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Abstract

Let ECR" be a quasi minimizer of perimeter, that is, a set such that P(E, B,(z)) <
(1 +w(p))P(F,B,(x)) for all variations F' with FAE € B,(z) and for a given function w
with lim,,ow(p) = 0. We prove that, up to a closed set with dimension at most n — 8,
for all @ < 1 the set E is an (n — 1)-dimensional C®* manifold. This result is obtained
combining the De Giorgi and Reifenberg regularity theories for area minimizers. Moreover
we prove that, in the case n = 2, OF is a bi-lipschitz curve.

Introduction

The aim of this paper is to study the regularity of quasi minimizers of perimeter. We consider
the following multiplicative quasi minimality condition

P(E, By(x)) < (1+ w(p)) P(F, By(x))

for all variations F' of the set E such that FAE € B,(z) and for a given function w which is
infinitesimal as p — 0.

It is well known (see [24, 6]) that with the assumption w(p) < ¢p** (for some ¢, a > 0) the
boundary of a quasi minimizer can be split into the union of a C'® relatively open hypersurface
and a closed singular set with Hausdorff dimension at most n — 8 (empty if n < 7). The first
partial regularity result of this kind was given by De Giorgi [10] who proved that for local
minimizers (quasi minimizers with w = 0) the singular set has zero (n—1)-dimensional Hausdorff
measure. Afterwards Massari [16, 17] extended the same result to sets with generalized mean
curvature in LP(R™) with p > n. We notice that sets with mean curvature in L? with p > n
are quasi minimizers with w(p) < o(1) p?®, a = %, so in the case p = n we only know that
w(p) is infinitesimal as p — 0.

In 1992 De Giorgi proposed an example of a quasi minimizer in the plane having a singular
point at the origin. Gonzales, Massari and Tamanini proved in [15] that the example of De
Giorgi, whose boundary is the union of two bilogarithmic spirals, is indeed a set with mean
curvature in L?(R2). This example shows that in general we cannot expect the boundary of
a quasi minimizer to be locally a Lipschitz graph; however, De Giorgi conjectured that the
boundary of a quasi minimizer is locally parameterizable (out of a singular set, if n > 8) by a
bilipschitz map defined on an open ball of R?~1.

The first attempt to prove the De Giorgi conjecture has been made by the second author
in [19], proving that if n < 7 the boundary of a set with mean curvature in L" is locally
parameterizable for any o < 1 with a map 7 such that both 7 and 7= are C%%; this implies
that OF is a surface, at least in the topological sense. In this paper, adopting a new technique,
we prove that the same property holds for quasi minimizers, for any number of dimensions n,
out of a closed singular set ¥ with dimension at most n — 8 (Theorem 4.10). The full De Giorgi
conjecture, namely the C%' regularity of 7 and 7!, is still an open problem; we prove it only
in the case n = 2, by showing that any chord arc parameterization, is, thanks to the quasi
minimality, a bilipschitz parameterization (Theorem 5.2).



The strategy of our proof is a combination of the De Giorgi and Reifenberg regularity
theories for area minimizers: first we use a variant of De Giorgi decay theorem (for the mean
flatness instead of the excess), developed in the regularity theory for varifolds, to show that if
OF is sufficiently flat in a ball B,(z) then it remains flat on smaller scales (if w(p) < cp®® there
is an improvement, leading to C'® regularity); we also use a density lower bound for quasi
minimizers to transform the mean estimate on the flatness into a pointwise one. Then, the
Reifenberg topological disk condition can be applied to show that 0ENB,,(x) is parameterizable
by a C%* map 7, with 7,71 € C%?, for some n < p. Finally, using a standard dimension
reduction argument we show that the set of points which are not sufficiently flat on any scale
has dimension at most n — 8.

We point out that we have confined our discussion to local minimizers in R™, but our
arguments, of a local nature, apply to local minimizers in an open set QCR"™ as well, with only
minor modifications.

