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LETTER Communicated by John Platt

Convergent Decomposition Techniques for Training RBF
Neural Networks

C. Buzzi
L. Grippo
Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza,” Via
Buonarroti 12 00185, Roma, Italy

M. Sciandrone
Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30 - 00185 Roma,
Italy

In this article we define globally convergent decomposition algorithms
for supervised training of generalized radial basis function neural net-
works. First, we consider training algorithms based on the two-block
decomposition of the network parameters into the vector of weights and
the vector of centers. Then we define a decomposition algorithm in which
the selection of the center locations is split into sequential minimizations
with respect to each center, and we give a suitable criterion for choosing
the centers that must be updated at each step. We prove the global con-
vergence of the proposed algorithms and report the computational results
obtained for a set of test problems.

1 Introduction

We consider a generalized radial basis function (RBF) neural network with
M hidden nodes and one output unity, whose input-output mapping is
defined by

y(x; w1, . . . , wM, c1, . . . , cM) =
M∑

i=1

wiφ(‖x − ci‖2),

where x ∈ Rn is the input vector, wi ∈ R, for i = 1, . . . , M are the output
weights, ci ∈ Rn, for i = 1, . . . , M, are the centers, φ : R+ → R+ is an RBF,
and ‖ · ‖ is the Euclidean norm.

Given a set of input-output training pairs (xp, tp) ∈ Rn × R, for p =
1, . . . , P, and letting w = (w1, . . . , wM) and c = (c1, . . . , cM), we define by
Ep(w, c) a measure of the distance between the desired output tp correspond-
ing to the input xp and the actual output y(xp; w, c) of the network, so that
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the overall error function E is given by

E(w, c) =
P∑

p=1

Ep(w, c).

Two basic approaches are commonly adopted for tackling the learning
problem in generalized RBF networks (Bishop, 1995; Haykin, 1999): (1)
unsupervised selection of centers and supervised learning of the output
weights and (2) supervised learning of both center positions and output
weights. The first strategy consists of fixing the center positions ci (and
possibly the other internal parameters of each unit) using an unsupervised
technique and then estimating the linear weights wi of the output layer by
means of a supervised technique consisting of minimizing E with respect
to w, which typically corresponds to solving a linear least-squares problem.
The simplest criterion for choosing the center positions can be that of setting
them equal to a random subset of the input vectors from the training set.
As an improvement on this procedure several clustering techniques have
been also suggested, such as the K-means clustering algorithm of Moody
and Darken (1989), which attempt to estimate appropriate locations for the
centers that more accurately reflect the distribution of the data points (see
Bishop, 1995, and Haykin, 1999, for a review). We note that the use of un-
supervised techniques takes no account of the target values associated with
the training inputs, and it may lead to the use of an unnecessarily large
number of basis functions in order to achieve adequate performance.

The alternative training strategy consists of the supervised selection of
both center positions and output weights (Poggio & Girosi, 1990), and it can
be implemented by minimizing the training error E with respect to both w
and c using gradient-descent techniques. Some computational experimen-
tation performed on the NETtalk task (Wettschereck & Dietterich, 1992) has
shown that generalized RBF networks with supervised selection of center
positions yield improved generalization performance, in comparison with
RBF based on unsupervised selection of centers and supervised learning of
the output weights. However, choosing the basis function parameters by
supervised learning may constitute a difficult nonlinear optimization prob-
lem, which can be quite computationally intensive for large values of the
input dimension and of the size of the training set.

In order to overcome this difficulty to some extent, while retaining the
advantages of supervised learning, we can attempt to decompose the opti-
mization problem into a sequence of simpler problems by partitioning the
problem variables into different blocks and then employing some block-
descent technique, based on alternate partial minimizations with respect
to the different blocks. This permits the use of specialized techniques for
the solution of the subproblems, which can be advantageous in terms of
both computing times and error values. However, appropriate conditions
should be satisfied in order to guarantee convergence toward minimizers
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of the error function. In fact, block descent methods may not converge in
the nonconvex case unless suitable precautions are adopted for avoiding
oscillatory behavior (Bertsekas, 1999; Powell, 1973).

In this article, on the basis of some recent results on block descent meth-
ods for nonlinear optimization (Grippo & Sciandrone, 1999, 2000), we define
convergent decomposition algorithms for supervised training of general-
ized RBF networks. First, we consider a two-block training scheme, based
on alternating the optimization with respect to the output weights with the
optimization of the center locations. In this scheme, as in the case of unsu-
pervised learning, we retain the possibility of computing a global optimum
with respect to the output weights by solving a least-squares problem, but
we can also guarantee convergence toward stationary points of the error
function with respect to both c and w. However, when the number M of
centers and the dimension n of the input space are very large, even the ap-
proximate minimization with respect to c can be computationally expensive.
Therefore, we define a decomposition algorithm in which the optimization
of the center locations is split into sequential minimizations with respect to
each center ci, and we introduce a suitable criterion for selecting the centers
that must be updated at each step. In this way, unnecessary operations can
be avoided; moreover, when a single center is updated, considerable compu-
tational savings can be obtained by exploiting the structure of the objective
function in the minimization process. The convergence of this technique is
ensured by imposing appropriate conditions on the approximate minimiza-
tions with respect to ci.

In section 2 we formally define the learning problem for RBF networks
and introduce some basic notation. In section 3 we describe two-block learn-
ing algorithms based on alternating the optimization with respect to the
output weights with the optimization of the center locations, and we prove
the convergence of these schemes. In section 4 we define a globally con-
vergent learning algorithm based on the additional decomposition of the
vector c into M blocks. In section 5 we show the results obtained with the pro-
posed algorithms in the solution of some standard test problems taken from
Preschelt (1994); in particular, we report the results of early stopping exper-
iments and comparisons with an efficient reduced memory quasi-Newton
algorithm of the Numerical Algorithms Group (NAG) library, in terms of
both computing times and generalization errors. Finally, some concluding
remarks are given in section 6. In appendixes A and B we collect the con-
vergence proofs of the proposed algorithms. In appendix C we describe in
detail a line search procedure employed in the convergence analysis and
the computational experimentation.
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2 Problem Formulation and Basic Notation

Given the set of input-output training pairs (xp, tp) ∈ Rn×R, for p = 1, . . . , P,
we define the least-squares error:

ELS(w, c) =
P∑

p=1

(
M∑

i=1

wiφ(‖xp − ci‖2) − tp

)2

,

where it is assumed that the function φ is continuously differentiable on R+.
If we introduce the P × M matrix �(c) with elements

(�(c))p,i = φ(‖xp − ci‖2),

and we set t = (t1, . . . , tP)T, then the error function ELS can be put into the
form

ELS(w, c) = ‖�(c)w − t‖2 .

For the solution of the training problem, we consider a regularized error
function (Bishop, 1995), which is obtained by adding to ELS a regularization
term expressed as the squared norm of the network parameters, that is:

E(w, c) = ELS(w, c) + ε(‖w‖2 + ‖c‖2), (2.1)

where ε is a given positive number. We note that the function E can be put
into the form

E(w, c) =
∥∥∥∥
(

�(c)√
εI

)
w −

(
t
0

)∥∥∥∥
2

+ ε‖c‖2,

and hence, if we introduce the (P + M) × M matrix �̃(c) and the (P + M)

vector t̃ defined by

�̃(c) :=
(

�(c)√
εI

)
, t̃ :=

(
t
0

)
,

where I is the M × M identity matrix, we can also write

E(w, c) =
∥∥∥�̃(c)w − t̃

∥∥∥2 + ε‖c‖2.

Given a vector (w0, c0) ∈ RM × RMn of network parameters, we can define
the level set of E corresponding to E(w0, c0), that is:

L0 = {(w, c) ∈ RM × RMn : E(w, c) ≤ E(w0, c0)}.
We note that the function E has the following properties:

• E is a strictly convex quadratic function of w for fixed c.
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• The level set L0 is compact for any given (w0, c0) ∈ RM × RMn.

