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In this work, we consider the convex quadratic programming problem arising in support vector machine
(SVM), which is a technique designed to solve a variety of learning and pattern recognition problems.
Since the Hessian matrix is dense and real applications lead to large-scale problems, several decom-
position methods have been proposed, which split the original problem into a sequence of smaller
subproblems. SVMlight algorithm is a commonly used decomposition method for SVM, and its conver-
gence has been proved only recently under a suitable block-wise convexity assumption on the objective
function. In SVMlight algorithm, the size q of the working set, i.e. the dimension of the subproblem,
can be any even number. In the present paper, we propose a decomposition method on the basis of
a proximal point modification of the subproblem and the basis of a working set selection rule that
includes, as a particular case, the one used by the SVMlight algorithm. We establish the asymptotic
convergence of the method, for any size q ≥ 2 of the working set, and without requiring any further
block-wise convexity assumption on the objective function. Furthermore, we show that the algorithm
satisfies in a finite number of iterations a stopping criterion based on the violation of the optimality
conditions.

Keywords: Support vector machines; SVMlight algorithm; Decomposition methods; Proximal point

1. Introduction

The support vector machine (SVM) [1,2] is a promising technique for solving a variety of
machine learning, classification and function estimation problems. Given a training set of
input-target pairs (xi, yi), i = 1, . . . , l, with xi ∈ Rn, and yi ∈ {−1, 1}, the SVM technique
requires the solution of the following convex quadratic programming problem

min f (α) = 1

2
α′Qα − e′α

s.t. y ′α = 0 (1)

0 ≤ α ≤ Ce,
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318 L. Palagi and M. Sciandrone

where α ∈ Rl , Q is a l × l positive semidefinite matrix, e ∈ Rl is the vector of all ones,
y ∈ {−1, 1}l and C is a positive scalar. The generic element qij of the matrix Q is given
by yiyjK(xi, xj ), where K(x, z) = φ(x)

′
φ(z) is the kernel function related to the nonlinear

function φ that maps the data from the input space into the feature space.
Problem (1) is a convex problem with a very simple structure; however, since Q is a

fully dense matrix, traditional optimization methods cannot be directly employed when the
dimension l, i.e. the number of training data, is extremely large, as it happens in many real
applications. This has motivated the study and design of block decomposition methods [3–5]
which involve the solution of many subproblems of smaller dimension in place of the original
problem.

In a general decomposition framework, at each iteration k, the vector of variables αk is
partitioned into two subvectors (αk

W , αk

W
), where W ⊂ {1, . . . , l} identifies the variables of

the subproblem to be solved and is called the working set, and W = {1, . . . , l} \ W (for
notational convenience the dependence of W and W on k is omitted). Then, starting from the
current vector αk = (αk

W , αk

W
), which is a feasible point, the subvector αk+1

W is computed as
the solution of the following subproblem

min
αW

f (αW , αk

W
)

y ′
WαW = −y ′

W
αk

W
(2)

0 ≤ αW ≤ CeW .

The subvector αk+1
W

is unchanged, i.e. αk+1
W

= αk

W
, and the new iterate is given by αk+1 =

(αk+1
W , αk+1

W
). In general, the cardinality q of the working set, i.e. the dimension of the subprob-

lem, is prefixed according to, for instance, the available computational capability, and is kept
constant for all iterates. The rule used for selecting the working set W at each iteration plays
a crucial role, since it influences the convergence properties of the generated sequence {αk}.
Note that the most popular convergent decomposition methods for nonlinear optimization,
such as the successive over-relaxation algorithm and the Jacobi and Gauss–Seidel algorithms
are applicable only when the feasible set is the Cartesian product of subsets defined in smaller
subspaces [6]. Since problem (1) contains an equality constraint, such decomposition methods
cannot be employed.

A very simple decomposition method for SVM is the sequential minimal optimization
(SMO) algorithm [5], where only two variables are selected in the working set at each iteration,
i.e. q = 2, so that an analytical solution of the subproblem (2) can be found, and this eliminates
the need to use an optimization software. The choice of the two variables with respect to
optimization is performed, is determined by some heuristic devoted to individuate which ones
may provide a better contribution to the progress towards the solution.

A modified version of SMO has been proposed in ref. [7], where the two indices of the
working set are those corresponding to the ‘maximal violation’ of the Karush–Kuhn–Tucker
(KKT) conditions. This modification of SMO algorithm can in turn be viewed as a special
case of the SVMlight algorithm [3], which is based on a specific procedure for choosing the q

elements of the working set, where q is any even number.
SVMlight algorithm is a commonly used decomposition method for SVM, and its conver-

gence properties have been established only recently. In particular, for any even size q of the
working set, the asymptotic convergence of the algorithm has been proved in ref. [8] under a
suitable strict block-wise convexity assumption on f . However, as remarked in ref. [9], this
assumption may not hold if, for instance, some data points in the training set are the same.
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Convergence of SVMlight algorithm 319

In ref. [12], the convergence of the algorithm is proved, for the special case of q = 2, without
requiring the strict block-wise convexity assumption on f .

In this work, we define a decomposition method which is similar to the SVMlight algorithm.
The differences are in the selection rule and in the objective function of the subproblem to be
solved at each iteration. In particular, we introduce a working set selection (WWS) rule that
includes, as a particular case, the one used by the SVMlight algorithm, but does not restrict
the size q of the working set to be an even number (the only constraint is q ≥ 2). Moreover,
alternatively to the standard subproblem (2), we define a modified subproblem of the form

min
αW

f (αW , αk

W
) + τ‖αW − αk

W‖2

y ′
WαW = −y ′

W
αk

W

0 ≤ αW ≤ CeW ,

where the objective function contains the additional quadratic proximal point term
τ‖αW − αk

W‖2, where τ > 0. Roughly speaking, the proximal point term plays the role of
a ‘convexifying’ term of the objective function of the subproblem with respect to the subvec-
tor αW . This allows us to remove the block-wise convexity assumption on f needed to prove
convergence of the SVMlight algorithm. In particular, under the only assumption that f is
convex, we prove that any limit point of the sequence {αk} generated by our decomposition
method is a solution of problem (1). The convergence analysis is based on some key ideas
exploited in ref. [8], but follows a different guideline inspired from preceding papers [10,11]
concerning decomposition methods for nonlinear optimization.

