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ABSTRACT

5-Aryl-1,3-dioxolan-4-one heterocycles derived from mandelic acid derivatives and hexafluoroacetone have been identified as new and effective
pro-nucleophiles in highly diastereo- and enantioselective Michael addition reactions to nitro olefins catalyzed by bifunctional epi-9-amino-
9-deoxy cinchona alkaloid derivatives. Diastereoselectivities up to 98% and enantioselectivities up to 89% for a range of nitro olefins and
5-aryl-1,3-dioxolan-4-ones under mild reaction conditions are reported.

Single enantiomer bifunctional organocatalysts derived from
cinchona alkaloids or cyclohexane diamine have emerged
as powerful tools for the enantioselective formation of
carbon-carbon and carbon-heteroatom bonds.1 Their ready
preparation and ability to impart high enantiocontrol in the
addition of carbon- and heteroatom-centered nucleophiles to
a variety of electrophiles have all contributed to the pace of
the field.2,3 While most efforts have concentrated on the
development of the range of electrophilic components, less
attention has been devoted to expanding the pool of carbon-
centered pro-nucleophiles attuned to this type of catalysis.

To address this, we have been searching fornew and syn-
thetically Versatile pro-nucleophilic entitiesthat would
partake in highly stereoselective reactions mediated by metal-
free bifunctional catalysts that our group, and others, have
developed. One family of heterocycles, the 1,3-dioxolan-4-
ones, was particularly attractive owing to the simplicity of
their structure combined with their ready synthesis (Scheme
1). We postulated that the tunability arising from pos-
sible structural and electronic variations to the group at the
5-position and the acetal function could provide the nec-
essary acidity/nucleophilicity profile for some derivatives to
partake in enantioselective Lewis base/Brønsted acid bifunc-
tional organocatalyst mediated additions to electrophiles† The University of Manchester.
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(X ) Y). Additionally, the use of such pro-nucleophiles
would provide adducts with an activated ester moiety, which
could undergo hydrolysis, aminolysis, and alcoholysis reac-
tions to yield a range of useful chiral building blocks
containing up to two adjacent, and possibly fully substituted,
stereocenters.4

Here, we present our findings on the use of 5-aryl-1,3-
dioxolan-4-ones as pro-nucleophiles in the enantioselective
organocatalytic Michael addition to nitro olefins. The
subsequent manipulation of the adducts, exploiting the natural
reactivity of the carbonyl group, is also reported.

Proof of reactivity studies were required to assess whether
the acidity/nucleophilicity profile of selected 1,3-dioxolan-
4-ones was sufficient for the direct organocatalyzed Michael
addition to nitro olefins. A preliminary study was partially

encouraging; heterocycle2a, derived from mandelic acid and
acetone,5 reacted withtrans-â-nitrostyrene with DABCO
(10%) as catalyst in THF at 30°C but the conversion was
<5% after 14 days (Table 1, entry 1). Ascribing this to an

insufficiently low pKa of 2a, we then investigated the
analogous heterocycle2b where the methyl groups had been
substituted by trifluoromethyl groups.6 This switch was
necessary to lower the pKa sufficiently to allow enolization
and hence activation by the amine base; Michael adduct4b
was formed smoothly and efficiently with DABCO in THF
at 30 °C for 96 h. In addition, the diastereoselectivity of
this tertiary amine catalyzed process was excellent (>98%;
Table 1, entry 2).

Having established a good reactivity profile with2b and
trans-â-nitrostyrene, a screen of a small library of cincho-

(3) For recent applications of epi-9-amino-9-deoxy cinchona alkaloid
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Scheme 1. 1,3-Dioxolan-4-ones as Potential Pro-nucleophiles
in Enantioselective Organocatalytic Additions to Electrophiles

Figure 1. DABCO and cinchonine derived organocatalysts.

Table 1. Catalyst Screen and Reaction Condition
Optimizationa

entry cat. R solvent
temp
(°C) convn (%)b

de
(%)b

ee
(%)c

1 1ad Me THF 30 <5e

2 1ad CF3 THF 30 >98f >98
3 1c CF3 DCM 0 >60g >80 65
4 1c CF3 PhMe 0 >98h >98 76
5 1c CF3 TBME 0 >98g >85 57
6 1b CF3 DCM 0 >80g >98 43
7 1d CF3 DCM 0 >98g >95 70
8 1e CF3 DCM 0 >40g >90 51
9 1f CF3 DCM 0 >40g >90 26

10 1g CF3 DCM 0 >85g >80 56

a Reaction was carried out with2 (1.0 equiv),3a (0.5 equiv), and1b-g
(0.05 equiv) in solvent (1.0 M in3). b Determined by1H NMR. c Determined
by HPLC analysis with a chiral column.d 0.1 equiv used.e After 14 days.
f After 96 h. g After 72 h. h After 48 h.
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nine-derived bifunctional organocatalysts then followed.
Other typical reaction parameters such as solvent and
temperature were systematically varied and a selection of
the findings are detailed in Table 1. Interestingly, catalyst
1c, which we found to be optimal in enantioselective
dimethyl malonate Michael additions3f and Mannich reac-
tions,3g was also found to be optimal in this study. In toluene
at 0 °C for 48 h, catalyst1c afforded Michael adduct4b in
76% ee and>98% de (Table 1, entry 4).

