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1. Introduction and main results.

In the last few years several authors studied the regularity and the asymptotic behaviour
of nonnegative weak solutions of the boundary value problem:

%_ W™ = 0 in 0x0, 7],
u € C0,T; L2(Q)), ™€ L2(0,T; W, 2 (1)) 1.
u(z,0) = ug(z) € L' (N)

with 0 < m < 1.

Among them, we quote (2| where the asymptatic behaviour for separable classical solu-
tions is studied (we refer the reader also to [1] where the physical motivation of (1,1) is
pointed out).

In {12] the result of [2] is extended to the case of weak solutions. In [8] it is proved that

if —ngj‘— < m < 1 then the solution is analytic in the interior of {1 with respect to the

space variables and Lipschitz continuous with respect to t up to the extinction time.

The aim of this note is to extend the previous results to a larger class of equations under
more general boundary conditions dropping the hypothesis of nonnegativity of the initial
datum and weakening the regularity assumptions on the boundary of 2 (in the above

mentioned papers 811 is assumed to be of class C?).
We consider the case of a bounded domain {1 C RN with boundary of class C1“ for

m43Ip—3

some ¢ > 0. The initial datum ug belongs to L [ﬂ) where:

m-+4 2p—3

p>1, 2<m+p<3, pm—3+(4wm)p—p2>N (1,2)
We study consider the weak solutions of:
du | P )
i = div(Ju|™" | Duf""*Du) in (1x]0, oo],
u(z,0) = uo(z) | in 2 (1,3)

u € C(0,00; I(M)), ¥t Du € L*(01]0, 00|)

satisfying Dirichlet, variational or mixed conditions.
Here the notion of weak solution is standard and we refer the reader to [7] for details.

Equations of the type (1,3) are classified as “doubly nonlinear” ([14]) or “with implicit
nonlinearity” ([11]). Many authors studied this kind of equations on account of their
physical and mathematical interest. We refer the reader to the review paper i11] and to
the introduction of [16].

Before stating the main resuits, let us make some remarks about the range of m and p.
If m + p < 2, it is not known whether L®—estimates and regularity results hold. See the
detailed discussion in [16].



If m + p < 3, then the solution extinguishes after a finite time (see {5]), while this does
not happen if m + p > 3. Different techniques are required in the latter case, which will

be studied in a forthcoming paper.

m+2p—3
m—3+(4—m)p—p

The condition p + > N implies that a Sobolev imbedding inequality holds.

Main resulis.

1.1 THEOREM. Let up # 0, and let u be a weak solution of (1,3) satisfying Dirichlet or
mized boundary conditions, and let T > O be the extinction time. Let i(z,t) = u{z,t}{T —
t)3~7nl—w. Then there erists a sequence t, 7 T such that #(z,t) — w(z), where w is a
nontrivial solution of the equation:

i

. m—1 p—2 —
div(|jw|™ ™ | Dwi{’™*Dv) ——m*-*-*3_m_pw

, infl {1,4)

satisfying Dirichlet or mized boundary conditions, respectively. =

1.2 THEOREM. Let u be a weak solution of (1,3) salisfying variational boundary conds-
tions.

If fn ug(z) dz # 0, then:
lim u(z,t) = |ﬂ]_l/ uo(z) dz, in Whe(n) (1,5)
t—o0 Q :

If [, wo(z) dz = 0 and uo # O then the conclusion of Theorem 1.1 holds. =

1.3 REMARK. Result (1,5) holdsfor2<m-+p<3and p> L.

1.4 REMARK. Theorem 1.1 above implies the existence of a nontrivial weak solution
of the problem (1,4) satislying Dirichlet or mixed boundary conditions. A straightfor-
ward consequence of theorem 1.2 is that the average of any solution of (1,4) satislying
variational boundary conditions is zero. Indeed il u(x,t) solves {1,3) under variational
boundary conditions then [, u(z,t)dz is constant. Now, assume the existence of a so-
lution w(z) of (1.4) satisfying variational boundary conditions with [, w(z) dz # 0. Set
u(z,t) = w(z)(1 —t)“a*-“'}‘ﬁ-"?. The function u{x,t) solves (1,3), it satisfies variational bound-
ary conditions and its average is not constant in time. Contradiction.

