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Introduction

Motivation

Deep Neural Networks (DNNs) have become the standard-de-facto technology in most com-

puter vision applications due to the exceptional performance and versatile applicability they

demonstrated in the last years. However, studies have shown that DNNs are remarkably

vulnerable to adversarial examples, input data intentionally modified with perturbations

specifically crafted to mislead a model into making wrong predictions.

Most of the proposed works on adversarial examples focus on finding small image per-

turbations bounded by Lp-norm distance measure, known as restricted attacks , forcing the

adversarial example to be as similar as possible to the original data. Due to the urgency

of taking counter-measures, several defense techniques have been introduced to overcome

such vulnerabilities. Nowadays, most of the restricted perturbations can be defended with

adversarial training or with input denoising and restoration.

To overcome the limitations of restricted attacks, unrestricted methods that allow un-

bounded large perturbations (i.e. geometric image transformation or color manipulation)

have been recently proposed.

To learn image manipulation filters, the majority of such methods require full access to

the target model, which is not always feasible, especially in real-world applications.

For this reason, algorithms that work in a black-box fashion have been recently introduced.

Nevertheless, crafting unrestricted perturbations in a black-box setup where the adversary

has no knowledge about the target model often results in suspicious unnatural images that

do not deceive the human eye. Moreover, some methods require additional resources (i.e.

image segmentation models) to extract prior information about the image and modify its
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colors in accordance with human perception. In this case, the naturalness of an image and

its non-suspiciousness highly depends on the performance of the segmentation network.

Although some works on unrestricted adversarial attacks have been proposed, the area

of image filtering attacks and colorization-based methods is still under-explored. This fur-

ther motivated us to conduct this study and to introduce novel approaches to address the

limitations of existing methods and to expand the landscape of this research topic.

Contributions

In this work, we propose the One-for-Many attack, a black-box method to generate un-

restricted adversarial perturbations by optimizing multiple Instagram-inspired image filters

that manipulate specific image characteristics such as saturation, contrast, and brightness,

perform edge-enhancement, or apply light gradient. By using well-known image manipula-

tion filters available in several image processing libraries, modern cameras, and widely used

in social media (e.g. Instagram, Facebook) we aim to reduce noticeability and to produce

natural-looking adversarial examples without relying on additional resources. Moreover, the

combination of filters is useful to generate more reliable and transferable perturbations and

create images with a wide range of visual effects, including soft warm looks and vibrant

colors.

The proposed method generates the adversarial perturbations with a two-step nested-

evolutionary algorithm: given a set of parameterized image filters, the outer optimization

step determines the sequence of filters to apply to an image, while the inner step optimizes

the parameters of each filter selected in the previous step.

The algorithm is flexible and can be easily customized for many computer vision tasks.

It also allows different attack strategies and combinations of multiple objectives, such as

image-specific or universal attacks, and single or multiple-objective optimization.

We validate the proposed adversarial attack on state-of-the-art image classifiers, object

detectors, and a newly proposed multimodal explanation model for activity recognition. The

experimental results show that the method generates high-quality natural-looking adversarial

images that can effectively fool the above-mentioned systems.
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In the case of image classification, our method generates more transferable, more robust,

and more deceitful adversarial perturbations than a similar state-of-the-art method. The

proposed attack also greatly decreases the task performance of object detection models while

also maintaining good transferability properties. These results indicate that more effort is

necessary in order to increase the robustness of deep neural networks to common image

editing techniques. On the other hand, by leveraging this vulnerability, our method could be

employed for the development of privacy protection tools that apply customized image filters

to defend the user’s privacy from unauthorized automatic information extraction on social

media platforms.

Attacks to multimodal explainable systems are one of the newest emerging trends. To the

best of our knowledge, no other work has explicitly studied the robustness of such systems

in a black-box setting. In particular, we focus on a novel explanation model that takes an

image as input, predicts an activity label, and generates a textual and visual explanation.

The attack is effortlessly adapted to consider objective functions for different types of data

(i.e. image and text data) and successfully breaks the correlation between activity prediction

and its explanations under two scenarios: keeping the activity the same and changing the

textual explanation, and vice-versa. The results obtained are very exciting and open up a line

of research where our method could be used to develop a system-independent explanation

evaluation metric to enable comparative analysis of different vision-language explanation

systems, which the literature lacks at the moment.

We hope that our work will inspire further research and studies on the susceptibility of

deep neural models to image filtering attacks and that our findings will help deepen the

understanding of the implications posed by such attacks and encourage the development of

robust defenses.

Organization of the thesis

This work is organized as follows: in the first chapter we introduce basic concepts about

adversarial attacks and evolutionary algorithms; in the second chapter we provide a review

of the related work; in the third chapter, we present the general structure of the proposed
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algorithm and its main operations; we validate our attack on image classifiers under dif-

ferent configurations in Chapter 4 and on object detection models in Chapter 5; the case

study on multimodal explanations is presented in Chapter 6. We conclude with some final

considerations and remarks about future work.
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Chapter 1

Background

In this chapter, we briefly introduce the basic concepts and algorithms to facilitate the

comprehension of the following chapters. In Section 1.1 we present the notion of adversarial

attacks, providing also a description of the image quality assessment metrics and defense

methods used throughout the course of this work. Section 1.2 focuses on the evolutionary

algorithms. We conclude with an introduction of multi-objective problems in Section 1.3.

1.1 Image Adversarial Attacks

Deep neural networks (DNNs) have achieved state-of-the-art performance in various com-

puter vision tasks, including image classification [1–5], object detection [6–10], and image

segmentation [11–15]. Moreover, with the increase of open source models and and improve-

ments on their usability, DNNs have become extensively used in real-world day-to-day appli-

cations and are nowadays integrated in safety and security-critical systems and environments

(i.e. self driving cars, robots and drones, surveillance, smart home IoT solutions, threats

detection and prevention, healthcare). Despite their effectiveness, many studies [16–36] have

shown the vulnerability of DNNs to adversarial attacks that perturb natural inputs to create

adversarial examples that lead well-trained DNNs to produce erroneous predictions. This

poses significant security and privacy issues and raises great concern about the implications

of adopting DNN-based solutions and services. As a result, there has been a lot of interest

from the research community for creating innovative adversarial attacks in order to identify
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the vulnerabilities of deep neural networks and to assess their limitations. Furthermore, the

necessity to protect DNN models against such attacks has lead to proposing defenses and

countermeasures which help develop more robust models. While adversarial attacks might

be considered a big threat, they provide fundamental value for a great good.

Formally, given an input image x and its corresponding label y, let M be a neural network

model that maps x to y, that is M(x) = y. An adversarial attack alters the input image x

with a perturbation δ to generate an adversarial example x∗ = x+ δ that induces the neural

network to predict a different label: M(x) ̸= M(x∗).

In general, adversarial techniques, at the highest level, can be grouped by the level of

knowledge and access to the target model, by the type of perturbations or by their adversarial

goal.

Based on the type of adversarial perturbations, the attacks can be classified as restricted

or unrestricted. In the restricted case, the amount of modification applied is bounded by a

Lp-norm distance measure [16–25, 32, 36, 37], forcing the adversarial image x∗ to be as close

as possible to the original one. However, restricted perturbations are often not semantically

meaningful and can create visible artifacts that can be detected by defenses [38–41]. On the

other hand, unrestricted attacks do not limit the amount of change and use large perturba-

tions without Lp-norm constraints which sometimes can result in overly distorted images [28].

To tackle this issue, unrestricted methods that manipulate basic image attributes (such as

color, texture, contrast, saturation, and brightness) have been proposed to create photo-

realistic natural-looking images [26, 29, 31, 42]. Such unrestricted adversarial examples have

been found to be more transferable to unseen models and more robust to defense mechanisms

than restricted ones [31].

Adversarial attacks can also be classified in per-instance attacks or universal attacks. In

the first category, we can find all those systems that generate a different perturbation for

each image; in that case, a separate optimization process has to run for each image in order

to find an image-specific adversarial perturbation [16, 17, 19, 23, 25, 27, 31]. In the second

category we can find all those systems able to find a unique universal perturbation that can

fool the deep learning model when applied on ’any’ image; these systems are called universal

because they are essentially image-agnostic [33, 34,43–47].
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Considering the adversarial intent, attacks can be further distinguished in targeted, when

the prediction of the neural model is misguided towards a specified target label, or untargeted

when the goal is simply to generate an output different from the original one.

An attack can be classified into either white-box or black-box based on the amount of

information available to the adversary about the target model. In a white-box scenario, the

attacker has full access and knowledge about the target model (i.e. specific architecture and

its parameters, training policy, and training data) and utilizes the available information to

generate the adversarial example. On the contrary, in a black-box setup [21,30,31,34,42,48–

56] the adversary had no knowledge about the model and the only way to gain information

is to query the target model and observe the output for given inputs. In this case, the attack

should be query-efficient because there could be restrictions on the number of queries as a

result of limits on different resources, such as a time limit or a monetary limit if the attacker

incurs a cost for each query [30, 34, 56]. This makes black-box attacks more challenging but

their applicability more practical to real-world applications.

Regardless of their nature, adversarial attacks should be effective, robust, transferable,

unnoticeable, and undetectable [57]. The degree to which an adversarial attack is successful

in deceiving a machine learning model determines its effectiveness. An attack is considered

robust if it remains effective in the presence of defenses intended to mitigate or remove

the malicious effect of the adversarial perturbations before passing the image to a neural

model. The transferability measures the ability of a perturbation designed for one model

to successfully fool another model different from the one that was used to craft it. In an

unnoticeable attack, the adversarial perturbation is not recognized by a human observer

and the content of the image is perceived in the same way as in the clean image. A very

common approach to measuring the noticeability and quality of an adversarial image is to

use automatic image quality assessment (IQA) metrics to quantitatively estimate the level of

image degradation after the adversarial manipulation. Finally, an adversarial attack should

be undetectable. We can define undetectability as the extent to which an adversarial attack

can bypass a defense mechanism that was designed to identify if an image was tampered

with. Given that deep learning systems may be equipped with protection methods, having

low detectability makes the attack more likely to succeed.
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We briefly present the IQA metrics employed in this work in Section 1.1.1 and the defense

frameworks in Section 1.1.2.

1.1.1 Image Quality Assessment

Adversarial perturbations can create unnatural-looking images which cannot bypass a human

judgment [28, 43, 53, 58, 59]. Therefore, Image Quality Assessment (IQA) techniques should

be used to quantify the visual quality of an image by analyzing different characteristics like

aesthetics, naturalness, or distortions [60–62]. Over the years, many different methods have

been proposed. There are essentially two types of IQA methods, subjective and objective.

Subjective assessment requires a human evaluation and intervention and is considered the

most accurate and reliable. However, it is time-consuming, expensive, and impractical for

real-time assessment applications.

Objective methods are designed to measure the visual quality of an image automatically

fitting the human assessment. Using mathematical models or deep learning approaches, they

prove highly efficient and ideal for image-based system optimization.

Based on the availability of the reference image, objective methods can be further divided

into two main categories: full-reference (FR), and no-reference (NR). FR strategies require

computing the quality score by comparing the modified image with the complete reference

image. NR strategies, also known as blind assessments, are designed to accurately predict

the image quality without using a reference image or any additional information, thus being

suitable for applications where the reference image is not available.

Over the years many image quality assessments metrics have been proposed. However,

there is no perfect metric to automatically evaluate the quality of images that fits every

scenario. Therefore, we chose some of the most popular and used metrics in the community

that have been found to perform well against different type of distortions and image manip-

ulation techniques such as contrast alteration, tone modification, color changes, noise and

blur distortions. Specifically, we use SSIM index [63] as FR metric, and we use NIMA [64],

NIQE [65], and MANIQA [66] as NR metrics.

Structural Similarity Index Measure (SSIM), introduced by Wang et al. [63], is an

11



FR context-aware metric that quantifies the image degradation as perceived changes in the

structural information. SSIM is inspired by the human visual system (HVS) and is capable

of extracting and identifying structural information from natural scenes (i.e., images), deeply

structured with significant dependencies between spatially closed pixels. Structural informa-

tion represents the structure of objects in an image which are independent of contrast and

luminance. Thus, SSIM is defined as a comparison function of contrast, luminance and struc-

ture computed over the image. By design, the metric satisfies the symmetry, boundedness

and unique maximum property that assures an upper value of 1 if and only if the two images

compared are identical.

Neural Image Assessment (NIMA) [64] is an NR image metric that uses a trained Con-

volutional Neural Network to predict both technical and aesthetic qualities of images, giving

importance to factors like contrast, tone, composition, framing, and color palette. The model

is trained on the AVA [67] dataset containing about 255k images rated based on aesthetic

qualities by amateur photographers. Each AVA photo is scored by an average of 200 people

and the image ratings range from 1 to 10, with 10 being the highest aesthetic score associated

to an image. The authors show that the aesthetic evaluation of NIMA closely matches the

scores assigned by human raters and that it has a high correlation to human perception.

Natural Image Quality Evaluator (NIQE) [65] is an NR image quality assessment met-

ric that uses only statistical information derived from natural images to predict how natural

a given image is. NIQE does not use subjective quality scores and it does not require a

training phase on human-rated large datasets or any exposure to distorted images. Instead,

it uses a natural scene statistic model (NSS) to create a quality-aware collection of statistical

features derived from a set of natural, unaltered images. Then, the quality of a given test

image is computed as the distance between the NSS features extracted from the input image

and the quality-aware features previously extract from the dataset of natural images. NIQE

has been shown to be highly correlated with human perception and to achieve comparable

results with NR IQA trained on human judgments of known distorted images.
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Multi-dimension Attention Network for no-reference Image Quality Assessment

(MANIQA) [66] is the new state-of-the-art NR image quality assessment metric and winner

of the NTIRE2022 NR-IQA challenge [68]. It uses a transformer-based architecture to predict

the perceptual quality of images in accordance with human subjective perception. The

MANIQA model is trained on the PIPAL [69] dataset which contains images processed by

image restoration and enhancement methods (particularly generative adversarial network-

based methods) besides the traditional distorting methods (i.e blur, noise, compression).

The dataset contains 29k images that cover 40 different distortion types and 116 distortion

levels, involving 1.13 million human judgments. Experimental results and other studies [70]

demonstrate that MANIQA outperforms state-of-the-art methods by a large margin.

1.1.2 Defense methods

The robustness of DNN against adversarial examples has gained significant attention in the

last few years, and several approaches and systems able to defend from adversarial attacks

have been proposed and developed. Some of them follow the adversarial training approach

increasing the network robustness by means of adversarial examples in the training pro-

cess [16, 18, 25, 71], while others propose defense by detection (i.e. feature squeezing [38],

perturbation rectifying [72]), defense by sanitization that remove the effect of adversarial

perturbations [39,73–76] or ad-hoc trainable techniques like distillation to reduce the model

sensitivity to small perturbations [41]. In our work, we explore Feature Squeezing [38] as

detection method and Instagram Filter Removal-Net framework as sanitization method to

mitigate the adversarial effect of image filters. Feature Squeezing is a highly performant

metric able to generalize well across many state-of-the-art attacks. On the other hand, In-

stagram Filter Removal-Net specifically focuses on removing the effects of Instagram image

filters which makes the method the perfect antagonist to our attack. Choosing different

methods allows us to better evaluate the robustness of our adversarial perturbation.

Feature Squeezing is one of the most popular detection frameworks that achieves high

detection rates against state-of-the-art attacks. This method is based on the observation

that often the space of feature vectors of images is unnecessarily large which gives plenty
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of manipulation possibilities for generating adversarial examples. The authors proposed to

squeeze out unnecessary input features in order to reduce the search space accessible to an

adversary by means of two feature squeezing methods: color bit depth reduction of each pixel

and spatial smoothing (local and non-local smoothing). Using such input transformations,

an image is tagged as adversarial if the L1 difference between the prediction vectors of the

original image and its squeezed version exceeds a certain threshold. The authors also show

that adversarial examples from eleven state-of-the-art attacks can be successfully detected

by combining multiple squeezing defenses into a joint detection framework. Given that the

selection of an optimal threshold value is not a trivial task and requires a training phase, for

the experiments in this work we refer to the thresholds reported by the authors in [38].

Instagram Filter Removal-Net (IFRNet) solves the problem of removing Instagram filters

from the images as a reverse style transfer problem, where any visual effect injected by a

particular filter is removed from an image by directly reverting them back to its original

style. IFRNet consists of an encoder-decoder architecture: the encoder is used as a style

extractor module and uses an adaptive feature normalization strategy in all layers of the

encoder to eliminate the external style information; then the normalized features are fed

into the decoder that generates the unfiltered version of the input image with the help of

adversarial training, inspired by generative adversarial networks. The IFRNet is trained on

the IFFI dataset [73] that contains 9600 high-resolution and aesthetically pleasing images

along with their filtered versions by 16 different Instagram filters (i.e. Clarendon, Hudson,

Perpetua, Gingham, Valencia, and more). Experiments on the Instagram Filter Removal

task verify that IFRNet eliminates external visual effects to a great extent.
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1.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are population-based meta-heuristic optimization methods

inspired by biological evolution. EAs maintain a group of solutions, called a population, to

optimize or learn the problem. The population is a basic principle of the evolutionary process.

Every solution in a population is called an individual and every individual is evaluated

by a fitness function, a quality metric that measures the performance of a solution. EAs

prefer fitter individuals, which is the basis for algorithm optimization and convergence. New

candidate solutions are generated using a number of variation operations (i.e. recombination

and mutation) and the best individuals are passed on to the next generation. This process

is iterated over multiple generations until a stopping criterion is met. The goal is to evolve

a population over time and identify better solutions. The general scheme of an evolutionary

algorithm is given in Algorithm 1.

In this work, three EAs have been considered: Genetic Algorithm [77], Differential Evo-

lution [78], and Evolution Strategies [79]. We briefly present each of them in the following

sections.