Related result have been obtained by Semmes [22] for the class of chord-arc surfaces (see
also [21]). Sufficient conditions for the existence of bi-lipschitz parameterizations have been
found by Toro [25, 26].

1 Quasi minimizers

First, we specify our main notations. In the following n denotes a fixed integer, we assume n > 2
and set m = n — 1. If ECR", |E| is the Lebesgue measure of E, pg(z) is the characteristic
function of E, w,, is the Lebesgue measure of the unit ball B;(0) and

OE:={z e R"VYp>0 0<|ENB,(z) <wpp"}.

Finally, EAF is the symmetric difference (E\ F) U (F \ E).

We refer to [13] for the definitions concerning the notions of Caccioppoli sets, the peri-
meter P(E,(), the measures Dop and |Dyg|, the inner normal vector vg(x) and the reduced
boundary 9*F; we recall that Dyg = vg|Dpg| and that

P(E, B) = |Dyg|(B) = H™(9*"E N B)

for any Borel set BCRY if E has finite perimeter in R™.
In this section we introduce the class of quasi minimizers of perimeter to which our partial
regularity theorem applies; following [2] and [6], we adopt a multiplicative definition.

Definition 1.1 (Quasi minimizers) Let w:(0,4+00) — (0,+00] be an increasing, function
with lim,_,o w(p) = 0.
We will denote by M,, the family of measurable sets E such that
P(E, By(z)) < (1+w(p))P(F, By(z))
whenever ¢ € OE, w(p) < +00 and EAF € B,(x).

The main example of quasi minimizers is given by sets with prescribed mean curvature,
as we will see in Section 2. The following proposition, whose proof directly follows from the
definition, will be very often used in blow-up arguments.

Proposition 1.2 (rescaling properties of quasi-minimizers) Let E € M,, A > 0 and
z € R". Then $+(E —z) € My with w'(t) := w(t).

In the following three propositions we estabilish upper and lower bounds for area and peri-
meter of quasi minimal sets.

Proposition 1.3 (density upper bound) If E € M,, then given x € R™ and p > 0 we
have

P(E, B, (x)) < nw,2™(1 +w(2p))p™.



Proof:
We may suppose that P(E,B,(x)) # 0 and w(2p) < 400, since otherwise the statement is
trivial. Let y € 0E N B,(z) and n < p; we have

P(E, By(x)) P(E, Byp(y)) < (1+w(2p))P(E\ Bay(y), Bz, (y))

(1 + w(2p))(nwn (2n)™ + P(E, B2y (y) \ B2y(y)))

<
<

and letting  — p the conclusion follows.
O

The proof of the following compactness theorem can be achieved by a classical comparison
argument (see e.g. [15, Th. 1.1], [3, Th. 4.2.5]).

Proposition 1.4 (compactness of quasi-minimizers) Let (E)) be a sequence of wy-minimal
sets and suppose that w,, — w pointwise, with w(p) — 0 as p — 0. Then there exists a sub-
sequence (Ey,) which converges in LlloC to a set E € M. Moreover, if E converge in LlloC to
E then

Dyp,~Dyg, |Deg,|>|Degl,
as k — oo.

Proposition 1.5 Let E € M, x € OE. Then, for all p > 0,

L _BnB@| _, 1
2+wE) = wep T (2t w(p)™

Proof:
Define g(p) := |E N B,(z)|. This is an increasing function such that for almost all p > 0

max{P(E N B, (z),0B,(z)), P(E\ B,(x),0B,(z))} < ¢'(p);

moreover the isoperimetric inequality gives
1 m
nwy g(p)» < P(ENB,(z),R") = P(E,B,(x)) + P(EN B,(x),0B,(x)). (1)
Comparing E with E'\ B,(x) for all n > p we obtain
P(E, By(z)) < (1 +w(n)P(E\ By(), By(2))

so, letting n — p, if p is a continuity point of w we get
P(E, By(2)) < (1+w(p))P(E\ By(2), By(x)) = (L +w(p))P(E\ B,(2),0B,(z)).  (2)
Putting (1) and (2) together, for almost all p, we obtain
1 m
nwi g(p)» < (2+w(p))g' (p)
that is

