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Abstract

We describe a new experimental methodology based on the contemporary use of two-stage continuous streaker samplers

and optical particle counters. This is a complementary approach to size-segregated particulate matter (PM) sampling, and

it is able to give information on the elemental size distribution and to assess the contribution of major PM source to size

bins. PM samples in the fine and coarse fraction of PM10 have been collected by a two-stage streaker sampler and analyzed

by particle-induced X-ray emission (PIXE) to obtain elemental concentration time series with hourly resolution. PM

sources and profiles were singled out by positive matrix factorization (PMF). A multi-linear regression of size-segregated

number of particles versus the sources, resolved by PMF, made possible the apportionment of size-segregated particles

number in a fast and direct way. Results obtained in three sampling sites, located in different urban districts are discussed.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Particulate matter characterization

Particulate matter (PM) is an important factor in
producing environmental impact as well as adverse
human health effects. Many epidemiological studies
have shown a correlation between the increase of
e front matter r 2007 Elsevier Ltd. All rights reserved
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PM concentration and morbidity and/or mortality
(HEI, 2002; Pope et al., 2002; Balásházy et al., 2003
and references therein). PM is routinely monitored
in several countries, according to present legislation,
in terms of daily average concentration in the PM10
and PM2.5 fractions (i.e. concentration of particles
in atmosphere with aerodynamic diameter smaller
than 10 and 2.5 mm, respectively). In some cases,
samples collected for regulatory purposes are also
analyzed to determine their composition. The
compositional information is useful not only to
assess the concentration of peculiar (and in same
.
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cases toxic) elements but also to identify PM
sources, their emission profile and loading. The
receptor models approach (Gordon, 1988) is often
exploited with this aim. Actually, a complete
characterization of atmospheric PM would require
several other information, such as the temporal
behaviour of PM and its compounds on a short-
time basis (i.e. from minutes to hours, especially in
urban and/or industrial areas), the size-segregated
distribution of PM and its components as well as the
particles number distribution with high-time resolu-
tion. All these additional features help both in the
source characterization and in the assessment of
health effects. In particular, since a correlation
between morbidity and particles number, namely
for particles with diameter smaller than 1 mm, has
been claimed in some studies (Wichmann and
Peters, 2000 and references therein), it would be of
interest to single out the relationship among specific
size ranges and PM sources.

1.2. Instruments

A large number of instruments have been devel-
oped in the last years and they are widely used to
accomplish the tasks quoted above. Nevertheless,
while several devices have been manufactured and
are commercially available to count particles and to
measure their size distribution with high-time
resolution (Knutson and Whitby, 1975; Büttner,
1990; Fissan et al., 1984; Winklmayr et al., 1991 and
others), the assessment of elements and/or com-
pounds size distribution is still quite tricky. Size-
segregated elemental concentration is commonly
measured by cascade impactors (Hillamo and
Kauppinen, 1991; Marple et al., 1991; Maenhaut
et al., 1996) but very hardly they can be used to
obtain long temporal trends since any set of filters
should be kept under sampling for a few hours and
then manually substituted. As a matter of fact,
sampling campaigns using impactors often last a
few days with a quite limited number of samples
collected (Salma et al., 2005 and references therein).
A research group at Davis University, CA, devel-
oped the DRUM multi-stage continuous impactor
(Cahill et al., 1987) which separates PM in eight
(more frequently three) size intervals on suitable
filter tapes, producing a continuous PM deposition
for 6 weeks with a 3 h time resolution. The PM
deposits obtained by this very powerful device can
be suitably analyzed with synchrotron radiation
X-ray fluorescence (SR-XRF) (Bukowiecki et al.,
2005 and references therein) in short irradiation
times (about 30 s for each 3 h with a minimum
detection limit (MDL) of 0.1 ngm�3); unfortu-
nately, SR-XRF facilities are not always easily
accessible. Using a more standard ion beam analysis
(IBA) technique, the time required to analyze a
DRUM set of samples would be significantly
higher. Another possibility to perform size-segre-
gated PM samplings with high time resolution are
two-stage streaker samplers (Annegarn et al., 1988),
which collect the fine and coarse fraction of PM10:
typically, on each couple of collecting frames the
sampling lasts 1/2 weeks and elemental concentra-
tions with hourly/2-hourly time resolution can be
obtained. Particle-induced X-ray and gamma emis-
sion (PIXE and PIGE) are frequently exploited to
analyze streaker frames: at the new Laboratorio di
tecniche nucleari per i Beni Culturali (LABEC),
Istituto Nazionale di Fisica Nucleare (I.N.F.N.)
accelerator facility in Florence (Calzolai et al., 2006)
recent developments (Chiari et al., 2005) make
possible the analysis of one streaker frame (168
spots) with 9 h of beam time.

