
13 March 2024

On the convergence of the block nonlinear Gauss-Seidel method under convex constraints / L. GRIPPO; M.
SCIANDRONE. - In: OPERATIONS RESEARCH LETTERS. - ISSN 0167-6377. - STAMPA. - 26:(2000), pp. 127-
136.

Original Citation:

On the convergence of the block nonlinear Gauss-Seidel method
under convex constraints.

Publisher:

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/256063 since:

Elsevier BV:PO Box 211, 1000 AE Amsterdam Netherlands:011 31 20 4853757, 011 31 20 4853642, 011

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access



Operations Research Letters 26 (2000) 127–136
www.elsevier.com/locate/orms

On the convergence of the block nonlinear Gauss–Seidel method
under convex constraints(

L. Grippoa, M. Sciandroneb; ∗
aDipartimento di Informatica e Sistemistica, Universit�a di Roma “La Sapienza”, Via Buonarroti 12-00185 Roma, Italy

bIstituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30-00185 Roma, Italy

Received 1 August 1998; received in revised form 1 September 1999

Abstract

We give new convergence results for the block Gauss–Seidel method for problems where the feasible set is the Cartesian
product of m closed convex sets, under the assumption that the sequence generated by the method has limit points. We show
that the method is globally convergent for m=2 and that for m¿ 2 convergence can be established both when the objective
function f is componentwise strictly quasiconvex with respect to m− 2 components and when f is pseudoconvex. Finally,
we consider a proximal point modi�cation of the method and we state convergence results without any convexity assumption
on the objective function. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the problem

minimize f(x)

subject to x ∈ X = X1 × X2 × · · · × Xm ⊆Rn;
(1)

where f : Rn → R is a continuously di�erentiable
function and the feasible set X is the Cartesian prod-
uct of closed, nonempty and convex subsets Xi ⊆Rni ,
for i = 1; : : : ; m, with

∑m
i=1 ni = n. If the vector x ∈

Rn is partitioned into m component vectors xi ∈ Rni ,

( This research was partially supported by Agenzia Spaziale
Italiana, Roma, Italy.
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then the minimization version of the block-nonlinear
Gauss–Seidel (GS) method for the solution of (1) is
de�ned by the iteration:

x k+1
i = argmin

yi∈Xi

f(x k+1
1 ; : : : ; x k+1

i−1 ; yi; x k
i+1; : : : ; x

k
m);

which updates in turn the components of x, starting
from a given initial point x0 ∈ X and generates a
sequence {x k} with x k = (x k

1 ; : : : ; x
k
m).

It is known that, in general, the GS method may not
converge, in the sense that it may produce a sequence
with limit points that are not critical points of the
problem.
Some well-known examples of this behavior have

been described by Powell [12], with reference to the
coordinate method for unconstrained problems, that is
to the case m= n and X = Rn.

0167-6377/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
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Convergence results for the block GS method have
been given under suitable convexity assumptions, both
in the unconstrained and in the constrained case, in a
number of works (see e.g. [1,3,5,6,9–11,13,15]).
In the present paper, by extending some of the re-

sults established in the unconstrained case, we prove
new convergence results of the GS method when ap-
plied to constrained problems, under the assumptions
that the GS method is well de�ned (in the sense that
every subproblem has an optimal solution) and that
the sequence {x k} admits limit points.
More speci�cally, �rst we derive some general

properties of the limit points of the partial updates
generated by the GS method and we show that each
of these points is a critical point at least with re-
spect to two consecutive components in the given
ordering. This is shown by proving that the global
minimum value in a component subspace is lower
than the function value obtainable through a conver-
gent Armijo-type line search along a suitably de�ned
feasible direction. As a consequence of these re-
sults, we get a simple proof of the fact that in case
of a two block decomposition every limit point of
{xk} is a critical point of problem (1), even in the
absence of any convexity assumption on f. As an
example, we illustrate an application of the two-block
GS method to the computation of critical points
of nonconvex quadratic programming problems via
the solution of a sequence of convex programming
subproblems.
Then we consider the convergence properties of the

GS method for the general case of a m-block decom-
position under generalized convexity assumptions on
the objective function. We show that the limit points
of the sequence generated by the GS method are crit-
ical points of the constrained problem both when (i)
f is componentwise strictly quasiconvex with respect
to m− 2 blocks and when (ii) f is pseudoconvex and
has bounded level sets in the feasible region.
In case (i) we get a generalization of well known

convergence results [10,5]; in case (ii) we extend to
the constrained case the results given in [14] for the
cyclic coordinate method and in [6] for the uncon-
strained block GSmethod. Using a constrained version
of a Powell’s counterexample, we show also that non-
convergence of the GS method can be demonstrated
for nonconvex functions, when m¿3 and the preced-
ing assumptions are not satis�ed.

