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Anharmonic parametric excitation in optical lattices
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We study both experimentally and theoretically the losses induced by parametric excitation in far-off-
resonance optical lattices. The atoms confined in a one-dimensional sinusoidal lattice present an excitation
spectrum and dynamics substantially different from those expected for a harmonic potential. We develop a
model based on the actual atomic Hamiltonian in the lattice and we introduce semiempirically a broadening of
the width of lattice energy bands which can physically arise from inhomogeneities and fluctuations of the
lattice, and also from atomic collisions. The position and strength of the parametric resonances and the
evolution of the number of trapped atoms are satisfactorily described by our model.
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[. INTRODUCTION gate the cross-dimensional rethermalization dynamics medi-
ated by elastic collisionk7,6].

The phenomenon of parametric excitation of the motion Most theoretical studies of parametric excitation rely on a
of cold trapped atoms has recently been the subject of severglassical8] or quantum[1] harmonic approximation of the
theoretical and experimental investigatidis-3]. The exci- confin_ing potential._ Under certain circumstances.these ex-
tation caused by resonant amplitude noise has been proposBEgssions show quite good agreement with experimental re-
as one of the major sources of heating in far-off-resonanc&Ults [3]. However, general features of the optical lattice
optical trapFORT's), where the heating due to spontaneousCOU|d l_ae Iost_ln these approaches. For example, a sinusoidal
scattering forces is strongly reduc@dl]. In particular, the Potential exhibits an energy-band structure and a spread of
effect of resonant excitation is expected to be particularhyfransition energies, while harmonic oscillators have just a
important in optical lattices, which usually provide a very dlsqretg equidistant spectrum. Thus, we might expect .that the
strong confinement to the atoms, resulting in a large vibragXcitation process may happen at several frequencies, and
tional frequency and in a correspondingly large transfer oWvith & non-negligible bandwidth. Such anharmonic effects
energy from the noise field to the atoifis. can be |mportar_1t whenever t_he atoms are occupying a rela-

Nevertheless, parametric excitation is not only a source ofiVely large fraction of the lattice energy levels. The purpose
heating, but it also represents a very useful tool to characteff this paper is to give a simple description of parametric
ize the spring constant of a FORT or in general of a trap foxcitation in a sinusoidal 1D Iatt|ce._|n Sec. Il, we briefly
cold particles, and to study the dynamics of the trapped gagliscuss general features of the stationary states on such a
Indeed, the trap frequencies can be measured by intentionalf§ttice. Then, we summarize the harmonic description given
exciting the trap vibrational modes with a small modulationin Ref. [1] and extend it to the anharmonic case. By a nu-
of the amplitude of the trapping potential, which results inMerical evaluation of transition rates, we make a temporal
heating[5] or losses[2,6] for the trapped atoms when the descrl_pt|on of parametric excitation which is compared W|th
modulation frequency is tuned to twice the oscillation fre-experimental results. We discuss the relevance of broadening
quency. This procedure usually yields frequencies that sati®f the spectral lines in order to understand the excitation
factorily agree with calculated values, and are indeed exProcessin this kind of system. Some conclusions are given in
pected to be accurate for the atoms at the bottom of theec. V.
trapping potential. From the measured trap frequencies it is
then possible to estimate quantities su.c.h as the trap depth”_ STATIONARY STATES OF A SINUSOIDAL OPTICAL
and the number and phase space densities of trapped atoms. LATTICE
We note that this kind of measurement is particularly impor-
tant in optical lattices, since the spatial resolution of standard The Hamiltonian for an atom in a red detuned FORT is
imaging techniques is usually not enough to estimate the

atomic density from a measurement of the volume of a single p2
lattice site. . . . H=——+Ve(X), (2.1)
Recently, one-dimensionélD) lattices have proved to be 2M

the proper environment to study collisional processes in large

and dense samples of cold atoms, using a trapping potentig};i,

independent of the magnetic state of the atoms. In this sys-

tem, the parametric excitation of the energetic vibrational R _

mode along the lattice provides an efficient way to investi- Vei(X) = — Fa|E(X)|?, (2.2
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wherea is the effective atomic polarizations aé¢x) is the TABLE I. Energy spectrum in units ot wy obtained from the
radiation field amplitude. For the axial motion in a sinusoidaldiagonalization of the Hamiltonian E.4) for Vo= 10.5% wg in a
1D lattice we can take harmonic basis set with the lowest 40 functions. The third column

shows the bandwidths,, Egs.(3.14) and (4.2), used in the nu-

2 merical simulations reported in Sec. IV.

