Impact of arterial elastance as a measure of vascular load on left ventricular geometry in hypertension

Original Citation: Impact of arterial elastance as a measure of vascular load on left ventricular geometry in hypertension / P.S. SABA; A. GANA; R.B. DEVEREUX; R. PINI; T.G. Pickering; M.J. ROMAN. - In: JOURNAL OF HYPERTENSION. - ISSN 0263-6352. - STAMPA. - 17:(1999), pp. 1007-1015.

Availability: This version is available at: 2158/219225 since:

Terms of use: Open Access
La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:
Impact of arterial elastance as a measure of vascular load on left ventricular geometry in hypertension

Pier Sergio Saba, Antonello Ganau, Richard B. Devereux, Riccardo Pini, Thomas G. Pickering and Mary J. Roman

Objective Effective arterial elastance (Ea), integrating the pulsatile component of left ventricular (LV) afterload, is an estimate of aortic input impedance. We evaluated relationships of Ea with left ventricular anatomy and function in essential hypertension.

Design A cross-sectional analysis in 81 normotensive and 174 untreated hypertensive individuals enrolled in a referral hypertension centre.

Methods Using echocardiography we determined left ventricular mass index (LVMI), relative wall thickness (RWT), stroke volume (SV), endocardial (FS_e) and midwall (FS_m) fractional shortening and total peripheral resistance (TPR). Carotid pressure waveforms were obtained by arterial tonometry, and end-systolic pressure (Pes) was measured at the dicrotic notch. Ea index (Ea/I) was calculated as Pes/SV index; LV elastance (Ees) was estimated as Pes/LV end-systolic volume, and ventriculo-arterial coupling was evaluated by the Ea/Ees ratio.

Results Ea/I was higher in hypertensives than in normotensives (3.02 ± 0.63 versus 2.40 ± 0.52 mmHg/l per m²; P < 0.0001). Using the 95% upper confidence limit in normotensives, hypertensives were divided in two groups with normal or elevated Ea/I. The 38 hypertensives with elevated Ea/I had higher RWT (0.41 ± 0.06 versus 0.37 ± 0.05), lower LVMI (87.5 ± 18.5 versus 96.8 ± 19.3 g/m²), higher TPR (2247 ± 408 versus 1658 ± 371 dynes/cm s⁻⁵) and lower FS_e and FS_m (35 ± 5 versus 39 ± 5 and 16 ± 2 versus 18 ± 2%; all P < 0.05) than patients with normal Ea/I. Ea/Ees ratio was increased and cardiac output was reduced in hypertensives with elevated Ea/I.

Conclusions High values of Ea/I identify a minority of hypertensive patients characterized by elevated TPR, left ventricular concentric remodelling, depressed left ventricular systolic function and impaired ventriculo-arterial coupling. J Hypertens 1999, 17:1007–1015

© Lippincott Williams & Wilkins.

Keywords: left ventricular afterload, arterial elastance, left ventricular hypertrophy, ventricular-vascular coupling, echocardiography, applanation tonometry, left ventricular function

Introduction

It is known that the increased afterload in systemic hypertension may induce adaptive changes of left ventricular anatomy. Previous studies have demonstrated that the pattern of left ventricular adaptation in hypertension is polymorphic [1], reflecting the interplay of hemodynamic pressure and volume load [2,3]. Moreover, concentric left ventricular geometry has been reported to be associated with increased pulse wave velocity in hypertension [4].

The vascular component of left ventricular afterload is usually assessed in terms of mean blood pressure or total peripheral resistance. However, these measurements do not take into account the pulsatile characteristics of blood flow in arteries [5,6]. Effective arterial elastance (Ea), i.e. the ratio between end-systolic pressure and stroke volume, has been proposed as a measure of arterial load that integrates peripheral resistance, total vascular compliance, characteristic impedance and systolic and diastolic time intervals [7,8]. According to a recent study showing that effective arterial elastance provides a reliable estimate of aortic impedance [7], effective arterial elastance could be considered an appropriate index of the vascular load acting on the left ventricle in conditions such as hypertension or ageing in which the pulsatile component of the arterial load may be enhanced. Since it shares the same dimensional units as left ventricular elastance (Ees), effective arterial elastance has also been used to...
assess the ventricular–vascular coupling by means of the ratio E_a/E_{es} [8,9]. Previous studies demonstrate that maximal left ventricular stroke work is achieved when the ratio E_a/E_{es} is near unity, while maximal efficiency occurs when E_a/E_{es} ratio approximates 0.5 [10,11].

