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HIGHER ALGEBRAIC K-THEORY OF GROUP
ACTIONS WITH FINITE STABILIZERS

GABRIELE VEZZOSI and ANGELO VISTOLI

Abstract

We prove a decomposition theorem for the equivariant K -theory of actions of affir
group schemes G of finite type over a field on regular separated Noetherian alg
braic spaces, under the hypothesis that the actions have finite geometric stabiliz
and satisfy a rationality condition together with a technical condition that holds, fol
example, for G abelian or smooth. We reduce the problem to the cagglgf-action
and finally to a split torus action.
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1. Introduction

The purpose of this paper is to prove a decomposition theorem for the equivari
K -theory of actions of affine group schemes of finite type over a field on regular se
arated Noetherian algebraic spaces. Xdie a regular connected separated Noethe:
rian scheme with an ample line bundle, and Kef( X) be its Grothendieck ring of
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2 VEZZOSI and VISTOLI

vector bundles. Then the kernel of the rank morphisgiX) — Z is nilpotent (see
[SGAG Exp. VI, Th. 6.9]), so the rindo(X) is indecomposable and remains such
after tensoring with any indecomposablelgebra.

The situation is quite different when we consider the equivariant cas& hetan
algebraic group acting on a Noetherian separated regular scheme, or algebraic sp
let X be over afielk, and consider the Grothendieck rikg(X, G) of G-equivariant
perfect complexes. This is the same as the Grothendieck groGpesfuivariant co-
herent sheaves oK, and it coincides with the Grothendieck ring GfFequivariant
vector bundles if allG-coherent sheaves are quotients of locally free coherent sheav
(which is the case, e.g., whé&his finite or smooth an is a scheme). Assume that
the action ofG on X is connected, that is, that there are no nontrivial invariant opel
and closed subschemes ¥f Still, Ko(X, G) usually decomposes, after inverting
some primes; for example, & is a finite group andX = SpedC, thenKo(X, G)
is the ring of complex representations®f which becomes a product of fields after
tensoring withQ.

In [Vi2] the second author analyzes the case where the acti@ ai X has
finite reduced geometric stabilizers. Consider the ring of representati@y Bnd
consider the kerneh of the rank morphism rk Ko(X, G) — Z. ThenKg(X, G) is
an R(G)-algebra; he shows that the localization morphism

Ko(X, G) ® Q — Ko(X, G)m

is surjective and that the kernel of the rank morphiKg(X, G)y, ® Q — Q is
nilpotent. Furthermore, he conjectures tkat( X, G) ® Q splits as a product of the
localizationKo(X, G)r, and some other ring, and he formulates a conjecture abot
what the other factor ring should be whénis abelian and the field is algebraically
closed of characteristic zero. The proofs of the result¥if][depend on an equivari-
ant Riemann-Roch theorem, whose proof was never published by the author; howe
all of the results have been proved and generalize8 @j.[

The case wher6 is a finite group is studied invj1]. Assume thak contains
all nth roots of 1, wheran is the order of the grou. Then the author shows that,
after inverting the order o6, the K-theory ringK, (X, G) of G-equivariant vector
bundles onX (which is assumed to be a scheme in that paper) is canonically tf
product of a finite number of rings, expressible in terms of ordingrtheory of
appropriate subschemes of fixed pointsofHereK..(X, G) = @; Ki (X, G) is the
graded higheK -theory ring. The precise formula is as follows.

Let o be a cyclic subgroup o6 whose order is prime to the characteristickof
then the subschem¥” of fixed points ofX under the actions af is also regular. The
representation ring &) is isomorphic to the rin@[t]/(t" — 1), wheret is a generator
of the group of characters ham k*). We callﬁ(o) the quotient of the ring B) by
the ideal generated by the eleményf(t), whered,, is thenth cyclotomic polynomial;
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this is independent df The ringﬁ(o) is isomorphic to the ring of integers in timth
cyclotomic field. Call Ns(o) the normalizer ofr in G; the group Ns(o) acts on
the schemeX? and, by conjugation, on the group Consider the induced actions of
Ng (o) on theK -theory ringK, (X?) and on the ring?z(a).

Choose a se¥’(G) of representatives for the conjugacy classes of cyclic sub
groups ofG whose order is prime to the characteristic of the field. The statement ¢
the main result ofYil] is as follows.

THEOREM
There is a canonical ring isomorphism

KX, G ®ZIYIGII~ ] (Ke(X")®R©0)"” ®2z[1/|G]1.
IS A(C))]

In the present paper we generalize this decomposition to the case in Ghgln
algebraic group scheme of finite type over a fikJacting with finite geometric sta-
bilizers on a Noetherian regular separated algebraic sgaoeer k. Of course, we
cannot expect a statement exactly like the one for finite groups, expressing equ
ariant K-theory simply in terms of ordinarK-theory of the fixed point sets. For
example, wherX is the Stiefel variety of -frames inn-space, then the quotient of
X by the natural free action of Glis the Grassmannian ofplanes inn-space, and
Ko(X, GL;) = Ko(X/ GL;) is nontrivial, whileKg(X) = Z.

