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Chapter one

Biological invasions in

inland waters: an overview

Francesca Gherardi

INTRODUCTION

The value of inland waters to humankind is obviously infinite and the induced

changes in the goods and services they provide have a strong impact on

human welfare. Lakes/rivers and wetlands currently contribute 20% to the

estimated annual global value of the entire biosphere amounting to US$33

trillion per year (Costanza et al. 1997). These elevated numbers may justify

the present general concern about the increasing degradation of freshwater

systems, associated with the rapid extinction rate of their biodiversity – in

some cases even matching that of tropical forests (Ricciardi and Rasmussen

1999).

Together with other anthropogenic sources of disturbance, such as the

impoundment of rivers (e.g. dams and weirs, water removal), water quality

deterioration (e.g. pollution, eutrophication, acidification), habitat degrada-

tion and fragmentation (e.g. channelization and land use change), and over-

exploitation, the introduction of non-indigenous species (NIS) into fresh waters

is today regarded as the main driver of biodiversity change (Millennium Eco-

system Assessment 2005). The effects of such a driver has been estimated to

be greater in freshwater than in terrestrial ecosystems (Sala et al. 2000).

This is particularly apparent in lakes where biological invaders have

been recognized as one of the greatest causes of species extinctions (Lodge

2001).
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THE VULNERABILITY OF INLAND WATERS TO INVASIONS

Inland waters have been the theatres of spectacular biological invasions. Well-

known cases are the introduction of the Nile perch Lates niloticus (Linnaeus) into

Lake Victoria followed by the elimination of about 200 species of haplochromine

cichlids (Craig 1992), the alteration of the Laurentian Great Lakes communities

and ecosystems by sea lamprey Petromyzon marinus Linnaeus, zebra mussel

Dreissena polymorpha (Pallas), and other invaders (MacIsaac et al. 2001), and the

complete domination of lowland rivers in the western USA by non-indigenous

fish and invertebrates (Moyle and Light 1996a). In several freshwater systems,

other less celebrated dramas are however ongoing with the intervention of

several, previously unsuspected actors, such as Lepomis gibbosus (Linnaeus)

(Chapter 15) and Carassius auratus (Linnaeus) (Chapter 13) among fish, Diker-

ogammarus villosus (Sowinsky) (Chapters 12 and 27), Gmelinoides fasciatus (Steb-

bing) (Chapter 26), and Pontogammarus robustoides (Sars) (Chapter 25) among

crustaceans, and Rana catesbeiana Shaw among amphibians (Chapters 7 and

38). This confirms that invasions by NIS are pervasive and highly diffused

phenomena in fresh waters but also that our predictive ability may be weak.

Meanwhile, other apparently harmless NIS are spreading (see potamid crabs in

southern France, Chapter 3).

The reasons that freshwater systems are vulnerable to NIS are several,

including the higher intrinsic dispersal ability of freshwater species compared

with terrestrial organisms (Beisel 2001). Lakes and some streams are compa-

rable to islands in that their geographic isolation has led to local adaptation

with the evolution of many endemisms and sometimes to a low biodiversity

(Lodge 1993). The extensive introduction of organisms in inland waters, either

inadvertent (e.g. via ship ballast, artificial/natural canals, or estuarine saline-

bridges, Chapters 17, 21, and 22; as parasites of other introduced species, such

as the oomycete Aphanomyces astaci, Chapter 6) or deliberate (e.g. stocking of

fish and crayfish, Chapters 20 and 31; intentional releases of pets or farm

organisms, Chapters 8 and 9), is a direct consequence of the intensity with

which humans utilize these systems for recreation, food sources, and commerce

(Rahel 2000, Ricciardi 2001). Human-mediated dispersal of crustacean zoo-

plankton, for instance, might exceed the natural rate by up to 50,000-fold

(Hebert and Cristescu 2002). And the frequency of species invasions in fresh-

water systems is likely to continue to grow commensurate with enhanced global

commerce and human exploitation of these communities.

Finally, freshwater systems are subject, especially at higher latitudes, to

altered seasonal temperature regimes due to global climatic warming and,

especially in developed countries, to strong human disturbance. In fact, many

NIS are migrating to new areas where the climate has warmed, such as some

introduced warm-water fish [e.g. Micropterus salmoides (Lacepède), Lepomis

macrochirus Rafinesque, and Lepomis cyanellus (Rafinesque)] that are spreading

in North America into higher latitudes and altitudes (Eaton and Scheller 1996,
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Chapter 35). Disturbed ecosystems and communities attract biological invasions

more than pristine systems; disturbance results in the resharing of space and

energy resources that are available to indigenous and non-indigenous species

and may open new vacant niches for the most adaptable and tolerant invaders

(Ross et al. 2001).

