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Abstract. We present some results about the existence of positive decay-
ing solutions for a class of systems of two second order coupled nonlin-
ear equations with p-laplacian operator, p > 1. In addition the general-
ized Emden-Fowler type systems are considered and necessary and suffi-
cient conditions are given in order for the system to have regularly and/or
strongly decaying solutions. The results here presented complete the ones
in [10].

MSC 2000. 34B15, 34C11.
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1 Introduction

In this contribution we present some asymptotic results for a system of two coupled
nonlinear equations with the 1-dimensional p-laplacian operator Ψp(u) = |u|p−2u,
u ∈ R, of the form

[r(t)Ψp(x′)]′ = −F (t, x, y)
[q(t)Ψk(y′)]′ = G(t, x, y)

(S)

� Supported by the Grants No. 201/01/P041 and No. 201/01/0079 of the Czech Grant
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This is in the final form and completes recent results by the authors.
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where we assume p, k > 1 and

(i) r, q : [0,∞) -→ (0,∞) continuous,
(ii) F, G : [0,∞) × (0, δ] × (0, δ] -→ (0,∞) continuous, with δ a suitably small

positive constant,

(iii) ∃f, g : [0,∞)× (0, δ] -→ (0,∞) continuous s.t. F (t, u, v) ≤ f(t, v), G(t, u, v) ≤
g(t, u), ∀(t, u, v) ∈ [0,∞)× (0, δ]× (0, δ].

Systems of type (1) comes out in the study of the existence of radial solutions for
nonlinear coupled elliptic systems with p-laplacian ∆pu = div(|∇u|p−2∇u)

∆pu = F (|x|, u, v)
∆kv = G(|x|, u, v)

in exterior domains Ea = {x ∈ RN : |x| ≥ a}, N ≥ 2, p > 1, k > 1. Systems of
partial differential equations of this form have been object of increasing interest
in the last years, due to their relevance in applied sciences, especially in plasma
physics, biomathematics, chemistry and, in general, in reaction-diffusion problems.
Some relevant examples can be found in [2], [4], [5], [6], [7] and in the book [3] to
which we address the interested reader.

The particular case of an ordinary differential system of two coupled generalized
Emden-Fowler equations of the form

(p(t)|x′|α−1x′)′ = ϕ(t)yλ

(q(t)|y′|β−1y′)′ = ψ(t)xµ.
(2)

has been recently studied in [8], [9], [12], with regard to existence of positive de-
creasing solutions, but the sign condition on the nonlinear terms is opposite to our
case. The results here presented are therefore both more general and complemen-
tary to the corresponding ones in [8], [9],[12]. As both the nonlinear terms in (2)
have positive sign, the dynamics which is described is completely different from
our case; further (2) seems to be more close to the case of a single equation

[r(t)Ψp(x′)]′ = f(t, x).

that has been considered, for instance, in [1], [11] (see also the references therein).

Here we want to present some existence results which complete the ones ob-
tained by the authors in [10]; in particular system (1) is more general than the one
considered in [10] since the nonlinear terms F and G in (1) depend on both the
unknowns x and y. No assumption is done on the continuity and on the bounded-
ness of F and G in a neighborhood of v = 0 and of u = 0 respectively, thus we can
treat the regular case and the singular case at the same time, and the forced case
as well. For sake of completeness we will also quote the necessary and sufficient
conditions that can be derived for a Emden-Fowler type system, whose proofs can
be found in [10].

We end this section stating some definitions.
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In this contribution we deal with the existence of decaying solutions of (1), i.e.
solutions (x, y) such that x and y are eventually positive nonincreasing and x(∞) =
y(∞) = 0. If (x, y) is a decaying solution of (1), then the first quasiderivative of x,
x[1] := r(t)Ψp(x′(t)) is eventually negative decreasing and the first quasiderivative
of y, y[1] := q(t)Ψk(y′(t)) is eventually negative increasing. Thus they admit limit
as t → ∞ and −∞ ≤ x[1](∞) < 0, −∞ < y[1](∞) ≤ 0. A decaying solution
(x, y) is called regularly decaying if x[1] is bounded and y[1] tends to a (negative)
nonzero limit, strongly decaying if x[1] is bounded and y[1] tends to zero. The
set of regularly decaying solutions will be denoted by DR and the set of strongly
decaying solutions with DS . In the next section we will find minimal conditions in
order that (1) has solutions in the class DR and in DS , using both a topological
approach (the Shauder-Tychonoff fixed point theorem in a Frechét space) and
integral inequalities. This method allows us also to obtain an asymptotic estimate
of the convergence rate of the solutions.