Let X be a Noetherian regular algebraic space d&veith an action of an affine
group schemé& of finite type overk. We consider the Waldhausétrtheory group
K. (X, G) of complexes of quasi-cohere@tequivariant sheaves ox with coherent
bounded cohomology. This coincides on the one hand with the Waldh&useeory
group K. (X, G) of the subcategory of complexes of quasi-cohe@rquivariant
flat sheaves otX with coherent bounded cohomology (and hence has a natural rin
structure given by the total tensor product) and on the other hand with the Quille
groupK/ (X, G) of coherent equivariant sheavesXnfurthermore, if every coherent
equivariant sheaf oiX is the quotient of a locally free equivariant coherent sheaf, it
also coincides with the Quillen groug@Vé(X, G) of coherent locally free equiv-
ariant sheaves oiX. TheseK-theories and their relationships are discussed in the
appendix.

Our result is as follows. First we have to see what plays the role of the cycli
subgroups of a finite group. This is easy; the group schemes whose rings of repres
tations are of the fornZ[t]/(t" — 1) are not the cyclic groups, in general, but their
Cartier duals, that is, the group schemes that are isomorphic to the group sgheme
of nth roots of 1 for some. We call these group schemeésal cyclic If o is a dual
cyclic group, we can definBs as before. A dual cyclic subgroup of G is called
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essential ifX? # @. The correct substitute for the ordinakytheory of the subspaces
of invariants is thegeometric equivariant K-theory KX, G)geom Which is defined

as follows. CallN the least common multiple of the orders of all the essential dua
cyclic subgroups of5. Call S; the multiplicative subset of the ring(B) consisting

of elements whose virtual rank is a powerMf then K, (X, G)geomis the localiza-
tion S;1K.(X, G). Notice thatk (X, G)geom® Q = K.(X, G)m, with the notation
above. Moreover, if every coherent equivariant sheaXas the quotient of a locally
free equivariant coherent sheaf, ], we have an isomorphism of rings

Ko(X, G)geom® Q = AG(X) ® Q,

whereAg (X) denotes the direct sum &-equivariant Chow groups of.

We prove the following. Assume that the action@fon X is connected. Then
the kernel of the rank morphiskg(X, G)geom— Z[1/N] is nilpotent (see Cob.2).
This is remarkable; we have made what might look like a small step toward makir
the equivarianK -theory ring indecomposable, and we immediately get an indecorm
posable ring. Indeed, (X, G)geom “fe€ls like” the K-theory ring of a scheme; we
want to think ofK, (X, G)geomas what theK -theory of the quotienX/G should be,
if X/G were smooth, after invertiniy (see Conj5.8).

Furthermore, consider the centralizet @) and the normalizer §(o) of o in-
sideG. The quotient w (o) = Ng(0)/Cg (o) is contained inside the group scheme
of automorphisms of, which is a discrete group, so it is also a discrete group
It acts onR(o), by conjugation, and it also acts on the equivariéntheory ring
K« (X7, Cg(0)) and on the geometric equivariakttheory ringK, (X, Cg(0))geom
(see Cor2.5).

We say that the action @ on X is sufficiently rational when the following two
conditions are satisfied. Lktbe the algebraic closure kf
(1) Each essential dual cyclic subgroap< Gy is conjugate by an element of

G(k) to a dual cyclic subgroup d®.
(2)  If two essential dual cyclic subgroups &f are conjugate by an element of
G(k), they are also conjugate by an elemenGgk).

Obviously, every action over an algebraically closed field is sufficiently rational
Furthermore, ifG is GLm, SLm, Sp,,, or a totally split torus, then any action Gfis
sufficiently rational over an arbitrary base field (see PEop. If G is a finite group,
then the action is sufficiently rational whé&ncontains alinth roots of 1, where is
the least common multiple of the orders of the cyclic subgrougsadforder prime
to the characteristic, whose fixed point subscheme is nonempty. DenéfeéGya
set of representatives for essential dual cyclic subgroup schemes, under conjuga
by elements of the grou@ (k). Here is the statement of our result.
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MAIN THEOREM

Let G be an affine group scheme of finite type over a field k, acting on a Noetheri

separated regular algebraic space X. Assume the following three conditions.

(@)  The action has finite geometric stabilizers.

(b)  The action is sufficiently rational.

(c) For any essential cyclic subgroupof G, the quotient GCg (o) is smooth.
Then% (G) is finite, and there is a canonical isomorphismR{G)-algebras

K*(X, G) ® Z[l/N] >~ l_[ (K*(XU’ CG(O'))geom® 'ﬁ(o_))WG((r).
0€b(G)

Conditions (a) and (b) are clearly necessary for the theorem to hold. We are not s
about (c). It is rather mild, as it is satisfied, for example, wkgeis smooth (this is
automatically true in characteristic zero) or wh@ris abelian. A weaker version of
condition (c) is given in Sectiof.2.