1
1, Wry
) > "
(g(p)™)" = 5T w()
and integrating we get the first inequality. The second inequality is obtained if we replace

by its complementary set.
0

Proposition 1.6 (density lower bound) There ezists a constant p, > 0 such that if E €
M, x € OF and p < p,, then



Proof:
Suppose by contradiction that there exist a sequence of sets Ej, € M., a sequence of points
x, € 0F) and a sequence of radii pr — 0 such that

_ w
Py mP(EkaPk(mk)) < Tm

By the rescaling properties of quasi-minimizers the sets Fj, = pik(Ek — ) belong to M,,, with
wi(t) := w(prt). We note that wy — 0 so by Lemma 1.4, up to a subsequence, we may suppose
that the sequence (F}) converges to a set F' € My. From the lower semi-continuity of perimeter
we obtain

WTm > likminf pp "P(Ey,B,, () = likm inf P(Fy, B1(0)) > P(F, B1(0)). (3)
—00 —o0
Now, by Proposition 1.5 there exist constants ¢ > 0 and C' < w,, such that cp™ < |F N
B,(0)| < Cp™ and, since |F'N B,(0)| = limg_00 |Fx N B,(0)| we obtain 0 € OF. Therefore as F'
is a minimal set, we know that (see for example [13, (5.16)]) P(F, B1(0)) > w,, and we have a

contradiction with (3).
O

Corollary 1.7 If E € M,, then
H™(OE \ 0"E) = 0.

In particular |Dpg| = H™ LOE and in Proposition 1.4 we have local convergence of OEj, to
OF in the sense of Kuratowski'.

Proof:
By Proposition 1.6 we know that the measure H™ L 9*E = P(FE,-) has positive m-dimensional
density on the set OF and in particular on 0F \ 9*E. Since, for all Borel sets C' with H™(C) <
+o00, H™ L C has 0 m-dimensional density in H"™ almost all points of R™ \ C' (see for instance
[23, Th. 3.5]), we conclude that H™(0E \ 0*E) = 0.

If Ej, converge to E and satisfy the assumptions of Proposition 1.4, it is clear that any point
x € OF can be approximated by points in dE}), by the convergence of Dyg, to Dyg. The
density lower bound and the convergence of |Dypg, | to |Dpg| ensure that any limit point of

OE}, belongs to 0F.
O

2 Boundaries with prescribed mean curvature

In this section we present the main examples of quasi-minimal sets. Given H € L'(R") we say
that a set ECR™ has (generalized) mean curvature H if E is a local minimizer of the functional

Fy(E)=P(E,R") -I-/EH(J:) dz

that is, if for any FCR" with FAE € R"™ we have F(E) < Fy(F). We would like to show
that if H € LP(R™) with p > n and E is a set with mean curvature H then, for a suitable w,
EeM,.

First of all it is not difficult to show that there exists an increasing function #: [0, 4+00) —
[0, +00) with n(t) — 0 as t — 0 such that given any set FCR" with EAF € B,(x) the following
is true

P(E, By(x)) < P(F, B,(x)) + n(p) [ EAF| . (4)

We say that a sequence of sets (X}) converges to X in the sense of Kuratowski if

Trp € Xgy ¢, > = x€X
re€X = Hdrp € X, zp — .



In fact, given such F, we know that

P(E.By(a) < PR.B,@) + [ |H(@)da

and if we define
n(p) == sup |[H||rn(B, (),
zeR™
from Holder inequality we get

/ |H| < ||H||z~ (B, (2)) | EAF|*
EAF

so that (4) holds.

