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tLet E�Rn be a quasi minimizer of perimeter, that is, a set su
h that P (E; B�(x)) �(1 + !(�))P (F;B�(x)) for all variations F with F4E b B�(x) and for a given fun
tion !with lim�!0 !(�) = 0. We prove that, up to a 
losed set with dimension at most n � 8,for all � < 1 the set �E is an (n � 1)-dimensional C0;� manifold. This result is obtained
ombining the De Giorgi and Reifenberg regularity theories for area minimizers. Moreoverwe prove that, in the 
ase n = 2, �E is a bi-lips
hitz 
urve.Introdu
tionThe aim of this paper is to study the regularity of quasi minimizers of perimeter. We 
onsiderthe following multipli
ative quasi minimality 
onditionP (E;B�(x)) � (1 + !(�))P (F;B�(x))for all variations F of the set E su
h that F4E b B�(x) and for a given fun
tion ! whi
h isin�nitesimal as �! 0.It is well known (see [24, 6℄) that with the assumption !(�) � 
�2� (for some 
; � > 0) theboundary of a quasi minimizer 
an be split into the union of a C1;� relatively open hypersurfa
eand a 
losed singular set with Hausdor� dimension at most n � 8 (empty if n � 7). The �rstpartial regularity result of this kind was given by De Giorgi [10℄ who proved that for lo
alminimizers (quasi minimizers with ! � 0) the singular set has zero (n�1)-dimensional Hausdor�measure. Afterwards Massari [16, 17℄ extended the same result to sets with generalized mean
urvature in Lp(Rn) with p > n. We noti
e that sets with mean 
urvature in Lp with p � nare quasi minimizers with !(�) � o(1) �2�, � = p�n2p , so in the 
ase p = n we only know that!(�) is in�nitesimal as �! 0.In 1992 De Giorgi proposed an example of a quasi minimizer in the plane having a singularpoint at the origin. Gonzales, Massari and Tamanini proved in [15℄ that the example of DeGiorgi, whose boundary is the union of two bilogarithmi
 spirals, is indeed a set with mean
urvature in L2(R2). This example shows that in general we 
annot expe
t the boundary ofa quasi minimizer to be lo
ally a Lips
hitz graph; however, De Giorgi 
onje
tured that theboundary of a quasi minimizer is lo
ally parameterizable (out of a singular set, if n � 8) by abilips
hitz map de�ned on an open ball of Rn�1.The �rst attempt to prove the De Giorgi 
onje
ture has been made by the se
ond authorin [19℄, proving that if n � 7 the boundary of a set with mean 
urvature in Ln is lo
allyparameterizable for any � < 1 with a map � su
h that both � and ��1 are C0;�; this impliesthat �E is a surfa
e, at least in the topologi
al sense. In this paper, adopting a new te
hnique,we prove that the same property holds for quasi minimizers, for any number of dimensions n,out of a 
losed singular set � with dimension at most n�8 (Theorem 4.10). The full De Giorgi
onje
ture, namely the C0;1 regularity of � and ��1, is still an open problem; we prove it onlyin the 
ase n = 2, by showing that any 
hord ar
 parameterization, is, thanks to the quasiminimality, a bilips
hitz parameterization (Theorem 5.2).1



The strategy of our proof is a 
ombination of the De Giorgi and Reifenberg regularitytheories for area minimizers: �rst we use a variant of De Giorgi de
ay theorem (for the mean
atness instead of the ex
ess), developed in the regularity theory for varifolds, to show that if�E is suÆ
iently 
at in a ball B�(x) then it remains 
at on smaller s
ales (if !(�) � 
�2� thereis an improvement, leading to C1;� regularity); we also use a density lower bound for quasiminimizers to transform the mean estimate on the 
atness into a pointwise one. Then, theReifenberg topologi
al disk 
ondition 
an be applied to show that �E\B�(x) is parameterizableby a C0;� map � , with �; ��1 2 C0;�, for some � < �. Finally, using a standard dimensionredu
tion argument we show that the set of points whi
h are not suÆ
iently 
at on any s
alehas dimension at most n� 8.We point out that we have 
on�ned our dis
ussion to lo
al minimizers in Rn, but ourarguments, of a lo
al nature, apply to lo
al minimizers in an open set 
�Rn as well, with onlyminor modi�
ations.Related result have been obtained by Semmes [22℄ for the 
lass of 
hord-ar
 surfa
es (seealso [21℄). SuÆ
ient 
onditions for the existen
e of bi-lips
hitz parameterizations have beenfound by Toro [25, 26℄.1 Quasi minimizersFirst, we spe
ify our main notations. In the following n denotes a �xed integer, we assume n � 2and set m = n � 1. If E�Rn, jEj is the Lebesgue measure of E, 'E(x) is the 
hara
teristi
fun
tion of E, !n is the Lebesgue measure of the unit ball B1(0) and�E := fx 2 Rn:8� > 0 0 < jE \ B�(x)j < !n�ng:Finally, E4F is the symmetri
 di�eren
e (E n F ) [ (F nE).We refer to [13℄ for the de�nitions 
on
erning the notions of Ca