In the case whef® is abelian over an algebraically closed field of characteristic
zero, the main theorem impliegip, Conj. 3.6]. WherG is a finite group, and the base
field contains enough roots of 1, as in the statement of Theorem 1, then the conditic
of the main theorem are satisfied; since the natural Mg, Cg(0))geom —

K, (X?)Ce(@) hecome isomorphisms after inverting the ordeiG{see Prop5.7),
the main theorem implies/1, Th. 1]. However, the proof of the main theorem here
is completely different from\i1, proof of Th. 1].

As B. Toen pointed out to us, a weaker version of our main theorem (@sith
coefficients and assuming smooth, acting with finite reduced stabilizers) follows
from his [Tol, Th. 3.15]; theétale techniques he uses in proving this result make ii
impossible to avoid tensoring wit (see alsoTo2)).

Here is an outline of the paper. First we define the homomorphism (see Sec. 2.
Next, in Section 3, we prove the result whéns a totally split torus. Here the basic
tool is the result of R. Thomason, which gives a generic description of the actic
of a torus on a Noetherian separated algebraic space, and we prove the resul
Noetherian induction, using the localization sequence foKikteeory of equivariant
coherent sheaves. As ifi[L], the difficulty here is that the homomorphism is defined
via pullbacks, and thus it does not commute with the pushforwards intervening in tl
localization sequence. This is solved by producing a different isomorphism betwe
the two groups in question, using pushforwards instead of pullbacks, and then relati
this to our map, via the self-intersection formula.

The next step is to prove the result in the case wen GLy; here the key point
is a result of A. Merkurjev which links the equivariakt-theory of a scheme with
a Gly-action to the equivarianK -theory of the action of a maximal torus. This is
carried out in Section 4. Finally (see Sec. 5), we reduce the general result to the ¢
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of GL,, by considering an embeddirtg € GL,,, and the induced action of Glon
Y = GL, x®X. Itis at this point that condition (c) enters, allowing a clear description
of Y? whereo is an essential dual cyclic subgroup®f(see Prop5.6).

2. General constructions

Notation. If Sis a separated Noetherian schemfejs a Noetherian separates
algebraic space (which is most of the time assumed to be regular)Gadsd flat
affine group scheme ov&acting onX, we denote bK..(X, G) (resp.K’(X, G)) the
WaldhauserK -theory of the complicial bi-Waldhausen (séé['1]) category#1 x.c

of complexes of quasi-cohere@®-equivariant&’x-modules with bounded coherent
cohomology (resp., the Quillek-theory ofG-equivariant coherent’x-modules). As
shown in the appendix, X is regular,K. (X, G) is isomorphic toK (X, G) and has
a canonical graded ring structure. Wh¥ris regular, the isomorphisi{, (X, G) =~
K. (X, G) then allows us to switch between the two theories when needed.

2.1. Morphisms of actions and induced maps on K-theory

Let S be a scheme. By aaction over S we mean a triplg€ X, G, p) where X is an
S-algebraic spaces; is a group scheme ov&§; andp : G xs X — X is an action of
G on X over S. A morphism of actions

(f.9): (X, G, p) — (X', G, p)

is a pair ofSmorphismsf : X — X’ and¢ : G — G’, where¢ is a morphism of
S-group schemes, such that the following diagram commutes:

G xg X . x

oxt | K

G xgX — X’
P
Equivalently, f is required to bé&-equivariant with respect to the giv&action on
X and theG-action onX’ induced by composition with.

A morphism of actiong f,¢) : (X, G, p) — (X', G, p’) induces an exact
functor (f,¢)* : #3x.c¢ — #3.x.G, Where#3 vy denotes the complicial bi-
Waldhausen category of complexes ldfequivariant flat quasi-coherent modules
with bounded coherent cohomology on tHealgebraic spac¥ (see appendix). Let
(&*, ¢*) be an object o3 x/.¢/; that is,&™ is a complex ofc’-equivariant flat quasi-
coherentr’x,-modules with bounded coherent conomology, and foriany

—_~

8i . prlz*gl - p/*éai
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is an isomorphism satisfying the usual cocycle condition. Heje @ xs X" — X’
denotes the obvious projection, and similarly fos pG xs X — X. Since

and
prs f&*=(¢ x f)"pry&™,

we define(f, ¢)*(&™*, e*) = (F*&*, (¢ x f)*(¢*)) € #3.x.c (the cocycle condition
for each(¢ x f)*(eh) following from the same condition foa‘); (f, )* is then de-
fined on morphisms in the only natural way. NawW, ¢)* is an exact functor and, if
X and X’ are regular so that the Waldhaudértheory of #3 x g (resp., of#3 x'.c’)
coincides withK (X, G) (resp.,K.(X’, G")) (see appendix), it defines a ring mor-
phism

(f,9)* : Ku(X', G') — Ky (X, G).