• E admits a global minimum point in RM × RMn.

Then the supervised training problem associated with the given data set
can be formulated as the optimization problem

minimize E(w, c)
w ∈ RM,
c ∈ RMn.

(2.2)

We will indicate by ∇wE(w, c) ∈ RM, ∇ci E(w, c) ∈ Rn, ∇cE(w, c) ∈ RMn the
partial gradients of E(w, c) with respect to w, ci, c, that is,

∇wE(w, c) = 2�̃(c)T
(
�̃(c)w − t

)

∇ci E(w, c) = −4wi


 P∑

p=1

(
M∑

h=1

whφ(‖xp − ch‖2) − tp

)

φ′(‖xp − ci‖2)(xp − ci)


+ 2εci

∇cE(w, c) =




∇c1 E(w, c)
∇c2 E(w, c)

...
∇cM E(w, c)


 ,

where φ′ is the first-order derivative of φ.

3 Two-Block Learning Algorithms

In this section, we consider two-block training procedures, which are de-
fined as a sequence of iterations consisting of two steps. In the first step,
starting from the current estimate (wk, ck), we compute an estimate wk+1 of
the output weights, holding fixed the vector ck. In the second step, holding
fixed wk+1, we compute a new vector ck+1 that updates the center positions.
In this approach, as in the case of unsupervised learning of center locations,
we retain a distinction between the optimization of the output weights,
which can be performed by solving a linear least-squares problem, and the
construction of the hidden units. However, the activation functions of the
hidden units are now computed through a nonlinear optimization tech-
nique, and the repeated alternation of the two steps yields asymptotically
a stationary point in the extended space of the parameters w and c.

Different schemes can be defined in relation to the technique used for
updating the vector c. A first possibility can be that of performing an ap-
proximate minimization of the error function with respect to c, using some
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convergent minimization algorithm, which terminates with a new vector
ck+1 when some stopping criterion is satisfied. This strategy corresponds to
a modified version of the block nonlinear Gauss-Seidel method (see, e.g.,
Bertsekas, 1999) and it is described formally in the following scheme, where
the stopping rule is defined through an adjustable upper bound ξ k on the
norm of the partial gradient ∇cE:

Algorithm 1
Data. w0 ∈ RM, c0 ∈ RMn and a sequence ξ k > 0 such that ξ k → 0.
Step 0. Set k = 0.
Step 1. Compute wk+1 = arg minw E(w, ck), by solving the linear least-
squares problem

minimize
∥∥∥�̃(ck)w − t̃

∥∥∥2
.

w ∈ RM

Step 2. Using a minimization method, compute ck+1 such that

E(wk+1, ck+1) ≤ E(wk+1, ck) and ‖∇cE(wk+1, ck+1)‖ ≤ ξ k.

Step 3. Set k = k + 1 and go to step 1.

Although block-coordinate methods may not converge in the general
nonconvex case, Grippo and Sciandrone (1999) have shown that conver-
gence can be established in the case of a two-block decomposition, even in
the absence of any convexity assumption on the objective function. In our
case, the convergence proof can be further simplified because of the fact
that E is strictly convex with respect to w. Taking this into account, we can
establish the following proposition, whose proof is reported in appendix A.

Proposition 1. Let {(wk, ck)} be the sequence generated by algorithm 1. Then:

i. {(wk, ck)} has limit points.

ii. The sequence {E(wk, ck)} converges to a limit.

iii. Every limit point of {(wk, ck)} is a stationary point of E.

In practice, step 2 of algorithm can be performed by using any conver-
gent algorithm for unconstrained optimization, such as the steepest-descent
method. However, a more convenient approach could be that of performing
only a fixed number of minimization steps with respect to c. In this case, in
order to define a convergent algorithm, we must guarantee that appropriate
conditions are satisfied at each iteration. Sufficient convergence conditions
could be imposed, for instance, by choosing as a search direction in RMn the
negative partial gradient with respect to c, that is,

dk = −∇cE(wk+1, ck),
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and then requiring that

E(wk+1, ck+1) ≤ E(wk+1, ck + αkdk),

where the step size αk along dk is computed by means of a “convergent”
line search algorithm.

More specifically, we can require that the step size αk is produced by a
line search along dk, such that the following condition holds:

Condition 1. For all k we have:

E(wk+1, ck + αkdk) ≤ E(wk+1, ck). (3.1)

Moreover, if

lim
k→∞

E(wk+1, ck) − E(wk+1, ck + αkdk) = 0, (3.2)

then for every subsequence {(wk+1, ck)}K converging to some (w̄, c̄) we have

lim
k∈K,k→∞

∇cE(wk+1, ck) = 0. (3.3)

Condition 1 imposes, in essence, that the line search algorithm must be
able to drive to zero the directional derivative of E along dk (and hence
the partial gradient ∇cE(wk+1, ck)), at least when equation 3.2 holds and
the sequence {(wk+1, ck)} has limit points. The steepest descent direction
appearing in condition 1 can also be replaced with any “gradient-related”
(Bertsekas, 1999) search direction.

Many different algorithms are available for determining a step size αk in
a way that condition 1 is satisfied. In fact, we can introduce simple modifica-
tions in the convergence proofs of standard line search algorithms (see, e.g.,
Bertsekas, 1999) for taking into account the fact that the objective function
is now also dependent on wk. The simplest idea could be that of employing
an Armijo-type inexact line search algorithm, which consists of choosing

αk = max
j=0,1,...

{(δ)jρk : E(wk+1, ck + (δ)jρkdk)

≤ E(wk+1, ck) − γ (δ)jρk‖dk‖2}, (3.4)

where ρk ≥ ρ > 0 is some initial estimate of the step size, δ ∈ (0, 1), and
γ ∈ (0, 1). More generally, we can adopt acceptability conditions for the step
size that ensure that the objective function has been “sufficiently reduced”
and the step size is “sufficiently large.” In equation 3.4, the first requirement
is satisfied through the condition

E(wk+1, ck + αkdk) ≤ E(wk+1, ck) − γαk‖dk‖2,
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while the second is implicitly imposed by requiring both that the initial
tentative stepsize is bounded away from zero (ρk ≥ ρ > 0) and that the con-
traction factor δ is fixed. Another particular example, where the preceding
conditions are taken into account, can be derived, as a special case, from the
line search algorithm described in appendix C. Making use of condition 1,
we can define the following training scheme:

Algorithm 2
Data. c0 ∈ RMn.
Step 0. Set k = 0.
Step 1. Compute wk+1 = arg minw E(w, ck), by solving the linear least-
squares problem:

minimize
∥∥∥�̃(ck)w − t̃

∥∥∥2
.

w ∈ RM.

Step 2. If ‖∇cE(wk+1, ck)‖ = 0 then stop; otherwise

a. Set dk = −∇cE(wk+1, ck), compute αk using any line search algorithm
satisfying condition 1.

b. Choose ck+1 as any vector such that

E(wk+1, ck+1) ≤ E(wk+1, ck + αkdk).

Step 3. Set k = k + 1 and go to step 1.

The following proposition, whose proof is reported in appendix A, states
that algorithm 2 retains essentially the same convergence properties of al-
gorithm 1:

Proposition 2. Suppose that algorithm 2 generates an infinite sequence {(wk, ck)}.
Then:

i. {wk, ck)} has limit points.

ii. The sequence {E(wk, ck)} converges to a limit.

iii. Every limit point of {(wk, ck)} is a stationary point of E.