If u is a nonnegative local solution of (1,3}, i.e.:

w € Cle(0,T; L2, (), w7 Due L, (1% [0,7])
a .
B_‘i." = div(ju|™ | Du|’"2 Du) in (1x]0, T




where p> 1, m+p > 2, m+p+ % >3, we can state more precise results.

Fix any (zo,lo) € Qr = 0x0,T|, assume that u(za,t0) > 0 and let 1 > p >0 be so
small such that the cylindrical domain:

{|I'-— :12()| < p} X (t() - u(.’l:(},tn)a_m_ppp,tn + 'U.(.’E(),tn)s—m-ppp)
is contained in Qp.

1.5 THEOREM. There exists a constanl C depending only upon N,m and p and indepen-
dent of u such that:

|Du($ﬂ:tﬂ)| §C’p_iu(xn,t0) = (1?6)

1.6 REMARK. Note that eslimate (1,6) is false when m + p = 3. For instance, the

funclion:
pul

=t I
t
u(z,t) = et exp (p—1)? (l:z:| ” )

P
solves the equation:
g}i I T 2—p p—2 H N
3 = div(|u[*~?| Duf"~* Du) in RY x]0, cof
U[O) = 615(0)

The counterexample can be easily buill choosing ¢t = 1 and a sequence of points z,, such
that |z, | — co.

Now we focus our attention on the case 1o > 0 and Dirichlet boundary condition.

1.7 THEGREM. For any ¢ € (0,T), there exist constents i, 1 = 1,2,3, depending only

upon N,m,p,“unHLm{:};a [m,ﬂ and ¢ such that for all (z,1) € Qr, t > &

1y dist(z, O0) "3 (T — )75 < u(x,t) < 7, dist(z, IQ) 753 (1 - 3= (1,7)

|Dufe, 8)] < vo dist(z, BN) #7573 (T — £)5=75  w (1,8)

1.8 REMARK. As pmza'j:?f_’;fp_p, N\, N the constants ; blow up.



1.9 REMARK.
of:

satisfies:

Note that (1,7) and (1,8} imply that any nontrivial nonnegative solution

. -1 y— _— 1 H
{dlv(w"‘ |Dw|*~?Dw) = 53— —w  inQ,
W|an = 0
~, dist(z, 811) T < w(z,t) < 42 dist(z, 1) T3 : (1,9)
|Du(z,1)| < g dist(z, I0) 77723, (1,10)




2. Asymptotic results in the general case.

As in [2], we suppose that v is a regular solution. The general case can be studied by
approximating the equations with nonsingular ones (see [12]).
Let
p—1

—_— a>p—-1>0; u=v".
m+p—2

a =

2.1 LEMMA. The quotlient:

DU t 7 p
iy = (12 lazo 2.0
()l Lot ia)
15 non increasing tn lime.
PROOF. Note that v satisfies the equation:
d ;: =1 g —2
52(1) ) = o div{{Dv|""* Dv) (2,2)
in {1x]0, co[; multiplying by v and integrating over {1 we obtain:
1 d
— [ v*tldz + a"_2/ |Dv|P dx = 0. (2,3)
a+1dt Jg @

Setting A, v = div(|Dv{P~2 Do), we get:

]

1/2 2 1/2 .
ALv|*
DvlPdz= - | vA,pvdx < vt dr —l'—vl dz . 2,4
0 a 0 g vl

On the other hand, '
| d » r—2 \
— | |Dvltdz=p | |Dv|""* Dv-Dvydz=—p [ v,A,vdzx, (2,5)
dt Jy ‘ 0 - Ja '

and from equation (2.2) we have:

i ALY
Ve = ol 2 v::—l
Hence: g
d A,
— / |Dv|” dz = —pa”~? |—,viL drx, (2,6)
dt Jq o v
which gives, together with (2,4):
2
d (f |Dvl" dI)
— Dui? dz < —pgP—2240 . 2,7
di /;} |Dvi" dz < —pa fn vt dr ( )

6"



Finally, by (2,2)
E%fn |Dv|” dz 1 Itizzfn vitldy
P fn |[Dvlpdz ~ e+1 fn vatldy

d e 4 [ 1y PEaT
att P < = a
dt loe (]n Dl dm) T (/n ’ z)

which means that the function £[v](t) does not increase in time. =

and:

2.2 REMARK. By (2,3) we get

P
e S ]
4 v*tlde = —(a + l)a"_Q/ |[Du|" dz = —(a + 1)a” 2 |v] (/ v"“)
dt Jg 0 0
that is p
afFl—p y—
E"U“L-:’r'(’“l =—(a+1-p)a 26[’)]’ a+1—p>0.