ioppoli sets, the peri-meter P (E;
), the measures D'E and jD'E j, the inner normal ve
tor �E(x) and the redu
edboundary ��E; we re
all that D'E = �E jD'E j and thatP (E;B) = jD'E j(B) = Hm(��E \B)for any Borel set B�RN if E has �nite perimeter in Rn.In this se
tion we introdu
e the 
lass of quasi minimizers of perimeter to whi
h our partialregularity theorem applies; following [2℄ and [6℄, we adopt a multipli
ative de�nition.De�nition 1.1 (Quasi minimizers) Let !: (0;+1) ! (0;+1℄ be an in
reasing, fun
tionwith lim�!0 !(�) = 0.We will denote by M! the family of measurable sets E su
h thatP (E;B�(x)) � (1 + !(�))P (F;B�(x))whenever x 2 �E, !(�) < +1 and E4F b B�(x).The main example of quasi minimizers is given by sets with pres
ribed mean 
urvature,as we will see in Se
tion 2. The following proposition, whose proof dire
tly follows from thede�nition, will be very often used in blow-up arguments.Proposition 1.2 (res
aling properties of quasi-minimizers) Let E 2 M!, � > 0 andx 2 Rn. Then 1� (E � x) 2 M!0 with !0(t) := !(�t).In the following three propositions we estabilish upper and lower bounds for area and peri-meter of quasi minimal sets.Proposition 1.3 (density upper bound) If E 2 M!, then given x 2 Rn and � > 0 wehave P (E;B�(x)) � n!n2m(1 + !(2�))�m:2



Proof:We may suppose that P (E;B�(x)) 6= 0 and !(2�) < +1, sin
e otherwise the statement istrivial. Let y 2 �E \ B�(x) and � < �; we haveP (E;B�(x)) � P (E;B2�(y)) � (1 + !(2�))P (E nB2�(y); B2�(y))� (1 + !(2�))(n!n(2�)m + P (E;B2�(y) nB2�(y)))and letting � ! � the 
on
lusion follows. 2The proof of the following 
ompa
tness theorem 
an be a
hieved by a 
lassi
al 
omparisonargument (see e.g. [15, Th. 1.1℄, [3, Th. 4.2.5℄).Proposition 1.4 (
ompa
tness of quasi-minimizers) Let (Ek) be a sequen
e of !k-minimalsets and suppose that !k ! ! pointwise, with !(�) ! 0 as � ! 0. Then there exists a sub-sequen
e (Ekj ) whi
h 
onverges in L1lo
 to a set E 2 M!. Moreover, if Ek 
onverge in L1lo
 toE then D'Ek �*D'E ; jD'Ek j �*jD'E j;as k !1.Proposition 1.5 Let E 2M!, x 2 �E. Then, for all � > 0,1(2 + !(�))n � jE \ B�(x)j!n�n � 1� 1(2 + !(�))n :Proof:De�ne g(�) := jE \ B�(x)j. This is an in
reasing fun
tion su
h that for almost all � > 0maxfP (E \B�(x); �B�(x)); P (E nB�(x); �B�(x))g � g0(�);moreover the isoperimetri
 inequality givesn! 1nn g(�)mn � P (E \ B�(x);Rn) = P (E;B�(x)) + P (E \ B�(x); �B�(x)): (1)Comparing E with E nB�(x) for all � > � we obtainP (E;B�(x)) � (1 + !(�))P (E nB�(x); B�(x))so, letting � ! �, if � is a 
ontinuity point of ! we getP (E;B�(x)) � (1 + !(�))P (E nB�(x); B�(x)) = (1 + !(�))P (E nB�(x); �B�(x)): (2)Putting (1) and (2) together, for almost all �, we obtainn! 1nn g(�)mn � (2 + !(�))g0(�)that is (g(�) 1n )0 � ! 1nn2 + !(�)and integrating we get the �rst inequality. The se
ond inequality is obtained if we repla
e Eby its 
omplementary set. 2Proposition 1.6 (density lower bound) There exists a 
onstant �! > 0 su
h that if E 2M!, x 2 �E and � < �! then P (E;B�(x)) � !m2 �m:3