Finally, in the general case of arbitrary decompo-
sition, we extend a result of [1], by showing that the
limit points of the sequence generated by a proximal
point modi�cation of the GS method are critical points
of the constrained problem, without any convexity as-
sumption on the objective function.

Notation. We suppose that the vector x ∈ Rn is
partitioned into component vectors xi ∈ Rni , as
x = (x1; x2; : : : ; xm). In correspondence to this par-
tition, the function value f(x) is also indicated by
f(x1; x2; : : : ; xm) and, for i = 1; 2; : : : ; m the partial
gradient of f with respect to xi, evaluated at x, is
indicated by 3if(x) =3if(x1; x2; : : : ; xm) ∈ Rni .
A critical point for Problem (1) is a point �x ∈

X such that 3f( �x)T(y − �x)¿0; for every y ∈ X ,
where 3f(x) ∈ Rn denotes the gradient of f at x. If
both �x and y are partitioned into component vectors,
it is easily seen that �x ∈ X is a critical point for
Problem (1) if and only if for all i=1; : : : ; m we have:
3if( �x)T(yi − �xi)¿0 for every yi ∈ Xi.
We denote by L0

X the level set of f relative to
X , corresponding to a given point x0 ∈ X , that is
L0

X :={x ∈ X : f(x)6f(x0)}. Finally, we indicate by
‖ · ‖ the Euclidean norm (on the appropriate space).

2. A line search algorithm

In this section we recall some well-known proper-
ties of an Armijo-type line search algorithm along a
feasible direction, which will be used in the sequel in
our convergence proofs.
Let {z k} be a given sequence in X , and suppose that

z k is partitioned as z k = (z k
1 ; : : : ; z

k
m), with z k

i ∈ Xi for
i=1; : : : ; m. Let us choose an index i ∈ {1; : : : ; m} and
assume that for all k we can compute search directions

dk
i = wk

i − z k
i with wk

i ∈ Xi; (2)

such that the following assumption holds.

Assumption 1. Let {dk
i } be the sequence of search

directions de�ned by (2). Then:
(i) there exists a number M ¿ 0 such that ‖dk

i ‖6M
for all k;

(ii) we have 3if(z k)Tdk
i ¡ 0 for all k.
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An Armijo-type line search algorithm can be de-
scribed as follows.

Line search algorithm (LS)
Data: i ∈ (0; 1), �i ∈ (0; 1).
Compute

�k
i = max

j=0;1;:::
{(�i) j: f(z k

1 ; : : : ; z
k
i + (�i) jdk

i ; : : : ; z
k
m)

6f(z k) + i(�i) j3if(z k)Tdk
i }: (3)

In the next proposition we state some well-known
properties of Algorithm LS. It is important to observe
that, in what follows, we assume that {z k} is a given
sequence that may not depend on Algorithm LS, in the
sense that z k+1

i may not be the result of a line search
along dk

i . However, this has no substantial e�ect in
the convergence proof, which can be deduced easily
from the known results (see e.g. [3]).

Proposition 1. Let {z k} be a sequence of points in
X and let {dk

i } be a sequence of directions such that
Assumption 1 is satis�ed. Let �k

i be computed by
means of Algorithm LS. Then:
(i) there exists a �nite integer j such that �k

i =(�i) j

satis�es the acceptability condition (3);
(ii) if {z k} converges to �z and:

lim
k→∞

f(z k)− f(z k
1 ; : : : ; z

k
i + �k

i d
k
i ; : : : ; z

k
m)

=0; (4)

then we have

lim
k→∞

3if(z k)Tdk
i = 0: (5)

3. Preliminary results

In this section we derive some properties of the GS
method that are at the basis of some of our conver-
gence results. First, we state the m-block GS method
in the following form:

3.1. GS Method

Step 0: Given x0 ∈ X , set k = 0.
Step 1: For i = 1; : : : ; m compute

x k+1
i = argmin

yi∈Xi

f(x k+1
1 ; : : : ; yi; : : : ; x k

m): (6)

Step 2: Set x k+1 = (x k+1
1 ; : : : ; x k+1

m ), k = k + 1 and
go to Step 1.
Unless otherwise speci�ed, we assume in the sequel

that the updating rule (6) is well de�ned, and hence
that every subproblem has solutions.
We consider, for all k, the partial updates introduced

by the GS method by de�ning the following vectors
belonging to X :

w(k; 0) = x k ;

w(k; i) = (x k+1
1 ; : : : ; x k+1

i−1 ; x
k+1
i ; x k

i+1; : : : ; x
k
m)

i = 1; : : : ; m− 1;
w(k; m) = x k+1:

For convenience we set also

w(k; m+ 1) = w(k + 1; 1):

By construction, for each i ∈ {1; : : : ; m}, it follows
from (6) that w(k; i) is the constrained global mini-
mizer of f in the ith component subspace, and there-
fore it satis�es the necessary optimality condition:

3if(w(k; i))T(yi − x k+1
i )¿0 for every yi ∈ Xi:

(7)

We can state the following propositions.

Proposition 2. Suppose that for some i ∈ {0; : : : ; m}
the sequence {w(k; i)} admits a limit point �w. Then;
for every j ∈ {0; : : : ; m} we have
lim
k→∞

f(w(k; j)) = f( �w):

Proof. Let us consider an in�nite subset K ⊆{0; 1;
: : : ; } and an index i ∈ {0; : : : ; m} such that the sub-
sequence {w(k; i)}K converges to a point �w. By the
instructions of the algorithm we have

f(w(k + 1; i))6f(w(k; i)): (8)

Then, the continuity of f and the convergence of
{w(k; i)}K imply that the sequence {f(w(k; i))} has a
subsequence converging to f( �w). As {f(w(k; i))} is
nonincreasing, this, in turn, implies that {f(w(k; i))}
is bounded from below and converges to f( �w).
Then, the assertion follows immediately from the fact
that

f(w(k + 1; i))6f(w(k + 1; j))6f(w(k; i))

for 06j6i;
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and

f(w(k + 2; i))6f(w(k + 1; j))6f(w(k + 1; i))

for i¡ j6m:

Proposition 3. Suppose that for some i ∈ {1; : : : ; m}
the sequence {w(k; i)} admits a limit point �w. Then
we have

3if( �w)T(yi − �wi)¿0 for every yi ∈ Xi (9)

and moreover

3i∗f( �w)T(yi∗ − �wi∗)¿0 for every yi∗ ∈ Xi∗ ; (10)

where i∗ = i (modm) + 1.

Proof. Let {w(k; i)}K be a subsequence converging
to �w. From (7), taking into account the continuity
assumption on 3if, we get immediately (9).
In order to prove (10), suppose �rst i ∈ {1; : : : ; m−

1}, so that i∗ = i+ 1. Reasoning by contradiction, let
us assume that there exists a vector ỹ i+1 ∈ Xi+1 such
that

3i+1f( �w)T(ỹ i+1 − �wi+1)¡ 0: (11)

Then, letting

dk
i+1 = ỹ i+1 − w(k; i)i+1 = ỹ i+1 − x k

i+1

as {w(k; i)}K is convergent, we have that the sequence
{dk

i+1}K is bounded. Recalling (11) and taking into
account the continuity assumption on 3if it follows
that there exists a subset K1⊆K such that

3i+1f(w(k; i))Tdk
i+1¡ 0 for all k ∈ K1;

and therefore the sequences {w(k; i)}K1 and {dk
i+1}K1

are such that Assumption 1 holds, provided that we
identify {z k} with {w(k; i)}K1 .
Now, for all k ∈ K1 suppose that we compute �k

i+1
by means of Algorithm LS; then we have

f(x k+1
1 ; : : : ; x k+1

i ; x k
i+1+�k

i+1d
k
i+1; : : : ; x

k
m)6f(w(k; i)):