Integrating the O.D.E. we have:

t
vz = (ot 1= ) [ ellis)do + ol (2,8)

2.3 REMARK. Assume that the solution v satisfies a Sobolev type inequality, i. e. :

_r_
a1
3B = By, (1) > 0: ([ pit! d:z:) < B/ | Dv|” dx ' (2,9)
0 Q

Then: £[v](0) > &([v](t) > B and by (2,8) we get that u becomes exlinct alter a [inite
time 7', with rate of extinction (T — t)=¥i-r.

We make the substitution t = T — Te~" and consider the lunction #:

v(-, T —Te™")

E -,1'; =
(.7) (Te—7)=viss
that satisfies the equation:
Jd a
Y fmay p—lA o e
. at (U ) a Pv a + P — pv (2!10)

2.4 LEMMA. Under the hypotheses of lemma 2.1, the funclion:

7(r) = a?2 5|7 dx — P 7t dx |
by = /n]D e e N 1= /n o (1)

7




15 nol tncreasing.
From (2,5) and (2,10), we get:

d p
aP %2 — Dol dz = — / ] 25""Ld:ﬂ+-———/ T
di n] | Pn( 2 at+1—pJg ‘

— ~ y2na—1 P d / ~ 41
= — V)%V dz + e v dzx
p/n‘ ) @+ at1-pdl, )

2.5 COROLLARY. There exists a sequence 7, — oo such that:

lim %F[ﬁ](f,,) =0

i— o0

PRrOOF. It is sufficient to remark that F(7) is bounded from below. a

Proof of Theorem 1.1.

In the cases of mixed or Dirichlet conditions a Sobolev inequality holds and the results
following remark 2.3 are verified. Therefore, arguing as in [2], we gel that there is a
sequence t, / T such that:
u(+tn)
(T — tp)7w=7

— 1w

where w is a solution of the equation:

1

diV(lw‘lm_llDw‘Pﬁng) e mw

satisfying the corresponding boundary conditions. On the other hand, from (2,8) we get:

iy a
“”( )HL +1{{1) < e

¢ <
T -ty

Hence by lemma 2.1 and remark 2.3 we have

Dvl(i, '
pe, < 20l giy)(0)c,
(T —t,)str-s
Therefore a suitable subsequence of vltn) strongly converges in L*T1(0) to
. q {[T_tn)a$§_,; TLGN gy Ig ( )

a function w¥ Z0. =



Proof of Theorem 1.2.
If fn ug dz = 0, then a Sobolev inequality holds for each t > 0 and we may repeat the
previous arguments.

In the case fn ug dz # 0, there is not extinction time. Recalling that |jv}|ps+1() is non
increasing by Remark 2.2, from (2,7) we deduce: -

2 (fn | Dvl? dz)g
f“ vé{*"l dz

—E{/ |Dv|" dz < —pa”™
{}

2

which implies

/“ |Dv(z,t)|" dz < (2,13)

/u(:z:,t]da::/ ug dx (2,14}
it 0

u(-,t)—+|n|—t/u{,d$ in WLr()

Q

e

On the other hand we have:

Therefore




3. Regularity results for nonnegative local solutions.

In order to prove theorem 1.5, let us recall a result of {16].