Proof:Suppose by 
ontradi
tion that there exist a sequen
e of sets Ek 2 M!, a sequen
e of pointsxk 2 �Ek and a sequen
e of radii �k ! 0 su
h that��mk P (Ek ; B�k(xk)) < !m2 :By the res
aling properties of quasi-minimizers the sets Fk = 1�k (Ek �xk) belong toM!k with!k(t) := !(�kt). We note that !k ! 0 so by Lemma 1.4, up to a subsequen
e, we may supposethat the sequen
e (Fk) 
onverges to a set F 2 M0. From the lower semi-
ontinuity of perimeterwe obtain!m2 � lim infk!1 ��mk P (Ek; B�k (xk)) = lim infk!1 P (Fk ; B1(0)) � P (F;B1(0)): (3)Now, by Proposition 1.5 there exist 
onstants 
 > 0 and C < !n su
h that 
�n � jFk \B�(0)j � C�n and, sin
e jF \B�(0)j = limk!1 jFk \B�(0)j we obtain 0 2 �F . Therefore as Fis a minimal set, we know that (see for example [13, (5.16)℄) P (F;B1(0)) � !m and we have a
ontradi
tion with (3). 2Corollary 1.7 If E 2 M! then Hm(�E n ��E) = 0:In parti
ular jD'E j = Hm �E and in Proposition 1.4 we have lo
al 
onvergen
e of �Ek to�E in the sense of Kuratowski1.Proof:By Proposition 1.6 we know that the measure Hm ��E = P (E; �) has positive m-dimensionaldensity on the set �E and in parti
ular on �E n ��E. Sin
e, for all Borel sets C with Hm(C) <+1, Hm C has 0 m-dimensional density in Hm almost all points of Rn nC (see for instan
e[23, Th. 3.5℄), we 
on
lude that Hm(�E n ��E) = 0.If Ek 
onverge to E and satisfy the assumptions of Proposition 1.4, it is 
lear that any pointx 2 �E 
an be approximated by points in �Ek, by the 
onvergen
e of D'Ek to D'E . Thedensity lower bound and the 
onvergen
e of jD'Ek j to jD'E j ensure that any limit point of�Ek belongs to �E. 22 Boundaries with pres
ribed mean 
urvatureIn this se
tion we present the main examples of quasi-minimal sets. Given H 2 L1(Rn) we saythat a set E�Rn has (generalized) mean 
urvature H if E is a lo
al minimizer of the fun
tionalFH(E) = P (E;Rn) + ZE H(x) dxthat is, if for any F�Rn with F4E b Rn we have FH(E) � FH (F ). We would like to showthat if H 2 Lp(Rn) with p � n and E is a set with mean 
urvature H then, for a suitable !,E 2M!.First of all it is not diÆ
ult to show that there exists an in
reasing fun
tion �: [0;+1) ![0;+1) with �(t)! 0 as t! 0 su
h that given any set F�Rn with E4F b B�(x) the followingis true P (E;B�(x)) � P (F;B�(x)) + �(�)jE4F jmn : (4)1We say that a sequen
e of sets (Xk) 
onverges to X in the sense of Kuratowski ifxk 2 Xk; xk ! x ) x 2 Xx 2 X ) 9xk 2 Xk; xk ! x:4