Moreover, as x k
i+1 ∈ Xi+1, x k

i+1 + dk
i+1 ∈ Xi+1, �k

i+1 ∈
(0; 1], and Xi+1 is convex, it follows that

x k
i+1 + �k

i+1d
k
i+1 ∈ Xi+1:

Therefore, recalling that

f(w(k; i + 1))

= min
yi+1∈Xi+1

f(x k+1
1 ; : : : ; x k+1

i ; yi+1; : : : ; x k
m);

we can write

f(w(k; i + 1))

6f(x k+1
1 ; : : : ; x k+1

i ; x k
i+1 + �k

i+1d
k
i+1; : : : ; x

k
m)

6f(w(k; i)): (12)

By Proposition 2 we have that the sequences
{f(w(k; j))} are convergent to a unique limit for all
j ∈ {0: : : : ; m}, and hence we obtain
lim

k→∞; k∈K1
f(w(k; i))− f( x k+1

1 ; : : : ; x k+1
i ; x k

i+1

+�k
i+1d

k
i+1; : : : ; x

k
m) = 0:

Then, invoking Proposition 1, where we identify {z k}
with {w(k; i)}K1 , it follows that
3i+1f( �w)T(ỹ i+1 − �wi+1) = 0;

which contradicts (11), so that we have proved that
(10) holds when i ∈ {1; : : : ; m − 1}. When i = m, so
that i∗ = 1, we can repeat the same reasonings noting
that w(k; m+ 1) = w(k + 1; 1).

The preceding result implies, in particular, that ev-
ery limit point of the sequence {x k} generated by the
GS method is a critical point with respect to the com-
ponents x1 and xm in the pre�xed ordering. This is
formally stated below.

Corollary 1. Let {x k} be the sequence generated by
the GS method and suppose that there exists a limit
point �x. Then we have

31f( �x)T(y1 − �x1)¿0 for every y1 ∈ X1 (13)

and

3mf( �x)T(ym − �xm)¿0: for every ym ∈ Xm: (14)

4. The two-block GS method

Let us consider the problem:

minimize f(x) = f(x1; x2);

x ∈ X1 × X2 (15)

under the assumptions stated in Section 1. We note
that in many cases a two-block decomposition can be
useful since it may allow us to employ parallel tech-
niques for solving one subproblem. As an example,



L. Grippo, M. Sciandrone /Operations Research Letters 26 (2000) 127–136 131

given a function of the form

f(x) =  1(x1) +
N∑
i=2

 1(x1)�i(xi)

if we decompose the problem variables into the two
blocks x1 and (x2; : : : ; xN ), then once x1 is �xed, the
objective function can be minimized in parallel with
respect to the components xi for i = 2; : : : ; N .
Whenm=2, a convergence proof for the GSmethod

(2Block GS method) in the unconstrained case was
given in [6]. Here the extension to the constrained case
is an immediate consequence of Corollary 1.

Corollary 2. Suppose that the sequence {x k} gener-
ated by the 2Block GSmethod has limit points. Then;
every limit point �x of {x k} is a critical point of Prob-
lem (15).

As an application of the preceding result we con-
sider the problem of determining a critical point of
a nonlinear programming problem where the objec-
tive function is a nonconvex quadratic function and
we have disjoint constraints on two di�erent blocks
of variables. In some of these cases the use of the
two-block GS method may allow us to determine a
critical point via the solution of a sequence of convex
programming problems of a special structure and this
may constitute a basic step in the context of cutting
plane or branch and bound techniques for the compu-
tation of a global optimum.
As a �rst example, we consider a bilinear program-

ming problem with disjoint constraints and we reob-
tain a slightly improved version of a result already
established in [7] using di�erent reasonings.
Consider a bilinear programming problem of the

form:
minimize f(x1; x2) = xT1Qx2 + cT1 x1 + cT2 x2
subject to A1x1 = b1; x1¿0;

A2x2 = b2; x2¿0;

(16)

where x1 ∈ Rn1 and x2 ∈ Rn2 . As shown in [8], prob-
lems of this form can be obtained, for instance, as
an equivalent reformulation on an extended space of
concave quadratic programming problems.
Suppose that the following assumptions are satis-