We present here the results of the combined use of a
streaker sampler and an optical particle counter (OPC).

OPCs are widespread real-time instruments based
on the principle of light scattering from particles.
They provide both the size and the number of
particles in several size bins with short-time resolu-
tion (i.e. from seconds to hours) and thus their
output can be compared with elemental concentra-
tion time series. A significant drawback with OPCs
is that the conversion from optical sizes to
aerodynamic diameters is not trivial (Binnig et al.,
2007 and references therein). Our approach gives
information on the size distribution of PM elements
and on the PM sources contributing to different size
ranges. Data analysis is relatively fast and thus, this
methodology could be useful when long term and
time-resolved elemental concentrations are avail-
able.

2. Material and methods

2.1. Sampling and on-site measurements

PM has been collected by two-stage streaker
samplers (Pixe International Corporation, USA).
The streaker consists of a pre-impactor that
removes particles with aerodynamic diameter
Dae410 mm from the incoming air flux, a
thin Kapton foil which collects particles with
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2.5 mmoDaeo10 mm and a Nuclepore film (pore
size: 0.4 mm) that intercepts all smaller particles. The
sampling produces a circular continuous deposit on
the two stages. The deposits can be analyzed by IBA
to obtain elemental concentrations with hourly
resolution.

The particles number distribution was measured
by a Grimm 1.108 OPC, in 32 size intervals with
diameters in the 0.25–32 mm size range with a 30min
time resolution. In one site (Cornigliano), the OPC
was operated with an older software version which
classified particles in 15 size channels (in the
0.35–32 mm size range). The Grimm OPC uses a
patented dehumidification system which operates
when ambient relative humidity is higher than 70%.
This OPC has a patented light-scattering technique
based on an advanced low water-sensitive laser
source (l ¼ 675 nm). The OPC is factory calibrated
via monodisperse Latex for size classification. The
reproducibility of the OPC in particle counting is
72% (Putaud et al., 2004).

It is noteworthy that the streaker sampler consists
of two inertial impaction stages which select
particles on the basis of their aerodynamic diameter
(Dae), while the OPC measures the particles optical
diameter (Dp) at ambient conditions. The link
between the two quantities depends on particle
density and on refractive index which vary with
particle composition so that distributions obtained
by different methods can differ considerably (Hand
and Kreidenweis, 2002). A detailed discussion on
this issue is outside the scope of this work and in the
following text we only refer to optical diameter
measured by OPC.

Experiments were organized in several sites
between March and December 2005. Sampling sites
were all located in the urban area of Genoa (Italy),
in nodes of the municipal air quality network:
Cornigliano, Multedo and Lanterna. Cornigliano is
an industrial site near a large steel plant, Multedo is
located close to an heavy-traffic road in the town
outskirts and the Lanterna site is in the harbour
area. The three sites are aligned along the sea coast
on a East–West direction with mutual distances of a
few kilometers. Typical sampling time was 1–2
weeks per site.

2.2. Laboratory and data analysis

PIXE analysis was performed on streaker depos-
its, using the external beam PIXE facility of the
new LABEC I.N.F.N. Tandem accelerator at the
Physics Department of the Florence University
(Calzolai et al., 2006). PIXE spectra were fitted for
25 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V,
Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Sr, Zr, Mo, Ba,
Pb) using the GUPIX software package (Maxwell
et al., 1995) and the elemental concentrations were
obtained via a calibration curve from a set of thin
standards (Micromatter Inc., USA). MDLs change
for each element in the range from 1 to 10 ngm�3.
Total mass concentration cannot be measured on
streaker frames.