We emphasize that the focus of this paper is theoretical, namely the study of the convergence
properties of the proposed SVMlight-type decomposition algorithm. However, we believe that
the proximal point modification may be helpful also from a numerical point of view when
using iterative methods to solve the subproblems (hence in the case q > 2). In our opinion, the
study of methods for solving the subproblems and the definition of suitable truncated criteria
deserve attention and need further work, but this is out of the scope of this paper.

The paper is organized as follows. In section 2, we state some definitions and technical
results that we use to prove convergence of the method. In section 3, we introduce the WSS
rule and the decomposition algorithm (called proximal point decomposition, PPD, algorithm).
Section 4 is devoted to the convergence analysis of PPD algorithm, and we prove that every
limit point of the sequence generated is a global minimum of Problem (1). In section 5, we
show that a stopping criterion, derived in ref. [7], used in ref. [12] and analysed in ref. [13],
which is based on the gap of the violation of the optimality conditions, can be used in PPD
algorithm. Finally, section 6 contains some concluding remarks.

2. Notation and preliminary results

In this section, we state some results on problem (1) (whose proofs are reported in the
Appendix) that will be used for the convergence analysis of the decomposition algorithm
defined in the next section. Actually, these results, except for Proposition 3, have been proved
in ref. [14], where a decomposition method for problem of type (1) is proposed that uses a
different approach with respect to the SVMlight one for the WSS.

First, we introduce some basic notation and definitions. Throughout the paper, we denote
by F the feasible set of problem (1), namely

F = {α ∈ Rl : y ′α = 0, 0 ≤ α ≤ Ce},
and by ∇f = Qα − e the gradient of f .
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320 L. Palagi and M. Sciandrone

Given a vector α ∈ Rl , and an index set W ⊆ {1, . . . , l}, we have already introduced the
notation αW ∈ R|W | to indicate the subvector of α made up of the component αi with i ∈ W .
Furthermore, given a matrix Q and two index sets U, V ⊆ {1, . . . , l}, we denote by QUV the
|U | × |V | submatrix made up of elements qij with i ∈ U and j ∈ V .

For every feasible point α, we denote the sets of indices of active (lower and upper) bounds
as follows:

L(α) = {i: αi = 0}, U(α) = {i: αi = C}.
Since the feasible set F is compact, problem (1) admits solution. Moreover, as f is convex
and the constraints are linear, a feasible point α∗ is a solution of problem (1) if and only if the
KKT conditions are satisfied, i.e. a scalar λ∗ exists such that

(∇f (α∗))i + λ∗yi


≥0 if i ∈ L(α∗)
≤0 if i ∈ U(α∗)
=0 if i /∈ L(α∗) ∪ U(α∗).

The KKT conditions can be written in a different form. To this aim, the sets L and U can be
split into L−, L+ and U−, U+, respectively, where

L−(α) = {i ∈ L(α): yi < 0}, L+(α) = {i ∈ L(α): yi > 0}
U−(α) = {i ∈ U(α): yi < 0}, U+(α) = {i ∈ U(α): yi > 0}.

We report the KKT conditions in the following proposition.

PROPOSITION 1 (Optimality Conditions) A point α∗ ∈ F is a solution of problem (1) if and
only if there exists a scalar λ∗ satisfying

λ∗ ≥ − (∇f (α∗))i
yi

∀ i ∈ L+(α∗) ∪ U−(α∗)

λ∗ ≤ − (∇f (α∗))i
yi

∀ i ∈ L−(α∗) ∪ U+(α∗) (3)

λ∗ = − (∇f (α∗))i
yi

∀ i /∈ L(α∗) ∪ U(α∗).

In correspondence to a feasible point α, the following index sets can be defined:

R(α) = L+(α) ∪ U−(α) ∪ {i: 0 < αi < C},
S(α) = L−(α) ∪ U+(α) ∪ {i: 0 < αi < C}.

These sets have been introduced in ref. [8] in the form

R(α) = {i: (αi < C and yi > 0) or (αi > 0 and yi < 0)},
S(α) = {i: (αi < C and yi < 0) or (αi > 0 and yi > 0)}, (4)

where the indices in R(α) are called ‘bottom’ candidates, and the indices in S(α) are ‘top’
candidates.

We have the following results.
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Convergence of SVMlight algorithm 321

PROPOSITION 2 A feasible point α∗ is a solution of problem (1) if and only if there exists no
pair of indices i and j , with i ∈ R(α∗) and j ∈ S(α∗), such that

− (∇f (α∗))i
yi

> − (∇f (α∗))j
yj

. (5)

PROPOSITION 3 Let {αk} be a sequence of feasible points convergent to a point ᾱ. Then for
sufficiently large values of k we have

R(ᾱ) ⊆ R(αk) and S(ᾱ) ⊆ S(αk).

The set of the feasible directions at α is the cone

D(α) = {d ∈ Rl : y ′d = 0, di ≥ 0, ∀ i ∈ L(α), and di ≤ 0, ∀ i ∈ U(α)}.
Then we can state the following result.

PROPOSITION 4 Let α̂ be a feasible point. For each pair i ∈ R(α̂) and j ∈ S(α̂), the direction
d ∈ Rl such that

di = 1

yi

, dj = − 1

yj

, dh = 0 for h �= i, j

is a feasible direction at α̂, i.e. d ∈ D(α̂).