With the optimal conditions established, the scope of the
Michael addition reaction was surveyed by initially probing
changes to the Michael acceptor. A range of heteroaromatic
and aromatic nitro olefins bearing electron-donating or
-accepting substituents in theortho, meta, andparapositions
were treated with 5-phenyl-1,3-dioxolan-4-one2b in toluene
at 0 °C in the presence of1c. Enantioselectivities ranged
from 60% to 89% ee (Table 2). Substituents in the ortho

position on the ring increased reaction time and gave rise to
the highest enantioselectivities (entries 1 and 12, 89% and
82% ee, respectively). Despite conditions being optimal for
enantioselectivity, the reaction yields occasionally fell into
the 50s when toluene was used as solvent. In such cases,
yields could be enhanced by switching to dichloromethane
as solvent where only a small decrease in enantioselectivity
was observed (Table 2, entries 2, 5, and 8 vs entries 1, 4,
and 7, respectively).

Attention then moved to the aryl group of the pro-
nucleophile; three derivatives of2b, bearing electron-
donating or electron-withdrawing groups in theparaposition
of the phenyl ring,5a-c, were prepared from the parent

mandelic acids and hexafluoroacetone. These were subse-
quently treated withtrans-â-nitrostyrene and catalyst1c in
dichloromethane at 0°C. In all three cases the adducts6a-c
were formed in high yield and diastereoselectivity. Reaction
rates varied considerably with the fastest belonging to the
most electron poor derivative6a. Enantioselectivities were
moderate to good in all cases (Table 3).

With the scope of the reaction established, the synthetic
utility of the Michael adducts was investigated. A selected
adductrac-4b was synthesized on a gram scale and subjected
to routine alcoholysis, hydrolysis, and aminolysis conditions
(Scheme 2).

Potassium carbonate mediated methanolysis at room
temperature gave a quantitative yield of methyl ester7
whereas treatment with aqueous potassium carbonate solution
afforded theR-hydroxy acid8 in unoptimized 51% yield.
Aminolysis with propylamine in dichloromethane afforded
the propylamide9 in quantitative yield after stirring for 15

Table 2. Scope of the Michael Addition Reaction of2ba

entry R solvent
time
(h)

yield
(%)b

de
(%)c

ee
(%)d

1 4c o-Br-Ph PhMe 336 58 >98 89
2 4c o-Br-Ph CH2Cl2 288 72 >98 79
3 4d m-Br-Ph PhMe 30 71 >98 68
4 4e p-Br-Ph PhMe 72 59 >98 73
5 4e p-Br-Ph CH2Cl2 48 85 >97 68
6 4f o-OMe-Ph PhMe 72 65 >97 74
7 4g m-OMe-Ph PhMe 24 50 >97 71
8 4g m-OMe-Ph CH2Cl2 48 70 >98 68
9 4h p-OMe-Ph PhMe 72 81 >97 73

10 4i m-Me-Ph PhMe 40 70 >98 69
11 4j p-Me-Ph PhMe 40 67 >97 70
12 4k o-Cl-Ph PhMe 264 52 >97 82
13 4l 2-naphth PhMe 72 62 >97 75
14 4m 2-furyl PhMe 24 69 >93 60
15 4n 2-thienyl PhMe 48 88 >98 66

a Reaction was carried out with2b (1.0 equiv),3b-n (0.5 equiv), and
1c (0.05 equiv) in solvent (1.0 M in3). b Isolated yield.c Determined by
1H NMR. d Determined by HPLC analysis with a chiral column.

Table 3. Scope with Respect to the Dioxolanone
Pro-nucleophilea

entry R
time
(h)

yield
(%)b

de
(%)c

ee
(%)d

1 6a p-CF3-Ph 2 71 >98 60
2 6b p-Br-Ph 24 92 >98 60
3 6c p-OMe-Ph 48 77 >98 70

a Reaction was carried out with5a-c (1.0 equiv),3a (0.5 equiv), and
1c (0.05 equiv) in CH2Cl2 (1.0 M in 3). b Isolated yield.c Determined by
1H NMR. d Determined by HPLC analysis with a chiral column.

Scheme 2. Reactions Demonstrating the Synthetic Utility of
the Michael Adducts and X-ray Structure of (R,R,R)-11
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min at room temperature. A zinc/aqueous hydrochloric acid
reduction of the nitro group yielded theγ-lactam10 in 98%
yield.4b,7

In a further aminolysis reaction with (R)-1-(4-methoxy-
phenyl)ethylamine, the absolute and relative stereochem-
istry of one (11) of the two diastereomeric products (11 +
12) was unambiguously determined by single-crystal X-ray
diffraction as (R,R,R).7 In a repeat of this aminolysis reaction
with enantioenriched4b (76% ee,>98% de) from Table 1,
11was found to be the major diastereoisomeric product. This
result confirmed the preferential addition of the dioxolan-
4-one nucleophile to theRe face of trans-â-nitrostyrene
mediated by bifunctional catalyst1c, in agreement with our
previous studies using dimethyl malonate.3f

In conclusion, racemic 5-aryl-1,3-dioxolan-4-ones have
proven effective as pro-nucleophiles in stereoselective Michael
addition reactions to nitro olefins catalyzed by bifunctional
cinchona alkaloid-derived organocatalysts. The reaction

products contain two contiguous stereogenic centers, one of
which is a fully substitued carbinol, and are formed with
near-perfect diastereocontrol and in good enantiomeric
excess. The efficient transformation of the Michael adducts
into R-hydroxy acid derivatives has also been demonstrated.
Work to expand further the pro-nucleophile pool and to
exploit 5-aryl-1,3-dioxolan-4-ones in other addition reactions
is underway and will be reported in due course.
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