It is not difficult to see (see [15]) that Proposition 1.5, Proposition 1.4 and then also Pro-
position 1.6 hold for the the sets satisfying (4) so that, if EAF € B,(z), + € 0F and p is
sufficiently small,

|EAF|™ <wg p™ < ¢(n)P(E, B,(z))

for some constant c¢(n) > 0, whence

1
P(E,B,(z)) < WP(F’ By (z))
that is F € M, with w(p) := % for small p and w(p) := +oo elsewhere.

Actually it could have been possible to use inequality (4) in the definition of quasi minimizers,
but the definition, as it is given, seems to be more general.

3 Flatness

In this section we introduce two quantities which measure the flatness of OF; the first one,
analogous to the L? norm, is useful in the regularity theory for varifolds; the second one,
analogous to the sup norm, has been used by Reifenberg in his regularity theory.

Definition 3.1 Let E be a Caccioppoli set. Then we define the mean flatness and Reifenberg
flatness of E in B(x,p) to be respectively

Ap(p) = " min [ P an)
AeG(n) JoENB,(z)

Op(z, = p ! i d(y, A

p(r7) P aeGn), a5s (yef)g‘lf?—gp(m) W )>

where G(n) is the family of affine hyperplanes of R™ and d(y, A) is the distance of the point y
from A.

The following proposition comes directly from the definition.

Proposition 3.2 (rescaling properties) If E is a Caccioppoli set and X\ > 0 we have

Agp(z,p) = Axp(\z,)\p)

If, moreover, Bx,(y)CB,(x) we have

Using the density lower bound we can estimate the Reifenberg flatness with the mean flatness.

A_m_QAE(‘ra p)

<
< A l8g(=,p).



Proposition 3.3 There exists a constant C, = C1(w) such that is E € M, © € OF, p < py,

then
1
Op(z,p) < C1[Ap(z,2p)] "+ .
Proof:
Let A be an hyperplane such that
Ap@2) =20 [y aaun ()
8ENBs,(z)
and let A’ be the hyperplane through « parallel to A. Given any z € B,(z) define a := %d(z, A)
and (3 := %d(:v, A) so that d(z, A") < 3a+28. Note that o < p and 8 < p because d(z, A) < 2p,
so both B,(z) and Bg(z) are contained in Bs,(z) and we have that d(y, A) > 2« if y € B,(2)
while d(y, A) > § if y € Bg(z). Then we have (recalling also Proposition 1.6)
Ape2) > @[ R aann()
OFENB4(z)
> (2p)—m—24a2w7mam
Ap@2) 2 @[ Eyaann()
BEﬁBﬁ (Z)
> (2p) "
that is
1
o |- Ap20)|
< -
a < 2 |5—Ap(e2p
1
m-+2
B < 2 {—AE(:c, 2p)]
Wm
So, for every z € B,(z) we have
3 2 T
d(z, A') < 3o+ 26 <2 ( . 2) / {—AE(Mp)} ,
4mF3 Wm
that is the claim with C; = 2(3 - dmts 4 2)(2/wm) ==
O

Lemma 3.4 Let (E;)CM,, converging in L] . to a set E and let x € R". Then
AE(xap) Z hmsupAEk (xap) Vp > 0.
k—o0
Proof:

We will first prove the inequality for all p > 0 such that H™(0E N JB,(x)) = 0 (this is true for
almost every p). In view of Theorem 1.4, we know that

H™ L OE,SH™ LOE.

Let A be an hyperplane such that

Ap(z,p) = p~m=> /B & (y, 4) dH™ (y),

ENB,(z)

define (y) := d?(y, A) and consider the measures py := H™ LOFE; and u := oH™ L OE.
Since u(0B,(x)) = 0 we have p(B,(z)) — u(B,(z)) (see [13, Appendix A], [3, Th. 1.2.7]) and
then

limsup Ag, (z,p) < limsupp ™ *up(B,(z))

k—o0 k—o0
= p " u(B,(x)) = Ap(z, p).