The vulnerability of inland waters to biological invasions is a cause of the

complete domination of vast waterscapes in certain regions by NIS, such as

water hyacinth [Eichornia crassipes (Martius) Solms] in many tropical lakes and

rivers (Chapter 10) and the red swamp crayfish [Procambarus clarkii (Girard)]

in several waterbodies of southern Europe (Gherardi 2006, Chapter 2). Xeno-

diversity may be extraordinarily high in, for instance, large rivers of developed

countries that usually host dozens to hundreds of NIS (Mills et al. 1996,

Chapter 12). The Hudson River, for instance, contains more than 100 species

of non-indigenous fish, vascular plants, and large invertebrates, a considerable

fraction of which are ecologically important – such as Eurasian watermilfoil

(Myriophyllum spicatum Linnaeus), purple loosestrife (Lythrum salicaria Lin-

naeus), zebra mussel (D. polymorpha), Atlantic rangia (Rangia cuneata Gray),

and common carp (Cyprinus carpio Linnaeus) (Strayer et al. 2005). Some taxa

are particularly affected by species introductions: the New Zealand fish fauna

contains 30 NIS (53% of the total) (Vitousek et al. 1997); isolated islands often

have more non-indigenous than indigenous fish species (Hawaii: 19 vs. 6),

but also continental areas have relatively large numbers of non-indigenous

fish species (California: 42 vs. 76, Brazil: 76 vs. 517; references in Vitousek

et al. 1996); at least 76 fish species belonging to 21 families have been intro-

duced into European fresh waters (Lehtonen 2002), of which 51 have become

established.

Species originating from diverse biogeographical areas now coexist in several

basins; in the Rhine, indigenous crustaceans [Gammarus pulex (Linnaeus)] occur

with North American species [Gammarus tigrinus Sexton and Orconectes limosus

(Rafinesque)], Mediterranean species (the freshwater shrimp Atyaephyra desmar-

esti Millet), and Ponto-Caspian species [Gammarus roeseli Gervais and Dikero-

gammarus villosus (Sowinsky)] (Beisel 2001). Biotic homogenization is

constantly increasing; freshwater fish similarity among the States of the USA

amounts today to 7% (Rahel 2000) and some of them, such as Arizona and

Montana, which previously had no fish species in common, now share more

than 30 species. National borders are obviously irrelevant and they provide no

barrier to the natural dispersal of NIS: the Nile perch released in Tanzania

spread to other countries bordering Lake Victoria (Welcomme 1988) and

P. clarkii introduced into Spain invaded Portugal via the common hydrographic

basins (Gherardi 2006).

Some freshwater systems function as ‘‘hotspots’’ where NIS accumulate.

The Great Lakes system contains over 145 non-indigenous invertebrates,

pathogens, algae, fish, and plants, with approximately 75% originated from

Eurasia of which 57% are native to the Ponto-Caspian region (Mills et al. 1993,
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Ricciardi and Rasmussen 1998, MacIsaac et al. 2001). These species include

a wide array of taxa, such as mussels [D. polymorpha, Dreissena bugensis

(Andrusov)], amphipods (Echinogammarus ischnus Stebbing), cladocerans

[Cercopagis pengoi (Ostroumov)], harpacticoid copepods [Nitocra incerta (Richard)

and Schizopera borutzkyi (Monchenko)], and fish [Neogobius malanostomus

(Pallas)], Proterorhinus marmoratus (Pallas), Gymnocephalus cernuus (Linnaeus)].

It has been ascertained that Ponto-Caspian species reach the Great Lakes in

ballast along five shipping ‘‘corridors’’ (MacIsaac et al. 2001). Four of these

corridors require the first transfer of species via rivers and canals to ports in the

North and Baltic seas that, in their turn, function as ‘‘hubs’’, acting as the donor

for other ships that transport these species in secondary invasions to ports in

North America and, potentially, in East Asia, San Francisco Bay, and Australia

(e.g. Cohen and Carlton 1998, Ruiz et al. 2000).

Finally, many freshwater invaders are moved among biogeographic regions

within continents and are transported among continents in association with

economic activity and trade globalization that benefit millions worldwide (Lodge

and Shrader-Frechette 2003). The inevitable tension between two often com-

peting goals – increasing economic activity and protecting the environment

from invasive species – make it difficult to justify the need for decision-makers to

contain the spread of these species and to mitigate the environmental risks they

pose. For instance, a number of issues has been raised in favor of the outcomes

of introducing crayfish (Gherardi 2006, Chapter 28). First, in the absence of

indigenous species, invasive crayfish were claimed to occupy vacant niches,

constituting the unique large macro-consumer within polluted or eutrophicated

waters, where the native fauna has already been severely decimated (Gherardi

et al. 2000). The second claim is that they constitute abundant prey for rare or

threatened birds and mammals, like several Ardaeidae and the otter (e.g.

Barbaresi and Gherardi 2000, Rodrı́guez et al. 2005). Third, from a socioeco-

nomic perspective, introduced crayfish have contributed to: (1) the restoration

of traditional habits, e.g. by crayfishing in Sweden and Finland (Kirjavainen and

Sipponen 2004); (2) economic benefits for local crayfishermen, e.g. the Spanish

netsmen; (3) diversification of agriculture to include astaciculture, e.g. by

crayfish farmers in Britain and in Spain; and (4) increased trade between

countries inside Europe as well as between European and extra-European

countries (Ackefors 1999).