3. A proximal point modification of SVMlight algorithm

The basic strategy of a decomposition method is that of performing, at each iteration, the
minimization of the objective function with respect to only a subset of variables, holding fixed
the remaining variables. With reference to SVM problem (1), the subproblem (2) to be solved
at any iteration k takes the form:

min
αW

f (αW , αk

W
) =1

2
α′

WQWWαW − (e − QWWαk

W
)′αW

y ′
WαW = −y ′

W
αk

W
(6)

0 ≤ αW ≤ CeW ,

where W is the working set at iteration k and W = {1, . . . , l}\W (for notational convenience
we have omitted the dependence of W and W on the iteration counter k when this is not
confusing). Note that, due to the presence of the linear equality constraint, the smallest number
of variables that can be changed at each iteration to retain feasibility is two, so that the
cardinality q of the working set W must be at least two.

As already observed in the introduction, a fundamental issue in the design of a decomposition
method is the rule for selecting the working set W at each iteration. SVMlight algorithm is a
commonly used decomposition method for SVM, and is based on a specific rule related to the
violation of the optimality conditions.

In particular, the idea in ref. [3] is to find a steepest descent feasible direction with exactly q

non-zero elements and to select in the working set the indices corresponding to these elements.
This leads to solve the problem

min
d

{
∇f (αk)′d: d ∈ D(αk), −e ≤ d ≤ e,

∣∣∣{i: di �= 0}
∣∣∣ = q

}
.

A simple strategy to solve it, and hence to identify the indices in W , has been proposed in
ref. [3]. In ref. [14] it has been point out that, in theory, a solution satisfying the constraint
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322 L. Palagi and M. Sciandrone∣∣∣{i: di �= 0}
∣∣∣ = q may not exist. Later in ref. [8], it has been proved that the procedure proposed

in ref. [3] really solves the problem:

min
d

{
∇f (αk)′d: d ∈ D(αk), − e ≤ d ≤ e,

∣∣∣{i: di �= 0}
∣∣∣ ≤ q

}
.

The procedure for the solution of this problem has been described in a compact form in
refs. [8,13] using the sets R(α) and S(α) given in equation (4).

We introduce here a slightly more general rule than that of the SVMlight , which mimics one
introduced in ref. [13]. To this aim, at any feasible point α, we define the index sets

I (α) =
{
i: i = arg max

h∈R(α)
− (∇f (α))h

yh

}
, J (α) =

{
j : j = arg min

h∈S(α)
− (∇f (α))h

yh

}
. (7)

At iteration k, the WSS rule can be described as follows.
Data: Integers q1, q2 ≥ 1.

(i) Select q1 indices in R(αk) sequentially so that

−∇f (αk)i1(k)

yi1(k)

≥ −∇f (αk)i2(k)

yi2(k)

≥ · · · ≥ −∇f (αk)iq1 (k)

yiq1 (k)

with i1(k) ∈ I (αk).
(ii) Select q2 indices in S(αk) sequentially so that

−∇f (αk)j 1(k)

yj 1(k)

≤ −∇f (αk)j 2(k)

yj 2(k)

≤ · · · ≤ −∇f (αk)jq2 (k)

yjq2 (k)

with j 1(k) ∈ J (αk)

(iii) Set Wk = {i1, . . . , iq1 , j 1, . . . , j q2}.
We remark that the WSS rule employed in SVMlight algorithm is a particular case of WSS

rule, with q1 = q2 = q/2, where q is an even number.
The asymptotic convergence of SVMlight algorithm has been established in ref. [8], under

the assumption that

min
I : |I |≤q

(eigmin(QII )) > 0, (8)

where I is any subset of {1, . . . , l} with |I | ≤ q and eigmin(QII ) denotes the minimum eigen-
value of the matrix QII . Note that assumption (8) implies that the objective function is strictly
convex with respect to block components of cardinality ≤ q. However, it does not hold, for
example, if some training data are the same. As showed in ref. [9], assumption (8) is not
necessary for ensuring the convergence of SVMlight algorithm in the particular case of q = 2,
which corresponds to the well-known SMO algorithm.

From the convergence analysis performed in ref. [8], we may deduce that the key role of
hypothesis (8) stays in the fact that it permits to ensure that the distance between successive
points of the sequence {αk} generated by the decomposition methods tends to zero, i.e.

lim
k→∞ ‖αk+1 − αk‖ = 0. (9)
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Convergence of SVMlight algorithm 323

This is an important requirement to establish convergence properties in the context of a decom-
position strategy. Indeed, in a decomposition method, at the end of each iteration k, only the
satisfaction of the optimality conditions with respect to the variables associated to Wk is
ensured. Therefore, to get convergence towards KKT points, it may be necessary to ensure
that consecutive points, which are solutions of the corresponding subproblems, tend to the
same limit point.

In order to ensure property (9) without requiring assumption (8), we employ a proximal
point technique [11,15,16]. In particular, a proximal point term of the form τ‖αW − αk

W‖2, with
τ > 0, is added to the objective function of the subproblem (6), thus obtaining the following
subproblem

min
αW

f (αW , αk

W
) + τ‖αW − αk

W‖2

y ′
WαW = −y ′

W
αk

W
(10)

0 ≤ αW ≤ CeW .

Since f is quadratic, the objective function of problem (10) is still quadratic and can be written
as follows

1

2
α′

W (QWW + 2τIW ) αW − (eW − QWWαk

W
− 2ταk

W )′αW,

where IW denotes the identity matrix of dimension |W |. Note that problem (10) has the same
structure of subproblem (6), but now, since the objective function is strictly convex, the solution
is unique. Thus, the solution of problem (10) requires at most the same effort than the solution
of subproblem (6).

We are ready to define formally the proximal point modification of the SVMlight

decomposition method, which we call PPD algorithm, as follows.

PPD ALGORITHM

Data: a feasible point α0, τ > 0.
Inizialization: Set k = 0.

While (stopping criterion not satisfied)
1. Select the working set Wk according to the WSS rule.
2. Set W = Wk . Find the solution α∗

W of problem (10).