3.1 PROPOSITION. Let u be a nonnegative local solution of (1,3). Fiz (zo,t0) € (I and
set ug = u(zo,to); choose p >0 so small that the cylindrical domain:

3—-m—p

Cip = {|z — zo| <4p} X {to — g (4p)" 10 +uy~ ™ " (4p)")

is contained in Q. There exist constants 4,7\ depending only upon N,m,p such that:

inf  u(z,to) > sup  u(zto) (3,1)
lm—:ﬁul(p iﬁ:—m..l(;;
and:
inf u(z,t) > yisup ulz,t) (3,2)

» oM

wherem-+p<3andm+p+ >3 =

39 REMARK. As pointed out in [17], inequalities (3,1) and (3,2) do not hold in the case
m+p=3.

Another tool is the following regularity resuli:

3 4 PROPOSITION. Let @, = {|z] < s} x{|t] < s} andletu be a nonnegative local solution

of the equatlion:
du

o= div(ju|™ ! |Dul’"?Dv) in @ : (3,3)

Moreover assume —é < u<2inQ,; then there exists o > 0 such thatu € CH° (61_/;) and:
| Duflz(m = K {3,4)
where K depends only upon N,m and p.
PROOF. Let (:t:n,.to) € Qujzs to = u(zo,ta) and for r < 1/2 denote by Q! the cylinder:
{|z = zo| < 7}x]to — 1,0[C Q1 .

Let v the solution of:

FTi

2}
{ U Giv( | Do[P2Dy)  in Qf
v=uo on the parabolic boundary of Q1

10



In [13] (see also |9]) it is proved that there is a > 0 such that for each 0 < p <

N-i-'(x
// | Dy — Dv )l dzdt < Cu z // |Dv — (Do), |" dz di
r T I

where (Duv), r— [Q, Dvdz di.

Hence:

g
52(1) — u)—divjul* (| Dv[? "2 Dv - |Du[P~2 Du)] =

= div[{u m—1 _ ug‘"l IDu"'_ZDu]

Therefore, since u is Hélder continuous ([15], [16]), arguing as in [5] one gets:

// |Dv — Dul? dzdt < r // | Du|F dz dt
and consequently:

/Qr [Du — (Du),|P dzdt <

SC/ {|Dv — (Dv),|* + |Du — Dul? + l(Du), — (Dv), '} dedt <
@

N4«
<eryrd // | Dul? dz dt + ccu E // |Dv — (Dv), |" dzdt <
// | Dul? dz dt + K // |Du — (Du), | dz dt

The last inequality anhes that the gradient of u is Hoider continuous (sce [4], [10]). .

| Proof of theorem 1.5. .
Fix (:cn,tg) € 7, up = u(zo, ) and for > 0 consider the cylinder
= {|z — zg| < 8r} x (to — u3 TTOrY ty + u3 TTRRArY) C Q.

The change of variables

L Ty t*i(] e U
z — ) b= o V= o
T ug MmTPop Up

maps C' in Bg x (—80,88) and v satisfies:
Zv—dive™YDu[P"Du) =0 in By x (-89, 80)
v{0,0) =1

By (3,2): '

sup. v <yt inf >
Byx{-40,48) Byx(—40,40)

Hence by proposition 3.3 v & Che (B, x (—48,40)) and |Dv(0,0)| < K.
Estimate (1,8) follows by recalling the definition of v =

11




4. Asymptotic results for nonnegative Dirichlet solutions.

Here we follow the approach introduced in [8]. Our main goal is to weaken the regularity
assumptions on the boundary. The proof of Theorem 1.7 is based on the following two

proposition.

4.1 PROPOSITION. Let u a nonnegative bounded solution of:

% = div(|u|™ | Dul" "2 Du) in (Ix]s, T,

e 4,1
uwe Cfs, T; L2{N)), w51 Du € L"(0x]s, TH (.1)
uw< M

for some s €]0, T} and some M > 0. For every v > 0, there exists a constant depending
only upon N,m,p,v and ||00]1. . such that, for all t — s > p M2,
p—1

ufz,t) < yM[dist(z,00)]", a= e — (4,2)

4.2 PROPOSITION. Let u be a non-negative bounded solution of (4,1) for some s € (0,T)
and some M > 0. For r > 0 let:

" ={z € N:dist(z,00) > r},‘ Ot =07 x (s,t), plr)= {i}nff u (4,3)

For every v > 0 there exist constanls ro and v depending only upon N,m,p,v and {1 such
that for allt — s > v M2~ P

o p—1 )
> d —_
u(:r,t) = "m(fo){ [I)I y A= T tp_2 >1 (4,4)

Denote by d(z) the distance dist{z, 801) and by 11,, s > 0, the subset of {¥ where d(z) < s.
For a point = € {1 denote by T, the set of the elements ot 1) closest to z: ', = {y € 30 :
lz — y| = d{z)} # B. For every point y € T set:
— m :
=yt A, dy=dm), 220

ly — x|’

For C!'* open sets, we have the following geometrical lemma, whose easy proof is left to
the reader.