This study was undertaken to investigate the influence of vascular afterload, as measured by effective arterial elastance, on left ventricular geometry and systolic function in uncomplicated essential hypertension.

Methods

Study population
The study was conducted in 81 apparently healthy normotensive individuals and 174 essential hypertensive patients, aged 25–88 years. Hypertension was defined as clinic systolic blood pressure ≥ 140 and/or diastolic blood pressure ≥ 90 mmHg in two or three measurements taken by mercury manometer at 1-week intervals. Individuals with signs or symptoms of coronary artery disease, heart failure or valvular heart disease were excluded. None of the patients had left ventricular wall motion abnormalities on echocardiogram. One-hundred and seven (61.5%) hypertensive individuals had been previously taking antihypertensive medications that were discontinued at least 3 weeks before the study, while the remaining 67 patients were never treated. Body habitus was evaluated by body mass index (BMI) (kg/m2 of height) and body surface area (obtained from body height and weight by standard nomograms).

The study protocol had been approved by the Committee on Human Rights in Research of Cornell University Medical College in 1989 and at intervals thereafter.

Echocardiography
Two-dimensionally guided M-mode tracings were used to obtain left ventricular dimensions according to the recommendations of the American Society of Echocardiography [12,13]. Measurements were performed on several occasions using a digitizing tablet and averaged. Left ventricular mass was calculated according to the Penn Convention [14,15] and adjusted for body surface area. To take into account the impact of obesity (72 individuals had BMI > 28 kg/m2), left ventricular mass was also adjusted for body height to the power of 2.7 [16]. Left ventricular relative wall thickness was calculated as $2 \times$ posterior wall thickness/end-diastolic internal dimension. Patterns of left ventricular geometry in hypertensives were defined as previously described [1]; patients were classified as abnormal if the left ventricular mass index exceeded 108 g/m2 in women or 118 g/m2 in (men) [17] or the relative wall thickness exceeded the 95% upper confidence limit of the age-predicted value (from 0.42–0.48 according to the age decade) [18]. Stroke volume was calculated from end-systolic and end-diastolic left ventricular volumes, using the Teichholz formula [19]; in a subgroup of 51 normotensive and 42 hypertensive individuals stroke volume was additionally calculated from the Doppler time-velocity integral of trans-aortic valvular flow and aortic valve area [20]. Total peripheral resistance was calculated as (mean blood pressure \times 80)/cardiac output. Meridional end-systolic stress was calculated as previously reported [1]; in addition, circumferential end-systolic stress was calculated by the method of Gaasch and coworkers [21]. Left ventricular ejection performance was assessed by both endocardial and midwall [22] fractional shortening and expressed as percentage of the value predicted from the relations of endocardial fractional shortening to meridional end-systolic stress and of midwall fractional shortening to circumferential end-systolic stress obtained in a sample of 430 normotensive individuals [18]. These variables were called stress-corrected endocardial and midwall shortening.

The ratio between M-mode derived stroke volume and carotid pulse pressure (SV/PP) was calculated as an estimate of total arterial compliance [23,24].

Pulse wave recording, augmentation index and effective arterial elastance
Pressure waveforms of the common carotid artery were obtained as described elsewhere [25–27], using high-fidelity applanation tonometry [28]. After external calibration by brachial sphygmomanometric mean blood pressure, a dedicated mouse-driven software written by an investigator (R.P.) allowed measurement of actual carotid blood pressures, which closely reflect the pressure values in the ascending aorta [29]. After identifying in the carotid pressure waveform the inflection point (P_i) due to the return of reflected pressure waves, the augmentation index was calculated as percentage of [carotid peak systolic pressure $- P_i$]/carotid pulse pressure [30] to estimate the impact of pressure wave reflection on central hemodynamics. Effective arterial elastance was calculated as the ratio of end-systolic pressure (estimated at the carotid dicrotic notch) to stroke volume [8]. Since stroke volume is related to body size, effective arterial elastance was also calculated after indexation of stroke volume to body surface area (E_aI) [31].