HaﬁﬁJrV0 cog(kz) (2.3
r E: Erv1—Er Oy
2
\% 0 0.494 0.976 0.014
z 0 . . .

=om T g 1T cos2kz)]. 1 1.470 0.95 0.015
(2.4 2 2.420 0.923 0.019
. . L . 3 3.343 0.897 0.025
The corresponding stationary Schioger equation 4 4.240 0.867 0032
12 d2d Vo 5 5.107 0.837 0.042
————+ —(1+coq2kz))D=ED (2.5 6 5.944 0.802 0.051
2M dz2 2 7 6.746 0.767 0.062
. . . N 8 7.513 0.727 0.072
can be written in canonical Mathieu’s form 9 8.240 0.680 0.082
d2 10 8.920 0.624 0.092

— +(a—2qcosA)P=0 (2.6 1 9.544 0.551

du 12 10.095 0.402

with 13 10.497
a=|E— b 2_M 2q= b 2_M _ (2.7) with frequencyw,. The diagonalization of the Hamiltonian
2 )\ n2k? 2\ p2k? matrix associated to E42.4) using 40 basis functions gives

) ) o the eigenvalue&, <V, shown in Table | foVy=10.5: w,.
It is well known that there exists Countably infinite sets of According to the results of last paragraph, the eigenva'ues 12

characteristic valuefa,} and{b,} which, respectively, yield and 13 belong to the same band while the band width for
even and odd periodic solutions of the Mathieu equationjower levels is smaller than 0.4,

These values also separate regions of stability. In particular,
for q=0 the band structure of the sinusoidal lattice corre-
sponds to energy eigenvalues betwegrandb, , ; [9]. The
unstable regions are betwebpanda,. For g<1, there is As already mentioned, parametric excitation of the
an analytical expression for the bandwid€: trapped atoms consists of applying a small modulation to the

le—ar~24”5ﬂq(l’z)r+(3’4)e*4\’a/r!. 2.8 intensity of the trapping light

IIl. PARAMETRIC EXCITATION

2
The quantities defined above can be expressed in terms of a H= P_+Veﬁ[1+ e(t)]. (3.1
frequencyw, defined in the harmonic approximation of the 2M

potential L . . . ,
Within first order perturbation theory, this additional field

1 Vo (2k)? induces transitions between the stationary staesnd m
2_ "0 .
FMwg=%—7—, (2.9 with an averaged rate

thus obtaining 2

R —1—_iJ’TdT ot
mn =T |7, tT(m,n)e(t)e
4V,

a: —_—
2 2
h wg

g Vo g Vo) 2.1
7 I e et IR R E —E,

77 2
=%|T(m,n)| S(omn);  Omn= 4 )

Thus, the width of the band can be estimated using Eqg.
(2.8) whenever the condition\, /% wo)?>1 is satisfied. In (3.2
the experiment we shall be working with a 1D optical lattice
havingVy~ 10.5: w,. While the lowest band=0 has a neg- Where
ligible width ~10™ 184w, the bandwidths for highest lying
levelsr=10, 11, 12, and 13 would, respectively, be 0.0065,
0.1036, 1.52, and 20.56 in units biv.

In order to determine the energy spectrum, a variational
calculation can be performed. We considered a harmonic oss the matrix element of the space part of the perturbation
cillator basis set centered in a given site of the lattice, anénd

1 ~
T(m,m) =(m|Verln) = Endom— 5o (MPZn) (3.3
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2 (T transition matrix elementd (n,m) will be different from
S(w)= ;fo drcoswr(e(t)e(t+ 7)) (3.4  zero for a wider set of pairsn(m). Besides, the transition
energies will not be unique so that the excitation process is

is the one-sided power spectrum of the two-time correlatior'Ot determined by the excitation power spectrum at a single
function associated to the excitation field amplitude. given frequency @, and its subharmonicsa/n. As an