As first step in data reduction, we calculated the
Pearson’s correlation coefficients between elemental
concentration time series and temporal trends for
each size bin measured by the OPC and averaged on
1 h time interval. Patterns (i.e.: distribution of the
correlation coefficients versus size bins, see section
results) with significant differences and/or simila-
rities from site to site were obtained. To explain
these features, we processed all the data looking for
major PM sources and their profiles. We applied the
Positive Matrix Factorization (PMF) receptor
model to the time series of hourly elemental
concentrations. PMF is a least-squares formulation
of factor analysis developed by Paatero (Paatero
and Tapper, 1994): it assumes that the ambient
aerosol characterization at one or more sites can be
explained by the product of a source matrix and
contribution matrix. The two matrices are obtained
by an iterative minimization algorithm. PMF also
weighs individual data points by their analytical
uncertainties and constraints factor loading and
factor scores to not-negative values. The not-
negative constraint minimizes the ambiguity caused
by factor rotation and gives a physical sense to the
results. An important advantage of PMF is the
possibility to handle missing data and values below
detection limits, by underweighing these data
points. The concentration values and their asso-
ciated errors were treated according to the metho-
dology suggested by Polissar et al. (1998). To reduce
the influence of extreme values on the PMF
solution, the robust mode was used. The determina-
tion of the optimal solution was performed follow-
ing Lee et al. (1999) and the PMF diagnostics
described therein; it is worth noting that PMF is a
descriptive model and there is no objective criterion
to choose the best solution (Paatero et al., 2002). In
this work, the final solutions were determined by
trial and error, choosing the most stable ones with
respect to different input options and those with
most physically meaningful profiles.
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3. Results

3.1. Particles number distributions and elemental

composition

Particle size distributions, measured by the OPC in
the three sites are shown in Fig. 1. Concerning PIXE
results, we compared the fine and coarse fraction
concentration time series of each element: we summed
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separated. Actually, previous works (Prati et al., 2000
and references therein) identified the sea as the
dominant source of coarse S in Genoa. As a matter
of fact, we used a reduced data set where all elemental
concentrations in the fine and coarse fraction, except
the case of sulphur, have been summed. Information
on elemental size distributions can be obtained by
the concentration time series given by streaker
sampler, using the OPC data: we selected, for each
element, time intervals corresponding to concentra-
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(30 and 60 points respectively); (b) Al and Si in Multedo (32 points); (
tion peaks (Fe concentration temporal pattern is
given as an example in Fig. 2(a) and we calculated the
correlation coefficients between these selected data
and the particles number in each size bin. During
these episodes, the particles size distribution is likely
to be more specific of the emitting source than during
other sampling intervals because elemental concen-
tration peaks have been typically observed in
concomitance with the increase of source emissions,
as detected also during previous work using high
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ntration values and size bins. (a) Fe in Cornigliano and Multedo

c) Cu in Multedo (73 points).
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Table 1

Modes, in mm, of the correlation coefficients distribution between

some elemental concentration and particles number time series

Elements Cornigliano Lanterna Multedo

Si 1.0 1.9 1.1

– – 3.0

Cl 1.6 1.5 1.7

Sfine 0.45 0.37 0.28

Fe 2.0 – 1.1

– – 4.0

Cu – – 0.5

– – 3.5

F. Mazzei et al. / Atmospheric Environment 41 (2007) 5525–55355530
time resolution (e.g. Prati et al., 2000 and refer-
ences therein). In Fig. 2(b), the correlation coeffi-
cient between the selected Fe concentration values
(Fig. 2(a)) and the number of particles with optical
diameter between 1.6 and 2mm are represented. In
Figs. 3(a–c), some examples of correlation coefficients
distributions versus the optical particle diameter are
given; it should be noted that they cannot be
interpreted as physical size distributions. Fe measured
at the industrial site (Cornigliano) peaks around 2mm
(Fig. 3(a)): this is very likely related to emissions
from a furnace blast which had been already found
concentrated in the PM2.5 fraction by a PMF
analysis on daily samples (Mazzei, 2007). In
Multedo, we have a different behaviour with high
correlation coefficients for larger particles, probably
due to re-suspended soil dust, and similar patterns
turn out for elements like Al and Si (Fig. 3(b)). Fe
concentration measured at Lanterna is quite low and
it does not show correlation with any size bin. In the
site with the highest contribution from traffic
(Multedo), Cu shows peaks around 0.5 and 3.5mm
(Fig. 3(c)), whereas in the other two sites, cha-
racterized by a lower impact of traffic emissions, the
0
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Fig. 4. Distribution of correlation coefficients between (a) Si and (b)