The condition of step 2b can be satisfied, for instance, by taking ck+1 =
ck + αkdk. More generally, starting from the point ck + αkdk, some iterations
of any descent method could be performed to generate ck+1. Thus, as condi-
tions a and b of step 2 are usually met in most of computational implemen-
tations of unconstrained optimization methods (such as conjugate gradient
methods or quasi-Newton methods), the preceding analysis ensures that a
convergent two-block training scheme can be realized, in practice, by run-
ning some standard code for a fixed number of iterations each time that wk

is updated through a least-squares technique.
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4 A Block Decomposition Algorithm

In this section we define a decomposition algorithm in which the problem
variables (w, c) are partitioned into the M + 1 blocks corresponding to the
weights w and the center positions ci, for i = 1, . . . , M. As in the algorithms of
the preceding section, the weights are computed by solving a linear least-
squares problem for fixed values of c, but now the center positions are
updated in sequence for i = 1, . . . , M. As the problem is nonconvex in (w, c)
and the variables are partitioned into a number of blocks larger than two,
suitable restrictions must be imposed on the computation of the updated
values for ci, in order to guarantee the convergence of the iterative process.
In fact, to prevent the occurrence of oscillatory behavior, we must ensure
that

‖ck+1
i − ck

i ‖ → 0, for i = 1, . . . , M. (4.1)

We can again use a line search along the steepest-descent direction; how-
ever, in this case, the line search algorithm must also be compatible with
equation 4.1. More specifically, for each k ≥ 0 and i = 1, . . . , M, letting

dk
i = −∇ci E(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M),

we suppose that a line search along dk
i computes a step size αk

i , such that the
following condition holds:

Condition 2. For all k ≥ 0 and for all i = 1, . . . , M it results:

E(wk+1, ck+1
1 , . . . , ck

i +αk
i dk

i , . . . , ck
M) ≤ E(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M).(4.2)

Moreover, if

lim
k→∞

E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M)

−E(wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M) = 0, (4.3)

then:

i. We have

lim
k→∞

αk
i ‖dk

i ‖ = 0. (4.4)

ii. For every subsequence {(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M)}K converging to some

(w̄, c̄1, . . . , c̄i, . . . , c̄M) we have

lim
k∈K,k→∞

∇ci E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M) = 0. (4.5)
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In comparison with condition 1, we note that condition 2 imposes similar
requirements on the objective function reduction and on the limit behavior
of the partial gradients, but also requires that equation 4.4 is satisfied.

We note that this condition could be satisfied in principle by imposing
a constant upper bound on the step size αk

i in the Armijo-type line search
algorithm (algorithm 2). A more flexible line search algorithm that satisfies
condition 2 without imposing a priori upper or lower bounds on the step
size is described in detail in appendix C.

A convergent training algorithm, where condition 2 is taken into account,
is defined in the following scheme:

Algorithm 3
Data. c0

1, . . . , c0
M ∈ Rn, τi > 0, and sequences ξ k

i > 0 such that ξ k
i → 0 for

i = 1, . . . , M.
Step 0. Set k = 0.
Step 1. Compute wk+1 = arg minw E(w, ck), by solving the linear least-
squares problem:

minimize
∥∥∥�̃(ck)w − t̃

∥∥∥2
.

w ∈ RM.

Step 2. For i = 1, . . . , M; if ‖∇ci E(wk+1, ck)‖ ≤ ξ k
i , then set ck+1

i = ck
i ; other-

wise:

a. Set dk
i = −∇ci E(wk+1, ck+1

1 , . . . , ck
i , . . . ck

M); compute αk
i using any line

search algorithm satisfying condition 2.

b. Compute c̃k
i such that:

E(wk+1, ck+1
1 , . . . , c̃k

i , . . . , ck
M) ≤ E(wk+1, ck+1

1 , . . . , ck
i + αk

i dk
i , . . . , ck

M);

if E(wk+1, ck+1
1 , . . . , c̃k

i , . . . , ck
M) ≤ E(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M)− τi‖c̃k
i −

ck
i ‖2, then set ck+1

i = c̃k
i else set ck+1

i = ck
i + αk

i dk
i .

Step 3. Set k = k + 1 and go to step 1.

Remark 1. When the condition ‖∇ci E(wk+1, ck)‖ ≤ ξ k
i at step 2 is satisfied,

the center ci is not updated. In fact, if the gradient is “small,” the minimiza-
tion with respect to ci is not expected to produce a significant reduction
of the error function, and hence we can speed up the training process by
avoiding unnecessary operations. A heuristic rule for the choice of the se-
quence {ξ k

i } is given in section 5, where implementation details of algorithm
3 are described. It is possible, in principle, to adopt alternative rules for
selecting at each iteration the centers to be updated. In order to ensure the
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convergence of the sequence, it can be sufficient, for instance, to guaran-
tee that each center will be considered within a fixed number of successive
iterations (Grippo & Sciandrone, 1999).

The conditions of step 2b, on the one hand, guarantee a sufficient re-
duction of the objective function and, on the other, ensure that the distance
‖ck+1

i − ck
i ‖ between successive points goes to zero. These conditions can be

satisfied, for instance, by setting

ck+1
i = ck

i + αk
i dk

i .

However, any minimization method can be adopted to generate the candi-
date point c̃k

i .

Remark 2. We note that at step 2, when a center ci must be updated, at
least one evaluation of the error function in correspondence to new posi-
tions of ci must be performed. However, the evaluation of the error function,
which depends on the outputs y(xp; wk+1, ck+1

1 , . . . , ci, . . . , ck
M) correspond-

ing to input patterns xp for p = 1, . . . , P, can be organized in a way that
considerable computational savings are obtained at the expense of storing
the outputs obtained in correspondence to ck

i . In fact, we can write

y(xp; wk+1, ck+1
1 , . . . , ci, . . . , ck

M)

= y(xp; wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M) − wk

i φ(‖xp − ck
i ‖2) + wk

i φ(‖xp − ci‖2),

so that the new output is obtained by means of few elementary operations.
The convergence properties of algorithm 3 are given in the following

proposition whose proof is reported in appendix B.

Proposition 3. Let {(wk, ck)} be the sequence generated by algorithm 3. Then:

i. {(wk, ck)} has limit points.

ii. The sequence {E(wk, ck)} admits a limit.

iii. We have limk→∞ ‖wk+1 − wk‖ = 0.

iv. For i = 1, . . . , M, we have limk→∞ ‖ck+1
i − ck

i ‖ = 0.

v. Every limit point of {(wk, ck)} is a stationary point of E.

5 Computational Experiments

In this section we present the numerical results obtained with algorithms
2 and 3 in a set of four test problems taken from Preschelt (1994), and we
compare the performance of the proposed algorithms with that of an ef-
ficient algorithm (routine E04DGF of NAG library), which implements a
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reduced-memory quasi-Newton method for the joint minimization of the
error function with respect to w and c.

We adopted as basis function φ the direct multiquadric function defined
as

φ(‖x − c‖2) = (‖x − c‖2 + σ)1/2,

where the scaling parameter σ has been chosen equal to 0.01. The regular-
ization parameter ε in equation 2.1 has been fixed to the value 10−6.

In what follows we report a short description of the problems, the im-
plementation description of the training algorithms, and the computational
results.

5.1 Training Problems.

5.1.1 Problem P1 (Credit Card Problem). In this classification problem,
the task is that of predicting the approval or nonapproval of a credit card
to a customer. The data set consists of 690 pairs (xp, dp), where xp ∈ R51 and
dp ∈ {0, 1}.

5.1.2 Problem P2 (Heart Problem). In this classification problem, the task
is that of deciding whether at least one of four major vessels of the heart is
reduced in diameter by more than 50%. The diagnosis must be made on the
basis of personal data (e.g., age and smoking habits). The data set consists
of 303 pairs (xp, dp), where xp ∈ R35 and tp ∈ {0, 1}.

