Task 
Aware 

Evaluation

Classifier

Task-ID

Test
Data

Classifier

Test
Data

Class Incremental Learning (b)

Feature
Extractor

Feature
Extractor

Figure 2.3: Task-incremental Learning versus Class-incremental Learning. In task-
incremental learning, a scenario sometimes referred to as task-aware, the agent uti-
lizes a task identifier associated with test data to select task-specific weights from
the classifier and/or feature extractor for making predictions. Conversely, in class-
incremental learning (sometimes called task-agnostic) the agent lacks information
about test task boundaries and performs inference using all available weights.

pertinent data, depending on the learning system’s design constraints. An ex-
ample of this could be the retention of a subset of current task data known
as exemplars (to be further discussed in Section 2.4). In scenarios utilizing a
Nearest Mean Classifier, the model is updated with prototypes derived from
the training data of the current task.

Following the training process, the agent becomes capable of performing all the
tasks up to the current one and then proceeds to accumulate knowledge for the
subsequent task in the sequence.

The transition between the post-training and the subsequent pre-training phase
implies that the agent precisely understands when to shift from the current task to
the next, i.e. the knowledge of training task boundaries during training. This under-
standing is critical for the agent to accumulate the meta-knowledge for the forth-
coming task and to adjust the classifier to integrate new classes. In scenarios where
this transition knowledge is externally provided, the learning framework is called
Task-based incremental learning, as opposed to Task-free incremental learning. In the
latter, the agent automatically determines the transition between tasks without re-
quiring explicit knowledge of task boundaries.

2.1.3 Inference: Task-incremental versus Class-incremental
Learning

At inference time, the learning agent utilizes the trainedmodel to execute the learned
tasks (as shown in Figure 2.3). Depending on the agent’s knowledge of the test task
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Inter-task confusion

Figure 2.4: Inter-task confusion. In a scenario where the network is trained on two
tasks, the decision boundaries (identified by color lines) are able to correctly classify
the samples of the first and the second task (left and center figures). Unfortunately,
the learned boundaries from the first two tasks are not able to differentiate between
samples from different tasks (right figure).

boundaries, we can categorize two incremental learning scenarios:

• Task-incremental Learning (task-IL): In this scenario, the agent is aware of
the test task boundaries and selects appropriate weights from the feature ex-
tractor or classifier head using a task identifier (Task-ID) for inference. When
employing a Nearest Mean Classifier, the agent uses relevant task class means
to classify the current samples. This evaluation setting is known as Task Aware
Evaluation.

• Class-incremental Learning (class-IL): In contrast, here the agent does not
have knowledge of the test task boundaries. During this type of inference, all
parameters learned up to the current task are used. This evaluation method is
referred to as Task Agnostic Evaluation.

Task-IL is generally less challenging compared to class-IL. Knowing the task-
identifier allows for the training of specific weights for each task, and using these
weights at the time of evaluation typically results in better performance and re-
duced forgetting. The objective in task-incremental learning is to achieve positive
transfer across tasks, meaning that learning in one task enhances performance in
another related task. On the other hand, the objective of class-IL is to learn a shared
representation for objects that have never been seen together. This scenario is more
challenging but also more realistic, as in many applications, such as Social Network
Identification (discussed in Chapter 4), it is improbable to have the task-identifier
available at inference time.

In the next section, we describe the main causes of catastrophic forgetting and
we outline the main causes of forgetting for task-IL and class-IL scenarios.
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2.1.4 Causes of Catastrophic Forgetting
Catastrophic forgetting is the phenomenon observed in neural networks where the
learning new information leads to a loss of previously acquired knowledge [24, 25].
If a learning agent continuously trains the model on current task data, known as the
Fine-tuning approach, it rapidly forgets previous tasks. A key goal of an effective
incremental learning algorithm is to outperform Fine-tuning, while also maintain-
ing lower storage and computational costs compared to Joint Incremental Training.
Following Masana et al. [35], four main causes of catastrophic forgetting can be
identified:

• Weight Drift. Training the network on a new task by minimizing a loss func-
tion can result in modifications to weights that are crucial for previous tasks.
This results in aweight drift, which in turn induces forgetting of the previously
learned information.

• ActivationDrift. Asweight drift occurs, it also affects the network activations.
Maintaining stable activations across incremental steps can allows for weight
adjustments without significantly altering layers activations.

• Inter-task confusion. Since incrementalmethods donot perform joint training
on all the samples of all the classes, the learned decision boundaries are not
optimally discriminative for different tasks (see Figure 2.4).

• Task-recency bias. When a network is trained on a sequence of task, the clas-
sifier output is not calibrated and the prediction on previous classes are biased
toward to the new task ones.

In class-IL addressing all four causes of forgetting is crucial since the final classifier
must effectively differentiate between classes fromdistinct tasks. On the other hand,
task-IL requires the final classifier to discriminate between all the classes identified
by the provided Task-ID. Consequently, the primary focus of task-IL is onmitigating
weight and activation drift.

In the following section, we give an overview on the typical settings in incre-
mental learning. Afterwards, we will delve into the various strategies employed to
mitigate catastrophic forgetting.

2.2 Types of Incremental Learning
The objective of this section is to provide a comprehensive overview of the current
incremental learning settings. These settings are classified based on the constraints
of the learning system and the knowledge of task boundaries [39, 35, 40].
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Figure 2.5: Diagram of incremental learning settings. In this diagram we distin-
guish between: Task-based and Task-free incremental learning methods according
to the knowledge of task boundaries at training time; Class-incremental and Task-
incremental according to the knowledge of task boundaries at inference time; and
Offline and online systems according the number of training iterations performed
on task data.

Offline versus Online. In terms of system constraints, we distinguish between
offline and online incremental learning systems. Offline incremental learning allows
for multiple training epochs on current task data during the train loop phase (see
Figure 2.2). These systems are designed for low-frequency task transitions, con-
ducting model inference only after extensive learning from the current task data.
The primary goals are achieving high performance and minimizing forgetting after
each task, with less focus on training duration and computational demands. In con-
trast, online incremental learning [41] assumes a single epoch per current task data.
Ideally, this involves one forward and one backward pass in the train loop, though
limited extra backward passesmay be applied to enhance performance [42, 43]. This
setting prioritizes frequent model updates (real-time) and optimal performance af-
ter a single exposure to data.
Task-based versus Task-free. Another distinction lies between Task-based and Task-
free incremental learning, which depends on the awareness of training task bound-
aries [38]. Task-based incremental learning is further categorized into task-IL and
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class-IL settings. This latter categorization is based on the knowledge of task bound-
aries at inference time, as discussed in Section 2.1.3. Conversely, Task-free incremen-
tal learning, commonly aligned with online scenarios due to frequent changes in
task distribution, operates without awareness of training and test task boundaries
and is thus categorized under class-IL settings. It is worth noting that the com-
bination of the adjective Task-based with offline to describe an incremental learning
method is relatively uncommon, as the latter term typically implies that the bound-
aries of the training task are already known. The term Task-based ismore frequently
used to differentiate from Task-free in the context of online continual learning. This
thesis will also adopt this standard notation.
Exemplar-free versus Exemplar-based. All the aforementioned settings are fur-
ther divided into exemplar-based and exemplar-free methods, depending on whether
the learning system retains a subset of previous task data in a memory buffer (ex-
emplars). Exemplar usage is common in incremental learning, as incorporating old
task data into a network training on a current task helps control weight and acti-
vation drift. Additionally, exemplars help mitigate inter-task confusion and task-
recency bias by training the network to categorize images from all observed classes.
The primary challenge in exemplar-based methods lies in using minimal samples
from previous classes and balancing them correctly with current task data.

Exemplar-based approaches are limited by the need for amemory budget to store
exemplars. This memory requirement can become significant as memory needs in-
crease with the number of tasks. Additionally, for certain applications, privacy reg-
ulations or concerns may not allow the storage of data samples or necessitate the
deletion of data after a set period, rendering the storage of exemplars impractical.
Lastly, employing exemplars means that additional forward and backward passes
are required during training, leading to an increased training time. Exemplar-free
methods, which avoid using exemplars throughout incremental learning steps, ad-
dress these limitations, albeit often at the expense of a greater performance reduc-
tion.

In Figure 2.5 an overview of the above settings is provided. This thesis primarily
explores offline incremental learning in both task-IL and class-IL settings. The follow-
ing sections will delve into exemplar-based and exemplar-free methods, discussing
approaches to address catastrophic forgetting.

2.3 Exemplar-free Incremental Learning
Exemplar-free incremental learningmethods aim tomitigate catastrophic forgetting
without storing data from previous tasks. Their main advantages include:

• Privacy Preservation: Suitable for scenarios where storing exemplars is not
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feasible
• LowMemory Requirement: These methods are designed to use less memory

compared to exemplar-based approaches, which is beneficial when memory
consumption increases across tasks.

• Reduced Training Time: Unlike exemplar-based methods that require extra
training passes due to exemplar rehearsal for each task, exemplar-freemethods
streamline the training process.

However, the primary challenge with exemplar-free methods is effectively control-
ling forgetting, as the network does not receive input from previous task data. This
often leads to significant performance drops if compared to exemplar-based meth-
ods.

In this thesis, we focus primarily on two categories of exemplar-free methods.
Thefirst category is regularizationmethods, which constrain the networkweights [44,
45, 46, 47, 48, 49] or activations [50, 51, 52] across the incremental learning steps. The
second category is prototype-based methods, which employ prototypes to address
task-recency bias and inter-task confusion in exemplar-free scenarios. Our focus on
these methods is justified by two main reasons. Regularization methods, initially
designed for Task-IL, are now extensively used in both prototype-based [53, 54]
and exemplar-based methods [55, 56, 57, 58, 59] to control forgetting in the more
challenging problem of class-IL. Prototype-based methods represent the latest ad-
vances in exemplar-free class-IL, achieving state-of-the-art results [60, 61, 62, 63, 64].
To provide a comprehensive understanding of exemplar-free incremental learning,
this section will also examine other exemplar-free techniques, specifically mask-
based[65, 66, 67, 68, 69] and gradient-based methods[70, 71, 72, 73, 74]. These have
shown leading performance in Task-IL scenarios without relying on exemplars.

Before delving into the details of how exemplar-free methods work, we intro-
duce some key notations. Focusing on softmax-based classifiers, introduced in Sec-
tion 2.1, exemplar-free methods typically employ a cross-entropy loss to learn the
features of the current task. We discuss two main implementations of the cross-
entropy loss:

Lce
t (x, y)|Ct

=
Mt

∑
j=Mt−1+1

yj log

(
ezj

t(x)

∑Mt

k=Mt−1+1 ezk
t (x)

)
, (2.3)

Lce
t (x, y)|C1:t

=
Mt

∑
j=1

yj log

(
ezj

t(x)

∑Mt

k=1 ezk
t (x)

)
. (2.4)

Here, x ∈ Xt and y ∈ Yt denote a sample and its corresponding one-hot label for
the current task t, Mt is the total number of classes up to and including task t and
zj

t(x) represents the j-th logit output of the modelMt for the sample x.



2.3 Exemplar-free Incremental Learning 25

Exemplar-free 
(Regularization Methods)

Time
Frozen Weights   Unfrozen Weights

Figure 2.6: Exemplar-free Regularization Methods. The model receives only the
current task data, and theweights of only the last classifier are updated. The training
process combines a cross-entropy loss with a regularization loss.

The distinction between these two forms of cross-entropy loss lies in their appli-
cation scope and impact on back-propagation. The first variant, Lce

t (x, y)|Ct
(Equa-

tion 2.3) is applied solely to the last task classifier, thereby affecting only its weights
during back-propagation and keeping prior task classifiers’ weights unchanged. In
contrast, the second variant, Lce

t (x, y)|C1:t
(Equation 2.4), is evaluated across all the

task classifiers, which results in the training of all task classifier heads. As we will
see in the subsequent sections, the choice of which variant to use depends on the
specific method being employed.

In addition, in the remainder of this thesis, the arguments of the cross-entropy
loss function Lce

t (x,y) will be in bold when evaluated on a mini-batch of data. This
implies that both Equations 2.3 and 2.4 are averaged over the components of a mini-
batch. Adopting this notation will be particularly useful in discussion where it is
important to emphasize the dependency on mini-batch processing.

2.3.1 Regularization Methods
To reduce catastrophic forgetting, these methods combine a cross entropy loss with
a regularization loss Lreg

t to reduce weight or activation drift:

Lt = Lce
t |Ct

+ λregLreg
t , (2.5)

where λreg controls the trade-off between stability in remembering the old task and
the plasticity to learn the new one. It should be noted that the cross-entropy loss is
evaluated only on the last classifier head, thus the previous task classifier weights
are frozen (Figure 2.6). This strategy improves the performance of regularization
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Figure 2.7: Elastic Weight Consolidation (EWC) [44]. The network weights are op-
timized using the Empirical Fisher Information Matrix, to achieve low error regions
for both task t and task t− 1.

methods (called as label trick by Zeno et al. [75]) and it is commonly employed in
continual learning frameworks like FACIL [35].

We can distinguish two primary categories of regularization methods: weight
regularization, which manages the drift in weights across tasks, and functional or data
regularization, aimed at mitigating drift in activations. In the following sections, we
offer a comprehensive overview of both weight and functional regularization meth-
ods. This includes in-depth descriptions of two foundational techniques: Elastic
Weight Consolidation (EWC) [44] forweight regularization, and LearningWithout For-
getting (LWF) [50] for functional regularization. We will conclude with a summary
of the main limitations associated with these methods.
Weight Regularization. A naive approach to reduce weight drift across the incre-
mental steps is to regularize the incremental training using the norm ℓ2 to constraint
weights update:

Lℓ2
t = ||θt − θ∗t−1||22, (2.6)

where θ∗t−1 represent the (fixed) feature extractor weights after task t− 1 and θt the
weight of the feature extractor to optimize for the current task.

Kirkpatrick et al. [44] observed that adopting ℓ2 regularizer (Equation 2.6), con-
straining all the weights equally, leaves little capacity for learning the current task.
Hence, they proposed Elastic Weight Consolidation (EWC), which relaxes the ℓ2

constraint with a quadratic constraint based on the Empirical Fisher Information Ma-
trix (E-FIM):

Fi = Ex∼Xi

[
Ey∼p(y|x;θ∗i )

{(
∂ log p(y|x; θ∗i )

∂θ∗i

)(
∂ log p(y|x; θ∗i )

∂θ∗i

)T}]
. (2.7)

The E-FIM provides an approximation of the curvature of the log-likelihood sur-
face, denoted by log p(y|x; θ∗i ), at its maximum likelihood estimate θ∗i . This matrix
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measures the sharpness of the likelihood function around itsmaximum. Parameters
that exhibit high curvature, indicated by larger values of the E-FIM, aremore impor-
tant. This is because even little variations in these parameters can lead to substantial
changes in the log-likelihood function and consequently on the model predictions.

Computing the full E-FIM for neural network weights is intractable, since it re-
quires O(N2) entries, where N is the number of network parameters, thus EWC
proposes to approximate the E-FIM with a diagonal matrix reducing its entries to
O(N). The regularization loss proposed by EWC is the following:

LE-FIM-orig
t = λE-FIM

t−1

∑
i=1

(θt − θ∗i )
Tdiag(Fi)(θt − θ∗i ). (2.8)

Incorporating the Fisher Information matrix into regularization loss has the ef-
fect of forcing the network parameters to remain in a low-error region for previous
models, penalizing updates to the most important weights. The rationale behind
EWC is based on the over-parametrization property of neural networks. This implies
that a solution for task t, θ∗t , is likely to be found near the solution for the previous
task θ∗t−1. The mechanism of EWC is illustrated schematically in Figure 2.7.

The original formulation of EWC (Equation 2.8), necessitates preserving both a
model and a diagonal Fisher information matrix for each task. This requirement
results in increased computational and storage demands as the number of tasks
grows. In contrast to this original approach, more recent implementations, such
as EWC++ [45] and online-EWC [76], utilize only the most recent model θ∗t−1 for
regularization purposes. Additionally, they employ a moving average of Fisher in-
formation matrices across tasks, enabling the storage of a single matrix upon com-
pleting each task. This approach, commonly integrated into incremental learning
frameworks like Avalanche [77] and FACIL [35], is motivated by the fact that the
latest model already incorporates constraints from the preceding task (for further
details, refer to discussion in Huszr letters [78, 79]). Given these considerations, the
final regularization loss is defined as follows:

LE-FIM
t = λE-FIM(θt − θ∗t−1)

Tdiag(Ft−1)(θt − θ∗t−1), (2.9)
where

Ft−1 = α · diag(Ft−1) + (1− α) · diag(Ft−2), α ∈ R. (2.10)
In practice, the incremental learning algorithm based on EWC computes the cur-

rent E-FIM during the post-training phase of each task. This computation involves
a complete forward and backward pass using the current training data. The E-FIM
is then updated, using Equation 2.10, integrating it with the previous E-FIM, which
is initialized to zero for the first task. After this, the current model parameters are
stored, and the algorithm proceeds to learn the next task using the following loss:

LEWC
t = Lce

t |Ct
+ LE-FIM

t . (2.11)
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Related Weight Regularization Methods. The concept of computing the impor-
tance score of each parameter for weight regularization has influenced various in-
cremental learning methods. Memory Aware Synapses (MAS) [46] determine the
importance score of parameters after each task by considering the magnitude of
the gradients of the network’s output relative to the weights. Synaptic Intelligence
(SI) [47] calculates the importance score by assessing each weight(synapse) contri-
bution to the final loss throughout the entire training trajectory. Recently, Benzing
[80] demonstrated that both SI and MAS approximate the square root of the Fisher
Information Matrix. Rwalk [45] suggests computing the Empirical Fisher Informa-
tion Matrix (E-FIM) online during training, a method they refer to as EWC++. The
overall approach combines the online E-FIM with a variant of the SI score to assess
the importance of the weights.

However, the main limitation of E-FIM-based approaches is the assumption of a
diagonal form of the Fisher matrix. This assumption is in practice unrealistic since
it does not consider off-diagonal entries that represent how much the interaction
between weights influences the log-likelihood. Therefore, some methods [49, 48]
try to improve the diagonal E-FIM approximation, but at the cost of extra memory
burden and computation. To overcome these limitations, other exemplar-free incre-
mental learning methods rely on functional regularization, which scales better with
the number of network parameters.
Functional Regularization. Incremental learning algorithms based on functional
regularization mitigate the issue of activation drift. A noteworthy example of such
techniques is Learning Without Forgetting (LwF) [50]. LwF tackles catastrophic for-
getting by preserving the decision boundaries learned for the previous tasks. This is
achievedwithout the need of exemplars from earlier tasks. During task t, the current
training data are processed through both the current modelMt and the preceding
modelMt−1. Then, the knowledge distillation loss, introduced by Bucila et al. [81]
and Hinton et al. [82], is employed to align the outputs for the previously learned
classes in both models. The knowledge distillation loss is defined as follows:

LKD
t = −λKD

Mt−1

∑
j=1

 e(z
j
t−1(x)/T)

∑Mt−1

k=1 e(z
k
t−1(x)/T)

 log

(
e(z

j
t(x)/T)

∑Mt−1

k=1 e(zk
t (x)/T)

)
, (2.12)

where zt(x) and zt−1(x) represent the output logits from the current model and the
previous (frozen) model for the sample x ∈ Xt, respectively. Mt−1 denotes the
number of classes encountered up to and including task t − 1, and T ∈ R is the
standard temperature parameter used in knowledge distillation.

Operationally, LwF involves storing a trainedmodel, denoted asMt−1, at the end
of each task’s training phase. During the training of the subsequent task, the model
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Frozen Weights

  Unfrozen Weights

Figure 2.8: Learning without forgetting (LwF) [50]. The task data are fed into the
current and previous models. The final loss is a combination of a cross-entropy and
a knowledge distillation loss.

Mt is trainedusing a combination of knowledgedistillation and cross-entropy losses:

LLwF
t = Lce

t |Ct
+ LKD

t . (2.13)

A schematic visualization of LwF is provided in Figure 2.8.

Related Functional Regularization Methods. Less-forgetting Learning (LFL) [52]
is closely related to LwF, with a focus on preserving the network’s decision bound-
aries across tasks. Unlike LwF, LFL achieves this by introducing a regularization
loss, based on feature distillation, aimed at align the features extracted by the cur-
rent and previous models. Learning Without Memorizing (LwM) [51], on the other
hand, proposes to constrain the current model’s attention map, obtained via Grad-
CAM[83], tomatch the attentionmap of the previousmodel. This approach focuses
on ensuring that the attention regions of the network remain consistent across task
transitions.

Themain problemwith functional regularization approaches is that the network
is never trained to distinguish between novel and old classes. As a result, they
achievemodest performance in terms of task-IL but low performance in class-IL due
to the issues of task-recency bias and inter-task confusion. More recent exemplar-
free techniques, referred to as prototype-based methods, try to overcome these issues
by utilizing feature representations of past tasks.
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Figure 2.9: Exemplar-free Prototype-based Methods. The feature extractor receives
only the current task data, and the final classifier is jointly trained on both prototypes
and current task features to distinguish between old and new classes. The training
process combines a cross-entropy loss evaluated on all the encountered classes and
a regularization loss.

2.3.2 Prototype-based Methods
The primary challenge faced by regularization methods lies in their inability to mit-
igate task-recency bias and inter-task confusion problems in class-IL due to the fact
that the final classifier is never trained to classify all the observed classes.

In order to overcome this limitation, recentmethods have introduced prototype re-
hearsal as a method to leverage past-task deep features, enhancing the final classifier
output and thereby mitigating task-recency bias. Generally speaking, prototypes
are deep representations coming from the feature extractor from the previous task
classes. A common solution is to define prototypes as class means, i.e., the average
of CNN feature vectors for each class. Let us suppose we are at task t, and let us
define the prototype for a class c in task Tk, with k = 1, . . . , t− 1, as:

pc
t−1 =

1
nc,k

∑
x,y∈Xk,Yk

1[y = c] fk(x), (2.14)

where 1[y = c] is the indicator function, equal to one if y = c and zero otherwise,
and nc,k = ∑y∈Yk

1[y = c] represents the number of samples of class c within task
Tk. Moreover, let us define as P1:t−1 as the set of all prototypes accumulated up to
and including task t− 1.

Prototypes offer significant benefits, such as being computationally simple, pri-
vacy preserving and requiring less memory compared to exemplars. The size of
each prototype depends on the feature space dimension, and their number scale
linearly with the number of classes in the tasks.
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Figure 2.10: Prototype Augmentation and Self-Supervision (PASS) [53]. The feature
extractor is trained using both the current task data and self-rotation. The final clas-
sifier is updated with weights Wr

t to accommodate the novel Cr
t classes introduced

by self-rotation. The training loss is a combination of cross-entropy loss, evaluated
on both prototype and current task data, as well as rotated data, along with feature
distillation. Prototypes are perturbed using a Gaussian perturbation.

Prototype-based methods compute after each task the prototypes using Equa-
tion 2.14, store them and replay prototypes P1:t−1 in the next task. The training loss
consists on a cross entropy loss evaluated on both prototypes and current feature
representations and a regularization loss(see Figure 2.9).

There are several strategies, likeGaussian perturbation [53] and oversampling [60],
that can be used to replay prototypes across the incremental learning steps. We in-
troducePrototypeAugmentation and Self-Supervision (PASS) [53], a popular exemplar-
free approach using prototypes for enhancing the performance of the final classifier
in class-IL, andwe provide an overview on themost recent techniques for leveraging
prototypes.
Prototype Augmentation and Self-Supervision (PASS). Before prototype-based
methods, most state-of-the-art exemplar-free incremental learning methods relied
on generative models [84] to create pseudo-samples of previous classes, aiming to
mitigate inter-task confusion and task-recency bias in class-IL. They primary issue
with these generative methods was their complexity in training and frequent insta-
bility, which adversely affected overall performance.