Left ventricular end-systolic elastance was calculated from the ratio of end-systolic pressure (at carotid dicrotic notch) to left ventricular end-systolic volume (E_{es}) [32]. Left ventricular–arterial coupling was evaluated by the ratio E_a/E_{es} [8,33,34].

Statistical analyses
Data were stored and analysed by the Crunch4 Statistical Package (Crunch Software Corporation, Oakland,
higher BMI, heart rate and augmentation index than normotensive control individuals. Left ventricular wall thicknesses, mass index and relative wall thickness were significantly larger in hypertensive than in normotensive individuals (Table 2), while stroke index was similar between the two groups. In the subgroup of 93 individuals in whom Doppler-derived stroke volume was available, M-mode and Doppler determinations were similar (average values 80.1 ± 18.1 versus 78.3 ± 18.2 ml, respectively; \(P = 0.33 \)) and significantly related \((r = 0.55; P < 0.01)\), in agreement with previous reports [35–36]. The Bland and Altman diagram [37] showed no systematic errors in the estimation of stroke volume by M-mode method (Fig. 1). As a consequence, M-mode and Doppler-derived \(E_a\) were similar \((1.42 ± 0.41 \text{ versus } 1.45 ± 0.41 \text{ mmHg} / \text{l}; P = 0.34)\) and strongly related to each other \((r = 0.71; P < 0.0001)\). Cardiac index, total peripheral resistance and end-systolic stress were significantly higher in hypertensive than in normotensive individuals. The stroke volume to pulse pressure ratio was significantly reduced in hypertensive individuals. Stress-corrected endocardial fractional shortening was significantly higher and midwall shortening lower in hypertensive than in normotensive individuals. \(E_a\), \(E_a\) index and \(E_{es}\) were higher in hypertensive individuals, while the ratio \(E_a/E_{es}\) was not different in normotensive and hypertensive individuals and closely approximated the value of 0.5 at which ventricular efficiency is considered to be maximal [10,11].

Relations of effective arterial elastance with left ventricular structure and function

Left ventricular relative wall thickness, endocardial and midwall fractional shortening were significantly related

\[Meridional\] end-systolic stress \((\text{kdyines/cm}^2)\)

\[Circumferential\] end-systolic stress \((\text{kdyines/cm}^2)\)

Endocardial fractional shortening \((\% \text{ of predicted})\)

Midwall fractional shortening \((\% \text{ of predicted})\)

\(E_a\) \((\text{mmHg/ml})\)

\(E_{es}\) \((\text{mmHg/ml})\)

\(E_{es}/E_a\)

Data are means ± SD. Effective arterial elastance; \(E_a\), left ventricular end-systolic elastance (single-point estimate).

\(^* P < 0.05, ^{**} P < 0.01, E_{es}\).
to Ea both in normotensive and hypertensive individuals (Table 3). These relations were closer than the relations of these parameters with systolic, diastolic and carotid end-systolic blood pressures. Posterior wall thickness was also significantly related to Ea, although it showed the closest relations with carotid end-systolic pressure in normotensives and with brachial diastolic blood pressure in hypertensives (Table 3). Negative relationships were found between left ventricular mass and Ea, that attained statistical significance in hypertensive individuals.

Left ventricular posterior wall thickness ($r = 0.35; P < 0.01$), relative wall thickness ($r = 0.36; P < 0.01$) and mid-wall fractional shortening ($r = -0.36; P < 0.01$) were significantly related to Doppler-derived Ea in the subset of individuals in whom Doppler-derived stroke index was available.

In hypertensive patients, both endocardial and midwall fractional shortening, expressed as a percentage of the predicted value, were inversely related ($r = -0.62$ and $r = -0.50$, respectively; both $P < 0.0001$) to the E_a/E_{es} ratio (Fig. 2).