3. Set αk+1
i =

{
α∗

i if i ∈ W

αk
i otherwise.

4. Set k = k + 1.
end while
Return α∗ = αk

In the next section, we prove the asymptotic convergence of PPD algorithm. In Section 5,
we show that PPD algorithm satisfies the stopping criterion proposed in refs. [7,12].

4. Convergence analysis

We first prove some preliminary results that are independent of the WSS rule used in PPD
algorithm for defining the working set Wk .
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324 L. Palagi and M. Sciandrone

PROPOSITION 5 Assume that PPD algorithm does not terminate and let {αk} be the sequence
generated. Then we have

lim
k→∞‖αk+1 − αk‖ = 0.

Proof By the instructions of the algorithm, we have for all k

f (αk+1) + τ‖αk+1 − αk‖2 = f (αk+1
W , αk

W
) + τ‖αk+1

W − αk
W‖2 ≤ f (αk

W , αk

W
) = f (αk),

(11)
so that the sequence {f (αk)} is decreasing. Since {αk} belongs to the feasible set, which
is compact, then there exists a subsequence {αk}K such that limk→∞,k∈K αk = ᾱ. As f is
continuous, we have that {f (αk)}K converges to f (ᾱ), and this implies that the whole sequence
{f (αk)} converges to f (ᾱ). Then, the convergence of the sequence {f (αk)} to a finite value
and equation (11) imply that ‖αk+1 − αk‖ → 0. �

As an immediate consequence of Proposition 5, we have the following result.

LEMMA 1 Assume that PPD algorithm does not terminate and let {αk} be the sequence
generated. Let {αk}K be a subsequence convergent to a point ᾱ, i.e. there exists an infinite
subset K ⊆ {0, 1, . . .} such that αk → ᾱ for k → ∞, k ∈ K . Then, for any integer p, we have
that

lim
k→∞,k∈K

αk+p = ᾱ.

Proof Given any integer p, we can write

‖αk+p − αk‖ ≤ ‖αk+p − αk+p−1‖ + ‖αk+p−1 − αk+p−2‖ + · · · + ‖αk+1 − αk‖. (12)

By Proposition 5, we have that ‖αk+j+1 − αk+j‖ → 0 for all finite j = 0, 1 . . . . From
equation (12), we get that ‖αk+p − αk‖ → 0 and hence, as αk → ᾱ, we get also that αk+p → ᾱ

for k → ∞, k ∈ K . �

In the proof of convergence of PPD algorithm we make use of the following result.

LEMMA 2 Let {αk} be the sequence generated by PPD algorithm. Assume that (i, j) is a pair
such that:

(i, j) ∈ Wk and (i, j) ∈ R(αk+1) × S(αk+1).

Then

∇f (αk+1)′di,j + 2τ(αk+1 − αk)′di,j ≥ 0,

where di,j ∈ Rl is the direction defined as

d
i,j

i = 1

yi

, d
i,j

j = − 1

yj

, d
i,j

h = 0 for h �= i, j.

Proof For simplicity, let W = Wk . By Proposition 4, we know that di,j is a feasible
direction at αk+1. Let d

i,j

W be the subvector of di,j with elements in W ; since i, j ∈ W we
have that d

i,j

W
= 0. Recalling that αk+1

W = α∗
W and αk+1

W
= αk

W
, it is immediate to verify that
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Convergence of SVMlight algorithm 325

the direction d
i,j

W is a feasible direction for the subproblem (10) at α∗
W . Since equation (10) is

a convex programming problem, the optimality conditions can be written as:

∇Wf (α∗
W, αk

W
)′di,j

W + 2τ(α∗
W − αk

W )′di,j

W ≥ 0,

where ∇Wf denotes the subvector of ∇f with components in W . Recalling again that αk+1
W =

α∗
W , αk+1

W
= αk

W
and d

i,j

W
= 0, we get

∇f (αk+1)′di,j + 2τ(αk+1 − αk)′di,j = ∇Wf (α∗
W, αk

W
)′di,j

W + 2τ(α∗
W − αk

W )′di,j

W ≥ 0,

and hence the result. �

Now we are ready to prove the asymptotic convergence of PPD algorithm.

PROPOSITION 6 Assume that PPD algorithm does not terminate, and let {αk} be the sequence
generated by it. Then, every limit point of {αk} is a solution of problem (1).

Proof Let ᾱ be any limit point of a subsequence of {αk}, i.e. there exists an infinite subset
K ⊆ {0, 1, . . .} such that αk → ᾱ for k ∈ K , k → ∞.

By contradiction, let us assume that ᾱ is not a KKT point for problem (1). By Proposition 2,
there exists at least a pair (i, j) ∈ R(ᾱ) × S(ᾱ)such that:

− (∇f (ᾱ))i

yi

> − (∇f (ᾱ))j

yj

. (13)

According to the WSS rule, at iteration k, the indices i1(k) ∈ I (αk) and j 1(k) ∈ J (αk) are
inserted in the working set Wk [where I (αk) and J (αk) are defined in equation (7)].

The proof is divided in two parts.

a. Suppose first that there exists an integer s ≥ 0 such that:

i1(k + m(k)) ∈ R(αk+m(k)+1) and j 1(k + m(k)) ∈ S(αk+m(k)+1)

for some m(k) ∈ [0, s]. (14)

Since i1(k) and j 1(k) belong to the finite set {1, . . . , l}, we can extract a further subset of
K , which we relabel again with K , such that

i1(k + m(k)) = î, j 1(k + m(k)) = ĵ for all k ∈ K.