12



4.3 LEMMA. Let us fiz two constants § €)|0,a| and € > 0. Then there exzist constants
§ X > 0 depending only upon Q1 such that forz €, y€ 'z, A €]0, A| we have:
144 A
A—dy <e , d,\2—2- ] (4,5]

Consider now the function v = ut solution of {2,2), set & = (a”! — 1) and fix a number
v > 0. We call I, the interval |s + v M3~ ™ # T and we set

M, = sup v{z,t) < M3,
0rx1,

We prove the following:

-

4.4 LEMMA. Let us fiz 8 €]0, ¢f; there exist ¢, 7 > 0 such that for 0 <r <7 we have

-
M, <r7+8 Mcrl_h (436)

PROOF. Let (.’E{),to) e, xI,,yel,, Iu(tn) :]tn - VMS_""_",MIC]O,TL

Following [8], we construct a barrier ¥  of the type:
Yz, t) = CM (1 — n (2, t))
M (2,t) = expl k(1 - yal — da]exp[M7 73 (¢ — 1)) (4,7)
We impose conditions on k, A in order to have v < ) in the set
Nep={ze: |z— y,\.l —dy < %} x L.(to) C Qi x.Iu(in). (4,8)
In view of the maximum princip]el, it is sufficient that

v(x,t) < tk,a(z,t), on the parabolic boundary of Ny x, (4,9)

3 ‘
El¢£,)~ =8, 20, in Npa. (4,10)
Inequality (4,9) is verified if
C=max{{1-¢e )"t (1—e¥)" '}
Indeed, tx » > 0 in Ng . Moreover in the set
{z € ﬂ Dz ya| - da = 1/k} x L {to)

13




it holds ¥y > CMy (1 - e} > C(1- e~ 1)v. Finally, in
nllk X {to - VM3—m—p},

we have ¥xx > CM /(1 — e”v).
By direct calculations, (4,10} is equivalent to:

N - ]- — - - ! -n - - 1] — 3
(pgl)k”—'zﬁy/\lkp L_(1+a)e® P (CM )" "M =31 a ) Tt ta) 2T 2 0
(4,11)
By recalling that
;2{1 Ixﬁ y/\\ — d.h M;tl;f’-cl Il < Ma;tl—p _ Ms—mwh, 0 ﬁ M S 1‘
inequality (4,11) holds if:
N -1
k> Cpnpy+ 2m (4,12)

Let 1/k = 20y T, A = 8C ( )r'—Lﬁ and {zq,t0) € O, x I,. Choose 7 small enough
{depending only on m,p, N,v,r}). By the maximum principle

U(zﬂstﬂ) < Pra (330, tn).

Hence: ‘
v(zo,t0) SCM%k(rJr)\—d;,) §MW ﬁr—iﬁ" (4,13)

Estimate (4,13) implies (4,6) because the constants are independent of the choice of
(:’n‘:n,tn). L

PROOF OF PROPOSITION 4.1.

It is sufficient to prove (4,1) for z € {}r w1th F given by the previous lemma. Moreover,

(4,1) is equivalent to:
Vr < 7: M, <~yMr _ (4, 14)

Let 6 = ﬁﬁ, C'= (2C’]7¥%T and let n € N be such that:

c'ylt ) F<C'r (6““) forne N -{4,15)

By (4,13), we get:
!

M, < (Mg ) T PO < O My - Mr =

<
A <
Before proving theorem 1.7 let us ‘ntroduce some notation. Let z € (1, y € I',, and denote
by y* the point

A y-r X A
— )\ —— d* =
y = -Au T d(y")

As before, the following statement can be easily proved:

14



4.5 LEMMA. Let us fiz two constants § €]0,a] and € > 0. Then there exist constants
5, X > 0 depending only upon Q1 such that for = € *, y € T, X €]0, A we have

oo | >
[ ]

d(z) + A —d* < eAlt?, d* > d(z) + (4, 186)

PROOF OF PROPOSITION 4.2.