5.1.3 Problem P3 (Cancer Problem). In this classification problem, the task
is that of predicting a breast lump as either benign or malignant. This clas-
sification must been performed on the basis of information regarding, for
instance, the uniformity of cell size and cell shape. The data set consists of
699 pairs (xp, tp), where xp ∈ R9 and tp ∈ {0, 1}.

5.1.4 Problem P4 (Building Problem). In this approximation problem, the
task is that of predicting energy consumption in a building taking into
account the outside temperature, outside air humidity, and other similar
information. The data set consists of 4208 pairs (xp, tp), where xp ∈ R14 and
tp ∈ R.

5.2 Training Algorithms.

5.2.1 Algorithm Q-N. The algorithm makes use of the E04DGF routine
of the NAG library. This routine implements a preconditioned, limited mem-
ory (two-step) quasi-Newton conjugate gradient method. It is intended for
use on large-scale problems; in fact, it does not require matrix operations
and has storage costs that grow linearly with the number of variables. It can
be considered quite efficient in terms of computational cost, because of the
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“good” convergence properties of quasi-Newton methods. A description of
the method can be found in Gill and Murray (1979) and Gill, Murray, and
Wright (1981). We have used the default values of the parameters in the
E04DGF routine.

5.2.2 Algorithm 2 (Section 3). The updating of the output weight vector
w (step 1) is performed by using a standard routine (F04JAF routine of
NAG library) for solving the linear least-squares problem. This routine,
which implements a direct method, computes the minimum norm solution
of a linear least-squares problem by means of the pseudoinverse matrix
(determined by the singular value decomposition). The vector of centers
c is updated (step 2) by executing a fixed number of iterations (10 in our
case) of the quasi-Newton method implemented by the E04DGF routine.
In this case, the conditions of step 2 are satisfied automatically, as the first
iteration of the quasi-Newton method consists of a line search along the
negative gradient, and the objective function is reduced in the subsequent
iterations. The iteration counter k is updated at step 3, so that a main iteration
of algorithm 2 involves the solution of a linear least-squares problem (for
the updating of the vector w) and 10 inner iterations of the E04DGF routine
(for the updating of the vector c).

5.2.3 Algorithm 3 (Section 4). The vector w is updated (step 1) as in algo-
rithm 2, while each center ci is updated by using the line search algorithm
(algorithm LS) defined in appendix C, and then letting

ck+1
i = ck

i + αk
i dk

i .

The implementation of algorithm LS is described below.
Regarding the sequences ξ k

i , i = 1, . . . , M, we used the rule

ξ k
i = εk(1 + E(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M)),

where, starting from ε0 = 0.5, we set

εk+1 =
{

εk if ck+1
j �= ck

j for at least one j ∈ {1, . . . , M}
0.5εk otherwise.

The iteration counter k is updated at step 3, so that a single main iteration
of algorithm 3 involves the solution of a linear least-squares problem (for
the updating of w) and one run of algorithm LS for each center ci that is
updated.

5.2.4 Algorithm LS (Appendix C). The line search algorithm has been
implemented according to the pseudocode given in appendix C with the



1904 C. Buzzi, L. Grippo, and M. Sciandrone

following values of the parameters:

γ l
i = 10−4, γ u

i = 103, θ l
i = 2, θu

i = 5, δl
i = 10−2, δu

i = 0.9, ρ̄i = 1.

Regarding the initial value of the step size ρk
i , we set

ρk
i =




E0
i /‖d0

i ‖2 for k = 0

αk−1
i for k ≥ 1.

The expansion and contraction factors θi and δi are determined, when needed,
on the basis of a quadratic interpolation formula, by computing first the
number

σi = ‖dk
i ‖2αi

2(‖dk
i ‖2αi + E(wk+1, . . . , ck

i + αidk
i , . . .) − Ek

i )

and then letting

θi = min
[
θu

i , max(σi, θ
l
i )
]

δi = min
[
δu

i , max(σi, δ
l
i)
]
.

A fine tuning of the parameters has not been performed; however, on the
basis of a few experiments, it would appear that the algorithm is quite robust
with respect to reasonable changes of the parameter values. We note that the
value of the parameter γ u

i may have some effect on the line search accuracy,
because of the fact that for large values of γ u

i , the first tentative step size
ρk

i is more easily accepted, and no quadratic interpolation is performed. In
some cases, in particular when a higher precision in the approximation of
a stationary point is required, better results could be obtained by reducing
the value of γ u

i .

5.3 Computational Results. A first set of preliminary computational ex-
periments was performed with the aim of evaluating the efficiency of the
proposed algorithms in the minimization of function 2.1. Some computa-
tional results for all problems are reported in Buzzi, Grippo, and Sciandrone
(1999). Here, we show only the comparative performance of algorithm Q-N,
algorithm 2, and algorithm 3, in correspondence to problem 4 for a network
with a number of hidden nodes fixed to 15 and for an increasing number P
of training pairs.

In particular, we report in Table 1 the computing times (on an IBM RISC
System/6000 375) required for reaching prescribed values of the normalized
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Table 1: Numerical Results for Problem P4 and M = 15, Starting from Three
Initial Points.

Training Error Algorithm Q-N Algorithm 2 Algorithm 3
E/2P CPU Time CPU Time CPU Time

(sec) (sec) (sec)

P = 1000
0.0020 25 14 18 2 2 4 1 1 1
0.0015 31 19 24 7 9 10 3 2 4
0.0010 52 29 37 18 24 20 9 9 8

P = 2000
0.0020 59 40 51 4 4 4 1 2 2
0.0015 81 44 65 15 20 19 6 4 10
0.0010 126 90 98 54 71 67 21 47 43

P = 4208
0.0040 108 65 111 8 8 8 4 4 4
0.0030 130 80 124 15 9 8 6 4 4
0.0020 219 186 292 115 100 64 40 40 50

error function E/2P for various values of P and three different starting points
(w0, c0), where the components of w0 are randomly chosen in the interval
[−0.5, 0.5], and the vectors ci are randomly chosen among the input training
vectors. In the table, each column corresponds to the same initial point.

Note that algorithms 2 and 3 are consistently faster (in terms of CPU
time) than algorithm Q-N for all values of P in almost all cases, in spite of
the fact that the convergence rate of decomposition algorithms is typically
much inferior to that of standard methods. Also, the most relevant savings
are obtained with algorithm 3, in particular when we do not require a great
precision in the objective function value. Similar behaviour of the algorithms
was observed with reference to the other problems (Buzzi et al., 1999).

Starting from these results, we have performed a more extensive exper-
imentation in order to evaluate both the computational efficiency of the
proposed algorithms and the generalization properties of the trained net-
works. To this aim, we have adopted an early stopping strategy. Then, for
each problem, we have subdivided the available data into three disjoint sets:
training, validation, and test sets. As suggested in Preschelt (1994), we used
in all experiments the first 50% of the data as training set, the next 25% for
the validation set, and the final 25% for the test set. No preprocessing of the
training data has been performed.

By using training and validation sets, we have employed the following
rules to establish when the training process can be terminated:

Early Stopping Rules

• The error on the validation set has been evaluated:
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Table 2: Numerical Results for Problem P1, Starting from Three Initial Points.

