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Abstract
Waste-centred-bioenergy generation have been garnering interest over the years due to environmental impact presented 
by fossil fuels. Waste generation is an unavoidable consequence of urbanization and population growth. Sustainable waste 
management techniques that are long term and environmentally benign are required to achieve sustainable development. 
Energy recovery from waste biomass via dark fermentative hydrogen production is a sustainable approach to waste manage-
ment. Vegetable waste is generated in plenty over the food supply chain and being a rich source of carbon and other nutrients 
it has been studied for production of biohydrogen. This review aims to offer a comprehensive overview on the potential of 
vegetable waste as a feedstock for dark fermentative biohydrogen production. The hydrogen output from dark fermentative 
process is lower and additional strategies are required to improve the production. This review addresses the challenges gener-
ally encountered during dark fermentative hydrogen production using vegetable waste and the importance of methods such 
as bioaugmentation and application of extremophiles for process enhancement. The role of machine learning in the field of 
biohydrogen production is briefly discussed. The application of dark fermentative effluents for secondary valuable product 
generation and its contribution to the biohydrogen biorefinery is discussed as well.
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Abbreviations
ANFIS  Adaptive Neuro-Fuzzy Interference System
ANN  Adenosine triphosphate
ATP  Artificial neural network
CBP  Chemical oxygen demand
COD  Consolidated bioprocessing
Fd  Ferredoxin
FVW  Fruit and vegetable waste
GA  Genetic algorithm
GDOC  Groundnut deoiled cake
GHGs  Greenhouse gases
LAB  Lactic acid bacteria
MEC  Microbial electrolysis cell

MFC  Microbial fuel cell
MKLMA  Microbial kinetic with Levenberg–Marquardt
ML  Machine learning
MLPANN  Multilayer perception artificial neural 

network
NADP  Nicotinamide adenine dinucleotide phosphate
PHA  Polyhydroxyalkanoates
RF  Random forests
RSM  Response surface methodology
SVM  Support vector machines
VFA  Volatile fatty acids
VS  Volatile solids

Introduction

Waste generation specifically food waste is an inevitable con-
sequence of urbanization and anthropogenic activities. More 
than US$1 trillion worth of food is wasted every year leading 
to economic and habitat loss due to food loss and conversion 
of natural ecosystems to agricultural land respectively. The 
waste biomass being generated has a lasting effect on the 
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environment with food waste contributing about 8 to 10% of 
greenhouse gas (GHG) emissions. The food waste generated 
contains up to 62% fruit and vegetable waste (by mass), and 
these waste materials are generally subject to either open 
dumping and landfilling or are used as animal feed (United 
Nations Environment Programme 2024). Although these 
practices make use of the waste to a certain level, the envi-
ronmental impact associated with their management still 
remains. Landfilling generates large amounts of methane, a 
potent GHG with 28 times greater global warming potential 
than carbon dioxide over a 100-year period (IEA 2024). The 
anaerobic decay of the organic wastes in the landfill leads 
to methane generation and its release to environment. It has 
been estimated that up to 11% of anthropogenic  CH4 emis-
sions occur from landfills (Singh et al. 2018; Kaza et al. 
2018). Along with the landfill gas generation, the effluent 
generated from the decay can contaminate groundwater 
and could be a breeding point for potential disease-causing 
agents.

With the advent of waste-centred-circular economy 
approach, waste biomass is viewed as a nutrient-rich 
resource rather than a harmful byproduct. Waste generated 
in different sectors of the economy is utilized as a feedstock 
for the production of valuable products. This approach to 
waste remediation enables the establishment of sustainable 
waste management practices that are longer-term and eco-
friendly. Vegetable waste has been studied for its potential 
as a feedstock for generation of diverse commercially impor-
tant products such as biochar; bioactive compounds (pectin); 
bioenergy (biohydrogen, biomethane, and bioethanol); and 
biofertilizers. Biohydrogen, the carbon neutral and energy 
dense (143 GJ/tonne) bioenergy source, is produced from 
vegetable waste by dark and photo fermentative process with 
an anaerobic microorganism (Jayachandran et al. 2022). 
The gross calorific energy value of mixed vegetable waste 
(comprising of beetroot, broad beans, banana plantain, cab-
bage green beans onion, okra, potato, radish, and tomato) 
is 18.92 MJ/Kg (Prem Ananth Surendran and Shanmugam 
2021), making it an efficient feedstock for biohydrogen pro-
duction. In theory, the dark fermentative route can generate 
20.83 mol  H2 from 1 kg COD (chemical oxygen demand) 
of vegetable waste with an energy output of 5906.97 kJ (1.6 
kWh) via the acetic acid fermentation pathway (Dahiya et al. 
2018). However, in reality, the yield is much lesser due to 
cell metabolic requirements and the distribution of energy 
for the generation of unwanted byproducts. Nevertheless, 
the biological route of hydrogen production has displayed 
promising results and is considered as a sustainable alterna-
tive to fossil fuels thereby enabling environmentally benign 
waste management and renewable energy generation.