Lemma 1 implies that αk+m(k) → ᾱ for k → ∞, k ∈ K . Then, recalling that, by definition,
î, ĵ ∈ Wk+m(k) for all k ∈ K , we can define a subsequence {αk}K1 such that for all k ∈ K1

• (̂i, ĵ ) ∈ Wk

• (̂i, ĵ ) ∈ R(αk+1) × S(αk+1)

• αk → ᾱ for k → ∞, k ∈ K1.
Hence, we can apply Lemma 2 and write:

∇f (αk+1)′dî,ĵ + 2τ(αk+1 − αk)′dî,ĵ ≥ 0 for all k ∈ K1.

By Proposition 5, we have ‖αk+1 − αk‖ → 0, so that, recalling the continuity of ∇f and
the definition of dî,ĵ in Lemma 2, taking limits for k → ∞, k ∈ K1, we obtain

∇f (ᾱ)′dî,ĵ = (∇f (ᾱ)) î

y î

− (∇f (ᾱ))ĵ

y ĵ

≥ 0. (15)
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326 L. Palagi and M. Sciandrone

On the other hand, the indices i, j satisfying equation (13) are such that, by Proposition 3,
i ∈ R(αk) and j ∈ S(αk) for k ∈ K1 and k sufficiently large. Hence, taking into account
the definition of î, ĵ and the WSS rule, we can write for k ∈ K1 and k sufficiently large,

− (∇f (αk)) î

y î

≥ − (∇f (αk))i

yi

and − (∇f (αk))ĵ

y ĵ

≤ − (∇f (αk))j

yj

.

Taking limits for k → ∞, k ∈ K1, we obtain

− (∇f (ᾱ)) î

y î

≥ − (∇f (ᾱ))i

yi

and − (∇f (ᾱ))ĵ

yĵ

≤ − (∇f (ᾱ))j

yj

.

Hence, using equation (15) we can write:

− (∇f (ᾱ))i

yi

≤ − (∇f (ᾱ)) î

y î

≤ − (∇f (ᾱ))ĵ

yĵ

≤ − (∇f (ᾱ))j

yj

and this contradicts equation (13).
b. Thus, we can assume that condition (14) does not hold, so that, we must have for all k ∈ K

and for all m ≥ 0

i1(k + m) ∈ R(αk+m) and j 1(k + m) ∈ S(αk+m)

and

i1(k + m) /∈ R(αk+m+1) or j 1(k + m) /∈ S(αk+m+1).

For simplicity and without loss of generality, we consider only the case that i1(k + m) /∈
R(αk+m+1). Then we have

i1(k) ∈ R(αk) and i1(k) /∈ R(αk+1)

i1(k + 1) ∈ R(αk+1) and i1(k + 1) /∈ R(αk+2)

...
...

As i1(k) belongs to {1, . . . , l}, we can extract a subset of K (that we relabel again K) such
that for all k ∈ K we can write

i1(k + h(k)) = i1(k + n(k)) = î, with 0 ≤ h(k) < n(k) ≤ l.

Then, we can define a subset K1 such that for all ki ∈ K1,

i1(ki) = i1(ki+1) = î, with ki < ki+1 ≤ ki + l,

and αki → ᾱ for ki → ∞ and ki ∈ K1. Hence, we can write

î ∈ R(αki ), and î /∈ R(αki+1) and î ∈ R(αki+1), (16)

which means that index î must have been inserted in the working set and modified by the
optimization process between the iterates ki + 1 and ki+1 ≤ ki + l.
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Convergence of SVMlight algorithm 327

Thus, for all ki ∈ K1, an index p(ki), with ki < p(ki) ≤ ki+1 ≤ ki + l, exists such that

î ∈ S(αp(ki )) and î ∈ Wp(ki ) and î ∈ R(αp(ki )+1).

As p(ki) − ki ≤ l, recalling Lemma 1, we can write

lim
ki→∞, ki∈K1

αp(ki ) = lim
ki→∞, ki∈K1

αp(ki )+1 = ᾱ. (17)

We prove now that also the index j , defined in equation (13), must belong to the working
set at iteration p(ki).

To this aim, we first show that

− (∇f (ᾱ)) î

y î

≥ − (∇f (ᾱ))i

yi

. (18)

Indeed if this were not true, namely if

− (∇f (ᾱ))i

yi

> − (∇f (ᾱ)) î

y î

,

by the continuity of the gradient we would have for ki ∈ K1 and ki sufficiently large:

− (∇f (αki ))i

yi

> − (∇f (αki )) î

y î

,

which in turn implies that î /∈ I (αki ) and hence i1(ki) �= î for ki ∈ K1 and sufficiently
large. Since equation (18) holds, using equation (13) we get

− (∇f (ᾱ)) î

y î

> − (∇f (ᾱ))j

yj

.

By the continuity of the gradient, we can write for all ki ∈ K1 sufficiently large and for all
m ≥ 0:

− (∇f (αki−m)) î

y î

> − (∇f (αki−m))j

yj

. (19)

On the other hand, by equation (17) and Proposition 3, as j ∈ S(ᾱ), for ki ∈ K1 and
ki sufficiently large we have that j ∈ S(αp(ki )) and j ∈ S(αp(ki )+1). Therefore, since î ∈
S(αp(ki )) and î ∈ Wp(ki ), from equation (19) and taking into account the WSS rule, we get
that also j belongs to the working set at iteration p(ki), i.e. j ∈ Wp(ki ). Hence, the pair
(̂i, j ) is such that

(̂i, j ) ∈ Wp(ki ) and (̂i, j ) ∈ R(αp(ki )+1) × S(αp(ki )+1),

so that, by Lemma 2 we can write

∇f (αp(ki )+1)′dî,j + 2τ(αp(ki )+1 − αp(ki ))′dî,j ≥ 0 for all ki ∈ K1. (20)

Then, taking limits in equation (20), recalling the continuity of ∇f and Proposition 5, we
obtain

∇f (ᾱ)′dî,j = (∇f (ᾱ)) î

y î

− (∇f (ᾱ))j

yj

≥ 0.