Zhu et al. [53] proposed to leverage class prototypes (Equation 2.14), to balance
the task classifier through the incremental learning steps. These prototypes, in con-
trast to generative models, do not require additional training for computation and
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can be efficiently replayed across the training. Topreserve the previously learnedde-
cision boundaries in subsequent tasks, PASS employs Prototype Augmentationwhich
involves applying Gaussian perturbation to prototypes during the learning of new
classes. Specifically, a prototype pc

t−1 is perturbed as follows:

p̃c
t−1 = pc

t−1 + e ∗ r, (2.15)

where e is drawn from a Gaussian distributionN (0, 1) and r is a scaling factor con-
trolling the uncertainty of the augmented prototype. The uncertainty and scale
factor r are determined using the average variance of class feature representations.
Notably, the authors of PASS empirically observed that the variance remains stable
across the incremental learning steps, allowing to fix r after the initial task, eliminat-
ing the need to store a factor r per task. Further details on computing r are available
in [53].

Another key contribution of PASS, is introducing self-supervision in incremental
learning. It employs self-rotation, inspired by Lee et al. [85], to learn more generaliz-
able and transferable features across tasks. In this method, each training sample in
a task Tt is rotated by 90, 180 and 270 degrees, effectively creating three new classes
for each original class. This expansion transforms the initial classification problem
from Nt−1

c + |Ct| classes to Nt−1
c + 4|Ct| classes, where Nt−1

c is the number of classes
encountered until task t− 1:

xr
t = rotate(xt, β), β ∈ {90, 180, 270}. (2.16)

Each rotated sample xr
t receives a new label yr

t and the final classifier is aug-
mented accordingly to accommodate these new classes, collectively referred to as
Cr

t . The final classification loss of PASS is defined as:

LPASS-cls
t = Lce

t ((xt, yt) ∪ (xr
t , yr

t))|C1:t∪Cr
t
+ λpr Lce

t (p̃, ỹp)
∣∣
C1:t∪Cr

t
, (2.17)

where (xt, yt) ∼ Xt,Yt represents a mini-batch of data and labels drawn from the
current task; (xr

t , yr
t) represent the rotations of the current mini-batch with the cor-

responding labels and (p̃, ỹp) is a mini-batch of prototypes and the corresponding
labels, which are sampled from the prototype buffer P1:t−1 and augmented as de-
scribed in Equation 2.15. It should be noted that both the current task and the pro-
totype batches are evaluated on all encountered classes C1:t and new rotation classes
Cr

t . The term λpr is used to balance the loss on current task data and prototype loss.
Merely replying the prototypes is insufficient for achieving optimal performance

in class-IL. As the learning progresses and new classes are introduced, the feature
extractor is updated, causing the prototype representations to become outdated due
to drifts in current feature representation. To counteract this issue, PASS proposes
to employ feature distillation (FD), a regularization technique designed to regulate
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and control the drift in the feature space:

LFD
t = λFD|| ft(x)− ft−1(x)||2, (2.18)

where ft, ft−1 respectively represent the features extracted by the current and the
previous (frozen) feature extractors from the current data. The overall training
methodology, elaborated in Figure 2.10, involves training the network with aug-
mented previous task prototypes and current task data, enhanced with rotations.
The final training loss, combining feature distillation (Equation 2.18) and the clas-
sification loss defined in Equation 2.17, can be summarized as:

LPASS
t = LPASS-cls

t + LFD
t . (2.19)

In the post-training phase of each task, the new prototypes are computed using
Equation 2.14 and accumulated to be replayed in the next task.
Related Prototype-based Methods. SSRE [60] proposes replaying prototypes us-
ing oversampling in combination with feature distillation loss (Equation 2.18). Over-
sampling involves building a batch of prototypes by replicating the class means,
which are computed using Equation 2.14, to achieve a fixed batch size. Furthermore,
SSRE introduces a novel re-organization strategy to re-parameterize the feature ex-
tractor, aiming to retain the representation of older classes

Evanescent [54], aiming to overcome the issue of outdated prototypes as learn-
ing progresses, proposes the use of two generative models to model the drift of
old class prototypes. These models are designed to learn two types of drifts, both
contributing to the reduced effectiveness of old class prototypes. The first type of
drift stems from the relationship between novel and past classes. The second type of
drift arises when the feature extractor of the current modelMt is updatedwith data
from the current task. Evanescent utilizes the drifts estimated by these generative
models to infer up-to-date prototypes, termed evanescent representations, which are
then replayed during the current training alongside the features of the current task.
The training loss for modelMt combines cross-entropy loss, evaluated on both the
current task and the evanescent representations, with feature distillation to ensure
shareability of features across tasks.

Anothermethod exploiting prototypes is SemanticDrift Compensation (SDC) [86].
SDC uses prototypes with a different objective. Instead of enhancing the softmax-
based classifier with prototypes, it employs them for a Nearest Mean Classifier (as
referenced in Equation 2.2). SDC utilizes an embedding network to learn the fea-
tures of the current task via a triplet loss. It proposes several alternatives for regu-
larizing the training loss, including feature distillation, elastic weight consolidation
loss, and memory aware synapses losses. To correct feature space drift and up-
date the prototypes, SDC suggests updating old class prototypes by performing a
weighted average of the observed feature representation drift in the current task.
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Given the challenges in estimating the drift of prototypes due to updates in the
feature extractor, recent prototype-based methods have proposed freezing the fea-
ture extractor after the initial task and training only the classifier with both proto-
types and current task features.

FeTrIL [62] follows this approach, freezing the feature extractor after learning the
initial task. In subsequent tasks, it focuses on training only a linear classifier, based
on a linear one-vs-rest SVM classifier [87], using both prototypes and the current
task’s features. Specifically, in each task, FeTrIL generates feature representations
of old classes by applying a geometric translation to current task features, using the
prototypes of old classes. These translated representations are referred to as pseudo-
features. Finally, the linear classifier is trained using both these pseudo-features and
the actual class representations.

Feature Covariance-Aware Metric (FeCAM) [63] also freezes the feature extractor
and proposes using a Mahalanobis distance between the prototype and the features
extracted from the backbone for the nearest mean classification. Notably, it employs
the inverse of feature covariance of each class as the metric for the Mahalanobis
distance. Similarly, First Session Adaptation (FSA) [64] suggests using prototypes for
a Linear Discriminant Analysis (LDA) classifier [88], which is updated throughout
the incremental learning steps.

The main drawback of prototype-based methods is that they require strong reg-
ularization of even the frozen feature extractor to prevent prototypes frombecoming
distant from the actual classmeans. This implies that suchmethods typically exhibit
high stability in retaining information but low plasticity for learning new tasks. In
Chapter 3, we will propose a method called Elastic Feature Consolidation [61], which
aims to increase the plasticity of these methods.

2.3.3 Mask-based and Gradient Projection Methods
In this section, we provide a brief overview of exemplar-free incremental learning
methods targeted for task-IL. In task-IL, unlike class-IL, the task identifier is known,
allowing to select the corresponding classifier weights at inference time. We present
two kinds of methods: Mask-based and Gradient Projection methods. The common
idea behind these two types of methods is to reduce inter-task interference, which
occurs when learning a new task interferes with the performance on previously
learned tasks.

Mask-based methods aim to mask network weights or activations, dedicating a
subset of network parameters or activations for each task. Piggyback [65] learns a
binary mask per task while training the incremental model in an end-to-end fash-
ion. PackNet [66], on the other hand, employs iterative pruning to learn a binary
mask per task. Hard Attention to the Task (HAT) [67] uses attention masks to mask
network weights, controlling gradient propagation in the network parameters. Bit-
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Level Information Preserving (Bit) [68] employs weight quantization and keeps past
information by bit-level freezing. SPACE [69] masks network activation per task,
partitioning the representation into a Core space, representing the knowledge base
from previous tasks, and a Residual space, which is used to learn the current task.

A more recent category of task-IL methods is the category of Gradient Projection
methods. The main idea behind these methods is to retain memory of gradient
information from past tasks, without using any exemplars, and update the model
in orthogonal directions to minimize forgetting.

Adam-NSCL [70] proposes projecting gradient updates in the current task into
an approximate null space for all previous tasks. This approximate null space is ob-
tained after each task by computing the uncentered covariance of the training input
features for each hidden layer. These covariance matrices are then decomposed via
Singular Value Decomposition (SVD), and the eigenvectors corresponding to the
smallest singular values are stored. The span of these eigenvectors constitutes the
approximate null space for all previous tasks. In the subsequent task, the gradient
updates generated by the Adam optimizer [89] are projected into this approximate
null space.

Gradient Projection Memory (GPM) [71], inspired by SPACE’s approach of split-
ting representations for old and new tasks, proposes partitioning the gradient space
into two orthogonal subspaces: Core Gradient Space (CGS) and Residual Gradient
Space (RGS). After completing each task, a random subset from the current train-
ing set is used to construct a representation matrix for the input of each hidden
layer. These matrices are then decomposed using SVD, and the first top-k eigenvec-
tors, which form the basis of the CGS, are stored. When training a new task, GPM
projects the gradients orthogonally to the CGS. This projection has the objective to
reduce interference with old tasks, therebyminimizing forgetting. The projection of
the gradient update for a layer l with weights θl during task t can be easily obtained
as:

∇θlLce
t = ∇θlLce

t −Ml(Ml)T(∇θlLce
t ), (2.20)

where Ml is a matrix containing the bases of CGS for layer l stored at the end of the
previous tasks.

Lin et al. [72] observes that purely performing gradient updates in orthogonal
directionswith respect to the previous task can be too restrictive for the optimization
of the new task, as it does not take into account the correlation among tasks. Thus,
they propose Trust Region Gradient Projection (TRGP), which modifies the gradient
update of GPM (Equation 2.20) by adding a task-correlation based scaling of the
weights of the old tasks.

Very recently, Zhao et al. [73] proposed a space decoupling (SD) strategy to de-
couple the space of feature representation into a pair of complementary spaces: a
stability space and a plasticity space. They show that applying their decomposition to
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Figure 2.11: Exemplar-basedMethods. Themodel is jointly train on exemplars from
previous past classes and current task data. Exemplars can be stored in a growing
memory buffer or in a fixed memory buffer. The training process combines a cross-
entropy loss evaluated on all the encountered classes and a regularization loss.

the feature space before using gradient projection methods like GPM, Adam-NSCL,
and TRGP achieves a better balance between stability and plasticity, thus improving
overall performance.

Scaled Gradient Projection (SGP) [74] assigns importance scores to the bases of the
Core Gradient Space, computed by GPM. Specifically, SGP utilizes the normalized
eigenvalues derived from the SVD of the representationmatrices. These normalized
eigenvalues are employed in the orthogonal gradient update process for subsequent
tasks (Equation 2.20), thereby enhancing the precision and effectiveness of the gra-
dient updates by taking into account the importance of the bases of CGS.

2.4 Exemplar-based Incremental Learning
Exemplar-basedmethods utilize exemplars tomitigate catastrophic forgetting. These
methods train the model using all samples of new classes, while simultaneously re-
playing a limited budget of old class samples in each incremental phase. As the final
classifier is trained to recognize both old and new classes, their primary application
lies in the class-IL setting.

The training loss for exemplar-based methods can be defined without loss of
generality as:

Lt = Lce
t |C1:t

((xt, yt) ∪ (e, ye)) + λregLreg
t . (2.21)

Here, (xt, yt) ∼ Xt,Yt and (e, ye) ∼ S1:t−1 represents a mini-batch of exemplars
and their corresponding labels, sampled from the memory buffer S1:t−1 which con-
tains representative samples of old classes. Figure 2.11 provides an overview of
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the exemplar-based methods’ training process. It is important to note that Lreg is a
regularization method designed to minimize activation or weight drift. As we will
discuss in subsequent sections, knowledge distillation LKD

t , used by LwF, a regular-
ization Exemplar-free approach (see Section 2.3.1), is commonly employed in many
exemplar-based approaches.

Regarding the memory buffer, let’s define its size as K. Two main types of mem-
ory buffers are commonly employed in the literature: a growing memory buffer,
which expands in size with each new task as it accumulates a subset of data from
each new task, and a fixed memory buffer, which maintains a constant size K by
discarding excess exemplars as the number of tasks increases. Both strategies en-
sure a balanced distribution of classes in the memory buffer. The primary disad-
vantage of the first strategy is the linear increase in memory usage across tasks,
while the main drawback of the second strategy is the reduction in the number of
exemplars per class as new classes are introduced in successive incremental learn-
ing steps. Concerning the selection strategy for the memory buffer, a commonly
used method is random selection, which involves uniformly and randomly picking
exemplars from current classes. Alternative strategies include herding, as well as
entropy- and distance-based selection methods (for further details refer to Masana
et al. [35]).

Exemplar-based approaches are currently leading the way in performance for
class-IL [59, 90, 91, 92]. However, they come with significant drawbacks, particu-
larly in terms of the storage and computational resources required for managing
the exemplar buffer and sampling process. Also, a notable concern is their lack of
privacy preservation in contrast with exemplar-free methods.

The main goal of these methods is to balance exemplars and current task data
in order to reduce task-recency bias and inter-task confusion, while at the the same
time controlling activation drift across the steps. In the subsequent sections, we
will provide a detailed discussion on howpopular exemplar-basedmethods achieve
these objectives, including specific algorithms and ways to integrate exemplar data
into the learning process.

2.4.1 Incremental Classifier and Representation Learning
(iCaRL)

ICaRL [55] is the first exemplar-based approach in incremental learning. It performs
training by combining a cross-entropy loss with the use of knowledge distillation
loss as a regularizer:

LICaRL
t = Lce

t |C1:t
((xt, yt) ∪ (e, ye)) + λkdLKD

t . (2.22)
Here, both the cross entropy loss and the knowledge distillation loss are evalu-

ated on current task data and exemplars.
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To reduce task-recency bias— the tendency of the network to classify all samples
as belonging to the most recent class — ICaRL employs the Nearest Mean Classifier
(as defined in Equation 2.2) during the inference phase. Specifically, after each task,
it computes normalized prototypes for both the exemplars and the current task data
that are used for the final classification prediction. Recomputing the prototypes for
the exemplars ensures they are updated to reflect the feature space drift that occurs
while learning a new task.

2.4.2 Bias Correction (BiC)
Wu et al. [56] conduct an in-depth analysis of the task-recency bias phenomenon,
showing that it primarily arises from the last fully connected layer before the softmax-
based classifier. They validate this hypothesis employing linear probing Davari et al.
[93]. This method involves training an optimal linear classifier atop a frozen fea-
ture extractor following each incremental learning step, utilizing data from both
prior and current tasks. Linear probing assesses the feature representations’ qual-
ity throughout incremental learning and allows to quantify the extent of forgetting
attributable to the bias in the last linear classifier. Their findings reveal that employ-
ing knowledge distillation and applying linear probing after each task significantly
enhances model performance by mitigating task-recency bias.

Building on these findings, Wu et al. propose a Bias Correction (BiC) phase post
each task to reduce the task-recency bias. Their training methodology comprises
two phases for each task:

• Phase 1 (Model Training). The modelMt is trained using a combination of
cross-entropy loss and knowledge distillation:

LBiC
t = λt Lce

t |C1:t
((xt, yt) ∪ (e, ye)) + (1− λt)LKD

t , (2.23)

where λt = Mt−1/Mt, with Mt the number of classes accumulated up to and
including task t, has the objective to balance the two terms. Both the cross-
entropy loss and the knowledge distillation loss are evaluated on current task
data and exemplars.

• Phase 2 (Bias Correction). This phase is applied after the training of the
modelMt and involves training a linear model with two learnable parame-
ters (α ∈ R and β ∈ R), while maintaining the rest of the network fixed. The
objective is to adjust the final classifier’s output to counteract task-recency bias.
Specifically, let us consider the output of the networkwith frozenweights, rep-
resented as follows:

zt(x; θfrozent , Wfrozen
t ) = [Wfrozen

t−1 | Wfrozen
t−1:t ]⊤ ft(x; θfrozent )

= [ot−1(x)|ot−1:t(x)].
(2.24)
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The BiC technique modifies the output zt for the most recent classes by ap-
plying two learnable parameters, α and β. The adjusted output, qt(zt; α, β), is
calculated as follows:

qt(zt; α, β) = [ot−1(x)|α · ot−1:t(x) + β]. (2.25)

Finally α and β are learned performing a training with a cross-entropy loss on
a validation set of samples both belonging to the current and exemplar data
sets.

Incremental Learning With Dual Memory (IL2M) [94], a method contemporary to
BiC, also explores bias correction in exemplar-based incremental learning. The au-
thors propose a technique to rectify the network output on previously learned classes
after each new task, with the aim of reducing task-recency bias. This is achieved by
utilizing both exemplars and new task data. In contrast to BiC, IL2M exclusively em-
ploys cross-entropy loss during training and does not incorporate knowledge distil-
lation loss.

2.4.3 Learning a Unified Classifier via Rebalancing (LUCIR)
Hou et al. [95] observed that task-recency bias manifests concretely in the param-
eters of the last classifier layer, specifically in that the weights related to the over-
represented classes of the current task becomemuch larger than those for the under-
represented old classes. Their method, named Learning a Unified Classifier via Re-
balancing (LUCIR), mitigates this class unbalancing using four techniques: cosine
normalization, less-forget constraint, margin-ranking loss, class balance finetuning.

Cosine normalization aims to eliminate the bias caused by the significant differ-
ence in the magnitude of the weights of the final classifier. It consists of ℓ2 nor-
malizing both the features and the weights of the classifier. Specifically, let Wt =

(w1
t , w2

t , . . . , wNt
c

t ) be the normalized weights of the classifier at task t, where wi
t rep-

resents the normalized class embeddings. The logits of the model at time t are de-
fined as:

zt(x; θt, Wt) = (⟨w1
t , f t(x; θt)⟩, ⟨w2

t , f t(x; θt)⟩, . . . , ⟨wNt
c

t , f t(x; θt)⟩), (2.26)

where v = v/∥v∥ denotes the ℓ2-normalized vector, and ⟨v1, v2⟩ is the cosine similar-
ity between two normalized vectors. Hence, the output of the modelMt is defined
as:

Mt(x; θt, Wt, η) ≡ p(y|x; θt, Wt, η)

= softmax(η · zt(x; θt, Wt)),
(2.27)

where η is a learnable scalar shared across tasks, introduced to control the peakiness
of the softmax distribution since the range of ⟨v1, v2⟩ is restricted to [−1, 1].
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To control the activation drift across tasks, they propose a variant of feature dis-
tillation aimed at controlling the drift of the normalized features. This regularizer,
called the less-forget constraint, is defined as:

Lless-forget
t = λt(1− ⟨ f t−1(x), f t(x)⟩), (2.28)

where λt = λbase
√

Mt−1/|Ct|, Mt−1 is the number of classes encountered up to and
including task t− 1, and λbase is a fixed constant. The loss is zero when the angle α

between the features extracted from the current and the previousmodel is 0◦ or 180◦

(1− cos(α) = 0 ⇐⇒ α = 2kπ). This loss encourages the orientation of features
extracted by the current model to be similar to those by the original model.

Controlling feature drift via the less-forget constraint does not guarantee that old
classes are well separated from the newest ones, since the new classes dominate the
training set. To build a unified classifier for all classes and to force inter-class sepa-
ration, LUCIR proposes a margin-ranking loss. Let e be an exemplar of class c, with
c = 1, . . . , Nt−1

c and wc
t its class embedding. The margin ranking loss is computed

as:
Lmr

t = λmr

K

∑
k=1

max(m− ⟨wc
t , f t(e)⟩+ ⟨wk

t , f t(e)⟩, 0), (2.29)

where m is a margin threshold, {wk
t}K

k=1 are the top-K new class embeddings chosen
as hard negatives for e. Specifically, these classes are selected during training as
the new classes yielding the highest output score for sample e. This loss ensures
that the new class embeddings, most similar to the exemplar, are maintained with
significant separation, and it also guarantees alignment of the exemplar’s feature
representation with its corresponding class embedding.

The final loss of LUCIR is a combination of a cross-entropy loss and less-forget
and margin-ranking losses:

LLUCIR
t = Lce

t |C1:t
((xt, yt) ∪ (e, ye)) + Lless-forget

t + Lmr
t . (2.30)

When all the training for the current task is completed, LUCIR performs a class
balance finetuning using the stored exemplar samples. This involves fine-tuning the
network with these exemplars, which slightly improves performance.

2.4.4 Latest Advances and State-of-the-art Methodologies
Some recent advanced exemplar-based methods, as we mentioned above, rely upon
knowledge distillation. SS-IL [57] employs a separated softmax output layer in com-
bination with task-wise knowledge distillation in order to reduce task-recency bias.
Menemonics [58] proposes to combine cross-entropy loss and knowledge distillation
during the training while at the same time they parametrized exemplars, named
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mnemonics exemplars, that are updated during the training via backpropagation in a
BiLevel Framework. Dark Experience Replay (DER++) [59] utilizes a cross-entropy
loss on the current task data and additionally implements a distillation loss on ex-
emplars that are sampled using reservoir sampling. This approach combines distil-
lation and cross-entropy losses on the exemplars: the distillation loss is applied to
the logits of the model to ensure consistency with previous outputs, and the cross-
entropy loss is used to reinforce learning from previous tasks.

Inspired by LUCIR, other recent works explore cosine normalization for incre-
mental learning. PODNet [96] proposes a modification to the LUCIR classifier. In-
stead of using a single embedding per class, it introduces a Local Similarity Classifier
(LSC), which utilizesmultiple embeddings per class to enforce a stronger inter-class
separation. This approach effectively eliminates the need for the margin ranking
loss. Additionally, PODNet regularize the feature representation drift by using a ℓ2

constraints on the pooled intermediate representations of the network.
Adaptive Feature Consolidation (AFC) [90] adopts the LSC classifier of PODNet

but changes the regularization loss. They propose to regularize the intermediate
representation of the feature extractor by using an importance score computed at
the end of each task. Specifically, after each task they compute the importance of
the feature maps of each layer using both exemplars and current task data. In the
next task, this importance score is used to constraint the feature maps drift across
the task in a regularization loss.

Another group of exemplar-based approaches is the group of dynamic expand-
able architectures, which dynamically expand the network as the number of tasks
increases. Each task is associated with dedicated sub-networks, and its weights are
frozen when learning the new task. This category of methods is currently the state-
of-the-art in exemplar-based class-IL in terms of performance, but with the limita-
tion of increased storage and computational costs.

Dynamically Expandable Representation (DER) [91] trains a feature extractor per
task using a cross-entropy loss in combination with an auxiliary classification loss
on both exemplars and current task data. The objective of the auxiliary classification
loss is to encourage the model to discriminate between old and new concepts. This
auxiliary classifier takes as input both the old exemplar representations, to which a
unique label is assigned, and the current task representations, to which the current
task labels are assigned. To reduce the number of parameters used at inference time,
DER introduces a channel-level mask to prune the network filters at the end of each
task.

Huang et al. [97] observe that dynamically expanding the network does not take
into account task correlations, leading to overall performance suffering from inter-
task confusion and task-recency bias. To overcome these limitations, they propose
TFCIL, a method that combines a multi-level knowledge distillation loss, which works
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on both features and network outputs, with a feature fusion module to share the rep-
resentations of task feature extractors. Furthermore, they introduce a classifier re-
scoring (CR) method to reduce task-recency bias caused by the unbalanced magni-
tude of the last weight classifier. Finally, a pruning method is applied to reduce the
number of parameters used in inference

Recently, Zhou et al. [92] demonstrated that efficient and effective dynamic ar-
chitectures can be designed by constructing specialized blocks for each task. Their
approach, named MEMO, improves performance compared to DER, both in terms
of memory efficiency and accuracy results.