A similar argument shows that if is flat, (f, ¢) induces a morphism

(f.)* : KL(X',G) — K.(X, G).

Example 2.1

Let G andH be group schemes ov& and letX be anS-algebraic space. Moreover,

suppose that

(1) GandH actonX;

(2) G acts onH by S-group scheme automorphisms (i.e., it is given a morphisr
G — Aut(arsch,s(H) of group functors oves);

(3) the two preceding actions are compatible; that is, for SschemeT, any
ge G(T),he H(T),andx € X(T), we have

g-(h-x)=h9-(g-x),

where(g, h) — h9 denotes the action @& (T) on H(T).
If g € G(S) and ifgt denotes its image vigé(S) — G(T), let us define a morphism
of actions( fg, ¢g) : (X, H) — (X, H) as

fg(T) : X(T) — X(T) : X —> 07 - X,
¢g(T) : H(T) — H(T) :h+— h9t .
This is an isomorphism of actions and induces an action of the geg&@pon K/ (X,

H) and onK, (X, H). This applies, in particular, to the case whétés an algebraic
space with & action andG > H, G acting onH by conjugation.
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2.2. The basic definitions and results
Let G be a linear algebraik-group schem& acting with finite geometric stabilizers
on a regular Noetherian separated algebraic spaoeerk.

We denote by RG) the representation ring @&.

A (Cartier) dual cyclic subgroupf G overk is ak-subgroup scheme C G
such that there exist am > 0 and an isomorphism &-groupso =~ unk. If o, p
are dual cyclic subgroups @ and if L is an extension ok, we say that and p
are conjugate ovek if there existsg € G(L) such thatg<7(|_)g_l = p) (Where
Hw) = H xspek SpecL, for anyk-group scheméd) as L-subgroup schemes of
G(L).

A dual cyclic subgrour C G is said to beessentialf X° £ @.

We say that the action @ on X is sufficiently rationalf
(1) anytwo essential dual cyclic subgroups®tre conjugated ovéeif and only

if they are conjugated over an algebraic closk k;
(2)  any essential dual cyclic subgro@pof G, is conjugated ovek to a dual
cyclic subgroup of the forna g, whereo C G is (essential) dual cyclic.
We denote byg' (G) a set of representatives for essential dual cyclic subgrou@s of
with respect to the relation of conjugacy ower

Remark 2.2

Note that if the action is sufficiently rational and 4f o are essential dual cyclic
subgroups ofs which are conjugate over an algebraically closed extengiaf k,
then they are also conjugate oker

PROPOSITION2.3
Any action of GLy, Sk, Spyy,, Or of a split torus is sufficiently rational.

Proof

If G is a split torus, condition (1) is clear becauSés abelian, while it follows from
the rigidity of diagonalizable groups that any subgroup schen®.ad in fact defined
overk. Leto C GLy, be a dual cyclic subgroup. Sineeis diagonalizable, we have
an eigenspace decomposition

V=K"= BV;
XET
such that thex with V, # 0 generater. Conversely, given a cyclic group and a
decomposition
V=@V,

xeC
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such that they with V, # 0 generateC, there is a corresponding embedding of
the Cartier duab of C into GL, with V,, = M for eachy € C = . Now, if

o < Gl is a dual cyclic subgroup defined ovierwe can apply an element of
GLm (k) to make thev, defined ovek, and thergag*1 is defined ovek. If o € GLp,
andt € GLp, are dual cyclic subgroups that are conjugate dyepick an element
of GLm(k) sendingo to r. This induces an isomorphisgh : ox ~ T, which by
rigidity is defined ovek. Then if x and x’ are characters that correspond under the
isomorphism ofe and T induced byg, then the dimension o¥/ is equal to the
dimension oi\/;/, so we can find an elemegbof GL, which carries eacld;(’ onto the
corresponding/,,; conjugation by this element carriesontoz. For SLi, the proof

is very similar if we remark that to give a dual cyclic subgraupc SLy, € GLn
corresponds to giving a decomposition

V=k"=Pvy

XET

such that theg with V¢ # 0 generat@, with the condition[ [, .; x*™V% =1€5.

For Sp,, € GLam, a dual cyclic subgroup € Sp,, gives a decomposition

V=Kk"=Pvy

XET

such that they with V{7 # 0 generater, with the condition that fon € V; and
v" € Vg, the symplectic product af andv’ is always zero, unlesgx’ = 1 € 5. Both
conditions then follow rather easily from the fact that any two symplectic forms ove
a vector space are isomorphic. O

Let N(g,x) denote the least common multiple of the orders of essential dual cycl
subgroups ofG. Notice thatN, x is finite: since the action has finite stabilizers,
the group scheme of stabilizers is quasi-finite oXertherefore the orders of the
stabilizers of the geometric points ¥fare globally bounded.