Dark fermentative hydrogen production from vegeta-
ble waste have been widely studied over the years (Mohan 
et al. 2009; Mohanakrishna et al. 2010a). The research in 

this area have demonstrated the potential of vegetable waste 
as an efficient feedstock for hydrogen producers. However, 
the biohydrogen yield from vegetable waste is lower, and 
researchers have opted for numerous methods to improve it. 
The pretreatment of vegetable waste to improve the yield of 
simpler sugars is a common practice to enhance the hydro-
gen production. Methods such as chemical pretreatment 
namely acid and alkaline treatment, hydrothermal treat-
ment, and enzymatic hydrolysis have been studied (Kumar 
and Mohan 2018). Although these processes help to improve 
the total carbohydrate concentration available for hydrogen 
producers, the majority of the pretreatment techniques gen-
erate byproducts that inhibit the growth of microorganisms 
(Bundhoo and Mohee 2016). An additional detoxification 
process would be required to remove the inhibitors that 
reduce the quantity of hydrogen produced rendering the 
overall process costly. The cost of operation, transportation 
of goods, and many more factors determine the successful 
commercial application of the fermentation process. The 
biomass-based microbial production of hydrogen cost is 
estimated to be INR 813/Kg, €2.5 to 5.5/Kg by the Euro-
pean Union, and the US Department of Energy (DOE) has 
put forth a target lesser than $2/Kg for hydrogen production 
with $8/kWh for storage (DST 2020; EU 2020; DOE 2018). 
The feedstock cost is a critical factor that impacts the over-
all production cost; the application of waste as a potential 
substrate could help reduce the overall cost. Therefore, the 
selection of cost-effective routes and strategies that would 
improve the hydrogen production is needed. Recently, bio-
augmentation and application of mixed microbial cultures 
and extremophiles with diverse metabolic capabilities have 
demonstrated good results. Additionally, the integration of 
machine learning technology with biohydrogen production 
can help to better understand the critical process parameters.

This review explores the advantages and limitations asso-
ciated with the use of vegetable waste as a feedstock for dark 
fermentative hydrogen production. The limitations associated 
with the pretreatment methods are briefly discussed and the 
application of strategies such as extremophiles, bioaugmenta-
tion, single-pot conversion, and mixed culture biotechnology 
for enhancement of hydrogen yield is extensively explored. 
The role of machine learning and its application to dark fer-
mentation are discussed in the context of vegetable waste. Fur-
ther, vegetable waste and its part in the waste-centred-biore-
finery route for generation of valuable products are explored.

Dark fermentation: a brief introduction

Dark fermentative hydrogen production is a promising route 
to hydrogen generation due to its high production rate, low-
cost nature, and ability to handle versatile substrates (Srivas-
tava et al. 2021; Mohanakrishna et al. 2023). The theoretical 
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yield of hydrogen through dark fermentation is dependent on 
the type of anaerobic microorganisms that are used (Mathews 
and Wang 2009). Depending upon the metabolic pathway and 
end product generated by the microorganisms, the hydrogen 
yield will change; with the acetate pathway generating 4 mol 
of  H2 and the butyrate pathway producing evolve 2 mol of  H2 
per mol of glucose respectively (Eqs. (1) and (2)) (Ahmad 
et al. 2024). Obligate anaerobes such as Clostridium acetobu-
tylicum utilize dark fermentation via glycolysis to breakdown 
glucose into pyruvate and NADH. Pyruvate formed is then 
oxidized into acetyl-CoA and  CO2 by pyruvate ferredoxin 
oxidoreductase. This step requires the reduction of a ferre-
doxin (Fd). Acetyl-CoA is converted to acetyl phosphate, 
which results in the formation of ATP and acetate. Hydro-
gen gas is generated by the activity of hydrogenase, which 
oxidizes the reduced ferredoxin to regenerate the oxidized 
ferredoxin (Tenca et al. 2011; Sevinç et al. 2012). Further, 
hydrogen is produced at very low partial pressures (< 60 Pa) 
from the NADH formed during the earlier glycolysis. NADH 
is oxidized by the Fd reduction and an NADH-ferredoxin 
reductase (Mathews and Wang 2009). Dark fermentation in 
facultative anaerobes like Enterobacter aerogenes follows the 
oxidative conversion of pyruvate into formate and acetyl-
CoA by the activity of pyruvate formate lyase. Hydrogen gas 
is formed by the conversion of formate into  CO2 and  H2 by 
hydrogenase enzymes. Acetyl-CoA is converted into acetyl 
phosphate resulting in the formation of ATP and acetate 
(Sevinç et al. 2012; Jayachandran et al. 2022).