transport episode (grey circles) (7 points) and during the remaining pa
correlation coefficients are generally very low.
Crustal elements have, as expected, higher correla-
tion coefficients with size bins beyond 1mm. On 18
July 2005, a long-range transport event from Sahara
occurred: it was revealed by back trajectories,
calculated by NOAA–HYSPLIT (Draxler and
Rolph, 2003) and by simultaneous concentration
peaks in soil-related elements. In Fig. 4 (data from
1 10
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1 10

 (µm)

Al, measured in Multedo and size bins, during a Saharan dust

rt of the sampling period (black diamonds) (36 points).
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Table 2

Apportionment of particles number in each size bin versus PM sources identified by PMF in Cornigliano, Lanterna and Multedo

Cornigliano

Dimensional class

(mm)

Oil combustion

(%)

Re-suspended soil

(%)

Sea salt

(%)

Secondary

(%)

Traffic

(%)

Blast furnace

(%)

Zn–Pb

(%)

0.30–0.40 2374 1174 7173 1473

0.40–0.50 1877 1275 7575 1576

0.50–0.65 1677 1575 7577 1675

0.65–0.80 1375 2175 673 5074 573 1074

0.80–1 1173 3073 1472 2572 573 1172 472

1–1.6 873 3973 2072 1272 673 1172

1.6–2 1074 4273 1972 672 1073 1372

2–3 774 4473 1172 1672

3–4 6776 774 2173

4–5 7176 1772

5–7.5 7878 1374

7.5–10 8579 979

Lanterna

Dimensional class (mm) Oil combustion (%) Re-suspended soil (%) Sea salt (%) Secondary (%) Traffic (%)

0.25–0.28 1072 5873 3272

0.28–0.30 772 6473 3273

0.30–0.35 472 6974 3373

0.35–0.40 7675 3374

0.40–0.45 7574 3275

0.45–0.50 7675 3075

0.50–0.58 7373 3176

0.58–0.65 1072 6074 3274

0.65–0.70 2373 4474 3373

0.70–0.80 3473 3273 3673

0.80–1 4772 1873 3473

1–1.3 774 5372 973 3473

1.3–1.6 874 5773 573 3373

1.6–2 1974 5372 3373

2–2.5 2673 3872 3575

2.5–3 2974 3172 4074

3–3.5 3178 2075 4377

3.5–4 2777 2272 4977

4–5 2579 1672 5678

5–6.5 28710 1873 6179

6.5–7.5 29711 1873 6179

7.5–8.5 32711 1573 61710

8.5–10 35711 1675 50710

Multedo

Dimensional class (mm) Oil combustion (%) Re-suspended soil (%) Sea salt (%) Secondary (%) Traffic (%)

0.25–0.28 571 571 7472 1572

0.28–0.30 671 671 7872 1572

0.30–0.35 471 871 7573 1873

0.35–0.40 371 1072 6974 2374

0.40–0.45 1272 5874 3275

0.45–0.50 1472 4575 3975

0.50–0.58 1973 3475 4476

0.58–0.65 2673 2375 4676

0.65–0.70 3173 1976 4476

0.70–0.80 3473 1976 4176

F. Mazzei et al. / Atmospheric Environment 41 (2007) 5525–5535 5531
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Table 2 (continued )

Multedo

Dimensional class (mm) Oil combustion (%) Re-suspended soil (%) Sea salt (%) Secondary (%) Traffic (%)

0.80–1 3473 1875 3876

1–1.3 3473 1875 3776

1.3–1.6 3673 1975 3876

1.6–2 3573 2275 3176

2–2.5 1176 2672 2474 2975

2.5–3 1876 2272 2174 2974

3–3.5 2476 2572 1375 3175

3.5–4 2876 2272 1575 3175

4–5 3277 1872 1075 3175

5–6.5 4077 1273 1076 2976

6.5–7.5 4378 973 3175

7.5–8.5 4478 873 2976

8.5–10 4979 773 3277

Values compatible with zero are not shown (blank cells).