THE CURRENT STATE OF RESEARCH

Studies on the identity, distribution, and impact of freshwater NIS and on the

dynamics of their invasion have increased exponentially since the 1990s,

resulting in a flood of publications particularly abundant in the last decade

(Fig. 1). This pattern of growth in the literature is a reflection of the rise in

popularity that invasion biology has gained as an appealing area of research
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among ecologists (Kolar and Lodge 2001). The overall number of published

articles is, however, significantly biased towards terrestrial invaders (Fig. 2).

This is not surprising: terrestrial systems are the most visible and accessible

habitats for humans and, as such, have received the preponderance of ecolo-

gical attention.

The majority of studies of freshwater invaders has been conducted in North

America, and mostly in the Great Lakes (Fig. 3A), and centered on animals

(74%) more than on plants (20%), whereas a small fraction (6%) analyzed both

kingdoms simultaneously. Of all the animal taxa, fish, particularly salmonids,

have received the greatest scientific attention (Fig. 3B), as the result of their

Fig. 1 Cumulative number of publications dealing with non-indigenous species (total

number ¼ 502). Papers were identified via keywords from Biosis analyzed between 1967

and December 2005.

Fig. 2 Frequency distribution of research articles published in the journal Biological

Invasions (Springer) since 1999 distinguished among habitats (total number ¼ 354).
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perceived ecological role in aquatic food webs and their economic importance to

humans. In the other taxa, dreissenids among mollusks and crayfish among

crustaceans had been most often studied. Only recently has been the taxonomic

coverage of freshwater invaders broadened. New privileged study animals have

been Eleotridae and Poeciliidae among fish (e.g. Bedarf et al. 2001, Laha and

Mattingly 2006, Pusey et al. 2006); the Asian clam [Corbicula fluminea (Mul-

ler)], the golden mussel [Limnoperna fortunei (Dunker)], and the golden apple

snail [Pomacea canaliculata (Lamarck)] among mollusks (e.g. Darrigran 2002,

Carlsson and Lacoursière 2005, Boltovskoy et al. 2006, Oliveira et al. 2006,

Yusa et al. 2006); and the spiny waterflea (Bythotrephes longimanus Leydig) and

cladocerans among crustaceans (e.g. Çelik et al. 2002, Shurin and Havel 2002,

Branstrator et al. 2006).

ARE GENERALIZATIONS POSSIBLE?

A consequence of the concentrated interest on terrestrial biomes and of the

limited geographic and taxonomic breadth in fresh waters is that traditional

South America
World

Asia

Europe
Oceania

North America

Other

Fish

Mammals

Mollusks

Crustaceans

Central
America

A

B

Fig. 3 Frequency distributions of research articles published in the journal Biological

Invasions (Springer) since 1999 dealing with inland waters distinguished among contin-

ents (A) and animal taxa (B) (total number ¼ 69).
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invasion paradigms have been mostly derived from terrestrial studies and

have been rarely tested in aquatic organisms (Beisel 2001). However, a

number of generalizations about freshwater invasion is emerging today. They

derive from two main approaches (Moyle and Light 1996b): the first analyzes

case studies of invaders and their distribution (e.g. P. clarkii, Chapter 4; mol-

lusks, Chapter 5; amphibians and reptiles, Chapter 7; plants, Chapter 11),

whereas the second approach aims to extend recent developments in ecological

theory to freshwater invaders (e.g. Chapters 19 and 23), in which the focus has

been mainly directed to the interaction between the invader and the target

community and to the biological characteristics of both the invading species

and the ecosystem being invaded. Based on the examples provided by the

recent literature, a list of 15 general statements characterizing some of

the known events of biological invasion in inland waters can be drawn, as

follows.

(1) The establishment and spread success of freshwater NIS often

exceeds the 10% value predicted by the ‘‘tens rule’’

(Williamson 1996).

This is seen in the results obtained by Jeschke and Strayer (2005), who analyzed

the introductions of vertebrates between Europe and North America (USA

and Canada). Using corrected data for unrecorded introductions, the authors

showed that, of the 220 and 713 fish species native to Europe and North America

respectively, 11% and 6% have been introduced into Europe and North America,

respectively, and 36% and 49% have become established after slightly longer

than a decade, while 56% and 63% of the established fish had spread and become

invasive. On a more global scale, Ruesink (2005) used a database of 1,424

intentional international transfers of freshwater fish and found that up to 64%

of the introduced fish became established and 22% of the established cases had

exerted a documented impact (i.e. changes in food availability, habitat structure,

nutrient dynamics, or top-down trophodynamics).

(2) Propagule pressure is often a major predictor of the

establishment of freshwater organisms.

Recent findings showed that the large number of propagules present in an

inoculating population, such as the thousands of zebra and quagga mussels

carried in the ballast of cargo ships, and the frequencies of sequential inocula-

tions, such as multiple introductions of ‘‘desired’’ species, are positively corre-

lated with invasion success (Lonsdale 1999, Kolar and Lodge 2001, Mack et al.

2000, Ricciardi 2001). For instance, as showed by Ruesink (2005), introduced

fish species were more likely to establish when humans intended their estab-

lishment (76%) rather than when fish were cultivated or used with no explicit

desire for naturalization (57%).

Bioinvasions in inland waters 9



(3) The often elevated propagule pressures may explain the

several instances in which introduced populations appear to be immune from

bottlenecks – usually depleting genetic variation (the ‘‘genetic paradox’’).