If the confining potential is approximated by a harmonicexample’ th_e transition energies for _the specific potential
well. the transition rates different from zero are considered in this work are reported in Table I. Therefore,

within the model Hamiltonian of Eq3.1), resonance effects

ng can occur for several frequencies that may alter the shape of
Rn<—n:1_6$(0)(2n+ 1), (3.5  the population distribution within the trap. However, in gen-
eral these resonant excitations will not be associated with the
w2 escape of trapped atoms.
RniZHn:ES(Z(”O)(n"F 1+1)(n+1). (3.6 Here we are interested in a 1D lattice; the direct extension

of the formalism mentioned above requires the evaluation of
the matrix elementd'(n,m) among the different Mathieu
states that conform a band. This involves integrals which, to
our knowledge, lack an analytical expression and require nu-
. - merical evaluation. As an alternative, we consider functions
(E)= 56035(2600)('3 , (3.70  which variationally approximate the Mathieu functions. They

are the eigenstates of the Hamiltonian E®.4) in a har-
monic basis set of frequenayy:

The latter equation was used|ib] to obtain a simple expres-
sion for the heating rate

showing its exponential character. The dependencegni®

characteristic of the parametric nature of the excitation pro-

cess. The fact that is not present is consistent with the I max

applicability of Eq.(3.7) in the classical regime. Iny=> Cnil) wy- (3.9
Classically, parametric harmonic oscillators exhibit reso- =1

nances not just atd@, but also at 2,/n with n any natural

number([8]. In fact, the resonances correspondingnte2,  These states are ordered according to their eneEyy:

i.e., at an excitation frequency,, have been observed in <E_ ., as exemplified in Table I. Within this scheme one

optical lattices[2,6]. A quantum description of parametric gbtains a very simple expression f6¢n,m)

harmonic excitation also predicts resonances at the same fre-

quencies vianth-order perturbation theoffL0]. In particular,

the presence of the resonanceawvgtcan be justified with the P

following argument. Accordinzl)@to the standard procedure, T(n’m):En‘Snm_ijz::l Cnicnjm<'|P2|J>- (3.10

the second-order correction to the transition amplitude be- '

tween statesn) and|m) is given by

imax 1

L It is recognized that any discrete basis set approximation to a
=1 system with a band spectrum will lack features of the origi-
Rgln:<”|u(2)(t0't)|m>:; (7) T(n,k)T(k,m), nal problem which have to be carefully analyzed. Anyway,
alternatives to a discrete basis approach may be cumbersome
t ' t ' and not necessarily yield a better approach to understanding
dt’elond’e(t’) [ dt’e' ok’ g(t"), (3.9 general properties of experimental data. While the discrete
to to basis approach is exact for transitions between the lowest
levels, which have a negligible width, eigenstates belonging

. (2) _ . .
with 24"*(to,t) the second-order correction to the evolution "\ 4 ot measurabe width should be treated with special

operatorid. Therefore, the transition may be described as &are. Thus. we shall assume that matrix elem difts, 1)

two-step procedurpm)« k)« |n). For harmonic parametric . , , . i
excitation the matrix element of the space part of the pertur'—nvOIVIng states with energies, and&,,, so thatk, = (&,

— <£ < — I -
bation differs from zero just for transitiona)«—|n) and|n Eq1)/2=,=<Ent (En. 1~ Ey)/2 with an analogous ex

. R . . pression forg, , are well approximated by(n,m).
+2)«|n). Consider a transition in Eq3.8) involving a A . . . i
“first” step in which the state does not chang® < |n) and Within this scheme the equations which describe the prob

a “second” step for which|n=2)«|n). Then resonance ability P(n) of finding an atom in leveh, given the transi-

phenomena occur when the total energy of the two excita'Elon fatesRm.n, are

tions, 22.Q), coincides with that of the second step transition,
i.e., for an excitation frequencf) = w,. . o

These ideas can be directly extended to anharmonic po- P(”):% RinZn(P(m)—P(n)) (3.1
tentials: the corresponding transition probability rates
R(n,m) would be determined by the transition matrix
T(n,m), by the transition frequencies,,, and by the time in the first-order perturbation theory scheme, and the finite
dependence of the excitatio#(t). In general, anharmonic difference equations
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Pa()=Pp(to)+ X RE (Py(te) = Pu(to)) (t—to)
m

+ 2 RO (Pt ~Poto))(t-to)?, 312

valid up to second-order time-dependent perturbation theory
whenevert~t,. Both sets of equations are subjected to the
condition

> P(n)=1. (3.13

Now, according to Eq9.3.2) and(3.8), the evaluation of
Rf{)_m also requires the specification of the spectral density 180 um
S(w). In the problem under consideration, the discrete labels "
m,n are used to calculate interband transitions which are 180 pK
actually spectrally broad. This broadening might arise not
only from the band structure of the energy spectra associated
m't]ihc:]h(\?veH?/vni}:ltgglggssqégllga.b;f':;osf;r)oeTtroatlhﬁrr\eS:L::rgr?St’)e FIG. 1. Absorption imag_e O_f the atoms in the opf[ical _Iattice, and
. . - - . shape of the optical potential in the two relevant directions.
introduced in our formalism by defining an effective spectral
density Se( @), which should incorporate essential features . .
of thig Bfrfg)azjening without simul?ating specific features.Wo=90 um, with a Rayleigh lengtlzz=3 cm; the effec-