Chapter 3

Elastic Feature Consolidation for
Exemplar-free Incremental Learning

Deep neural networks achieve state-of-the-art performance on a broad range of vi-
sual recognition problems. However, the traditional supervised learning paradigm
is limited in that it presumes all training data for all tasks is available in a single
training session. The goal of Class-Incremental Learning (CIL) is to enable incre-
mental integration of new classification tasks into already-trained models as they
become available [35]. Class-incremental learning entails balancing model plastic-
ity (to allow learning of new tasks) against model stability (to avoid catastrophic
forgetting of previous tasks) [24]. Exemplar-based approaches retain a small set of
samples fromprevious taskswhich are replayed to avoid forgetting, while exemplar-
free methods retain no samples from previous tasks. This latter category is of par-
ticular interest when retaining exemplars is problematic due to storage or privacy
requirements.

Exemplar-free Class Incremental Learning (EFCIL) must mitigate catastrophic
forgetting without recourse to stored samples from previous tasks. Approaches
can be loosely grouped into those based on weight regularization and those based
on functional regularization. Elastic Weight Consolidation (EWC) is an elegant and
appealing approach based on a Laplace approximation of the previous-task poste-
rior [44]. When training on a new task, an approximation of the Fisher Information
Matrix is used to regularize parameter drift in directions of significant importance
to previous tasks. This mitigates forgetting while maintaining more plasticity for
learning the new task. EWC is a second-order approach, and as such requires ag-

Portions of this chapter were published in:

• [61] S.Magistri, T. Trinci, S.-C. Albin, J. V. deWeijer, andA. D. Bagdanov, “Elastic feature consol-
idation for cold start exemplar-free incremental learning,” in The Twelfth International Conference
on Learning Representations, 2024.
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gressive approximations of the Fisher Information Matrix [48].
Functional regularization, especially through feature distillation, is a central com-

ponent in recent state-of-the-art EFCIL approaches [53, 60, 86, 54]. Instead of reg-
ularizing weight drift, feature distillation regularizes drift in feature space to miti-
gate forgetting. Feature distillation is often combined with class prototypes, either
learned [54] or based on class means [53], to perform pseudo-rehearsal of features
from previous tasks which reduces the task-recency bias common in EFCIL [35].
Prototypes – differently than exemplars – offer a privacy-preserving way to mitigate
forgetting. Feature distillation and prototype rehearsal reduce feature drift across
tasks, but at the cost of model plasticity.

Existing EFCIL methods are predominantly evaluated in Warm Start scenarios
in which the first task contains a larger number of classes than the rest, typically
50% or 40% of the entire dataset. For Warm Start scenarios∗ stability is more impor-
tant than plasticity, since a good backbone can be already learned on the large first
task. Current state-of-the-art approaches use strong backbone regularization [53]
or indeed even freeze backbone after the large first task and focus on incrementally
training the classifier [62].

In this chapter we consider EFCIL in the more challenging Cold Start scenario
in which the first task is insufficiently large to learn a high-quality backbone and
methods must be plastic and adapt their backbone to new tasks. EFCIL with Cold
Starts faces two main challenges: an alternative to feature distillation is required,
since the backbone must adapt to new data, and an exemplar-free mechanism is
needed to adapt previous-task classifiers to the changing backbone.

We propose a novel EFCIL approach, which we call Elastic Feature Consolida-
tion (EFC), that regularizes changes in directions in feature space most relevant for
previously-learned tasks and allowsmore plasticity in other directions. In this chap-
ter, we derive a pseudo-metric in feature space that is induced by a matrix we call
the Empirical Feature Matrix (EFM). In contrast to the Fisher Information Matrix, the
EFM can be easily stored and calculated since it does not depend on the number
of model parameters, but only on feature space dimensionality. To address drift of
the more plastic backbone, we additionally propose a Prototype Replay Asymmetric
Cross Entropy loss (PR-ACE) that balances between new-task data andGaussian pro-
totypes during EFCIL. Finally, we propose an improved method to update the class
prototypes which exploits the already-computed EFM. A visual overview of EFC
and its components is given in Figure 3.1.

∗Weuse the termWarmStart here, differently from [98], to distinguish continual learning starting
from a large first task (Warm Start) from continual learning starting from a small first task (Cold
Start).
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Figure 3.1: Elastic Feature Consolidation. (a) Architecture overview; (b) The Em-
pirical Feature Matrix (EFM) measures how outputs vary with features and identi-
fies important directions to mitigate forgetting (Section 3.2.3); (c) The EFM induces
a pseudo-metric in feature space used to estimate prototype drift (Section 3.3.3);
and (d) The Asymmetric Prototype Replay loss adapts previous task classifiers to
the changing backbone by balancing new-task data and Gaussian prototypes (Sec-
tion 3.3.2).

3.1 Related work

In this section, we briefly overview the most related works to our approach. We fo-
cus on offline, class-incremental learning problems. Class-incremental problems
are distinguished from task-incremental problems in that no task information is
available at test time. Offline incremental learning allows multiple passes on task
datasets during training [55, 99, 35], while online incremental learning considers
continuous data streams in which each sample is accessed just once during train-
ing [100, 101, 102].

Exemplar-based approaches rely on an exemplar memory of previous class sam-
ples that are replayedwhile learning new tasks. Hou et al. [95], Douillard et al. [96],
Kang et al. [90] combine cosine normalization and distillation losses with exemplar-
rehearsal to mitigate forgetting. Another category of exemplar-based approaches
focuses on ResNet style architectures and expand sub-network structures across the
incremental steps. AAnet [103] adds two residual blocks tomask layers and balance
stability and plasticity. DER [91] train a single backbone for each incremental task,
and more recently, MEMO [92] share generalized residual blocks and only extend
specialized blocks for new tasks to improve performance and efficiency. The pri-
mary drawbacks of exemplar-based approaches are their lack of privacy preserva-
tion and potential high computational and storage costs, particularly when a grow-
ing memory buffer is utilized.

Exemplar-free approaches are less common in class-incremental learning. Early
works computed importance scores for all weights and used them to performweight
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regularization [44, 48, 49]. Other works like Li and Hoiem [50], Jung et al. [52]
use functional regularization methods, like knowledge and feature distillation, con-
straining network activations tomatch those of a previously-trained network. Unlike
exemplar-basedmethods [91], most EFCIL approaches considerWarm Start scenar-
ios in which the first incremental task is much larger that the others so employing
strong regularization losses, reducing plasticity after the first task has less impact
on the final performance. In particular, recent EFCIL approaches use feature distil-
lation [104, 86], or even freeze the feature extractor after the first task [62, 105, 64]

On top of this decrease in plasticity, only using functional regularization is not
enough to learn new boundaries between classes from previous tasks and classes
from new ones. For this reason, regularization is often combined with prototype re-
hearsal [53, 60, 106]. Prototypes are feature space statistics (typically class means)
used to reinforce the boundaries of previous-task classes without the need to pre-
serve exemplars. Zhu et al. [53, 104] use prototype augmentation and self-supervised
learning to learn transferable features for future tasks. Toldo and Ozay [54] learns
and updates prototype representations during incremental learning. Zhu et al. [60]
combine prototypes with a strategy to re-organize network structure to transfer in-
variant knowledge across the tasks. Petit et al. [62] fixes the feature extractor after
the training the large first task and generates pseudo-samples to train a linear model
discriminating all seen classes.

We propose an EFCIL approach that uses functional regularization and proto-
type rehearsal, but in contrast with most state-of-the-art methods, we also report
results in Cold Start incremental learning scenarios that do not start with a large first
task.

3.2 Regularization via the Empirical Feature Matrix
As a remark in this section, we provide the general EFCIL framework, introduced in
Chapter 2, Section 2.1.2. Then, we derive a novel pseudo-metric in feature space, in-
duced by a positive semi-definite matrix we call the Empirical Feature Matrix (EFM),
used as a regularizer to control feature drift during class-incremental learning (see
Figure 3.1b).

3.2.1 Exemplar-free Class-incremental Learning (EFCIL)
During class-incremental learning a modelM is sequentially trained on K tasks,
each characterized by a disjoint set of classes {Ct}K

t=1, where each Ct is the set of
labels associated to the task t. Wedenote the incremental dataset asD = {Xt,Yt}K

t=1,
where Xt and Yt are, respectively, the set of samples and the set of labels for task t.
The incremental modelMt at task t consists of a feature extraction backbone ft(·; θt)



3.2 Regularization via the Empirical Feature Matrix 47

shared across all tasks and whose parameters θt are updated during training, and a
classifier Wt ∈ R

n×∑t
j=1 |Cj| which grows with each new task. The model output at

task t is the composition of feature extractor and classifier:

Mt(x; θt, Wt) ≡ p(y|x; θt, Wt) = softmax(W⊤t ft(x; θt)). (3.1)

Directly trainingMt (i.e. fine-tuning)with a cross-entropy loss at each task t results
in backbone drift because at task t we see no examples from previous-task classes.
This progressively invalidates the previous-task classifiers and results in forgetting.
In addition to the cross-entropy loss, many state-of-the-art EFCIL approaches use a
regularization loss Lreg

t to reduce backbone drift, and a prototype loss Lpr
t to adapt

previous-task classifiers to new features.

3.2.2 Weight and Functional Regularization
Kirkpatrick et al. [44] showed that using ℓ2 regularization to constrain weight drift
reduces forgetting but does not leave enough plasticity for learning of new tasks.
Hence, they proposed Elastic Weight Consolidation (EWC), which relaxes the ℓ2 con-
straint with a quadratic constraint based on a diagonal approximation of the Empir-
ical Fisher Information Matrix (E-FIM):

Ft = Ex∼Xt

[
Ey∼p(y|x;θ∗t )

{(
∂ log p(y)

∂θ∗t

)(
∂ log p(y)

∂θ∗t

)T}]
, (3.2)

where θ∗t is the model trained after task t. The E-FIM induces a pseudo-metric in
parameter space [107] which, when to regularize learning, encourages parameters
to remain in a low-error region for previous-task models:

LE-FIM
t = λE-FIM(θt − θ∗t−1)

TFt−1(θt − θ∗t−1). (3.3)

The main limitation of approaches of this type is need for approximations of the
E-FIM (e.g. a diagonal assumption). This makes the computation of the E-FIM
tractable, but in practice is unrealistic since it does not consider off-diagonal entries
that represent influences of interactions between weights on the log-likelihood. To
overcome these limitations, more recent EFCIL approaches [53, 60] rely on func-
tional regularization which scale better in the number of parameters. In particular
a common regularization loss proposed is feature distillation (FD):

LFD
t = ∑

x∈Xt

|| ft(x)− ft−1(x)||2. (3.4)

This type of isotropic regularizer using the ℓ2 distance is too harsh a constraint for
learning new tasks, and we propose instead to use a pseudo-metric in feature space.
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This pseudo-metric is induced by amatrix whichwe call the Empirical FeatureMatrix
(EFM) that allows us to constrain directions in feature space most important for pre-
vious tasks, while allowing more plasticity in other directions when learning new
tasks.

3.2.3 The Empirical Feature Matrix
Our goal is to regularize feature drift, but we do not want to do so isotropically as in
feature distillation. Instead, we draw inspiration from how the E-FIM identifies im-
portant directions in parameter space and take a similar approach in feature space.
The local and empirical feature matrices. Let ft(x) be the feature vector extracted
from input x ∈ Xt from task t and p(y) = p(y| ft(x); Wt) the discrete probability
distribution over the set of classes {Cj}t

j=1. We define the local feature matrix as:

E ft(x) = Ey∼p(y)

[(
∂ log p(y)

∂ ft(x)

)(
∂ log p(y)

∂ ft(x)

)⊤]
. (3.5)

The Empirical FeatureMatrix (EFM) associatedwith task t is obtained by taking the
expected value of Equation 3.5 over the entire dataset at task t:

Et = Ex∼Xt [E ft(x)]. (3.6)
Both E ft(x) and Et are symmetric, as they are weighted sums of symmetric matrices,
and positive semi-definite. Computing E ft(x) requires a complete forward pass and
a backward pass up to the feature embedding, however the next results provide an
analytic formulation for E ft(x) that avoids computing gradients.
Proposition. Let ft(x) be the feature vector extracted from input x ∈ Xt from task t and
p(y) = p(y| ft(x); Wt) the discrete probability distribution over the set of classes {Cj}t

j=1.
Then, the following holds:

E ft(x) = Ey∼p(y)[Wt(Im − P)y(Wt(Im − P)y)
⊤], (3.7)

where m = ∑t
j=1 |Cj|, Im the identity matrix of dimension m×m, and P is a matrix built

from the row of softmax outputs associated with ft(x) replicated m times.
Proof. To simplify the notation, we are going to prove the equationwithout explicitly
specifying the task, as it is unnecessary for the derivation:

E f (x) = Ey∼p(y)

[(
∂ log p(y)

∂ f (x)

)(
∂ log p(y)

∂ f (x)

)⊤]
. (3.8)

We begin by computing the Jacobian matrix with respect to the feature space of the
output function g : Rm → Rm which is the log-likelihood of the model on logits z:

g(z) = log(softmax(z)) = [log(σ1(z)), . . . , log(σm(z))]⊤,
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where
σi(z) =

ezi

∑m
j=1 ezj

.

The partial derivatives of g with respect to each input zi are:

∂ log(σi(z))
∂zj

=

{
1− σi(z) if i = j,

− σj(z) otherwise.
(3.9)

Thus, the Jacobian matrix of g is:

J(z) =


1− σ1(z) −σ2(z) . . . −σm(z)

−σ1(z) 1− σ2(z)
...

... . . .
−σ1(z) . . . 1− σm(z)

 (3.10)

= Im − 1m ·

σ1(z)
...

σm(z)


⊤

= Im − P, (3.11)

where Im ∈ Rm×m is the identity matrix and 1m represent the vector with all entries
equal to 1.

Recalling Equation 3.8, we are interested in computing the derivatives of the log-
probability vector with respect to the feature vector:

∂ log p(y1, . . . , ym| f ; W)

∂ f
=

∂(W f )
∂ f

∂(log(softmax(z)))
∂z

(3.12)

= W J(z), (3.13)

where z = W f for W the classifier weight matrix mapping features f to logits z.
Combining this with Equation 3.11 we have:

Ey∼p(y)

[(
∂ log p(y)

∂ f

)(
∂ log p(y)

∂ f

)⊤]
= Ey∼p(y)[W(Im − P)y(W(Im − P)y)

⊤],

(3.14)
where p(y) = p(y| f (x); W), P is the matrix containing the probability vector as-
sociated with f in each row, and (Im − P)y is the column vector containing the yth
row of the Jacobian matrix. Computing Et using Equation 3.14 requires only a sin-
gle forward pass of all data through the network, whereas a naive implementation
requires an additional backward pass up to the feature embedding layer.

Geometrical Properties and Loss with Empirical Feature Matrix. To gain addi-
tional insight into what the measures, we highlight some (information) geometrical
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aspects of Et. The Empirical Fisher Information Matrix provides information about
the information geometry of parameter space. In particular, it can be obtained as the
second derivative of the KL-divergence for small weight perturbations [108, 109].
Similarly, the Empirical Feature Matrix provides information about the information
geometry of feature space. Since E ft(x) is positive semi-definite, we can interpret it
as a pseudo-metric in feature space and use it to understand which perturbations of
features most affect the predicted probability:

KL(p(y | ft(x; θt) + δ; Wt) || p(y | ft(x; θt); Wt)) = δTE ft(x)δ +O(||δ||3). (3.15)

We now have all the ingredients for our regularization loss:

LEFM
t =E

x∈Xt

[
( ft(x)− ft-1(x))T(λEFMEt-1 + η I)( ft(x)− ft-1(x))

]
, (3.16)

where ft(x) and ft−1(x) ∈ Rn are the features of sample x extracted from the cur-
rent modelMt and the modelMt−1 trained on the previous task, respectively. In
Equation 3.16 we employ a damping term η ∈ R to constrain features to stay in
a region where the quadratic second-order approximation of the KL-divergence of
the log-likelihood in Equation 3.15 remains valid [110]. However, to ensure that
our regularizer does not degenerate into feature distillation, we must ensure that
λEFMµi > η, where µi are the non-zero eigenvalues of the EFM. Additional analysis
of these constraints and the spectrum of the EFM will be given in Section 3.4.4. In
the next sectionwe give empirical evidence of the effect of this elastic regularization.
The Regularizing Effect of the Empirical Feature Matrix. By definition, the di-
rections of the eigenvectors of the EFM associated with strictly positive eigenvalues
are those in which perturbations of the features have the most significant impact
on predictions. To empirically verify this behavior, we perturb features in these
principal directions and measure the resulting variation in probability outputs. Let
ft = ft(x) ∈ Rn denote feature vector extracted from x and Et the EFM computed
after training on task t. We define the perturbation vector ε1:k ∈ Rn such that each
of the first k entries is sampled from a Gaussian distributionN (0, σ), where k is the
number of strictly positive eigenvalues of the spectral decomposition of Et. The re-
maining n-k entries are set to zero. Then, we compute the perturbed features vector
f̃t as follows:

f̃t = f + U⊤t ε1:k, (3.17)
where U is the matrix whose columns are the eigenvectors of Et.

In Figure 3.2 (left) we show that perturbing the feature space along the principal
directions in this way, after training on the first task, results in a substantial variation
in the probabilities for each class. Conversely, applying the complementary pertur-
bation εk:n, i.e., setting zero on the first k directions and applying Gaussian noise on
the remaining n-k directions, has no impact on the output. In Figure 3.2 (right) we
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Figure 3.2: The regularizing effects of Et. Left: Perturbing features in principal di-
rections of E1 results in significant changes in classifier outputs (in blue), while per-
turbations in non-principal directions leave the outputs unchanged (in red). Right:
If we continue incremental learning up through task 3 and perturb features from all
three tasks in the principal (solid lines) and non-principal (dashed lines) directions
of E3, we see that E3 captures all important directions in feature space up through
task 3. We conducted these experiments in the CIFAR-100 Cold Start (CS) 10 step
scenario, distributing the classes into 10 equal splits across tasks. This analysis is
also applicable to other dataset configurations. For more details on dataset settings
see Section 3.4.1.

see that, after training three tasks, perturbing in the principal directions of E3 signif-
icantly degrades performance across all tasks, while perturbations in non-principal
directions continue to have no affect on the accuracy. This shows that E3 captures
the important feature directions for all previous tasks and that regularizing drift in
these directions should mitigate forgetting.

3.3 Prototype Rehearsal for Elastic Feature
Consolidation

In this section we first describe prototype rehearsal and then describe our proposed
Asymmetric Prototype Rehearsal strategy (see Figure 3.1d). We also show how the
Empirical Feature Matrix Et defined above can be used to guide classifier drift com-
pensation (see Figure 3.1c).

3.3.1 Prototype Rehearsal in EFCIL
EFCIL suffers from the fact that the final classifier is never jointly trained on the all
seen classes. At each task t the classifier Wt−1 is extended to include |Ct| new out-



52 Elastic Feature Consolidation for Exemplar-free Incremental Learning

Figure 3.3: Accuracy after each incremental step on the Cold Start CIFAR-100 10-step
scenario. Feature distillationwith symmetric prototype loss (left) reduces forgetting
at the cost of plasticity and new tasks are not learned. EFM regularizationwith sym-
metric loss (middle) increases plasticity at the cost of stability and previous tasks
are forgotten. EFM regularization with asymmetric PR-ACE loss (right), balances
current task data with prototypes and achieves better plasticity/stability trade-off.

puts. Thus, if classifier Wt is only trained on samples from classes Ct it will not be
able to discriminate classes from previous tasks. This phenomenon is called inter-
task confusion [35]. Moreover, even if a small number of exemplars is replayed, in
an exemplar-based scenario, the task classifier outputs are not calibrated and the pre-
dictions on previous classes are biased toward to the newest task ones (task-recency
bias).

A common exemplar-free solution is to replay only prototypes of previous classes
[60, 53, 104, 62, 54]. At the end of task t− 1, the prototypes pc

t−1 are computed as
the class means of deep features and the set of prototypes P1:t−1 is stored.

During training of the next task the prototypes are perturbed and fed to the
classification heads. Let ( p̃, y p̃) ∼ P1:t−1 be a batch of perturbed prototypes and
(xt, yt) ∼ (Xt,Yt) a batch of current task data. The final classification loss, which
we call the symmetric loss to distinguish it from the asymmetric loss we propose be-
low, consists of two cross entropy losses evaluated on the all classification heads and
can be written as:

Lsym
t = Lce

t (xt,yt)
∣∣
C1:t

+ λpr Lce
t (p̃, yp̃)

∣∣
C1:t

, (3.18)

where Lce
t (xt, yt)

∣∣
C1:t

represents the cross-entropy loss evaluated on a mini-batch of
data and computed over all encountered classes C1:t.

In our work, we use Gaussian prototypes to enhance the feature class means, as
suggested by Zhu et al. [104]. To be more specific, we create augmented prototypes
by sampling from aGaussian distributionN (pc

t−1, Σc). Here, Σc represents the class
covariance matrix of feature representations.
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3.3.2 Asymmetric Prototype Rehearsal
The symmetric prototype loss Lsym

t from Equation 3.18 above is able to balance old
task classifiers with new ones only when feature space drift is small, for instance
when using feature distillation (see Figure 3.3 (left)). But with the greater plas-
ticity introduced by the EFM, the symmetric loss fails to effectively adapt old task
classifiers to the changing backbone (see Figure 3.3 (middle)).

To address this, we propose anAsymmetric Prototype Replay loss (PR-ACE) to bal-
ance current task data and prototypes:

LPR-ACE
t = Lce

t (xt, yt)
∣∣
Ct
+ Lce

t ((p̃, yp̃) ∪ (x̂t, ŷt))
∣∣
C1:t

, (3.19)
where (xt, yt), (x̂t, ŷt) ∼ (Xt,Yt) and p̃ ∼ P1:t−1 with yp̃ the associated labels.
Lce

t (x, y)
∣∣
C t is the cross entropy loss restricted to classes in C t.

The first term relies on the current task data, processed through the backbone
and the current task classification head. It aligns the initially random head with
the feature representation learned during previous tasks and aids learning of task-
specific features. The second term calibrates the classification heads. It combines a
batch of current task data with a batch of prototypes. Prototypes and current task
data are uniformly sampled from all classes and used to train all task classifiers;
consequently a larger proportion of prototypes is used compared to the current task
data. In Figure 3.3 (right) we see that the addition of the PR-ACE loss achieves just
this balance between stability and plasticity.

PR-ACE takes inspiration from the asymmetric loss proposed by Caccia et al.
[111] for online, exemplar-based class incremental learning. In their work, the goal
was to learn inter-task featureswith a loss termbased on both exemplars and current
task data passed through the current backbone. In contrast, for prototype rehearsal
only current task datamay be passed through the backbone.

3.3.3 Prototype Drift Compensation via Empirical Feature Matrix
Using fixed prototypes has the drawback that they eventually deviate from the pre-
vious class representations. Yu et al. [86] showed that the drift in embedding networks
can be estimated using current task data. Their method, named SDC, works on the
premise that we can effectively estimate the drift of mean feature embeddings from
previous-task classes by looking at feature drift in the most closely related classes
from the current task. After each task, they update the prior normalized classmeans
via a weighted average of the observed feature representation drift in the current
task. Subsequently these updated class means are used at test-time to perform the
nearest class-mean classification.