Demographic and echocardiographic characteristics in hypertensive individuals with normal or elevated effective arterial elastance

The upper normal 95% confidence limit of effective arterial elastance index was calculated in normotensive individuals and used to identify hypertensive patients with normal ($E_aI \leq 3.43\text{ mmHg/l per m}^2$) or increased ($E_aI > 3.43\text{ mmHg/l per m}^2$) effective arterial elastance. EaI was increased in 38 hypertensive individuals (21.8%) and normal in 136 (3.9 ± 0.4 versus 2.8 ± 0.4 mmHg/l per m², respectively). Patients with normal or increased effective arterial elastance did not differ in age, gender distribution, BMI, heart rate or brachial systolic and pulse pressures. Elevated EaI was associated with higher brachial diastolic blood pressure and carotid peak systolic and end-diastolic blood pressures; as partially expected as consequence of group definitions, carotid end-systolic pressure and body surface area were greater in hypertensives with elevated EaI (Table 4). Augmentation index was similarly elevated in the two hypertensive groups compared to normotensives (Table 4), and it was positively related to both carotid end-systolic pressure ($r = 0.38; P < 0.001$) and EaI ($r = 0.21; P < 0.001$) in the whole hypertensive population.

In comparison to hypertensives with normal EaI, patients with elevated EaI had similar left ventricular posterior wall thickness, greater septal thickness, smaller diastolic dimension and, as a consequence, higher relative wall thickness (Table 5). Both absolute and indexed left ventricular mass were significantly lower in the elevated EaI group. Accordingly, left ventricular concentric remodelling was approximately fivefold more frequent in hypertensives with high EaI than in those with normal EaI (29 versus 6%, $P < 0.01$; Fig. 3).

Table 3 Relations of effective arterial elastance with left ventricular structure and function in normotensive and hypertensive individuals

<table>
<thead>
<tr>
<th></th>
<th>Posterior wall</th>
<th>Relative wall</th>
<th>Left ventricular</th>
<th>Endocardial</th>
<th>Midwall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>thickness</td>
<td>thickness</td>
<td>mass</td>
<td>FS</td>
<td>FS</td>
</tr>
<tr>
<td>Normotensive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EaI</td>
<td>0.27**</td>
<td>0.62**</td>
<td>−0.17</td>
<td>−0.25*</td>
<td>−0.60**</td>
</tr>
<tr>
<td>Brachial systolic</td>
<td>0.46**</td>
<td>0.43**</td>
<td>0.29**</td>
<td>0.20</td>
<td>−0.15</td>
</tr>
<tr>
<td>blood pressure</td>
<td>0.45**</td>
<td>0.31**</td>
<td>0.39**</td>
<td>−0.04</td>
<td>−0.27*</td>
</tr>
<tr>
<td>Brachial diastolic</td>
<td>0.49**</td>
<td>0.46**</td>
<td>0.31**</td>
<td>0.10</td>
<td>−0.26*</td>
</tr>
<tr>
<td>blood pressure</td>
<td>0.19*</td>
<td>0.51**</td>
<td>−0.16*</td>
<td>−0.32**</td>
<td>−0.64**</td>
</tr>
<tr>
<td>Carotid end-systolic</td>
<td>0.23**</td>
<td>−0.005</td>
<td>0.39**</td>
<td>−0.23**</td>
<td>−0.21**</td>
</tr>
<tr>
<td>blood pressure</td>
<td>0.20**</td>
<td>0.002</td>
<td>0.30**</td>
<td>−0.10</td>
<td>−0.09</td>
</tr>
</tbody>
</table>

Hypertensive

EaI	0.17*	0.03	0.19**	−0.02	−0.03
Brachial systolic	0.23**	−0.005	0.39**	−0.23**	−0.21**
blood pressure	0.20**	0.002	0.30**	−0.10	−0.09

Data are means ± SD. FS, Fractional shortening; EaI, effective arterial elastance. *$P < 0.05$; **$P < 0.01$.
Data are means ± SD. E_a, effective arterial elastance. *$P < 0.05$, **$P < 0.01$ versus hypertensives with normal E_aI, †$P < 0.05$, ††$P < 0.01$ versus normotensives (ANOVA, Dunnett’s post-hoc test). §$P < 0.01$, by design.