Algorithm 1 General scheme of an Evolutionary Algorithm

1: Initialize a population with random candidate solutions

2: Evaluate initial population

3: repeat

4: Select parents

5: Recombine pairs of parents

6: Mutate the resulting offspring

7: Evaluate new candidates

8: Select individuals for the next generation

9: Update the current population with the selected individuals

10: until termination condition is satisfied
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1.2.1 Genetic Algorithm

Genetic Algorithms (GA) are a family of population-based heuristic search approaches com-

monly applied in the literature to a variety of optimization problems. The population is

composed of a set of candidate solutions for the optimum of the problem; the representation

of a solution determines the applicability of genetic operators. In this work, we use integer

vectors to represent the sequence of filters, while the parameters of the filters in each se-

quence are assembled in real-valued vectors. GA evolves a population of solutions towards

an optimal solution by means of crossover, mutation, and selection operators.

Crossover: The crossover operator determines how the genetic material of the population

elements is combined to obtain a new offspring. The most common operator is n-point

crossover: two population elements are split at n-points and an offspring is built by alternately

picking sequences from the two parents. Additional strategies for continuous solutions include

aggregating component-wise, e.g. computing the average values, or picking each component

from one of the parent solutions, randomly or with a fixed percentage of the solution length.

We adopt 1-point crossover in our implementation.

Mutation: The mutation operator randomly perturbs offspring to further explore the solu-

tion space. For example, a common mutation strategy for bit-strings is random bit flipping,

mutating each component with according to a fixed probability. For continuous solutions,

random noise is applied to each component, e.g. Gaussian noise.

Selection: After computing new offsprings, each individual is evaluated based on a fitness

value. Then, a selection operator is applied to choose which candidates become part of the

new parental population. Elitist selection operators choose the best solutions according to

their fitness value; randomness-based operators, e.g. roulette wheel or tournaments, are in-

stead not guaranteed to choose the best performing-based solutions, to overcome local optima

and favor the exploration of solution space. In our algorithm, we adopt elitist selection.

Update: During the last step, individuals from the current population are replaced by the

new selected individuals and the new generation is formed. The above described operations

are repeated until a stopping condition is satisfied (i.e the algorithm reached the allowed

number of generations or the fitness function has attain a predefined value).
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When using genetic algorithms it is important to be aware that finding solutions to certain

problems might require high number of generations and a large population size which impact

the time complexity. In general, the time complexity of a genetic algorithm depends on

several factors, such as the number of generations, population size, the type of genetic opera-

tors, the selection strategies, and the complexity of fitness evaluation. The fitness evaluation

depends on the nature of problem being solve and often it represents the most computation-

ally expensive step: it can vary from simple calculations to more complex computations, like

neural network inference.

Thus, assuming a population size of N , a number of generations G, the time complexity

of a genetic algorithm can be roughly estimated by O(G × N × F ) where F represents the

complexity of the fitness function evaluation. Overall, it is challenging to precisely determine

the complexity of genetic algorithms due to their stochastic and problem-specific nature and

in general the complexity is computed in terms of fitness function evaluations. Therefore, an

alternative, better way to assess the complexity of the algorithm is to measure the running

time.

1.2.2 Differential Evolution

Differential Evolution (DE) [78] is a population-based optimization algorithm designed for

optimization over continuous spaces and does not require the optimization function to be

differentiable or linear. Similar to GA, DE iteratively evolves a population of candidate

solutions evaluated by means of a fitness function. Unlike GA, it creates a new individual

by first performing the mutation operation and then crossover.

Mutation: The mutation operation generates a mutant vector d, called donor vector,

through a differential operation performed on vectors of the current population. In liter-

ature, several mutation strategies have been proposed that consider different numbers of

vectors for differential mutation and different selection schemes. In this work we use rand/1

mutation in combination with binomial crossover since it has been found to perform the best

in a variety of optimization problems [80, 81]. Specifically, for each target vector xi of the
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current population, a donor vector vi is computed as follows:

vi = xa + F ∗ (xb − xc) (1.1)

where xa, xb, and xc are three randomly selected members of the current population, with

a ̸= b ̸= c ̸= i and F ∈ [0, 2] is a user-specified mutation factor.

Crossover: The crossover operator creates a new vector ui, denoted as trial vector, by

combining the genetic information of the target and donor vector using a binomial crossover

defined as:

ui,j =

vi,j if randij ≤ CR or j = jrand

xi,j otherwise

(1.2)

For each decision variable j of the trial vector, a random number randij in the range [0,1]

is generated. The decision variable at index j of ui inherits from the donor vector vi if the

randij is smaller than a user-specified crossover probability (CR), otherwise, it inherits the

information from the target vector xi. The parameter jrand, an integer random number in

{1, . . . , d} with d being the dimension of the vectors, guarantees that at least one decision

variable is inherited from the donor vector vi.

Selection: The selection operator compares each trial vector with a target vector and the

individual with the better fitness is selected for the next generation. We use one-to-one

selection where a trial vector ui is compared directly with its corresponding target vector xi.

1.2.3 Evolution Strategies

Evolution Strategies (ES) is a family of population-based meta-heuristics inspired by natural

evolution and designed specifically for continuous function optimization. The original version

proposed by Rechenberg et al. [79] included the (1 + 1) and (1, 1) strategies. In the former,

a population member is replaced only with offspring having better fitness function value; in

the latter, an offspring always replaces its parent to favor exploration and avoid getting stuck

in local optima.

Differently from the GA and DE, ES uses only mutation and does not use any form

of crossover operation. New candidate solutions are generated by perturbing the genetic

information of the parents with a random noise sample from a Gaussian distribution. The
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peculiarity of ES lies in the concept of self-adaptivity, introduced in more refined versions

of the algorithm such as (µ + λ) and (µ, λ) that follow the original strategy, where µ is the

number of members in the population and λ the number of offsprings generated in one cycle.

In this work, we use a variant of ES introduced in [82].

Given an initial individual, a batch of λ samples are generated using mutation and the

fitness value of each sample is evaluated. The fitness values are then used to calculate a

gradient estimate towards a better solution and update the original individual (Algorithm

2). We refer to this as (1, λ)-ES.

Algorithm 2 (1, λ)-Evolution Strategies

Require: learning rate α, decay rate β, noise standard deviation σ, initial individual p of

parameters θ0

1: for t = 0, 1, 2, . . . do

2: sample ϵ1, . . . , ϵn ∼ N (0, σ)

3: compute fitness Fi = F (θ + σϵi) for i = 1, . . . , n

4: set θt+1 ← θt + α 1
nσ

∑n
i=1 Fiϵi

5: σ = σ ∗ β

6: end for

1.3 Multi-Objective Optimization

In multi-objective optimization, the aim is to solve problems of the type1:

minimize f⃗(x⃗) := [f1(x⃗), f2(x⃗), . . . , fk(x⃗)] (1.3)

subject to:

gi(x⃗) ≤ 0 i = 1, 2, . . . ,m (1.4)

hi(x⃗) = 0 i = 1, 2, . . . , p (1.5)

where x⃗ = [x1, x2, . . . , xn]
T is the vector of decision variables, fi : IR

n → IR, i = 1, . . . , k are

the objective functions and gi, hj : IRn → IR, i = 1, . . . ,m, j = 1, . . . , p are the constraint

1Without loss of generality, we will assume only minimization problems.
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functions of the problem.

Definition 1. Given two vectors x⃗, y⃗ ∈ IRk, we say that x⃗ ≤ y⃗ if xi ≤ yi for i = 1, ..., k, and

that x⃗ dominates y⃗ (denoted by x⃗ ≺ y⃗) if x⃗ ≤ y⃗ and x⃗ ̸= y⃗.

Definition 2. We say that a vector of decision variables x⃗ ∈ X ⊂ IRn is non-dominated

with respect to X , if there does not exist another x⃗′ ∈ X such that f⃗(x⃗′) ≺ f⃗(x⃗).

Definition 3. We say that a vector of decision variables x⃗∗ ∈ F ⊂ IRn (F is the feasible

region) is Pareto-optimal if it is non-dominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x⃗ ∈ F|x⃗ is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {f⃗(x⃗) ∈ IRk|x⃗ ∈ P∗}

When solving multi-objective optimization problems (MOPs), the aim is to obtain the Pareto

optimal set from the set F of all the decision variable vectors that satisfy (2) and (3). Thus,

in a MOP, the goal of a Multi-Objective Evolutionary Algorithm (MOEA) is to produce a

good approximation of its Pareto front.

In this work we use the crowding-comparison operator (Algorithm 4) and non-dominated

sorting (Algorithm 3) of the elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)

[83,84] as selection strategy for multi-objective problems. NSGA-II is one of the most widely

used MOEAs for problems having two or three objectives.

Given S a set of parents and offsprings, and FMO a problem specific multi-objective

fitness, the non-dominated sorting procedure divides the set of points P = {FMO(s) |∀s ∈ S}

into non-dominated fronts PF according to non dominance relation (Algorithm 3). Then, for

each individual in the same non-dominated front computes the crowding distance (Algorithm
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4). Finally, all individuals of all fronts are combined in a single set P̄ and sorted using the

following partial order:

i ≺n j ≡ irank < jrank ∨ (irank = jrank ∧ idistance < jdistance) (1.6)

where irank is the value computed in the non-dominated sorting step, and idistance is the

crowding distance. After obtaining the sorted set P̄ (Algorithm 5), in our multi-objective

applications we select the best k solutions to pass to the next generation in the optimization

process.

The time complexity of the non-dominated sorting, crowding distance and sorting on ≺n

is O(M(2N)2), O(M(2N) log(2N) and O(2N log(2N)), respectively, where M is the number

of objectives and N is the population size. Thus, the overall complexity is O(MN2) where the

dominant factor is the computational cost of sorting the population based on non-domination.

Nevertheless, in this work, the cost of this procedure is fairly low since we consider only two

objectives ( a preliminary study with three objective is presented in the Appendix C) and

the population size is kept small.

For the sake of clarity, an overview of the NSGA-II procedure is shown in Figure 1.1.

Suppose St is a population of size 2N formed by the current population Pt and the current

offspring Qt. After the entire population St is evaluated based on the objective function, the

population St is sorted according to the non-dominance relantionship and divided into a series

of non-dominated fronts F1, F2, F3, ...Fl by assigning a rank to each indidivual. The lower

the rank, the better the individual is. This means that solutions from the non-dominated

set F1 represent the best solutions (the best trade-off between objectives) in the combined

population and must be prioritized. The subsequent fronts represent progressively worse

solutions. If the size of the first front F1 is smaller than the population size N then all

individuals of F1 will be selected for the new population Pt+1. To complete the population

Pt+1, the remaining individuals are chosen from subsequent non-dominated fronts in order of

their ranking: individuals from F2 are selected next, followed up by individuals from F3 and

so on until N individuals are chosen and the population Pt+1 is created.

Usually, the number of individuals in all fronts is bigger than the population size and

not all individuals can be inserted in the new population. Therefore, to select exactly N
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Figure 1.1: NSGA-II procedure. Source [83]

individuals, the solutions of the last front Fl are sorted using the crowding distance operator.

Individuals with the highest crowding distance are chosen to fill in the available slots in Pt+1.

The crowding distance measures the density of individuals in the objective space and helps

to maintain diversity. It is calculated by estimating the perimeter of the cuboid formed by

using the nearest neighbors as the vectors. Figure 1.2 illustrates an example of crowding

distance computation. The crowding distance of solution i is the average side length of the

cuboids. Moreover, it is important to note that the borders of the front have an infinite

crowding distance which means they are always preferred in the selection phase. Crowding

distance can be seen as an estimation of the density of solutions around a particular solution

in the population. Solutions that are situated in less dense regions are preferred in order to

improve diversity. Finally, after selecting individuals based on their crowding distance the

newly created population Pt+1 is passed on to the next generation.

22



Figure 1.2: Crowding distance calculation. Points marked in filled circles are solutions that

belong to the same non-dominated front. Source [83]

Algorithm 3 Non-Dominated Sorting

Require: set of points P

1: for p ∈ P do

2: Sp ← ∅, np ← 0

3: for q ∈ P do

4: if p ≺ q then Sp ← Sp ∪ {p}

5: else if q ≺ p then np ← np + 1

6: end for

7: if np = 0 then prank ← 1, F1 ← F1 ∪ {p}

8: end for

9: i← 1

10: while Fi ̸= ∅ do

11: for p ∈ Fi do

12: for q ∈ Sp do

13: np ← np − 1

14: if np = 0 then qrank ← qrank + 1, Q← Q ∪ {q}

15: end for

16: end for

17: i← i+ 1

18: Fi ← Q

19: end while

20: return (F1,F2, . . . ) 23



Algorithm 4 Crowding Distance

Require: set of non-dominated fronts F = (F1,F2, . . . )

1: for I ∈ F do

2: l← |I|

3: for i← 1 . . . l do

4: I[i]distance ← 0

5: end for

6: for m← 1 . . . Nm do

7: sort I by m-th objective function

8: I[1]distance ←∞, I[l]distance ←∞

9: for i← 2 . . . (l − 1) do

10: I[i]distance ← I[i]distance + I[i+1].m−I[i−1].m
fmax
m −fmin

m

11: end for

12: end for

13: end for

Algorithm 5 Crowding distance sorting

Require: set of nondominated fronts F = (F1,F2, . . . )

1: P̄ ← ∅

2: for i = 1 . . . l do P̄ ← P̄ ∪ Fi

3: sort P̄ by ≺n

4: return P̄
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Chapter 2

Related Work

In this chapter we provide a synthesis of the existing literature that is most relevant to our

work. We present the main characteristics of the state-of-the-art methods and highlight the

limitations that our study aims to address. In Section 2.1 we focus on adversarial attacks

against image classifiers, in Section 2.2 we introduce the related work on object detectors

and we conclude with an overview of attacks against explainable AI systems in Section 2.3.

2.1 Image Classification

Many methodologies have been proposed for generating adversarial examples on image clas-

sifiers in both white-box and black-box settings. Most of the proposed works have been

focusing on finding Lp-norm restricted attacks to generate imperceptible perturbations [16–

21,23–25,32,36,37,43,50,51,53,54,85,86]. However, restricted attacks have limited robustness

to adversarial defenses and also limited transferability capabilities [29,31,38–40,76,87–89].

As a result, studies on unrestricted adversarial attacks have been emerging, such as ge-

ometric transformation attacks [90, 91], semantic attacks [92–94] and colorization attacks

[26, 28, 29, 31, 95, 96]. Geometric attacks are easily noticeable due to the image distortion

introduced by transformations such as rotation or translation. Semantic attacks change the

semantics of an image by adding new content to the image (i.e. sunglasses to facial images

to fool face recognition models or changing the weather conditions illustrated in an image to

fool autonomous navigation systems). Considering the uniformity of the perturbation appli-
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cation, colorization attacks remain a valid approach to craft non-suspicious natural-looking

images. The common approach to generating adversarial examples is by changing the basic

attributes of an image such as contrast, saturation, and brightness using image filters or by

changing the colors.

Most attacks perform in a white-box setup: ACE [97] optimizes an adversarial color

transformation filter similar to Instagram filters using gradient information, ALA [98] creates

filters to manipulate the light in an image, FilterFool [96] trains a neural network to imitate

traditional image processing filters (i.e. gamma correction), while other methods train neural

networks to change the colors or the texture [26].

On the other hand, in a black-box setup, SemanticAdv [28] generates adversarial images

by randomly changing the hue and saturation values of an image in the HSV color space

while maintaining the shape of the objects. However, SemanticAdv does not consider the

content of the image and often generates unnatural colors. ColorFool [31], a state-of-the-art

method, proposes to improve the quality of adversarial images by perturbing the colors based

on the semantics of an image. First, it identifies non-sensitive and sensitive regions using

a semantic segmentation model. Then it changes the colors of each region in the Lab color

space by adding adversarial perturbations in channels a and b while keeping the L channel

unaltered. For the non-sensitive regions, the perturbations are chosen randomly from the

entire range of possible values, whereas for the sensitive regions, the perturbation is selected

randomly from a natural color range specifically defined for each region based on the region

semantics and human color perception. In this case, the naturalness of adversarial images is

strongly related to the accuracy of the segmentation model.

An interesting case study of image classification is represented by emotion recognition.

Adversarial attacks on emotion recognition is a very recent application and just very few

works are available in the literature [92,99,100]. The main difference with our work relies on

the approach: white-box versus black-box. Since our algorithm works in a black-box scenario,

it does not require any information about the model’s parameters or gradient values, as the

other systems require. Hence, our approach can be applied against any system without having

any knowledge about it. Moreover, they also differ in the way the images are modified. In

particular [92] belongs in the category of physical attacks since it realizes attacks to facial
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biometric systems by printing a pair of eyeglass frames. In [99,100] a saliency map extractor

is used to extract the essential expression features of the clean facial expression example and

a face detector is employed to find the position of the face in the image. This information is

then used to enhance and cut the gradient of the input samples computed by the optimized

momentum iterative method (OMIM) with respect to the misclassification loss.

Moreover, universal adversarial attacks have also been introduced. The authors [43]

proposed to iteratively accumulate restricted image-specific perturbations until a certain

percentage of input images are misclassified. Other approaches involve using Generative

Adversarial Networks to model the distribution of universal perturbations [45, 46, 101–103].

Among these, [45] present a generalizable and data-free approach for crafting universal ad-

versarial perturbations that can fool the target model without any knowledge about the data

distribution, such as, the number of categories, type of data or the data samples themselves.

Multi-objective evolutionary adversarial attacks have also been proposed [54, 55, 104]. They

aim to simultaneously maximize the attack success rate and limit the perturbation applied

with Lp-norm measures.

Differently from these, in one of our case studies we focus on unrestricted universal per-

turbations, and we include in the optimization process, alongside the maximization of the

attack rate, the minimization of the detection rate of defence methods in order to produce

attacks that intrinsically have the ability to bypass defenses.

2.2 Object detection

An object detector is a model designed to identify and locate objects within an image or a

video. It is a fundamental component in many applications, such as autonomous driving,

surveillance systems, robotics, and image analysis. Recently, some attack techniques have

been introduced to craft adversarial images against object detection models.

This kind of attack was systematically studied for the first time in [105] with the algorithm

DAG. The authors proposed an iterative white-box method that tries to assign adversarial

labels to each region of interest in the image by adding noise to the original image. It runs

gradient backpropagation to minimize a loss function computed as the sum, with respect
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to all the targets in the image, of the differences between the score assigned to the original

correct class and the one assigned to the adversarial incorrect class.