Finally, using equation (18) we get

− (∇f (ᾱ))i

yi

≤ − (∇f (ᾱ))j

yj

,

which contradicts equation (13). �
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328 L. Palagi and M. Sciandrone

5. On the stopping criterion

In PPD algorithm, we still have to define the termination criterion. A natural way is to use the
information on the satisfaction of the necessary and sufficient KKT conditions. Indeed, this
was proposed in the original paper [3] on SVMlight . Actually, a termination criterion which
fits better into the SVMlight algorithm has been derived and used in refs. [7,12] and analysed
in ref. [13]. In order to describe this stopping criterion, we introduce the following functions
m(α), M(α): F → R:

m(α) =
{

maxh∈R(α) − (∇f (α))h
yh

if R(α) �= ∅
−∞ otherwise

M(α) =
{

minh∈S(α) − (∇f (α))h
yh

if S(α) �= ∅
+∞ otherwise

where R(α) and S(α) are the index sets defined in equation (4). By definition of m(α) and
M(α), and recalling Proposition 2, it follows that ᾱ is a global minimum of problem (1) if and
only if m(ᾱ) ≤ M(ᾱ).

Now let us consider a sequence of feasible points {αk} convergent to a solution ᾱ. At any
iteration k, if αk is not a solution, it follows (again from Proposition 2) that m(αk) > M(αk).
Hence, the stopping criterion proposed in refs. [7,12] is

m(αk) ≤ M(αk) + ε, (21)

where ε > 0 is a stopping tolerance.
We note that the quantities m(αk) and M(αk) are evaluated in PPD algorithm (and in SVMlight

algorithm) in order to identify the working set. Hence, the check of equation (21) does not
require any additional computational effort. However, as observed in ref. [13], the functions
m(α) and M(α) are not continuous. Indeed, even though if αk → ᾱ for k → ∞, it may
happen that R(αk) �= R(ᾱ) or S(αk) �= S(ᾱ) for k sufficiently large, so that we may not have
limk→∞ m(αk) = m(ᾱ) or limk→∞ M(αk) = M(ᾱ). Therefore, in general, we may have that
the limit point ᾱ is a solution for problem (1), whereas criterion (21) is never satisfied.

In ref. [13], it has been proved that, under assumption (8), SVMlight algorithm generates
a sequence {αk} such that m(αk) − M(αk) → 0 for k → ∞. This implies that, for any
tolerance ε, SVMlight algorithm satisfies the stopping criterion (21) in a finite number of
iterations. A similar result can be established for PPD algorithm as reported in the following
proposition.

PROPOSITION 7 Let {αk} be the sequence generated by PPD algorithm. If m(αk) − M(αk) > 0
for all k, then

lim
k→∞

(
m(αk) − M(αk)

) = 0. (22)

Proof The proof is by contradiction. We assume that a subsequence {αk}K exists such that

limk→∞,k∈K αk = ᾱ

m(αk) ≥ M(αk) + ε, for all k ∈ K , with ε > 0.

Thus, from the definition of m and M we have for all k ∈ K

− (∇f (αk))i1(k)

yi1(k)

≥ − (∇f (αk))j 1(k)

yj 1(k)

+ ε, (23)

where i1(k) ∈ I (αk), j 1(k) ∈ J (αk), I (α) and J (α) are the sets defined in equation (7).
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Convergence of SVMlight algorithm 329

We claim that there exists a subset of K , which we relabel again with K , such that for all
k ∈ K and for any s > 0, we have

− (∇f (αk+m))i1(k+m)

yi1(k+m)

≥ − (∇f (αk+m))j 1(k+m)

yj 1(k+m)

+ ε

2
for m ∈ [0, s]. (24)

From equation (23), since both i1(k) and j 1(k) belong to a finite set, we can individuate a
subset of K , relabelled again with K , and two indices i ∈ R(αk) and j ∈ S(αk) such that for
all k ∈ K

− (∇f (αk))i

yi

≥ − (∇f (αk))j

yj

+ ε. (25)

Recalling Lemma 1, the continuity of the gradient, and equation (25), we can write for k ∈ K

− (∇f (αk−p))i

yi

≥ − (∇f (αk−p))j

yj

+ ε

2
, ∀p ≥ 0. (26)

Suppose first that i /∈ R(αk−1), then, as i ∈ R(αk), we must have that i ∈ Wk−1. Actually,
j ∈ Wk−1. Indeed, if j /∈ S(αk−1), as j ∈ S(αk), it follows that it has been included in the
working set at iteration k − 1; otherwise j ∈ S(αk−1), so that equation (26) and the WSS rule
imply that it must have been selected too. Hence, we can apply Lemma 2 and write:

∇f (αk)′di,j + 2τ(αk − αk−1)′di,j ≥ 0 for all k ∈ K.

Recalling Proposition 5, the continuity of ∇f , and the definition of di,j in Lemma 2, we can
write for k ∈ K sufficiently large

∇f (αk)′di,j = (∇f (αk))i

yi

− (∇f (αk))j

yj

≥ −2τ(αk − αk−1)′di,j ≥ −ε

2
,

and this contradicts equation (25), so that we must have i ∈ R(αk−1). Assume now that j /∈
S(αk−1), then, repeating similar reasonings, we obtain again a contradiction.
Hence, by induction, we can conclude that for k ∈ K and for any p ≥ 1

i, j ∈ R(αk−p) × S(αk−p) and (i, j) /∈ Wk−p.

By the WSS rule, this implies that we must have

− (∇f (αk−p))i1(k−p)

yi1(k−p)

≥ − (∇f (αk−p))i

yi

and − (∇f (αk−p))j 1(k−p)

yj 1(k−p)

≤ − (∇f (αk−p))j

yj

.