In fa
t, given su
h F , we know thatP (E;B�(x)) � P (F;B�(x)) + ZE4F jH(x)j dxand if we de�ne �(�) := supx2Rn jjH jjLn(B�(x));from H�older inequality we getZE4F jH j � jjH jjLn(B�(x))jE4F jmnso that (4) holds.It is not diÆ
ult to see (see [15℄) that Proposition 1.5, Proposition 1.4 and then also Pro-position 1.6 hold for the the sets satisfying (4) so that, if E4F b B�(x), x 2 �E and � issuÆ
iently small, jE4F jmn � !mnn �m � 
(n)P (E;B�(x))for some 
onstant 
(n) > 0, when
eP (E;B�(x)) � 11� 
(n)�(�)P (F;B�(x))that is E 2 M! with !(�) := 
(n)�(�)1�
(n)�(�) for small � and !(�) := +1 elsewhere.A
tually it 
ould have been possible to use inequality (4) in the de�nition of quasi minimizers,but the de�nition, as it is given, seems to be more general.3 FlatnessIn this se
tion we introdu
e two quantities whi
h measure the 
atness of �E; the �rst one,analogous to the L2 norm, is useful in the regularity theory for varifolds; the se
ond one,analogous to the sup norm, has been used by Reifenberg in his regularity theory.De�nition 3.1 Let E be a Ca

ioppoli set. Then we de�ne the mean 
atness and Reifenberg
atness of E in B(x; �) to be respe
tivelyAE(x; �) := ��m�2 minA2G(n)Z�E\B�(x) d2(y;A) dHm(y);�E(x; �) := ��1 minA2G(n); A3x maxy2�E\B�(x) d(y;A)!where G(n) is the family of aÆne hyperplanes of Rn and d(y;A) is the distan
e of the point yfrom A.The following proposition 
omes dire
tly from the de�nition.Proposition 3.2 (res
aling properties) If E is a Ca

ioppoli set and � > 0 we haveAE(x; �) = A�E(�x; ��)�E(x; �) = ��E(�x; ��):If, moreover, B��(y)�B�(x) we haveAE(y; ��) � ��m�2AE(x; �)�E(y; ��) � ��1�E(x; �):Using the density lower bound we 
an estimate the Reifenberg 
atness with the mean 
atness.5



Proposition 3.3 There exists a 
onstant C1 = C1(!) su
h that is E 2 M!, x 2 �E, � < �!then �E(x; �) � C1 [AE(x; 2�)℄ 1m+2 :Proof:Let A be an hyperplane su
h thatAE(x; 2�) = (2�)�m�2 Z�E\B2�(x) d2(y;A) dHm(y)and let A0 be the hyperplane through x parallel to A. Given any z 2 B�(x) de�ne � := 13d(z; A)and � := 12d(x;A) so that d(z; A0) � 3�+2�. Note that � � � and � � � be
ause d(x;A) � 2�,so both B�(z) and B�(x) are 
ontained in B2�(x) and we have that d(y;A) � 2� if y 2 B�(z)while d(y;A) � � if y 2 B�(x). Then we have (re
alling also Proposition 1.6)AE(x; 2�) � (2�)�m�2 Z�E\B�(z) d2(y;A) dHm(y)� (2�)�m�24�2!m2 �mAE(x; 2�) � (2�)�m�2 Z�E\B�(x) d2(y;A) dHm(y)� (2�)�m�2�2!m2 �mthat is � � 2� � 12!mAE(x; 2�)� 1m+2� � 2� � 2!mAE(x; 2�)� 1m+2 :So, for every z 2 B�(x) we haved(z; A0) � 3�+ 2� � 2� 34 1m+2 + 2� � � 2!mAE(x; 2�)� 1m+2 ;that is the 
laim with C1 = 2(3 � 4 �1m+2 + 2)(2=!m) 1m+2 . 2Lemma 3.4 Let (Ek)�M! 
onverging in L1lo
 to a set E and let x 2 Rn. ThenAE(x; �) � lim supk!1 AEk (x; �) 8� > 0:Proof:We will �rst prove the inequality for all � > 0 su
h that Hm(�E \ �B�(x)) = 0 (this is true foralmost every �). In view of Theorem 1.4, we know thatHm �Ek �*Hm �E:Let A be an hyperplane su
h thatAE(x; �) = ��m�2 Z�E\B�(x) d2(y;A) dHm(y);de�ne '(y) := d2(y;A) and 
onsider the measures �k := 'Hm �Ek and � := 'Hm �E.Sin
e �(�B�(x)) = 0 we have �k(B�(x))! �(B�(x)) (see [13, Appendix A℄, [3, Th. 1.2.7℄) andthen lim supk!1 AEk(x; �) � lim supk!1 ��m�2�k(B�(x))= ��m�2�(B�(x)) = AE(x; �):By outer approximation the same inequality holds for any � > 0. 26