�ed:
(i) the sets X1 = {x1 ∈ Rn1 : A1x1 = b1; x1¿0} and

X2={x2 ∈ Rn2 : A2x2=b2; x2¿0} are non empty;

(ii) f(x1; x2) is bounded below on X = X1 × X2.
Note that we do not assume, as in [7] that X1 and X2 are
bounded. Starting from a given point (x01 ; x

0
2) ∈ X , the

two-block GS method consists in solving a sequence
of two linear programming subproblems. In fact,
given (x k

1 ; x
k
2 ), we �rst obtain a solution x k+1

1 of the
problem

minimize (Qxk
2 + c1)Tx1

subject to A1x1 = b1; x1¿0
(17)

and then we solve for x k+1
2 the problem

minimize (QTx k+1
1 + c2)Tx2

subject to A2x2 = b2; x2¿0:
(18)

Under the assumption stated, it is easily seen that prob-
lems (17) and (18) have optimal solutions and hence
that the two block GS method is well de�ned. In fact,
reasoning by contradiction, assume that one subprob-
lem, say (17), does not admit an optimal solution. As
the feasible set X1 is nonempty, this implies that the
objective function is unbounded from below on X1.
Thus there exists a sequence of points z j ∈ X1 such
that

lim
j→∞

(Qxk
2 + c1)Tz j =−∞

and therefore, as x k
2 is �xed, we have also

lim
j→∞

f(z j; x k
2 ) = lim

j→∞
(Qxk

2 + c1)Tz j + cT2 x
k
2 =−∞:

But this would contradict assumption (ii), since
(z j; x k

2 ) is feasible for all j.
We can also assume that x k

1 and x k
2 are vertex solu-

tions, so that the sequence {(x k
1 ; x

k
2 )} remains in a �-

nite set. Then, it follows from Corollary 2 that the two
block-GS method must determine in a �nite number
of steps a critical point of problem (16).
As a second example, let us consider a (possibly

nonconvex) problem of the form

minimize f(x1; x2)= 1
2x
T
1Ax1 +

1
2x
T
2Bx2 + xT1Qx2

+cT1 x1 + cT2 x2

subject to x1 ∈ X1;

x2 ∈ X2;
(19)

where X1⊆Rn1 ; X2⊆Rn2 are nonempty closed convex
sets, and the matrices A; B are symmetric and semidef-
inite positive.
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Suppose that one of the following assumptions is
veri�ed:
(i) X1 and X2 are bounded;
(ii) A is positive de�nite and X2 is bounded.
Under either one of these assumptions, it is easily seen
that the level set L0

X is compact for every (x
0
1 ; x

0
2) ∈

X1 × X2. This implies that the two-block GS method
is well de�ned and that the sequence {x k} has limit
points. Then, again by Corollary 2, we have that ev-
ery limit point of this sequence is a critical point of
problem (19).

5. The block GS method under generalized
convexity assumptions

In this section we analyze the convergence proper-
ties of the block nonlinear Gauss–Seidel method in
the case of arbitrary decomposition. In particular, we
show that in this case the global convergence of the
method can be ensured assuming the strict componen-
twise quasiconvexity of the objective function with
respect to m − 2 components, or assuming that the
objective function is pseudoconvex and has bounded
level sets.
We state formally the notion of strict componen-

twise quasiconvexity that follows immediately from
a known de�nition of strict quasiconvexity [10],
which sometimes is called also strong quasicon-
vexity [2].

De�nition 1. Let i ∈ {1; : : : ; m}; we say that f is
strictly quasiconvex with respect to xi ∈ Xi on X if
for every x ∈ X and yi ∈ Xi with yi 6= xi we have

f(x1; : : : ; txi + (1− t)yi; : : : ; xm)

¡max{f(x); f(x1; : : : ; yi; : : : ; xm)}
for all t ∈ (0; 1):

We can establish the following proposition, whose
proof requires onlyminor adaptations of the arguments
used, for instance, in [10,5].

Proposition 4. Suppose that f is a strictly quasicon-
vex function with respect to xi ∈ Xi on X in the sense
of De�nition 1. Let {yk} be a sequence of points in
X converging to some �y ∈ X and let {vk} be a se-
quence of vectors whose components are de�ned as

follows:

vk
j =

{
yk
j if j 6= i;
argmin�∈Xi

f(yk
1 ; : : : ; �; : : : ; y

k
m) if j = i:

Then; if limk→∞ f(yk) − f(vk) = 0; we have
limk→∞‖vk

i − yk
i ‖= 0.