Keeping this in mind, an effective Gaussian density of statedVe running power at the waist position =350 mw.
S.(w) is associated to each leviel) of energyE The trap is loaded from a magneto-optical t@yOT),
. " thanks to a compression procedure already describ@él,in

1 (hw—E,)? with about 5<10° atoms at a density around #0cm™3.
Sp(w)= exp— —nz (3.14  The typical vertical extension of the trapped atomic cloud, as
v2mo, 2(hoy) detected with a charge coupled device cantse® Fig. 1, is

500 um, corresponding to about 1200 occupied lattice sites
with an average of 400 atoms in each site. Since the axial
extension of the atomic cloud is much smaller ttmgn we

gan approximate the trap potential to be

The spectral effective densit$.«(w,,,) associated to the
transition m«—n is obtained by the convolution af,(w)
with S,(w) and with the excitation source spectral density
S(w). For a monochromatic source the latter is also taken a
a Gaussian centered at the modulation frequency that once
integrated over all frequencies yields the square of the inten-

sity of the modulation source. The net result is t8g{ w, ) ) 0 o .
has the form thus neglecting a 5% variation &f, along the lattice. The

atomic temperature in the lattice direction is measured with a
(0— we)? time—of—flight technique and it is about 50K.
eff ; ?
2 (3.19 In order to parametrically excite the atoms we modulate
the intensity of the confining laser with a fast acousto-optic

with .4 determined by the modulation frequen@yand the ~ Modulator for ? time intervall =100 ms, with a sine of
energiesE, andE,,. The effective widthr. contains infor- @mplitude e=3% and frequency). The variation of the

mation about the frequency widths of the excitation sourcdUmber of trapped atoms is measured by illuminating the
and those of each level. atoms with the MOT beams and collecting the resulting fluo-

rescence on a photomultiplier. In Fig. 2 the fraction of atoms
left in the trap after the parametric excitation is repontsd
the modulation frequency)/27. Three resonances in the
We have tested the procedure described Sec. Il to modétap losses are clearly seen at modulation frequencies of 340,
parametric excitation in a specific experiment conducted af70, and 1280 kHz. By identifying the first two resonances
LENS, Firenze, ltaly. In this experimerdfK fermionic at-  with the lattice vibrational frequency and its first harmonic,
oms are trapped in a 1D lattice, realizing retroreflecting lin-respectively, we get as a first estimaig=2mXx 340 kHz.
early polarized light obtained from a single—mode Ti:Sa la-As we will show in the following, these resonance are actu-
ser aih=787 nm, detuned on the red of both fhg andD,  ally on theredregion ofwg and 2w, respectively, and there-
transition of potassium, respectively, at 769.9 and 766.7 nnfore a better estimate i®g=2m7x360 kHz. Therefore the
The laser radiation propagates along the vertical direction, teffective trap depth is, from EQq.(9), Vo=185uK
provide a strong confinement against gravity. The laser beans 10.5% wy. Since the atomic temperature is ab&My3.5,
is weakly focused within a two-lens telescope to a waist sizave expect that most of the energy levels of the lattice have a

V(r,2)=Voe @) cof(kz); k=2m/\, (4.0

S =5y ex
eff( w) SO p—= 2 a_gﬁ

IV. COMPARISON WITH EXPERIMENTAL RESULTS
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. . FIG. 3. Experimentalcircles and theoreticallines) fraction of
FIG. 2. Experimental spectrum of the losses associated to para- =P al 9 . . a{ ) :
. L o atoms left in the trap after parametric excitatiesithe modulation
metric excitation of the trap vibrational modes. For the low and

high frequency regions two different modulation amplitudes of Zo%freq_uency. The_contlnuous line co_rresponds to the_ numerical inte-
and 3%, respectively, were used. gration of the first order perturbation theory equati¢@<l1) and

the dashed line to the numerical integration of the finite difference

o . o second order perturbation theory equati¢ds).
non-negligible population and therefore the anharmonicity of