When compared to normotensive individuals, hypertensives with elevated effective arterial elastance showed smaller increases in left ventricular mass (LVM) (LVM/body surface area greater by 15 versus 27%; LVM/height2 by 18 versus 31%; both $P < 0.001$) and more marked elevation of relative wall thickness (25 versus 12%; $P < 0.001$) than the group with normal E_aI (Table 5, Fig. 4). While left ventricular meridional end-systolic stress was normal in the group with normal E_aI and slightly elevated in hypertensive individuals with high E_aI, circumferential end-systolic stress was slightly and similarly elevated in both hypertensive groups (Table 5, Fig. 5). The stroke volume to pulse pressure ratio was significantly reduced only in hypertensive individuals with high E_aI. E_a/E_{es} ratio was normal in hypertensive individuals with normal E_aI and significantly increased in those with high E_aI.

Since age is a major determinant of E_aI in normal individuals [31], alternative analyses were performed using age-related upper normal limits to identify hypertensive patients with normal and high E_aI. These yielded similar results to those obtained using a single cutpoint.

Discussion

Effective arterial elastance and left ventricular afterload in hypertension

Aortic impedance, i.e. the relationship between pulsatile pressure and flow in the aorta, analysed in the
frequency domain [38], is considered the most accurate index of left ventricular afterload, since it comprises the steady as well as pulsatile component of vascular load [5,6,38]. However, its use in the clinical setting is made difficult by the need of invasive measurements of pressure and flow. Effective arterial elastance is a simpler parameter that also incorporates both steady and pulsatile components of arterial load [8,9]. A previous study has shown its reliability in estimating arterial load also when steady-state parameters (stroke volume and end-systolic pressure) are used in its calculation instead of simultaneous pressure/volume

Table 5 Left ventricular anatomy and function in hypertensive patients with normal and high effective arterial elastance

<table>
<thead>
<tr>
<th></th>
<th>Normal EaI (< 3.43)</th>
<th>Elevated EaI (> 3.43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricular posterior wall thickness (cm)</td>
<td>0.94 ± 0.12 †</td>
<td>0.97 ± 0.12 †</td>
</tr>
<tr>
<td>Inter-ventricular diastolic septal thickness (cm)</td>
<td>0.99 ± 0.13 †</td>
<td>1.05 ± 0.14 *</td>
</tr>
<tr>
<td>Left ventricular diastolic diameter (cm)</td>
<td>5.11 ± 0.50</td>
<td>4.74 ± 0.46 **</td>
</tr>
<tr>
<td>Left ventricular mass/BSA (g/m²)</td>
<td>96.8 ± 19.3†</td>
<td>87.5 ± 18.5 *</td>
</tr>
<tr>
<td>Left ventricular mass/height² (g/m²)²</td>
<td>43.9 ± 9.0 †</td>
<td>39.5 ± 9.2 †</td>
</tr>
<tr>
<td>Left ventricular relative wall thickness</td>
<td>0.37 ± 0.05 †</td>
<td>0.41 ± 0.06 **</td>
</tr>
<tr>
<td>Stroke index (M-mode) (mℓ/m²)</td>
<td>46.0 ± 7.6 †</td>
<td>34.2 ± 5.4 †</td>
</tr>
<tr>
<td>Stroke index (Doppler) (mℓ/m²) n = 42</td>
<td>43.9 ± 8.2</td>
<td>37.7 ± 7.7 †</td>
</tr>
<tr>
<td>Cardiac index (l/min/m²)</td>
<td>3.1 ± 0.7 †</td>
<td>2.3 ± 0.51 †</td>
</tr>
<tr>
<td>Total peripheral resistance (dyne/cm sec⁻⁵)</td>
<td>1658 ± 371</td>
<td>2247 ± 408 †</td>
</tr>
<tr>
<td>Stroke volume/carotid pulse pressure (mℓ/mmHg)</td>
<td>1.74 ± 0.72</td>
<td>1.25 ± 0.43 †</td>
</tr>
<tr>
<td>Meridional end-systolic stress (kdyne/cm²)</td>
<td>72.2 ± 20.8</td>
<td>76.7 ± 24.7 †</td>
</tr>
<tr>
<td>Circumferential end-systolic stress (kdyne/cm²)</td>
<td>199 ± 49 †</td>
<td>210 ± 59</td>
</tr>
<tr>
<td>Endocardial fractional shortening (%)</td>
<td>38.9 ± 5.0</td>
<td>35.1 ± 5.11 **</td>
</tr>
<tr>
<td>Stress-corrected endocardial shortening (%)</td>
<td>110.8 ± 11.0 †</td>
<td>102.3 ± 11.1 †</td>
</tr>
<tr>
<td>Midwall fractional shortening (%)</td>
<td>18.4 ± 2.0</td>
<td>15.8 ± 2.01 ***</td>
</tr>
<tr>
<td>Stress-corrected midwall shortening (%)</td>
<td>102.5 ± 10.6</td>
<td>89.2 ± 11.5 †</td>
</tr>
<tr>
<td>Ees (mmHg/ml)</td>
<td>3.5 ± 1.5 †</td>
<td>3.8 ± 1.3 †</td>
</tr>
<tr>
<td>Ea/Ees</td>
<td>0.47 ± 0.16</td>
<td>0.58 ± 0.20 **</td>
</tr>
</tbody>
</table>