Then, we can state the following proposition.

Proposition 5. Suppose that the function f is strictly
quasiconvex with respect to xi on X; for each i =
1; : : : ; m− 2 in the sense of De�nition 1 and that the
sequence {x k} generated by the GS method has limit
points. Then; every limit point �x of {x k} is a critical
point of Problem (1).

Proof. Let us assume that there exists a subsequence
{x k}K converging to a point �x ∈ X . From Corollary
1 we get

3mf( �x)T(ym − �xm)¿0 for every ym ∈ Xm: (20)

Recalling Proposition 2 we can write

limk→∞ f(w(k; i))− f(x k) = 0 for i = 1; : : : ; m:

Using the strict quasiconvexity assumption on f
and invoking Proposition 4, where we identify {yk}
with {x k}K and {vk} with {w(k; 1)}K , we obtain
limk→∞; k∈K w(k; 1) = �x. By repeated application of
Proposition 4 to the sequences {w(k; i − 1)}K and
{w(k; i)}K , for i = 1; : : : ; m− 2, we obtain
lim

k→∞; k∈K
w(k; i) = �x for i = 1; : : : ; m− 2:

Then, Proposition 3 implies

3if( �x)T(yi − �xi)¿0 for every yi ∈ Xi;

i = 1; : : : ; m− 1: (21)

Hence, the assertion follows from (20) and (21).

In the next proposition we consider the case of a
pseudoconvex objective function.

Proposition 6. Suppose that f is pseudoconvex on X
and that L0

X is compact. Then; the sequence {x k}
generated by the GS method has limit points and
every limit point �x of {x k} is a global minimizer of f.

Proof. Consider the partial updates w(k; i), with i =
0; : : : ; m, de�ned in Section 3. By de�nition of w(k; i)
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we have f(x k+1)6f(w(k; i))6f(x k) for i=0; : : : ; m.
Then, the points of the sequences {w(k; i)}, with i =
0; : : : ; m, belong to the compact set L0

X . Therefore,
if �x ∈ X is a limit point of {x k} we can construct a
subsequence {x k}K such that
lim

k→∞; k∈K
x k = �x = �w0; (22)

lim
k→∞; k∈K

w(k; i) = �wi i = 1; : : : ; m; (23)

where �wi ∈ X for i = 1; : : : ; m. We can write

w(k; i) = w(k; i − 1) + d(k; i) for i = 1; : : : ; m; (24)

where the block components dh(k; i) ∈ Rnh of the vec-
tor d(k; i), with h ∈ {1; : : : ; m}, are such that dh(k; i)=
0 if h 6= i. Therefore, for i=1; : : : ; m, from (22)–(24)
we get

�wi = �wi−1 + �d
i
; (25)

where

�d
i
= lim

k→∞; k∈K
d(k; i) (26)

and

�d
i
h = 0; h 6= i: (27)

By Proposition 2 we have

f( �x) = f( �wi) for i = 1; : : : ; m: (28)

From Proposition 3 it follows, for i = 1; : : : ; m,

3if( �wi)T(yi − �wi
i)¿0 for all yi ∈ Xi; (29)

and

3i∗f( �wi)T(yi∗ − �wi
i∗)¿0 for all yi∗ ∈ Xi∗ ; (30)

where i∗ = i (modm) + 1. Now we prove that, given
j; ‘ ∈ {1; : : : ; m} such that
3‘f( �wj)T(y‘ − �wj

‘)¿0 for all y‘ ∈ X‘; (31)

then it follows

3‘f( �wj−1)T(y‘ − �wj−1
‘ )¿0 for all y‘ ∈ X‘: (32)

Obviously, (32) holds if ‘ = j (see (30)). Therefore,
let us assume ‘ 6= j. By (25)–(27) we have

�wj = �wj−1 + �d
j
; (33)

where �d
j
h =0 for h 6= j. For any given vector � ∈ Rn‘

such that

�wj−1
‘ + � ∈ X‘;

let us consider the feasible point

z(�) = �wj−1 + d(�);

where dh(�)=0 for h 6= ‘ and d‘(�)=� ∈ Rn‘ . Then,
from (29) and (31), observing that (33) and the fact
that ‘ 6= j imply