Finally, we close this section by giving two necessary conditions that can be
easily proved (see [10]); the first one will be always assumed in the following, the
second one will be assumed only in the existence results in DR:

– If (1) has at least one decaying solution then the condition∫ ∞

0

Ψp∗

(
1
r(t)

)
dt <∞ (H1)

is satisfied, where p∗ is the conjugate numbers of p, i.e. 1/p+ 1/p∗ = 1.

– If (1) has at least one regularly decaying solution then conditions (3) and∫ ∞

0

Ψk∗

(
1
q(t)

)
dt <∞ (H2)

are satisfied, where k∗ is the conjugate numbers of k.

2 Existence results in DR and in DS for (1)

Concerning the existence of solutions in the class DR, the following result holds.

Theorem 1. Assume (3), (4) and

1. there exist a positive continuous functions ϕ1 on [0,∞), a nonnegative con-
tinuous function ϕ2 on [0,∞) and a monotone positive continuous function f̂
on (0, δ] such that for (t, u) ∈ [0,∞)× (0, δ]

f(t, u) ≤ ϕ1(t)f̂(u) + ϕ2(t),∫ ∞

0

ϕ2(t) dt <∞,
∫ ∞

0

ϕ1(t)f̂
(∫ ∞

t

Ψk∗

(
1
q(τ)

)
dτ

)
dt <∞;

(5)
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2. there exist a positive continuous functions γ1 on [0,∞), a nonnegative con-
tinuous functions γ2 on [0,∞) and a monotone positive continuous function
ĝ on (0, δ] such that for (t, u) ∈ [0,∞)× (0, δ]

g(t, u) ≤ γ1(t)ĝ(u) + γ2(t),∫ ∞

0

γ2(t) dt <∞,
∫ ∞

0

γ1(t)ĝ
(∫ ∞

t

Ψp∗

(
1
r(τ)

)
dτ

)
dt <∞.

(6)

Then (1) has solutions in the class DR.

Proof. The argument is a slight generalization of the one employed in [10] in the
proof of Theorem 1, in which the particular case of a nonforced system is consid-
ered. We denote by C[t0,∞) the locally convex space of all continuous functions
defined on [t0,∞) with the topology of uniform convergence on any compact subin-
tervals of [t0,∞). Thus C[t0,∞) is a Fréchet space. We choose t0 ≥ 0 such that∫ ∞

t0

ϕ2(t) dt ≤
1
4
,

∫ ∞

t0

ϕ1(t)f̂
(∫ ∞

t

Ψk∗

(
1
q(τ)

)
dτ

)
dt ≤ 1

4
,∫ ∞

t0

γ2(t) dt ≤
1
4
,

∫ ∞

t0

γ1(t)ĝ
(∫ ∞

t

Ψp∗

(
1
r(τ)

)
dτ

)
dt ≤ 1

4
.

(7)

Let

m = max
{∫ ∞

t0

Ψk∗

(
1
q(τ)

)
dτ ;

∫ ∞

t0

Ψp∗

(
1
r(τ)

)
dτ

}
and, without loss of generality, assume 2m ≤ δ.
Consider the set Ω ⊂ C[t0,∞)× C[t0,∞) given by

Ω =
{
(u, v) ∈ C[t0,∞)× C[t0,∞) such that:∫ ∞

t

Ψp∗

(
M1

r(τ)

)
dτ ≤ u(t) ≤

∫ ∞

t

Ψp∗

(
M2

r(τ)

)
dτ,∫ ∞

t

Ψk∗

(
N1

q(τ)

)
dτ ≤ v(t) ≤

∫ ∞

t

Ψk∗

(
N2

q(τ)

)
dτ

}
where Mi, Ni, i = 1, 2 are four suitable positive constants. On this set we define
the operator T with values in C[t0,∞)× C[t0,∞), by

T (u, v) = (T1(u, v), T2(u, v))

T1(u, v)(t) =
∫ ∞

t

Ψp∗

[
1
r(s)

(
M2 −

∫ ∞

s

F (τ, u(τ), v(τ)) dτ
)]

ds,

T2(u, v)(t) =
∫ ∞

t

Ψk∗

[
1
q(s)

(
N1 +

∫ ∞

s

G(τ, u(τ), v(τ)) dτ
)]

ds.