Co et al. proposed in [59] to create attacks to object detection systems by applying

procedural noise functions to the original images, in particular Perlin noise and Gabor noise.

They hypothesized that procedural noise, which exhibits patterns visually similar to the

Universal Adversarial Perturbations (UAPs) proposed by [43], can also act as UAPs. They

empirically demonstrated the vulnerability of some Deep Convolutional Networks to this

procedural noise, and demonstrated that the same procedural noise is able to attack also

Yolo-v3 [106] object detector on the MS COCO [107] dataset.

In [108] the authors proposed a black-box attack that finds a restricted adversarial per-

turbation using an evolutionary-based optimization. Specifically, they use Particle Swarm

Optimization (PSO) and regard an image as a particle in a high-dimensional space. They

generate the initial image by adding random noise to the original image and continuously

optimize the image particle to find the adversarial image and also optimize its quality by mov-

ing it towards the original image. Li et al. [109] presented a black-box method to generate

restricted adversarial perturbation that successfully attacks the Region Proposal Network,

a component used in many object detectors. In [110] the authors propose a query-based

black-box attack that searches for Lp-bounded rectangular perturbations in regions having

a higher probability to contain objects. This results in effective attacks to object detection

systems that use different DNNs as the backbone.

A different approach is represented by the Dispersion Reduction method proposed in

[111]. The authors’ idea is to transfer the concept of image ”contrast” into the feature

maps produced by a convolutional neural network. As lowering the contrast of an image

can make the objects depicted unrecognizable, they proposed to reduce the contrast of an

internal feature map to degrade object detection. They use a source model to craft the

adversarial examples and then transfer it to object detectors. They formally defined the

problem as a minimization problem of the dispersion (they use standard deviation) of the

intermediate feature map of the modified image constrained by the L∞-norm with respect

to the original one. Other approaches generate restricted perturbations using Generative

Adversarial Networks (GANs) [24,112].
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We have to note that all the methods described above share the same general structure:

optimized noise, restricted by Lp-norms, is added to the original images in order to obtain

effective attacks. They differ in the noise applied and in the optimization algorithm used but

the high-level idea is the same. Our method leverages the effective abilities of Instagram-

inspired image filters to alter image attributes that allow the creation of non-Lp bounded

adversarial images.

2.3 Explainable AI

Most deep neural models are black-box systems whose decision-making process is obscure.

Explainable artificial intelligence (XAI) aims to make decisions of deep neural models trans-

parent [113]. Effective XAI helps build trust in and accountability for AI decision-making

processes. XAI systems also favour interactions for people and AI to jointly make deci-

sions [114], assess vulnerabilities of a model [115], and identify biases [116, 117]. In this

thesis, we focus on XAI for image classification tasks. Thus, we provide a review of the

works related to this task.

Explainable artificial intelligence (XAI) approaches may generate visual, textual, or mul-

timodal explanations. Visual explanations (V-XAI) highlight the most relevant pixel infor-

mation used by the model [117–119]. Examples include saliency maps [118], heatmaps [117],

super-pixels-based visualizations (e.g. LIME [119]), and feature contribution methods in-

spired by game theory (e.g SHAP [120]). However, V-XAI visualizations may be diffi-

cult to comprehend, especially for non-expert users, especially when no information is pro-

vided on how highlighted pixels influence the prediction. Textual explanations (T-XAI)

describe the reasons for a decision in a more human-interpretable way (natural language sen-

tences) [121–125]. Finally, multimodal explanations (M-XAI) jointly generate textual ratio-

nales and visual evidence in form of attention maps [126–128]. A recent M-XAI method [126]

simultaneously predicts an answer (the prediction) and justifies, textually and visually, what

led to that prediction (the explication).

Recent studies have shown that V-XAI models are susceptible to adversarial attacks that

may, for example, preserve the prediction of the original image but change the explana-
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tion [129–131]. Examples of attacks include restricted adversarial perturbations [129], struc-

tured manipulations that change explanation maps to match an arbitrary target map [130],

adversarial classifiers that fool post-hoc explanations methods such as LIME and SHAP [131].

While several studies covered V-XAI methods, no approach has yet considered explic-

itly textual or multimodal explanations models. Related work on attacks to vision-language

models for image captioning and visual question answering use restricted Lp norms bounded

perturbations and operate under a white-box setup, with the attacker having full knowledge

and access to the target model [103, 132–139] or in a gray-box setting with less informa-

tion [103,136,140]. Attacks on image captioning may treat the structured output as a single

label and design the attack as a targeted complete sentence [132]. This idea was extended

to target keywords attacks that encourage the adversarial caption to include a predefined

set of keywords [133] in any order [133, 135] or at specified positions in the caption [134].

Methods may mask out target keywords while preserving the caption quality for the visual

content [138]. Untargeted attacks may use attention maps of the underlying target model

to focus the adversarial noise in the regions attended by the model [139]. Specially designed

generative models may also be used to generate adversarial perturbations [103, 136]. Alter-

natively, adversarial images may be generated by perturbing an image so that its features

resemble the features of a target image and thus be indistinguishable from the model forcing

it to output the same caption [140]. Multimodal networks are also vulnerable to adversarial

perturbation on a single modality (i.e. the image input modality [141]). This idea was ex-

tended with a collaborative multimodal adversarial attack that performs the attack on both

the image and text modalities [142] with the goal of changing the output of vision-language

models (i.e. predicted label). These methods perform a white-box attack.

Unlike the methods mentioned above that generate white-box or gray-box restricted ad-

versarial perturbations for CNN+RNN architectures for caption generation, we perform

black-box, content-based attacks considering a transformer-based multimodal explanation

system, that takes in input an image, predicts an activity, and generates a textual and visual

explanation (see Fig. 6.1-6.2). Our attack uses only the final output (i.e. textual explana-

tion or/and visual maps) of the model to find the adversarial perturbations that mislead the

model which is more similar to a real-world scenario making the attack itself more challeng-
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ing. Moreover, our case study is different from the other attacks to multimodal networks.

The multimodal models used in [141] and [142] use different input modalities to solve tasks

such as classification [141] or visual reasoning [142] where the goal is to predict whether the

relationship between an image and a text is entailment, neutral, or contradiction. The pur-

pose of the attacks is to change the final output of these models, which consists of a label. In

our case study, the model under evaluation uses only the image input modality and returns

a multimodal output composed of a prediction, a textual and a visual explanation. Our goal

is to attack in a black-box setup one of the mechanisms only (i.e the prediction part) while

keeping the other unchanged (i.e. the textual explanation part).
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Chapter 3

The One-for-Many attack

In this chapter, we present the One-for-Many algorithm to generate adversarial examples.

We provide a general description of the attack in Section 3.1. We introduce the image filters

used for crafting the adversarial perturbation in Section 3.2. We present the structure and

the main operations of the algorithm in Section 3.3.

3.1 General approach

We propose a highly flexible method to craft unrestricted adversarial examples in a pure

black-box setting where the attacker has access only to the hard-label (the predicted label)

by querying the target model and has no knowledge about the logits or the probabilities

associated with the predicted labels.

We generate the adversarial examples by applying a composition of Instagram inspired

parameterized image filters that manipulate the attributes of an image such as contrast,

saturation, brightness, and sharpness, perform edge enhancement, gamma correction, or

apply soft light gradients. This was inspired by the increasing popularity of social media

platforms and photo editing apps which resulted in more and more people modifying their

photos to achieve a desired look or aesthetic before sharing them online. And nowadays,

the majority of images undergo some level of manipulation and post-processing filtering.

Thus, we wanted to investigate if such common photo editing practices can be used to craft

adversarial attacks. Our goal is also to assess the sensitivity of deep neural networks towards
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image filtering since the literature lacks such studies.

Moreover, by using common filters in image processing libraries and widely used on social

media we aim to reduce human awareness of image modifications. To find the successful ad-

versarial filter configuration that misleads a target model, we designed a nested-evolutionary

algorithm with outer and inner optimization steps. Given a predefined set of image filters,

the outer optimization step focuses on finding the sequence of filters to use, while the inner

step optimizes the parameters of each filter selected in the previous step.

Moreover, thanks to the use of a multi-objective evolutionary approach, we can adapt

our method to attack different computer vision problems, ranging from image classifica-

tion to textual explanations. The use of evolutionary optimization allows us to use any

non-differentiable objective function, while multi-objective optimization allows us to merge

different objectives, like for example the attack accuracy combined with image quality or

attack detectability. This is our One-for-Many approach: one method for many problems,

one algorithm for many different objectives.

3.2 Image filters

Photo editing has become a common practice in many business areas and particularly on

social media sites where image enhancement and manipulation are extensively and excessively

used. Thus, inspired by Instagram and Photoshop which offer tools to seamlessly modify

images, we propose to combine multiple image filters in order to create custom adversarial

image transformations. This approach provides plenty style options, ranging from subtle and

warm looks to more dramatic and vivid color effects.

We implemented ten of the most popular Instagram filters: Clarendon, Juno, Reyes,

Gingham, Lark, Hudson, Slumber, Stinson, Rise, and Perpetua. Each filter has distinct

characteristics and effects given by the different levels of contrast, saturation, brightness,

sharpness, edge enhancement, gamma correction, or soft light gradients.

For instance, Clarendon brightens and highlights a photo; Gingham gives a dusty-vintage

feel to the image and it significantly lowers the highlights and the saturation; Juno adds

saturation and warmth making the colors more intense; Reyes also adds a subtle old-time
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look by reducing the saturation and by brightening up the photos; Lark increases the exposure

making the photo brighter and reducing the vibrance; Hudson bumps up the blues giving

a colder feel by applying a radial gradient with a dark blue exterior color and light interior

color; Slumber desaturates colors, covering images with a soft haze by blending the original

image with a plain light brown image; Stinson uses blending soft light to add more warmth

to the image and increases the brightness and contrast; Rise gives a warm glow by mixing a

radial gradient with a light sepia tone; Perpetua applies a vertical linear gradient that goes

from yellow to blue over the image.

The application of each filter is regulated by two parameters, α and β. Each filter first

scales the intensity of its specific basic attributes by a factor β and then applies the alpha

blending (with parameter α) to obtain the final modified image x′:

x′ = (1.0− α) · x+ α · β · f(x) (3.1)

where x is the original image and β · f(x) is the image modified by the β-regulated filter f .

In the rest of the thesis, to simplify the notation and increase readability, we will use the

same term f to denote the parameterized version of the filter f .

In Table 3.1 we illustrate the results for the filter Juno when varying both the values of α

and β simultaneously. We refer the reader to Appendix A for more examples of single filter

applications.

3.3 The adversarial algorithm

We generate the adversarial image x∗ by applying to the clean image, x, a sequence of L

optimized filters:

x∗ = fk1 ◦ fk2 ◦ · · · ◦ fkL(x) (3.2)

where each fi is the parameterized version of a filter selected from a set of predefined filters

F = {f1, f2, . . . , fF}.

We find the optimal sequence of L filters fi and the values of their parameters (αi, βi)

with a nested-evolutionary algorithm that consists of two components: an outer and an

inner optimization. Specifically, the outer optimization step determines the sequence of
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Table 3.1: Effects of filters with different α and intensity β values for Juno.

Juno β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5

α = 0.2

α = 0.4

α = 0.6

α = 0.8

α = 1.0

L filters fi ∈ F to use, while the inner optimization determines the best values of the

corresponding parameters (αi, βi). We choose a nested optimization approach in order to fine-

tune the parameters of the filters and increase the performance of the adversarial method.

Preliminary experiments (Table B.1) showed that applying the filters with default values

leads to a less successful attack since the default modification does not result in an adversarial

perturbation. Thus, the inner optimization aims to boost the adversarial power of the filters.

The outer optimization is implemented by a Genetic Algorithm (GA), while the inner one is

implemented by different strategies such as Genetic Algorithm, (1, λ)-Evolution Strategies,

Differential Evolution (DE), and a random-based approach with tournament (Rand-T).

We report the pseudo-code for the core adversarial algorithm in Algorithm 6 and provide
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details on the algorithm components in Sections 3.3.1, 3.3.2.

3.3.1 Outer-optimization step

For the outer-optimization step, we employ a genetic algorithm to iteratively evolve a pop-

ulation of Nout randomly initialized candidate solutions towards an optimal solution over

Gout generations. For each generation, we breed a new population of solutions by applying

crossover on randomly selected population members followed by mutation. Each candidate

solution is evaluated based on a task-specific objective function and only the best-performing

ones are passed on to the next generation. The main algorithmic steps specific to our problem

are summarized as follows:

1. Initialization: we generate the initial population by creating a set of Nout sequences

with L randomly selected filters parameterized by α = 1 and β = 1.

2. Crossover: we use a standard one-point crossover to create a new candidate solu-

tion (offspring) from two randomly selected individuals of the current population. For

example, given two parents:

p = (ft1 , ft2 . . . , ftL) (3.3)

and

q = (fk1 , fk2 . . . , fkL) (3.4)

and a random crossover index c ∈ {1, . . . , L}, we obtain the offspring:

op,q = (ft1 , . . . , ftc , fkc+1 , . . . , fkL). (3.5)

This guarantees that each offspring inherits genetic information from both parents,

including their optimized parameters.

3. Mutation: based on a probability of mutation, we replace a filter fj from an individual

p with another randomly selected filter fm from F . The substituent filter fm has its

parameters set to random values in order to perform mutation also over the parameters

and to maintain genetic diversity from one generation to another. For instance, con-

sidering the individual p = (ft1 , ft2 . . . , ftL) and supposing that its filter ft2 has been
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Algorithm 6 General structure of the algorithm for finding the adversarial perturbation.

Require: Image x, target model M , outer population size Nout, outer generations Gout,

inner population size Nin, inner generations Gin

1: Initialize population P of Nout individuals

2: for p ∈ P do

3: generate x′ using p ▷ Equation 3.2

4: evaluate the fitness F of p by querying M on x′

5: end for

6: for g ∈ Gout do

7: Offspring = ∅

8: for i ∈ Nout do

9: select randomly two parents p1, p2 from P

10: op1,p2 ← crossover(p1, p2)

11: ō←mutation(op1,p2)

12: o← Optimizerparams(ō, Gin, Nin)

13: Add o to Offspring

14: end for

15: for each o ∈ Offspring do

16: generate x′ using o ▷ Equation 3.2

17: evaluate the fitness F of o by querying M on x′

18: end for

19: P = selection(P,Offspring)

20: end for

21: return pbest best sequence of filters from P
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chosen to mutate with a filter fm ∈ F , the new mutated individual p̄ is:

p̄ = (ft1 , fm, ft3 , . . . , ftL) (3.6)

where the values of parameters αm and βm are randomly extracted from the respective

parameter domains.

4. Evaluation: In order to evaluate a population member we have to: (i) build the cor-

responding modified image x′ using (3.2) and (ii) determine how effective and desirable

the modified x′ is, according to the goals (attack success rate, image quality, etc.) we

want to reach for the specific task (image classification, object detection, etc.). The

evaluation functions may include calls to the target model, image quality assessment,

calls to attack detection methods, and so on. For example, if we include in the objec-

tives the attack Success Rate, or any other model performance measure, we have to

query the model M in order to determine how effective the attack is by comparing the

output of the perturbed image M(x′) with the output of the original image M(x).

5. Selection: at the end of each generation, after the evaluation of candidate solutions,

we select the Nout fittest individuals from the set of 2Nout candidates composed of the

current population members and their offspring. The fitness function can be formulated

either as a single-objective or as a multi-objective function. Thus, based on the scenario,

we adopt different selection strategies.

In the single-objective context, we rank the individuals according to their fitness value

and select the top Nout individuals (Algorithm 7).

In the case of multi-objectives, two conflicting fitness functions are computed for each

individual (parents and offspring). Therefore, we use the non-dominated sorting and

crowding distance procedures of the NSGA-II [83] algorithm for multi-objective selec-

tion to obtain the Pareto front, which is defined as the set of non-dominated solutions,

where each objective is considered as equally good. At the end of the optimization

process, we select the point closest to zero as the final best solution.
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Algorithm 7 Selection procedure for single objective fitness functions.

Require: Current population P , Offsprings

1: S ← Ranking decreasing by fitness(P , Offsprings)

2: return S[0 : Nout] //Nout is the size of P

Algorithm 8 Selection procedure for multi-objective fitness function

Require: Current population P , Offsprings

1: S ← Non dominated sorting(P , Offsprings) ▷ Algorithm 3

2: S ← Crowding distance sorting(S) ▷ Algorithm 5

3: return S[0 : Nout] //Nout is the size of P

3.3.2 Inner-optimization step

The inner optimizer is called for each element after the mutation operation (Algorithm 6,

line 12). The task of the inner optimizer is to evolve a population of Nin lists of parameters

(αi, βi) of each mutated individual ō to determine the values that improve the fitness of

the element. The sequence of filters in ō remains fixed during the inner optimization and

only the parameters are updated. By doing this, we aim at further exploring the space of

the parameters’ values and finding the best set of parameters for each element returned by

the outer optimization step. Both outer and inner optimization steps use the same fitness

function to evaluate population members.

We explore different strategies for the inner optimization: a Genetic Algorithm (GA),

(1,λ)-Evolutionary Strategy, Differential Evolution (DE), and a random-based approach with

tournament (Rand-T). For GA, ES, and DE we follow the structure of the algorithms de-

scribed in Sections 1.2.1, 1.2.3, 1.2.2. In the random-based approach (Rand-T) we skip the

inner optimization step and we change the parameter values randomly. Specifically, given a

mutated element ō, we generate o by randomly changing the filters’ parameters of ō. In this

case the selection process is implemented as a 2-way tournament between ō and o where they

compete against each other and only the fittest candidate is passed on to the next generation.