Our aim is to update prototypes pc
t−1 used in for rehearsal in PR-ACE (Equa-

tion 3.19) across the entire training phase. As proposed by SDC, after each task we
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update the prototypes:

p̂c
t−1 = pc

t−1 +
∑xi∼Xt wiδ

t−1
i

∑xi∼Xt wi
, δt−1

i = ft(xi)− ft−1(xi), (3.20)

where δt−1
i is the feature drift of samples xi between task t− 1 and t.

Wedefine theweightswi using the EFM(Figure 3.1c). In Section 3.2.3we showed
that the EFM induces a pseudo-metric in feature space, providing a second-order
approximation of the KL-divergence due to feature drift. We extend the idea of
feature drift estimation to softmax-based classifiers by weighting the overall drift of
our class prototypes. Writing pc = pc

t−1 and f i
t-1 = ft−1(xi) to simplify notation, our

weights are defined as:

wi = exp

(
− ( f i

t-1− pc)Et-1( f i
t-1− pc)⊤

2σ2

)

≈ exp

(
−KL(p(y| f i

t-1; Wt-1) || p(y|pc; Wt-1))
2σ2

)
,

(3.21)

where Et-1 is the EFM after training task t− 1. Equation 3.21 assigns higher weights
to the samples more closely aligned to prototypes in terms of probability distribu-
tion. Specifically, higher weights are assigned to samples whose softmax prediction
matches that of the prototypes, indicating a strong similarity for the classifier.

Let dc
i = ( f i

t-1− pc)Et-1( f i
t-1− pc)T be the distance according the EFM between cur-

rent task feature fi extracted from the model trained at task t− 1 and the prototype
pc. However, since dc

i is not bounded (similar to the KL-Divergence), the exponen-
tial function becomes unstable across incremental learning steps. To address this
problem, we normalize all the distances dc

i be fall in the interval [0, 1] before ap-
plying the Gaussian kernel. In all our experiments, we use a fixed σ = 0.2 for the
Gaussian kernel.

3.3.4 Elastic Feature Consolidation with Asymmetric Prototype
Rehearsal

Figure 3.1 summarizes our approach, which is a combination of the EFM and PR-
ACE losses:

LEFC
t = LEFM

t + LPR-ACE
t , (3.22)

where LPR-ACE
t is the asymmetric cross entropy loss (Equation 3.19) and LEFM

t is
the Empirical Feature Matrix loss from (Equation 3.16). After each task, our proto-
types are updated using (Equation 3.20) equipped with the EFM (Equation 3.21)
and new prototypes with the corresponding class covariances are computed. Fi-
nally, we compute the EFM Et using the current task data for use when learning
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Algorithm 1: Elastic Feature Consolidation
Data: M1, E1, P1
for t = 2, . . . T do

/* Iterate over epochs */
for each optimization step do

sample xt ∼ Xt, x̂t ∼ Xt
sample gaussian proto p̃ ∼ P1:t-1
compute LPR-ACE

t (Equation 3.19)
compute LEFM

t (Equation 3.16)
LEFC

t ← LPR-ACE
t + LEFM

t

Update θt ← θt − α
∂LEFCt

∂θt

end
P1:t-1 ← P1:t-1 + ∆(Et-1) (Equations 3.20, 3.21)
P1:t ← P1:t-1 ∪ Pt
Et ← EFM(Xt,Mt) (Equations 3.6, 3.7)

end

subsequent incremental tasks. The training procedure for the proposed method is
described in Algorithm 1. The algorithm assumes that the first training has already
been completed, as it does not require particular treatment.

Note that it is essential to combine LEFC with LPR-ACE
t . Et−1 selectively inhibits

drift in important feature directions, in contrast to Feature Distillation which in-
hibits drift in all directions (Figure 3.3 (left)). The resulting plasticity increases the
risk of prototype drift, which in turn adapts previous-task classifiers to drifted pro-
totypes (Figure 3.3 (middle)). Our use of LPR-ACE

t to balance prototypes and new
task samples, and our prototype drift compensation, counters this effect (Figure 3.3
(right)).

3.4 Experimental Results
In this section we compare Elastic Feature Consolidation with the state-of-the-art in
EFCIL.

3.4.1 Datasets, metrics, and hyperparameters

Weperformour experimental evaluation on three standarddatasets. CIFAR-100 [112]
consists of 60,000 images divided into 100 classes, with 600 images per class (500 for
training and 100 for testing). Tiny-ImageNet [113] consists of 100,000 images di-
vided into 200 classes, which are taken from ImageNet and resized to 64× 64 pixels.
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Table 3.1: Comparison with the state-of-the-art on CIFAR-100, TinyImageNet, and
ImageNet-Subset.

Warm Start Cold Start
AK

step AK
inc AK

step AK
inc

Method 10 Step 20 Step 10 Step 20 Step 10 Step 20 Step 10 Step 20 Step

CI
FA

R-
10

0

EWC [44] 21.08± 1.09 13.53± 1.11 41.00± 1.11 31.79± 2.77 31.17± 2.94 17.37± 2.43 49.14± 1.28 31.02± 1.15
LwF [50] 20.73± 1.47 11.78± 0.60 41.95± 1.30 28.93± 1.62 32.80± 3.08 17.44± 0.73 53.91± 1.67 38.39± 1.05
PASS [53] 53.42± 0.48 47.51± 0.37 63.42± 0.69 59.55± 0.97 30.45± 1.01 17.44± 0.69 47.86± 1.93 32.86± 1.03
Fusion‡ [54] 56.86 51.75 65.10 61.60 − − − −
FeTrIL [62] 56.79± 0.40 52.61± 0.81 65.03± 0.66 62.50± 1.03 34.94± 0.46 23.28± 1.24 51.20± 1.13 38.48± 1.07
SSRE [60] 57.48± 0.55 52.98± 0.63 65.78± 0.59 63.11± 0.84 30.40± 0.74 17.52± 0.80 47.26± 1.91 32.45± 1.07

EFC 60.87± 0.39 55.78± 0.42 68.23± 0.68 65.90± 0.97 43.62± 0.70 32.15± 1.33 58.58± 0.91 47.36± 1.37

Ti
ny

Im
ag

eN
et

EWC [44] 6.73± 0.44 5.96± 1.17 18.48± 0.60 13.74± 0.52 8.00± 0.27 5.16± 0.54 24.01± 0.51 15.70± 0.35
LwF [50] 24.00± 1.44 7.58± 0.37 43.15± 1.02 22.89± 0.64 26.09± 1.29 15.02± 0.67 45.14± 0.88 32.94± 0.54
PASS [53] 41.67± 0.64 35.01± 0.39 51.18± 0.31 46.65± 0.47 24.11± 0.48 18.73± 1.43 39.25± 0.90 32.01± 1.68
Fusion‡ [54] 46.92 44.61 − − − − − −
FeTrIL [62] 45.71± 0.39 44.63± 0.49 53.95± 0.42 52.96± 0.45 30.97± 0.90 25.70± 0.61 45.60± 1.67 39.54± 1.19
SSRE [60] 44.66± 0.45 44.68± 0.36 53.27± 0.43 52.94± 0.42 22.93± 0.95 17.34± 1.06 38.82± 1.99 30.62± 1.96

EFC 50.40 ±0.25 48.68± 0.65 57.52± 0.43 56.52± 0.53 34.10± 0.77 28.69± 0.40 47.95± 0.61 42.07± 0.96

Im
ag

en
et-

Su
bs
et EWC [44] 16.19± 2.48 10.66± 1.74 23.58± 2.01 18.05± 1.10 24.59± 4.13 12.78± 1.95 39.40± 3.05 26.95± 1.02

LwF [50] 21.89± 0.52 13.24± 1.61 37.15± 2.47 25.96± 0.95 37.71± 2.53 18.64± 1.67 56.41± 1.03 40.23± 0.43
PASS [53] 52.04± 1.06 44.03± 2.19 65.14± 0.36 58.88± 2.15 26.40± 1.33 14.38± 1.22 45.74± 0.18 31.65± 0.42
Fusion‡ [54] 60.20 51.60 70.00 63.70 − − − −
FeTrIL [62] 63.56± 0.59 57.62± 1.13 71.87± 1.46 68.01± 1.60 36.17± 1.18 26.63± 1.45 52.63± 0.56 42.43± 2.05
SSRE [60] 61.84± 0.93 55.19± 0.97 70.68± 1.37 66.73± 1.61 25.42± 1.17 16.25± 1.05 43.76± 1.07 31.15± 1.53

EFC 68.85± 0.58 62.17± 0.69 75.40± 0.92 71.63± 1.13 47.38± 1.43 35.75± 1.74 59.94± 1.38 49.92± 2.05

ImageNet-Subset [114] is a subset of the original ImageNet dataset that consists of
100 classes. The images are resized to 224× 224 pixels.

Each experiment is evaluated in two settings. The first is the Warm Start (WS)
scenario commonly considered in EFCIL [53, 60, 62, 54] which uses a larger first task
consisting of 50 classes for CIFAR-100 and ImageNet-Subset in the 10-step scenario,
and 40 classes in the 20-step scenario. For Tiny-ImageNet, both the 10-step and 20-
step scenarios use a large first task consisting of 100 classes. Regardless of 10-step or
20-step, the remaining classes after the first task are uniformly distributed among
the subsequent tasks. The second setting, referred to as Cold Start(CS), uniformly
distributes all classes among all tasks. We are especially interested in the Cold Start
scenario since it requires backbone plasticity and is very challenging for EFCIL.

Wemeasure using per-step incremental accuracy AK
step and average incremental accu-

racy AK
inc:

AK
step =

∑K
i=1 |Ci|aK

i

∑K
i=1 |Ci|

, AK
inc =

1
K

K

∑
i=1

Ai
step. (3.23)

where aK
i represents the accuracy of task i after training task K. We report both

metrics to unify comparisons since some works report only per-step accuracy [53]
and others only average incremental accuracy [62, 60].
Hyperparameter Settings. We use the standard ResNet-18 backbone [14] trained
from scratch for all experiments. We train the first task of each state-of-the-artmethod
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using the same optimizer, number of epochs and data augmentation. In particular,
we train all the first task using self-rotation as performed by Zhu et al. [53], Toldo
and Ozay [54] to align all the performance.

For the incremental steps of EFC we used Adam with weight decay of 2e-4 and
fixed learning rate of 1e-4 for Tiny-ImageNet and CIFAR-100, while for ImageNet-
Subset we use a learning rate of 1e-5 for the backbone and 1e-4 for the heads. We
fixed the total number of epochs to 100 and use a batch size of 64. We set λEFM = 10
and η = 0.1 in Equation 3.16 for all the experiments. We ran all approaches using
five random seeds and shuffling the classes in order to reduce the bias induced by
the choice of class ordering [55, 35].

In Appendix A.1 we provide the optimization settings for the first tasks and for
each state-of-the art method we evaluated.

3.4.2 Comparison with the state-of-the-art
In Table 3.1 we compare EFC with baselines and state-of-the-art EFCIL approaches.
Specifically we consider EWC [44], LwF [50], PASS [53], Fusion [54], FeTrIL [62]
and SSRE [60]. Our evaluation considers two key scenarios: Warm Start, commonly
found in the EFCIL literature, and themore difficult Cold Start scenario. EFC signif-
icantly outperforms the previous state-of-the-art in both metrics across all scenarios
of the considered datasets.

Notably, on the ImageNet-Subset Warm Start scenario EFC exhibits a substan-
tial improvement of about 5% over FeTrIL in both per-step and average incremental
accuracy. For SSRE, our incremental accuracy results are significantly higher com-
pared to the results reported in the original paper.

This is attributable to the self-rotationwe used as an initial task to align all results
with PASS andFusion (which both use self-rotation). This alignment is crucialwhen
dealing with Warm Start scenarios, as performance on the large first task heavily
biases the metrics (Equation 3.23) as discussed by [115, 116]. In Figure 3.4 and
Figure 3.5 we provide per-step performance plots showing that all the evaluated
methods begin from the same starting point, for both Warm Start and Cold Start
scenarios

In Cold Start scenarios we see that methods relying on feature distillation, such
as FeTrIL, SSRE and PASS, experience a significant decrease in accuracy compared
to EFC. This drop in accuracy can be attributed to the fact that the first task does
not provide a sufficiently strong starting point for the entire class-incremental pro-
cess. Moreover, most of these approaches exhibit weaker performance even when
compared to LwF, which does not use prototypes to balance the classifiers. On the
contrary, the plasticity offered by the EFM allows Elastic Feature Consolidation to

‡Fusion results are those reported by [54] since no code is available to reproduce them.
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Figure 3.4: WarmStart (WS) per-step accuracy during the incremental learning. The
plots compare recent EFCIL methods against EFC on Cifar-100, Tiny-ImageNet and
ImageNet Subset for different incremental step sequences. All methods begin from
the same starting point after training on the large first task, but EFCmaintains more
plasticity thanks to the EFM regularizer and is thus better at learning new tasks.

achieve excellent performance even in this setting, surpassing all other approaches
by a significant margin.
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Figure 3.5: Cold Start (CS) per-step accuracy plots during incremental learning. The
plots compare recent EFCIL methods with EFC on Cifar-100, Tiny-ImageNet and
ImageNet subset for different incremental step sequences.All methods begin from
the same starting point after training on the small first task, but EFC both maintains
plasticity thanks to the EFM regularizer and is able to better update previous task
classifiers to learn new tasks and mitigate forgetting.
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Figure 3.6: Ablation on regularization and prototype losses. We can clearly see
that feature distillation as regularizer obtains similar performance to FeTrIL, which
freezes the backbone after the first task, while EFC thanks to its plasticity obtains
superior performance.

3.4.3 Ablation Study

Ablation on PR-ACE and Feature Distillation. We evaluated the performance of
our regularizer in two settings: when combined with the proposed PR-ACE (Equa-
tion 3.19) and when combined with the standard symmetric loss (Equation 3.18).
Figure 3.6 clearly demonstrates that the symmetric loss works well in conjunction
with feature distillation. However, when used alongside the EFM, it fails to effec-
tively control the adaptation of the old task classifier, resulting in an overall drop
in performance. Additionally, it is evident from the results that feature distillation
essentially degenerates into a method similar to FeTrIL, which freezes the backbone
after the first task. These findings suggest that using feature distillation as a reg-
ularizer is equivalent to freezing the backbone after the first task and employing a
suitable prototype rehearsal approach to balance the task classifier, pseudo-samples
for FeTrIL, and Gaussian prototypes in our specific scenario.

To gain further insights, Figures 3.8 and 3.7 display the per-task classification ac-
curacy following the final training session. These figures compare the EFC perfor-
mance with FeTrIL and Feature Distillation methods in both Cold Start and Warm
Start scenarios. These plots clearly show that EFC sacrifices some points of accu-
racy on the first tasks to maintain plasticity needed to learn new ones, while FD and
FeTrIL, have high stability to remember first tasks, while little plasticity to learn the
newest one.
Ablation on Prototype Update. In Table 3.2 we evaluate the effect of proto-
type updates (Equation 3.20 and Equation 3.21) on Cifar-100, Tiny-ImageNet and
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Figure 3.7: Per-task accuracy after the last training in the CIFAR-100(WS) 10 step
scenario.
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Figure 3.8: Per-task accuracy after the last training in the CIFAR-100(CS) 10 step
scenario.
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Table 3.2: Ablation on prototype update.

Dataset Step Update Proto (WS) Update Proto (CS)
✗ ✓ ✗ ✓

CIFAR-100 10 58.24± 0.62 60.87± 0.39 39.28± 0.97 43.62± 0.70
20 52.60± 0.73 55.78± 0.42 27.28± 1.48 32.15± 1.33

Tiny-ImageNet 10 48.16± 0.53 50.40± 0.25 31.23± 0.88 34.10± 0.77
20 45.70± 0.74 48.68± 0.65 25.12± 0.23 28.69± 0.40

ImageNet-Subset 10 66.92± 0.43 68.85± 0.58 39.99± 2.20 47.38± 1.43
20 59.90± 1.09 62.17± 0.69 29.62± 2.60 35.75± 1.74

ImageNet-Subset. These results indicate that prototype updates enhance perfor-
mance in both the Warm Start and the Cold Start experiments. The performance
boost is more pronounced in the Cold Start scenario, where we achieve, on average
on the three dataset, a substantial 5 and 7 points of improvement for the 10 and 20
steps respectively.

Comparing these results with those presented in Table 3.1, it is evident that in-
corporating prototype updates in some cases within the Cold Start Scenario enables
surpassing the performance of existing methods, something that does not always
happen when using fixed prototypes. For instance, FeTrIL (CS) Tiny-ImageNet - 20
step reaches 25.70 in accuracy compared to only 25.12 achieved by EFC with fixed
prototypes.

3.4.4 Spectral Analysis of the Empirical Feature Matrix
In this sectionwe conduct a spectral analysis on our Empirical FeatureMatrix (EFM).
Since Elastic Feature Consolidation (EFC) uses Et to selectively regularize drift in
feature space, it is natural to question how selective its regularization is. We can gain
insight into this by analyzing how the rank of Et evolveswith increasing incremental
tasks.

Let us consider a model incrementally trained on CIFAR-100 using EFC method
up to the sixth and final task and compute the spectrum of the Et for each t ∈
[1, . . . , 6]. We chose a shorter task sequence for simplicity, but the same empirical
conclusions hold regardless of the number of tasks. Recalling that Et ∈ Rn×n is
symmetric, thus there exist Ut and Λt ∈ Rn×n such that:

Et = U−1
t ΛtUt = U⊤t ΛtUt, (3.24)

where Ut is an orthogonal matrix and Λt = diag(λ1, .., λn) is a diagonal matrix
whose entries are the eigenvalues of Et. Since Et is positive semi-definite, λi ≥ 0 for
each i ∈ [1, . . . , n]. For our convenience we can rearrange the matrices Λt and Ut
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Figure 3.9: The spectrum of the Empirical Feature Matrix across incremental learn-
ing steps. For a better visualization of the spectrum in the analysis we considered
a Warm Start 5-step scenario on CIFAR-100. The x-axis is truncated at the 120th
eigenvalue.

of the decomposition such that the eigenvalues on the diagonal are ordered by the
greatest to the lowest, with the first k being positive.

In Figure 3.9, we plot the spectrum of Et at each t ∈ [1, . . . , 6]. The plot shows
that the number of classes onwhich thematrix is estimated corresponds to an elbow
in the curve beyond which the spectrum of the matrix vanishes. This implies that
the rank of the matrices is exactly equal to the number of observed classes.

Finally, we highlight that the results reported for EFC are obtained using hyper-
parameter values of λEFM = 10 and η = 0.1 in the regularization loss (Equa-
tion 3.16). In Figure 3.9, the horizontal line indicates that the plasticity constraints
λEFMµi > η (described in Section 3.2.3 of the paper) are satisfied for nearly ev-
ery µi > 0. This observation clearly demonstrates that our regularizer effectively
constrains the features in a non-isotropic manner, distinguishing it from feature dis-
tillation.

3.4.5 Computational and Storage Cost
In this section, we explore the storage costs and computational requirements for
training EFC. For memory costs, we delve into the specific storage needs of EFC and
examine strategies to reduce these expenses. In terms of computational require-
ments, we provide the training wall-clock time comparison between EFC and other
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Table 3.3: Warm Start EFC performance with low-rank covariance approximations
for Gaussian prototype sampling. On both datasets in all task sequences using fewer
than 10% of the principal directions on average preserves 99% of the total variance
and maintains the same accuracy as using full covariance matrices (full covariance
with preserved variance = 1.00 given for reference).

CIFAR-100 Tiny-ImageNet

# Steps
Preserved
Variance

Avg #
Components AK

step

Preserved
Variance

Avg #
Components AK

step

5 0.90 11± 2 57.35 0.90 15± 3 49.02
5 0.95 18± 4 59.68 0.95 23± 4 49.72
5 0.99 39± 6 61.65 0.99 48± 6 50.85
5 1.00 512 62.57 1.00 512 51.19

10 0.90 11± 2 55.79 0.90 15± 3 47.79
10 0.95 18± 3 58.28 0.95 24± 4 48.77
10 0.99 38± 6 60.66 0.99 48± 6 50.54
10 1.00 512 60.87 1.00 512 50.40

20 0.90 11± 2 50.67 0.90 15± 3 46.64
20 0.95 18± 3 52.95 0.95 23± 4 47.49
20 0.99 38± 6 54.91 0.99 48± 6 48.39
20 1.00 512 55.78 1.00 512 48.68

EFCIL methods.
Storage Costs. In terms of storage efficiency, Elastic Feature Consolidation requires
to store a single EFM that is used as pseudo-metric to regularize the drift and a
covariance matrix per class to replay the prototype across the incremental learning
steps. This last requirement results in a linear increase in storage as the number
of classes grows. We discuss how this memory cost can be mitigated by applying
a low rank decomposition of the class covariance matrices and two more aggressive
strategies, named Each Task and Last Task, further mitigating storage costs.

A spectral analysis of the covariance matrices reveals that for all classes in all
datasets and all task sequences the spectra are highly concentrated in the first 30-50
eigenvalues and are thus well-approximated by low-rank reconstructions. To verify
this we ran experiments with low-rank reconstructions and give results for CIFAR-
100 and Tiny-ImageNet in Table 3.3. On average, using only 30 eigenvectors is suffi-
cient to preserve 99% of the total variance and maintain the same EFCIL accuracy.

To further mitigate storage costs, we consider two more aggressive strategies:
the Each Task strategy, which employs a single covariance matrix per task for proto-
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Table 3.4: Mitigating storage costs with proxy covariance matrices. We can save
only one covariance matrix per task (Each Task) to use for prototype generation,
which results in storage that grows linearly in number of tasks. Alternatively, we
can store only the covariance matrix from the Last Task, which results in a constant
storage cost. Both proxies sacrifice some EFCIL accuracy in theWarm Start scenario,
but results are still comparable with the state-of-the-art (compare with results in
Table 3.1).

Warm Start Cold Start
AK
step AK

inc AK
step AK

inc
Variant 10 Step 20 Step 10 Step 20 Step 10 Step 20 Step 10 Step 20 Step

CI
FA

R1
00 Each Task 59.37± 0.18 54.97± 0.86 67.34± 0.38 65.12± 0.92 45.26± 0.62 33.73± 2.38 60.11± 0.85 48.96± 1.90

Last Task 58.22± 0.80 52.79± 0.10 66.79± 0.49 63.89± 0.86 43.72± 0.38 31.43± 2.48 59.46± 0.99 47.27± 1.53

EFC 60.87± 0.39 55.78± 0.42 68.23± 0.68 65.90± 0.97 43.62± 0.70 32.15± 1.33 58.58± 0.91 47.36± 1.37

Ti
ny

Each Task 49.00± 0.48 47.26± 0.18 56.31± 0.51 55.06± 0.39 34.81± 0.56 29.39± 0.52 47.84± 0.39 42.53± 0.17
Last Task 48.00± 0.43 45.64± 0.51 55.85± 0.54 54.12± 0.37 34.36± 0.14 28.57± 0.32 47.50± 0.24 42.11± 0.11

EFC 50.40 ±0.25 48.68± 0.65 57.52± 0.43 56.52± 0.53 34.10± 0.77 28.69± 0.40 47.95± 0.61 42.07± 0.96

Im
ag

eN
et Each Task 66.53± 0.48 60.55± 0.73 74.10± 0.62 70.36± 1.24 48.49± 2.18 36.31± 3.35 61.19± 2.46 50.52± 2.22

Last Task 65.46± 0.69 59.20± 0.69 73.42± 0.72 69.59± 1.40 47.21± 1.57 35.43± 3.00 60.50± 2.16 50.22± 1.94

EFC 68.85± 0.58 62.17± 0.69 75.40± 0.92 71.63± 1.13 47.38± 1.43 35.75± 1.74 59.94± 1.38 49.92± 2.05

type generation and requires storage that scales linearly with the number of tasks;
and the Last Task strategy, which stores only the covariance matrix from the most
recently learned task and thus requires constant storage. In Table 3.4, we present
the results of these strategies. It is noteworthy that storing a per-class task covari-
ance significantly impacts the Warm Start performance. However, in the Cold Start
scenario, storing a covariance per task appears to be less beneficial, in fact the dif-
ferences between variants of our method are practically negligible. We hypothesize
that this outcome arises because, in the Cold Start (CS) scenario, representations are
more susceptible to changes, making per-class fixed covariance less crucial. Overall,
even with these proxies, EFC for both Cold-Start and Warm-Starts, results remain
comparable to or even better than the state-of-the-art.