We have to prove that T is continuous and maps Ω into a compact subset of Ω.
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First we consider the case f̂ and ĝ nondecreasing on (0, δ]; for this case let
M1 = N1 = 1/2, M2 = N2 = 1.
(i) T (Ω) ⊂ Ω. The positivity of F and G immediately implies, for every (u, v) ∈ Ω

T1(u, v)(t) ≤
∫ ∞

t

Ψp∗

(
1
r(s)

)
ds, T2(u, v)(t) ≥

∫ ∞

t

Ψk∗

(
1/2
q(s)

)
ds.

The assumptions on F and G, together with (5) and (7), imply that for any
(u, v) ∈ Ω it holds∫ ∞

t0

F (t, u(t), v(t)) dt ≤
∫ ∞

t0

ϕ1(t)f̂
(∫ ∞

t

Ψk∗

(
1
q(τ)

)
dτ

)
dt+

∫ ∞

t0

ϕ2(t) dt ≤
1
2
,∫ ∞

t0

G(t, u(t), v(t)) dt ≤
∫ ∞

t0

γ1(t)ĝ
(∫ ∞

t

Ψp∗

(
1
r(τ)

)
dτ

)
dt+

∫ ∞

t0

γ2(t) dt ≤
1
2
.

These inequalities imply

T1(u, v)(t) ≥
∫ ∞

t

Ψp∗

(
1/2
r(s)

)
ds, T2(u, v)(t) ≤

∫ ∞

t

Ψk∗

(
1
q(s)

)
ds,

and (i) follows.
(ii) T (Ω) is relatively compact. Since T (Ω) ⊂ Ω, functions in T (Ω) are equi-
bounded. The equicontinuity of functions in T (Ω) easily follows by observing that,
in virtue of the above estimates, for any (u, v) ∈ Ω it holds

0 ≤ −(T1(u, v))′(t) ≤ Ψp∗

(
1
r(t)

)
, 0 ≤ −(T2(u, v))′(t) ≤ Ψk∗

(
1
q(t)

)
.

(iii) T is continuous in Ω ⊂ C[t0,∞) × C[t0,∞). Let {(un, vn)}, n ∈ N, be a
sequence in Ω which uniformly converges on every compact interval I of [t0,∞)
to (ū, v̄) ∈ Ω. In view of the assumption on F and of the upper bound (5), the
Lebesgue dominated convergence theorem and the uniform convergence on I of
the sequence {F (t, un, vn(t))} imply that the sequence

{∫∞
t F (τ, un(τ), vn(τ)) dτ

}
uniformly converges to

∫∞
t F (τ, ū(τ), v̄(τ)) dτ on I. Analogously, the upper bound

0 ≤ Ψp∗

[
1
r(t)

(
1−

∫ ∞

t

F (τ, un(τ), vn(τ)) dτ
)]
≤ Ψp∗

(
1
r(t)

)
allows us to apply again the Lebesgue dominated convergence theorem to the
sequence {

Ψp∗

[
1
r(t)

(
1−

∫ ∞

t

F (τ, un(τ), vn(τ)) dτ
)]}

.

It follows that the sequence {T1(un, vn)} uniformly converges on I to T1(ū, v̄), that
is the continuity of T1. The argument for the continuity of T2 is quite the same
and (iii) is proved.
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Since (i), (ii), (iii) are satisfied, the Schauder-Tychonoff theorem implies that
the operator T has a fixed point (z, w) ∈ Ω. It is easy to show that (z, w) is
solution of (1) on [t0,∞) and (z, w) ∈ DR.

In the case f̂ and ĝ nonincreasing on (0, δ] the assertion can be proved by
using an argument analogous to that given in the first part of the proof and
choosing M1 = N1 = 1, M2 = N2 = 3/2. Finally, when f̂ is nondecreasing and ĝ
nonincreasing on (0, δ] or vice-versa, it is sufficient to choose M1 = N2 = 1, M2 =
3/2, N1 = 1/2 or N1 =M2 = 1, M1 = 1/2, N2 = 3/2 respectively. The details are
left to the reader. @A
Other existence results in the class DR can be found in [10] (Th. 1 and Prop. 1)
in case that the nonlinearities in (1) satisfy some additional assumptions.