Then, recalling equation (26), it follows that equation (24) holds.
Now we are ready to prove equation (22). The proof is similar to the one of Proposition 6 and
is divided in two parts.

a. Suppose first that there exists an integer s ≥ 0 such that for all k ∈ K:

i1(k + m(k)) ∈ R(αk+m(k)+1) and j 1(k + m(k)) ∈ S(αk+m(k)+1)

for some m(k) ∈ [0, s]. (27)

Since i1(k) and j 1(k) belong to a finite set, we can extract a further subset relabelled again
K such that

i1(k + m(k)) = î, j 1(k + m(k)) = ĵ , for all k ∈ K.

Lemma 5 implies that αk+m(k) → ᾱ for k → ∞, k ∈ K . Then recalling that (̂i, ĵ ) ∈
Wk+m(k), we can define a subsequence {αk}K1 such that for all k ∈ K1
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330 L. Palagi and M. Sciandrone

î ∈ I (αk), ĵ ∈ J (αk)

(̂i, ĵ ) ∈ Wk

(̂i, ĵ ) ∈ R(αk+1) × S(αk+1)

αk → ᾱ for k → ∞, k ∈ K1.
Now we can apply Lemma 2 and write:

∇f (αk+1)′dî,ĵ + 2τ(αk+1 − αk)′dî,ĵ ≥ 0 for all k ∈ K1. (28)

Recalling Proposition 5 and the continuity of ∇f , taking the limit for k ∈ K1 we get:

∇f (ᾱ)′dî,ĵ = (∇f (ᾱ)) î

y î

− (∇f (ᾱ))ĵ

y ĵ

≥ 0. (29)

On the other hand, from equation (24) we have for k ∈ K1:

− (∇f (αk)) î

y î

≥ − (∇f (αk))ĵ

yĵ

+ ε

2
, (30)

from which, taking limits, we get

− (∇f (ᾱ)) î

y î

> − (∇f (ᾱ))ĵ

yĵ

(31)

and this contradicts equation (29).
b. Thus, we can assume that condition (27) does not hold, so that, we must have for all k ∈ K

and for all m ≥ 0

i1(k + m) ∈ R(αk+m) and j 1(k + m) ∈ S(αk+m)

and

i1(k + m) /∈ R(αk+m+1) and/or j 1(k + m) /∈ S(αk+m+1).

Without loss of generality, we consider only the case that i1(k + m) /∈ R(αk+m+1).
Then we have

i1(k) ∈ R(αk) and i1(k) /∈ R(αk+1)

i1(k + 1) ∈ R(αk+1) and i1(k + 1) /∈ R(αk+2)

...
...

As i1(k) belongs to {1, . . . , l}, we can extract a subset of K (that we relabel K) such that
for all k ∈ K we can write

i1(k + h(k)) = i1(k + n(k)) = î, with 0 ≤ h(k) < n(k) ≤ l.

Then, we can define a subset K1 such that for all ki ∈ K1,

i1(ki) = i1(ki+1) = î, with ki < ki+1 ≤ ki + l,

and αki → ᾱ for ki → ∞ and ki ∈ K1. Hence, we can write

î ∈ R(αki ), and î /∈ R(αki+1) and î ∈ R(αki+1), (32)

which means that index î must have been inserted in the working set and modified by the
optimization process between the iterates ki + 1 and ki+1 ≤ ki + l.
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Convergence of SVMlight algorithm 331

Regarding j 1(ki), since it belongs to a finite set, we can extract a further subsequence,
which we relabel again K1, such that j 1(ki) = ĵ for all ki ∈ K1. Since for all ki ∈ K1, a
k ∈ K exists such that ki − k ≤ l, we get from equation (24) that for all ki ∈ K1

− (∇f (αki )) î

y î

≥ − (∇f (αki ))ĵ

y ĵ

+ ε

2
, (33)

which is analogous to equation (30), so that taking limits we get equation (31). The
continuity of the gradient allows us to state also that for all m ≥ 0

− (∇f (αki+m)) î

y î

> − (∇f (αki+m))ĵ

yĵ

. (34)

Now consider the integer p(ki) such that ki < p(ki) ≤ ki+1 ≤ ki + l, and for which

î ∈ S(αp(ki )), î ∈ Wp(ki ), î ∈ R(αp(ki )+1) · · · î ∈ R(αki+1). (35)

The existence of p(ki) follows from equation (32).
Assume first that

ĵ ∈ S(αp(ki )), ĵ ∈ S(αp(ki )+1). (36)

Since î ∈ S(αp(ki )) and ĵ ∈ S(αp(ki )), and î ∈ Wp(ki ), then theWWS rule with equation (34)
imply that also the index ĵ must be in the working set at iteration p(ki); moreover, from
equation (35) and (36), we have that (̂i, ĵ ) ∈ R(αp(ki )+1) × S(αp(ki )+1).

Suppose that equation (36) does not hold; hence, recalling that ĵ ∈ S(αki+1), consider the
integer q(ki) such that p(ki) ≤ q(ki) < ki+1 ≤ ki + l, and for which

ĵ ∈ R(αq(ki )), ĵ ∈ Wq(ki ), ĵ ∈ S(αq(ki )+1) · · · ĵ ∈ S(αki+1). (37)

If p(ki) = q(ki) then, from equations (35) and (37) we have î, ĵ ∈ Wq(ki ) and (̂i, ĵ ) ∈
R(αq(ki )+1) × S(αq(ki )+1).
If p(ki) < q(ki), then î ∈ R(αq(ki ), so that, as ĵ ∈ R(αq(ki )) and ĵ ∈ Wq(ki ), from the WSS
rule and equation (34) we get that î ∈ Wq(ki ); moreover, from equations (35) and (37) we
have that (̂i, ĵ ) ∈ R(αq(ki )+1) × S(αq(ki )+1).
Summarizing, we can define a subsequence {αk}K2 → ᾱ such that for all k ∈ K2 the pair
(̂i, ĵ ) is such that

(̂i, ĵ ) ∈ Wk and (̂i, ĵ ) ∈ R(αk+1) × S(αk+1),

so that, using equation (33) and proceeding as in part ‘a’, we get the contradiction. �

6. Conclusion and remarks

The main contribution of this paper is the definition of a decomposition method for SVM
problem (1), whose convergence can be guaranteed without any further assumption on the
Hessian matrix Q.