Data are means ± SD. Ees, Left ventricular end-systolic elastance (single-point estimate); Ea, effective arterial elastance. * P < 0.05, ** P < 0.01 versus hypertensives with normal EaI, † P < 0.05, †† P < 0.01 versus normotensives (ANOVA, Dunnett’s post-hoc test).

Patterns of left ventricular geometry in hypertensives with normal and high effective arterial elastance. Prevalence of concentric remodelling was significantly greater in hypertensive patients with high arterial elastance. Pearson’s chi-squared = 16.9; P < 0.0008.

Fig. 3 Patterns of left ventricular geometry in hypertensives with normal and high effective arterial elastance. Prevalence of concentric remodelling was significantly greater in hypertensive patients with high arterial elastance. Pearson’s chi-squared = 16.9; P < 0.0008.
In agreement with a recent report [34], our data show that effective arterial elastance is, on average, increased in hypertension. However, the present study also demonstrates that E_a falls within the normal range in most hypertensive individuals. Only a minority of patients (22%) have abnormally elevated effective arterial elastance, a finding which is associated with higher diastolic blood pressure and total peripheral resistance. Although no age difference was present between hypertensive patients with normal and high E_a, based on a previous observation that age is a major determinant of E_a [31], alternative analyses were performed using age-dependent cutpoints for identifying patient subgroups that yielded similar patient distribution and characteristics. The presence of different hemodynamic features in these two groups of hypertensive patients suggests that different mechanisms participate in the genesis of hypertension in them. In fact, while patients with normal effective arterial elastance had only 7% higher total peripheral resistance and 19% higher cardiac index than the normotensive individuals, the group with elevated effective arterial elastance had markedly increased peripheral resistance, reduced cardiac index and stiffer arterial tree, as revealed by lower stroke volume/pulse pressure ratio.

The potential effect of pressure wave reflection on effective arterial elastance should be considered. It is known that stiffening of the arterial system generates earlier reflected pressure waves that reach the heart during ejection and boost systolic pressure [30]. In the setting of early wave reflection due to hypertension, end-systolic pressure might be less affected than peak systolic pressure, resulting in lower values of effective arterial elastance and underestimation of the actual arterial load. To explore this potentially confounding factor, we measured the augmentation index, which is known to reflect both intensity and timing of the reflected pressure wave [29,30]. Augmentation index was significantly ($P < 0.001$) and positively related to both end-systolic pressure and arterial elastance in the whole hypertensive population, and similarly increased in the two hypertensive groups compared to normotensive individuals (Table 4). This suggests that the contribution of enhanced wave reflection to arterial load is of the same extent in the two hypertensive groups, and it is not likely to be responsible for the observed differences in E_a. It is somewhat surprising that the group with a stiffer arterial tree, as revealed by increased E_a and reduced stroke volume/pulse pressure ratio, does not exhibit higher levels of augmentation index than hypertensives with normal E_a and presumably more compliant arteries. This may reflect the compensatory effect of a slightly higher prevalence of women in the latter group (41 versus 26%), since female sex has been associated with earlier pressure wave reflection [39].
Effective arterial elastance and left ventricular geometry
As previously reported [34], increased effective arterial elastance was associated with higher left ventricular relative wall thickness. In contrast, left ventricular mass increased less in hypertensives with elevated than in those with normal effective arterial elastance, in the setting of similar brachial systolic but higher diastolic pressure. The direct relation of EaI with relative wall thickness (Table 3) provides evidence that an elevated arterial load is a major stimulus to the development of left ventricular concentric remodelling. In fact, left ventricular concentric remodelling was fivefold more frequent in hypertensives with high than in those with normal arterial elastance. Although an autocorrelation phenomenon between M-mode-derived stroke volume and left ventricular dimension is expected and might potentially account for the positive relations of left ventricular geometry with EaI, a significant relation of EaI with relative wall thickness (r = 0.36) persisted in the subset of individuals in whom Doppler-derived stroke volume was used to assess EaI. Since left ventricular wall stress did not differ between the two groups, left ventricular geometric adaptation was similarly compensatory for the higher vascular load in hypertensives with high arterial elastance as in those with normal arterial elastance.