We use this Rand-T implementation as the baseline for the experiments.
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3.3.3 Queries to the target model

The proposed attack works with limited access to the target model. The target model is

queried every time we have to compute the objective function. Besides the explicit calls to

the evaluation function made in the initialization step and in the offspring evaluation step of

the outer iteration, we have to consider the Gin ×Nin calls made by the inner optimization

phase for each member in the outer population. The maximum number of queries can be

computed as:

Qmax = Nout +Gout × (Nout ×Gin ×Nin +Nout) (3.7)

Reducing the number of queries to the target model is crucial for two reasons: it reduces

the computational cost, and it lowers the risk of being detected and banned by the target

model during an attack.
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Chapter 4

Attacks on image classifiers

In this chapter we validate our adversarial attack on image classification considering three

different attack configurations: per-instance single attack (Section 4.1), per-instance multi-

objective attack (Section 4.2), and universal multi-objective attack (Section 4.3).

4.1 Per-instance Single Objective Attack

In this section, we study the effectiveness of the proposed attack on state-of-the-art image

classification models trained on a large scale visual recognition dataset [143]. We guide

the optimization process using a success-based objective function (Equation 4.2) to generate

image-dependent perturbations. We refer to this setup as per-instance single objective attack.

We introduce our approach for this case study and empirically assess the performance of the

adversarial attack.

We propose to generate adversarial examples by optimizing image filters that resemble

those available on Instagram in a black-box setup. Differently from ACE [29], our method

does not require full access to the target model and only uses the final output of the target

model. Moreover, we combine multiple filters to craft more robust and transferable pertur-

bations and generate images with more diverse visual effects, with styles ranging from subtle

and warm looks to more dramatic and vivid colors, as shown in Figure 4.1. By simulating the

effects of Instagram filters and by targeting specific image attributes we aim to reduce hu-

man awareness towards the applied modification without using additional resources that can
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Figure 4.1: Adversarial images generated on MobilenetV1 (top row), VGG19 (middle row),

and ResNet50 (bottom row) with our method with 3, 4, 5, and 6 filters and ColorFool (CF).

hinder the image quality and add extra computational cost to the adversarial optimization

process (i.e. image segmentation models [31]).

4.1.1 Problem formulation

Let x be a benign RGB image. Let M be an image classifier that predicts the class label for

a given input image x, that is M(x) = y. We formulate the problem of finding an adversarial

example x∗, a perturbed version of x that fools the classifier to produce a classification label

different from that of the original image, as the following optimization problem:

x∗ = argmax
x′

F(x, x′) (4.1)

with

F(x, x′) =

1, if M(x) ̸= M(x′)

0, otherwise

(4.2)
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where x′ is obtained by applying a sequence of parameterized filters to x (Equation 3.2) and

x∗ represents the best solution among all perturbed versions of x.

4.1.2 Experimental setup

Target Networks: We validate the proposed attack on three state-of-the-art pre-trained

and publicly available image classifiers: MobileNet-v1 (M-v1) [144], ResNet50 (R50) [145],

and VGG19 [146]. We choose models with different architectures in order to explore the

generalization ability of the algorithm and to study the transferability degree of adversarial

examples. Moreover, these models are often fundamental components of other deep learning

systems used for object detection or image segmentation. Thus, analyzing the robustness of

these networks can provide insight into the vulnerability of more complex systems. Finally,

the choice of MobileNet is motivated because it is often used in machine-learning-powered

mobile apps, thanks to its low latency and lightweight nature, which makes them an inter-

esting case study.

Dataset: We use the ImageNet [143] classification dataset. We sample randomly 1 image for

each of the 1000 classes from the validation dataset and we preprocess the images according

to the requirements of the pre-trained neural networks.

Attack configuration: We use the following hyperparameters for the outer optimization

set: population size Nout = 10, number of generations Gout = 10, and mutation probability

ρ = 0.5. In order to choose the algorithm for the inner optimization step we performed some

preliminary experiments using both Evolution Strategies (ES) and Differential Evolution

(DE). We configured ES with a population size Nin = 5 and a number of generation Gin = 3,

an initial learning rate = 0.1, and a decay rate of 0.75. In Figure 4.2 we report the success

rate over the number of generations when using ES as inner optimizer. In general, the above

configuration with 10 outer generations is sufficient to achieve a high success rate.

We compare our method against ColorFool [31], a black-box state-of-the-art method sim-

ilar to our attack that uses unrestricted color manipulation to generate adversarial examples.

ColorFool only requires the number of iterations to be set. However, it requires an image
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Figure 4.2: Success Rate (SR%) w.r.t number of generations for MobileNet, VGG19, and

ResNet50 with our method and ColorFool(CF). In each generation 160 queries are made to

the target model.

segmentation model to identify the semantic regions in the image which leads to extra com-

putational cost and running time. Moreover, ColorFool also involves a human intervention

to manually select the sensitive semantic classes, such as sky, water, plants and humans. In

our analysis we decided to focus only on the part involving the generation of the adversarial

image, ignoring the additional running time generated by the segmentation model.

Moreover, we observed that DE is producing slightly better results in terms of success

rate, but it is ≈ 3.5 × slower than ES. Thus, we selected ES as inner optimizer to align the

computational time of our method with ColorFool [31] and ensure a fair comparison under

the same experimental conditions.

4.1.3 Evaluation and Experimental Results

We evaluate the effectiveness of the attack in terms of success rate and transferability rate.

Let M be the target model, we define the Success Rate (SR) as:

SR(X,X∗) =
1

|X|

|X|∑
i=1

M(xi) ̸= M(x∗
i ), (4.3)

where xi is the i-th image of the original dataset X, and x∗
i is the corresponding perturbed

image in the set of all perturbed images X∗.

Since transferability represents the ability of the adversarial examples crafted for a par-

ticular model to mislead other different unseen models, we measure the Transferability Rate

44



(TR) as:

TR(X̄∗) =
1

|X̄∗|

|X̄∗|∑
i=1

N(xi) ̸= N(x∗
i ), (4.4)

where X̄∗ ⊂ X∗ is the set of successful adversarial examples generated on a model M and

N is an unseen model N ̸= M . The success rate and transferability rate are shown in Table

4.1.

An attack can also be evaluated considering its deception ability. We measure the decep-

tion ability of the attack using the following metrics: Success Rate at rank k (SR@k) [147],

Old Label New Rank (OLNR) [148] and New Label Old Rank (NLOR) [148].

Given a clean image x, let old label cold = M(x) and new label cnew = M(x∗) be the classes

respectively predicted for the original and perturbed image by the model M , and rank(c, x)

the rank of the class c in the probability distribution returned by the model M for the image

x. Then, we extend the definition of success rate to consider the new rank of the old label

using SR@k defined as:

SR@k(X,X∗) =
1

|X|

|X|∑
i=1

rankk(xi, x
∗
i ) (4.5)

rankk(xi, x
∗
i ) =

1, if rank(cold, x
∗) > k

0, otherwise

(4.6)

with xi, x
∗
i , X,X∗ as previously defined. The attack is considered successful only if it

assigns to the old label cold a rank greater than k after the attack, where k is a user-specified

value.

Considering the notations proposed in [148] we obtain that OLNR = rank(cold, x
∗) and

NLOR = rank(cnew, x). A strong attack will have high NLOR, meaning that the prediction

changed to a label that had a low rank before the attack, and high OLNR meaning that the

probability of the original class for the perturbed image x∗ is small. We computed NLOR

and OLNR for all adversarial examples and reported the mean values in Table 4.2.

An adversarial attack should also be reliable and robust to defense mechanisms. We

propose to quantify the robustness as the percentage of adversarial examples that remain

adversarial with respect to the original label prediction after passing through a defense frame-

work. Since our attack uses image filters to generate the adversarial perturbation, we use a
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Table 4.1: Success Rate (SR%, in gray cells) and Transferability Rate (TR% in white cells)

against MobileNet-v1 (M-v1), VGG19 and ResNet50 (R50). The higher the SR (TR), the

most successful (transferable) the attack. AC indicates the classifier under attack, TC indi-

cates the classifier used for the transferability test. CF stands for ColorFool [31].

Attack
AC

TC
M-v1 VGG19 R50

Ours 3f

M-v1 64.60 51.70 52.94

VGG19 34.81 79.00 50.89

R50 34.24 48.31 76.80

Ours 4f

M-v1 75.20 53.65 60.51

VGG19 39.68 86.20 53.13

R50 38.92 56.98 85.30

Ours 5f

M-v1 83.50 63.55 65.83

VGG19 45.08 91.40 59.41

R50 45.56 61.36 95.60

Ours 6f

M-v1 90.00 71.00 71.00

VGG19 49.11 95.90 65.48

R50 46.86 67.26 95.60

CF

M-v1 92.30 21.50 11.30

VGG19 36.30 91.10 12.30

R50 48.60 44.30 76.70

defiltering framework to mitigate the visual effects of the applied image filters. Specifically,

we choose Instagram Filter Removal Net [73] (IFR-Net, see Section 1.1.2 ).

Thus, given a set of adversarial images X̄∗ generated on a target model M , we measure

the robustness of the attack as:

R(X̄∗) =
1

|X̄∗|

|X̄∗|∑
i=1

M(D(x∗
i )) ̸= M(xi) (4.7)

where D is the defiltering model represented by IFR-Net and returns the defiltered version
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of x∗
i .

Success Rate: We report in Table 4.1 the success rate (in gray cells) and transferability

rate (in white cells) obtained by Colorfool and our technique with different numbers of filters,

obtained attacking different networks (M-v1, VGG19, and R50). Both adversarial methods

reach high SR against the direct target model. When using at least 5 filters, our method

achieves higher SR than ColorFool on VGG19 (95.9% vs. 91.1%) and ResNet50 (95.6%

vs 76.7%), and similar performance on MobiletNet-v1 (90.00% vs 92.3%). We notice that

ResNet50 is quite robust against ColorFool attack but very vulnerable to our filter-based

perturbations: we obtain higher SR even when using 3 or 4 filters. On the other hand, our

method is not as powerful on MobileNet-v1 as ColorFool, requiring 6 filters to reach com-

petitive results and achieving the lowest SR across all methods and networks. Nonetheless,

we observe that the proposed method exhibits the highest transferability rate, with an aver-

age TR of 46.11% versus 29.05% obtained by ColorFool. When using ColorFool, ResNet50

confirms itself the most robust also from the transferability point of view, since only 12.3%

of adversarial examples from VGG19 succeed to attack it. The adversarial examples crafted

with our method achieve much higher TR even when using only 3 filters, ranging from 34.24%

to 71.00% overall. Thus, when performing attacks by transferability, our method is preferable.

Deception ability: We evaluate the deception ability of our method and ColorFool us-

ing SR@k, OLNR, and NLOR. For SR@k, we choose k = 5. In this case, an attack is

considered valid only if the label of the original image is not in the Top-5 predictions after

the adversarial manipulation. We show the mean and standard deviation of OLNR and

NLOR, and SR@5 in Table 4.2. The results indicate that our method significantly outper-

forms ColorFool on every metric. MobileNet-v1 is the hardest to deceive, confirming again

its robustness while the higher deception is obtained on ResNet50. Interestingly, although

ResNet50 was the most robust to ColorFool in terms of success rate we observe the highest

NLOR among all methods under the ColorFool attack. More surprising is the fact that

ColorFool, despite achieving some of the highest SR, achieves a maximum SR@5 of 1.2%.

Instead, our method has SR@5 ranging from 9.7% to 40.1%.
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Table 4.2: Evaluation of Deception ability with OLNR, NLOR and SR@k. Higher values

indicate stronger attacks. Our method outperforms ColorFool (CF) on every metric. Note

that ColorFool has SR@5 ≈ 1%.

Attack Model OLNR NLOR SR@5 %

Ours 3f

M-v1 5.87 ± 20.80 13.35 ± 50.43 9.70

VGG19 7.13 ± 18.81 21.96 ± 67.82 15.90

R50 12.40 ± 50.02 17.40 ± 50.28 17.60

Ours 4f

M-v1 7.50 ± 26.79 20.28 ± 64.93 14.80

VGG19 15.92 ± 53.00 33.29 ± 91.60 24.50

R50 14.65 ± 63.77 27.99 ± 78.36 22.30

Ours 5f

M-v1 16.54 ± 68.46 33.29 ± 95.30 22.50

VGG19 20.95 ± 73.46 38.55 ± 100.93 32.60

R50 26.99 ± 92.48 46.18 ± 108.50 33.30

Ours 6f

M-v1 21.76 ± 81.36 46.75 ± 122.40 31.20

VGG19 27.73 ± 91.78 49.53 ± 116.45 37.80

R50 36.41 ± 111.99 71.36 ± 157.63 40.10

CF

M-v1 2.16 ± 0.60 14.14 ± 48.40 0.60

VGG19 2.50 ± 0.80 14.06 ± 42.43 1.20

R50 2.27 ± 1.182 60.39 ± 171.56 1.10
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Table 4.3: Robustness (R%) of adversarial attacks. Higher values indicate more robust

attacks. Adversarial images generated with our method are more robust against the IFR-Net

image filtering defense than examples generated with ColorFool (CF).

Model

Attack
Our 3f Our 4f Our 5f Our 6f CF

M-v1 76.00 63.82 71.11 70.55 46.21

VGG19 66.70 72.16 72.65 73.93 46.04

R50 65.23 68.34 71.32 72.70 36.63

Robustness: To compute the robustness of attacks we apply IFRNet to all successful ad-

versarial examples and then check how many of them remain adversarial with respect to the

classification label of the original image. We report the robustness scores in Table 4.3. We

find IFRNet to be more effective on ColorFool than on our method which explicitly tries to

imitate the visual effects of Instagram filters. Despite the fact that IFRNet is able to remove

the effects of single image filters to a great extent [73], it cannot neutralize the adversarial

perturbations obtained by mixing multiple filters. Figure 4.3 shows adversarial examples

before and after the IFRNet application.

Image quality: We assess the image quality of the adversarial examples using NIMA [64]

and NIQE [65]. Both NIMA scores (Table 4.4) and NIQE scores (Table 4.5) show that there

is no significant difference between the quality of the adversarial examples and the quality

of the original images. Moreover, our attack is able to produce adversarial examples with

image quality equivalent to ColorFool without specifically defining the color ranges of each

semantic region which is more computationally convenient.

Query Efficiency: In a black-box setup query efficiency is considered a key characteristic

for generating realistic attacks. Limits on the number of queries can arise from time or

budget constraints when querying incurs costs, as noted in [30]. Considering the experimental

configuration, our system allows a maximum of 1610 queries to the victim model. We report

the results obtained on the ImageNet dataset by systems that can be considered query-
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Figure 4.3: Adversarial images generated on VGG19 before IFRNet (top row) and after de-

filtering with IFRNet (bottom row). The adversarial examples generated with our method

remain adversarial even after the application of IFRNet, while the one generated with Col-

orFool (CF) is reverted to the original label.

Table 4.4: Image quality with NIMA (the higher, the better) of the adversarial images

generated against MobileNet-v1 (M-v1), VGG19, ResNet50 (R50). In each cell x/y: x is

the mean NIMA score on the adversarial images, and y is the mean NIMA score on the

corresponding clean images.

Model

Attack
Our 3f Our 4f Our 5f Our 6f CF

M-v1 5.15/5.17 5.15/5.17 5.14/5.18 5.13/5.18 5.18/5.18

VGG19 5.15/5.18 5.14/5.18 5.13/5.18 5.14/5.19 5.19/5.18

R50 5.14/5.17 5.15/5.18 5.13/5.18 5.13/5.18 5.20/5.18

efficient methods working in a label-only black-box setting: in [30], that is based on an

evolutionary strategy, the attack needs 270k queries to reach 90% success rate; in [56] the

authors report that their best system can produce attacks with good quality in the 76% of

cases with 10k queries or in the 98% of cases with 20k queries; In [34] the authors report

that they can reach the 50% of accuracy with 30k queries, but they need 160k queries to
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Table 4.5: Image quality with NIQE (the lower, the better) of the adversarial images gener-

ated against MobileNet-v1 (M-v1), VGG19, ResNet50 (R50). In each cell x/y: x is the mean

NIQE score on the adversarial images, and y is the mean NIQE score on the corresponding

clean images.

Model

Attack
Our 3f Our 4f Our 5f Our 6f CF

M-v1 31.65/32.70 31.21/32.74 31.14/32.78 30.05/32.58 32.03/32.39

VGG19 31.66/32.61 31.32/32.44 30.39/32.70 29.98/32.52 32.04/32.37

R50 32.08/32.77 31.14/32.53 30.61/32.56 29.94/32.54 31.63/32.40

reach the 90%. ColorFool is also query-efficient, achieving a high attack success rate within

a limited query budget.

Our method, with the same query budget, achieves a comparable success rate and image

quality, but offers more transferable, robust, and deceptive attacks. It also requires less it-

erations in order to achieve high attack success rate and to reach convergence (Figure 4.2).

The reason for the difference in behaviour and adversarial characteristics relies in the way

the two methods modify the images. In the case of ColorFool, all pixels in a semantic region

are perturbed with the same intensity which limits the variability of pixels and reduces the

possibility of finding an adversarial combination of pixel values. Our method uses more com-

plex image manipulation operations which does not disrupt the original color diversity and

increases the pixel value variation since pixels from the same semantic region will be affected

differently by the filter. The experimental results show that the optimized combination of

image filters can successfully fool state-of-the-art image classifiers. We hope that our findings

will encourage more research and studies on the vulnerability of such models against image

filtering based attacks.
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4.2 Per-instance Multi-objective Attack:

Emotion Recognition

Visual Emotion Recognition (ER) is one of the first Affective Computing techniques [149]

that have been widely studied in computer science and artificial intelligence, based on visual

features of facial expression. Deep learning approaches for facial emotion recognition obtain

high accuracy on basic emotion models, e.g., Ekman’s models [150], in the specific domain

of facial emotional expressions. Thus, facial tracking of users’ emotions could be easily

used against the right to privacy or for manipulative purposes. For instance, in behavior-

tracking applications, the emotional reactions of a user in front of a product could produce

extremely precious insights for companies, governments, or political parties, prying into the

user’s habits and emotional states. E.g., marketing applications in a supermarket, in front of

a shop showcase, or browsing an e-commerce website [151,152]; tracking drivers’ states [153];

analyzing pieces of information in social networks [154]; analyzing news or political opinions

[155]; military robot interaction [156]. Due to the critical nature of such information, tracking

it could open a breach in personal data confidentiality, and become a potential source of

manipulation bias for the user’s preferences. Thus, the diffusion and the wide use of deep

learning-based systems pose significant security and privacy issues.