4 Partial regularityThe following de
ay theorem for the mean 
atness plays a 
entral role in this paper; both thestatement and the proof are reminis
ent of the regularity theory of varifolds developed by Allard[1℄ and Brakke [7℄ (see also [23℄).Theorem 4.1 (de
ay) For all � 2 (0; 1) and all M > 0 there exists "1 (depending only on �,M and !) su
h that, for every E 2M!, the 
onditionsx 2 �E; AE(x; �) � "1; MAE(x; �) �p!(�)imply AE(x; ��) � C3�2AE(x; �)where C3 is a 
onstant depending only on n.Proof:If ! is a linear fun
tion a proof is given in [3℄; in the general 
ase the proof is similar, seealso the de
ay theorem for the mean 
atness of the jump set of the Mumford{Shah fun
tionalproved in [4℄, where no linearity assumption on ! is made. The 
onstant C3 is related to somepointwise estimates on harmoni
 fun
tions of m variables. 2Lemma 4.2 (iteration) There exists a positive 
onstant "2 = "2(!) su
h that if E 2 M!,x 2 �E, AE(x; r) � "2 and p!(r) � "2 then for all � 2 (0; r)AE(x; �) � Cm+23 �max( sup�2[�;r℄p!(�)� ; AE(x; r)r )and, in parti
ular, lim�!0AE(x; �) = 0.Proof:Take � = C�13 , M = ��m�3, "2 = "1(�;M; !) (where C3 and "1 are the 
onstants given byTheorem 4.1).We will prove, by indu
tion, that for all integers k � 0AE(x; �kr) � �kmax( sup�2[�kr;r℄ r�p!(�);AE(x; r)) : (5)The 
ase k = 0 is trivial, so assuming that (5) is true for k we prove that (5) holds alsofor k + 1. If MAE(x; �kr) � p!(�kr) we 
an apply Theorem 4.1 (in fa
t, AE(x; �kr) �maxnp!(r);AE(x; r)o � "2) to obtainAE(x; �k+1r) � �AE(x; �kr) � �k+1max( sup�2[�k+1r;r℄ r�p!(�);AE(x; r)) :Otherwise, by Lemma 3.2 we getAE(x; �k+1r) � ��m�2AE(x; �kr) � ��m�2p!(�kr)M= �q!(�kr) � �k+1r sup�2[�k+1r;r℄p!(�)� :To 
on
lude the proof, noti
e that given any � 2 (0; r) there exists an integer k su
h that�k+1r � � � �kr, so thatAE(x; �) � ��m�2AE(x; �kr)� Cm+23 �krmaxf sup�2[�;r℄p!(�)� ;AE(x; r)g� Cm+33 �maxf sup�2[�;r℄p!(�)� ;AE(x; r)g:7



To prove the last statement, we 
laim thatlim�!0 � sup�2[�;r℄p!(�)� = 0:In fa
t, given any sequen
e �k ! 0, let �k 2 [�k; r℄ be su
h that p!(�k)�k = sup�2[�;r℄ p!(�)� . If�k ! 0 then �kp!(�k)�k � p!(�k) ! 0, otherwise there exists � > 0 su
h that �k � � for all kand we 
on
lude noti
ing that �kp!(�k)�k � �kp!(r)� ! 0. 2If X�Rn and � > 0 we will denote by (X)� the open �-neighborhood of X :(X)� := fx 2 Rn: d(x;X) < �g:De�nition 4.3 Let S be a 
losed set of Rn, x0 2 S, R > 0 and 0 � m � n an integer. Thenwe say that S satis�es the (";R;m)-Reifenberg 
ondition in x0 if given any ball B�(x)�BR(x0)there exists an m-dimensional plane � through x su
h thatS \ B�(x) � (�)"�� \ B�(x) � (S)"�:The following theorem 
an be found in [20℄.Theorem 4.4 (Reifenberg) Given 0 < � < 1, there exists "3 > 0 su
h that if S is a 
losed setin Rn satisfying the ("3; R;m)-Reifenberg 
ondition in x0 2 S for some R > 0, and some integer0 � m � n, then there exists an open set U , B R16 (x0)�U�BR(x0) and an homeomorphism� :Dm ! S \ U (Dm is the 
losed m dimensional unit disk) su
h that both � and ��1 are�-H�older maps.Lemma 4.5 Let E 2 M!, x 2 Rn, � > 0, " 2 (0; 1=2), A an hyperplane through x and let�A:Rn ! Rn be the orthogonal proje
tion onto A. If �E \ B�(x)�(A)"� then at least one ofthe following statements is true:1. �A(�E \ B�(x))�A \ B(1�")�(x);2. P (E nB�(x); B�(x)) � 4"m!m�m:Proof:In this proof we assume that the set E is su
h that �E is exa
tly equal to the topologi
al bound-ary of E. This 
an be done repla
ing E with the set E� := fx 2 Rn: lim sup�!0 jE\B�(x)j!n�n > 0gwhi
h di�ers from E by a zero Lebesgue measure set. Taking into a