Acetate pathway

Butyrate pathway
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Vegetable waste for production 
of value‑added‑products

Vegetable waste is generated from different sectors of the 
food supply chain in the form of peels, stems, rotten resi-
dues, and damaged produce (Fig. 1). The waste generated 
contains high COD and carbohydrate content and can be 
used for the production of a wide variety of products of com-
mercial value. Prem Ananth Surendran and Shanmugam 
(2021) reported that a mixed vegetable waste comprising 
of beetroot, broad beans, banana plantain, cabbage green 
beans onion, okra, potato, radish, and tomato waste con-
tains 6.37% total solids. The organic solids are further clas-
sified as 82.81% volatile solids (VS) and 17.19% ash. The 
total soluble COD and moisture content of the waste was 
1.58 g COD/g VS and 93.63% making it an efficient sub-
strate for biohydrogen production. Vegetable waste gener-
ated can have simpler (easily biodegradable) and complex 
composition (lignocellulosic) based on the source of waste. 
Since waste generated can vary from time to time, charac-
terization or composition analysis of the feedstock (physi-
cal, chemical, or biological) is important for the digestion 
process. Understanding the physio-chemical characteristics 
such as total fixed solids, ash content, volatile solids, pH, 
moisture content, and measure of cellulose, hemicellulose, 
nitrogen, starch, lignin, organic carbon, COD level before the 
fermentation proceeds is important for the overall digestion 

Fig. 1  Schematic representation of different sources of vegetable waste
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process to be successful (Singh et al. 2012). These factors 
will greatly influence the metabolic pathways of the hydro-
gen producers and essentially the end-product of the fer-
mentation. Variations in the initial pH, sugar content, and 
presence of nutrients can have a greater influence on the 
fermentation route, and in order for hydrogen production to 
be successful, a good grasp on these physio-chemical charac-
teristics of the waste is essential. Hence, while working with 
vegetable waste, it is important to characterize the substrate 
before proceeding with the fermentation.

Limitations of feedstock pretreatment

The dark fermentative hydrogen production from vegetable 
waste has been extensively studied over the years (Panin et al. 
2021; Martínez-Mendoza et al. 2022). The studies pertaining 
to vegetable waste have explored co-digestion with other feed-
stock, pretreatment of substrate, and nutrient supplementation 
to enhance the biohydrogen production. Feedstock pretreat-
ment is commonly used to enhance the yield of simple sugars 
that in turn could be utilized by the hydrogen producers. The 
pretreatment methods are categorised into physical, mechani-
cal, chemical, physio-chemical, and biological techniques. 
Briefly, the physical pre-treatment methods such as thermal 
and microwave pre-treatment treat the sample using differ-
ent types of radiation such as gamma rays, microwaves, and 
electron beams (Rajesh Banu et al. 2020). These treatments 
enhance the liquefaction of the substrate by heat generation 
causing cell disruption and also breakage of the glycosidic 
linkages under standard pressure and temperature conditions. 
Mechanical pre-treatment mainly ultrasonication creates vac-
uum bubbles inside the substrate solutions due to pressure; 
these bubbles collapse resulting in the phenomenon called 
cavitation that sends vibrations across the solution causing cell 
disruption due to heat generation (Jiradechakorn et al. 2023). 
Chemical pre-treatment generally involves the hydrolysis of 
the substrate using concentrated or dilute acids  (H2SO4 and 
HCl mainly) and alkalis (NaOH) (Rodríguez-Valderrama 
et al. 2020). Physio-chemical pre-treatments can be thermo-
chemical, hot compressed water treatment, hydrothermal, and 
autoclave pre-treatment. Biological pre-treatments involve 
microbial and enzymatic treatment of the substrate to release 
the sugars to the solution for hydrogen producers to consume 
(Lo et al. 2009; Hitit et al. 2017). Microbial pretreatment can 
be carried out by either fungal or cellulolytic bacteria, while 
enzymes such as cellulases, hemicellulases, laccases, and xyla-
nases are used for enzymatic treatment (Ni et al. 2006).