Computational Costs. In terms of computational efficiency, the calculus of the
EFM can be derived without computing backward operations, but only a forward
pass of the entire training set at the end of each task (Equation 3.7).

For the training time, we conducted a wall-clock time analysis to assess the com-
putational costs of EFC. The results of this analysis are presented in Figure 3.10.
LwF is the fastest methods since it does not rely upon prototype rehearsal. Among
the prototype-basedmethods, EFC is comparable to SSRE in terms of computational
time and it is much faster than PASS which is more time-consuming since applies
self-rotation across the incremental steps. In the plot we do not report FeTrIL, rely-
ing upon SVM for the training. Currently, FeTrIL is the fastest state-of-the-art EFCIL
approach since it freezes the backbone and updates only the classifier.
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Figure 3.10: Wall clock timing comparison. We compute the per-epoch time aver-
aged over 100 epochs. These timings are obtained using a single NVIDIA GeForce
RTX 3090.

3.5 Conclusions

In this chapter, we introduced Elastic Feature Consolidation which regularizes fea-
ture drift in directions in feature space important to previous-task classifiers. We
derive an Empirical Feature Matrix that induces a pseudo-metric used to control
feature drift and allow more plasticity than feature distillation in directions unim-
portant for previous tasks. We further use this Empirical FeatureMatrix in anAsym-
metric Prototype Replay loss and to update prototypes across incremental learning
steps. The results of our study reveal that the additionally plasticity introduced by
EFC allows for significantly outperforming the state-of-the-art on both Cold Start
andWarmStart Exemplar-free class incremental learning, achieving a better stability-
plasticity trade-off.

However, EFC faces challenges: prototypes updates using the drift estimated
from current class samples may not accurately reflect, real class means, potentially
leading to forgetting over long task sequences. Also, estimating covariance drift
remains an open question. Moreover, EFC requires storage that grows linearly in the
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number of classes, but this growth can be mitigated using low-rank approximations
or proxies for class covariance matrices.





Chapter 4

Incremental Learning for Social
Network Identification

Multimedia content such as images and videos have become one of the primary
means by which information is shared between Internet users. Unfortunately, this
also includes content used to perpetrate crimes such as cyber bullying, incitement to
hatred, and revenge porn. As a result, determining the origin of multimedia content
is of great interest not only to law enforcement agencies but also to the general pub-
lic. As the number of images and videos stored in seized devices can easily reach
into the thousands, such analysis can often only be performed by automatic tools.
This problem has been addressed by the multimedia forensics community through
a number of techniques capable of analyzing different aspects of content history.
Among these, discovering the social network from which content was downloaded
has become of great interest in the last few years [119]. Knowledge about the social
network of origin can then be used to guide further analyses, which can ultimately
lead to the complete reconstruction of content history.

Unfortunately, the identification of social networks is a daunting task due to
their black box nature. Their inner workings are closely guarded by parent compa-
nies who consider them proprietary information and researchers are consequently
forced to depend on hidden clues embedded in shared media that arise from the
processing performed by social platforms. The processing chain that multimedia
content undergoes ends with a compression algorithm to reduce file size as much
as possible while maintaining maximum visual quality [120]. When a picture is

Portions of this chapter were published in:
• [117] S. Magistri, D. Baracchi, D. Shullani, A. D. Bagdanov, and A. Piva, “Towards continual

social network identification,” in 11th International Workshop on Bio- metrics and Forensics,
2023, pp. 1–6.

• [118] S. Magistri, D. Baracchi, D. Shullani, A. D. Bagdanov, and A. Piva, “Continual learning
for adaptive social network identification,” Pattern Recognition Letters, vol. 180, pp. 82–89, 2024.
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taken, the vast majority of smartphones and cameras store the resulting file in JPEG
format. A similar procedure, which can also include resizing, renaming, and editing
all or part of the metadata [121], occurs when content is shared on a social platform,
resulting in a double JPEG compression trace. Numerous studies propose method-
ologies for Social Network Identification (SNI) that rely on factors such as JPEGquanti-
zation tables, pixel resolution, and image metadata [122]. Some researchers exploit
the distribution ofDiscrete Cosine Transform (DCT) coefficients [123, 124, 125, 126] as
well as DiscreteWavelet Transform coefficients (DWT) [127]. Moreover, the distinc-
tive fingerprint of Photo Response Non-Uniformity (PRNU) noise [128], renowned
for its camera ballistics capabilities, has also been taken into account for image-
based SNI [129, 130, 131]. Researchers have also investigated the importance of
the container structure of multimedia content [132, 133, 134, 135] to detect a specific
SN platform in the content history. Today, the task of social network identification
(single or multiple) is addressed predominantly through deep learning techniques
based on Convolutional Neural Networks (CNNs) [119, 136], using all or a combi-
nation of the above-mentioned fingerprints to exploit both spatial and meta infor-
mation of the content itself.

Despite the remarkable SNI results reported for existing CNN-based methods,
the task of keeping them current and effective poses a significant challenge due to
the ever-changing nature of the social network landscape. Indeed, as companies
fiercely compete to attract new users to their platforms, the software responsible for
managing these networks undergoes constant updates to incorporate new features
and enhance existing ones. This, in turn, leads to modifications in the traces left
on shared content, consequently requiring the update of previously trained mod-
els. Additionally, new economic players consistently strive to enter the market by
proposing new platforms, hoping to address gaps in existing products and establish
themselves in this growing industry. As data-driven methods are usually designed
to classify among a predetermined set of possibilities, incorporating additional plat-
forms inevitably requires training a newmodel. Because of the phenomenon known
as catastrophic forgetting, existing models cannot be easily updated by solely finetun-
ing them on new data; indeed, when a CNN is initially trained on one task and sub-
sequently trained on one or more new tasks, it quickly loses its ability to perform
the initial task [24]. A naive solution to avoiding catastrophic forgetting, called Joint
Incremental Training, consists of jointly training the network on the new data along
with the old ones. The main problem with joint training is that it is expensive to
re-train the network with the entire dataset each time new data become available.
Furthermore, it may not always be possible to retrieve data from previous tasks due
to privacy considerations or because they are simply no longer available.

Incremental learning approaches strive to reduce catastrophic forgetting bymak-
ing efficient use of limited data from past tasks. In the context of multimedia foren-
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Incremental Social Platform  Classification (ISPC)

Incremental Social Version Classification (ISVC)
 

Time

Time

Figure 4.1: Incremental Social PlatformClassification (ISPC) and Incremental Social
Version Classification (ISVC) Scenarios. In the ISPC scenario (in blue), new social
network platforms are introduced over time to update a modelMt that must clas-
sify all encountered platforms. In the ISVC scenario (in red), new versions of social
networks are introduced over time, and the model should still recognize social net-
works while distinguishing between different versions. See Section 4.2 for further
details.

sics, a first attempt at applying incremental learning techniques (although not for
social network identification) was performed byMarra et al. [137]. This work show-
cased the efficacy of iCaRL [55] in expanding the capabilities of a network for GAN-
generated image identification.

In this chapter, we introduce a multi-modal architecture for social network iden-
tification, combining both image pixels with features based on the Discrete Cosine
Transform (DCT). Its objective is to identify the social network fromwhich an image
has been downloaded.

Furthermore, we propose two incremental learning scenarios for social network
identification, depicted in Figure 4.1:

• Incremental Social Platform Classification (ISPC) which is focused on updating a
model to accurately classify newly introduced social media platforms across the
time.

• Incremental Social Version Classification (ISVC) which is focused on update a
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model in order to accommodate novel versions of the original set of social net-
works on which it was trained. This update entails not only the ability to han-
dle these new versions but also to differentiate between them.

Weperforman extensive experimental evaluation of incremental learning techniques,
both exemplar-based and exemplar-free, includingElastic FeatureConsolidation, in-
troduced in Chapter 3. Additionally, we investigate how the number of exemplars
from past tasks affects the results of exemplar-based techniques. Our experiments
demonstrate that, by employing a limitedmemory budget of image patches, existing
incremental learning methods can approach Joint Incremental Training performance
in both ISPC and ISVC scenarios.

4.1 Related Work
In this section we briefly review the incremental learning approaches we evaluated
for incremental social network identification.

Incremental learningmethods can be roughly grouped into twomacro-categories:
exemplar-free approaches [44, 45, 50] which do not store exemplars from past tasks
and only add extra terms to the training loss to incorporate knowledge from past
tasks during the training of new ones, and exemplar-based approaches [55, 56, 94],
which rely on a small subset of representative samples (exemplars) from previous
tasks.

Exemplar-free methods include Elastic Weight Consolidation (EWC) [44] and Rie-
mannian Walk (RWalk) [45] which define a weight regularization loss based on the
Fisher Information Matrix to prevent network weights from drifting away from the
previous task model when learning new task classes. LwF, instead, uses Knowl-
edge Distillation [82] to discourage predictions from drifting when learning new
tasks [50].

Knowledge Distillation (KD) has been employed as a regularization technique
bymany exemplar-basedmethods [55, 56, 57]. Moreover, exemplar-based approaches
place a significant emphasis on tackling the challenge of imbalanced data between
exemplars and current-task data. The imbalance between the number of exemplars
frompast task classes andnumber of training samples for current-task classes results
in a task-recency bias towards classifying images into classes of the current task [35].
To mitigate this task-recency bias, methods such as BIC [56] and IL2M [94] rectify
the network outputs. More recently, SS-IL [57] was proposed which employs a sep-
arated softmax output layer in combination with task-wise knowledge distillation
in order to reduce task-recency bias. Techniques like iCaRL [55] avoid this bias by
using a nearest-mean rule in feature space for classification instead of relying on
classification heads trained with the cross-entropy loss.
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The primary challenge faced by initial attempts at exemplar-free methods lies in
their inability to mitigate task-recency bias due to absence of exemplars. Recent ad-
vancements have introduced prototype rehearsal as a method to leverage past-task
deep features, enhancing the final classifier output and thereby mitigating task-
recency bias.

Prototypes, or class-means, are computed as the averages of feature vectors for
each class in previous tasks. The storage of these prototypes aligns with the privacy
requirements inherent in exemplar-free methods. In FeTrIL [62] a fixed feature ex-
tractor was proposed and the training is performed only on the last classifier using
both previous task prototypes and current task features. Finally, EFC [61], intro-
duced in Chapter 3, uses the Prototype Rehearsal Asymmetric Cross-entropy loss
(PR-ACE) along with the Empirical Feature Matrix (EFM) to selectively regularize
feature space drift and prevent catastrophic forgetting while maintaining enough
plasticity to still learn new tasks.

4.2 Two Scenarios for Incremental Social Network
Identification (SNI)

Given the perpetual state of change and evolution in the social network landscape,
we believe that the application of incremental learning techniques can significantly
enhance social network identification systems. A notable advantage of Incremental
SNI methods is that they eliminate the need for maintaining a continually expand-
ing dataset containing both old and new data. Such approaches would address con-
cerns related to efficiency and privacy, as managingmassive datasets is complicated
and sensitive content need not be retained indefinitely. Additionally, the capability
to update a model by training it solely on new data would offer significant time-
efficiency advantages compared to retraining the entire model from scratch, thus
making the process of building an updated model more cost-effective and energy-
efficient. To demonstrate these advantages, we envision two practical scenarios aris-
ing from real-world social network identification tasks (depicted in Figure 4.1).

In the first scenario, whichwe call Incremental Social PlatformClassification (ISPC),
we hypothesize the emergence of new social networks over time. Since existing
models could not have possibly been trained on these newplatforms, they are bound
to misclassify content coming from them, associating images with one of the pre-
existing social networks. In this case our goal is to update the model to make it
capable of classifying both the platforms on which it was originally trained on as
well as newly-introduced ones.

In the second scenario, whichwe call Incremental Social VersionClassification (ISVC),
we hypothesize the release of new versions of existing social networks. These up-
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datesmay significantly alter the processing pipeline used to producemedia content,
leading to a drop in classification accuracy for models trained on older datasets. We
therefore have the aim to update the network tomake it correctly classify bothmedia
content produced by older version of the available social platforms and media con-
tent produced by the updated versions. Moreover, by modifying the model to make
it capable of classifying both the social platform and its version, we could leverage
this additional information as a clue on the temporal origin of the content.

In the ISVC scenario the goal is to classify images according to one of two pos-
sible social platforms (e.g. Instagram, Twitter) from which they were downloaded,
and we assume that those platforms undergo updates over time to incorporate new
features. In this case, the first task involves classifying images from the original ver-
sions of the social networks. The second task entails classifying images from the first
update of those platforms, and so on for subsequent tasks. For ISPC, on the other
hand, we assume that completely new social platforms are introduced over time. In
this case, the primary task involves classifying images from an initial set of social
platforms (e.g. Instagram, Twitter). The second task then entails classifying images
from the new platforms (e.g. Viber, WhatsApp), and each subsequent task then
involves handling an additional set of social networks. In both scenarios, our goal
is to update a classifier to handle subsequent tasks while still retaining its ability to
classify the previous ones.

4.3 A Benchmark Dataset for Incremental Social
Network Identification

In existing literature, there is no focus on assessing incremental learning in the do-
main of social network identification. This results in a lack of datasets tailored for
evaluating scenarios such as Incremental Social Platform Classification (ISPC) and
Incremental Social Version Classification (ISVC). To address this gap, we have cre-
ated two new benchmark dataset, each containing sufficient classes for task parti-
tioning. These benchmarks are specifically designed to assess the performance of
incremental learning in these scenarios.

In the ISPC scenario, we use Smartphone Images (SI) [138]. This dataset consists
of a variety of indoor and outdoor images captured by multiple smartphones. We
consider 14 social networks split into 4 tasks. Specifically, we allocated five social
networks for the first task and three for each of the remaining three tasks. We do
not use a fixed class order for the tasks, but we use different random seeds for each
run in order to reduce the bias induced by the choice of class ordering [35].

For the ISVC scenario, we collected a dataset, called Social Update (SU), which
contains different versions of four major social platforms: Facebook, Instagram,
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Table 4.1: Smartphone Images and Social Update dataset statistics.

Dataset #Classes Split #Patches #Images #Devices

Smartphone Images 14
Train 462k 17k 13
Valid 92k 2k 2
Test 131k 5k 4

Social Update 4/15
Train 574k 26k 52
Valid 78k 3k 7
Test 138k 6k 13

Twitter, WhatsApp. This dataset was created by gathering images from multiple
existing datasets including SI, IPLAB [122] and FODB [139]. SU encompasses a di-
verse range of both indoor and outdoor scenes, captured using smartphones and
cameras, and subsequently shared on social media. Moreover, we incorporate So-
cialNews [140], a dataset consisting of images shared by news organizations and
influencers on social networks. From this last dataset we only have images from
Facebook, Instagram, and Twitter since WhatsApp was not available. As a result,
the dataset it characterized by 4 social network platforms and a total of 15 versions.
For SU, we adopted a specific task division where each task focuses on a particular
social network version, corresponding to a specific dataset. The tasks are ordered
based on the chronological sequence of their publication date. The first task is based
on the SI dataset (containing data released in 2015), followed by the IPLAB dataset
(2016), the FODB dataset (2021), and finally the SocialNews dataset (2023). As a
result, the first three tasks consist of four social networks each, while the last task
only includes three. We use the SU dataset for two distinct objectives. The first is
to assess the capability of an incrementally trained network to accurately classify a
social network after an update, which entails a 4-class classification problem. The
second objective entails evaluating the performance of the network in terms of social
version classification, which is a 15-class classification problem.

To ensure a fair evaluation and eliminate any biases stemming from the acqui-
sition device, we divided the SI and SU dataset into three separate sets (training,
validation, and test). These sets were carefully constructed to ensure there is no
overlap in the devices used. In Table 4.1 we report the overall statistics of the two
datasets.

4.4 Social Network Identification Architecture
We propose a dual-branch architecture for assessing incremental learning in social
network identification (depicted in Figure 4.2). This architecture comprises a fea-
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Figure 4.2: Model architecture for Incremental Social Network Identification. The
network consists of two parallel branches: the top branch is a multilayer perceptron
taking as input the histograms of quantized DCT coefficients, and the lower branch
is a ReNet-18 backbone taking as input an image after high-pass filtering. The two
representations are fused via concatenation before the classification heads. See Sec-
tion 4.4 for details.

ture extractor ft(·; θt) and a softmax-based classifier with weights Wt that are up-
dated through the incremental learning steps. The feature extractor handles both
image pixel information and DCT-based features. Our choice to incorporate these
inputs into the network is based on their proven capability to represent the traces left
by social networks on images. This approach is supported by Amerini et al. [131]
which employed a dual-branch architecture similar to the ours in terms of input
representation, yet differing in the structure of the models

The architecture operates onfixed-size imagepatches, obtained bydividing high-
resolution images into non-overlapping sections of size 256× 256 pixels. In the pre-
processing phase, these patches undergo transformations to provide two distinct
representations of the image signal to the model. The first is a low-frequency his-
togram, generated from the DCT of the image patch. The second is a high-pass filtered
image, created by converting the image patch to gray-scale and then applying a high
pass filter.

The low-frequency histogram representation, originally proposed by Amerini et al.
[131], is obtaineddividing the imagepatch x into non-overlapping 8× 8pixel blocks,
aligned with the JPEG grid. These blocks are transformed into the DCT frequency
domain, and the first 9 AC coefficients of each block, with values between −50 and
50, are utilized to compute 9 histograms. These histograms are concatenated to cre-
ate a feature vector h, which is fed into the Histogram Branch. In our architecture,
this branch is a classic feed-forward network, consisting of three ReLU layers, with
512, 256, and 256 neurons respectively, interleaved with two dropout layers.

The high-pass filtered image is generated by transforming x into a residual image
x̂ using a high-pass filter. We propose to use a filter, removing the DCT coefficients
corresponding to the lowest 1250 frequencies. The residual image x̂ is then pro-
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cessed by the Convolutional Branch, which employs a ResNet-18 [141] convolutional
neural network.

It is worth noting that the two representations, h and x̂, offer complementary
information to the network. This approach is based on the observation that social
network recompression traces frequently occur in medium frequencies. The his-
togram representation h is designed to enhance low/medium frequencies, whereas
the filtered image x̂ concentrates on enhancing medium/high frequencies.

The output of the Histogram and Convolutional branches are then concatenated
and fused via a Fusion Layer, consisting of a single fully connected ReLU layer with
512 neurons. Finally, the output of the fusion layer is fed in a softmax-based classi-
fier. As previouslymentioned, the architecture operates onpatches of high-resolution
images, thus the final softmax score is computed per patch. To derive the overall
score for the full images, we employ two strategies: softmax averaging, which av-
erages the softmax probabilities across the patches, and majority voting, which de-
termines the prediction by selecting the most frequent outcome among the patch
predictions.

4.5 Experimental Results
In this section, we assess our architecture’s performance in a non-incremental setting
for comparison with a state-of-the-art counterpart and subsequently, we evaluate
the performance of our architecture in both the Incremental Social Platform and
Incremental Social Version scenarios.

4.5.1 Experimental Settings, metrics and hyperparameters

We train all the models using Adam [89] with an initial learning rate of 10−3 which
was decayedwhen the validation loss did not improve for 20 epochs. For each epoch,
we randomly sampled one crop per image in order to reduce the training time. All
patches were evaluated during the validation and test phases. Trainingwas stopped
when the learning rate reached 10−6 or when 200 epochs were reached. We aver-
age the performance of the models using 5 seed, each applying a different random
initialization of the weights.

We ran all the incremental learning experiments using FACIL [35]. We consider
5 exemplar-free methods (EWC [44], LwF [50], RWalk [45], FeTrIL [62], EFC [61])
and 4 exemplar-baed methods (BIC [56], iCaRL [55], IL2M [94], SS-IL [57]). All
experimentswere run five times initializing theweightswith different random seeds
and, for the ISPC scenario, randomizing class order as mentioned in Section 4.2. For
the first task of each method, we use the optimization settings mentioned above,
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while for the subsequent tasks in Appendix B, we report the optimization settings
and the hyperparameters of each incremental learning method evaluated.

For exemplar-based methods we used a fixed-size memoryM with a capacity
of K, containing randomly sampled image patches. We chose to save only patches
and not entire high resolution images for two reasons. Firstly, since the patches
have a fixed size of 256× 256, they incur a lower memory burden. Secondly, saving
only patches can be useful for applications where the full image content cannot be
saved due to privacy concerns. After each new task, we use a rebalancing procedure
for the patches stored in M. We randomly discard patches from previous tasks
to ensure a uniform distribution of exemplar patches per class. By ensuring this
uniform distribution, we maintain a constant overall memory dimension K.
Metrics. We consider class-IL settings, thus we report the performance in terms
of task agnostic (TAG) performance, where the task-ID is not available at inference
time. To measure the performance, we provide the average accuracy of the model
across the tasks, for both patches and images, after the final task [35]:

AT =
1
T

T

∑
i=1

ai,T (4.1)

where ai,T is the accuracy obtained on task i after learning task T.
All the evaluated incremental learning approaches except iCaRL compute the

global decision on images by averaging the softmax outputs for patches, since im-
proves the prediction performance aswewill see in the next Section 4.5.2. For iCaRL,
after training each task, the feature vectors belonging to every patch class are ex-
tracted and their mean is computed. At inference time, test patches are classified
according to the nearest class mean, while images are classified according to the
minimum average distance of their patches to the class mean.

4.5.2 Performance of the SNI Architecture
Before evaluating incremental learning methods for social network identification,
we first assess the performance of our architecture in a non-incremental setting. This
involves training our proposed architecture on all the 14 classes of Smartphone Im-
ages. We then compare the accuracy of our model with that proposed by Amerini
et al. [131], and we conduct an ablation study on the choices made for the input
representation of the Convolutional Branch in our architecture.

In Table 4.2, we present both patch-level and image-level accuracy, alongwith the
number of parameters, for our architecture compared to that of Amerini et al. [131].
For image-level accuracy, we employ both softmax-averaging and majority voting
methods. While majority voting was originally proposed by Amerini et al. [131]
to combine predictions from multiple patches, we find that averaging the softmax
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Table 4.2: Comparison on Smartphone Images with the state-of-the-art. The pro-
posed architecture obtains a higher accuracy both on patch- and image-level clas-
sification problems. At the same time, our network is smaller (with respect to the
number of parameters) compared to the model proposed for SNI in [131].

Method Patch Accuracy ↑ Image Accuracy ↑ # Parameters ↓
Avg Softmax Majority Vote

Amerini et al. [131] 63.1 (±1.2) 72.9 (±1.6) 71.7 (±1.4) 73.3 M
Proposed architecture 64.6 (±1.2) 75.4 (±0.6) 74.7 (±0.8) 12.2 M

Table 4.3: Performance comparison on Smartphone Images using only the convolu-
tional branch after preprocessing with different filters.