Aquatic organisms introduced in large numbers via ballast or subject to mul-

tiple introductions can carry a large fraction of the genetic variability of their

source populations or bring genetic races from different parts of their native

range (Stepien et al. 2002). Hence, many colonizers arrive with a high phenotypic

and genetic diversity. This adds to other features that may favor their adapt-

ability to the recipient areas, such as the fast acquisition of genetic variability

after their arrival that results from such sources as hybridization with closely

related organisms, epistasis (i.e. an interaction in which one gene influences the

expression of another), or the potential for chromosomal restructuring by

inversion, translocation, or duplication (Cox 2004).

(4) Failures of NIS to establish derive most often from their inability to

meet the ‘‘environmental resistance’’ on the part of the recipient

community – the different regimes of temperature, current,

water chemistry, or abiotic resources.

Several examples from different taxa support this statement. Moyle and Light

(1996a), for instance, showed that freshwater fish invading North American

basins are likely to become established when abiotic conditions are appropriate,

regardless of the biota already present. The narrow thermal tolerance of

C. fluminea may explain its absence from most of the Great Lakes system

(Ricciardi 2001), whereas salinity of that system was too low to allow for the

successful reproduction of the Chinese mitten crab Eriocheir sinensis (Milne

Edwards), notwithstanding the frequent introductions of this latter species

over the past decades in ship ballast (MacIsaac 1999). The general harshness

of the environment may reduce the ability of non-indigenous fish to invade. An

example is Eagle Lake, California, which is a highly alkaline (pH: 8–9) terminal

lake containing only four indigenous fish species (Moyle and Light 1996b). Any

attempt to introduce fish failed in the long term, including the introduction in

the early 20th century of the largemouth bass, M. salmoides.

(5) As a consequence of (4), success in the establishment of freshwater

invaders may depend on a close match between their physiological

requirements and the environmental characteristics of the

system being invaded.

Species from nearby areas are more likely to be successful invaders than those

from more distant locations, as found for fish species in North America that are

most likely to be successful if they are adapted to the local, highly seasonal,

hydrological regime of the recipient environment (Moyle and Light 1996b). For
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instance, two species of Cyprinidae introduced into the Pecos River, Texas, USA

from nearby areas became established because the artificial flow regime of the

recipient river closely resembled that of their native streams (Bestgen et al.

1989). Convergent salinity conditions in donor and recipient ecosystems played

a key role in the success of invaders in the Great Lakes (MacIsaac et al. 2001).

An additional prerequisite for successful invasion that allows a species to

survive transportation (e.g. in ballast; Bailey et al. 2004) and to become estab-

lished in a recipient area is its euryoeciousness, i.e. its ability to tolerate wide

environmental conditions (Ricciardi and Rasmussen 1998). For instance, the

range of salinity in which a species can live and reproduce provides a reliable

basis for discrimination between invasive and non-invasive North American

and East European gammarid amphipods (Devin and Beisel 2007). In general,

areas with a wide salinity gradient, like the Baltic Sea, may offer a range of

hospitable conditions for invaders, functioning as hot spots of xenodiversity

(Leppäkoski et al. 2002). Finally, the increased ionic content of large European

rivers as the result of pollution has allowed salt tolerant species to spread in new

river basins in recent decades (Ketelaars et al. 1999).

(6) Demographic factors (sexual precocity, fecundity, and

number of generations per year; Lodge 1993, Chapter 12), biological

plasticity (Chapters 14 and 16), and/or the ability to overcome the biotic

resistance posed by the recipient community (the complex of native

predators, parasites, pathogens, and competitors, and previously

introduced species) may be neither essential nor sufficient for freshwater

species to become invasive.

Usually, r-selected crayfish (e.g. P. clarkii) rather than K-selected species [(e.g.

Austropotamobius pallipes (Lereboullet)] have a high probability of spreading. But

fecundity and number of generations per year often are not sufficient to explain

why the amphipod G. pulex has invaded the streams in Northern Ireland where

it outcompetes G. duebeni Liljeborg (Devin and Beisel 2007). Often, the magni-

tude of an invader’s impact may be predicted by its ‘‘taxonomic distinctiveness’’

within the recipient community (Ricciardi and Atkinson 2004). Indeed, the lack

of evolutionary experience with the invader – meaning the absence of competi-

tors, predators, or parasites and the inability to respond to them with an

appropriate behavior – may predispose communities to be altered by invasions

(e.g. Diamond and Case 1986). For instance, eliminations of indigenous species

by D. polymorpha have rarely been reported from the invaded European lakes

whose native fauna was previously exposed to Dreissena during the Pleistocene

era (Ricciardi et al. 1998). Similarly, the introduced tilapiine species, Oreochro-

mis niloticus (Linnaeus), is one of the few fish species to persist in Lake Victoria in

large numbers in face of the Nile perch invasion as the result of its past

evolutionary experience with similar predators (Moyle and Light 1996b). Some-

times, the interaction between two species that do not share an evolutionary
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history leads to the positive outcome for one of the two in a form of ‘‘evolu-

tionary release’’ (Schlaepfer et al. 2005). For instance, indigenous prey (e.g.