the potential could play an important role in the dynamics of | val £ th do. Wh
parametric excitation. Note that the third resonance at high®" Several values of the constantg, Ao, andp. Whenp

frequency, close to d, is not predicted from the harmonic :b(l)’ L.e., for 3 consﬁant valuel of the. bandV\lngthhwg were notd
theory. It is possible to also observe a much weaker rescP'€ o reproduce the general experimental behavior reporte
Fig. 2. The best agreement between the simulation and the

nance in the trap losses around 1.5 kHz, which we interpref' ™'9- . : . .
to be twice the oscillation frequency in the loosely confined€XPerimental observations is obtained fo§=0.0002, x4

radial direction. However, in the following we will focus our = 0-0135, in units ofwy, andp=3. Similar results are also
attention just on the axial resonances. obtained for slightly higheflower) values of\g ; together

As discussed in Sec. Ill, the overall width of the excita- With slightly higher(lower) values of the powep. In Table |
tion assumed for our model system could play an importanth€ resulting widths are shown for the lower 12 levels. Note
role in reproducing essential features of experimental datdhat we have intentionally excluded levels 11, 12, and 13
Since the source used in the experiment has a negligibl@om the calculation, since their intrinsic width is so Iarge_
linewidth, it is necessary to model just the broadening of théhat the atoms can tunnel out of the trap along the lattice in
atomic resonances. The spread of the transition energies dif¢ich less than 100 nid1]. However, the inclusion of these
to the axial anharmonicity is reported in Table I, while the Ievel_s proved not to change the result of the simulation sub-
broadening of each energy level, due to the periodic charagtantially. . _ .
ter of the sine potential, is estimated using E3j8). We now A comparison of experlmental and theoretlcal results is
note that the 1D motion assumed in Sec. Il is not completelynade in Fig. 3; the abscissa for the experimental data has
valid in our case, since the atoms move radially along &€€n normalized by identifying, with 2360 kHz. As
Gaussian potential. Since the period of the radial motion iglready anticipated, the principal resonance in trap losses ap-
about 500 times longer than the axial period, the atoms seRears at)=1.85w,. This result follows from the fact that
an effective axial frequency which varies with their radial the excitation of the lowest trap levels does not result in a
position, resulting in a broadening of the transition fre-10Ss of atoms, as it would happen for a harmonic potential.
quency. Other sources of broadening are fluctuations of th©n the contrary, the most energetic atoms, which have a
laser intensity and pointing, and inhomogeneities along thénbratpnal frequency smaller than the harmonic one, are eas-
lattice. We also note that elastic collisions within the trapped!y €xcited out of the trap. The asymmetry of the resonances,
sample, which tend to keep a thermal distribution of the tragvhich has been observed also[8, is well reproduced in
levels population, can contribute to an overall broadening ofhe calculations and it is further evidence of the spread of the
the loss resonances. Since it is not easy to build a model th¥tbrational frequencies. The first interesting result obtained
involves all these sources, we introduce semiempirically a®y our study of parametric excitation is therefore the correc-
effective broadening for theth level [see Eq.(3.14]. Rec- tion necessary to extract the actual harmonic frequency from

ognizing that the width could be energy dependent we conth€ 10Ss spectrum. For the specific conditions of the present
sidered the simple expression experiment, we find indeed that the principal resonance in

the trap losses appears @t=1.85w,. However, the calcu-

lation shows that the resonance is nearby this position for all
(4.2 the explored values of, ; andp also for deeper traps, up to

Vo=25%wg, and therefore it appears to be an invariant char-

p
+MNo

E,
A=l
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acteristic of the sinusoidal potential.

The result of the numerical integration of E¢8.12) re-
ported in Fig. 3 reproduces relatively well the subharmonic
resonance, which in the harmonic case would be expected ¢
wg. On the contrary, both experiment and calculation show
that the actual position of the resonancelis=0.9wy. The
fact that the calculated resonance is broader than the exper &
mental one could be due to an overestimation of the broad«;
ening of the high-lying levels of the lattice when using the
simple model of Eq.(4.2), which could also explain the
small disagreement between theory and experiment on th&
red of the other two resonances in Fig. 3. In addition, it must
be mentioned that the accuracy of these results is restricte [
by the finite difference character of Eg8.12 and by the L . L . L . L . L
fact that some noise sources which have not been include: 0 50 100 150 200
could be resonant at a nearby frequency. In particular, a pos Time (ms)
sible modulation of the laser pointing associated to the inten-
sity modulation is expected to be resonantat wg in the
harmonic problenjl], and it could play an analogous role in
our sinusoidal lattice.