Image pre-processing Accuracy ↑
Patch Image

No filter 38.1 (±6.0) 48.3 (±7.5)
Mihcak Filter [142] 49.7 (±2.8) 62.6 (±3.7)
Ours (DCT High-pass filter) 55.1 (±2.9) 67.9 (±3.2)

predictions improves the performance of both models. Overall, our model demon-
strates superior results in both patch and image-level accuracy while maintaining a
less complex structure in terms of number of parameters.

Ablation on Convolutional Branch. As previouslymentioned, the effectiveness of
using a histogram representation to detect social network traces, along with image-
level information, was demonstrated by Amerini et al. [131]. Unlike them, relying
on the filter by Kivanc Mihcak et al. [142] for image representation, we propose a
different filtering pre-processing based on a DCT high-pass filter. To validate our
approach, we trained three classifiers using only the convolutional branch as fea-
ture extractor: one with non-filtered images, one with images processed using the
Mihcak filter, and one with our DCT high-pass filter, as described in Section 4.4.
The results, as shown in Table 4.3, clearly indicate that filtering the images improves
classification performance. Notably, our proposed DCT-based filtering further en-
hances the accuracy of the convolutional branch. It is also important to highlight
that using both branches, rather than the convolutional branch alone, improves ac-
curacy by about 9% at both patch and image levels. This improvement is evident
when comparing the results in Table 4.2 and Table 4.3.
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Table 4.4: Incremental Social PlatformClassification (ISPC) on 14 classes in Aver-
age TAG accuracy on patches and images after the last task with and without exem-
plars (K = 500 when using exemplars). We highlight the best-performingmethods,
both exemplar-free and exemplar-based, in bold and underline the second-best ap-
proaches.

Method
Accuracy ↑ 14 classes

w/o exemplars
Accuracy ↑ 14 classes

w/ exemplars
Patch Image Patch Image

Finetuning (LB) 23.3 (± 6.4) 22.5 (± 3.3) 49.0 (± 5.2) 52.1 (± 7.8)
EWC [44] 27.3 (± 2.1) 25.3 (± 2.2) 53.3 (± 5.2) 56.0 (± 7.0)
LwF [50] 26.0 (± 6.7) 25.6 (± 7.3) 48.8 (± 5.9) 51.1 (± 8.0)
RWalk [45] 28.2 (± 8.4) 25.8 (± 7.5) 51.3 (± 5.4) 53.9 (± 7.4)
FeTrIL [62] 36.4 (± 3.4) 40.3 (± 5.8) - -
EFC [61] 39.4 (± 3.7) 46.6 (± 6.0) - -
BIC [56] - - 56.4 (± 6.1) 63.3 (± 3.6)
iCaRL [55] - - 54.7 (± 5.8) 62.5 (± 3.1)
IL2M [94] - - 49.4 (± 1.8) 52.0 (± 1.8)
SS-IL [57] - - 46.4 (± 8.3) 52.4 (± 5.2)
Joint Incremental (UB) 67.7 (± 4.8) 73.0 (± 4.2) 67.7 (± 4.8) 73.0 (± 4.2)

4.5.3 Incremental Social Network Identification Evaluation.

We evaluate our proposed architecture on the Incremental Social Platform Classifi-
cation (ISPC) and the Incremental Social Version Classification (ISVC), depicted in
Figure 4.1. For each incremental scenario, the lower-bound (LB) baseline for com-
parison is Finetuning which simply consists of training the network on the new task
data, while the upper bound (UB) is Joint Incremental training which consists of re-
training the network on new task data along with all data from previous tasks.
Incremental Social Platform Classification (ISPC). We present the performance
evaluation of incremental learning methodologies on the ISPC scenario, where new
social network platforms appear over time. In Table 4.4 we report performance in
average accuracy after the last task for this scenario. We also provide results for
exemplar-based extensions of EWC, LwF, and RWalk in which a small number of
training samples for each task are retained as exemplars and replayedwhen training
on a new one.

Most exemplar-free techniques fail to achieve satisfactory performance, demon-
strating onlymodest improvement over Finetuning. Only two approaches (EFC and
FeTrIL) are capable of significantly increasing accuracy with respect to the lower
bound. This outcome comes from the incorporation of prototypes, which are rein-
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Table 4.5: Incremental Social Version Classification (ISVC) on 15 classes in TAG
accuracy on patches and images after the last task with and without exemplars
(K = 500 when using exemplars). We highlight the best-performing methods,
both exemplar-free and exemplar-based, in bold and underline the second-best ap-
proaches.

Method
Accuracy ↑ 15 classes

w/o exemplars
Accuracy ↑ 15 classes

w/ exemplars
Patch Image Patch Image

Finetuning (LB) 14.2 (± 3.7) 12.0 (± 3.9) 27.0 (± 1.5) 28.4 (± 2.7)
EWC [44] 20.1 (± 4.2) 14.4 (± 3.7) 22.3 (± 1.5) 25.8 (± 2.9)
LwF [50] 19.5 (± 0.4) 11.2 (± 0.5) 29.4 (± 2.2) 31.9 (± 3.1)
RWalk [45] 18.6 (± 1.5) 12.7 (± 1.6) 24.4 (± 4.6) 26.0 (± 3.2)
FeTrIL [62] 41.0 (± 0.6) 45.5 (± 0.7) - -
EFC [61] 48.5 (± 2.1) 51.9 (± 0.7) - -
BIC [56] - - 40.9 (± 3.5) 44.3 (± 3.5)
iCaRL [55] - - 40.9 (± 2.9) 50.7 (± 2.3)
IL2M [94] - - 24.2 (± 4.4) 27.3 (± 4.4)
SS-IL [57] - - 45.6 (± 1.3) 47.9 (± 2.0)
Joint Incremental (UB) 63.3 (± 1.5) 66.3 (± 0.9) 63.3 (± 1.5) 66.3 (± 0.9)

troduced during training to strike a balance between the previous and current task
classifiers, effectively alleviating task-recency bias. In the exemplar-based setting, by
incorporating K = 500 exemplars, iCaRL and BIC are the top performing methods
reducing the performance gap with Joint Incremental by half. Note that the rela-
tively high standard deviations are due to the random ordering of classes, as certain
social networks exhibit similar characteristics.
Incremental Social Version Classification (ISVC). We present the performance
evaluation of incremental learning methodologies on ISVC scenario, where the ver-
sion of the social networks changes over time. In Table 4.5 and Table 4.6 we report
performance for both exemplar-free and exemplar-based methods on this scenario
for 15 and 4 classes respectively. As detailed in Section 4.3, in the 15-class setting,
each distinct version of a social network platform is treated as an individual class.
Conversely, in the 4-class setting, examples are only labelled with the originating
social platform without considering the specific version. We emphasize that we
did not train separate models for the 4-class case. Instead, we obtained the results
by performing a posteriori remapping of the network outputs and disregarding any
information pertaining to the version. As expected, predicting the social network
version along its type (ISVC-15 classes) is a significantly more challenging setting.
Indeed, most methods show a drop of more than 20 points in TAG accuracy with
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Table 4.6: Incremental Social Version Classification (ISVC) on 4 classes in aver-
age TAG accuracy on patches and images after the last task with and without exem-
plars (K = 500 when using exemplars). We highlight the best-performingmethods,
both exemplar-free and exemplar-based, in bold and underline the second-best ap-
proaches.

Method
Accuracy ↑ 4 classes

w/o exemplars
Accuracy ↑ 4 classes

w/ exemplars
Patch Image Patch Image

Finetuning (LB) 39.6 (± 7.0) 43.0 (± 6.1) 53.4 (± 1.2) 57.4 (± 1.2)
EWC [44] 41.5 (± 8.4) 45.6 (± 10.1) 47.2 (± 2.1) 53.5 (± 2.6)
LwF [50] 39.3 (± 0.1) 45.2 (± 0.2) 56.3 (± 1.9) 61.3 (± 2.6)
RWalk [45] 35.3 (± 3.1) 37.2 (± 3.4) 49.7 (± 5.0) 54.3 (± 3.9)
FeTrIL [62] 69.3 (± 0.6) 72.9 (± 0.6) - -
EFC [61] 71.4 (± 0.4) 73.7 (± 0.8) - -
BIC [56] - - 70.4 (± 1.8) 72.2 (± 1.5)
iCaRL [55] - - 63.3 (± 1.1) 67.1 (± 1.0)
IL2M [94] - - 49.5 (± 6.8) 55.2 (± 5.6)
SS-IL [57] - - 66.5 (± 1.2) 67.6 (± 1.6)
Joint Incremental (UB) 85.9 (± 0.8) 87.8 (± 0.5) 85.9 (± 0.8) 87.8 (± 0.5)

respect to ISVC-4 classes.
Moreover, we note that in the ISVC scenario the two prototype-based exemplar-

free methods (FeTrIL and EFC) achieve superior results compared to exemplar-
based approaches (with memory size K = 500). This outcome underscores the
efficacy of prototypes as a viable solution when it is not possible to store exemplars
fromprevious tasks. Notably, EFC emerges as the top-performingmethod, reducing
the performance gap in image classificationwith Joint Incremental by approximately
14%.
Closing The Gap with Joint Incremental Training. We investigate the impact
of memory size K on exemplar-based approaches and compare performance with
FeTril and EFC, which are exemplar-free but achieved competitive results in the
ISVC scenario. Moreover, we examine how far current incremental learning solu-
tions are from joint incremental training (UB). In Figure 4.3, we give the perfor-
mance of all approaches in all the SNI scenarios for K ranging from 100 to 2000.

Difference in results between ISPC 14-class and ISVC 15-class scenarios is to be
expected. Indeed, while the number of classes is comparable in both scenarios, there
is a key distinction. In the first case, each class represents an entirely different social
network, whereas in the second case multiple classes represent different versions
of the same platform. Moreover, while ISPC 14-classes only accounts for a single
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Figure 4.3: Image average accuracy as a function of memory size in the ISPC and
ISVC scenarios.

dataset with fairly homogeneous data, ISVC 15-classes uses a mix of four different
datasets acquired using multiple devices and following different protocols. iCaRL
and BIC consistently outperform the other approaches in all the considered scenar-
ios. SS-IL obtains competitive performance in ISVC scenario, while it obtains poor
results for the ISPC scenario. Our conjecture is that this outcome can be attributed
to the task-wise knowledge distillation of SS-IL, which could potentially necessitate
a greater number of exemplar samples for effective learning in this context.

Results show that exemplar-based approaches are capable of reaching perfor-
mance comparable to that of Joint Incremental in both the ISPC 14-class scenario
and ISVC 15-class scenario while retaining only a fraction of the examples (see Ta-
ble4.4 and Table4.5). However, there is a larger performance gap observed in the
ISVC 4-class scenario compared to the other scenarios. EFC and FeTrIL perform
worse than exemplar-based approaches when the memory size increases, however
they still achieve competitive performance in the ISVC 4-class scenario. Finally, it is
worth noting that iCaRL performs exceptionally well when the memory is limited
to storing only K = 100 image patches. This highlights the effectiveness of iCaRL
even with a significantly reduced memory size.

4.6 Conclusions
In this chapter we introduce incremental learning for social network identification.
We considered two practical situations where updating an existing model would
be valuable: Incremental Social Platform Classification, which involves accommo-
dating newly introduced platforms, and Incremental Social Version Classification,
which entails handling updated versions of existing social networks. To evaluate
the effectiveness of incremental updating, we conducted extensive experimentswith
exemplar-free and exemplar-based incremental learning methods to incrementally
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update a state-of-the-art network.
Remarkably, exemplar-free methods based on prototypes provide a viable solu-

tionwhen saving previous tasks exemplars is not feasible, for instance due to privacy
concerns. Exemplars-based approaches achieve the largest improvement over fine-
tuning in all considered scenarios by retaining only a fraction of the original train-
ing patches. Even though incremental learningmethods are not yet able to reach the
performance obtained by Joint Incremental Training, the reported results shows that
recent techniques are rapidly closing the gap with the upper bound. This extensive
evaluation serves as an initial benchmark, providing a foundation for researchers to
further explore incremental social network identification in their studies.

As future work, exemplar-basedmethods could be further improved by employ-
ing a patch selection strategy based on the distribution of DCT coefficients. More-
over, considering the large gap between joint incremental and incremental learning
approaches in the ISVC scenario, we hypothesize that there exist features shared
across different tasks that are not currently taken into account by exemplar-based
methods. To address this, future research efforts could concentrate on expanding
incremental learning approaches to identify and incorporate these inter-task fea-
tures.



Chapter 5

Vehicle Viewpoint Estimation from
Monocular Images

Vehicle viewpoint estimation consists in estimating the vehicle azimuth or yaw an-
gle, i.e., the rotation of the vehicle around the axis perpendicular to the road plane
with respect to a reference point of view, like a camera (see Figure 5.1). Vehicle view-
points enrich the semantic information about the road scene provided by traditional
perception tasks, such as object detection, semantic segmentation and depth estima-
tion, and lead to a better understanding of the road scene [144, 145]. Furthermore,
viewpoint estimation enables accurate prediction of future vehicle motion [146],
thus it is of considerable interest for applications in which prediction or classifica-
tion of road maneuvers are key, like driver warning systems and risk estimation in
the context of fleet management [147].

Convolutional Neural Networks (CNNs) are widely used for viewpoint estima-
tion, but training them requires a substantial volume of annotated data. This data
is often collected using a full suite of sensors, such as Light Detection and Ranging
(LiDAR) ormultiple cameras [148]. LiDAR sensors are excellent for obtaining high-
quality annotations, enabling CNNs to achieve state-of-the-art results in determin-
ing vehicle orientation [149]. However, the high cost associatedwith LiDAR sensors
presents a notable disadvantage compared to more economical vision-based instru-
ments, such as monocular cameras (e.g. dash-cams). As a result, LiDAR-based
solutions for vehicle viewpoint estimation, despite the high accuracy, are not eco-
nomically viable for applications like fleet management, where equipping a large

Portions of this chapter were published in:
• [143] S.Magistri, M. Boschi, F. Sambo, D. C. deAndrade,M. Simoncini, L. Kubin, L. Taccari, L.

de Luigi, and S. Salti, “Lightweight and effective convolutional neural networks for vehicle viewpoint
estimation from monocular images,” IEEE Transactions on Intelligent Transportation Systems,
vol. 24, no. 1, pp. 191– 200, 2023.
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C

z

z′

zvθ

Figure 5.1: Definition of azimuth θ for the blue vehicle, whose front is denoted by
the solid triangle. C is the camera and z is the direction of the optical axis on the
road plane. z′ is the global z translated so to pass through the blue vehicle center
flipped to face towards the camera and zv is pointing in the direction of the vehicle
front from the vehicle center: θ is the angle from z′ to zv measured clockwise.

number of vehicles with expensive hardware is impractical and unsustainable.
Therefore, our reasearch is focused on developing a vehicle viewpoint estimation

solution relying on a single monocular camera, which is mounted inside the wind-
shield of a moving vehicle. This approach is more cost-effective and suitable for
after-market fleet-management applications. Estimating viewpoint of vehicles from
a single monocular image introduces inherent challenges, including radial distor-
tion, motion blur, occlusion and the absence of depth information. Moreover, in a
realistic scenario, cameras are not mounted exactly in the same spot for every vehi-
cle, leading to non-fixed points of view and lack of some extrinsic camera parame-
ters, namely camera height, roll and pitch. In light of this, a solution that generalizes
tomultiple vehiclemakes andmodels and that is independent of the cameramount-
ing position is required.

In this chapter, we build upon our previous work [150], in which we devel-
oped an efficient CNN-based model for predicting a vehicle’s viewpoint from its
image. Extending this research, we introduce Lightweight Convolutional Neural Net-
works, specifically designed for estimating a vehicle’s viewpoint using monocular
cameras. Thesemodels process not just the vehicle’s image, but also its 2D bounding
box information. We assume the 2D box information is externally provided to our
models, separating the viewpoint estimation task from the vehicle detection task.
This approach is justified by the fact that training a detector jointly with a view-
point estimator results in a model that is both less versatile and more challenging to
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(a) nuScenes. (b) Pascal3D+.
Figure 5.2: Samples from nuScenes (5.2a) and Pascal3D+ (5.2b) datasets. The view-
point of each vehicle (i.e. azimuth or yaw angle) is identified by the red circle placed
in the top-left corner of each bounding box.

maintain or adapt.
Our developed models incorporate geometric constraints into both the training

loss and the model output, achieving state-of-the-art performance in the vehicle
viewpoint estimation task. Thanks to the low number of parameters and reduced
inference time, our models are suitable for deployment on edge devices. To vali-
date our approach, we conduct extensive evaluations on a well-known viewpoint
estimation benchmark, Pascal3D+ [151], and on nuScenes [148] dataset, a large-
scale autonomous driving dataset. Examples from these datasets are presented in
Figure 5.2.

5.1 Related work
The existing literature on viewpoint estimation starting frommonocular images can
be broadly classified into two categories: methods that rely on 3D object detection
and those based on 2D object detection. 3D object detection solves the task of defin-
ing a 3Dbounding box around an objectwithin a 2D image [152, 153]. This approach
allows the extraction of several information, including object localization, viewpoint
and depth details. However, the main problems concerning these methods are the
need to estimate depth or 3D information and the requirement of accurate camera
parameters for correct localization. Furthermore, they may require higher compu-
tational resources if compared to 2D object detectors because of extra computation
for 3D position estimation [154].

On the other hand, methods for vehicle viewpoint estimation based on 2D detec-
tion techniques rely on existing 2D bounding boxes to predict azimuth [155] or they
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Figure 5.3: Standard Evaluation Protocol of Pascal3D+. Viewpoints (or azimuth)
bins are grouped into 4, 8, 16 and 24 bins, representing coarser to finer quantization
scales. The frame of reference assumes slice 0 facing towards the camera. The final
classification accuracy is reported for all the quantization scales.

jointly train an object detector with a viewpoint estimator network [156]. A signif-
icant portion of the literature addresses the viewpoint estimation problem using a
classification approach, which was shown by Massa et al. in [155, 157] to outper-
form the regression one. Ghodrati et al. [158] leverage image features extracted by
CNNs to estimate a discretized object viewpoint. Tulsiani and Malik [159] directly
estimated the viewpoint from the object images, using a CNN based on VGG16 ar-
chitecture [160], taking into account the object class. Zhou et al. [161] reduce the
prediction error of [159], changing the convolutional backbone to the more recent
residual architecture ResNet18 [14]. Su et al. [162] introduced a discretization into
360 bins for viewpoint prediction and they proposed a geometric structure aware
loss function. Divon and Tal [156] proposed a CNN-based architecture that jointly
solved detection, classification and viewpoint estimation, introducing a loss func-
tion based on the idea of the Siamese Networks [163]. Magistri et al. [150] pro-
posed a Multi-Task loss taking into account viewpoint errors at different granular-
ities. More recently, Xiao et al. [164] used a class-agnostic CNN to estimate object
poses and introduced a contrastive learning method based on a contrastive loss and
pose-aware data-augmentations to improve the performance.

5.2 Lightweight and Effective Convolutional Neural
Networks For Vehicle Viewpoint Estimation

In this section, we present the proposed methodology for addressing the challenge
of estimating vehicle viewpoints from monocular images. We specifically focus on
the viewpoint problem by decoupling it from the vehicle detection task, assuming
the availability of detection boxes. This assumption is made because training a ve-
hicle detector alongside a viewpoint estimator often results in a model that is less
versatile and more challenging to mantain or adapt.

The current literature has predominantly addressed the problem of viewpoint
estimation as a classification problem instead of regression one, as demonstrated to



5.2 Lightweight and Effective Convolutional Neural Networks For Vehicle
Viewpoint Estimation 89

be superior by Massa et al [155, 157]. Therefore, in this chapter, we delve into this
classification-based approach.

Naively tackling this challenge involves training a standardCNN, such as Resnet-
50 [14], on vehicle images. The CNN extracts vehicle features, which are then fed
to a classification layer, characterized by a fully connected layer with 360 output
units and a Softmax function generating viewpoint probabilities. During training,
the loss function employed is a supervised cross-entropy loss, comparingdiscretized
ground-truth azimuth labels with the corresponding viewpoint probabilities. How-
ever, this approach has three main limitations:

1. ImageDistortion and Truncated Vehicles. CNNperformance is adversely af-
fected by standard image-processing that does not preserve aspect ratio, and it
performspoorly onpartially visible (truncated) vehicles, as discussed in [165].
Convolutional neural networks take fixed-dimensional images as input, which
leads to a common pre-processing practice of resizing images to fixed dimen-
sions. However, when images are resized without preserving their original
aspect ratio, the content of vehicle images may become distorted, posing a
challenge for accurate viewpoint estimation.
Furthermore, addressing the inherent challenge of truncated vehicles is com-
plicated due to the limited presence of truncated vehicle samples in existing
literature datasets. Consequently, such samples are under-represented dur-
ing CNN training, leading to a deacrease in performance of truncated vehi-
cle viewpoint estimation. Enhancing performance in estimating viewpoints
for partially visible vehicles is crucial for various safety-critical applications,
including car crash identification, given that truncated vehicles are often the
closest to the camera’s field of view and thus demanding high-performance
solutions.

2. Intrinsic Ambiguity of Image Appearance Information. Relying solely on
appearance information is insufficient to predict viewpoint. The vehicle’s ap-
pearance strongly depends on its distance from the camera’s optical axis. For
instance, vehicles placed in the same direction as the camera’s optical axis but
at varying distances exhibit identical azimuth labels, despite having different
appearances. This concept is illustrated in Figure 5.6. Providing the position
and the size of the vehicle in the camera frame and thus implicitly the distance
of the vehicle from the camera’s optical axis can further improve the perfor-
mance.

3. Geometric Constraints. The standard cross entropy loss is unaware of geo-
metric constraints on viewpoints: nearby viewpoints should be more corre-
lated than more distant ones. In a classification approach, continuous view-
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Figure 5.4: Proposed method. A vehicle image is cropped from the whole camera
frame and, alongwith its bounding box coordinates, is pre-processed by anEarly Fu-
sion pipeline (see Section 5.3). The image undergoes two transformations (a) (see
Section 5.3.1): the viewpoint crop augmentation, designed to improve performance
onpartially visible vehicles, and theKeepRatio resize, which resizes the vehicle image
to a fixed dimension while preserving the original aspect ratio. The bounding box
coordinates are transformed into two additional channels using a Coordinate Chan-
nels Generation method (b) based on CoordConv representation (see Section 5.3.2).
Subsequently, the image and coordinate representations aremerged (c) and fed into
our Proposed CNN Architectures (d). Specifically, we propose two architectures, the
fine-grained and the coarse-grained models (see Section 5.4), which are trained in a
Siamese fashion (see Section 5.5) in order to predict vehicle azimuth.

points are quantized into a fixed number of bins, typically 360 bins to cover
the full 360 degrees. However, this quantization process may result in nearby
viewpoints being assigned to different bins, breaking down the natural order
of bins and, consequently, impacting the performance. Moreover, a common
practice for evaluating viewpoint models performance involves grouping the
viewpoint space into larger bins, as outlined in the standard evaluation pro-
tocol of Pascal3D+ (Figure 5.3). This means that, unlike the traditional classi-
fication paradigm, in situations where the network fails to classify the correct
viewpoint, it is preferable that the model predicts a viewpoint closer to the
ground truth rather than one that is faraway.

Taking into account the above considerations, we have designed lightweight and
effective CNNs for vehicle viewpoint estimation. Our methodology, depicted in Fig-
ure 5.4, involves cropping the vehicles according to their bounding box information
from the whole camera frame. Subsequently, the images and the bounding box co-
ordinates are passed through an early fusion pipeline (see Section 5.3), working on
both the vehicle image and its bounding box coordinates.