We defineA . xy = Z[1/N, x)]-

If H C G is finite, we also writeAy for Z[1/|H|]. Note that, ife C G is dual
cyclic, thenA, = A, spex), and if, moreovery is essentialA, € AG,x).

If H € G is asubgroup scheme andAfis a ring, we write RH) a for R(H) ®7,
A. We denote by rl§ : R(H) — Z and by rK—LA«;,X) RH)agx — AG.x) the
rank ring homomorphisms.

We let

KX, B)aex = Ki(X,G) ® Ag,x

and
Ke(X, G a6y = Kil(X, G) ® Ag,x
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(for the notation, see the beginning of this section). Recall KiatX, G) g , IS
an R(G)-algebra via the pullback &) ~ Ko(Spek, G) — Kp(X, G) and that
K« (X, G) ~ K. (X, G) sinceX is regular (see appendix).

If o is a dual cyclic subgroup d& of ordern, the choice of a generatoifor the
dual groups = Homgrsch, (0, Gm k) determines an isomorphism

Z[t]
th -1

R(o) ~

Let p, be the canonical ring surjection

Zr 1—[ Z1[t],

(th — 1) (®q)’

din
and letp, be the induced surjection
Z[t] Z[t]
H 7
t" -1 (®n)
where®y is thedth cyclotomic polynomial. lin, is the kernel of the composition
Z[t) Z[t]
H 5
t" -1 (®n)
the quotient ring Rv) /m, does not depend on the choice of the generatorc.

R(o) ~

Notation. We denote bﬁ(cr) the quotient Ro) /m,. We remark that ifo is dual
cyclic of ordern and ift is a generator oF, there are isomorphisms

Aqs(t] Aqlt]
R R R . 1
©)a, -1 Er[] @q) (1)

Let 7o : R(G)agyx — ﬁ(o)A(ny) be the canonical ring homomorphism. The
o-localization K,(X, G), of KL (X, G)a ., is the localization of the &) g 4, -
moduleK/ (X, Glag.x at the multiplicative subse®, = 7, ~1(1). Theo-localiza-
tion K. (X, G), is defined in the same way. H C G is a subgroup scheme, we also
write R(H)s for S;1(R(H) 4 g x,)-

If o is the trivial group we denote byK (X, G)geom the o-localization
of Ki(X,G)acx and call it thegeometric partor geometric localizationof
Ki(X,G)agx - Note thatmy coincides with the rank morphism ¢k g x,
R(G)ac.x, — AG.x)- We have the same definition fé. (X, G)geom

Let Ng(o) (resp., G (o) € Ng(o)) be the normalizer (resp., the centralizer) of
o in G; since Aufo) is a finite constant group scheme,

NG (o)

Wg(o) = Cal)
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is also a constant group scheme okessociated to a finite groupg (o).

LEMMA 2.4

Let H be a k-linear algebraic group, let >~ unk be a normal subgroup, and let
Y be an algebraic space with an action of/¢1 Then there is a canonical action of
wh (o) on K.(Y, CH (0)).

Proof
Let us first assume that the natural map

H(K) — wi (o) )

is surjective (which is true, e.g.,kfis algebraically closed). SinceGo) (k) acts triv-
ially on K. (Y, Cx (o)) and, by Example.1, H (k) acts naturally orK/ (Y, Cn (o)),
we may used) to define the desired action. In general), is not surjective and we
proceed as follows. Suppose that we can find a closed immersiolirgfar algebraic
groupsH < H’ such that

0] o is normal inH’;

()  H/Cu(o) = Wh(0);

(i)  H/(k) = wHy (o) is surjective.

Consider the open and closed immersior Cy (o) < Y x H; this induces an
open and closed immersio© x©H (@) Cy (o) — Y xCH©@) H’ whose composition
with the étale covely x“H(@) H’ — Y xH H’ s easily checked (e.g., on geometric
points) to be an isomorphism. Therefore,

KL(Y x" H', Clyr(0)) = KL (Y xCH@ Chr(0), Crr(0)) = KL (Y, Ch (o)),

where the last isomorphism is given by the Morita equivalence theorem &8¢ [
Prop. 6.2]). By (i) and (iii) we can apply the argument at the beginning of the proc
and get an action ab (o) on K. (Y xH H’, Cly/(0)) and therefore oK (Y, Cy (o)),
as desired. It is not difficult to check that this action does not depend on the chos
immersionH — H’.