Algorithm Training Validation Test Classification Error CPU Time
Set Set Set (%) (sec)

M = 4
Q-N 0.21 0.21 0.21 0.17 0.17 0.17 0.21 0.20 0.21 14.5 14 14 51 54 41

ALG2 0.20 0.21 0.21 0.17 0.17 0.17 0.21 0.21 0.20 14 14 13 35 33 35
ALG3 0.20 0.22 0.21 0.16 0.17 0.17 0.21 0.22 0.21 14 14 14 13 12 12

M = 10
Q-N 0.19 0.19 0.19 0.16 0.16 0.16 0.2 0.2 0.2 13.4 14 13.4 142 128 113

ALG2 0.19 0.19 0.18 0.17 0.17 0.17 0.2 0.21 0.19 12.2 14.5 12. 95 81 122
ALG3 0.2 0.2 0.2 0.16 0.16 0.16 0.21 0.2 0.2 14 12.7 13. 34 40 34

M = 20
Q-N 0.17 0.18 0.18 0.17 0.17 0.17 0.2 0.19 0.2 12.2 12.2 12. 350 465 277

ALG2 0.19 0.19 0.19 0.19 0.18 0.17 0.21 0.21 0.2 13.4 14 14. 174 203 169
ALG3 0.19 0.2 0.2 0.18 0.17 0.16 0.22 0.21 0.2 14 13.3 12. 59 62 61

— Every main iteration of algorithm 2.
— Every 10 main iterations of algorithm 3.
— Every 10 iterations of algorithm Q-N.

• Each algorithm has been stopped when the error on the validation set
has failed to decrease, with respect to the best value attained, after five
evaluations of the validation error.

Then the generalization capability of the network has been evaluated using
the test set.

For each problem, three different architectures (in the number M of hid-
den nodes) have been considered. For each problem and each architecture,
we have used three different starting points (w0, c0), where the components
of w0 are randomly chosen in the interval [−0.5, 0.5], and the vectors c0

i are
randomly chosen among the input training vectors. In each experiment, all
different algorithms have been started from the same initial point. Note,
however, that the choice of w0 does not affect the behavior of algorithms 2
and 3, which start with a global minimization of E with respect to w.

The results obtained are shown in the Tables 2 through 5, where for each
problem and each architecture, we report, in correspondence to each train-
ing algorithm starting from three different initial points (each column is
associated to the same initial point) the normalized final error E/2P relative
to the training, validation, and test set; the classification error on the test
set (problems P1–P3); and the CPU time employed on an IBM RISC Sys-
tem/6000 375. We note that the computing times reported in the tables also
include the time spent for evaluating the validation error.

It can be observed that all algorithms show comparable performances in
terms of generalization errors on the test set. However, algorithms 2 and 3



Techniques for Training RBF Neural Networks 1907

Table 3: Numerical Results for Problem P2, Starting from Three Initial Points.

Algorithm Training Validation Test Classification Error CPU Time
Set Set Set (%) (sec)

M = 2
Q-N 0.25 0.26 0.24 0.31 0.3 0.32 0.15 0.13 0.11 7.9 4 4 5 7 7

ALG2 0.23 0.23 0.24 0.32 0.32 0.32 0.11 0.12 0.12 4 3.6 4 4 5 4
ALG3 0.23 0.24 0.23 0.32 0.32 0.32 0.12 0.12 0.11 2.6 2.6 2.6 2 2 2

M = 5
Q-N 0.23 0.23 0.24 0.31 0.32 0.30 0.11 0.11 0.13 4 2.6 6.6 16 13 15

ALG2 0.22 0.22 0.23 0.33 0.33 0.32 0.12 0.12 0.12 4 1.4 2.6 11 13 11
ALG3 0.19 0.23 0.24 0.32 0.35 0.32 0.14 0.12 0.11 5.2 2.6 4 13 5 5

M = 8
Q-N 0.22 0.24 0.22 0.32 0.32 0.32 0.13 0.12 0.12 2.6 4 4 26 20 19

ALG2 0.21 0.21 0.22 0.34 0.33 0.32 0.13 0.13 0.13 1.3 2.6 4 18 21 18
ALG3 0.22 0.21 0.24 0.35 0.33 0.31 0.14 0.13 0.13 2.6 5.3 4 8 7 7

Table 4: Numerical Results for Problem P3, Starting from Three Initial Points.

Algorithm Training Validation Test Error CPU Time
Set Set Set (%) (sec)

M = 4
Q-N 0.06 0.06 0.07 0.04 0.04 0.05 0.03 0.03 0.06 1.7 1.7 2.3 147 79 16

ALG2 0.06 0.06 0.06 0.04 0.04 0.04 0.03 0.04 0.03 1.7 1.7 1.7 10 28 6
ALG3 0.06 0.06 0.06 0.04 0.03 0.04 0.03 0.03 0.03 1.7 1.1 1.1 23 31 16

M = 10
Q-N 0.06 0.06 0.06 0.04 0.04 0.04 0.03 0.03 0.03 1.7 1.7 1.7 71 44 64

ALG2 0.05 0.05 0.06 0.03 0.04 0.04 0.03 0.03 0.03 1.7 1.7 1.7 46 26 23
ALG3 0.05 0.05 0.06 0.03 0.04 0.03 0.03 0.03 0.03 1.7 1.1 1.1 22 20 13

M = 15
Q-N 0.06 0.06 0.06 0.04 0.04 0.04 0.03 0.04 0.04 1.7 1.7 1.7 136 132 94

ALG2 0.05 0.05 0.06 0.03 0.04 0.04 0.03 0.03 0.04 1.7 1.7 1.7 37 36 48
ALG3 0.06 0.06 0.06 0.04 0.04 0.04 0.03 0.04 0.03 1.7 1.7 1.1 31 12 61

are significantly faster than algorithm Q-N in terms of computing time. The
advantages are more relevant in correspondence to algorithm 3 in almost
cases. In particular, taking the mean value of the CPU time employed by
the algorithms over the 36 runs, algorithm 3 is about three times faster than
algorithm Q-N.

6 Conclusion

Supervised selection of center locations appears to be a useful technique for
training generalized RBF networks. When the problem dimensions (input
dimension, number of units, size of the training set) are not very large, stan-
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Table 5: Numerical Results for Problem P4, Starting from Three Initial Points.

Algorithm Training Validation Test CPU Time
Set Set Set (sec)

M = 8
Q-N 0.002 0.001 0.001 0.004 0.005 0.004 0.001 0.001 0.001 124 202 164

ALG2 0.001 0.001 0.001 0.005 0.005 0.005 0.001 0.001 0.001 233 157 135
ALG3 0.001 0.001 0.001 0.005 0.005 0.005 0.001 0.001 0.001 42 131 162

M = 15
Q-N 0.001 0.001 0.001 0.005 0.004 0.005 0.001 0.001 0.001 284 239 273

ALG2 0.001 0.001 0.001 0.006 0.005 0.006 0.001 0.001 0.001 283 283 459
ALG3 0.001 0.002 0.001 0.006 0.005 0.006 0.001 0.001 0.001 100 91 102

M = 20
Q-N 0.001 0.001 0.001 0.005 0.006 0.006 0.001 0.001 0.001 335 370 448

ALG2 0.001 0.001 0.001 0.006 0.006 0.006 0.001 0.001 0.001 288 288 385
ALG3 0.001 0.001 0.001 0.006 0.006 0.006 0.001 0.001 0.001 158 119 115

dard descent methods, such as reduced-memory quasi-Newton methods
or conjugate gradient methods, can provide efficient training algorithms, in
the context of some learning strategy based on regularization or on early
stopping rules. A potentially useful alternative has been suggested in this
article (algorithm 2): the two-block decomposition of the optimization prob-
lem with respect to weight and center locations. In our experience, this typ-
ically yields a reduction in the number of objective function evaluations
and, hence, reduced training times. It is also conceivable that the global
optimization performed in the weight space may prevent the training al-
gorithm from being trapped at irrelevant local minimizers, which could be
a possible shortcoming (although not revealed by our experimentation) of
local optimization techniques based on the joint minimization with respect
to weights and centers locations.