The vehicle image is augmented using a viewpoint crop augmentation, performing
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a random crop targeted to improve performance on truncated vehicles, and it is re-
sized while preserving the original aspect ratio (see Section 5.3.1). The bounding
box coordinates, denoted as (x0, y0), (x1, y1), are modified via a Coordinate Channel
Generation Method (see Section 5.3.2) to become two 2D matrices, which can be con-
catenated to the vehicle RGB channels and fed into CNN-based models.

We propose twoCNN-models based on theMobileNetV2 feature extractor [166],
which thanks to its reducednumber of parameters, makes the overallmethod lightweight.
The proposedmodels, named fine-grained and coarse-grained, are designed to address
geometric constraints that viewpoint prediction should be subject to. Specifically,
they employ smoothing techniques aimed at increasing correlation among nearby
viewpoints (see Section 5.4). Moreover, they are trained using a Siamese approach
to enforce these constraints (see Section 5.5). In the next sections, we provide addi-
tional details on each step of the proposed approach.

5.3 Early Fusion of Vehicle Images and Detection Data
In this section we describe the early fusion approach for pre-processing both the
vehicle images and the box coordinates (see Figure 5.4 (a), (b)). After the pre-
processing, the image and the coordinate channels generated are concatenated (see
Figure 5.4 (c)) and fed inside the proposed CNN architectures.

5.3.1 Image Transformation
Viewpoint crop augmentation. Traditional approaches on viewpoint estimation
are highly sensitive to truncated vehicles [165, 159]. In the context of vehicle view-
point estimation from a single on-board monocular camera, vehicles can be heavily
truncated, since they can be really close to it or placed on the margins of the camera
field of view. For this reason we propose a task-specific data augmentation for ve-
hicle viewpoint estimation, that we name viewpoint crop, with the aim of improving
performance on truncated vehicles. The proposed data augmentation is performed
online during training and chooses with probability 25 % one of four cropping op-
tions, each designed to simulate different truncations of vehicles captured by amov-
ing camera:

1. The vehicle is directly in front of the camera and very close to it (Figure 5.5(a)),
simulated by cropping only the image bottom side;

2. The camera is very close to a vehicle placed on its left side, i.e. part of the
vehicle is just beyond the left edge of the field of view of the camera (Figure
5.5(b)), simulated by cropping the left and bottom image side.
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(c) Vehicle is close to the camera and partially beyond the 
      right margin of the camera field of view

(b) Vehicle is close to the camera and partially beyond the 
      left margin of the camera field of view

(d) Fully visible vehicle

(a) Close front vehicle 

Figure 5.5: The viewpoint crop data augmentation. The blue and the red dashed lines
represent respectively the minimum and the maximum dimensions of the crop for
each option, while the black dashed line represents a possible crop applied during
training.

3. The mirrored version of the previous case, simulating vehicles on the right
side of the camera (Figure 5.5(c)).

4. The vehicle is fully visible (Figure 5.5(d)).

The crop target sizes are extracted as w ∼ U (wmin, wmax) and h ∼ U (hmin, hmax),
where U stands for the uniform probability distribution and wmin, hmin, wmax, hmax

represent respectively the lower and the upper bounds of the percentage of the vehi-
cle original width and height. In Figure 5.5, we provide the bounds of each cropping
option.

KeepRatio Resize. Convolutional Neural Networks typically operate under the
assumption of fixed image sizes. For instance, when training CNNs on the Imagenet
dataset for image classification [114], a standard practice is to resize images to a fixed
resolution of 224× 224 pixels, forming a square. In our specific case, resizing vehicle
crops extracted from full images to 224× 224 pixels without considering their orig-
inal aspect ratio may lead to content distortion and pose challenges in accurately
estimating their viewpoint.

Hence, we propose a different approach, referred to as KeepRatio: the images
are resized so that the largest side is 224 pixels and zero-padding is subsequently
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Figure 5.6: Example from the nuScenes dataset of the intrinsic ambiguity of view-
point and appearance. Vehicles at different horizontal distances from the camera’s
optical axis may share the same azimuth but exhibit distinct appearances. The vehi-
cle positioned in the center of the image displays only its rear, whereas for vehicles
on the right side of the image, both their rear and left-side are visible.

applied to center the image within the target 224× 224 square. This method aims
to maintain the original aspect ratio while ensuring compatibility with CNNs.

5.3.2 Box Transformation via Coordinate Channels Generation
Estimating viewpoint reasoning only on the appearance of the vehicle within the
bounding box suffers of an intrinsic ambiguity. Indeed, a vehicle with the same az-
imuth angle with respect to the camera exhibit different appearance onto the image
plane of the camera according to its horizontal distance with respect to the camera
optical axis. For instance, a vehicle whose azimuth is 180◦, i.e., moving in the same
direction of the camera, will have only its rear visible in the image if it is in front of
the camera, but both the rear and the left side if it is in the adjacent right lane [167]
(see Figure 5.6).

To enable the network to estimate a consistent azimuth angle despite variations
in appearance, our proposal involves providing the bounding box coordinates to-
gether with the cropped vehicle as input to the network. To achieve this, we modify
the Coordinate Channels Generation method, which was first introduced in [168]
for encoding image pixel coordinates, to encode the bounding box coordinates as
additional input channels for CNNs. Specifically, to a color image represented as a
3D tensor with dimensions for channels, width and height, we add two additional
channels Cx and Cy. The channel Cx encodes the X coordinates along the horizontal
axis of the image, and Cy encodes the Y coordinates along the vertical axis of the
image. Each channel is constructed using as values the coordinates of the elements
themselves for that dimension, i.e., for Cx the first column will be filled with 0, the
second with 1 and so on, while for Cy the first row is all 0, the second all 1, and so
on; both coordinates channels are then normalized to [−1, 1]. The result is a tensor
with five channels, three carrying color information and two for the coordinates.
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In our context, we apply the coordinate channels generationmethod to thewhole
camera frame. The resultingCx andCy channels are cropped according to the bound-
ing box coordinates and then are interpolated to match the dimension of the vehicle
image after the KeepRatio resize, described in Section 5.3.1. Finally, these two extra
channels are concatenatedwith the vehicle’s RGB image (as shown in Figure 5.4(c))
and fed into a CNN. The input layer of this CNN is modified to include a Coord-
Conv layer. The CoordConv operates like a standard convolutional layer, accepting
a 5-channel tensor as input.

5.4 Proposed Convolutional Neural Network
Architectures

Wepropose architectures based onCNNs to tackle the problem of vehicle viewpoint
estimation. These architectures accept a 5-channel tensor as input, with 3 channels
dedicated to RGB image, preprocessed via the viewpoint crop and KeepRatio aug-
mentations, and the remaining two channels Cx an Cy encoding coordinate data,
obtained via the Coordinate Channel Generation method (see Figure 5.4 (d) for ref-
erence).

The developed architectures share a base network that includes a CoordConv
layer [168], a feature extractor f (·; θ) parameterized by weights θ and based onMo-
bileNetV2 architecture, and a fully connected layer with weights W ∈ R1280×360

(see Figure 5.7a). The CoordConv layer operates as a standard convolutional layer
processing the 5-channel input. The output from this layer is then input into Mo-
bileNetV2, with the modification of omitting its initial convolutional layer, which is
typically designed for three-channel inputs. This feature extractor outputs a 1D rep-
resentation of a fixed size of 1280, which is then processed through a fully connected
layer. This layer performs a linear transformation to produce the logits z(·; θ, W) ∈
R360, representing the network’s output.

The models we propose, named as the fine-grained (refer to Figure 5.7b) and
coarse-grained models (refer to Figure 5.7c), diverge in terms of the specific smooth-
ing technique applied to the network logits. The purpose of these smoothing tech-
niques is to improve correlation among nearby viewpoints. In the following sec-
tions, we provide a comprehensive description of these two models.

5.4.1 Fine-grained Model
The fine-grained model, as illustrated in Figure 5.7b, utilizes a circular moving av-
erage filter with a stride of 1 and a window size of 15, on the network logits. We
refer to it as circular because of the padding strategy employed, which involves val-
ues wrapping around at the edges. Given the logits z(·; θ, W) = (l0, l1, . . . , l359), a 7
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(b) Fine-grainedmodel. Themodel has a single head for azimuth angle prediction with 1-
degree precision. Such precision is achieved by smoothing the logits with a circular mean
filter and allows the predicted azimuth to be used as-is or discretized with large bins.

Logits 
RearrangementLogits

(c) Coarse-grained model. The output of the model consists of 4 heads, which sum in a
circular fashion the network logits. Each head obtains a prediction at a different discretiza-
tion level. Sα represents the summation performed for α bins with α ∈ {4, 8, 16, 24}.

Figure 5.7: Proposed CNN architectures.
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element wide padding is introduced as follows:

zpad(·; θ, W) = (l353, . . . , l359︸ ︷︷ ︸
padding

, l0, l1, l2, . . . , l359︸ ︷︷ ︸
z(·;θ,W)

, l0, l1, . . . , l6︸ ︷︷ ︸
padding

). (5.1)

The resulting vector contains 360 + 14 elements. After the filter is applied, zpad

is reduced to a cardinality of 360 + 14− (15− 1) = 360, which matches the orig-
inal logits z. As a result, this model achieves azimuth prediction with an angular
precision of 1◦, hence earning its designation as fine-grained model.

The intuition behind the usage of a circular moving average filter comes from
the error analysis of viewpoint estimationmethods by Redondo-Cabrera et al. [165].
They show that a consistent portion of the errorsmade by the viewpointmodels con-
centrates on nearby and opposite viewpoint predictions with respect to the ground
truth viewpoints, i.e., the prediction error e usually satisfies either 15◦ ≤ e ≤ 30◦

or e > 160◦. In order to correct for these errors, we would like the viewpoint prob-
abilities distribution of the network to be unimodal [169], i.e. the probability mass
should gradually decrease on both sides of the viewpoint that has most of the mass
and should be centered on the correct viewpoint. A circular mean filter has the
objective of smoothing the 360 network logits in order to filter isolated peaks and
to gradually decrease the probability mass function away from the overall highest
logit.

The loss function used to train this model is the categorical cross entropy loss
between the smoothed logits and the ground truth azimuth discretized into 360 sec-
tors.

5.4.2 Coarse-grained Model
The coarse-grained model (see Figure 5.7c), inspired by the Multi-Task model pro-
posed in our previous work [150], consists of four sums of the network logits, re-
sulting inmultiple output heads. The summations are designed tomap the network
logits to the four discretization levels defined in Figure 5.3. The summation for α

bins, where α ∈ {4, 8, 16, 24}, can be thought of as a mono dimensional circular con-
volution with a unitary filter with window and stride fixed to ⌈360

α

⌉. Similarly to
the fine-grained model, applying these filters results in assigning less importance to
isolated peaks in the predicted probability mass function.

The loss function adopted to train this model is made up of the sum of four
categorical cross entropy losses between the ground truth azimuth discretized into
4, 8, 16 and 24 bins and the corresponding logits summation. This kind of loss is
designed to take into account errors at different granularities, to smooth isolated
peaks in the probability mass of the network probability distribution and to train a
single model able to predict viewpoint at different quantizations.
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5.5 Siamese Training
A Siamese network [163] consists of two or more copies of the same convolutional
neural networks sharing learnable weights. This architecture is particularly effec-
tive for viewpoint estimation, since enhancing standard neural network training by
adding geometrical constraints within the training loss.

In this research, we have adapted the Siamese loss, initially introduced by [156]
for the joint training of a 2D object detector and a viewpoint estimator. We propose
a Siamese approach for a model trained independently from a 2D object detector,
taking both the bounding box and the vehicle image as input.

Formally, we consider the triplet (X, c, β) where X is the cropped vehicle image,
β ∈ [0, 360) is the azimuth label, and c = (x0, y0, x1, y1) denotes the bounding box
coordinates in the source image, using the standard top-left bottom-right coordinate
system. During training, the network processes two images: X and its horizontally
flipped version X f lp. Flipping X modifies both the bounding box coordinates and
the ground truth azimuth label associatedwith X f lp. We define β f lp as themirrored
version of β on the Y-axis, and c f lp = (w− x0, y0, w− x1, y1) as the flipped bounding
box coordinates in an image of width w. Additionally, let define as Cx

f lp and Cy
f lp the

extra channels obtained from c f lp via the Coordinate Channels Generation method,
described in Section 5.3.2.

We propose the following Siamese training loss:

Ls = L(x, β) + L(x f lp, β f lp) + λD(z, f lip(z f lp)), (5.2)

where:

• x = X||Cx||Cy represents the concatenation of the RGB image with the Cx

and Cy coordinate channels in the early fusion branch, as illustrated in Figure
5.4(c). Similarly, x f lp = X f lp||Cx

f lp||C
y
f lp represents the concatenation of the

flipped image X f lp with the flipped coordinate channels.

• L(x, β) and L(x f lp, β f lp) denote the loss on x with ground-truth β and on
x f lp with ground-truth β f lp, respectively. The specific implementation of these
losses depends on the model used for training. For the fine-grained model, L
is a categorical cross-entropy with the ground-truth azimuth discretized into
360-sectors (see Section 5.4.1). For the coarse-grained model, described in Sec-
tion 5.4.2, the loss L is a summation of four categorical cross-entropy with the
ground-truth azimuth labels discretized into 4, 8, 16 and 24 bins.

• D : R360 ×R360 7→ R is a distance function measuring the difference between
the network output z = z(x; θ, W) on the input x and the network output
z f lp = z(x f lp; θ, W) on the flipped input x f lp. Both outputs are parameter-
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ized by shared feature extractor weights θ and head weights W. λ ∈ R is a
hyperparameter scaling the distance term in the loss function.
The flip operator, defined as flip : R360 7→ R360, maps y = (y0, y1, . . . , y359)

to flip(y) = (y0, y359, y358, . . . , y1) i.e. it swaps logits between an angle β and
its correspondent −β under the horizontal flip while leaving the first logit,
corresponding to 0◦, fixed.
The rationale behind this loss function is to constrain the network such that the
distance between its output on the input x and the flip of the network output
on x f lp approaches to zero. In our evaluation, we used as D function either
the squared ℓ2 distance:

D(u, v) = ∥u− v∥2
2 , (5.3)

or the angular distance

D(u, v) =
1
π

arccos
u · b
∥u∥ ∥v∥ , (5.4)

where u, v ∈ Rn.

5.6 Experimental Results
In this section, we introduce the dataset and the experimental settings for ourmethod-
ology. We proceed to compare our fine-grained and coarse-grained models (intro-
duced in Section 5.4) with state-of-the-art approaches. Subsequently, we perform
an ablation study to assess the impact of each component of our methodology: the
early fusion of vehicle image and detection data (Section 5.3) and the Siamese train-
ing loss (Section 5.5).

5.6.1 Dataset
The nuScenes dataset [148] is a large-scale autonomous driving dataset that encom-
passes a comprehensive suite of vehicular sensor data, along with 3D bounding box
and viewpoint annotations for vehicles in road scenes. Each image in the nuScenes
dataset is captured from one of six cameras mounted on amoving vehicle at various
positions: front, front-right, front-left, back-right, back-left, and back. Consequently,
the elevation and tilt angles of the vehicles in these images remain relatively consis-
tent across each image.

To amass a substantial collection of images from nuScenes, we used vehicle im-
ages captured by all six cameras. Since nuScenes provides only 3D bounding boxes
for vehicles, we first projected these onto the image plane to create 2D bounding
boxes, and then cropped the vehicle images, retaining the azimuth annotation. For
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Table 5.1: Train, validation, and test distribution for Pascal3D+ and nuScenes
datasets. The percentage of vehicle in each split and the total number of images
is reported.

%
Dataset Split Bike Bus Car Motorbike Truck Total

nuScenes
Train 1.7 3.0 74.9 1.7 18.6 ∼ 400k
Valid 2.4 3.4 74.8 2.3 17.1 ∼ 35k
Test 2.1 3.5 72.8 2.2 19.5 ∼ 90k

Pascal3D+
Train 14.9 11.9 52.5 13.9 6.8 ∼ 10k
Valid 19.8 14.1 46.1 17.5 2.5 ∼ 1k
Test 18.6 14.7 44.4 17.8 4.5 ∼ 2k

training and testing, we selected only those bounding boxes containing sufficient
data to accurately infer orientation, in accordance with the criteria outlined in [150].
The official training set of nuScenes was divided, with 650 road scenes allocated for
training and 50 for the validation set. We used the official validation set as our test
set.

The Pascal3D+dataset [151] is a general object viewpoint estimation dataset that
includes 12 object classes. It comprises samples from Pascal VOC 2012 [170] and a
subset of ImageNet [114], each enriched with 3D annotations (azimuth, elevation,
and tilt). In Pascal3D+, images are captured by a single fixed camera at various
positions, resulting in significant variations in elevation and tilt of objects across
different images. For our purpose, we focus exclusively on vehicle objects. We used
the provided 2D bounding boxes to extract tight crops around the vehicles and re-
trieve their azimuth angle. Furthermore, we manually identified and labeled trucks
in the Pascal3D+ dataset to maintain consistency with the nuScenes vehicle classes.

For the Pascal3D+ dataset, we split the official training set into training and val-
idation subsets, dividing it 50/50 and stratifying by vehicle type. The official vali-
dation set is used for testing, including vehicles annotated as difficult, occluded, and
truncated.

Table 5.1 provides the statistics of nuScenes and Pascal3D+ datasets, stratified
by vehicle type.

5.6.2 Metrics and Hyperparameters

Our experimental results are reported on the nuScenes and Pascal3D+ dataset. For
each model, we measure the accuracy per vehicle class, the average accuracy across
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Figure 5.8: Performance of the fine-grained and coarse-grainedmodels on the nuScenes
validation set varying the distance type and λ value of the Siamese training loss
(Equation5.2).

vehicle classes and the overall accuracy for each discretization level (i.e. 4, 8, 16, 24
bins) on the test set.
Training settings. For both the fine-grained model and the coarse-grained model,
we useMobileNetV2 [166] as convolutional bakcbone, starting from pre-trained Im-
ageNetweights. Themodels are trained usingAdam [89] as optimizerwith learning
rate 10−3 andweight decay set to 10−4. During training, the learning rate is reduced
by a factor 0.1 when no improvement on the overall accuracy on the validation set
for each discretization level is detected for three epochs. Each training is performed
setting a maximum number of epochs to 100 with early stopping when the learning
rate reaches 10−5 and the validation set accuracy stops to improve.

The images fed into themodels are resized to 224× 224 pixels using theKeepRatio
and viewpoint crop image augmentations, described in Section 5.3.1. As an additional
data augmentation step, we apply random horizontal flippingwith probability 50 %
to all the training images and their respective coordinates, except when the Siamese
approach is employed.
Siamese hyperparameters. We evaluated different λ values and distance type for
the Siamese training loss (Equation 5.2). Since the distance metrics have different
scales, we perform a grid-search over two different search ranges: λ ∈ {10k}, k ∈
{−2,−1, 0, 1} for the angular distance and λ ∈ {10k}, k ∈ {−4,−3,−2} for the ℓ2

distance. In our tests, illustrated in Figure 5.8), we verified that both our proposed
models (i.e., coarse-grained and fine-grained) are pretty robust with respect to these
two parameters, except for the ℓ2 distance with λ = 10−2 that involves a significant
performance drop when used to train the fine-grained model. From this analysis
we fix the distance type and λ to the values gaining the best performance on the
validation set, i.e., the angular distance with λ = 100 for the coarse-grained model
and the ℓ2 distance with λ = 10−3 for the fine-grained one, which gained the best
performance on the validation set.
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Table 5.2: State of the art comparison on nuScenes dataset. We report the accu-
racy per vehicle class, the average accuracy across classes and the overall accu-
racy.“ResNet18 CS” refers to “ResNet18 Class Specific” [161, 159].

%
Bins Architecture Bike Bus Car Motorbike Truck Avg Total

4

Render for CNN [162] 57.35 79.59 89.92 66.65 79.49 74.60 86.33
ResNet18 CS [161, 159] 59.95 82.80 90.95 73.57 81.23 77.70 87.74
PoseContrast [164] 64.36 85.19 91.80 71.16 83.79 79.26 88.98
Multi-Task [150] 65.66 86.20 92.26 73.36 83.65 80.23 89.40
Coarse-grained Model 65.56 84.93 93.83 74.23 84.66 80.64 90.71
Fine-grained Model 66.23 85.47 93.77 73.67 85.02 80.83 90.75

8

Render for CNN [162] 40.88 73.65 81.95 54.35 68.72 63.91 77.61
ResNet18 CS [161, 159] 49.87 76.86 83.11 60.40 71.05 68.26 79.35
PoseContrast [164] 48.36 81.21 85.35 60.81 75.10 70.17 81.89
Multi-Task [150] 54.75 80.61 85.46 62.40 75.24 71.69 82.15
Coarse-grained Model 55.74 82.36 89.38 66.03 79.58 74.62 86.01
Fine-grained Model 55.74 82.04 89.81 63.78 79.77 74.23 86.29

16

Render for CNN [162] 29.87 62.62 71.27 36.58 57.86 51.64 66.73
ResNet18 CS [161, 159] 29.71 66.88 73.31 41.75 60.85 54.50 69.05
PoseContrast [164] 37.82 70.15 74.88 45.39 64.04 58.46 71.18
Multi-Task [150] 39.95 71.23 76.17 44.52 65.76 59.53 72.52
Coarse-grained Model 44.47 74.86 82.60 54.15 70.64 65.34 78.58
Fine-grained Model 44.16 75.68 83.83 51.33 71.73 65.35 79.64

24

Render for CNN [162] 22.81 56.07 64.96 27.36 50.52 44.34 60.13
Resnet18 CS [161, 159] 21.82 59.98 67.38 31.97 53.57 46.94 62.70
PoseContrast [164] 26.08 65.03 70.73 37.19 59.10 51.63 66.59
Multi-Task [150] 29.19 63.57 70.11 35.45 58.09 51.28 65.92
Coarse-grained Model 34.81 72.57 79.03 43.55 67.07 59.41 74.77
Fine-grained Model 36.99 73.33 80.42 44.77 67.92 60.70 76.05

5.6.3 Comparison with the State-of-the-art

We assess the performance of our models on Pascal3D+ and nuScenes, comparing
them with ResNet18CS [159, 161], Render for CNN [162], PoseContrast [164] and
our previous Multi-Task model [150]. ResNet18CS is the model defined by Tulsiani
and Malik [159] but modified to use Resnet18 as feature extractor. This adaptation
leads to a slight improvement in performance, as shown by Zhou et al. [161]. Both
our coarse-grained and fine-grainedmodels use MobileNetV2 as feature extractor due
to its superior efficiency and accuracy on vehicle viewpoint estimation, when com-
pared to other feature extractors, such as DenseNet and ResNet. Further details are
provided in the upcoming Section 5.6.4.

To facilitate the comparison with state-of-the-art approaches, we use available
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Table 5.3: State of the art comparison on Pascal3D+ dataset. We report the ac-
curacy per vehicle class, the average accuracy across classes and the overall accu-
racy.“ResNet18 CS” refers to “ResNet18 Class Specific” [161, 159].