Finally, let us prove that there exists a closed immerdibn— H’ satisfying
conditions (i) — (iii) above. First choose a closed immergiorH — GL; i for some
n. Clearly,

H/CH (o) = GLnk /CoLy,(0),

and, embedding in a maximal torus of Gk, it is easy to check that
GLnk(K) = (GLnk /CaLy(0))(K)

is surjective. Now defindd’ as the inverse image dfi /Cy (o) in the normalizer
NGLn,k(U)- O



12 VEZZOSI and VISTOLI

COROLLARY 2.5
There is a canonical action a@fg (o) on K. (X, Cg (o)) which induces an action on
K;(XU7 Co (U))geom

Proof
Since G (o) = Cngo)(0), Lemma2.4, applied toY = X (resp.,Y = Spe)
and H = Ng(o0), yields an action ofwg(c) on K/(X?,Cg(c)) (resp., on

Ko(Spek, Cg(o)) = R(Cg(a))). The multiplicative systens;, = rk—1(1) is pre-
served by this action so that there is an induced action on théSﬂi'wB(CG (0)). The
pullback

Ko( Sped, Cg(o)) — Ko(xo, CG(O))

is wg (0)-equivariant, and themg (o) acts onK (X7, Cg(c))geom O

Remark 2.6

If Y is regular, Lemma&.4 also gives an action aby (o) on K, (Y, Cy (o)) since
K«(Y, Ch (o)) =~ K.(Y,CnH (o)) (see appendix). In particular, since byhs, Prop.
3.1], X7 is regular, Corollary.5still holds for K, (X, Cg(0))geom

Note also that the embedding kfgroup scheme®Vg (o) < Autk(o) induces, by
Example2.1, an action ofwg (o) on Ko(Spedk, o) = R(o’). The product inr induces
a morphism ok-groups,

o x Cg(0) — Cg(0),

which in its turn induces a morphism

Mo : Ky (X7, Cg(0)) —> K« (X7, 0 x Cs(0)).

LEMMA 2.7
If H € G is a subgroup scheme andvifis contained in the center of H, there is a
canonical ring isomorphism

Ki(X?,0 x H) ~ K,(X?, H) ® R(o).

Proof
Sinceo acts trivially onX?, we have an equivalence (s€&jA3 Exp. |, par. 4.7.3])

(o x H) — Cohxe ~ EPH(H — Cohxv) €)

g

(whereg is the character group of) which induces an isomorphism

KL(X?, 0 x H) ~ KL(X?, H) ® R(0).



K-THEORY OF ACTIONS WITH FINITE STABILIZERS 13

We conclude sinc&,. (Y, H) >~ K. (Y, H) andK.(X?,0 x H) >~ K/(X?,0 x H)
(see appendix). O

For any essential dual cyclic subgroupc G, let A = A, x), and consider the
composition

K+(X, G)a — Ki(X,Cg(0)), — Ki(X?,Cg(0)),

Mg

T Ky (X?, Cg(0)) , ®4 R(©@)a
—> Ku(X%, C6(0)) goqr®a R(@)a, @

geom

where the first map is induced by group restriction, the last one is the geomet
localization map tensored with the projectioioRRy — R(c)a, and we have used
Lemma2.7with H = Cg(0); the second map is induced by restriction alotfg—
X which is a regular closed immersion (sé@ép, Prop. 3.1]) and therefore has finite
Tor-dimension, so that the pullback d&-groups is well defined (see appendix). It
is not difficult to show that the image of) is actually contained in the invariant
submodule

(K«(X?, Ca(0))geom®a R(@)2)"*”,

so that we get a map
‘WU,X . K*(X, G)A — (K*(XU’ CG(G))geom@)A ﬁ(o_)A)wG(O').

Our basic map is

Uxe= [] Wox:KuX G
ASA(C))]

— J] (Ke(X?. Ca@))geom®a R@)2)"*”. (5)
oe?(G)

Note thatWx ¢ is a morphism of RG)-algebras as a composition of morphisms of
R(G)-algebras.
The following technical lemma is used in PropositiGhSand4.6.

LEMMA 2.8

Let G be a linear algebraic k-group acting with finite stabilizers on a Noetheriar
separated k-algebraic space X, andlet= A g x). Let H € G be a subgroup, and
let o be an essential dual cyclic subgroup contained in the center of H. Consider tt
composition

KL(Y?, H)a —> KL(Y?, H)a ® R(@)a —> KLY, H)geom®a R(0)a, (6)



14 VEZZOSI and VISTOLI

where the first morphism is induced by the product morphissmH — H (recall
Lem.2.7) and the second is the tensor product of the geometric localization morphis
with the projectionR(c), — R(o)s. Then 6) factors through K(Y?, H), —
K.(Y?, H),, yielding a morphism

On.o 0 KLOYT, H)o — KLY, H)geom®a R(0)4. @)

Proof

Let § (resp.,S ) be the multiplicative subset in(Rl) 4 consisting of elements going
to 1 via the homomorphism [ka : R(H)A — A (resp., RH)x — ﬁ(o)A). Ob-
serve thaK [ (X7, H)xs ®a R(o)a (resp.,K; (X7, H)geom®@a ﬁ(a)A) is canonically
an RH)a ® R(o)a-module (resp., a$; *R(H) s ® R(a)2-module) and therefore
an R(H)-module via the coproduct ring morphism

As; :R(H)A — R(H)A ® R(0)a

(resp., via the ring morphism

fy : R(H)A =5 R(H)A ® R(0)a —> S R(H)A ® R(0)4).