Ventricular-vascular coupling and left ventricular function in hypertension
In this study we used an estimation of left ventricular maximal elastance based on a single-point determination of end-systolic pressure to volume ratio. It is known that both time-varying and single beat-determined left ventricular maximal elastance are load dependent [40–42]. We do not have information about either ventricular preload or the response of ventricular elastance to manipulation of loading conditions in our individuals and thus we can not make precise inferences about left ventricular contractility on the basis of this estimate of Ees. However, considering the single point-determined Ees as an index of the ability of the left ventricle to empty opposed to a given pressure [42] instead of an intrinsic property of the cardiac muscle, we used this index in the evaluation of ventricular-vascular coupling, as suggested in a previous study [34]. Both in normotensive and hypertensive individuals the Ea/Ees ratio was on average close to 0.50, similar to previously reported normal values [10,11] which indicate optimal ventricular–vascular coupling in the whole hypertensive group. However, patients with elevated EaI had a significantly increased Ea/Ees ratio, consistent with sub-optimal ventricular–vascular coupling and mechanical efficiency. The altered ventricular–vascular coupling could be responsible for the lower left ventricular myocardial function in hypertensives with high effective arterial elastance. In fact, significant inverse relationships were present between the Ea/Ees ratio and both endocardial and midwall fractional shortening, expressed as percentages of the predicted values for the observed level of end-systolic stress. Moreover, while the hypertensive group with normal EaI and optimal ventricular–vascular coupling had supra-normal endocardial fractional shortening and normal midwall fractional shortening, the group of patients with elevated EaI and sub-optimal ventricular–vascular coupling showed a lower level of midwall fractional shortening, while endocardial fractional shortening was normal. These data are consistent with previous observations that hypertensive individuals with depressed left ventricular midwall shortening have a stiffer arterial tree, concentric left ventricular geometry and increased total peripheral resistance [22] and that shortening at the endocardial level is preserved by the concentric ventricular geometry [43]. The association between elevated effective arterial elastance, an indicator of structural and/or functional arterial alterations [31], and concentric left ventricular geometry could explain the greater incidence of vascular disease [44] and vascular events [45,46] in hypertensives with this geometric pattern compared to those with similar levels of left ventricular mass but normal relative wall thickness.

In conclusion, these data, as well as previous reports [26,44,47], provide evidence of a close interaction between the left ventricle and arterial tree. Structural and functional arterial modifications increase the vascular load on the left ventricle and play a role in inducing concentric left ventricular remodelling or hypertrophy that is initially adaptive but ultimately predisposes to systolic dysfunction [22] and clinical cardiovascular disease [45,46].

References
Arterial elastance and left ventricular geometry Saba et al. 1015

17 Devereux RB, James GD, Pickering TG. What is normal blood pressure? Comparison of ambulatory pressure level and variability in patients with normal or abnormal left ventricular geometry. Am J Hypertens 1993; 6:211S–215S.
42 Carabello BA. Ratio of end-systolic stress to end-systolic volume: it is a useful clinical tool? J Am Coll Cardiol 1989; 14:496–498.
45 Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry and arterial stiffness to plasma renin activity in normotensive and women with essential hypertension Ann Intern Med 1991; 114:345–352.