Remark 2. The assumptions in Theorem 1 are quite general and Theorem 1 can
be applied also to systems with singular forcing terms; an interesting case is when
F (t, u, v) = ϕ(t)uλ1v−λ2 and/or G(t, u, v) = ψ(t)u−µ1vµ2 , with λ1, µ2 ≥ 0 and
λ2, µ1 > 0.

With regards to existence of solutions of (1) in the class DS , here we treat only
the case in which F (t, u, v) and G(t, u, v) are both singular in a neighborhood of
v = 0 and u = 0 respectively. The remaining cases, i.e. F and G both regular
functions or one regular and the other singular in a neighborhood of v = 0 and
u = 0 respectively, can be obtained with minor changes from the results in [10]
(Th. 2, Th. 3, Prop. 2). The details are left to the reader. To state the following
existence, we need a further assumption in addition to (i)-(iii).

Theorem 3. Assume
(iv) ∃h : [0,∞) × (0, δ] -→ (0,∞) continuous s.t. G(t, u, v) ≥ h(t, u), ∀(t, u, v) ∈

[0,∞)× (0, δ]× (0, δ].
Let (3) be satisfied and suppose that there exist two positive continuous functions
γ1, ϕ1 on [0,∞), two nonnegative continuous functions γ2, ϕ2 on [0,∞), three
nondecreasing positive continuous functions ĥ, ĝ, f̂ on (0, δ] and two positive con-
stants 0 < N < M , such that for (t, u) ∈ [0,∞)× (0, δ]:

h(t, u) ≥ γ1(t)ĥ(u) + γ2(t), g(t, u) ≤ γ1(t)ĝ(u) + γ2(t),

f(t, u) ≤ ϕ1(t)f̂(u) + ϕ2(t)∫ ∞

0

γ2(t) dt <∞,
∫ ∞

0

ϕ2(t) dt <∞,∫ ∞

0

Ψk∗

(
DN (t)
q(t)

)
dt <∞,

∫ ∞

0

ϕ1(t)f̂
(∫ ∞

t

Ψk∗

(
CM (s)
q(s)

)
ds

)
dt <∞,

where

DN (t) =
∫ ∞

t

[
γ1(s)ĝ

(∫ ∞

s

Ψp∗

(
N

r(τ)

)
dτ

)
+ γ2(s)

]
ds

CM (t) =
∫ ∞

t

[
γ1(s)ĥ

(∫ ∞

s

Ψp∗

(
M

r(τ)

)
dτ

)
+ γ2(s)

]
ds.
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Then (1) has solutions in the class DS.

Proof. Choose t0 ≥ 0 such that∫ ∞

t0

[
ϕ1(t)f̂

(∫ ∞

t

Ψk∗

(
CM (s)
q(s)

)
ds

)
+ ϕ2(t)

]
dt ≤M −N.

Let

m1 = max
{∫ ∞

t0

Ψp∗

(
M

r(t)

)
dt,

∫ ∞

t0

Ψk∗

(
DN

q(t)

)
dt

}
and, without loss of generality, suppose 2m1 < δ. Define the set Ω as follows

Ω =
{
(u, v) ∈ C[t0,∞)× C[t0,∞) such that:∫ ∞

t

Ψp∗

(
N

r(τ)

)
dτ ≤ u(t) ≤

∫ ∞

t

Ψp∗

(
M

r(τ)

)
dτ,∫ ∞

t

Ψk∗

(
CM (σ)
q(σ)

)
dσ ≤ v(t) ≤

∫ ∞

t

Ψk∗

(
DN(σ)
q(σ)

)
dσ

}
Consider the operator T̂ : Ω -→ C[t0,∞)×C[t0,∞), T̃ (u, v) = (T̃1(u, v), T̃2(u, v)),
given by

T̃1(u, v)(t) =
∫ ∞

t

Ψp∗

(
1
r(s)

(
M −

∫ ∞

s

F (τ, u(τ), v(τ)) dτ
))

ds,

T̃2(u, v)(t) =
∫ ∞

t

Ψk∗

(
1
q(s)

∫ ∞

s

G(τ, u(τ), v(τ)) dτ
)
ds.