%
Bins Architecture Bike Bus Car Motorbike Truck Avg Total

4

Render for CNN [162] 68.5 81.5 68.4 73.2 N/A 72.9 74.3
ResNet18 CS [161, 159] 73.5 82.9 71.3 76.1 67.4 74.3 74.1
PoseContrast [164] 72.7 80.4 73.6 75.5 68.6 74.2 74.5
Multi-Task [150] 71.6 84.0 80.0 74.9 76.7 77.5 78.0
Coarse-grained Model 74.9 84.0 76.1 77.0 76.7 77.8 77.2
Fine-grained Model 76.3 83.6 77.3 80.8 76.7 79.0 78.7

8

Render for CNN [162] 58.6 70.5 58.3 62.5 N/A 62.5 63.2
ResNet18 CS [161, 159] 62.3 73.3 61.0 63.7 61.6 64.8 63.5
PoseContrast [164] 60.6 74.0 66.0 65.5 54.7 64.1 65.6
Multi-Task [150] 60.3 71.2 70.2 66.4 68.6 67.3 67.8
Coarse-grained Model 64.8 72.6 67.6 65.8 60.5 66.3 67.2
Fine-grained Model 65.1 71.5 68.7 70.8 65.1 68.2 68.6

16

Render for CNN [162] 39.4 63.3 46.5 45.1 N/A 48.6 49.7
ResNet18 CS [161, 159] 45.4 65.8 48.8 44.8 38.4 48.6 49.5
PoseContrast [164] 45.6 66.9 55.6 50.2 43.0 52.3 53.9
Multi-Task [150] 42.5 68.0 57.9 42.8 50.0 52.2 53.5
Coarse-grained Model 47.9 66.9 58.5 46.0 43.0 52.5 54.9
Fine-grained Model 48.7 68.7 58.0 44.8 45.4 53.1 55.0

24

Render for CNN [162] 34.9 55.9 40.8 36.0 N/A 41.9 42.6
ResNet18 CS [161, 159] 33.2 60.9 45.9 36.6 32.6 41.8 43.5
PoseContrast [164] 37.8 60.1 50.0 37.2 37.2 44.5 46.4
Multi-Task [150] 32.7 56.2 49.3 36.3 41.9 43.3 44.6
Coarse-grained Model 38.3 59.4 50.7 33.0 40.7 44.4 46.1
Fine-grained Model 40.6 60.5 49.2 41.6 40.7 46.5 47.5

pre-trainedweights when possible, such as Render for CNN trained on Pascal3D+∗.
In cases where pre-trained weights are not available, we retrain the models only to
predict the azimuth angle, maintaining the original training settings and employ-
ing our performance evaluation. When training both our models and state-of-the-
art models on the nuScenes dataset, we enrich the training set with Pascal3D+ im-
ages, as in our preliminary tests we verified that this improvesmodel generalization.
Conversely, for training on Pascal3D+, we exclusively use images from the original
dataset to ensure a fair comparison with state-of-the art approaches.

In Table 5.2 andTable 5.3, wepresents our results for both Pascal3D+andnuScenes.
Our fine-grained model is the top performer among state-of-the-art approaches and

∗This model was trained without the truck class as it is not part of the official Pascal3D+ dataset.
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also shows a big improvement over our previousMulti-Task model [150], which did
not incorporate the viewpoint crop, the KeepRatio pre-processing, the CoordConv
layer and the Circular Smoothing Filter. The coarse-grained model is the second top-
performing methods, except for 24 bins on Pascal3D+ where it obtains comparable
performance with PoseContrast.

Considering Table 5.2 and Table 5.3, our models show considerable performance
improvements on nuScenes compared to Pascal3D+, when measured against other
methods. This enhanced performance is largely attributable to the CoordConv layer,
which significantly boost performance on nuScenes but not on Pascal3D+, where
vehicles are typically centered in the image (see the upcoming Section 5.6.4 for ad-
ditional details). Notably, the impact of the CoordConv layer is more pronounced
with finer quantization levels.

Finally, it is important to recognize that different types of vehicles pose different
difficulty levels in correctly estimating the viewpoint as can be seen in Table 5.2 and
Table 5.3. This is especially true for bicycles andmotorbikes, forwhich is challenging
to recognize the front from the rear, especially if the handlebar is occluded [156].

5.6.4 Ablation Study

In this section we discuss the impact on the performance of the proposed design
decisions for the image transformations (Section 5.3.1), the early fusion of vehicle
image with detection information via the Coordinate Channel Generation method
(Section 5.3.2 and the proposed fine-grained and coarse grainedmodel trainedwith
the Siamese loss (Section 5.4 and Section 5.5). For this analysis, we use the nuScenes
dataset, since it is more representative of the task we want solve, i.e., vehicle view-
point estimation from road view monocular images
Image transformations: SquareResize vs KeepRatio. In Section 5.3.1, we outline
that resizing an image to a square of 224× 224 pixels can distort the content because
the aspect ratio is not preserved. We refer to this approach as SquareResize. In Figure
5.9, we compare the performance of SquareResize againstKeepRatio, which resizes the
images while maintaining the original aspect ratio. The results shows that preserv-
ing the original aspect ratio using KeepRatio provides a consistent improvement in
accuracy compared to SquareResize, for both fine-grained and coarse-grained mod-
els, especially on finer discretization levels.
Image transformations: Viewpoint crop. Moreover, in the same section, we de-
velop viewpoint crop augmentation to improve the performance on vehicles that are
closer to the camera and, therefore, potentially truncated. In Table 5.4, the results
show that using viewpoint crop provides a noticeable, albeit small, improvement in
the overall model’s accuracy.
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Figure 5.9: KeepRatio and SquareResize. We report the overall accuracy for both the
fine-grained (FG) and the coarse-grained (CG) model on nuScenes. Both the models
benefit from KeepRatio pre-processing, especially on finer discretization levels.
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Figure 5.10: Viewpoint crop image tranformation. A bar pair in the plot represents
the 24 bins average accuracy on the classes considering only the box areas included
in the percentile range of the bin. Percentile values are computed for each vehicle
class. This setup ensures that each bin contains one tenth of the whole dataset while
preserving the class ratios, detailed in Table 5.1).
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Table 5.4: Ablation study on Viewpoint crop, CoordConv, and Siamese loss on the
nuScenes dataset. Vehicle class average and overall accuracies are reported

Viewpoint crop CoordConv Siamese Avg Total

Coarse-grained (24 bin)
✓ ✓ ✓ 59.41 74.77
✗ ✓ ✓ 59.30 74.09
✓ ✗ ✓ 51.18 65.69
✓ ✓ ✗ 55.88 73.08

Fine-grained (24 bin)
✓ ✓ ✓ 60.70 76.05
✗ ✓ ✓ 60.70 75.82
✓ ✗ ✓ 51.26 66.49
✓ ✓ ✗ 55.18 72.59

This slight improvement is attributed to the scarcity of truncated vehicles in the
nuScenes dataset, when compared to the overall number of vehicle images, making
the impact of this augmentation not immediately evident. To further understand
the benefits of viewpoint crop augmentation for truncated vehicles, we analyze the
model’s performance, stratifying by the area of the vehicle’s bounding box in the
nuScenes test set. This approach is based on our empirical finding that a larger box
area is more likely to contain a cropped vehicle. In Figure 5.10, we compute the av-
erage accuracy for each vehicle class in the nuScenes test set, focusing on specific
ranges of box areas. The results clearly show that viewpoint crop augmentation
substantially enhances accuracy for larger boxes, which often represent nearby and
possibly occluded vehicles. Enhancing model performance for nearby vehicles is
particularly important for a wide range of applications, such as safety-critical sce-
narios like car crash identification, which typically demand high performance for
vehicles that are closest to the camera.
Box Transformation: Coordinate Channels as Input. We discuss the usage of
Coordinate Channels as input to our model via the CoordConv layer, as described
in Section 5.3.2. In Table 5.4 we show the effect of the use of vehicle position in
the original image as an additional input. Our experiments designate this as the
most significant factor in improving the accuracy of the network, resulting in a no-
table increase of about 10% in total accuracy and about 9% average accuracy for both
models.

However, we also recognize a limitation in using a CoordConv layer. This is
because the network learns to associate specific coordinates with certain vehicle as-
pects, implying that a substantial change in camera positioning between training
and testing can lead to a significant decline in performance. For instance, when test-
ing our models trained on the nuScenes dataset on the Pascal3D+ dataset, the total
accuracy for the fine-grainedmodel at 24 bins was 35.71%, which is a decrease of ap-
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Figure 5.11: Performance of different backbones for the fine-grained (FG) and the
coarse-grained (CG) model on nuScenes. MobileNetV2 obtain higher performance
for both the fine-grained and the coarse-grainedmodels for each discretization level.
Higher improvement are achieved at finer bin granularities (16 and 24 bins)

.

proximately 10% compared to models trained solely on Pascal3D+ (see Table 5.3).
In contrast, training without the CoordConv layer on nuScenes resulted in a smaller
drop in performance on Pascal3D+, achieving 44.68% accuracy. This underscores
the limitation of using vehicle coordinates in the training process.
Siamese Loss. In Table 5.4, we demonstrate the effects of training using a Siamese
loss. Both models benefit from this training method, showing a significant increase
in both average and overall accuracy. The fine-grainedmodel shows an approximate
increase of 5% in overall accuracy and 4% in class average accuracy when trained
with the Siamese loss. Meanwhile, the coarse-grained model exhibit a more modest
improvement, with a gain of about 2% in overall accuracy and 4% in class average
accuracy.
Feature Extractor and Logit Smoothing. Finally, in this section, we discuss the
architectural choices of our models, including both the feature extractor and the
logit smoothing techniques presented in Section 5.4. As regards the feature extrac-
tor, we consider three convolutional neural networks, with different size and struc-
ture, to evaluate the performance of both the fine-grained and coarse-grained models:
ResNet50 [14], DenseNet [171] and the chosen MobileNetV2 [166]. In Figure 5.11
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(b) Distribution of errors granularity at 24 bins, lower is better.
Figure 5.12: The influence of the mean circular filter, using a window size of 15
and a stride of 1, on the fine-grained model’s performance on nuScenes dataset.
In Figure 5.12a we report the overall performance when the circular filter is both
added and removed. In Figure 5.12b, we report the count of errors at various angular
thresholds, measured as deviations from the ground truth.
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we show the overall total accuracy of bothmodels, varying the feature extractor. Our
results show that, for each discretization level the performance drops when more
complex models are used, which seems counter intuitive. We conjecture that, for
this task, the reduced number of parameters helps to prevent overfitting, an hypoth-
esis supported by the increasing accuracy when the size of the backbone decreases
from the larger ResNet50 (24.2 M parameters) to DenseNet(7.3 M) and finally to
the chosen MobileNetV2 (2.7 M).

Regarding the logit smoothing techniques employed, in our previous work [150]
we demonstrated that summing the network logits, as done by the coarse-grained
model, before predicting azimuth at different levels enhances performance com-
pared to multiple single task models. Now, we evaluate how significantly the cir-
cular smoothing filter improves performance compared to its absence in the fine-
grained model. In Figure 5.12a, we compare the accuracy of the fine-grained model
with and without the application of the circular mean filter before the softmax ac-
tivation function. Our results indicate that smoothing the network logits notably
enhances the performance. To understand the source of this improvement, we ana-
lyze the errors made by the network. Specifically, in Figure 5.12b we categorize the
errors according to the angular deviation from the ground truth. This analysis con-
firms our hypothesis regarding logit smoothing and aligns with the error analysis
provided by Redondo-Cabrera et al. [172], as described in Section 5.4.1. Circular
Smoothing significantly increases accuracy compared to the model trained without
it, particularly by reducing errors in the bins close to the true value and in those
corresponding to a viewpoint flip, i.e., an error near 180◦.

5.6.5 Memory Requirements and Inference Timing
In this section we discuss about efficiency of our proposed models. In Table 5.5,
we provide the inference time per image and the number of trainable parameters
for our models, which are identical due to the shared feature extractor architecture
based on MobileNetV2.

Since the nuScenes dataset contains on average around 20 vehicles per image, we
measure the timing by fixing the batch size to 20 vehicle crop images and averaging
the time over 300 executions. These tests are conducted on an AMD Ryzen 7 3700X
8-Core CPU and a GeForce RTX 2070 GPU. Our models outperform other methods
in terms of memory requirements and, thanks to their small memory footprint, are
well-suited for deployment on edge devices.

Of note is that a smaller number of parameters does not lead to faster inference
times, which is also influenced by how the parameters are used, e.g. in sequential
operations generally slower instead of faster parallel processes or convolutions. This
is the case for Render for CNN and ResNet18 CSwhen compared to ourmodels; this
behavior has also been reported in benchmarks for different models [173].
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Table 5.5: Memory requirements and inference time per image on the nuScenes
dataset for the fine-grained and coarse-grained models. Timing results are aver-
aged over 300 executions, each feeding 20 vehicle crops into the network.

CPU Time (ms) GPU Time (ms) # Parameters
Render for CNN [162] 74.51 ± 7.71 5.43 ± 0.03 64.2M
ResNet18 CS [161, 159] 192.31 ± 14.61 10.82 ± 0.03 11.2M
PoseContrast [164] 662.67 ± 28.85 33.71 ± 0.05 25.8M
Coarse-grained Model 277.10 ± 10.91 12.05 ± 0.02 2.7MFine-grained Model

5.7 Conclusions
In this chapter we presented two lightweight deep learning models able to pre-
dict the viewpoint of vehicles from monocular images, taken, e.g., from a camera
mounted on a vehicle driving on the road. We have shown that the fine-grained
model improves the coarse-grained one, which was inspired by theMulti-Task model
presented in our previous work [150], and outperforms state-of-the-art results. We
achieved this result by means of several contributions.

First, we show that applying smoothing techniques to the network output can
noticeably improve vehicle viewpoint estimation performance. Specifically, apply-
ing a circular mean filter before the network output, as done for the fine-grained,
provides better results than summing the network logits, i.e. the approach of the
coarse-grained model. Additionally, we show that adding geometrical constraints to
the training loss by means of a Siamese network further improves the results.

We also introduce the task-specific data augmentation technique viewpoint crop
with the aim of improving its performance on truncated vehicles at test time, which
is an important trait in practical deployments of a viewpoint estimation algorithm,
e.g. to estimate azimuth of involved vehicles in the case of car crashes.

Finally, we point out an ambiguity of vehicle viewpoint prediction from monoc-
ular images and propose an effective solution to it in the form of CoordConv lay-
ers [168]. Both the fine-grained and coarse-grainedmodel considerably improved their
performance on the nuScenes dataset.

Experimental results on the nuScenes dataset show that a small convolutional
backbone, like MobileNetV2 [166], is able to obtain results which are comparable to
or even better than the ones obtained by much more complex backbones. Thanks to
the speed and the size of the backbone, ourmodel is suitable to be deployed on edge
devices. We obtain state-of-the-art results also on Pascal3D+, although the absolute
performance is lower than on nuScenes, likely because the fixed point of view of the
camera with respect to the road eases vehicle viewpoint estimation.
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Possible directions for future research involve the use of videos to train and test
our proposed models. We believe that temporal information from videos can im-
prove the quality of vehicle viewpoint estimation by imposing constraints on the
rigid object motion through time. Another path is to further evaluate the limitation
to a specific camera and positioning imposed by the use of a CoordConv layer and
how to compensate the differences between the train and test setup.



Chapter 6

Conclusions and Future Work

In this dissertation we explored incremental learning methodologies and the de-
sign of efficient CNNs for edge computing applications. The work reported in this
dissertation consists of three primary novel contributions:

• A state-of-the-art approach to exemplar-free incremental learning. In Chap-
ter 3 we introduced a novel incremental learning method, called Elastic Feature
Consolidation (EFC), an exemplar-free approach that addresses catastrophic
forgetting by relying solely on current task data. This offers advantages in
terms of privacy preservation and computational efficiency for learning long
sequences of tasks. EFC, thanks to the Empirical Feature Matrix (EFM) and
the Prototype Asymmetric Cross-Entropy Loss (PR-ACE), demonstrates sig-
nificant improvement in terms of both stability and plasticity compared to re-
cent state-of-the-art methods.
This work represents a first step in understanding training dynamics in Incre-
mental Learning, particularly in the challenging Cold Start Scenario where the
initial task does not contain enough classes to learn a high quality backbone.
We identify that refining prototype design and updating methods during in-
cremental learning steps could further enhance the stability of EFC. Another
promising direction for future research is the exploration of training dynam-
ics using pre-trained feature extractors, particularly in light of the remarkable
achievements of pre-trained Vision Transformers. This approach could offer
valuable insights into the integration of advanced pre-trained models within
the context of incremental learning.

• A novel application of incremental learning to Social Network Identifica-
tion. In Chapter 4, we emphasized the importance of developing incremental
learning strategies for real-world applications, particularly in the field of mul-
timedia forensics. We examined two realistic incremental learning scenarios
for social network identification: Incremental Social Update Classification and In-
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cremental Social Version Classification. Our analysis demonstrated how recent
incremental learningmethods perform in these scenarios and highlighted that
current solutions still lag behind Joint Training performance. Our findings indi-
cate that while significant progress has been made, the journey to completely
closing this gap is ongoing, with recent advancements contributing to narrow-
ing it.

Future work should focus on further improving incremental learningmethod-
ologies, both in general and in application-specific settings, to enable their
practical use in real-world applications. For instance, we observed that re-
lying on DCT-based features improves the performance of the social network
identification task. How to effectively incorporate DCT features for regular-
ization during training in incremental social network identification remains
an open problem and should be further investigated in future research. Other
interestingmultimedia forensics applications for incremental learning include
camera source identification and text and multimedia fake detection. Similar to the
challenge in social network identification, these applications also rely on Deep
Neural Networks for their effectiveness. However, these methods can become
outdated over time due to new camera vendor types or emerging techniques
for generating fake materials.

• Lightweight models for vehicle orientation estimation. In Chapter 5 we con-
centrated on edge-computing applications, designing lightweight and effec-
tive DNNs for vehicle viewpoint estimation in intelligent vehicles. Our results
showed that by combining coordinate and image pixel information, it is pos-
sible to develop lightweight and effective Convolutional Neural Networks for
this task. However, we remark that our models are built on top of an existing
object detector that provides vehicle coordinates. We chose not to train an ob-
ject detector specifically for viewpoint estimation, as it is difficult to maintain
and adapt this for real-world industrial use. Object detectors are used formany
different tasks in industry, and training them for just one task, like viewpoint
estimation, might reduce the effectiveness of other task specific models, based
as well on DNNs, using its information, such as detecting stop signs, identify-
ing people, or recognizing crashes. Training a singlemodel for all these tasks is
impractical due to several challenges: the training data is available at different
time steps, data may become unavailable due to privacy concerns, and not all
tasks consistently have labeled data. Incremental learning could greatly im-
prove how the intelligent vehicle industry uses deep learning, creating fewer
models and making the deep learning models deployment and usage more
efficient, cost-effective, and environmentally friendly. Currently, research in
this application field is limited, as is the number of benchmark datasets avail-



113

able for incremental learning in this context. We plan to further investigate
incremental learning in this scenario in the future.





Appendix A

Elastic Feature Consolidation for
Exemplar-free Incremental Learning

A.1 Training Settings and Hyperparameters
For all the methods, we use the standard ResNet-18 [14] backbone trained from
scratch.
First Task Optimization Details. We use the same optimization settings for both
the Warm Start and Cold Start scenarios. We train the models on CIFAR-100 and on
Tiny-ImageNet for 100 epochs with Adam [89] using an initial learning rate of 1e-3

and fixed weight decay of 2e-4. The learning rate is reduced by a factor of 0.1 after
45 and 90 epochs (as done in [53, 54]). For ImageNet-Subset, we followed the im-
plementation of PASS [53], fixing the number of epochs at 160, and used Stochastic
Gradient Descent with an initial learning rate of 0.1, momentum of 0.9, and weight
decay of 5e-4. The learning rate was reduced by a factor of 0.1 after 80, 120, and 150
epochs. We applied the same label and data augmentation (random crops and flips)
for all the evaluated datasets. For the first task of each dataset, we use self-rotation
as performed by [53, 54].
Incremental Steps. Below we provide the hyperparameters and the optimization
settings we used for the incremental steps of each state-of-the-art method we tested.

• EWC [44]: We used the implementation of [35]. Specifically, we configured
the coefficient associated to the regularizer as λE-FIM = 5000 and the fusion of
the old and new importance weights is done with α = 0.5. For the incremental
stepswe fix the total number of epochs to 100 andwe useAdamoptimizerwith
an initial learning rate of 1e-3 and fixed weight decay of 2e-4. The learning rate
is reduced by a factor of 0.1 after 45 and 90 epochs.

• LwF [50]: We used the implementation of [35]. In particular, we set the tem-
perature parameter T = 2 as proposed in the original work and the parameter
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associated to the regularizer λLwF to 10. For the incremental steps we fix the
total number of epochs to 100 andweuseAdamoptimizerwith an initial learn-
ing rate of 1e-3 and fixed weight decay of 2e-4. The learning rate is reduced by
a factor of 0.1 after 45 and 90 epochs.

• PASS [53]: We follow the implementation provided by the authors. It is an
approach relying upon feature distillation and prototypes generation. Follow-
ing the original paper we set λFD = 10 and λpr = 10. In the original code, we
find a temperature parameter, denoted as T, applied to the classification loss,
which we set to T = 1. As provided in the original paper, for the incremen-
tal steps we fix the total number of epochs to 100 and we use Adam optimizer
with an initial learning rate of 1e-3 and fixedweight decay of 2e-4. The learning
rate is reduced by a factor of 0.1 after 45 and 90 epochs

• SSRE [60]: We follow the implementation provided by the authors. It is an
approach relying upon feature distillation and prototypes generation. Follow-
ing the original paper, we set λFD = 10 and λpr = 10. In the original code, we
find a temperature parameter, denoted as T, applied to the classification loss,
which we set to T = 1. Following the original code, for the incremental steps
we fixed the total number of epochs to 60 and used Adam Optimizer with an
initial learning rate of 2e-4 and fixed weight decay of 5e-4. The learning rate is
reduced by a factor of 0.1 after 45 epochs.

• FeTrIL [62]: We follow the official code provided by the authors. During
the incremental steps, it uses a Linear SVM classifier working on the pseudo-
features extracted from the frozen backbone after the first task. We set the SVM
regularization C = 1 and the tolerance to 0.0001 as provided by the authors.

Symmetric Loss Hyperparameter. We fix the value of λpr = 10 in Eq. 3.18 as
reported in the literature [60, 53, 54].



Appendix B

Incremental Learning for Social
Network Identification

B.1 Training Settings and Hyperparameters
We conducted all experiments using FACIL [35], with a fixed maximum of 200
epochs per task. Each experiment was repeated five times with different random
weight initializations, and for the ISPC scenario, we randomized the class order.

Formethods already implemented in FACIL,we trained each taskwithAdam[89],
starting with a learning rate of 10−3, which was decayed if the validation loss did
not improve for 20 consecutive epochs. We selected the best model for the current
task based on validation loss, which was then used for subsequent tasks. To reduce
training time, we randomly sampled one crop per image for each epoch.

For most of the methods implemented in FACIL, default hyperparameters were
used, except for EWC, where we set λE−FIM to 500 to reduce the weight of the regu-
larizer, and for LwF andBIC,wherewe set the temperature of knowledge distillation
to T = 1.

In addition to the existingmethods in FACIL,we incorporated SS-IL [57], FeTrIL [62],
and EFC [61]. For SS-IL [57], we followed the hyper-parameters provided in the
originalwork andused the same training settings as described above. For FeTrIL [62],
we utilized its implementation based on fully connected layer, which allowed end-
to-end training and yielded comparable performance to the SVM classifier, as re-
ported by the authors. We train the first task using the optimization protocol used
for other FACIL methods. In subsequent tasks, following the training protocol of
the authors, we trained the classifier on pseudo-features using Stochastic Gradient
Descent (SGD) with a momentum of 0.9, weight decay of 10−4, initial learning rate
of 10−1, and decay after 10 epochs. The number of epochs was fixed at 50. For
EFC [61], we set λEFM = 10 and the damping hyperparameter η = 1. We trained
the first task using the optimization protocol used for other FACIL methods. For
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subsequent tasks, we train the model for 200 epochs, using Adam with a learning
rate of 10−5 for the backbone and 10−4 for the heads, as reported in Chapter 3.
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