ount Proposition 1.5 it
an be proved that the topologi
al boundary of E� is �E� = �E.Let x1; : : : ; xn be a system of 
oordinates su
h that A = fxn = 0g and de�ne E+ = fxn �"�g \ B�(x) and E� = fxn � �"�g \ B�(x). From the assumptions on E we know that �Einterse
ts neither E+ nor E�. So, being �E 
losed and E+, E� 
ompa
t sets, we 
on
ludethat �E has positive distan
e from E+ and E�. So one of the following statements must hold:1. E�E�, E \ E+ = ;;2. E�E+, E \ E� = ;;3. E \ E+ = ;, E \ E� = ;;4. E�E+ [E�.Suppose that 1 is true, then we 
laim that the �rst statement of the proposition holds. LetA+ = fxn = "�g \ B�(x) and A� = fxn = �"�g \ B�(x). Given y 2 A \ B(1�")�)(x) denoteby y+ and y� respe
tively the interse
tions of ��1A (x) with A+ and A�. Sin
e y� 2 E whiley+ 62 E there must 
ertainly be a point in the segment [x�; x+℄ whi
h belongs to �E (and thatis 
ontained in B�(x)), so y 2 ��(�E \ B(x; r)).If statement 2 holds, with a symmetry with respe
t to A we obtain again the �rst statement.8



Suppose that 3 is true. Let F = E nB�(x). Then �F \B�(x)�(A)"� \ �B�(x), so we obtainthe se
ond statement:P (F;B�(x)) � Hm(�F \B�(x)) � Hm((A)"� \ �B�(x)) � 4"m!m�m:If statement 4 holds the proof is that of 
ase 3 where instead of E we 
onsider its 
omplementaryset. 2De�nition 4.6 (singular set) For E 2M! de�ne�(E) := fx 2 �E: lim sup�!0 AE(x; �) > 0g:Note that �(E) is a 
losed set. In fa
t, given any x 2 �E n �(E), sin
e lim�AE(x; �) = 0we 
an �nd a radius � su
h that AE(x; 2�) � 2�m�2"2 and for all y 2 B�(x) we get AE(y; �) �2m+2AE(x; 2�) � "2 so that by Lemma 4.2 lim�AE(y; �) = 0; hen
e B�(x) \ �(E) = ;. Inview of Theorem 4.4 the following theorem gives a regularity result for the set �E n�(E).Theorem 4.7 (partial regularity) Let E 2 M! and x0 2 �E n �(E). For all 0 < " < "2(where "2 is the 
onstant given in Lemma 4.2) there exists r > 0 su
h that the set �E satis�esthe ("; r;m)-Reifenberg 
ondition in x0.Proof:Choose 
onstants �1, �2, �3 and r su
h that�3 � "2 ; �3 < !m8!m�1(1 + !(�!)) ; �3 � 12 ;�2 < ��3C1�m+2 ; �1 � � 23C3�m+2 �2; �1 � �23�m+2 "2;r < �!; p!(2r) � "22; p!(2r) � �2Cm+23 ;AE(x; 3r) � �1where C1, C3 and "2 are the 
onstants given in Proposition 3.3 and Lemma 4.2.Consider any ball B�(x)�Br(x0) with 
enter x 2 �E. By Lemma 3.2 we have AE(x; 2r) �� 32�m+2AE(x0; 3r) � � 32�m+2 �1. and by Lemma 4.2 we obtainAE(x; 2�) � Cm+23 maxfp!(2r); �rAE(x; 2r)g� Cm+23 maxf �2Cm+23 ;�32�m+2 �1g � �2:Now, by Proposition 3.3 we get �E(x; �) � C1(AE(x; 2�)) 1m+2 < �3 so there exists an hyperplaneA through x su
h that ��1 supy2�E\B�(x) d(y;A) < �3whi
h means that �E \ B�(x)�(A)�3�. To 
on
lude the proof we only need to prove thatA \ B�(x)�(�E)"�. By Proposition 1.6 and the de�nition of M!, given any � 2 (�; �!)!m2 �m � P (E;B�(x)) � P (E nB�(x); B�(x))(1 + !(�))and letting � ! � we obtainP (E nB�(x); B�(x)) � !m2(1 + !(�+))�m > 4�3!m�1�m:So, in view of Lemma 4.5, we obtain that the proje
tion �A(�E\B�(x)) 
ontainsA\B(1��3)�(x).Therefore given any point y 2 A \ B�(x) we 
an �nd a point y0 2 A \ B(1��3)�(x) withjy0� yj � �3� and a point z 2 �E \B�(x) with �A(z) = y0. Sin
e �E \B�(x)�(A)�3� we havejz � y0j � �3� when
e jy � zj � 2�3� � "�. 29