When the problem dimension increases and the number of training pairs
is very large, the problem of developing efficient algorithms for super-
vised learning of center locations appears to be an important problem
(Wettschereck and Dietterich, 1992) and the adoption of a block-descent
technique (such as algorithm 3), based on the additional decomposition
with respect to the different centers, could be promising. In particular, the
use of suitable criteria for choosing the centers to be updated at each step
and the possibility of exploiting the structure of the objective function for
reducing the computational cost of each function evaluation when a single
center is updated (as explained in remark 2) appear to be valuable features.
Block descent techniques can be even more advantageous in the context
of an early stopping strategy. In fact, decomposition techniques are typi-
cally faster during the early stages of the minimization process, while they
possess ultimately a convergence rate that can be much inferior to that of
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standard methods. Thus, if high precision is not required in the location
of a minimizer, a decomposition approach may yield even more significant
computational gains, in comparison with the joint optimization with respect
to c and w.

The essential motivation of this article has been that of providing a theo-
retical foundation to the development of new training algorithms for gener-
alized RBF based on decomposition techniques and that of reporting some
preliminary computational experience. Further research and experimenta-
tion may be needed for developing more efficient training codes, and we
mention some of the most important points that may deserve some atten-
tion. The first could be that of defining alternative criteria for choosing the
center to be updated at each step, in place of the (rather expensive) criterion
based on gradient evaluation employed in algorithm 3. In particular, one
may think of using some clustering technique in this phase, for selecting the
most promising center to be optimized, or else of using information based
on past iterations (Grippo & Sciandrone, 1999). Another point could be that
of defining suitable criteria, possibly based on monitoring the behavior of
the objective function, for deciding to what extent the optimization of the
center selected at some step must be continued before passing to consider
a new center; in this case, the choice of the algorithm for optimizing the
center location must also be considered. Finally, it could be possible to re-
place the solution of the least-squares problem with an incremental update
of the weights, each time that a new center (or a group of centers) has been
moved, by employing, for instance, some modified factorization method or
some iterative descent technique in the weight space.

A deeper investigation of the computational aspects and a more exten-
sive experimentation with larger-dimensional problems will be the object
of future work.

Appendix A

Proof of Proposition 1. By the instructions of the algorithm, we have, for
all k:

E(wk+1, ck+1) ≤ E(wk+1, ck) ≤ E(wk, ck). (A.1)

Then, the sequence {(wk, ck)} belongs to the compact set L0, and this proves
assertion i.

Assertion ii follows from equation A.1, recalling that E is bounded from
below.

In order to prove assertion iii, let {(wk, ck)}K be a subsequence converging
to some (w̄, c̄). First, we observe that by the instructions at step 2, we have
for all k,

‖∇cE(wk, ck)‖ ≤ ξ k−1, (A.2)
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and hence, taking limits for k → ∞, k ∈ K, and recalling that, by assumption,
ξ k tends to zero, we have

∇cE(w̄, c̄) = 0. (A.3)

Therefore, we must show only that ∇wE(w̄, c̄) = 0.

We note that E(w, c) is a positive definite quadratic function of w, with
smallest eigenvalue λmin

(∇2
wwE(wk+1, ck)

) ≥ ε, where ε > 0 is the parameter
appearing in equation 2.1. Then we can write

E(wk, ck) = E(wk+1, ck) + ∇wE(wk+1, ck)T(wk − wk+1)

+ 1
2 (wk − wk+1)T∇2

wwE(wk+1, ck)(wk − wk+1).
(A.4)

As wk+1 minimizes E(w, ck) we have

∇wE(wk+1, ck) = 0, (A.5)

and hence, by equation A.4 we can write

‖wk+1 − wk‖2 ≤ 2
ε

(
E(wk, ck) − E(wk+1, ck)

)
. (A.6)

By equation A.1, recalling assertion ii, it follows that

lim
k→∞

(
E(wk, ck) − E(wk+1, ck)

)
= 0, (A.7)

so that equation A.6 implies

lim
k→∞

wk+1 − wk = 0,

and hence

lim
k→∞,k∈K

(wk+1, ck) = (w̄, c̄). (A.8)

Then, by equations A.5 and A.8 and the continuity of ∇E, it follows that
∇wE(w̄, c̄) = 0, which concludes the proof.

Proof of Proposition 2. Suppose that algorithm 2 generates an infinite se-
quence {(wk, ck)}. By the instructions of the algorithm, we have, for all k,

E(wk+1, ck+1) ≤ E(wk+1, ck) ≤ E(wk, ck). (A.9)



Techniques for Training RBF Neural Networks 1911

By employing the same arguments used in the proof of proposition 1, we
can prove assertions i and ii; moreover, we can show that if {(wk, ck)}K is a
subsequence converging to some (w̄, c̄), we have

‖∇wE(w̄, c̄)‖ = 0. (A.10)

Therefore, to prove assertion iii, we must show only that ∇cE(w̄, c̄) = 0.

Now, by the instructions of step 2 we have for each k ∈ K,

E(wk+1, ck+1) ≤ E(wk+1, ck + αkdk) ≤ E(wk, ck), (A.11)

where αk is the step size produced at step 2a along the direction dk =
−∇cE(wk+1, ck). Thus, recalling assertion ii, we have also

lim
k→∞

E(wk, ck) − E(wk, ck + αkdk) = 0. (A.12)

Then, using condition 1 we obtain ∇cE(w̄, c̄) = 0, which concludes the proof.

Appendix B

Proof of Proposition 3. By the instructions of the algorithm, we have

E(wk+1, ck+1) ≤ E(wk+1, ck+1
1 , . . . , ck+1

i , . . . , ck
M)

≤ E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M) ≤ E(wk, ck).

(B.1)

Then, assertions i through iii can be proved as in the proof of proposition 1.
Now, by step 2, for each i ∈ {1, . . . , M} we have either that

ck+1
i = ck

i + αk
i dk

i ,

or that ck+1
i = c̃i, which implies

‖ck+1
i − ck

i ‖2 ≤ 1
τi

(
E(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M)

−E(wk+1, ck+1
1 , . . . , ck+1

i , . . . , ck
M)
)

.

In any case, reasoning on subsequences if necessary, recalling equation 4.4
of condition 2, equation B.1 and assertion ii, we have that assertion iv holds.

Finally, in order to prove assertion v, by contradiction, let us assume that
there exists a sequence {wk, ck}K such that

lim
k→∞,k∈K

(wk, ck) = (w̄, c̄)
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and

‖∇E(w̄, c̄)‖ �= 0.

Recalling assertion iii, we have that

lim
k→∞,k∈K

wk+1 = w̄,

and therefore, as ∇wE(wk+1, ck) = 0 for all k it follows that ∇wE(w̄, c̄) = 0.
Then, we must have

‖∇ci E(w̄, c̄)‖ ≥ σ (B.2)

for some i ∈ {1, . . . , M} and σ > 0.

For k ∈ K and k sufficiently large, we have ‖∇ci E(wk+1, ck)‖ > ξ k
i , so that

E(wk+1, ck+1) ≤ E(wk+1, ck+1
1 , . . . , ck+1

i , . . . , ck
M)

≤ E(wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M)

≤ E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M) ≤ E(wk, ck). (B.3)

On the other hand, we can write

‖(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M) − (wk, ck)‖

≤ ‖wk+1 − wk‖ + ‖ck+1
1 − ck

1‖ + . . . + ‖ck+1
i−1 − ck

i−1‖,
from which, recalling assertions iii and iv, we get

lim
k→∞,k∈K

(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M) = (w̄, c̄).

Finally, from equation B.3, taking into account assertion ii we obtain

lim
k→∞

E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M) − E(wk+1, ck+1

1 , . . . , ck
i + αk

i dk
i , . . . , ck

M) = 0.

Then, recalling the fact that αk
i is produced by a line search technique for

which condition 2 holds, we obtain ‖∇ci E(w̄, c̄)‖ = 0, which contradicts
equation B.2.