By outer approximation the same inequality holds for any p > 0.



4 Partial regularity

The following decay theorem for the mean flatness plays a central role in this paper; both the
statement and the proof are reminiscent of the regularity theory of varifolds developed by Allard
[1] and Brakke [7] (see also [23]).

Theorem 4.1 (decay) For all 3 € (0,1) and all M > 0 there exists €1 (depending only on (3,
M and w) such that, for every E € M,,, the conditions

$€6E, AE(‘rap)Sgla MAE(xap)Z Vw(p)
imply
AE((I?,,B,D) S 03/82AE(£E7:0)

where C3 is a constant depending only on n.

Proof:

If w is a linear function a proof is given in [3]; in the general case the proof is similar, see
also the decay theorem for the mean flatness of the jump set of the Mumford—Shah functional
proved in [4], where no linearity assumption on w is made. The constant Cj is related to some

pointwise estimates on harmonic functions of m variables.
O

Lemma 4.2 (iteration) There ezxists a positive constant €2 = e2(w) such that if E € M,
x € 0FE, Ap(z,r) <&y and \J/w(r) < ey then for all p € (0,r)

Aslr,p) < o¢+2pmax{ aup VEO (o) }

nelpr] N

and, in particular, lim, .o Ag(z,p) = 0.
Proof:
Take 3 = 03_1, M = B ™73 gy = ¢1(B,M,w) (where C3 and &; are the constants given by

Theorem 4.1).
We will prove, by induction, that for all integers k& > 0

AE(x,Bkr) < gk max{ sup C\/w(n),AE(:v,r)} . (5)
nelgrr,r] M

The case k = 0 is trivial, so assuming that (5) is true for k& we prove that (5) holds also
for K+ 1. If MAg(z,*r) > \/w(B*r) we can apply Theorem 4.1 (in fact, Ag(z,B*r) <

max{\/m, AE(CU,T)} < &2) to obtain

Ap(z, 5 r) < BAp(x,B57) < B maX{ sup z\/w(n),AJn:(:v,r)} :

negr+irr] 1
Otherwise, by Lemma 3.2 we get

Ap(x, f1r) < B_m_QAE(SU,BkT)Sﬁ_m_Q—wJEiﬁ—kr)

Byfu(Bhr) < g sup V)
n€[Br+1r,r] n

To conclude the proof, notice that given any p € (0,7) there exists an integer k such that
B < p < B¥r, so that

AE(‘rap) S ﬁ_m_QAE(‘raﬁkr)
< Cg’”ﬁkrmax{ sup w(n),AE(:U,r)}
n€lp,r] n
< CFpmax{ sup w(n),AE(:c,r)}.

n€lp,r] N



To prove the last statement, we claim that

lim p sup w(m) =0.
PO nelpr] M
In fact, given any sequence p, — 0, let ny, € [pk,r] be such that —"“7)7(’:7'“) = SUpP,eip] “;7(77). If

. — 0 then py, —"“7)7(:'“) < v/w(nr) — 0, otherwise there exists n > 0 such that 7y > 7 for all k&

and we conclude noticing that pj - “7’72’7’6) < pr \/L;(f‘) 0.
O
If XCR" and p > 0 we will denote by (X), the open p-neighborhood of X:

(X), :=={xz e R":d(z, X) < p}.

Definition 4.3 Let S be a closed set of R™, z9 € S, R > 0 and 0 < m < n an integer. Then
we say that S satisfies the (¢, R, m)-Reifenberg condition in xq if given any ball B,(x)CBg(zo)
there exists an m-dimensional plane X through x such that

SNB,(x) C
SNB,(z) C (S)ep

The following theorem can be found in [20].