Among all these pre-treatment techniques, acid and alkaline 
hydrolysis are mostly used. In the majority of studies that dealt 
with food waste comprising of fruits, vegetables, and other 
organic wastes, acid and alkaline hydrolysis of the substrate 
have proven to be very efficient (Ramprakash and Muthukumar 

2018). Acidic pre-treatments are carried out using hydrochloric 
acid (HCl), sulfuric acid  (H2SO4), hydrogen peroxide  (H2O2), 
and acetic acid  (CH3COOH) (Hafid et al. 2015). Acid hydroly-
sis of lignocellulosic vegetable waste (stems, stalk, and peels) 
is performed to efficiently remove the hemicellulose by break-
ing ether bonds in lignin/phenolic-carbohydrate complexes, the 
lignocellulosic components will breakdown into low energy 
compounds causing an increase in solubilisation and hydroly-
sis rate (Hafid et al. 2015). Whereas alkaline treatment using 
sodium hydroxide (NaOH), calcium hydroxide (Ca (OH)2), or 
ammonia is mostly used for lignin hydrolysis. The hydroly-
sis takes place by the cleavage of ester bonds in the lignin/
phenolic-carbohydrate complexes followed by saponification 
of esters of the uronic bonds existing between hemicelluloses 
and lignin (Monlau et al. 2013). This causes the bulging of bio-
mass, an increase in the internal surface area, and a reduction 
in the degree of polymerization. As a result, the lignin structure 
will be disrupted and can be separated from the raw mate-
rial as a fraction rich in phenolic compounds. This increased 
pore size can facilitate the diffusion of hydrolytic enzymes 
(if combined with biological pre-treatment). Although acidic 
and alkaline pre-treatment improve hydrogen production by 
many folds, they become obsolete due to the neutralization of 
substrate required after the treatment and the by-products they 
generate. These pre-treatments of substrates also result in the 
formation of by-products like furan derivatives such as furfural 
and 5-hydroxymethylfurfural (5-HMF), phenolic compounds 
such as vanillin and syringaldehyde, and weak acids such as 
acetate (Bundhoo and Mohee 2016; Muñoz-Páez et al. 2019). 
These byproducts of pretreatments have often been observed 
to be toxic to the microbial growth, decrease the hydrogen 
productivity, and reduce the quantity of hydrogen produced 
rendering the process costly.

Strategies to improve hydrogen production 
from vegetable waste

Mixed microbial cultures

While considering dark fermentation from an economic point 
of view, optimum operational conditions are needed for the 
deployment of the biohydrogen process. Although pure strains 
have demonstrated substantial hydrogen production, for com-
mercial application, pure cultures are not ideal. Vegetable 
waste generation vary as a result of geographical distribution, 
seasonal variations, and consumer demand. The pH of vegeta-
ble waste generally ranges between 4.0 and 4.8 (acidic range) 
(Table 1) and can be complex in nature. The lignocellulosic 
vegetable waste would require an initial hydrolysis treatment 
prior to fermentation. The accumulation of volatile fatty acids 
(VFA) upon fermentation can inhibit the the bacteria activ-
ity as well. Hence, the characteristics of the inoculum are a 
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key factor that influence the fermentation process. A mixed 
microbial culture with a broad enzymatic pool and metabolic 
capabilities is required to adapt with the complex waste and 
dynamic environment. Mixed cultures primarily anaerobic 
sludge have demonstrated efficient waste degradation and 
biohydrogen production from vegetable waste. The presence 
of diverse microbial communities in the mixed culture offers 
efficient substrate utilization and ease in operational control 
and scale up (Mohanakrishna and Pengadeth 2024). How-
ever, the possibility of hydrogen consumption accompanied 
by methane and acetic acid generation by methanogenic and 
homoacetogenic bacteria is high. The unpredictable genera-
tion of unwanted byproduct in response to environmental 
changes is also plausible. This could be avoided by selective 
enrichment of microbial communities, but such techniques 
require additional energy input to the system.

Extremophiles for single pot bioconversion 
of substrate to hydrogen

The advancements in the field of biological hydrogen 
production have led to the transformation of biohydrogen 
production from a multi-vessel bioconversion process to a 
single-vessel approach termed consolidated bioprocessing 
(CBP). Although pre-treatment of vegetable waste helps 
to enhance the yield of hydrogen, the commercial scale 
hydrogen production is hindered greatly by the high cost of 
substrate pre-treatment followed by removal of inhibitory 

compounds of pre-treatment. Hence, to decrease the cost 
of production, the identification and utilization of suitable 
bacterium that can perform hydrolysis and biohydrogen 
production is needed. Thermophiles (60–75 °C) or hyper-
thermophiles (75–90 °C) that contain membrane-bound 
NADPH-dependent hydrogenase enzyme have shown to 
produce higher yields of hydrogen. Thermophilic hydrogen 
fermentations using thermophilic bacteria such as Caldicel-
lulosiruptor saccharolyticus (Pawar et al. 2013) and Ther-
motoga maritima (Saidi et al. 2018) have shown promising 
results for hydrogen production in comparison to the meso-
philic ones. Higher yields under these conditions are due to 
the inactivation of hydrogen consumers such as methano-
gens and sulphate reducing bacteria. Additionally, several 
thermophiles can produce hydrogen from both pentose and 
hexose sugars (Bibra et al. 2018).