�= z‘(�)− �wj−1
‘ = z‘(�)− �wj

‘;

we obtain

3f( �wj)T(z(�)− �wj)

=3f( �wj)T( �wj−1 + d(�)− �wj)

=3jf( �wj)T( �wj−1
j − �wj

j ) +3‘f( �wj)T�

=3jf( �wj)T( �wj−1
j − �wj

j ) +3‘f( �wj)T(z‘(�)

− �wj
‘)¿0:

It follows by the pseudoconvexity of f that

f(z(�))¿f( �wj) for all � ∈ Rn‘ such that

�wj−1
‘ + � ∈ X‘:

On the other hand, f( �wj) = f( �wj−1), and therefore
we have:

f(z(�))¿f( �wj−1) for all � ∈ Rn‘ such that

�wj−1
‘ + � ∈ X‘;

which, recalling the de�nition of z(�), implies (32).
Finally, taking into account (30), and using the fact

that (31) implies (32), by induction we obtain

3jf( �w0)T(yj − �w0j ) =3jf( �x)T(yj − �xj)¿0

for all yj ∈ Xj:

Since this is true for every j ∈ {1; : : : ; m}, the thesis
is proved.

As an example, let us consider a quadratic program-
ming problem with disjoint constraints, of the form

minimize f(x) =
m∑
i=1

m∑
j=1

xTi Qijxj +
m∑
i=1

cTi xi

subject to Aixi¿bi; i = 1; : : : ; m;

(34)

where we assume that:
(i) the sets Xi={xi ∈ Rni : Aixi¿bi}, for i=1; : : : ; m

are non empty and bounded;
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(ii) the matrix

Q =


Q11 : : : Q1m

: : : : : :
Qm1 : : : Qmm




is symmetric and semide�nite positive.
In this case the function f is convex and the level
set L0

X is compact for every feasible x0, but the ob-
jective function may be not componentwise strictly
quasiconvex. In spite of this, the m-block GS method
is well de�ned and, as a result of Proposition 6, we
can assert that it converges to an optimal solution of
the constrained problem, through the solution of a se-
quence of convex quadratic programming subprob-
lems of smaller dimension.

6. A counterexample

In this section we consider a constrained version
of a well-known counterexample due to Powell [12]
which indicates that the results given in the preceding
sections are tight in some sense. In fact, this exam-
ple shows that the GS method may cycle inde�nitely
without converging to a critical point if the number m
of blocks is equal to 3 and the objective f is a noncon-
vex function, which is componentwise convex but not
strictly quasiconvex with respect to each component.
The original counterexample of Powell consists

in the unconstrained minimization of the function
f :R3 → R, de�ned by

f(x) =− x1x2 − x2x3 − x1x3 + (x1 − 1)2+
+ (−x1 − 1)2+ + (x2 − 1)2+ + (−x2 − 1)2+
+ (x3 − 1)2+ + (−x3 − 1)2+; (35)

where

(t − c)2+ =
{
0 if t6c;
(t − c)2 if t¿c:

Powell showed that, if the starting point x0 is the point
(−1− �; 1+ 1

2 �;−1− 1
4 �) the steps of the GS method

“tend to cycle round six edges of the cube whose
vertices are (±1;±1;±1)”, which are not stationary
points of f. It can be easily veri�ed that the level
sets of the objective function (35) are not compact; in
fact, setting x2 = x3 = x1 we have that f(x) → −∞
as ‖x‖ → ∞. However, the same behavior evidenced
by Powell is obtained if we consider a constrained

problem with the same objective function (35) and a
compact feasible set, de�ned by the box constraints

−M6xi6M i = 1; : : : ; 3

with M ¿ 0 su�ciently large.
In accordance with the results of Section 3, we may

note that the limit points of the partial updates gen-
erated by the GS method are such that two gradient
components are zero.
Nonconvergence is due to the fact that the limit

points associated to consecutive partial updates are
distinct because of the fact that the function is not com-
ponentwise strictly quasiconvex; on the other hand, as
the function is not pseudoconvex, the limit points of
the sequence {x k} are not critical points.
Note that in the particular case of m=3, by Propo-

sition 5 we can ensure convergence by requiring only
the strict quasiconvexity of f with respect to one com-
ponent.