F. Mazzei et al. / Atmospheric Environment 41 (2007) 5525–55355532
Multedo sampling site), we show the comparison
between the average R2 distribution of Al and Si
averaged during the episode (which lasted 7h)
and during the remaining part of the sampling
period. In the R2 distribution data referring to the
episode an increase of particles with Dp44mm is
evident; moreover, a clear and an unexpected
correlation with particles sized around 0.5mm was
also found.

The multi-modal distributions, as those shown in
Figs. 3 and 4, can be analyzed more quantitatively,
by fitting with Gaussian curves, to obtain the
value of their modes (referred to as optical
diameters). In Table 1, we give the fitted modes
for the elements already represented in Figs. 3 and 4
and for other tracers of PM sources (see next
paragraph). During the sampling, the relative
humidity ranged between 50% and 60% in all the
sites. For instance, Cl, in a coastal city such as
Genoa, is mainly ascribed to sea salt aerosol.
According to the literature data (De Hoog et al.,
2005), fresh and aged sea salt aerosols look
similar in shape and size (diameter about 2 mm); a
similar result was obtained by our analysis, as in all
sites, Cl concentration peaked around Dp ¼ 1.6 mm.
Sulphur is mainly produced by photo-
chemical reactions (Seinfeld and Pandis, 1998) and
therefore it is usually concentrated in fine particles:
we found that the correlation coefficients
distribution peaked between Dp ¼ 0.28 mm (actu-
ally, the smaller resolved size) and Dp ¼ 0.45 mm
(see Table 1).
3.2. Source apportionment of size bins

PMF analysis of the elemental concentration time
series measured by streaker samplers, resolved the
number and profiles of major PM sources in each
site. In this case too, we used the reduced
concentration data set mentioned above.

Most of the identified sources were common to all
the sites, and we called them, according to their
characteristic tracers: soil (Al and Si), sea (Na, Cl,
Br, coarse S), traffic (Cu, Zn, Pb), oil combustion
(V, Ni) and secondary (fine S). In the industrial
district of Cornigliano, PMF resolved two other
sources not present elsewhere: ‘‘blast furnace’’,
traced by high loadings of Fe and Mn, and
‘‘Zn–Pb’’, probably also related to the steel smelter
activity. Source profiles, extracted by the hourly
data set, are in agreement with those obtained in the
frame of a large campaign based on daily samples
(Mazzei, 2007).

The multi-linear regression performed between
particles number in each size bin and PMF sources
temporal trends, gives the apportionment reported
in Table 2(a–c); the same results are also represented
as columns plots in Fig. 5(a–c). In all sites, sea salt
and re-suspended soil dust show larger contribu-
tions in the coarse fractions (soil: above Dp ¼ 2 mm;
sea: about Dp ¼ 2 mm). Secondary compounds,
which represent the major source of PM, and oil
combustion are in the size range with Dpo1 mm. In
Lanterna and Multedo, the traffic emissions con-
tribution is relevant in all size bins while it
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represents a negligible term at the industrial site of
Cornigliano. The two additional PM sources (blast
furnace and ‘‘Zn–Pb’’) identified in Cornigliano, do
not represent major contributors to local PM. The
blast furnace emissions, traced by Fe, are found
between Dp ¼ 2 mm and Dp ¼ 5 mm while the
‘‘Zn–Pb’’ source contributions are mainly found in
particles with Dpp1 mm.

4. Conclusions

This study explored the effectiveness of the
contemporary use of continuous PM elemental
analysis, by streaker sampler and PIXE analysis,
and measurement of the particle size distribution by
optical methods. This approach allows us to obtain
information on high-time resolution elemental size
distributions and to perform the apportionment of
particles number in several size classes with PM
sources identified by receptor models. The field
campaigns provided, in different size fractions,
useful details on the impact of PM sources and on
their potential adverse health effects. The metho-
dology looks encouraging and the results suggest
further developments in the direction of a faster and
more powerful tool to combine size segregation and
time-resolved elemental analysis. More insights
could come extending the measurement to ultra-
fine particles (in this work 250 nm was smallest size
detected by the OPC) and/or to elemental analysis
with better sensitivity.
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