Appendix C

In this appendix we describe a line search algorithm that satisfies condition 2
of section 4, under the assumption that the search direction is defined by

dk
i = −∇ci E(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M).
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The algorithm we will consider is designed in a way that the following
features (which have both theoretical and computational motivations) are
taken into account:

i. A “sufficient reduction” of the objective function value is enforced.

ii. The quantity αk
i ‖dk

i ‖ is forced to zero in the limit.

iii. A “sufficiently large” step size αk
i is guaranteed.

iv. The initial tentative step size ρk
i > 0 is not subject to “a priori” re-

strictions, and it can be chosen, for instance, on the basis of the past
history.

v. The acceptability condition can be checked with a single new function
evaluation.

vi. Efficient interpolation criteria for reducing or increasing the tentative
step sizes are admitted.

The first three points are directly concerned with satisfaction of condition 2;
the last points (which must be compatible with the other conditions) are
essentially motivated by the need for reducing as much as possible the
computational cost of each line search run.

As it will be shown, points i and ii are satisfied by imposing an accept-
ability condition of the form

E(wk+1, ck+1
1 . . . , ck

i + αidk
i , . . . , ck

M) ≤ Ek
i − γ l

i (αi)
2‖dk

i ‖
2
, (C.1)

where γ l
i > 0, and we set

Ek
1 := E(wk+1, ck) Ek

i := E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M) for i > 1.(C.2)

The requirement of point iii is fulfilled and αi can be accepted without any
further function evaluation when, in addition to equation C.1, we have also
either that αi is greater than some fixed lower bound ρ̄i or that a condition
of the form

E(wk+1, ck+1
1 . . . , ck

i + αidk
i , . . . , ck

M) ≥ Ek
i − γ u

i (αi)
2‖dk

i ‖
2

(C.3)

is satisfied for γ u
i > γ l

i . Thus, requirements i, ii, and iii can be satisfied, in
principle, starting from an appropriate tentative step size ρk

i and performing
only one function evaluation (as suggested at points iv and v).

When equation C.1 is satisfied for αi = ρk
i but the step size is not “suffi-

ciently large” in the sense defined above, we must increase αi by a (variable)
factor θi (point vi), which can be determined using a safeguarded extrap-
olation formula in a way that 1 < θ l

i ≤ θi ≤ θu
i , where θ l

i and θu
i are fixed

constant values. The extrapolation can be repeated until either the current
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step size αi satisfies equation C.1 and is sufficiently large, or the new ten-
tative step size θiαi produces an increase in the function value or violates
equation C.1, that is, we have either

E(wk+1, ck+1
1 , . . . , ck

i + θiαidk
i , . . . , ck

M) > E(wk+1, ck+1
1 , . . . , ck

i + αidk
i , . . . , ck

M)

or

E(wk+1, ck+1
1 , . . . , ck

i + θiαidk
i , . . . , ck

M) > Ek
i − γ l

i (θiαi)
2 ‖dk

i ‖
2
.

In fact, as we shall see, each of these conditions implies that αi was suffi-
ciently large.

If equation C.1 is not satisfied in correspondence to the initial tentative
step size αi = ρk

i , the step size must be reduced by a (variable) factor δi such
that δl

i ≤ δi ≤ δu
i , where 0 < δl

i < δu
i < 1 are predetermined constant values.

The factor δi can be determined using a safeguarded interpolation formula.
By repeating, if needed, the interpolation phase, we must finally obtain a
“sufficiently large” step size that satisfies equation C.1.

This procedure is defined formally in the following scheme.

Line Search Algorithm (LS)

Data: 0 < γ l
i < γ u

i , 1 < θ l
i < θu

i , 0 < δl
i < δu

i < 1, ρ̄i > 0.

Choose an initial step size ρk
i > 0 and set j = 0.

If

E(wk+1, ck+1
1 , . . . , ck

i + ρk
i dk

i , . . . , ck
M) ≤ Ek

i − γ l
i (ρ

k
i )

2‖dk
i ‖

2
(C.4)

then

1.1) Choose θi ∈ [θ l
i , θ

u
i ] and set αi = ρk

i ;
1.2) while




αi < ρ̄i

and

E(wk+1, ck+1
1 , . . . , ck

i + αidk
i , . . . , ck

M) < Ek
i − γ u

i (αi)
2‖dk

i ‖
2

and

E(wk+1, ck+1
1 , . . . , ck

i + θiαidk
i , . . . , ck

M) ≤
min

{
E(wk+1, ck+1

1 , . . . , ck
i + αidk

i , . . . , ck
M),

Ek
i − γ l

i (θiαi)
2 ‖dk

i ‖
2
}
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set j = j + 1, αi = θiαi and update θi ∈ [θ l
i , θ

u
i ];

end while
1.3) set αk

i = αi, θ k
i = θi and exit.

else

2.1) choose δi ∈ [δl
i, δ

u
i ], set αi = δiρ

k
i and j = 1;

2.2) while

E(wk+1, ck+1
1 , . . . , ck

i + αidk
i , . . . , ck

M) > Ek
i − γ l

i (αi)
2‖dk

i ‖
2

(C.5)

set j = j + 1, αi = δiαi and update δi ∈ [δl
i, δ

u
i ];

end while
2.3) set αk

i = αi, δk
i = δi and exit.

end if

In the next proposition we show that algorithms LS is well defined and
terminates in a finite number of inner steps.

Proposition 4. Suppose that dk
i �= 0. Then algorithm LS determines in a finite

number of inner iterations a step size αk
i such that

E(wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M) ≤ Ek

i − γ l
i (α

k
i )

2‖dk
i ‖

2
(C.6)

and at least one of the following conditions is satisfied:

i. αk
i ≥ ρ̄i.

ii. E(wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M) ≥ Ek

i − γ u
i (αk

i )
2‖dk

i ‖
2
.

iii. E(wk+1, ck+1
1 , . . . , ck

i + λk
i α

k
i dk

i , . . . , ck
M) >

min
{

E(wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M), Ek

i − γ l
i

(
λk

i α
k
i

)2 ‖dk
i ‖

2
}

where min{θ l
i ,

1
δu

i
} ≤ λk

i ≤ max{θu
i , 1

δl
i
}.

Proof. Let dk
i �= 0. Assume first that condition C.4 is satisfied. Reasoning

by contradiction, suppose that the cycle at step 1.2 does not terminate in a
finite number of inner iterations. Let j be the value of the inner counter at
the beginning of step 1.2, and denote by αi(j) and θi(j) the corresponding
values of αi and θi, respectively. Then we can write

αi(j) ≥
(
θ l

i

)j
ρk

i ,
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so that as θ l
i > 1, for sufficiently large j we get a contradiction to the condition

αi(j) < ρ̄i. Therefore, there must exist a finite integer j∗ such that the inner
cycle at step 1.2 terminates and at least one of the conditions i, ii, iii is
satisfied with αk

i = αi(j∗) and λk
i = θi(j∗), so that θ l

i ≤ λk
i ≤ θu

i . In order to
show that equation C.6 holds, we distinguish the cases j∗ = 0 and j∗ ≥ 1.
If j∗ = 0, then equation C.6 holds with αk

i = ρk
i because of equation C.4. If

j∗ ≥ 1, then we have necessarily that

E(wk+1, ck+1
1 , . . . , ck

i + θi(j∗ − 1)αi(j∗ − 1)dk
i , . . . , ck

M)

≤ min
{

E(wk+1, ck+1
1 , . . . , ck

i + αi(j∗ − 1)dk
i , . . . , ck

M),

Ek
i − γ l

i
(
θi(j∗ − 1)αi(j∗ − 1)

)2 ‖dk
i ‖

2}

from which, recalling that αk
i = αi(j∗) = θi(j∗ − 1)αi(j∗ − 1), it follows that

equation C.6 is satisfied.
Now assume that equation C.4 is not satisfied. Denoting by αi(j) and δi(j)

the values of αi and δi at the beginning of step 2.2, for j ≥ 1, we have

αi(j) ≤ (
δu

i
)j

ρk
i .