Let (zq,15) be a point in Q7 x I, let y belong to I';,, and let I.(ta) be equal to |s +
vM3TmTP 4]

Consider the barrier:

1+a
. ) ) Lt
Y = e "uywlina — 1), deal(z,t) = expl-k(|z -]~ dy)] exp (tn N Z)

in: .
Mx ={zen: & —1/k<|z—y*| <d*} x L(to).

v > uin ﬂk,A by means of the comparison principle as in lemma 4.3.

Actually, in the set _
{|z ~ y* = d*} x L(t)

we have gzk,,\ < 0, in the set
{lz - v = d* — 1/k} x L. (ta) € 0'7* x L (t0)
we have IZUC,A < “—:Lpl/k < v and in the bottom of J(lk,). we have 7, 5 < 1 and 1,5;;‘,\ < 0.
Moreover, by direct calculations it is possible to check that:

a .
a["‘l’;,a —ALD <0, in Nga

if:
. N -1

(p— 1)a*
N-1

where C depends only on m, p,v. Choosing 1/k = -QJETT’J':T, X = 2—:;rﬁ‘ﬁ and 7 sufficiently

k> Cunp. +2

n=
small, we get

v(z0,t0) > ey pkldlzo) — (d(mo) + A — A > 2 pr A [~ A 2 rTE

The last inequality implies (4,15) through a.rgﬁments similar to the ones of Proposition
4.1. =

15




Proor OF THEOREM 1.7.
As the proof is similar to the one followed in [8], we focus our attention only on what is
really new and we refer the reader to section 6 of [8].

By the L —estimates proved in section 3 of [17], and by the Raleigh quotient one may
deduce that Ve <t <T:

1 —1
co(T —t)3=7"F < Nl t Loy < Co{e)(T - )3 (4,17)

where C, depends on the initial datum and on .

Consider the change of coordinates: T —t = (T — to)e™". Let

o) = ML e

(T _— tﬂ)ﬁ;—_ﬁea—m—p

S’

The function w is a non-negative bounded weak solution of:

{ 2y — div(w™ | DwlP?Dw) = ompw, X (0, c0) (4,18)
co < flw(-t)llz=oy < Co

The next step is to show that for every o > 0 there exist two positive constants A < A
depending only upon N,m,p,e, 0.« and o >0 such that Vvt > o, Vz € {1

Ad(z)" < w(z,t) < Ad(z)" (4,19)

Now by (4,2)
w(z,t) < Ad(z)” (4,20}

Note that (4,18) and (4,20) imply that the maximum is achieved at some point (z0,to)
satisfying: :

ie0) > (2)*

x =r

or=\A

Estimate (4,19) follows by arguing as in lemma 6.1 of {8] and by choosing as a subsolution:

chﬂ#—_’
FEo =

A—m-p EE ;{T
where F =1+4+¢ 7% b

are positive numbers that can be determined a priori only in terms of N,m,p and c.
Now estimates {1,7) and (1,8) follow by (4,19) by means of the regularity result of
section 3.

bl

v=(RF - |z|?)?, ¢ is a positive constant and 8, 3,b

16



4.6 REMARK. All the results of this section are based on the compact imbedding of
Whe(6) in L =%=3 (); by the Rellich-Kondrachov theorem, this holds true if:

m+p—2 1 1 p(m -+ 2p — 3) Y
>

————— > — 4>
m+2p-3  p N T om-3+({d-m)p-p?

Theorem 1.7 does not hold if the above condition on m,p is not satisfied. Actually, let
N={z€ RY : lz] <1}, p=2, N >3 and m = -Nbﬁ"g Assume that Theorem 1.7 holds.
Then there exists a nontrivial nonnegative solution of the equation:

{Au:u'g_i% in 0 (4,21)
=20 on dfl.

This is a contradiction because problem (4.21) admits only the trivial solution (see for

instance [3]).
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