Lemma 4.8 (
onvergen
e of singular points) Let Ek; E 2 M! with Ek ! E. Then, forall R > 0, limk!1 supx2BR(0)\�(Ek) d(x;�(E)) = 0:Proof:Suppose by 
ontradi
tion that there exist " > 0 and a sequen
e (xk) with xk 2 �(Ek) whi
h
onverges to a point x and su
h that d(xk ;�(E)) > " for all k. Sin
e d(xk ; x)! 0 then x 62 �(E)so that lim�!0AE(x; �) = 0. In view of Lemma 3.4 we 
an �nd a radius � > 0 su
h thatlim supk!1AEk(x; �) � AE(x; �) and AE(x; �) < 2�m�2"2. So we 
an �nd an integer k su
hthat AEk(x; �) < 2�m�2"2 and jxk � xj < �=2 to obtain AEk (xk; �=2) � 2m+2AEk (x; �) � "2.By Lemma 4.2 we 
on
lude that xk 62 �(Ek). 2Proposition 4.9 (redu
tion of singularities) Let l � 0. Given E 2 M! su
h thatHl(�(E)) >0 there exists E1 2M0 su
h that Hl(�(E1)) > 0.Proof:See [23, Appendix A℄. First of all re
all that Hl1(�(E)) > 0, whereHl1(A) := inffXi !l�li: [i B�i(xi)�Ag:By [23, 3.6(2)℄ we 
an �nd a point x 2 �(E) with positive Hl1-density, that is a point x su
hthat there exist " > 0 and a sequen
e �k ! 0 su
h thatHl1(�(E) \ B�k(x)) > "�lk: (6)Let Ek := E�x�k . Up to a subsequen
e we may suppose that Ek 
onverges to a set E1 2 M0.If we suppose, by 
ontradi
tion, that Hl1(�(E1) \ B2(0)) = 0 we 
an �nd a family of ballsB�j (xj) su
h that Sj B�j (xj)��(E1) \ B2(0) and Pj !l�lj < "=2. Sin
e �(E1) \ B1(0) is a
ompa
t set it has positive distan
e from Rn nSj B�j (xj) and, in view of Lemma 4.8, we 
an�nd k su
h that �(Ek)\B1(0)�Sj B�j (xj). This means that Hl1(�(Ek)\B1(0)) < "=2, thatis Hl1(�(E) \B�k (x)) < �lk "2 :This is in 
ontradi
tion with (6). 2Theorem 4.10 (main theorem) Let E�Rn, E 2 M!. Then there exist a 
losed set �(E)with Hausdor� dimension not greater than n�8, su
h that �E n�(E) is a C0;� m-dimensionalmanifold for all � < 1.Proof:The regularity of the set �En�(E) follows from Theorem 4.7 and Theorem 4.4. It is well knownthat if E 2M0 then Hl(�(E)) = 0 for all l > n�8 (see for instan
e [23℄) so, by Proposition 4.9,it is also true for any E 2 M!. 25 The two-dimensional 
aseIn this se
tion we prove that quasi minimizers in R2 are lo
ally bilips
hitz parameterizablewith an open interval of R. The proof is a
hieved using as 
ompetitor in the de�nition of quasiminimality the set F given by the following lemma.Lemma 5.1 Let E be a Ca