Reasoning again by contradiction, suppose that the cycle of step 2.2 does
not terminate in a finite number of inner iterations, so that equation C.5
holds for every j ≥ 1. Then, we have

E(wk+1, ck+1
1 , . . . , ck

i + αi(j)dk
i , . . . , ck

M) − Ek
i

αi(j)
> −γ l

i αi(j)‖dk
i ‖2,

so that, taking limits for j → ∞, as αi(j) goes to 0, we obtain:

∇ci E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M)Tdk

i ≥ 0,

which contradicts the assumption ∇ci E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M)Tdk

i =
−‖dk

i ‖2 < 0. Therefore, there must exist a finite integer j∗ such that equa-
tion C.6 hold with αk

i = αi(j∗). Moreover, as equation C.4 is not satisfied,
the tentative step size has been reduced at least by a factor δi(j), and hence
iii holds with λk

i = 1/δi(j∗), so that 1
δu

i
≤ λk

i ≤ 1
δl

i
.

Now we prove that algorithm LS satisfies condition 2.

Proposition 5. Let {(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M)} be a given sequence in RM(n+1),

and let {dk
i } be the sequence of the steepest descent directions:

dk
i = −∇ci E(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M).
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Let αk
i be computed by means of algorithm LS when dk

i �= 0 and set αk
i = 0 whenever

dk
i = 0. Then

E(wk+1, ck+1
1 , . . . , ck

i +αk
i dk

i , . . . , ck
M) ≤ E(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M).(C.7)

Moreover, if

lim
k→∞

E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M)

−E(wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M) = 0, (C.8)

then:

i. We have limk→∞ αk
i ‖dk

i ‖ = 0.

ii. For every subsequence {(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M)}K converging to a point

(w̄, c̄1, . . . , c̄i, . . . , c̄M) we have

∇ci E(w̄, c̄1, . . . , c̄i, . . . , c̄M) = 0.

Proof. If dk
i = 0, then condition C.7 is obviously true; otherwise, it follows

from equation C.6 of proposition 4. In order to prove assertion i, let us define
the point

vk := (wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M),

and let

Ek
i = E(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M).

Then the acceptance rule of algorithm LS ensures that

Ek
i − E(vk) ≥ γ l

i

(
αk

i

)2 ‖dk
i ‖2,

so that the limit

lim
k→∞

Ek
i − E(vk) = 0

implies assertion i.
Now, let {(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M)}K be a subsequence converging to
(w̄, c̄1, . . . , c̄i, . . . , c̄M). Reasoning by contradiction, we can assume that there
exists σ > 0 such that

‖∇iE(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M)‖ ≥ σ, (C.9)
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for all k ∈ K and k sufficiently large since otherwise, the continuity of ∇ci E
and the convergence of the sequence would imply ∇ci E(w̄, c̄1, . . . , c̄i, . . . , c̄M)

= 0.
By proposition 4, for all k we have that

E(wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M) ≤ Ek

i − γ l
i

(
αk

i

)2 ‖dk
i ‖

2
, (C.10)

and at least one of the following conditions is satisfied:

αk
i ≥ ρ̄i (C.11)

E(wk+1, ck
1, . . . , ck

i + αk
i dk

i , . . . , ck
M) ≥ Ek

i − γ u
i (αk

i )
2‖dk

i ‖
2

(C.12)

E(wk+1, ck+1
1 , . . . , ck

i + λk
i αdk

i , . . . , ck
M)

> E(wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M) (C.13)

E(wk+1, ck+1
1 , . . . , ck

i + λk
i α

k
i dk

i , . . . , ck
M) > Ek

i − γ l
i

(
λk

i α
k
i

)2 ‖dk
i ‖

2
(C.14)

where min{θ l
i ,

1
δu

i
} ≤ λk

i ≤ max{θu
i , 1

δl
i
}. By assertion i and equation C.9,

recalling that

dk
i = −∇ci E(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M),

we have that equation C.11 can not hold for k sufficiently large. Then, we
can assume that one of the conditions C.12, C.13, or C.14 is satisfied. By the
mean value theorem, we can find points

uk = (wk+1, ck+1
1 , , . . . , ck

i + τ k
i αk

i dk
i , . . . , ck

M) with τ k
i ∈ (0, 1)

vk = (wk+1, ck+1
1 , . . . , ck

i +αk
i dk

i +ηk
i (λ

k
i α

k
i −αk

i )d
k
i , . . . , ck

M) with ηk
i ∈ (0, 1)

wk = (wk+1, ck+1
1 , . . . , ck

i + ξ k
i λk

i α
k
i dk

i , . . . , ck
M) with ξ k

i ∈ (0, 1)

such that we can write

E(wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M) = Ek

i + αk
i ∇ci E(uk)Tdk

i

E(wk+1, ck+1
1 , . . . , ck

i + λk
i α

k
i dk

i , . . . , ck
M)

= E(wk+1, ck+1
1 , . . . , ck

i + αk
i dk

i , . . . , ck
M) +

(
λk

i α
k
i − αk

i

)
∇ci E(vk)Tdk

i

E(wk+1, ck+1
1 , . . . , ck

i + λk
i α

k
i dk

i , . . . , ck
M) = Ek

i + λk
i α

k
i ∇ci E(wk)Tdk

i .
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Thus, from equation C.10 we obtain

αk
i ∇ci E(uk)Tdk

i ≤ −γ l
i

(
αk

i

)2 ‖dk
i ‖

2
, (C.15)

and similarly, from equations C.12, C.13, and C.14 we get, respectively,

αk
i ∇ci E(uk)Tdk

i ≥ −γ u
i

(
αk

i

)2 ‖dk
i ‖

2
(C.16)

(
λk

i α
k
i − αk

i

)
∇ci E(vk)Tdk

i > 0 (C.17)

λk
i α

k
i ∇ci E(wk)Tdk

i > −γ l
i

(
λk

i α
k
i

)2 ‖dk
i ‖

2
. (C.18)

Now, from assertion i, it follows that uk, vk, wk converge to the same point
(w̄, c̄1, . . . , c̄i, . . . , c̄M) for k ∈ K and k → ∞. As {(wk+1, ck+1

1 , . . . , ck
i , . . . , ck

M)}K

converges and ∇E is continuous, we have that dk
i = −∇iE(wk+1, ck+1

1 , . . . , ck
i ,

. . . , ck
M) is bounded, so that assertion i implies that

lim
k→∞,k∈K

αk
i ‖dk

i ‖2 = 0, (C.19)

from which, recalling that λk
i is bounded, we obtain

lim
k→∞,k∈K

λk
i α

k
i ‖dk

i ‖2 = 0. (C.20)

Note that equation C.15 holds for all k and that there exists an infinite subset
K1 ⊆ K such that at least one of the conditions C.16 through C.18 is satisfied
for all k ∈ K1. In all cases, either from equations C.15 and C.16, or from
equations C.15 and C.17 (where λk

i > 1), or from equations C.15 and C.18,
taking limits on the subset K1, recalling assertion i, equations C.19 and C.20
and the continuity assumption on ∇ci E, we get

lim
k→∞,k∈K1

∇ci E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M)Tdk

i =

lim
k→∞,k∈K1

−∇ci E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M)T∇ci

×E(wk+1, ck+1
1 , . . . , ck

i , . . . , ck
M) =

∇ci E(w̄, c̄1, . . . , c̄i, . . . , c̄M)T∇ci E(w̄, c̄1, . . . , c̄i, . . . , c̄M) = 0,

which contradicts equation C.9.
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