Taking into account, the capability of thermophilic strains 
in converting complex wastes to simple sugars and produc-
ing hydrogen the single pot approach or CBP is more attrac-
tive in comparison with the multi-vessel dark fermentation 
(Fig. 2). In CBP enzyme production, feedstock saccharifi-
cation, hydrolysis, and fermentation, all take place without 
the additional need of substrate pretreatment. This will not 
only reduce the use of costly pre-treatment methods but also 
offer the complete utilization of the substrate without waste 
generation. Bibra et al. (2018) in their study on biohydrogen 
production using thermophiles via single-pot bioconversion 
of prairie cordgrass demonstrated the use of a thermophilic 

Fig. 2  Schematic comparison of dark fermentation and single pot conversion process for biohydrogen production
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consortium for hydrogen production from lignocellulosic 
biomass. The thermophilic consortium utilized both glucose 
and xylose at 60 °C and produced 2.2 mmol  H2/g of prairie 
cordgrass. Hasyim et al. (2011) studied the feasibility of 
producing biohydrogen from sago starch in wastewater using 
a thermophilic mixed culture enriched from a hot spring. 
Thermophiles such as T. saccharolyticum, T. thermosulfuri-
genes, and uncultured Thermoanaerobacterium sp. were the 
predominant hydrogen producers in the mixed thermophilic 
culture, and a maximum hydrogen yield of 422 mL  H2/g 
starch was obtained. Pawar et al. (2013) demonstrated biohy-
drogen production from wheat straw hydrolysate using Cal-
dicellulosiruptor saccharolyticus DSM 8903 and observed 
a maximum production rate of 5.2 L  H2/L/Day.

Therefore, the application of thermophilic bacterium or 
thermophilically derived enzymes that are thermostable for 
hydrogen production and pretreatment of vegetable waste 
can greatly contribute towards the commercial applica-
bility of the fermentation process. Single-pot bioconver-
sion or CBP is a promising area of research that can turn 
the tide in the fermentative biohydrogen production from 
lignocellulolytic-based waste. In-depth studies on the role 
metabolic pathway associated with the extremophiles can 
help to understand the microbial behaviour under specific 
conditions.

Indigenous microbial communities

Most of the studies on vegetable used an anaerobic inocu-
lum that required a pre-treatment to inactivate the methano-
gens that consume hydrogen produced during fermentation. 
As aforementioned, substrate and inoculum pre-treatment 
require additional energy. Vegetable waste or any waste 
biomass in itself contains abundant indigenous microflora, 
which are capable of producing hydrogen. In nature, waste 
biomass self-decompose under room temperature if the 
required conditions are met (Marone et al. 2014). This prin-
ciple allows natural selection to take place by controlling 
the reactor operating conditions. Biohydrogen production 
by self-fermentation without any substrate pre-treatment 
and inoculum but using the indigenous microbes within 
the substrate has been studied. Yokoyama et al. (2007) in 
the study on hydrogen production from a dairy cow waste 
slurry examined hydrogen production by batch culture 
using the microflora naturally existing within the slurry in a 
temperature range of 37 to 85 °C. They observed hydrogen 
producing moderate and extremophiles such as Clostridium 
thermocellum and Caldanaerobacter subterraneus in the 
slurry. If the suitable operating conditions are provided, the 
self-fermenting potential of waste biomasses can help to 
decrease the initial pretreatment cost associated with hydro-
gen production. In another study, Kim et al. (2011) demon-
strated a similar simple method to naturally induce hydrogen 

production from food waste by controlling the operation 
temperature. They cultivated the food waste at a temperature 
range of 35 to 60 °C with a 5 °C interval without the addition 
of any inoculum or any pretreatment. Successful hydrogen 
production was achieved in the food waste incubated at a 
range of 50–60 °C with a hydrogen yield of 1.79 mol  H2/mol 
hexose added. Hydrogen producers such as Clostridium sp., 
Acetanaerobacterium elongatum, and Caloramater indicus 
were predominantly present in the fermentation. Marone 
et al. (2014) demonstrated the potential of vegetable waste 
as a substrate and source for microflora for hydrogen pro-
duction in their study on dark fermentation on two different 
substrates made of leaf-shaped vegetable refuses (V) and 
leaf-shaped vegetable refuses plus potato peels (VP). From 
batch experiments under two different mesophilic anaerobic 
conditions (28 °C and 37 °C), they were able to isolate and 
identify different hydrogen producers such as those belong-
ing to the family Enterobacteriaceae (γ-proteobacteria) 
and Streptococcaceae (firmicutes). Apart from this, they 
also found four different genera namely Pectobacterium, 
Raoultella, Rahnella, and Lactococcus that were not previ-
ously reported as HPB from glucose. A hydrogen yield of 
1.6–2.2 mol  H2/mol glucose added was observed from low 
glucose concentration of 1 g/L.