Theorem 4.4 (Reifenberg) Given 0 < a < 1, there exists e3 > 0 such that if S is a closed set
in R™ satisfying the (3, R, m)-Reifenberg condition in xy € S for some R > 0, and some integer
0 < m < n, then there exists an open set U, B% (20)CUCBR(xo) and an homeomorphism
7:D™ — SNU (D™ is the closed m dimensional unit disk) such that both T and 7! are
a-Holder maps.

Lemma 4.5 Let E € M,, x € R", p > 0, ¢ € (0,1/2), A an hyperplane through x and let
ma:R™ = R" be the orthogonal projection onto A. If 0E N B,(x)C(A)., then at least one of
the following statements is true:

1. TA(OEN B,(z))2AN B(l_s)p(x);
2. P(E\ B,(z),B,(z)) < 4emwpmp™.

Proof:
In this proof we assume that the set FE is such that OF is exactly equal to the topological bound-
ary of E. This can be done replacing E with the set E* := {z € R": limsup,_,, ‘E%;,Ex)l > 0}
which differs from E by a zero Lebesgue measure set. Taking into account Proposition 1.5 it
can be proved that the topological boundary of E* is 0E* = OF.

Let z1,...,T, be a system of coordinates such that A = {z,, = 0} and define E+ = {x,, >
ep} N By(z) and E- = {z, < —ep} N B,(z). From the assumptions on E we know that OF
intersects neither E+ nor E~. So, being OF closed and ET, E~ compact sets, we conclude

that OF has positive distance from ET and E~. So one of the following statements must hold:

1. EDE-, ENE*+ = {;

2. EDE+Y, ENE- =

3. ENET =0, ENE~ = 0;

4. EDEtUE-.

Suppose that 1 is true, then we claim that the first statement of the proposition holds. Let
At ={x, =ep} N By(x) and A~ = {z, = —ep} N B,(x). Given y € AN By_.), (x) denote
by yT and y~ respectively the intersections of 7@1(1’) with AT and A~. Since y~ € E while
yT & E there must certainly be a point in the segment [z~, %] which belongs to E (and that

is contained in B,(x)), so y € mx(0E N B(z,r)).
If statement 2 holds, with a symmetry with respect to A we obtain again the first statement.




Suppose that 3 is true. Let F = E\ B,(z). Then 8F N B,(z)C(A)., N8B, (), so we obtain
the second statement:

P(F,B,(z)) <H™OFNB,(z)) <H™((A)ep NOB,(x)) < demwpmp™.

If statement 4 holds the proof is that of case 3 where instead of E we consider its complementary
set.
O

Definition 4.6 (singular set) For E € M, define
Y(E) :={z € OF: limsup Ag(z, p) > 0}.
p—0

Note that X(F) is a closed set. In fact, given any z € OF \ £(E), since lim, Ag(z,p) =0
we can find a radius p such that Ag(z,2p) <27™ %, and for all y € B,(z) we get Ag(y, p) <
2mT2 A g(z,2p) < es so that by Lemma 4.2 lim, Ag(y,p) = 0; hence B,(z) N E(E) = 0. In
view of Theorem 4.4 the following theorem gives a regularity result for the set OF \ ¥(E).

Theorem 4.7 (partial regularity) Let E € M, and z9 € OE \ £(E). For all 0 < £ < &
(where €2 is the constant given in Lemma 4.2) there exists r > 0 such that the set OF satisfies
the (e,r,m)-Reifenberg condition in .

Proof:
Choose constants «aq, as, a3 and r such that

Wm
< -, a3 < , «
20 7 B (T4 w(pn)

a<a3 " a<im+2a a<gm+25
2 Cl 9 1 > 303 2 1 > 3 2

r < py, Vw(2r) <el w(2r) < Cm2+2’

1
2’

IN

Agp (xa 37‘) <

where C, C3 and g5 are the constants given in Proposition 3.3 and Lemma 4.2.
Consider any ball B,(z)CB,(x¢) with center x € 0E. By Lemma 3.2 we have Ag(z,2r) <

(%)m+2 Ap(zo,3r) < (%)m+2 ai. and by Lemma 4.2 we obtain
O max{\/w(2r), AE (z,2r)}

m—+2
O max{—— § a1} < a
C,m+27 9 1y > k2.