anuran tadpoles and metamorphs) may be unable to recognize introduced

predators (e.g. the introduced R. catesbeiana in the western USA; Rosen and

Schwalbe 2002) and their style of preying. As a result, the naı̈ve predators are

released from the difficulties of finding a prey (Kiesecker and Blaustein 1997);

they may dispose of a high availability of food during the establishment phase

of their invasion, which is a precondition of their fast spread. The phenomenon

of evolutionary release might explain the paradox of why invasive species

sometimes enjoy a competitive advantage over locally adapted species, although

there would be a priority effect for residents (e.g. Shea and Chesson 2002,

Schlaepfer et al. 2005). Also a reduced attack from natural enemies (predators

and parasites) encountered outside their natural range gives some species the

ability to spread and to become invasive, as predicted by the ‘‘enemy release

hypothesis’’ (ERH) (e.g. Torchin et al. 2003). However, generalizations about

the role of the naı̈veté of introduced species and of their potential lack of enemies

in the recipient community may not be possible in freshwater systems. Several

examples, in fact, provide contrasting evidence. The sea lamprey, P. marinus,

eliminated large fish from Lake Michigan even if some of these species [e.g. the

lake trout Salvelinus namaycush (Walbaum)] coexisted with the lamprey in other

lakes where the species have been together for thousands of years (Moyle

1986). In addition, the ERH has been verified in relatively few organisms

and subject to limited criticism (Colautti et al. 2004), being only one of the

several hypotheses that can explain the abundance and/or the impact of a

given invader (Enemy Inversion Hypothesis, climatic variables, selection for

‘‘invasive’’ genotypes, human disturbance, etc.).

(7) In fresh waters, species-rich communities may be as vulnerable

to invasion as less speciose, less biologically

‘‘sophisticated’’ communities.

This statement contrasts with one of the most well-established generalizations

in the invasion literature since Elton (1958), i.e. that communities with high

diversity and complexity are the least susceptible to invasion because of the

strength of the community interactions (e.g. Lodge 1993, Levine and D’Antonio

1999, Kennedy et al. 2002, Shea and Chesson 2002). Numerous examples at

both the global and local levels demonstrate that often the opposite occurs in

freshwater systems (Moyle 1986, Ross et al. 2001). Jeschke and Strayer (2005),

for instance, showed that there is no clear difference in the probability of fish

species becoming established and spreading once introduced from Europe to

North America and vice versa, suggesting that, at the global level, the biota of

North America do not offer more resistance to invaders, notwithstanding that it

is less disturbed by humans and species-richer than Europe. At a local level,

Lake Victoria, which once contained the richest endemic fish communities on
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the planet, was devastated by a single invader, the Nile perch L. niloticus,

because it encountered neither predation nor competition from indigenous

fish (Goldschmidt et al. 1993). Mississipi River, once the most speciose of all

temperate rivers, has been invaded by several non-indigenous fish, including

common carp C. carpio, goldfish C. auratus, grass carp Ctenopharyngodon idella

(Valenciennes), striped bass Morone saxatilis (Walbaum), rainbow smelt

Osmerus mordax (Mitchill), rainbow trout Oncorhyncus mykiss Walbaum, and

white catfish Ictalurus catus (Linnaeus) (Burr and Page 1986). Similarly,

the zebra mussel has become established at high densities throughout the

Mississippi River basin, which contains the world’s richest endemic assemblage

of freshwater mussels (Ricciardi et al. 1998).

The above examples, however, contrast with the results obtained by employ-

ing disturbance treatments in pond zooplankton communities (Smith and

Shurin 2006). Shurin (2000) found that reducing the abundance of indig-

enous species allowed four times as many invaders to establish and to obtain

16 times greater total abundance, therefore showing that in some instances

local interactions may be strong enough to exclude a large fraction of potential

invaders.

(8) Often, freshwater NIS, instead of interfering with one another, facilitate

each other’s establishment and/or continued existence, and therefore

increase the likelihood and the magnitude of their ecological impact,

as predicted by the phenomenon of ‘‘invasional meltdown’’ (Simberloff

and Von Holle 1999, Simberloff 2006).

Invasive species may facilitate further invasions by direct effects – providing

benefits to another invader – and indirect effects – reducing an invader’s

enemies or enhancing its prey (Ricciardi 2001). Strong experimental evidence

was provided by Adams et al. (2003), who showed that introduced fish facili-

tated invasion by the bullfrog (R. catesbeiana) in western North America by

preying on native macroinvertebrates (such as dragonfly nymphs) that other-

wise precluded establishment or severely limited the numbers of frogs. In the

Great Lakes, mutualistic, commensal, and asymmetric exploitative interactions

facilitated the survival and population growth of many invaders (Ricciardi

2001). Dreissena polymorpha facilitated colonization by several invertebrate

NIS (Ricciardi et al. 1998) because it increased the surface area and spatial

heterogeneity, creating settling sites, providing refuge, and trapping sediment

and biodeposits. Additionally, Dreissena generates filtration currents that

are exploited by other invertebrates (Stewart and Haynes 1994) and it is

a food source for several introduced fish, i.e. white bass [Morone chrysops

(Rafinesque)] and round goby [Neogobius melanostomus (Pallas)] (French

1993). Its invasion also increased the spread of Eurasian watermilfoil

(MacIsaac 1996). The reduction of piscivores by the parasite sea lamprey was

an indirect effect that paved the way for invasion by the planktivore alewife

Bioinvasions in inland waters 13



[Alosa pseudoharengus (Wilson)] followed by Oncorhynchus spp. (Moyle 1986).