7. A proximal point modi�cation of the GS method

In the preceding sections we have shown that the
global convergence of the GS method can be ensured
either under suitable convexity assumptions on the ob-
jective function or in the special case of a two-block
decomposition.
Now, for the general case of nonconvex objective

function and arbitrary decomposition, we consider
a proximal point modi�cation of the Gauss–Seidel
method. Proximal point versions of the GS method
have been already considered in the literature (see
e.g. [1,3,4]), but only under convexity assumptions
on f. Here we show that these assumptions are not
required if we are interested only in critical points.
The algorithm can be described as follows.

PGS method
Step 0: Set k = 0; x0 ∈ X; �i ¿ 0 for i = 1; : : : ; m..
Step 1: For i = 1; : : : ; m set:

x k+1
i = argmin

yi∈Xi

{ f(x k+1
1 ; : : : ; yi; : : : ; x k

m)

+1
2�i‖yi − x k

i ‖2}: (36)

Step 2: Set x k+1 = (x k+1
1 ; : : : ; x k+1

m ); k = k + 1 and
go to Step 1.
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The convergence properties of the method can be
established by employing essentially the same argu-
ments used in [1] in the convex cases and we can state
the following proposition, whose proof is included
here for completeness.

Proposition 7. Suppose that the PGS method is well
de�ned and that the sequence {x k} has limit points.
Then every limit point �x of {x k} is a critical point of
Problem (1).

Proof. Let us assume that there exists a subsequence
{x k}K converging to a point �x ∈ X . De�ne the vectors

w̃(k; 0) = x k ;

w̃(k; i) = (x k+1
1 ; : : : ; x k+1

i ; x k
i+1; : : : ; x

k
m)

for i = 1; : : : ; m:

Then we have

f(w̃(k; i))

6f(w̃(k; i − 1))− 1
2�i‖w̃(k; i)− w̃(k; i − 1)‖2;

(37)

from which it follows

f(x k+1)

6f(w̃(k; i))6f(w̃(k; i − 1))6f(x k)

for i = 1; : : : ; m: (38)

Reasoning as in Proposition 2 we obtain

limk→∞ f(x k+1)− f(x k) = 0;

and hence, taking limits in (37) for k → ∞ we have

lim
k→∞

‖w̃(k; i)− w̃(k; i − 1)‖= 0; i = 1; : : : ; m; (39)

which implies

lim
k→∞; k∈K

w̃(k; i) = �x; i = 0; : : : ; m: (40)

Now, for every j ∈ {1; : : : ; m}, as x k+1
j is generated

according to rule (36), the point

w̃(k; j) = (x k+1
1 ; : : : ; x k+1

j ; : : : ; x k
m)

satis�es the optimality condition

[3jf(w̃(k; j)) + �j(w̃j(k; j)

−w̃j(k; j − 1))]T(yj − w̃j(k; j))¿0

for all yj ∈ Xj:

Then, taking the limit for k → ∞; k ∈ K , recalling
(39), (40) and the continuity assumption on 3f, for
every j ∈ {1; : : : ; m} we obtain
3jf( �x)T(yj − �xj)¿0 for all yj ∈ Xj;

which proves our assertion.

Taking into account the results of Section 5, it fol-
lows that if the objective function f is strictly quasi-
convex with respect to some component xi, with i ∈
{1; : : : ; m}, then we can set �i = 0. Moreover, reason-
ing as in the proof of Proposition 5, we can obtain the
same convergence results if we set �m−1 = �m = 0.
As an application of Proposition 7, let us consider

the quadratic problem (34) of Section 5. Suppose
again that the sets Xi are nonempty and bounded, but
now assume that Q is an arbitrary symmetric matrix.
Then the objective function will be not pseudoconvex,
in general, and possibly not componentwise strictly
quasiconvex. In this case, the block-GS method may
not converge. However, the PGS method is well de-
�ned and, moreover, if we set �i ¿− 2�min(Qii), then
the subproblems are strictly convex and the sequence
generated by the PGS method has limit points that are
critical points of the original problem.
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