From the literature overview (Shimizu et al. 2008; Kim 
et al. 2009), hydrogen production by self-fermentation is 
achieved without the addition of an external inoculum or 
by pre-treatment of substrate but by carefully controlling 
the important operating parameters such as pH and tem-
perature to enhance the growth of hydrogen producers and 
suppressing the activity of hydrogen consumers. Apart from 
the dependency of hydrogen production on the operating pH 
and temperature, the microbial analysis especially by Kim 
et al. (2011) revealed the temperature-based vulnerability of 
lactic acid bacteria (LAB) and the role of high temperature 
in suppressing the same. LAB are present in most form of 
food products and owing to its unique metabolic character-
istics and antibiotic functions they supress the growth of 
other microbes and impede hydrogen production. Hence 
by carefully monitoring the operating temperature and pH, 
self-fermentation of vegetable waste can help in reducing 
the pre-treatment requirements and can help to enrich the 
indigenous microbes within the substrate to enhance the 
hydrogen production.

Bioaugmentation

Enrichment of the indigenous microbial communities help to 
improve the hydrogen production and the application of bio-
augmentation in this context is advantageous. Bioaugmenta-
tion is the practice of supplementing the existing inoculum 
with specific microbes to improve the substrate utilization 
efficiency, promote microbial growth towards hydrogen 
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production, and reduce the initial lag phase (Mohan et al. 
2007). In the study by Marone et al. (2012) on hydrogen pro-
duction from vegetable waste, enhancement of biohydrogen 
production was achieved by bioaugmentation with indig-
enous microbial communities namely Buttiauxella sp. 4, 
Rahnella sp. 10, and Raoultella sp. 47. The individual strains 
enriched from vegetable waste was supplemented to the self-
fermentative biohydrogen process. The study observed that 
all the individual bacterial inoculum promoted hydrogen 
yield and the production rate. Indigenous microbial commu-
nities Buttiauxella sp. 4, Rahnella sp. 10, and Raoultella sp. 
47 demonstrated potential for hydrogen production from cel-
lulolytic hydrolysates as well. Yang et al. (2016) observed a 
shift in the metabolic pathway of native microbial communi-
ties towards hydrogen production upon bioaugmentation of 
anaerobic granular sludge with Hydrogenispora ethanolica 
LX-B. The hydrogen production improved within a range of 
2.3 to 3.5 mmol  H2/gVS. In another study by Mohan et al. 
(2007), the effect bioaugmentation on enhancing the hydro-
gen production in an anaerobic sequencing batch biofilm 
reactor (AnSBBR) was studied using a selectively enriched 
anaerobic mixed consortium. Bioaugmentation improved 
the reactor performance while the microbes persisted in 
the system until the end of the operation imparting specific 
functional characteristics to the native species. Villanueva-
Galindo and Moreno-Andrade (2021) observed an improved 
hydrogen production of 84.5 mL  H2/g VS and decreased lag 
phase from food waste upon bioaugmentation of anaerobic 
sludge with Bacillus subtilis culture. Therefore, the applica-
tion of bioaugmentation to dark fermentative process can 
help in enhancing the performance of the hydrogen produc-
ers. Synthetic consortium with individual microbes perform-
ing selective functions can be developed by studying the 
properties of the augmented inoculums.

Machine learning in biohydrogen production

When biohydrogen production from complex feedstock such 
as vegetable waste are studied, the control over the process 
is challenged by the diverse and variable nature of the feed-
stock. When mixed cultures are used as the biocatalyst, the 
variability increases and this would make it difficult to iden-
tify the operational parameters involved and the community 
dynamics existing within the system. Hence, mathematical 
models would fail to optimize the nonlinear and complex 
relationships that exist in dark fermentation. Modelling of 
biohydrogen is the cornerstone for scale up and optimiza-
tion of the dynamic biohydrogen generation system (Wang 
et al. 2021a; Kumar Sharma et al. 2022). Machine learning 
(ML) based statistical tools such as Artificial neural net-
works (ANNs), Random forests (RF), Adaptive neuro-fuzzy 
interference system (ANFIS), Genetic algorithm (GA), and 
Support vector machines (SVMs) have shown great potential 

in hydrogen-related technologies over the past few years 
(Table 2). The diverse algorithms enable accurate prediction 
of the expected outcomes by pooling through the databases 
(Kazemi et al. 2020; Hosseinzadeh et al. 2020; Vendruscolo 
et al. 2020).