ioppoli set and let � : [t1; t2℄! �E be a lips
hitz, inje
tive fun
tion.Then there exists a Ca

ioppoli set F su
h that E4F is 
ontained in the 
onvex hull K of�([t1; t2℄) and su
h thatP (F;K) � H1(�E \K)� Z t2t1 j� 0(t)j dt+ j�(t1)� �(t2)j:10



Proof:First some notation. We will 
onsider normal 
urrents with multipli
ity in Z2. If � is aparametri
 lips
hitz 
urve, we denote by ~� the 1-dimensional 
urrent (with multipli
ity 1)indu
ed by �. Likewise if E is a Ca

ioppoli set, we denote by ~E the 2-dimensional normal
urrent on E with multipli
ity 1. Note that every 2-dimensional normal 
urrent with multipli
ityin Z2 
an be written as ~E for some Ca

ioppoli set E and jD'E j = k� ~Ek. See [23℄ for basi
notation and main fa
ts about the theory of 
urrents.We denote by S the segment having �(t1) and �(t2) as endpoints and set � = �([t1; t2℄).Noti
e that both ~� and � ~E � are re
ti�able 1-dimensional 
urrents with multipli
ity 1 sup-ported on the re
ti�able set �. Sin
e there is no 
hoi
e for the orientation of tangent lines (we
onsider orientation in Z2), the two 
urrents are equal.Consider the parameterization of S given by 
: [0; 1℄! R2 de�ned by 
(t) = t�(t2) + (1�t)�(t1) and let ~� = ~� � ~
. Clearly spt~��� [ S�K, where K is the 
onvex hull of �.Sin
e �~� = 0 there exists a 2-dimensional 
urrent ~R (with multipli
ity in Z2) su
h that� ~R = ~�. Moreover �([0; 1℄)�K and being R 
onstant on R2 nK, we 
an also assume spt ~R�K.Let ~F := ~E� ~R. Clearly E4F�K (in fa
t ~F (R2nK) = ~E (R2nK)) and ��F��F��E[S. Sin
e � ~F (� n S) = � ~E (� n S)� ~� (� n S) + ~
 (� n S) = 0 (mod 2)we obtain that k� ~Fk(� n S) = 0. But k� ~Fk = jD'F j = H1 ��F and we obtain H1(��F \(� n S)) = 0. So ��F�(�E n �) [ S, up to H1-negligible sets, and P (F;K) = H1(��F \K) �H1(�E \K)�H1(�) +H1(S) when
e the 
on
lusion follows. 2Theorem 5.2 Let E�R2, E 2 M!. Then �E is lo
ally parameterizable over a line, with abilips
hitz map. That is, �E is a lips
hitz 1-dimensional manifold.Proof:Let z0 be any point of �E. In view of Theorem 4.10 we 
an �nd an open neighbourhood B of z0su
h that there exists an homeomorphism � : [0; L℄! �E \B. We may suppose that B�Br(z0)with !(2r) < 116� . Suppose also that � is a 
hord-ar
 parameterization so that � is 1-lips
hitz.Let us prove that ��1 is also lips
hitz.Let t1; t2 2 [0; L℄ and 
onsider the set F given by Lemma 5.1. If K is the 
onvex hull of�([t1; t2℄) noti
e that K�B�(x) for some x 2 �E and some � � jt2 � t1j. Being E4F b B�(x),by the minimality of E and by Proposition 1.3 we getP (E;B�(x))� P (F;B�(x)) � !(�)1 + !(�)P (E;B�(x)) � 4�(1 + !(2�))!(�)1 + !(�) � � 12�on the other hand Lemma 5.1 implies thatP (F;B�(x))� P (E;B�(x)) � j�(t2)� �(t1)j � jt2 � t1jand we 
on
lude jt2 � t1j � 2j�(t2)� �(t1)j:whi
h means that ��1 is lips
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