Finally, sequential invasions by Ponto-Caspian species completed the life cycle

of parasitic organisms, such as the trematode Bucephalus polymorphus (Baer)

of western Europe origin. The introduction of the first intermediate host

(the zebra mussel) of the trematode and its definitive host [the pikeperch

Stizostedion lucioperca (Linnaeus)] allowed it to spread, causing high mortality

in its secondary intermediate hosts, the indigenous cyprinids (Combes and

Le Brun 1990).

(9) There is still a poor state of knowledge of whether

invasive species are the ‘‘drivers’’ of the extinction of indigenous

populations or species, or merely the ‘‘passengers’’ along for the

environmental ride (MacDougall and Turkington 2005).

Local and global extinctions frequently overlap invasions in space and time. For

instance, the loss of genetically distinct populations of unionids in North

America has been accelerated by a factor of 10 after the invasion of zebra

mussels (Ricciardi et al. 1998). Of the 40 fish species known to have become

extinct since 1890 in North America, 27 were negatively affected by the

introduction of NIS (Wilcove and Bean 1994). However, the dominance of

NIS might be an indirect consequence of habitat modifications that by them-

selves lead to both indigenous species loss and NIS invasion (Gurevitch and

Padilla 2004, Didham et al. 2005). For instance, the unionid declines began

before the introduction in the mid-1980s of zebra mussels and were caused by

several stressors, such as habitat destruction and deterioration resulting from

water diversion, erosion, an increase in eutrophication (which causes periods

of anoxia), pesticides, loss of host fish for parasitic unionid larvae, historic

harvesting for the button industry and harvesting for the pearl industry

(reviewed in Gurevitch and Padilla 2004). In some instances, successful fresh-

water invaders have been integrated without eliminations of species from the

communities being invaded. In Lake Malawi, East Africa, 12 species of bottom-

feeding haplochromine cichlids from one part of the lake were introduced into

another part of the lake in which they were absent without any apparent

changes in the abundance of the local species (Trendall 1988). After the

completion of the Panama Canal in 1914 and the consequent creation of a

freshwater corridor between the Rio Chagres on the Caribbean slope and

the Rio Grande on the Pacific slope of the Isthmus of Panama, the freshwater

fish assemblages of previously isolated drainage basins were enabled to inter-

change. However, no cases of local extinctions were recorded but species

richness increased by 10% in the Rio Chagres and 22% in the Rio Grande

(Smith et al. 2004). And there are documented cases (see statement 15)

of indigenous species that, given enough time, learn or evolve the ability to

escape the ‘‘evolutionary trap’’ caused by an invasive species (Schlaepfer et al.

2005).
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(10) Among the diverse ways that introduced species threaten the

existence of indigenous species (e.g. predation, parasitism,

vectoring of pathogens, and competition; Mack et al. 2000),

the most underestimated is hybridization with

indigenous species (Olden et al. 2004).

Hybridization is thought to alter the integrity of the endemic gene pools of

unionids, crayfish, and fish; it produces hybrid swarms that eliminate indig-

enous taxa often in a very short time frame (Perry et al. 2002). Examples are

several, especially in fish. Within a 4-year period following its introduction, the

non-indigenous pupfish, Cyprinodon variegates Lacépède, was involved in a

large-scale introgressive hybridization event with the endemic Cyprinodon peco-

sensis Echelle and Echelle in New Mexico, USA (Echelle and Connor 1989).

Similarly, anadromous populations of wild brown trout (Salmo trutta Linnaeus)

were highly introgressed by stocking with hatchery fish and eventually reduced

their fitness (Hansen 2002).

(11) Introduced species have effects at multiple ecological levels in

freshwater systems (Simon and Townsend 2003, Chapter 24), but a few

studies, mostly focused on salmonids (Simon and Townsend 2003),

have analyzed this multifaceted impact

(Parker et al. 1999).

At the level of individual organisms, invaders may alter the behavior of native

species, influencing habitat use and foraging. At the population and community

levels, they may induce changes in the abundance or distribution of other

species and affect both direct and indirect interactions among populations,

respectively. Finally, at the ecosystem level, invaders may change the pathways

and magnitude of movements of energy and nutrients.

(12) A first strong danger posed by freshwater invaders to native biota

arises if they are either macro-enemies (predators or grazers) or

micro-enemies (pathogens or parasites) (Williamson 1996).