ML being a data-driven method is independent of the 
complex interconnections that exist in the mathematical 
models. Unlike the conventional methods where the stoichi-
ometry and background mechanisms are considered, ML’s 
entire approach is based on publicly accessible online data 
or old recording of the procedure and being a data-driven 
method; the algorithms can handle the complex multivariate 
data and predict non-linear connection (Kumar Sharma et al. 
2022). Apart from this, it maps the non-linear input–out-
put connections and does not necessarily require a general 
understanding of stoichiometry or background mechanisms. 
ML algorithm based biohydrogen prediction generally fol-
lows a trend. For a dark fermentative biohydrogen produc-
tion from waste biomass for example vegetable waste, the 
initial inputs and the outputs of the fermentation are used to 
predict the performance, optimize, and predict the outcome 
of the process. Based on the objective of the process, the 
models (ANN, SVM, RF, and GA) with the help of the exist-
ing data available in literature will reduce the variables of 
the process and generate the expected of the fermentation. 
Wang et al. (2021a) compared and evaluated three differ-
ent modelling techniques namely the multilayer perception 
artificial neural network (MLPANN), the response surface 
methodology (RSM), and the microbial kinetic with Lev-
enberg–Marquardt algorithm (MKLMA) for dark fermen-
tation. In the study, a robust paradigm was proposed for 
modelling the major metabolic intermediates during dark 
fermentation for biohydrogen production. From the study, 
it was conferred that with respect to the data, MKLMA 
model requires a longer computing time in comparison to the 
MLPANN model. MLPANN model being a soft computing 
approach has an added advantage of being faster in imple-
menting the kinetic correlations between the key metabolic 
intermediates.

In another study by Wang et al. (2021b) on dark fermen-
tation, optimization of the process was demonstrated by a 
novel hybrid approach that combined ANNs with RSM. 
The methodology applied helped in the analysis of criti-
cal operational parameters such as the carbon sources (from 
potato peel wastes and starchy wastes); pH; microbial load 
on hydrogen production; concentration of the intermediate 
metabolites (acetic acid, propionic acid etc.); and the metal 
cofactor  Fe0. Apart from this, the hybrid model demonstrated 
the generation of 106.2  cm3/g hydrogen under the optimal 
operational conditions. Mahata et al. (2020) in their study 
on improvement of dark fermentative, hydrogen production 
from organic wastes using acidogenic mixed consortia used 
ML techniques such as ANN and SVM. The experimental 
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results of biohydrogen production from starchy wastewater 
supplemented with groundnut de-oiled cake (GDOC) were 
analysed by RSM, ANN, and SVM. From their studies, they 
demonstrated that the SVM model a previously less explored 
model had similar prediction capability in comparison with 
RSM and ANN. Apart from that they combined the ML 
techniques with GA and particle swarm optimization (PSO) 
to estimate the optimal process parameters. The SVM-based 
model showed a 2.1-fold hydrogen production in comparison 
to the un-optimized process.

ML algorithms offer potential as a faster prediction tool 
for biohydrogen production by taking into account the non-
linear interactions between the operational parameters. 
Models such as ANN that are simple and could imitate the 
structures of the biological neural networks will clarify the 
intricate connections that exist between numerous compo-
nents of fermentation process and would prove useful in pre-
diction of optimum operational conditions. The research in 
this field is at its nascent state and require in-depth studies 
to contribute towards optimization of process parameters. 
Additionally, research should be directed to studying the 
effect of inhibitors on fermentation along with development 
of the optimal process conditions for maximum yield of 
biohydrogen.

Limitations, future direction 
and biohydrogen‑biorefinery

In spite of having a high hydrogen production rate (192 
 m3  H2/  m3-d), dark fermentative biohydrogen production 
technology is not commercialised for bioenergy generation 
due to low hydrogen yield. The maximum hydrogen yield 
observed is around 2 mol  H2/ mol hexose because of thermo-
dynamic limitations and it accounts to only 20% of substrate 
electrons. This would imply that 60–70% of electrons are 
trapped within the carboxylate end products and 10 to 20% 
electrons for cell growth (biomass associated and utilization-
associated electron) (Lee et al. 2022). Hence, considering 
the dark fermentative process from an economic perspective, 
the practical implementation of the biohydrogen production 
units would be costly. Therefore, post-hydrogen production 
from the carboxylate would play a major role in commer-
cializing dark fermentation technology. The integration of 
microbial electrolysis cell (MEC) with dark fermentation 
can help to counter these challenges. MECs being versatile 
technology produce hydrogen in the cathodic compartment 
by making use of the carboxylate fraction of dark effluent 
in the anodic compartment (Magdalena et al. 2023). The 
anode colonised by exoelectrogenic bacterial communities 
capable of carboxylate metabolism would help to generate 
hydrogen with a maximum production rate of 18  m3  H2/
m3-d. Up to 6 mol  H2 mol  H2/mol hexose can be generated Ta
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when MEC is combined with the dark fermentation process 
(Lee et al. 2022).