Now, by Proposition 3.3 we get 0g(z, p) < C1(Ag(z,2p)) < a3 so there exists an hyperplane
A through z such that

IN

IN

p~' sup  d(y,A) < as

y€dENB,(z)
which means that 0E N B,(2)C(A)asp. To conclude the proof we only need to prove that
AN B,(x)C(OE).,. By Proposition 1.6 and the definition of M., given any n € (p, p.,)

0™ < P(B, By(x)) < P(E\ By(x), By(@)) (1 +w(n))

and letting  — p we obtain

P(B\ By(2), By(@)) > 507 2

So, in view of Lemma 4.5, we obtain that the projection 74 (0ENB, (:L‘)) contains ANB(1_q4), (7).
Therefore given any point y € AN B,(x) we can find a point y' € AN B(1_q,),(7) with

ly' —y| < asp and a point z € OE N B,(z) with m4(z) =y'. Since OE N B,(x)C(A)qs, We have
|z — y'| < agp whence |y — z| < 2a3p < ep.

P > daszwm_1p™.

O



Lemma 4.8 (convergence of singular points) Let Ey, E € M, with E;, — E. Then, for
all R > 0,

lim sup d(z,%(E)) = 0.
k=00 2 BR (0)N2(ER)

Proof:
Suppose by contradiction that there exist € > 0 and a sequence (zy) with z € X(E)) which
converges to a point x and such that d(zy, X(E)) > € for all k. Since d(zy,z) — 0 then z ¢ X(FE)
so that lim, ,o Ag(z,p) = 0. In view of Lemma 3.4 we can find a radius p > 0 such that
limsup,,_,., Ag, (z,p) < Ag(z,p) and Ag(z,p) < 27™ 2?c5. So we can find an integer k such
that Ag, (z,p) < 27 ™ 2ey and |z}, — z| < p/2 to obtain Ag, (zr,p/2) < 2" 2Ag, (z,p) < 2.
By Lemma 4.2 we conclude that 2y & X(Ey).

O

Proposition 4.9 (reduction of singularities) Letl > 0. Given E € M, such that H' (Z(E)) >
0 there erists Eo, € Mg such that H!(Z(Ex)) > 0.

Proof:
See [23, Appendix A]. First of all recall that H'_(Z(E)) > 0, where

H (A) = inf{Zpré: UBpi (z;)DA}.

By [23, 3.6(2)] we can find a point # € %(E) with positive H._-density, that is a point x such
that there exist € > 0 and a sequence A — 0 such that
HL (S(E) N By, (z)) > el (6)
Let Ey := E/\_k’”. Up to a subsequence we may suppose that Ej converges to a set Fo, € My.
If we suppose, by contradiction, that H' (E(Es) N B2(0)) = 0 we can find a family of balls
By, (z;) such that ; By, (7;)2X(Ex) N B2(0) and 3, wipl; < e/2. Since T(Ey) N B1(0) is a
compact set it has positive distance from R"™ \ J; By, (z;) and, in view of Lemma 4.8, we can
find k such that £(Ex) N B1(0)CUJ; By, (2;). This means that HL (Z(Ex) N B1(0)) < £/2, that
is

H._(S(E) N By, (2)) < /\2%.

This is in contradiction with (6).
O

Theorem 4.10 (main theorem) Let ECR", E € M,,. Then there ezist a closed set ¥(E)
with Hausdorff dimension not greater than n — 8, such that OE \ (E) is a C%® m-dimensional
manifold for all o < 1.