Specifically, the NIS posed on the top of the food web or those that are gener-

alized predators (Williamson 1996) are likely to produce marked effects on

ecosystem processes (see the case of P. clarkii; Chapters 29 and 30) because

their impact can ‘‘cascade’’ through the entire food web, altering both ecosystem

processes and the behavior of the indigenous species (Townsend 1996). This is

especially true in aquatic systems, in which trophic cascades appear to be more

common than in terrestrial biomes (Strong 1992). For instance, in California

the most successful fish invaders have been piscivores and omnivores (Moyle

and Light 1996a), while detritivorous fish seemed to have little effect on

indigenous fish assemblages (Power 1990).
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(13) A second strong danger posed by freshwater invaders to

native biota is their role of ‘‘ecosystem engineers’’, i.e. species

that ‘‘directly or indirectly control the availability of resources

to other organisms by causing physical state changes in biotic

or abiotic materials’’ ( Jones et al. 1994).

Engineering organisms may cause physical modifications to the environment

and influence the maintenance or creation of habitats. Their ecological effects

on other species occur because of physical state changes caused, either directly

or indirectly, by the engineer, and because, as engineers, they affect the control

and use of resources by other species. Zebra mussels have all the properties of

ecosystem engineers. They change the characteristics of biotic and abiotic

environments by their presence and activities, especially their feeding and

filtering. These changes are system-wide, affecting species composition, species

interactions, community structure, and ecosystem properties (Karatayev et al.

2002, Chapters 32 and 33).

(14) In freshwater systems, as in other biomes, invaders may be subject to

evolutionary changes that influence several life history

characteristics (Cox 2004).

Once established, NIS are freed from the constraints of the gene flow from their

parent population and from the biotic pressures of former enemies, they are

subject to altered selection pressures, and they impose strong new evolutionary

pressures on the indigenous species. Substantial evolution may take place over

relatively short timescales (Carroll and Dingle 1996). For instance, following its

introduction to Pacific rivers in North America, the American shad, Alosa

sapidissima (Wilson), evolved geographic changes in its life history patterns in

less than a century (summarized in Dingle 1980). In its native rivers in eastern

North America, fecundity and the yearly number of spawns vary as a function

of latitude, with reduced clutch size and increased repeat spawning more

prevalent in northern versus southern rivers. Fish from Pacific rivers are

32–77% (vs. 20–40% from Atlantic rivers) repeat spawners; their age at maturity

varies from 3.3 to 3.8 years for males (vs. 4 years) and from 4 to 4.5 years for

females (vs. 4.6 years), and their mean lifetime fecundities range from 321,000 to

500,000 eggs (vs. 300,000–350,000). These variations are a function of latitude

and water temperature, reflecting rapid post-invasion evolution under selection

by local environmental conditions. The western mosquitofish [Gambusia affinis

(Baird and Girard)] native to North America has shown rapid genetic changes in

several locations into which it has been introduced (references in Cox 2004); a

period of about 70 generations was sufficient to induce adaptive changes in

the life history of the populations introduced into Hawaii, whereas, in the

populations introduced into thermal springs in Nevada, changes in body fat

content and size at maturity required about 110–165 generations.
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(15) In freshwater systems there is growing evidence for adaptive evolutionary

responses by indigenous species to NIS and for the influence of

such responses on the community dynamics (Lambrinos 2004).

Declines in native populations may be ephemeral if indigenous species are

genetically variable in their susceptibility to NIS and can evolve in response to

invasion. Alternatively, lack of the ability to evolve in the face of strong selection

from invaders can cause extinction (see statement 9). For instance, in 70 years

Rana aurora Baird and Girard has acquired the ability to recognize the chemical

cues emitted by its new predator, the introduced bullfrog R. catesbeiana, and

behaves accordingly, by reducing their foraging activity and increasing their

refuge use, whereas frogs from uninvaded ponds do not change their behavior

when presented with bullfrogs (Kiesecker and Blaustein 1997). Evolutionary

adaptation may also involve habitat and resource use, leading to the phenom-

enon of character displacement (i.e. increased difference in quantitative char-

acters of two or more species in areas of syntopy compared to areas of allopatry)

(Strauss et al. 2006). In the Great Lakes, the bloater [Coregonus hoyi (Milner)] is

one of the indigenous fish that survived competition with the introduced alewife

for zooplankton. Following the explosion of the alewife populations in the

1960s, the bloater shifted its diet from small zooplankton to larger benthic prey

(Crowder and Binkowski 1983, Crowder and Crawford 1984). In less than

20 years, this shift was accompanied by an adaptive change of its feeding

apparatus that showed a decrease by about 15% in the number of gill rakers

(Crowder 1984). Similarly, in North American lakes where bluegill sunfish

(L. macrochirus) have been absent, the pumpkinseed (L. gibbosus) exhibits pelagic

and littoral ecotypes as adaptations to the diet of zooplankton (for pelagic forms)

and of benthic arthropods and mollusks (for littoral forms). In the lakes where

bluegills have been introduced, the pumpkinseed populations exhibited exclu-

sively littoral ecotypes, thus restricting its feeding activity to littoral areas in

response to the competition with the dominant newcomer (Robinson et al. 2000).