The VFA generated from the dark fermentation would 
serve as low-cost carbon source for microalgal cultiva-
tion and photo fermentative hydrogen production and as 
precursors for the production of secondary metabolites 
such as polyhydroxyalkanoates (PHA), and 1,3-propan-
ediol (1,3-PD) (Kora et al. 2023) (Fig. 3). Dark fermenta-
tive hydrogen production, although has higher production 
rate, yields lower hydrogen molecules in comparison with 
the photo fermentative route of hydrogen production. The 
fermentative effluent serves as a simpler carbon source for 
photo fermentative bacteria such as the purple non-sulfur 
bacteria belonging to Rhodobacteraceae and Rhodospiril-
laceae family for hydrogen generation in the presence of 
light under anaerobic condition (Rao and Basak 2022; Sen 
et al. 2024). Although, photo-fermentative hydrogen pro-
duction from VFAs have been explored, their dependency 
on sunlight can restrict their application. The residual car-
bon fraction of the effluent could also serve as the primary 
substrate for exoelectrogenic microbes in bioelectrochemical 
systems such as microbial fuel cells (MFC) bioelectricity 
production as well (Mohanakrishna et al. 2010b). Simi-
larly, the effluent would be an efficient alternative to nutri-
ent media for commercially relevant microalgal growth and 
biomass generation. Microalgal cultivation in the organic 
acid rich effluent contributes greatly towards the vision 

of microalgae-centred-waste-biorefinery. Microalgae, the 
photosynthetic microorganism, is considered a powerhouse 
of lipids, carbohydrates, proteins, and other nutrients and 
has potential applications in the biodiesel, nutraceutical, 
and bioenergy fields, and would enable energy recovery 
and effluent treatment simultaneously. Several second-
ary metabolite productions occur from the harvested algal 
biomass thereby setting off a chain of diverse product gen-
eration (Chiranjeevi and Venkata Mohan 2017). One of the 
most prominent routes to acidogenic effluent utilization is its 
application in generation of PHAs, the emerging alternative 
to petroleum-based plastics (Martinez et al. 2016; Tamang 
and Nogueira 2021; Lagoa-Costa et al. 2022). The microbial 
generation of these polyesters have been extensively studied 
and a PHA generation ranging between 30 and 70% have 
been observed from fermentative effluent by mixed and pure 
bacterial cultures namely Bacillus tequilensis, Cupriavidus 
necator, Pseudomonas oleovorans, Alcaligenes eutrophus, 
and many more (Venkateswar Reddy and Venkata Mohan 
2012; Aremu et al. 2021; Khatami et al. 2022).

Hence, the integration of multiple unit operations can 
help in the profitability of the dark fermentative process. 
As aforementioned, the utilization of fermentative efflu-
ents, mixed microbial cultures, and extremophiles with 
diverse metabolic capabilities can improve the prospects 
of the process. However, further in-depth studies on the 
dynamics between the microbial communities and their 

Fig. 3  Schematic diagram on biohydrogen biorefinery utilizing the acidogenic effluents from dark fermentation
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influence on the end product generation is required. 
Although synergic interactions yield effective results, 
the presence of diverse bacterial communities could also 
induce feedstock related competition and antagonism 
as well (Mohanakrishna and Pengadeth 2024). With the 
recent advancements in synthetic biology, the keystone 
species in the mixed cultures can be identified and could 
be further modelled to direct their metabolism towards 
hydrogen production by metabolic pathway manipula-
tion. The development of synthetic cultures with known 
hydrogen producers would offer a better understanding on 
the intricate pathways involved in byproduct generation. 
Further studies on extremophiles and their integration with 
genetic engineering can help to develop bacterial strains 
capable of carrying out substrate hydrolysis and hydrogen 
production simultaneously to avoid the expensive pretreat-
ment methods (Byrne et al. 2021). The addition of machine 
learning tools in biohydrogen processes has paved the way 
for researchers in understanding the process parameters 
and their influence in hydrogen production; however, the 
studies on ML pertaining to vegetable waste is scarce in 
literature and needs further exploration. The studies on 
hydrogen production from vegetable waste are restricted 
to batch systems mostly. However, for commercial deploy-
ment of production units, continuous fermentation set-ups 
are required and research is needed in this direction.

Conclusion

Dark fermentative hydrogen production from vegetable 
waste is an attractive solution for waste management and 
sustainable energy generation. This review explored the 
recent strategies to improve hydrogen production from veg-
etable waste with emphasis on bioaugmentation and mixed 
cultures. The advantages of extremophiles for single-pot-
conversion of feedstock to hydrogen was reviewed. One of 
the major setbacks in dark fermentation is the formation of 
unwanted byproducts, the application of these effluents for 
secondary value-added products would help to improve the 
development of full-scale fermentation set-ups. With process 
integration, green hydrogen generation and its implementa-
tion within the framework of circular bioeconomy could be 
achieved.
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