The higher order resonance arounda®,®bserved in the
experiment is also well reproduced by the calculations based

on first-order perturbation theory. Note that a simpler ap- ;reizi.maﬁggtr?t (;V%h yrvr?:tf;sstegﬁsfted :gvxfthhe af:asrhmoorl;uc
proximation to the confining potential by a quartic potential PP q gy g9

VQ(z)=k222+k4z4 would yield a resonance arounde tlm_es is related to t_he depopulation pf the lowest levels,
and not 3.50,. However, it is possible to understand quali- which are resonant with theu parametric source. The satu-
tativel oﬁe g'f the feattjres of this resonance considerin ration effect observed for longer times is due to the fact that

Y . : 9 %he resonance condition is not satisfied for the upper levels
quartic perturbation of the forra(t) Vg to a harmonic poten-

tial. In this case the ratio of the transition rates at the, 2 so that they do not depopulate easily.
and 4w, resonances is set by Ed8.2) to

ped atoms

Fraction of tr:

FIG. 4. Theoretical(continuous ling and experimentaltri-
angles results for the evolution of the population of trapped atoms
at the resonant exciting frequen€y=2w,. The circles show the
evolution of the population in absence of modulation.

V. CONCLUSIONS
2

V
IT(n=2,m)|%/|T(nx4n)[% —. 4.3
)

We have studied both theoretically and experimentally the
time evolution of the population of atoms trapped in a 1D-
sinusoidal optical lattice, following a parametric excitation
of the lattice vibrational mode. In detail, we have presented a
theoretical model for the excitation in an anharmonic poten-
tial, which represents an extension of the previous harmonic
models, and we have applied it to the actual sinusoidal po-
ntial used to trap cold potassium atoms. The simulation

This result can qualitatively explain the absence of the cor
responding high-order resonance in thadial excitation
spectrum(see Fig. 2 since the radial trap frequency is a
factor of 500 smaller than the axial one, the relative strengtlge
of such radial anharmonic resonance is expected to be s
pressed by a factor of (508)In conclusion, high harmonics
resonances, which certainly depend on the actual shape c
the anharmonic potential, are expected to appear only if th
spring constant of the trap is large.

In Fig. 4 theoretical and experimental results for the evo--
lution of the total population of trapped atoms at the resonan
exciting frequency) =2w, are shown. Although there is a
satisfactory agreement between the model and the experis
ment, we notice that experimental data exhibit a different & 5|
rate for the loss of atoms before and after 100 ms. This
change is probably due to a variation of the collision rate as§g
the number of trapped atoms is modified, which cannot be“ 1F
easily included in the model. A comparison of the experi-
mental evolution of the trap population with and without . ) . ) . ) , )
modulation shows the effectiveness of the excitation proces: 0 50 100 150 200
in emptying the trap on a short time scale.

We have also simulated the energy growth of the trappea
atoms due to the parametric excitation, which is reported in FIG. 5. Calculated evolution of the average energy of the
Fig. 5. Our calculations show a nonexponential energy intrapped atoms during parametric excitatioat 2wy,.

030)

f'h

e atom_(umts of

nergy

g
<

Time(ms)
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seems to reproduce relatively well the main features of botltharacterizes the excitation process. We think that most of
the spectrum of trap losses, including the appearance of restiie broadening in our specific experiment is due to the fact
nances beyondd,, and the time evolution of the total num- that the actual trapping potential is not one dimensional, and
ber of trapped atoms. also to possible fluctuations and inhomogeneities of the lat-

By comparing the theoretical predictions and the experitice.
mental observations the usefulness of a parametric excitation To conclude, we note that the dynamical analysis we have
procedure to characterize the spring constant of the trap hasade can be easily extended to lattices with larger dimen-
been verified. Although the loss resonances are redshiftesionality, and also to other potentials, such as Gaussian po-
and wider than expected in the harmonic case, the latticeentials, which are also commonly used for optical trapping.
harmonic frequency can be easily extracted from the experi-
mental spectra to estimate useful quantities such as the trap ACKNOWLEDGMENTS
depth and spring constant.

We have also emphasized the need for modeling the We acknowledge illuminating discussions with R. Brecha.
broadening of bands with a negligible natural width in orderThis work was supported by the European Community
to reproduce the observed loss spectrum. In a harmoni€ouncil (ECC) under Contract No. HPRI-CT-1999-00111,
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