CONCLUSIONS

In recent years, a rising awareness of the economic and ecologic costs caused by

invasions in fresh waters has encouraged more proactive research and this has

increased our understanding of invasive processes in aquatic systems. Notwith-

standing some obvious limitations derived from the relatively small taxonomic

coverage of invasion studies and the prevailing focus on certain systems, some

general issues regarding freshwater invaders can be raised. First and foremost,

predicting the likelihood of the success of a freshwater invader or predicting the

invasibility of an aquatic system depends on a detailed understanding of the

characteristics of the invader and of the system that is being invaded (Moyle and

Light 1996b). But both are likely to be idiosyncratic and complex at the local
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level, which makes it difficult to apply some generalized theories of invasion

biology. As observed by Simberloff (2006), this is part of the larger problem that

‘‘ecology is fundamentally an idiographic science’’ (p. 917): we will need a large

catalogue of case studies in order to generate the level of understanding required

to deal with many of the environmental problems (Simberloff 2004).

The ‘‘tens rule’’ does not hold for invasion processes in fresh waters. Intro-

duction is a critical step, so the most effective means of minimizing the adverse

impact of freshwater invaders is to prevent species transport in the first

place. Once introduced, several species have a high potential to establish, and,

once established, eradication is often impossible and mitigation and control

are difficult and expensive, if possible at all (Chapters 34, 36, 37, and 38).

The successful establishment of a species is positively related to propagule

pressure (Chapter 18). A consequence is that the probability of establishment

might be lessened by reducing both the number of individuals accidentally

released via commerce-related activities and the frequency of such releases.

The importance of propagule pressure also alerts us about the need to construct

effective legislative barriers against the introduction of ‘‘desirable’’ species that

might turn out to be ‘‘Frankensteins’’ (Moyle et al. 1986).

The most likely ‘‘monsters’’ in fresh waters are those species whose physio-

logical requirements closely match with the environmental characteristics of

the recipient system or those species able to tolerate a wide range of environ-

mental conditions. With some exceptions, the biotic resistance exerted by the

recipient community, including its richness in species and complexity, seems to

be less effective in countering the establishment of freshwater invaders, while an

r-selected strategy is only in some cases a prerequisite for a species to become

invasive. Similarly, the naı̈veté of introduced species and the assumed lack of

enemies in the recipient community cannot explain per se freshwater invasions.

Most freshwater communities are not saturated with species (Cornell and

Lawton 1992), but instead are capable of supporting greater numbers of them

if the pool of potential colonists and the rate of colonization from the pool is

increased (Gido and Brown 1999). Introduced species, in fact, often facilitate

each other’s establishment and/or their continued existence, therefore increas-

ing the likelihood and the magnitude of the global ecological impact inflicted by

biological invasions.

NIS exert multiform effects on the recipient community, most often acting

simultaneously at multiple ecological levels. They may pose threats to indig-

enous species, populations, and genes, and may induce changes to individuals,

populations, communities, and ecosystems. The most dangerous species are

parasites but also predators or omnivores that may produce trophic cascades

in the recipient community, and ecosystem engineers that may cause physical

modifications of the environment and may influence the maintenance or cre-

ation of habitats. All these recognized impacts of invaders represent, however,

only the ‘‘tip’’ of an ecological and evolutionary iceberg (Palumbi 2001). In

inland waters, as in the other biomes, the introduction of species may interact
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with habitat destruction and degradation, overexploitation of plants and ani-

mals, and global climate change to create an ‘‘evolutionary revolution’’ (Cox

2004). And empirical data and theories are urgently needed to enable predic-

tion, understanding, and management of the acute and chronic effects of species

invasions (Strayer et al. 2006).
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E. Leppäkoski, S. Gollasch and S. Olenin, editors. Invasive aquatic species of Europe:

distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, The

Netherlands.

Kennedy, T. A., S. Naeem, K. M. Howe, J. M. H. Knops, D. Tilman, and P. Relch. 2002.

Biodiversity as a barrier to ecological invasion. Nature 417, 636–638.

Ketelaars, H. A. M., F. E. Lambregts-van de Clundert, C. J. Carpentier, A. J. Wagenvoort,

and W. Hoogenboezem. 1999. Ecological effects of the mass occurrence of the Ponto-

Caspian invader, Hemimysis anomala G.O. Sars, 1907 (Crustacea: Mysidacea), in a

freshwater storage reservoir in the Netherlands, with notes on autoecology and new

records. Hydrobiologia 394, 233–248.

Kiesecker, J. M. and A. R. Blaustein. 1997. Population differences in responses of red-

legged frogs (Rana aurora) to introduced bullfrogs. Ecology 78, 1752–1760.

Kirjavainen, J. and M. Sipponen. 2004. Environmental benefit of different crayfish

management strategies in Finland. Fisheries Management and Ecology 11, 213–218.

Kolar, C. S. and D. M. Lodge. 2001. Progress in invasion biology: predicting invaders.

Trends in Ecology and Evolution 16, 199–204.

Laha, M. and H. T. Mattingly. 2006. Identifying environmental conditions to promote

species coexistence: an example with the native Barrens topminnow and invasive

western mosquitofish. Biological Invasions 8, 719–725.

Lambrinos, J. G. 2004. How interactions between ecology and evolution influence

contemporary invasion dynamics? Ecology 85, 2061–2070.

Lehtonen, H. 2002. Alien freshwater fishes of Europe. Pages 153–161 in E. Leppäkoski,
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