Proof:
The regularity of the set 9E'\ £(E) follows from Theorem 4.7 and Theorem 4.4. Tt is well known
that if E € Mg then H!(2(E)) = 0 for all | > n—8 (see for instance [23]) so, by Proposition 4.9,
it is also true for any E € M,,.

O

5 The two-dimensional case

In this section we prove that quasi minimizers in R? are locally bilipschitz parameterizable
with an open interval of R. The proof is achieved using as competitor in the definition of quasi
minimality the set F' given by the following lemma.

Lemma 5.1 Let E be a Caccioppoli set and let T: [t1,t2] — OF be a lipschitz, injective function.
Then there ezists a Caccioppoli set F such that EAF is contained in the convexr hull K of
7([t1,t2]) and such that

P(F.K) <H'(DENK) — /tZ (B dE+ (1) — 7(t)].

ty
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Proof:

First some notation. We will consider normal currents with multiplicity in Zs. If « is a
parametric lipschitz curve, we denote by & the 1-dimensional current (with multiplicity 1)
induced by «a. Likewise if F is a Caccioppoli set, we denote by E the 2-dimensional normal
current on E with multiplicity 1. Note that every 2-dimensional normal current with multiplicity
in Z, can be written as E for some Caccioppoli set E and |Dyp| = ||0E||. See [23] for basic
notation and main facts about the theory of currents.

We denote by S the segment having 7(¢;) and 7(¢2) as endpoints and set T' = 7([t1, t2]).
Notice that both 7 and F LT are rectifiable 1-dimensional currents with multiplicity 1 sup-
ported on the rectifiable set I'. Since there is no choice for the orientation of tangent lines (we
consider orientation in Z,), the two currents are equal.

Consider the parameterization of S given by v:[0,1] — R? defined by 7(t) = t7(t2) + (1 —
t)7(t1) and let & = 7 — 4. Clearly spt §CI' U SCK, where K is the convex hull of T

Since 3 = 0 there exists a 2-dimensional current B (with multiplicity in Z,) such that
dR = &. Moreover o([0,1])CK and being R constant on R2 \K we can also assume spt RCK.

Let F := E—R. Clearly EAFCK (in fact F L(R2\K) = E L(R2\K)) and 8*FCOFCHEU
S. Since

OF L(T\S)=0E L(T\S)—7L(IC\S)+7L[IC\S)=0 (mod 2)

we obtain that ||0F||(T'\ S) = 0. But ||0F|| = |[Dyr| = H' LO*F and we obtain H!(d*F N
(T'\'S)) =0. So O*FC(OE\T)U S, up to H!'-negligible sets, and P(F,K) = H' (O*F N K) <
HY(OENK) —H(T) + H'(S) whence the conclusion follows.

O

Theorem 5.2 Let ECR?, E € M,,. Then OF is locally parameterizable over a line, with a
bilipschitz map. That is, OF is a lipschitz 1-dimensional manifold.

Proof:
Let zg be any point of E. In view of Theorem 4.10 we can find an open neighbourhood B of 2,
such that there exists an homeomorphism 7: [0, L] — E N B. We may suppose that BCB,(zp)
with w(2r) < 16” Suppose also that 7 is a chord-arc parameterization so that 7 is 1-lipschitz.
Let us prove that 7" is also lipschitz.

Let t1,ty € [0,L] and consider the set F' given by Lemma 5.1. If K is the convex hull of
7([t1,t2]) notice that K CB,(z) for some z € OF and some p < |ty — t1]. Being EAF € B,(z),
by the minimality of £ and by Proposition 1.3 we get

47 (1 + w(2p))w(p)
1+w(p)

P(E,By(x)) - P(F, B,(x)) < —?)_p(&, B,(x)) <

<

1
59
on the other hand Lemma 5.1 implies that

P(F,B,(z)) = P(E, By(z)) < [r(t2) = 7(t1)] = |t2 — ]
and we conclude

|t2 - t1| S 2|T(t2) - T(t1)|.

which means that 7! is lipschitz.
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