To guarantee the user’s freedom and defense against emotion recognizers in settings where

they may be unauthorized, we suggest using our adversarial technique to filter out the emo-

tional features from video frames and photographs of human faces. By perturbing the images

with adversarial filters the information extraction process becomes more difficult, thus aiming

for privacy protection. In this context, we extend the per-instance single objective approach

described in Section 4.1 to a per-instance multi-objective that allows us to account for a sec-

ond objective when crafting the adversarial images. Specifically, we consider an image quality

assessment metric (i.e SSIM [63]) to prevent unnatural excessive alteration and control the

level of applied perturbations.
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4.2.1 Problem formulation

Differently from the attacks to image classifiers that work with a wide range of types of im-

ages (i.e. ImageNet dataset) and where heavier modification can be accepted (i.e as artistic

stylization and/or personal preference), in the task of emotion recognition it is particularly

important to avoid perturbing the images (i.e. faces) excessively and ensure that the adver-

sarial image maintains a natural-looking aspect. Thus, we formulate the black-box attack as

a Multi-Objective Optimization Problem to combine the per-instance approach presented in

Section 4.1 with a full-reference image quality assessment metric to control the amount of

adversarial perturbations applied to the images.

Given M a target facial emotion recognizer, x an original facial image, x′ the perturbed

image, we define the multi-objective problem of our interest as:

x∗ = argmin
x′
FMO(x, x

′) (4.8)

with

FMO(x, x
′) = {1.0−F(x, x′), 1− SSIM(x, x′)} (4.9)

where F is the adversarial attack indicator function introduced in (4.2) and SSIM is an

automatic full-reference perceptual metric introduced by Wang et al. [63] that quantifies

the image degradation as perceived changes in the structural information. We found that

optimizing with respect to this metric reduces the presence of artifacts in the images.

4.2.2 Experimental setup

Emotion Recognizer: We evaluate the proposed attack on an emotion recognition (ER)

neural network designed to classify a human face in the seven basic emotions of the Ek-

man’s model [157]: Anger, Contempt, Disgust, Fear, Happiness, Sadness, Surprise, extended

with an eighth Neutral class. We use transfer learning to adapt the MobilNetV2 [144] pre-

trained on the ImageNet dataset for the emotion recognition task. Specifically, we replace

the last MobileNetV2 fully connected classification layer with a fully connected layer of

size 128, dropout of 0.5 and ReLU activation functions followed up with a final fully con-

nected layer of size 8 for the emotion classes and Softmax activation. We fine-tune the

53



ER model on the AffectNet [158] dataset using the Stochastic Gradient Descent with mo-

mentum (SGDM) optimizer with a batch size of 10 and an initial learning rate of 1e − 3

which is decayed by a factor of 0.5 every 10 epochs on a total of 80. Cross-validation was

used for the hyperparameters tuning. The trained emotion recognition model is available at

https://github.com/Ellyuca/AGV-Project.

Dataset: The AffectNet [158] dataset is one of the most used datasets for Emotion Recogni-

tion. It contains ≈ 261K images labeled within the eight categories of the extended Ekman

model with Happiness and Neutral classes accounting together for about 2/3 of the dataset.

Thus, we sample randomly 3.5K images per class to obtain a perfectly balanced dataset,

for a total of 28K images. We split the dataset in training and testing using a stratified

sampling strategy with a ratio of 80%-20%. We perform data augmentation by applying

random horizontal flipping and horizontal/vertical shifting to the images, by a random off-

set in the [-15,+15] pixels range. To test its robustness against our adversarial attack, we

select 10 correctly classified images for each class from the testing set, for a total of 80 images.

Attack implementation details: Based on the finding from the previous case study, we

set the following parameters for the optimization algorithm: the population size of the outer

is Nout = 10, the mutation probability ρ = 0.5, and number of generations Gout = 10. For

the inner optimization we use Evolutionary Strategy (denoted as Inner-ES) and Differential

Evolution (denoted as Inner-DE). We configure the Evolutionary Strategy with a population

size of λ = 5 and number of generations Gin = 3, an initial learning rate = 0.1 and decay rate

= 0.75. For Differential Evolution we choose a rand/1/bin strategy with a population size

= 5, number of generations =3, F=0.7 and CR=0.5. The parameters α and β of each filter

are initialized with default values equal to 1. We run experiments with 3, 4, and 5 filters

to show the ability of the attack, formulated as a multi-objective optimization, to generate

adversarial examples. Figure 4.4 shows that the method is able to converge towards high

success rates under the above configuration.
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Figure 4.4: Success rate over the number of generations. A number of generations = 10 is

sufficient to achieve high success rates for both ES (left) and DE (right).

Table 4.6: Success Rate (SR%) with ES and DE when using 3,4, and 5 filters.

Optimization 3 filters 4 filters 5 filters

Inner-ES 91.25 93.75 96.25

Inner-DE 90.00 92.50 100.00

4.2.3 Evaluation and Experimental Results

We measure the success rate (SR) of the adversarial attack with as the ratio between the

number of images for which the emotion recognizer fails the classification and the total

number of images used for the attack. We use the metric defined in 4.3.

We also compute the success rate at different SSIM threshold values (SRt) to analyse

the effectiveness of the attack with respect to the amount of the adversarial perturbation

computed by means of SSIM index. We define SRt as follows:

SRt(X,X∗) =
1

|X|

|X|∑
i=1

A(xi, x
∗
i ), (4.10)

with

A(xi, x
∗
i ) =

1, if M(xi) ̸= M(x∗
i ) ∧ SSIM(xi, x

∗
i ) >= t

0, otherwise

(4.11)

where t ∈ {0.05, . . . , 0.95} with a step of 0.05. The results are presented in Figure 4.8.
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The algorithm has been tested both for ES and DE as methods for the parameter opti-

mization phase (inner phase in the Algorithm 6). The experimental results (Table 4.6) show

that the algorithm can reach a high attack success rate (SR). More specifically, it achieves

91.25%, 93.75%, and 96.25% when using ES as inner optimization and 90.00%, 92.50%, and

100.00% when using DE, both with 3, 4, and 5 filters, respectively.

Moreover, in Figures 4.5-4.6-4.7 we report the error distribution among classes using the

confusion matrices obtained from the three experiments. We note that an increase of the

length of filter sequences corresponds to increasing SR and that the only classes that maintain

some correct classifications are Fear and Happiness while all the others show an SR of 100%.

Moreover, we observe that for the classes Contempt, Neutral and Surprise we obtained a

shift (a number of errors greater than 50%) towards another class (Contempt → Happiness,

Neutral → Sadness and Surprise → Fear), while for the other 5 classes, the errors are quite-

uniformly distributed among the other classes. The analysis indicates that the emotions of

Fear and Happiness are the most resilient to attacks and easier to be recognized by the

model. This could be due to the fact that, in general, these emotions are characterized by

strong visual features which offer higher discriminative power that help the model to better

identify the emotions. Thus, in order to attack such emotions heavier image manipulations

are required, as shown by the our experiments: increasing the number of filters leads to an

increment of classification errors for Fear and Happiness. On the other side, emotions such

as Contempt and Neural are more difficult to recognize by the model since they might share

similar visual attributes which increase the degree of confusion regarding these emotions and

leaves the model more prone to attacks.

In Table 4.7 we show the visual effects produced by the adversarial filters on the images.

For each original image in the first column, the results obtained for sequences of 3, 4, and

5 filters are reported. The algorithm generates natural-looking and artifacts free adversarial

images. This effect is due to the uniform application of the filters across the entire image,

and the controlled perturbations through the SSIM index. Moreover, to have a global view

of the impact in terms of SSIM index, we have analyzed the values of the index for all

the attacking images. In Figure 4.9 the distributions of the SSIM values for the images

produced by sequences of 3, 4, and 5 filters are shown. For most of the images, the scores

56



Figure 4.5: Confusion matrix for the attack with 3 filters with ES (left) and DE (right).

Figure 4.6: Confusion matrix for the attack with 4 filters with ES (left) and DE (right).

are remarkably high (1 is the upper bound), and only for very few cases, they reach values

under 0.7. Furthermore, there is no significant difference among the three versions: users can

choose according to their necessities, preferring a less or more modified image at the expense

of the effectiveness of the protection.

In Figure 4.8 we show the results obtained using the SRt metric. We notice that high

success rate values correspond to a bigger dissimilarity between the original and adversarial

images and the SSIM values decrease as we increase the number of filters used for the attack.

We could apply a constraint on the SSIM if having high similarity between images is of

absolute necessity. For example, with a threshold of 0.8 on the SSIM the attack is still

effective with success rate of 75.00%, 70.00%, 75.00% for 3, 4, and 5 filters respectively.

We analysed also the computational time of the algorithm. In Table 4.8 we report the

average time in seconds necessary to complete one outer generation. Inner-DE achieves the
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Figure 4.7: Confusion matrix for the attack with 5 filters with ES (left) and DE (right).

3 filters 4 filters 5 filters

Original ES DE ES DE ES DE

surprise fear fear fear fear fear fear

happiness contempt contempt disgust disgust contempt disgust

anger sadness sadness sadness sadness sadness sadness

happiness contempt contempt contempt contempt contempt contempt

Table 4.7: Examples of adversarial samples: the first column reports the original image and

original classification. Columns 2-4 show the adversarial images with their classification. We

can notice how the adversarial attack changes the automated emotion recognition without

disrupting the image appearance.
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Figure 4.8: Success rate computed with different SSIM threshold values for the attack with

ES (top) and DE (bottom) with 3, 4, and 5 filters, respectively.

best results but, from a computational time perspective, it is the most expensive, with an

average of ≃ 70 seconds to complete one outer generation. On the other hand, an ablation

study (see Appendix B.2) shows that simpler variants are more time efficient but achieve

a lower success rate. Inner-ES has the best attack effectiveness-time trade-off, generating

adversarial images with high similarity scores and being 3.5× faster than Inner-DE.
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Figure 4.9: SSIM values distributions for the attacking images produced by ES (left) and DE

(right) with 3, 4, and 5 filters. Adversarial images generated with DE have a higher SSIM

score than the adversarial images generated with ES.

Optimization 3 filters 4 filters 5 filters

Inner-ES 18s 20s 22s

Inner-DE 65s 70s 75s

Table 4.8: Average time (seconds) for one outer generation for ES and DE.

The experimental results show that using a multi-objective strategy to craft adversarial

attacks allows for the discovery of personalized image filters having different image properties

and aesthetics and can be used to fool an emotion recognition model and thus can be used

as a tool for privacy protection to filter out the emotional component for prying software.

Moreover, by analysing the confusion matrices we observed that the behaviour of the model

under attack aligns with the human perception of emotions. Studies on the perception of

emotions [159–161] have shown that happiness is among the easiest emotion to recognize for

humans, while emotions like contempt and neutral are more difficult to recognize. This opens

up different research directions. For example, by leveraging the power of adversarial attacks,

new tools could be developed to automatically analyse the perceptions of emotions without

requiring human feedback which can be time consuming and expensive.
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4.3 Universal Multi-objective Attack

In this section, we present a multi-objective variant of the proposed attack to generate uni-

versal unrestricted adversarial examples. Deployed deep-learning systems may be equipped

with detection mechanisms to protect themselves from malicious activity. Thus, we propose

to formulate the attack as a multi-objective optimization that takes into account not only

the attack success rate but also the detection rate in order to craft undetectable adversarial

images. Moreover, we are interested in finding a universal perturbation that, when applied to

any image , can fool the classification model without any additional computation. An image-

agnostic perturbation allows us to save computational time and effort since the optimization

problem has to be solved only once for the whole dataset instead of each individual sample.

Additionally, by forcing the attack to find a universal perturbation, we aim at increasing

the generalization property. The experimental results show that a universal perturbation

optimized on a small dataset is able to fool new unseen images with a high success rate.

It is important to note that, in this work, we focus on universal adversarial perturbations

crafted with respect to one dataset and one classifier. The extension to multiple datasets

and classifiers will be considered for future work.

4.3.1 Problem formulation

Let x be an image, and let M be a neural network classifier that predicts the class label for

the input image, s.t. M(x) = y.

In the case of per-image approaches, an adversarial attack attempts to find a different

δ for each image that turns the image x in an adversarial image x∗ = x + δ such that the

classifier is misled into making a wrong prediction, i.e. M(x∗) ̸= M(x). In this case, it is

necessary to run the optimization process for each image.

On the other hand, in the case of universal approaches the objective is to find only one

such δ able to fool M for almost all the data points available in X, that is

M(x+ δ) ̸= M(x), for almost all x ∈ X (4.12)

We model the attack as a multi-objective optimization problem which considers both the

attack success rate as well as a detection mechanism bypassing rate. The goal is to give the
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attacker the ability to bypass detection mechanisms. We believe this to be a powerful feature

of our method given that the field of adversarial machine learning lacks such approaches.

Thus, we define multi-objective problem of our interest as

X∗ = argmin
X′

FMO(X,X ′) (4.13)

with

FMO(X,X ′) = {1.0− SR(X,X ′), DR(X ′)} (4.14)

where

SR(X,X ′) =
1

|X|

|X|∑
i=1

M(xi) ̸= M(x′
i), (4.15)

is the attack Success Rate (SR) and

DR(X ′) =
1

|X|

|X|∑
i=1

D(x′
i) (4.16)

is the Detecion Rate (DR), where D is the detection method that returns 1 if the image

is detected to be an attack and 0 otherwise, xi is the i-th image of the original dataset X

and X ′ is the set of perturbed images x′
i obtained by applying the same sequence of filters

to all the images in X. The goal is to find the sequence of filters that, when applied to X,

generates X∗ which best optimizes Equation 4.14.

4.3.2 Experimental Setup

Target model: We evaluate the proposed method by attacking the convolutional neural

network proposed by Papernot et al. in [41] and used also in [23] to prove the effectiveness of

their attack. The model is composed of a series of 2 convolutional layers having 64 3x3 filters

paired with ReLU activation function and a max-pooling layer, 2 convolutional layers with

128 3x3 filters with ReLU followed by another max-pooling layer, 2 fully connected layers

with ReLU and a softmax layer used for the final classification. This network was trained

using the CIFAR-10 dataset which is a very popular benchmark image dataset consisting

of 50000 training and 10000 testing color images with a resolution of 32x32, belonging to

10 different classes. Dropout was used in order to prevent overfitting, and momentum and
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parameter decay were employed to guarantee model convergence.

Dataset: We used the CIFAR-10 testing set for training our algorithm and evaluating its

effectiveness. The set was divided into two subsets: the first 200 images were used for the

filter configuration optimization process and the remaining 9800 images were used for testing

the adversarial attack. The optimization subset of images was chosen relatively small in

order to measure the power of the universal attack.

Attack implementation details: The hyperparameters default values used to conduct

the experiments were fixed as follows, where not differently specified: number of filters =

5, mutation probability = 0.5, population size = 10 for the outer algorithm. For the inner

algorithms, we set the population size equal to 5 and the number of generations was fixed to

3, an initial learning rate of 0.1 and decay rate of 0.75.

Moreover, since the goal is to find a universal perturbation that can transform (almost)

any image in an adversarial example, we need to optimize the filter combination with respect

to all images in the dataset. However, running the optimization algorithm for each image

is computationally expensive, thus we optimize the filters considering batches of images.

Moreover, we run the algorithm over the dataset multiple times in order to ensure that the

filters combination has been succifiently optimized and that a good solution has been found.

Therefore, for this experiment we set the number of epochs1 = 3 and the batch size = 100,

as preliminary results showed good performance with this setup (Figure 4.10).

We choose Feature Squeezing [38] as the detection method in the objective function used

during the optimization process since it is one of the most popular and low-cost techniques

that has been proven to achieve high detection rates (over 85% for CIFAR-10 and Imagenet

dataset) against different famous state-of-the-art attacks, such as FGSM [17], DeepFool [25]

and CW [23]. Specifically, to perform the detection we used the combination of features

squeezers reported in [38] to work best for CIFAR-10 images: reduction to 5-bit depth, a local

median smoothing and a non-local mean smoothing, and threshold to find the illegitimate

1This is the equivalent of generations
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images set to 1.7547 2.

4.3.3 Evaluation and Experimental Results

Selection of the training epochs, number of filters, and parameters range

Several experiments were carried out in order to estimate the best trade-off between the

performance of the proposed method and computation time. We tested three inner opti-

mization algorithms (GA, ES, and Rand-T defined in Section 3.3.2) with the above-listed

parameters configuration except for the number of epochs which was set to 10. We analyzed

their attack success rate (SR), feature squeezing detection rate (DR) and computation time.

We observed that all inner optimizers had similar performance-time behavior. Moreover, we

decided to stick to 3 epochs since it was producing good results while keeping the computa-

tional time fairly low. Figure 4.10 illustrates the attack and detection rate curve with respect

to the number of epochs with ES inner optimizer.
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Figure 4.10: Success Rate (SR) and Detection Rate (DR) with Feature Squeezing w.r.t.

Epochs with ES optimizer. The result show that 3 epochs are sufficient to obtain a good

trade-off between attack success rate and detection rate.

Moreover, we also wanted to investigate the importance of choosing different numbers

of filters for creating the adversarial configuration. The minimum filter selection was set

to 3 while the maximum is the cardinality of set S of available filters. We adopted the

2https://github.com/mzweilin/EvadeML-Zoo/blob/master/Reproduce_FeatureSqueezing.md
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policy of no-repeating filters, meaning that a filter can be picked only once inside a certain

configuration in order to provide more diversity to the image manipulation. We calculated

the attack rate of our algorithm by using all three inner optimization methods. Table 4.9

shows that using 5 filters has the best outcome in terms of attack success rate.

Table 4.9: Evaluation of attack success rate (SR %) with respect to the number of filters.