The core of the convergence analysis stays in the fact that, thanks to the presence of the
proximal point modification, we can assure that the distance between successive iterates goes
to zero. We note that in the case of dimension of the working set fixed to q = 2, which
corresponds to SMO algorithm, this property holds without the need of the proximal point term
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modification, as shown in ref. [9]. However, we stress that the property stated in Proposition 5
does not depend on the fact that the objective function is quadratic and convex, so it remains
true in the case of generic continuous function f (α). By slight changes of the proof, also the
compactness of the feasible set can be relaxed, thus allowing that some bounds take the value
±∞. Of course, without the compactness hypothesis on F , some other assumption is needed
to ensure the existence of limit points. Thus, the decomposition approach proposed here can
be applied also to problems of the type

min f (α)

s.t. b′α = c

l ≤ α ≤ u,

where f (α) is a (possibly nonconvex) smooth function, b, l, u ∈ Rl , c ∈ R and −∞ ≤ l

< u ≤ ∞. Obviously, in the nonconvex case, it is possible to guarantee convergence only
to stationary points, i.e. points satisfying the first-order necessary KKT conditions.

The algorithm model proposed here requires at each iteration the computation of the exact
solution of the quadratic programming subproblem (10). In the case of q = 2, the analytical
solution of the subproblem is known, so that the introduction of the proximal point modification
is neither theoretically nor practically motivated. When q > 2, the solution of the subproblem
is not available in closed form, and hence, an iterative method must be used. We expect that, in
general, the presence of the proximal point term may improve the rate of convergence of the
iterative method, since it may make the Hessian matrix of the subproblem better conditioned.
Future work will be devoted to the definition of convergent decomposition methods based on
inexact minimization of the subproblems. This will require the study of efficient minimization
techniques for quadratic programming and the definition of suitable truncating criteria for
ensuring convergence properties.
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Appendix A

Propositions 2, 4 have been proved in ref. [4]. We report here the proofs for sake of
completeness.

Proof of Proposition 2 First we assume that the feasible point α∗ is a solution of problem (1).
If one of the sets R(α∗) and S(α∗) is empty, then the assertion of the proposition is obviously
true. If both the sets R(α∗) and S(α∗) are not empty, Proposition 1 implies the existence of
a multiplier λ∗ such that the pair (α∗, λ∗) satisfies conditions (3) which can be written as
follows:

max
i∈L+(α∗)∪U−(α∗)

{
− (∇f (α∗))i

yi

}
≤ λ∗ ≤ min

i∈L−(α∗)∪U+(α∗)

{
− (∇f (α∗))i

yi

}
λ∗ = − (∇f (α∗))i

yi

∀ i /∈ L(α∗) ∪ U(α∗).

Then recalling the definition of the sets R(α∗) and S(α∗), we can write:

max
h∈R(α∗)

− (∇f (α∗))h
yh

≤ min
h∈S(α∗)

− (∇f (α∗))h
yh

,

which implies that there exists no pair of indices i and j , with i ∈ R(α∗) and j ∈ S(α∗),
satisfying equation (5).
Now we assume that there exists no pair of indices i and j , with i ∈ R(α∗) and j ∈ S(α∗)
satisfying equation (5). First, we consider the case that one of the sets R(α∗) and S(α∗) is
empty. Suppose, without loss of generality, that R(α∗) = ∅. Hence {i: 0 < α∗

i < C} = ∅ and
S(α∗) = L−(α∗) ∪ U+(α∗) = {1, . . . , l}. Therefore conditions (3) are satisfied by choosing
any λ∗ such that

λ∗ ≤ min
1≤i≤l

− (∇f (α∗))i
yi

.

In case that both the sets R(α∗) and S(α∗) are not empty, we have that

max
h∈R(α∗)

− (∇f (α∗))h
yh

≤ min
h∈S(α∗)

− (∇f (α∗))h
yh

.

Therefore, we can define a multiplier λ∗ such that

max
h∈R(α∗)

− (∇f (α∗))h
yh

≤ λ∗ ≤ min
h∈S(α∗)

− (∇f (α∗))h
yh

, (A1)

so that the first and second sets of inequalities of equation (3) are satisfied. Then the definition
of the sets R(α∗) and S(α∗) and the choice of the multiplier λ∗ [satisfying equation (A1)]
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imply that

max{i: 0<αi<C} −
(∇f (α∗))i

yi

≤ λ∗ ≤ min{i: 0<αi<C} −
(∇f (α∗))i

yi

,

so that the set of equalities of equation (3) is verified. �

Proof of Proposition 3 The proof is by contradiction. Assume that an integer j̄ exists, such
that j̄ ∈ R(ᾱ) and j̄ /∈ R(αk) for each k ≥ k̄. We can assume without loss of generality that
yj̄ > 0 so that, by definition of R(ᾱ), we get ᾱj̄ < C. By assumption j̄ /∈ R(αk), which
implies that αk

j̄
= C for k ≥ k̄. Since αk → ᾱ for k → ∞, this implies ᾱj̄ = C, which leads

to a contradiction. �

Proof of Proposition 4 We show that the defined direction d is such that

y ′d = 0 and di ≥ 0 ∀i ∈ L(α̂) and dj ≤ 0 ∀j ∈ U(α̂).

Indeed, the definition of d yields that y ′d = yidi + yjdj = 0. Moreover, we have i ∈ R(α̂),
so that, if i ∈ L(α), then, by equation (4), we must have i ∈ L+(α̂), and hence di = 1/yi > 0.
Analogously, since j ∈ S(α̂), if j ∈ U(α̂) then j ∈ U+(α̂) and hence dj = −1/yj < 0. The
same conclusion can be drawn for the other two cases. �
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