Clearly T̃1(u, v)(t) ≤
∫∞
t Ψp∗

(
M
r(τ)

)
dτ for every (u, v) ∈ Ω, t ≥ t0. The following

inequalities hold for s ≥ t0:∫ ∞

s

F (t, u(t), v(t))dt ≤
∫ ∞

s

f(t, v(t))dt ≤
∫ ∞

s

(
ϕ1(t)f̂(v(t)) + ϕ2(t)

)
dt

≤
∫ ∞

t0

[
ϕ1(t)f̂

(∫ ∞

t

Ψk∗

(
CM (s)
q(s)

)
ds

)
+ ϕ2(t)

]
dt ≤M −N ;∫ ∞

s

G(t, u(t), v(t))dt ≤
∫ ∞

s

g(t, u(t))dt ≤
∫ ∞

s

(
γ1(t)ĝ(u(t)) + γ2(t)

)
dt

≤
∫ ∞

s

[
γ1(t)ĝ

(∫ ∞

t

Ψp∗

(
N

r(s)

)
ds

)
+ γ2(t)

]
dt = DN (s);∫ ∞

s

G(t, u(t), v(t))dt ≥
∫ ∞

s

h(t, u(t))dt ≥
∫ ∞

s

(
γ1(t)ĥ(u(t)) + γ2(t)

)
dt

≥
∫ ∞

s

[
γ1(t)ĥ

(∫ ∞

t

Ψp∗

(
M

r(s)

)
ds

)
+ γ2(t)

]
dt = CM (s).

From the above estimates it follows that the operator T̃ maps Ω into itself. To
apply Tychonov fixed point theorem, it is sufficient to show that T̃ (Ω) is relatively
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compact and T̃ is continuous in Ω. The argument is similar to that given in the
proof of Theorem 1 and the details are left to the reader. Then the operator T̃
has at least one fixed point (z, w). It is easy to show that (z, w) is solution of (1)
on [t0,∞) and both components of the fixed point are positive in each interval of
[t0,∞): so (z, w) ∈ DS . @A

Remark 4. Unlike Theorem 1, that can be applied to both the regular case and the
singular one (see Remark 2), Theorem 3 is for the singular case only. Existence
results for the regular case can be found in [10] and applied to (1) with minor
changes. This fact depends on the structure of the operator T̃ whose fixed points
are singular solutions of (1).

The conditions stated in Theorem 1 and in Theorem 3 are sharp conditions for
existence of solutions of (1) in DR and in DS respectively, since these conditions
becomes also necessary in case of a forced Emden-Fowler type system

[r(t)Ψp(x′)]′ = −ϕ1(t)Ψµ(y)− ϕ2(t), µ �= 1
[q(t)Ψk(y′)]′ = γ1(t)Ψν(x) + γ2(t), ν �= 1,

(8)

where we assume p, k > 1, µ, ν �= 1, ϕ1, γ1 : [0,∞) -→ (0,∞) continuous, ϕ2, γ2 :
[0,∞) -→ [0,∞) continuous, and ϕ2, γ2 ∈ L1(0,∞). The following result holds,
whose proof can be found in [10]

Theorem 5 ([10] Th. 3, Th. 4, Prop. 3).

• The Emden-Fowler forced system (8) has solutions in the class DR if and only
if conditions (3), (4) and∫ ∞

0

ϕ1(t)
(∫ ∞

t

Ψk∗

(
1
q(τ)

)
dτ

)µ−1

dt <∞∫ ∞

0

γ1(t)
(∫ ∞

t

Ψp∗

(
1
r(τ)

)
dτ

)ν−1

dt <∞

are satisfied.
• The Emden-Fowler forced system (8) has solutions in the class DS if and only

if conditions (3) and∫ ∞

0

ϕ1(t)
(∫ ∞

t

ϑ(s) ds
)µ−1

dt <∞

are satisfied, where

ϑ(t) = Ψk∗

[
1
q(t)

∫ ∞

t

(
γ1(s)

(∫ ∞

s

Ψp∗

(
1
r(τ)

)
dτ

)ν−1

+ γ2(s)

)
ds

]
.

Comments and examples that illustrate the previous result can be found in [10].
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