Optimizer 3 filters 4 filters 5 filters

ES 46.50 43.50 70.00

GA 58.50 52.00 68.50

Rand-T 41.50 45.50 61.00

In our implementation filters can be applied using different feature parameters similar to

how Instagram allows users to control the effect of filters by manually adjusting their inten-

sities within a certain range. The parameters of each filter can vary between a fixed range

of values. The minimum and maximum values of each interval were found by performing a

quality analysis on the modified images with the above-mentioned filters and diverse param-

eter values. This analysis allowed restricting the search space in order to further reduce the

training time. In order to evaluate the universality of our attack we applied the optimized

filter configuration to each image in the testing set and computed the detection rate defined

as follows:

FSDR =
1

n

n∑
i=1

D(x∗
i ), x∗

i ∈ X̄∗ (4.17)

where D corresponds to the features squeezing detector which returns 1 if the image is

identified as illegitimate and 0 otherwise, X̄∗ represents the set of successful adversarial

examples, and n = |X̄∗|.

In Table 4.10 we report the attack success rate and the detection rate for both training

and testing subsets with the default hyperparameters values, which were found to work best.

First of all, from these results, we can note that, even if the attack success rate is lower

than the ones obtained by other methods in literature (also greater than 90% in some cases),

these values should be fairly compared to the ones obtained by the other methods excluding

the attacks that would be blocked by a defense mechanism. For example, some of the most
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Table 4.10: Attack success rate (SR %) and Feature Squeezing Detection Rate (FSDR %)

with different optimizers on Carlini CNN and CIFAR-10 training and testing subsets, epochs

= 3, number of filters = 5.

Optimizer ASR % train set FSDR % train set ASR % test set FSDR % test set

ES 70.0 2.1 63.7 3.5

GA 68.5 2.9 63.8 3.4

Rand-T 61.0 5.7 56.3 4.5

famous the state-of-the-art attacks like FGSM [17], BIM [19], DeepFool [25], CW [23] achieve

85%, 92%, 98% and 100% success rate 3, respectively on CIFAR-10 dataset. According to Xu

et al. [38], Feature Squeezing reaches 20.8% detection rate on FGSM, 55.0% on BIM, 77.4%

on DeepFool and 100.0% on CW. Although these are restricted white-box attacks, we report

their success rate and detection rate values in order to evaluate the performance of our method

under a broader view. Altogether Xu et al. [38] evaluated Feature Squeezing with respect

to 11 different attacks on CIFAR-10 and reported an overall detection rate of 84.5% [38].

Considering this, our attack is very effective because among the successful adversarial images

just very few attempts will be blocked by the defense mechanism. Moreover, we can observe

a very good generalization ability of the model: when the adversarial perturbation generated

by our method is applied to the test set (not used during the optimization process), we lose

less than 10 percentage points for SR, maintaining also a very low detection rate when a

defense mechanism based on Feature Squeezing method is applied.

Table 4.11 shows some successful adversarial examples generated by applying the filter

configurations with their respective optimized parameters found by the proposed algorithm

on the unseen images from the testing subset. For each adversarial example, we attached the

original image and we also indicate the classification labels before and after the modification.

It is very interesting to note that the solutions found by our method, i.e. the applied per-

turbations, are very uniform across the image and no unnatural patterns or high-frequency

areas can be noticed.

3This results are reported from [38].
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Table 4.11: Successful adversarial attacks on CIFAR-10 testing subset. On the left: original

image; On the right: successful adversarial example.

Optimizer Successful adversarial examples on the testing set

ES

GA

Tournament

Label names airplane : 0, automobile : 1, bird : 2, cat : 3, deer : 4,

dog : 5, frog : 6, horse : 7, ship : 8, truck : 9
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In summary, the experimental results show that the multi-objective method with detection

feedback is able to produce successful adversarial examples while keeping the detection rate

low. Even though the attack success rate is lower with respect to other state-of-the-art

methods (restricted and unrestricted) we have the advantage of not being caught by detection

methods. This indicates the potential of the proposed attack whose goal is not only to force

the classifier to mispredict but also to evade possible defenses.
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Chapter 5

Attacks on object detectors

In this chapter, we investigate the effectiveness of the proposed adversarial attack against

state-of-the-art object detectors. We contextualize the problem of object detection in Section

5.1, and formulate the optimization problem in Section 5.2. We discuss the experimental

results in Section 5.3.

5.1 Introduction

Object detection is the task of identifying and locating objects in an image or video, and

has been successfully applied in a variety of real-world scenarios, such as autonomous driving

[162], medical imaging [163], and intelligent surveillance in smart cities [164]. Such systems

are highly security-sensitive, thus the robustness of these models is essential. While attacks

to image classifiers have been extensively studied, the topic of attacks to object detectors

remains largely unexplored, especially in the black-box scenario. The problem of generating

realistic adversarial examples becomes more interesting and challenging since the number

of targets that need to be attacked is much larger than in a pure classification task. In

general, object detection models generate many bounding boxes for the same object. If

one bounding box becomes unreliable, other bounding boxes may still work, making object

detectors difficult to attack.

Another aspect that has not been adequately addressed for object detection is the use

of adversarial machine learning techniques as defense methods against private information
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Figure 5.1: Adversarial images generated with our method on YOLOv3 (top row) and DETR

(bottom row): clean images on 1st and 3rd columns, adversarial images on 2nd and 4th

columns.

extraction, especially from images posted on social media. In this case, adversarial methods

that produce natural-looking images become of primary importance in creating tools that

block unauthorized information extraction and preserve privacy. It has been shown that

information can also be easily extracted from datasets and learned models in the case of

classification [42,165–167].

Thus, we propose to attack object detectors with different architectures: YOLO (You

Only Look Once) [106, 168] and DEtection TRransformer (DETR) [9]) to evaluate both the

robustness of such models and the efficiency of our One-for-Many attack on a task more

difficult than classification.

5.2 Problem Formulation

Formally, given an object detection model M , x ∈ R(H×W×3) a 3-channel RGB image with

height H and width W and a list of predefined classes C, the object detection output is a

list of K objects, each characterized by the pair (bi, ci), where bi = ((x0i, y0i), (x1i, y1i)) is a

rectangular bounding box and ci ∈ C is a class label, as shown, for example, in Fig.5.1.

Given an image x, we formulate the adversarial problem on object detection as the prob-

lem to find x∗ that minimizes the Object Detection Performance (ODP):
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x∗ = argmin
x′

ODP (x, x′) (5.1)

where

ODP (x, x′) =

|M(x)|∑
i=1

IoU(bi,b
′
i)>0.5

c′i=ci

IoU(bi, b
′
i) (5.2)

where (bi, ci) ∈M(x) are the bounding boxes and their corresponding labels returned by the

object detection model M and IoU(·), the intersection over union measure, is defined as:

IoU(bi, b
′
i) =

bi ∩ b′i
bi ∪ b′i

(5.3)

Moreover, since the aim of this study is to create natural-looking, artifacts-free adversarial

samples, we state the problem as the following multi-objective optimization problem:

x∗ = argmin
x′
FMO(x, x

′) (5.4)

with

FMO(x, x
′) = {ODP (x, x′), 1− SSIM(x, x′)} (5.5)

where SSIM is the metric that quantifies image quality degradation of x′ with respect to x

and x∗ represents the perturbed image that minimizes Equation 5.5.

5.3 Evaluation and Experimental Results

We evaluate the attack on the well known YOLO [106, 168] family of object detectors and

DETR [9], a recently proposed detector with a transformer encoder-decoder architecture.

We evaluate the effectiveness of the attack by analyzing its results with varying numbers of

filters applied and assess the quality of the generated adversarial images. We also provide a

comparison with other state-of-the-art methods.

Target models: The YOLO family of object detectors was chosen for our experiments.

According to recent research, the YOLOv3 [106] is one of the most robust object detectors
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against adversarial attacks [111]. Since it is one of the most commonly used models in the

literature for object detection, this choice facilitates comparisons with other models. Fur-

thermore, we investigate the robustness of YOLOv4 to check whether the robustness has

improved over the previous version, and the robustness of the scaled models YOLOv3-tiny

and YOLOv4-tiny [169] designed for low-end GPU devices. These last two models are built

appositely to run with reduced resources and they are commonly used in embedded architec-

tures where standard models cannot run. We used publicly available pre-trained networks

provided in the official repository https://github.com/pjreddie/darknet and standard

settings with input dimensions 608 x 608 x 3 for YOLOv3, YOLOv4 and 416 × 416 × 3 for

YOLOv3-tiny, YOLOv4-tiny. Moreover, we use DETR [9] as a target model, because it is

one of the best object detector models in terms of precision.

Dataset: We randomly selected 400 images from the MS COCO Val2017 dataset [107]. It

is a large-scale dataset extensively used for training, testing, and evaluating the performance

of object detection models. It contains 80 object categories, such as person, car, bird, and

many more.

Hyperparameter configuration: We configured the optimization algorithm as follows: for

the outer algorithm a population size of Nout = 10, generations Gout = 3 and a mutation

probability ρ = 0.5; for the inner algorithm a population size ofNin = 5, the number of

generations Gin = 3, initial learning rate = 0.1 and decay rate = 0.75. Experiments were

run with 3, 4, and 5 filters.

Evaluation metrics: We use precision, recall, and mean average precision (mAP) metrics

to evaluate the performance of the models before and after the adversarial attacks. Precision

(p) and recall (r) are defined as:

p =
TP

TP + FP
r =

TP

TP + FN
(5.6)

where TP are the true positives, FP are the false positives, and FN are the false negatives.

A detection is considered a TP if the IoU is greater than a predefined threshold t and the
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predicted class is correct. If either the IoU is less than t or the predicted class is incorrect,

the detection is considered a FP. A ground truth bounding box that is not detected by the

model is classified as a FN. In the COCO dataset, average precision AP t is computed as

the area under the precision-recall curve using a 101-point interpolation.

AP t =

∫ 1

0

p(r)dr (5.7)

Then, the mean Average Precision (mAP) is calculated by taking the mean AP over all

the classes and over all the IoU thresholds:

mAP =
1

n

n∑
k=1

APk (5.8)

where n is the number of classes and APk is the mean AP of class k over all the IoU thresholds

t ∈ [0.5, 0.95] with a step size of 0.05. Common mAP variants are mAP 50 and mAP 75

where 50 and 75 represent the respective IoU thresholds.

Results: We assess the effectiveness of the attack by measuring the decrease in terms of

mAP, mAP 75 and mAP 50 obtained by each model on the dataset modified with a different

number of filters. In Figure 5.2 we report the distributions of mAP 50 values for all tested

models. Blue columns stand for values obtained testing the clean dataset, while orange

columns stand for values obtained testing the dataset of images modified with 3, 4, and 5

filters. Comparisons with respect to the models can be made by reading the plots by columns,

while comparisons with respect to the number of filters can be made by reading the plots by

rows.

It is important to note that all the values shift towards lower values in the case of filtered

images. In particular, for all combinations, the number of images with the highest mAP 50

values significantly declines (blue columns in the right part of each plot are significantly higher

than the orange ones), while the number of images with the mAP 50 values significantly

increases (orange columns in the left part of each plot are significantly higher than the blue

ones). These differences get progressively more pronounced as the number of filters increases.

In Table 5.1 we show mAP, mAP 50, mAP 75, precision and recall for all models, before

and after the attack. YOLOv3 confirms to be the most robust model, while both YOLOv3-
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Figure 5.2: Distribution of AP 50 values obtained on YOLOv3, YOLOv3-tiny, YOLOv4,

YOLOv4-tiny, DETR. The vertical blue dotted line represents the mean over all the mAP 50

values of the original images. The orange one represents the mean over all the mAP 50 values

of the filtered images. 74



tiny and YOLOv4-tiny present an impressive decrease in robustness with respect to their

original versions. The results on DETR are unexpected. Despite being the best performing

on the clean dataset the mAP drops by 53% when using 5 filters. We observe similar behavior

for precision and recall metrics.

Moreover in Table 5.1 we also provide the average values SSIM and NIMA to assess the

quality of the adversarial images. The results show that overall the quality of the generated

images is similar to the clean images.

The comparison with other state-of-the-art methods described in Section 2.2 should con-

sider various factors. Some studies, such as [59, 111], utilize global mAP as a metric, while

others, like [108], employ non-standard mAP metrics, making fair comparisons challenging.

In [59], the adversarial attack using Perling noise perturbations halves the mAP of the

YOLOv3 model. This attack performs slightly better than ours but the patterns produced by

procedural noise are evident, as shown in Figure 5.3. Lu et al. [111] reduces the performance

of YOLOv3 to a mAP = 0.24 while considering only 20 categories of objects. Also in this

case the adversarial patterns are highly noticeable. We achieve a mAP as low as 0.19 and

a mAP 50= 0.30 on YOLOv3, outperforming also PRFA [110] which obtaines a mAP 50 =

0.46. The images generated with PRFA also exhibit heavy adversarial noise.

Moreover, none of the cited methods presented an evaluation of image quality, neither

in terms of full-reference measures like SSIM nor in terms of no-reference measures like

NIMA [64]. For example, in [59] the authors showed very good results in terms of mAP,

but the images their algorithm produced do not have a good quality since they show visible

patterns and artifacts (see Figure 5.3). This behavior is common to most of the restricted

Lp-bounded attacks since Lp-norms are able to measure the absolute difference between the

original image and the modified one, but they cannot capture in any way the image quality

in terms of perception.

Finally, we compare the efficiency of the algorithms in terms of the number of queries.

The methods proposed in literature need a large number of queries and, also in the case of

systems built to work with limited access to the victim model, they require several thousands

of queries to produce reliable attacks: ≃ 30k for [108], 4k for PRFA [110]. Our algorithm

requires a very low number of queries to find an attack: considering the query formula in
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Table 5.1: Attack results for YOLO family and DETR. Precision and Recall values are

calculated with IoU threshold of 0.5. For mAP, mAP 50, mAP 75, P 50, R 50 lower values

indicate a stronger attack (↓). For SSIM and NIMA higher scores indicate higher image

quality (↑).

Model Filters mAP mAP 50 mAP 75 P 50 R 50 SSIM↑ NIMA↑

YOLOv3

clean 0.32 0.51 0.35 0.53 0.53 1.00 5.07

3f 0.22 (-30%) 0.35 0.25 0.24 0.35 0.86 4.77

4f 0.21 (-36%) 0.32 0.23 0.21 0.32 0.83 4.76

5f 0.19 (-42%) 0.30 0.20 0.19 0.30 0.79 4.75

YOLOv3

clean 0.10 0.18 0.11 0.07 0.18 1.00 5.07

3f 0.04 (-62%) 0.07 0.04 0.01 0.07 0.86 4.78

tiny 4f 0.03 (-74%) 0.04 0.03 0.00 0.04 0.81 4.77

5f 0.02 (-80%) 0.03 0.02 0.00 0.03 0.79 4.76

YOLOv4

clean 0.34 0.47 0.38 0.47 0.49 1.00 5.07

3f 0.23 (-32%) 0.31 0.26 0.23 0.32 0.87 4.78

4f 0.21 (-39%) 0.29 0.23 0.20 0.29 0.82 4.77

5f 0.18 (-47%) 0.24 0.20 0.12 0.26 0.78 4.75

YOLOv4

clean 0.15 0.24 0.17 0.16 0.25 1.00 5.07

3f 0.08 (-47%) 0.12 0.09 0.04 0.13 0.86 4.77

tiny 4f 0.06 (-57%) 0.06 0.07 0.01 0.10 0.81 4.77

5f 0.05 (-66%) 0.08 0.06 0.01 0.08 0.77 4.75

DETR

clean 0.44 0.63 0.46 0.72 0.70 1.00 5.07

3f 0.29 (-33%) 0.41 0.30 0.38 0.46 0.85 4.77

4f 0.26 (-40%) 0.38 0.27 0.32 0.42 0.82 4.76

5f 0.21 (-53%) 0.31 0.21 0.24 0.36 0.78 4.74
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Figure 5.3: Adversarial images from [59] (on the left) and [110](on the right).

Equation 3.7 and the parameters settings for the experiments, the maximum number of al-

lowed queries is 490. The drawback of using an (apparently expensive) evolutionary approach

is highly mitigated by the needed reduced number of generations and population size.

Transferability: Since it is usually unknown which architecture a detector uses, an attack

is more effective if it is transferable among different detectors. Thus, for transferability, we

evaluate the performance of the unseen detector using the adversarial images generated for

the seen detector. In Table 5.2 and Figure 5.4 we show the results of attacking the YOLO

family using the images generated with DETR. We obtain an average 27% drop in mAP

across all models. We also notice an increase in the number of images with mAP 50 = 0

after the attack. This suggests that the attack exhibits good transferability.

In conclusion, the experimental results show that our method can also be successfully

employed to attack object detectors despite their high performance on clean images. Specif-

ically, it outperforms state-of-the-art methods with minimum integration effort while also

executing the attack in a more constrained setup, that is a black-box setting with low num-

ber of allowed queries. This is due to the fact that, despite their complex architecture, such

models still rely on CNN-based components to extract the image features that are then used

to detect the objects. Considering the vulnerability of CNNs, these object detectors also

become prone to attacks. This emphasizes once again the high susceptibility of deep neural

networks to image filtering and calls out for further investigation in order to propose more

reliable models.
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Table 5.2: Attack results when transferring adversarial images generated on DETR to YOLO

family. Precision and Recall values are calculated with IoU threshold 0.5.

Model Filters mAP mAP 50 mAP 75 P 50 R 50

YOLOv3

clean 0.32 0.51 0.35 0.53 0.53

3f 0.26 (-19%) 0.41 0.28 0.39 0.43

4f 0.25 (-22%) 0.40 0.27 0.35 0.41

5f 0.22 (-31%) 0.36 0.25 0.30 0.30

YOLOv3

clean 0.10 0.18 0.11 0.07 0.18

3f 0.08 (-27%) 0.13 0.07 0.03 0.13

tiny 4f 0.07 (-32%) 0.12 0.08 0.03 0.12

5f 0.06 (-39%) 0.11 0.07 0.03 0.11

YOLOv4

clean 0.34 0.47 0.38 0.47 0.49

3f 0.29 (-13%) 0.41 0.32 0.39 0.43

4f 0.28 (-18%) 0.38 0.31 0.30 0.40

5f 0.24 (-27%) 0.34 0.28 0.25 0.36

YOLOv4

clean 0.15 0.24 0.17 0.16 0.25

3f 0.11 (-23%) 0.19 0.13 0.08 0.19

tiny 4f 0.10 (-32%) 0.16 0.11 0.05 0.16

5f 0.09 (-42%) 0.14 0.09 0.04 0.14
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Figure 5.4: Results of transferability test: distribution of mAP 50 values obtained on

YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-tiny from DETR-optimized filters. The ver-

tical blue dotted line represents the mean over all the mAP 50 values of the original images.

The orange one represents the mean over all the mAP 50 values of the filtered images
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Chapter 6

Attacks on multimodal explanations

In this chapter we assess the effectiveness of the proposed attack on a novel multimodal

explanations model that aims to describe the underlying decision process of a neural network

using natural language. We briefly introduce our approach in Section 6.1 and formulate the

problem of attacks to XAI in Section 6.2. We present the experimental setup in Section 6.3

and discuss the results in Section 6.4.

6.1 Introduction

With this case study, we intend to evaluate the robustness of the textual explanations of the

newly proposed transformer-based multimodal model NLX-GPT [126] for action recognition

to black-box adversarial attacks. The NLX-GPT model takes an image in input and returns

an output that contains an activity prediction, a textual explanation that justifies the pre-

diction and a visual explanation map that highlights the most relevant image regions for the

prediction. To the best of our knowledge this is the first work that studies the vulnerabilities

of multimodal explanations systems against black-box unrestricted adversarial attacks. We

generate the adversarial examples using the One-for-Many method. Moreover, to further

reduce noticeability we propose to manipulate the images by operating differently on differ-

ent image regions, e.g. avoiding perturbing sensitive areas such as the human skin. We also

analyze the impact of the attack when focusing on regions most attended by the model. We

show that naturally looking adversarial images can be used to manipulate the explanations
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of a state-of-the-art model.

In particular, we study the robustness of the target system under two scenarios: (i) keeping

the activity prediction the same and changing the (textual) explanations and (ii) changing

the activity prediction and keeping the (textual) explanations similar. We do not consider the

scenario of attacking both activity and explanations since this would be similar to attacking

classifiers. According to [170] the prediction-explanation generation mechanism within an

explanation system should be strongly associated: changing the activity classification implies

a change in its explanation, if the prediction remains the same the explanations should not

change. Therefore, our objective is to break this association by attacking one of the two

mechanisms only, while keeping the other unchanged.

6.2 Problem formulation

Let x be an RGB image. Let ME be an M-XAI model such that:

ME(x) = {s = (a, e), xe} (6.1)

where s is a generated sentence that contains the activity prediction, a = (a1, a2, . . . , ap), and

the textual explanation, e = (e1, e2, . . . , en); ai and ej are words, and p and n are variable

sentence lengths; and xe is the visual component of the multimodal explanation.

We define an adversarial example for the explainable model, ME, the image x∗, with

ME(x
∗) = {s∗ = (a∗, e∗), x∗

e} considering two scenarios:

Scenario 1: a = a∗ ∧ e ≁ e∗ (6.2)

where the activities (decisions) are the same, but the explanations are different or

Scenario 2: a ̸= a∗ ∧ e ≃ e∗ (6.3)

where the activities (decisions) are different and the explanations are semantically similar.

We model the problem of finding x∗ a multi-objective problem that accounts for two con-

flicting criteria: the quality of the textual explanation (Qe) and the quality of the generated

adversarial image (Qx). Thus, we formulate the optimization problem as:

x∗ = argmin
x′
FMO(x, x

′) (6.4)
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with

FMO(x, x
′) = {Qe(x, x

′), Qx(x, x
′)} (6.5)

where

Qx = 1− SSIM(x, x′) (6.6)

where x is the original image, x′ is the corresponding modified image and SSIM [63] is a full-

reference image quality assessment used to control the applied perturbation. This objective

remains the same for both attacking scenarios. We adapt the function of the explanation

quality Qe based on the attack scenarios.

Therefore, we define the objective on the textual explanation for the scenario a ̸= a∗∧e ≃

e∗ as:

Qe = 1− cos(E(e), E(e′))1{(a,a′):a̸=a′} (6.7)

where E(·) is the vector embedding [171] of the textual explanation and

cos(E(e), E(e′)) =

( ∑n
i=1E(e)iE(e′)i√∑n

i=1E(e)2i
√∑n

i=1 E(e′)2i
+ 1

)
/2 (6.8)

with n being the size of the embedding vector, and 1 is the indicator function that returns

1 if the argument is true, else returns 0. The goal is to keep the explanations e and e′ as

similar as possible, by minimizing their difference while having different activity predictions.

For the scenario a = a∗ ∧ e ≁ e∗ we formulate Qe as:

Qe = 1− [1− cos(E(e), E(e′))]1{(a,a′):a=a′} (6.9)

with E(·) and cos(·) as previously defined. In this case, the goal is to minimize the similarity

between explanations while keeping the activities the same. We choose a cosine-based simi-

larity measure with neural sentence embedding because it has been found to have the highest

correlation with human judgment and to outperform other methods, such as METEOR or

BLEU [122,171,172]

6.3 Experimental setup

Target model: We evaluate the attacks on the recent multimodal explanation model NLX-

GPT for activity recognition [126], which textually explains its prediction using CLIP [173] as
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vision encoder and the distilled GPT-2 pre-trained model [174] as decoder. NLX-GPT returns

also a visual explanation (map) based on the cross-attention weights of the model. The dis-

tilled GPT-2 was pre-trained on image-caption pairs (COCO captions [107], Flickr30k [175],

visual genome [176] and image-paragraph captioning [177]). NLX-GPT was fine-tuned on

the activity recognition dataset ACT-X [127] (18k images). The visual encoder is fixed for

both the pre-training and fine-tuning stages.

Dataset: We use the test set of the ACT-X [127], a 3,620-image dataset used to explain

decisions of activity recognition models. Each image is labeled with an activity and three

explanations. We perform the attack on the 1,829 images with correctly predicted activity

by NLX-GPT.

Attack variants: We analyze four variants of our algorithm to consider different filter

applications modalities and different objective functions: full image filtering with single (FL-

s) and multi-objective (FL-m); localized image filtering with single (LC-s) and multi-objective

(LC-m).

Full image filtering consists in applying the image filters on the entire image according

to Equation 3.2. FL-s uses only the explanations quality (Qe) while FL-m considers both

explanations quality (Qe) and image quality (Qx) as defined in Equation 6.4.

We propose a localized filter application to further reduce the noticeability of the adver-

sarial perturbation. We focus the perturbations in specific areas of the image I based on

a partition defined by semantic segmentation into sensitive, S =
⋃
Rs

i , and non-sensitive

regions, S̄ =
⋃

Rn
j , such that I = S ∪ S̄. Sensitive regions correspond to objects (e.g. hu-

man skin) whose unrealistic colors could raise suspicion, whereas non-sensitive regions can

be modified more without making the image look unnatural.

First, we detect the semantic regions of an image using a state-of-the-art model [11]. Then,

we identify skin areas 1 to determine the sensitive areas S and mark them as unalterable. We

follow up with a color-based oversegmentation [178] to further partition the semantic regions

into smaller areas and obtain the non-sensitive regions S̄.

1Skin Segmentation Network
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We binarize the visual explanation xe to retain the most active parts, denoted as ve. Next,

we select only the relevant non-sensitive areas that contain highly active attention points,

namely S̄a = S̄ ∧ ve for scenario a ̸= a∗∧ e ≃ e∗, while for scenario a = a∗∧ e ≁ e∗ we modify

the areas S̄a = S̄ − ve that do not contain highly active attention points. We denote the

omitted areas as S̄na = S̄ − S̄a. To generate the perturbed image x′ we apply to the clean

image, x, a sequence of L filters:

x′ = S ∪ fk1 ◦ fk2 ◦ · · · ◦ fkL(S̄a) ∪ S̄na. (6.10)

where each fi is the parameterized version of a filter selected from a set F = {f1, f2, . . . , fF}.

The single objective localized attack (LC-s) considers only the explanations quality (Qe),

while the multi-objective uses also the image quality (Qx) as defined in Equation 6.6.

Method for comparison: As method for comparison we adapt ColorFool [31] to our prob-

lem. ColorFool defines four types of sensitive regions: person, sky, vegetation, and water

using a cascade segmentation module [31]. Adversarial images are generated by modifying

the colors of the regions in the perceptually uniform Lab color space within specific ranges

defined based on image semantics and human perception. Specifically, we extend ColorFool

to consider also the explanation quality Qe, defined as:

Qe = cos(E(e), E(e′)) (6.11)

with cos(·) and E(·) previously defined in Equation 6.8. For scenario a ̸= a∗ ∧ e ≃ e∗ we

return the perturbed image x′ that maximizes Qe, while for scenario a = a∗ ∧ e ≁ e∗ we

return x′ that minimizes Qe, computed over a predefined number of trials. We refer to this

method as ColorFoolX (CFX).

Attack implementation details: We compare different filter application approaches and

objective functions for a fair comparison with ColorFoolX, which does not directly account

for image quality during the attack. For ColorFoolX we allow a maximum of 1000 trials. For

the multi-objective evolutionary method, the size of the outer population is Nout = 10, the

number of outer generations is Gout = 10, and the mutation probability is ρ = 0.5. For the
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Figure 6.1: Adversarial images generated for a clean image (top left) for scenario a ̸= a∗∧e ≃

e∗ by LC-m: localized filtering with multi-objective (second column) and CFX: ColorFoolX

(third column) and the visual attention maps corresponding to the activity prediction (second

row). The images have different activity - clean image: manual labor, LC-m: driving, CFX:

driving tractor. The textual explanation is the same for all images: he is bent over and

pushing a tire with his hands. The MANIQA scores are 0.709, 0.701, 0.705 for clean, LC-n,

and CFX, respectively.

inner optimization, we use ES with a population size λ = 5, generations Gin = 3 with initial

learning rate lr = 0.1 and decay rate β = 0.75.

6.4 Evaluation and Experimental results

We assess the quality of the explanations generated for the adversarial images using cosine

similarity to assess the (dis)similarity between explanations of successful adversarial images

and their corresponding clean image. We evaluate the quality of the adversarial images with

MANIQA [66] .We also analyze the colorfulness [179] of the adversarial images and compare

it with the colorfulness of original images.

The colorfulness metric aims to reflect color vividness in accordance with human perception.

Given an RGB image, the colorfulness is computed as follows:

C = σrgyb + 0.3 · µrgyb (6.12)
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Figure 6.2: Adversarial images generated for a clean image (top left) for scenario a = a∗∧e ≁

e∗ by LC-m: localized filtering with multi-objective (second column) and CFX: ColorFoolX

(third column) and the visual attention maps corresponding to the activity prediction (second

row). The images have the same activity ballroom but different explanations - clean: she is

standing on a dance floor dancing with a partner; LC-m: he is standing on a stage with a ball

in his hands; CFX: she is standing on a stage with a group of people. The MANIQA scores

are 0.689, 0.662, 0.690 for clean, LC-m, and CFX, respectively.

where

σrgyb =
√

σ2
rg + σ2

yb (6.13)

µrgyb =
√
µ2
rg + µ2

yb (6.14)

where σ and µ are the standard deviation and the mean value of the pixels along direction

(·), and

rg = R−G (6.15)

yb =
1

2
(R +G)−B (6.16)

where R,G,G are the red, blue, and green channels.

We measure the success rate (Sr) of an adversarial attack as:

Sr =
1

Na

∑Na

j=1
1ω (6.17)

where Na is the total number of images and, for a ̸= a∗ ∧ e ≃ e∗:

ω ≜ {(aj, a∗j) : aj ̸= a∗j ∧ cos(E(ej), E(e∗j)) ≥ t} (6.18)
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Figure 6.3: Mapping between explanation groups and similarity classes. KEY – Similarity

classes- S1: not similar at all, S2: a little similar, S3: somehow similar, S4: very similar, S5:

they are the same. Explanations pairs with cos(E(e), E(e∗)) > 0.85 (i.e. G1-G3) are rated

as highly similar.

where t is a threshold; and, for a = a∗ ∧ e ≁ e∗:

ω ≜ {(aj, a∗j) : aj = a∗j ∧ cos(E(ej), E(e∗j)) < t}. (6.19)

We determined the value of t with a subjective human evaluation of the similarity of expla-

nation pairs. We created 9 groups for the explanations based on their cosine similarity, such

that Gi = {(e, e∗) : cos(E(e), E(e∗)) ∈ (1 − 0.05i, 1 − 0.05(i − 1)} with i ∈ {1, 2, . . . , 8} and

G9 = {(e, e∗), cos(E(e), E(e∗)) ∈ (0, 0.6]}. From each group, we randomly selected 10 (e, e∗)

pairs that were rated on semantic similarity on a 5-level Likert scale: not similar at all; a

little similar; somehow similar; very similar; and they are the same. We used majority voting

to assign each pair of explanations to a similarity class. Likewise, we labeled each group

with the most frequent similarity class of the questions within the group. Eleven people

who did not see the data prior to the test rated the similarity and could change their rating

before completing the test. The mapping between explanation groups and similarity classes

is shown in Fig. 6.3. We observe a decrease in semantic similarity starting from group G4,

which corresponds to cos(E(e), E(e∗)) < 0.85. Thus, we set the threshold t = 0.85.

Table 6.1 reports the success rates for all methods under both scenarios. Methods consid-

ering only the explanation quality (i.e. CFX, FL-s) achieve the best results in terms of success

rate with an Sr of 64.62% for CFX and 63.09% for FL-s for the a ̸= a∗ ∧ e ≃ e∗ and an Sr of

73.82 for CFX and 77.53 for FL-s in the scenario a = a∗ ∧ e ≁ e∗. These methods apply the

perturbation across wider areas of the image which allows heavier modifications. As we focus
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on more localized areas (i.e. LC-s) and limit the freedom of the attack the Sr decreases. This

behavior could also be caused by the noisiness and inaccuracy of the cross-attention-based

visual maps (xe) which may fail to accurately point to the areas relevant for the prediction.

Since we use the visual maps to localize the areas to attack, if the visual maps are imprecise

it leads to the selection of areas that are not as relevant for the prediction. Thus, it results

in a lower attack success rate. Therefore, these model-intrinsic attention maps require more

investigation to fully assess their relevance for localized adversarial attacks.

Table 6.1: Success Rate (Sr%; the higher, the better) for the scenarios a ̸= a∗ ∧ e ≃ e∗ and

a = a∗ ∧ e ≁ e∗. KEY – CFX: ColorFoolX, LC-s: localized filtering with single objective,

FL-s: full image filtering with single objective, LC: localized filtering with multi-objective,

FL: full image filtering with multi-objective.

Scenario CFX LC-s FL-s LC-m FL-m

a ̸= a∗ ∧ e ≃ e∗ 64.62 51.33 63.09 43.47 47.62

a = a∗ ∧ e ≁ e∗ 73.82 67.47 77.53 51.76 49.45

We further notice a decrease in attack performance as we increase the constraints enforced

on the optimization process. In this case, on top of the localized-based restriction, we also

limit the amount of the perturbation applied using SSIM. In this case, the algorithm has to

find an optimal trade-off between explanation quality and image quality which is not always

feasible given the competing nature of the two objectives. We also notice that the methods

are more effective in the scenario a = a∗ ∧ e ≁ e∗, achieving a Sr of up to 77.53% for FL-

s. In this case, the selected alterable areas are more numerous since we focus on regions

that are not highly attended by the explanation model, and thus in general the adversarial

perturbation is more spread across the image. Overall, the results show that both our method

and CFX are able to change the model’s behavior and break the correlation between activity

prediction and its explanations in two different scenarios. If the intent of the adversary is to

only undermine the reliability of the explanation, then scenario a = a∗ ∧ e ≁ e∗ should be

used since it has a higher attack success rate. If the attacker’s objective is to also change the

activity prediction, scenario a ̸= a∗ ∧ e ≃ e∗ should be considered.

Although both CFX and evolutionary-based methods (LC and FL) produce comparable
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Table 6.2: MANIQA scores of adversarial examples and their corresponding clean version.

LC-m, FL-m, and CFX generted images with the highest quality score.

Attack

Scenario a ̸= a∗ ∧ e ≃ e∗

Clean Adversarial Clean Adversarial

CFX 0.70 0.68 0.70 0.67

LC-s 0.69 0.66 0.70 0.65

FL-s 0.70 0.65 0.70 0.65

LC-m 0.69 0.67 0.70 0.68

FL-m 0.70 0.66 0.70 0.68

results within similar experimental setups, the generated adversarial images have different

visual characteristics and aesthetics. In general, the evolutionary-based attack produces

images with more toned-down soft vintage looks while most of the images generated by

ColorFoolX have vivid colors (see for example are shown in Fig. 6.1 and Fig. 6.2). We

quantitatively evaluate the perceptual quality of the adversarial images with MANIQA ∈

[0, 1] (the higher, the better). The average MANIQA scores (Table 6.2) varies from 0.65

for FL-s and LC-s to 0.68 for CFX, LC-m, and FL-m while the average score on the clean

images is 0.70. This indicates that the adversarial perturbations do not degrade the quality

as perceived by MANIQA. Moreover, we observe that in the case of localized evolutionary

attack (LC) the visual attention maps relative to the activity prediction are less noisy while

in the case of CFX the attention is distributed over the whole image. It appears that the

localized attack forces the model to focus on specific areas instead of having its attention

scattered all over the image.

In Figures 6.5, 6.6 we show the distribution of colorfulness scores of adversarial images

and their corresponding original version. The higher the scores, the more colorful the image

is. We observe that LC-m and FL-m generate images with colors most similar to the original

images, whereas LC-s and FL-s tend to generate images with more washed out muted-colors.

This indicates that the image quality objective contributes towards the generations of more
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Figure 6.4: SSIM of adversarial images for scenario a ̸= a∗ ∧ e ≃ e∗ (left) and for scenario

a = a∗ ∧ e ≁ e∗ (right). The multi-objective attacks generate images with the highest SSIM.

natural 2 looking images, as also shown by the SSIM scores in Figure 6.4. On the contrary

CFX, as its name suggests, generates very colorful images that diverge the most from the

natural distribution. However, images different from the original ones does not necessarily

imply worse quality since automatic image quality assessment metrics are not always reliable.

Sometimes they may favour certain image characteristics over others and do not align with

human perception. Thus, a human subjective evaluation remains the best measure to assess

perceptual realism, which we will address in future studies.

In order to choose a text similarity metric for the proposed attack, we considered different

automatic evaluation metrics for natural language generation tasks such as METEOR and

cosine-based measures. In the following, we report the observations regarding METEOR.

We evaluate the similarity between pairs of explanations (e, e∗) using METEOR [180].We

found that METEOR, despite using stemming and synonym matching, cannot capture the

semantic similarity This is mostly due to the alignment penalty which penalizes sentences

that have correct words but in a different order. For example, given explanation e = he is

standing on a bridge with a backpack on his back and e∗ = he is wearing a backpack and

standing on a bridge, the METEOR score is 0.45 even though the two explanations have

the same meaning. However, the cosine similarity is 0.97 which indicates that cosine-based

evaluation correlates much better with human judgment, which was confirmed by different

studies [122,171,172] and also by our subjective study. This behavior is shown in Figure 6.7

2with natural we intend images that resemble the original, non-manipulated images.
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Figure 6.5: Colorfulness scores distribution for scenario a ̸= a∗ ∧ e ≃ e∗. LC-m and FL-m

produce adversarial examples with colors most similar to the original images. CFX generates

adversarial examples with colors quite different from the original distribution. The higher

the score, the more colorful the image.
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Figure 6.6: Colorfulness scores distribution for scenario a = a∗ ∧ e ≁ e∗. The adversarial

examples generated with LC-m and FL-m have the colors most similar to the original images.

In the case of CFX, the colors of adversarial examples diverge the most from the original

distribution. The higher the score, the more colorful the image.
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Figure 6.7: Explanation similarity scores computed with cosine similarity ( ) and METEOR

( ), generated with LC-m and CFX attacks for scenario a ̸= a∗ ∧ e ≃ e∗.

where explanations with high cosine similarity have low METEOR scores, showing that this

metric is not suitable for such a task.

We also verify the contribution of each objective function in terms of success rate and

SSIM scores for scenario a ̸= a∗ ∧ e ≃ e∗.

We start with a random approach, where we randomly perturb the images while only

considering changing the activity prediction, disregarding explanation similarity and image

quality. Then we consider each objective separately. For the image quality objective (Qx)the

aim is to find the image that changes the activity prediction with the highest SSIM. For the

explanation objective (Qe), the goal is to find an image that changes the activity prediction

and has the highest explanation similarity. This corresponds to the single-objective attack

previously discussed in Section 6.3. When using both objectives, the goal is to find an

adversarial image that changes the activity predictions and has high explanation similarity

and high image quality. This is equivalent to the multi-objective formulation presented in

Section 6.2. We consider both full image filtering (FL) and localized image filtering (LC).

Table 6.3 shows the Sr (Equation 6.17) and the SSIM between the adversarial images and

their original version. In the case of the image quality objective, the adversarial images have

the highest SSIM scores. However, the Sr is low. On the other hand, the textual explanation

objective achieves the highest Sr at the expense of the image quality. This is the main

justification for using the version with both objectives to find a trade-off between Sr and

SSIM.
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Text Quality Image Quality LC FL

Sr SSIM Sr SSIM

✓ ✓ 43.47 0.92 47.62 0.84

✓ 51.33 0.73 63.09 0.72

✓ 26.93 0.95 28.16 0.84

21.87 0.86 22.86 0.73

Table 6.3: Success Rate (Sr%) and SSIM obtain when using different objective functions for

scenario a ̸= a∗ ∧ e ≃ e∗.

We conducted a similar analysis for ColorFoolX to assess its multimodal attack capabil-

ities with respect to the original version ColorFool. ColorFoolX searches for the adversarial

examples that satisfy two conditions: one regarding the activity prediction and the other one

related to the explanation similarity. For scenario a ̸= a∗ ∧ e ≃ e∗, CFX searches for an im-

age with a different activity class and highest explanation similarity, while ColorFool would

consider only the activity prediction. As a matter of fact, when considering only the activity

prediction, the Sr is ≈ 80%. When considering also the explanation similarity (Equation

6.17) CF reaches Sr = 37.23%, whereas CFX reaches Sr = 64.62%. Thus, the CFX version

is more beneficial for the multimodal attack.

We also briefly examined the correlation between activity prediction and explanation. We

notice that when only attacking the activity the explanations tend to change. For example,

using a full filter application with our method and focusing on changing only the activity,

≈ 66% of images with different activity have an explanation similarity < 0.85. However,

this requires more investigation since currently there are no well-established procedures and

evaluation metrics to assess the degree of a model’s faithfulness and opens up an interesting

research direction for the future.
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Conclusions

Summary of achievements

Deep neural networks (DNNs) have witnessed a significant progress over the last decade and

have been successfully applied to a variety of applications in different domains. Despite their

impressive performance, DNNs are vulnerable to adversarial attacks.

In this work, we have proposed a black-box adversarial method that generates unre-

stricted adversarial perturbations using Instagram-inspired image filters. The attack uses

an evolutionary-based optimization to find the optimal perturbation that misleads a neural

network. The method was designed to tackle some of the limitations of current state-of-

the-art adversarial attacks: limited robustness of restricted attacks to defense mechanisms,

unnatural perturbations produced by unrestricted attacks or the necessity of using additional

resources to reduce noticeability. Moreover, it can be easily adjusted to many computer vision

problems and allows for different types of attacks.

We validate our method on three computer vision tasks: image classification, object

detection, and multimodal explanation for activity recognition. In the case of per-instance

single objective attack on classification, we compare our method with ColorFool [31], a state-

of-the-art unrestricted black-box attack based on color modifications. Our attack reaches up

to 95.9% success rate, comparable results with ColorFool. However, our method significantly

outperforms ColorFool on the transferability aspect, achieving an average transferability

rate of 46.11% versus 29.05% obtained by ColorFool. Moreover, our attack is more robust to

defiltering defense techniques. When considering the deception capabilities in the evaluation

of the success rate, the proposed attack reaches a SR@5 up to 40% whereas ColorFool

becomes completely ineffective, with only 1.2%.
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For image classification task we also analyzed different attack configurations. We tested

a multi-objective approach and included an image quality metric to control the amount of

the applied perturbations when working with data highly sensitive to manipulations, such as

facial images, and where excessive modification cannot bypass a human observer and easily

raise suspicion. Our method effectively conceals the true emotions depicted in the images

and could be employed as a tool for privacy protection. Furthermore, we used our algorithm

to find universal perturbation that can bypass detection methods. The results obtained were

promising but further investigations are needed in order to fully assess the attack’s ability

under this configuration. Moreover, the optimization process could benefit more from using

detection methods specifically designed for unrestricted attacks. We will consider this for

future work.

We also evaluated the performance of our filter-based attack on object detectors, whose

vulnerabilities still remain largely unexplored, especially in black-box setups. For the exper-

imental phase we considered the well-known YOLO family of detectors and DETR, a recent

model based on transformers. The performance drop varies from 42% on Yolo-v3 to 80%

on Yolo-v3-tiny while the performance of DETR decreased by 53%. Surprisingly, DETR is

less robust than Yolo-v3 despite being newer and more innovative. Our attack exhibits good

transferability also in the case of object detectors, where adversarial perturbations have been

found to generalize well across models with different architectures.

The final case study involves assessing the effectiveness of our method on a newly pro-

posed multimodal explanation model. The model takes an image in input and simultaneously

predicts an activity class and generates a textual explanation and a visual explanation map to

show the reasoning process that led to that prediction. We empirically demonstrate that our

method produces natural-looking images capable of breaking the correlation between activity

and explanation under two different scenarios: keeping the activity the same while attacking

the explanation and changing the activity while keeping the explanation semantically sim-

ilar. We formulated the optimization problem considering different objective functions to

work with different data types (i.e. image data and text data). Based on the adversary’s

intent, the attack can be guided to focus more on disrupting the activity-explanation corre-

lation or to also consider the quality of the adversarial images and find a trade-off between
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the two. The success rate varies between 43.57% and 77.53%. Our method falls behind in

performance compared to CFX, a variant of ColorFool [31] adapted for this task, when the

adversarial perturbation is applied locally to specific regions in the image. This difference

can be attributed to the over-segmentation process employed by our method which identifies

smaller non-sensitive regions in contrast to CFX, and consequently less adversarial pertur-

bation is applied. However, in the case of full image filtering our results align with those

achieved by CFX. These are very interesting results that motivate us to further explore this

topic.

Future work

Different directions could be considered for future work, focusing on both algorithmic ad-

vancements and potential applications. From the methodology perspective, a more com-

prehensive analysis of the filters and their adversarial behaviour could enhance the method’s

performance. For example, conducting an in-depth examination of the frequency and order of

each filter in the adversarial combinations could lead to the discovery of valuable information,

such as identifying filters that are essential for generating effective adversarial perturbations.

These findings could be integrated as prior knowledge into the algorithm to further reduce

the number of queries required to execute an attack. Moreover, the power of multi-objective

optimization could be further exploited to craft targeted attacks or to boost the deceitfulness

of adversarial perturbations.

Additionally, we aim to extend the pool of attacked tasks, for instance including image

segmentation models. By addressing the challenges introduced by the complexity of such

models we can contribute to deepen the understanding of adversarial robustness and the

potential implications of adversarial attacks in various domains.

Another exciting area for exploration is the generation of adversarial image filters with

diffusion models that have recently demonstrated tremendous success in many fields such

as image, video and speech generation, robotics, 3D modeling and neuroscience research.

By taking advantage of the power of diffusion models we could craft diverse and visually

appealing adversarial filters. An extension of this work could consist of integrating large
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language models for text understanding to condition the generation of filters on user-provided

text. This approach would allow users to customize the filters by specifying the characteristics

and the desired visual effect according to their needs and preferences, opening up a new level

of flexibility and control.

Given the recent emergence of the topic, the study of attacks on multimodal explanation

models has uncovered several areas of interest for further investigation. For example, we could

analyze the semantic similarities between activities and incorporate an additional objective

function to explicitly measure and increase the dissimilarity between activities. This could

provide some additional insight about the degree of correlation between activities and expla-

nations. We also want to explore how the information provided by the visual explanation

map can be used directly into the optimization process.

Finally, the study has revealed the lack of methods to evaluate the faithfulness of expla-

nations. Thus, another possible research line could be designing model-agnostic evaluation

methods to allow for comparative analysis of different explanations models.
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Appendix A

Image filters

We show the effectc of image filters in Table A.1 and Table A.2.
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Table A.1: Effects of filters with different intensity β values and α = 1

Filter Original β = 0.5 β = 0.75 β = 1.0 β = 1.25 β = 1.5

Clarendon

Gingham

Juno

Reyes

Lark

Hudson

Slumber

Stinson

Rise

Perpetua
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Table A.2: Effects of filters with different α values and intensity β = 1

Filter Original α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

Clarendon

Gingham

Juno

Reyes

Lark

Hudson

Slumber

Stinson

Rise

Perpetua
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Appendix B

Ablation studies

B.1 Per-instance Single Objective attack
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Figure B.1: Success Rate on MobileNet, ResNet50, VGG19 with DE and ES.

We compare the results of the attacks on ImageNet classifier when using DE and ES as inner

optimization algorithms. For this analysis, we randomly sampled 100 images from the Ima-

geNet validation dataset. We use the following hyperparameters for the outer optimization
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set: population size Nout = 10, number of generations Gout = 10, and mutation probability

ρ = 0.5. We configure DE with F = 0.7, CR=0.5, number of generations = 3 and population

size = 5. We configured ES with a population size Nin = 5 and number of generation Gin = 3,

an initial leaning rate = 0.1 and decay rate =0.75.

Overall, DE reaches higher success rate. The difference between ES and DE is the biggest

when using 3 filters. However, when using 6 filters, the gap between the two is not significant

on 2 out of 3 models. It is important to note that the computation time of DE is ≈ 3×

longer than ES. We do not consider the gain in performance obtained by DE to be worth the

extra computation time. Thus, we chose ES since it has the best trade-off between time and

success rate.

B.2 Per-instance Multi-objective attack: Emotion Recog-

nition

Ablation study: We conduct ablation experiments to verify the contribution of the inner

optimization step implemented with ES and DE. First, we substitute the inner optimization

step with a random approach: in this case the values of the filters’ parameters are changed

randomly. We call this setup Inner-random. Then, we completely remove the inner step and

only run the outer algorithm on the sequence of filters with two configuration: 1) keeping the

values of parameters fixed with default values during mutation (denoted as Outer-default); 2)

allowing the mutation to randomly change the parameters of the substituting filter (denoted

as Outer-random). We use the same hyperparameters setup as in the previous experiments,

that is an outer population size =10, number of generations = 10 and mutation probability

ρ = 0.5. In Table B.1 we report the success rates obtain for each experiment and compare it

with the results obtain with Inner-ES and Inner-DE.

Across the board, we notice an increase in Success Rate when using more sophisticated

parameters optimization, such as ES and DE, with the biggest improvement when using

only 3 filters, which is the most difficult scenario given that the adversarial perturbations

has to be found using less image manipulation operations. These results demonstrate that

the adversarial optimization algorithm benefits from the inner step. We also present the
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Filters Outer-default Outer-random Inner-random Inner-ES Inner-DE

3 filters 85.00 86.25 80.00 91.25 90.00

4 filters 90.00 92.50 92.50 93.75 92.50

5 filters 95.00 91.25 96.25 96.25 100.00

Table B.1: Success Rate (SR%) for different experiment setup.

Optimization 3 filters 4 filters 5 filters

Inner-ES 18s 20s 22s

Inner-DE 65s 70s 75s

Table B.2: Average time (seconds) for one outer generation for ES and DE. For Outer-default,

Outer-random, Inner-random the average time per generation is approximately 3 seconds.

distribution of SSIM scores (Figure B.2) for each experimental setup. We observe that

Inner-DE generates adversarial images with the highest similarity index. Even though there

is no considerable difference between the SSIM score of Inner-ES and the ablated variants,

Inner-ES achieves higher success rate.
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Figure B.2: SSIM score distribution for different experiments and filters.

106



Appendix C

Case study: Many-objective attack

C.1 From multi to many-objective problem

We extend the problem of multi-objective universal attack, that considers only two objective

functions, to a many-objective attack, where three objectives are taken into account: the

success rate, detection rate and a measure to control the amount of the applied perturbation.

In this context, we formulate the optimization problem as:

minimize F(X,X∗) = {1.0− SR(X,X∗), DR(X,X∗), PA(X∗)} (C.1)

where SR is the success rate defined in Equation 4.15, DR is the detection rate defined

in Equation 4.16 and PA is the applied perturbation defined as:

PA(X∗) =
1

n

n∑
i=0

MSE(x∗
i , A(x

∗
i )), (C.2)

where A is a U-net convolutional autoencoder model trained on the original dataset X to au-

tomatically control the perturbations applied by means of the reconstruction error computed

using the mean squared error (MSE) between the perturbed images x∗
i and its reconstructed

variant. The selection process is handled by the NSGA-III [84] survival technique, which is

an extension of the NSGA-II to problems dealing with three objectives.

Experimental setup: We use the Carlini CNN model as target network, the CIFAR-10
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dataset, and Feature Squeezing as detection method as in the previous experiment of Section

4.3.3. As inner optimizer we choose ES since is the best performing one in the universal

multi-objective attack. To measure tje adversarial perturbation we use an anomaly detection

approach where we consider as as anomalous such images, that after the modification, deviate

from the distribution generated by the clean images. We adopt a U-net autoencoder to

automatically compute the amount of perturbation applied to the images by means of its

reconstruction error. By training the U-net model to minimize the reconstruction error

defined by the Mean Squared Error (MSE) on the clean set of images, we can use the MSE

to evaluate how much an image was altered: images heavily modified by the filters will have

a higher reconstructions error than the clean images. During the optimization process we

aim at finding the optimal filter configuration that results in a small reconstruction error.

No. of Filters Successful Adversarial Examples

5

6

7

8

Label names 0:airplane, 1:automobile, 2:bird, 3:cat, 4:deer,

5:dog, 6:frog, 7:horse, 8:ship, 9:truck

Table C.1: Some successful adversarial attacks showing dull and sandblasted effects.

Results: For the attacks, we use 5,6,7, and 8 image filters. First of all we analyzed the

Attack Success Rate and the Detection Rate obtained with sequences of filters of different

lengths. We computed the SR and DR on both training and test set in order to evaluate also

the generalization ability of the algorithm. The results are reported in Table C.2. Also in

this case, increasing the number of filters corresponds to an improvement of the SR values,

resulting in a slight deterioration of the quality of the image. It is interesting to note that, in
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all the cases, the detection rate is very low. This indicates that our attack is highly effective

since less than 5% of the successful adversarial examples have been identified as illegitimate.

Furthermore, we obtain a very good generalization ability given that we only lose between

2% and 6% on SR while still keeping the DR extremely low. With respect to the quality

of the images some considerations have to be made. In all the cases images do not present

artifacts like the ones produced by other [23,87] that, in general, can be easily detected by the

majority of the detection systems [38]. This is clearly an advantage produced by the use of

image filters instead of changing single pixels or adding textures [26,87]. On the other hand,

the composition of more filters sometimes can produce dull and sandblasted effects that are

not sufficiently recognized by the U-net, as shown in Table C.1. Thus, further investigation

is necessary in order to find a more suitable method to assess the image quality.

Training set Test set

No. of Filters SR % DR % SR % DR %

5 74.00 4.00 71.87 2.44

6 80.50 1.20 78.59 1.92

7 82.50 2.40 79.51 2.33

8 83.50 1.19 79.18 1.21

Table C.2: Attack success rate (SR %) and Detection Rate (DR %).
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