If we denote byA’ the R H)-algebraf, : R(H)y —> SI]'R(H)A ® R(0)a, itis
enough to show that the localization homomorphism

17N — SHA)
is an isomorphism, because in this case the morphidnis(induced by thes;-
localization of §). Let A denote the RH) ,-algebra
M ®L:R(H)A — S[IR(H)A @ R(0)a,

wherei1 : R(H)A — Sl_lR(H)A denotes the localization homomorphism. It is a
well-known fact that there is an isomorphism ofHR) 5 -algebrasy : A’ — A; thisis
exactly the dual assertion to “the actibhx o — o is isomorphic to the projection
on the second factdl x o — o.” Therefore, we have a commutative diagram

A 25 A

d b

g{rlA/ S;]'A
Sto
wherel, denotes the localization homomorphism, and it is enough to prové,tiet
an isomorphism. To see this, note that the R{g) 5 is a freeA-module of finite rank
(equal tog (|o |), ¢ being the Euler function), and there is a norm homomorphism

N:ﬁ(a)A—>A
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sending an element to the determinant of fxendomorphism oﬁ(a),\ induced by
multiplication by this element; obviously, we have

N=1(A%) = (R(o)a)".
Analogously, there is a norm homomorphism
N': A = STIR(H) A ® R(0)a — STIR(H)a,

and
N=L((STIR(H)A)Y) = (STIR(H)A @ R(0)4)™

There is a commutative diagram

S 'R(H)x ® R(0)a BN S 'R(H)A

rkH_,\ [ idl lrkH,A

and, by definition ofS;, we get k", (A*) = (S 'R(H))*. Therefore, by definition
of S, § /1 consist of units iMA, and we conclude the proof of the lemma. O

The following lemma, which is an easy consequence of a result of Merkurjey, is tt
main tool in reducing the proof of the main theorem fr@m= GL, i to its maximal
torusT.

LEMMA 2.9

Let X be a Noetherian separated algebraic space over k with an action of a sp
reductive group G over k such thai (G) (see Mg, Par. 1.1]) is torsion free. Then if

T denotes a maximal torus in G, the canonical morphism

Ki(X, G) ®re) R(T) — KL (X, T)

is an isomorphism.

Proof
Let B © T be a Borel subgroup o6. Since RB) >~ R(T) and K/ (X, B) =~
KL(X, T) (see [Th4, proof of Th. 1.13, p. 594]), byNle, Prop. 4.1], the canonical
ring morphism

K.(X, G) ®r(e) R(T) —> KL(X,T)

is an isomorphism.
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Since Merkurjev states his theorem for a scheme, we briefly indicate how it e:
tends to a Noetherian separated algebraic spaceerk. By [Thl, Lem. 4.3], there
exists an open dengg-invariant separated subschetdec X. Since Merkurjev’s
map commutes with localization, by the localization sequence and Noetherian indt
tion it is enough to know the result f&f. And this is given in Me, Prop. 4.1]. Note
that by Me, Prop. 1.22], RT) is flat (actually free) over &), and therefore the
localization sequence remains exact after tensoring wilh) R O

The following is Vi1, Lem. 3.2]. It is used frequently in the rest of the paper, and it
is stated here for the convenience of the reader.

LEMMA 2.10

Let W be a finite group acting on the left on a s#f and let# C « be a set of
representatives for the orbits. Assume that W acts on the left on a product of abeli
groups of the typ¢[, .., My in such a way that

forany se W.
For eacha € 4, let us denote by Wthe stabilizer ofr in W. Then the canonical

projection
l_[ My — l_[ Mg
acd 74
induces an isomorphism

(TT™a)" — TT M.

acd acRB

3. The main theorem: The split torus case
In this section;T is a split torus ovek.

PROPOSITION3.1
Let T C T be a closed subgroup scheme (diagonalizable,33y43 Exp. IX, par.
8.1]), finite over k. Then the canonical morphism

§:R(May, — ] RO,
o dual cyclic
oCT/

is a ring isomorphism.

Proof
Since both RT") o, and] | ﬁ(o)AT, are freeAt--modules of finite rank, it is enough
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to prove that, for any nonzero prime { |T'|, the induced morphism df -vector
spaces
RTMap ®2Fp— ] RO, ®2Fp ®)

o dual cyclic
oCT/

is an isomorphism. Now, for any finite abelian groApwe have an equalityA| =

Y a_c ¢(IC]), wherey denotes the Euler functionH| denotes the order of the
group H, and the sum is extended to all cyclic quotientsfpfapplying this to the
group of character$’ (so that the corresponding cyclic quotietsare exactly the
group of characterg for o dual cyclic subgroups of’), we see that the ranks of
both sides in§) coincide with|T’|, and it is then enough to prove th&) (s injective.
Define a morphism

f: J] R@®ap — [] RO,

rdual cyclic odual cyclic
T/ oCT/

of R(T") o,,-modules by requiring, for any dual cyclic subgram T’, the commu-
tativity of the following diagram:

~ f
[ 1+ dual eyclicR(T) Ay, —> [ o dual cyclicR(0) A/

TCT’ oCT’
Prgl lpra
Htgg R(T)AT/ <T R(U)AT/

where Py and py, are the obvious projections agds the isomorphism

HrC(r re§ (Nr)r =
RO)A, ——— [[R@Ay, = [ R@a

tCo 1Co
induced by {). Obviously, f o § coincides with the map
l_[ res-fr/ : R(T/)AT/ - 1_[ R(U)AT/v
o dual cyclic o dual cyclic
oCT/ oCT/
so we are reduced to proving that
RTMap ®2Fp — [] R@)a;, ®2F)p

o dual cyclic
oCT/
is injective, that is, that ifA is a finite abelian group anp{ | Al, then
¢ :FplA] — l_[ Fp[C] 9)

Ce{cyclic quotients oA}
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is injective. If A = Homaparps(A, C*) denotes the complex characters groupof
then RA) ~ Z[A] and

o=]] re%i :R(A) — [ R(©C).
c

Ce{cyclic subgroups of}
Sincep 1 |Al, it is enough to prove that § R(A\) ®z Z[1/|A]] has image via
ref ® Z[1/|All : R(A) ®z Z[1/|All — R(C) ®z Z[1/|Al]

contained in p(R(é) ®z Z[1/|Al]) for each cyclic C C A thené «
p(R(A) &z Z[1/|All).
By [Se p. 73], there exist$9/6)6 € [Teeieyciic subgroups oy R(C) ®z Z[1/|Al]
such that ~
1= (ind% ® Z[1/| A1) (0%):

c
therefore

§

ind% ® Z[1/|Al1) (65 (resh ® Z[1/| AT &)

> ¢(indg @ Zi1/1A1) 65)
C

>

C

(by the projection formula), and we conclude the proof of the proposition. o

Remark 3.2
The proof of PropositioRs.1is similar to [Vil, proof of Prop. 1.5], which is, however,
incomplete; that is why we have decided to give all the details here.

COROLLARY 3.3

We have the following.

()  If o # o are dual cyclic subgroups of T, we haRér),. = 0 andR(c), =
R(0).

(i) If T c T is a closed subgroup scheme, finite over k, ardi#f a dual cyclic
subgroup of T, we hav&(T’), = 0ifo € T'.

@iy T’ c T isaclosed subgroup scheme, finite over k, the canonical morphis
of R(T)-algebras

RT™ay — [ R

o dual cyclic
oCT/

is an isomorphism.
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Proof

(i) Supposer # o/, and letT’ C T be the closed subgroup schemeTofienerated
by o ando’. The obvious morphismr : R(T)a;, — R(0)a, x R(0")a,, factors
through RT")a;, = R(0)a;, x R(0”)a,,, Which is an epimorphism by Proposition
3.1 1f & € R(T)a,, With 7(¢) = (0, 1) ® 1, we have

£ e Sy nker(R(Ma,, — R©@)ay)-

ThenR(o), = 0. The second assertion is obvious.
(i) and (iii) These follow immediately from (i) and PropositiGnl. O

Now let X be a regular Noetherian separakedlgebraic space on which acts with
finite stabilizers, and lex = A1 x). Obviously,¢'(T) is just the set of essential dual
cyclic subgroups oT sinceT is abelian.

PROPOSITION3.4
We have the following.
0] If j, : X — X denotes the inclusion, the pushforwdid ), induces an
isomorphism
KL(X?, T)e —> KL(X, T)e.

(i)  The canonical localization morphism

KX, Ta — ] KX T
oe?(T)

is an isomorphism, and the product on the left is finite.

Proof
(i) The proof is the same as that aft{5, Th. 2.1], but we substitute Corollaf;J(ii)
for [Th5, Th. 2.1] since we use a localization different from Thomason'’s.

(i) By the generic slice theorem for torus actions (séel] Prop. 4.10]), there
exist aT -invariant nonempty open subspddec X, a closed (necessarily diagonal-
izable) subgroud@”’ of T, and aT -equivariant isomorphism

U~T/T xU/T)~U/T)x" T.

SinceU is nonempty andl' acts onX with finite stabilizers,T’ is finite overk
andK, (U, T) ~ K,(U/T) ®z R(T’), by Morita equivalence theorem (se&hp,
Prop. 6.2]) andTh1, Lem. 5.6]. By Corollary3.(ii), the proposition forX = U fol-
lows from Corollary3.(ii). By Noetherian induction and the localization sequence
for K’-groups (se€Th3, Th. 2.7]), the statement fdt implies the same foK.

Again using Noetherian induction, Thomason’s generic slice theorem for tort
actions, and (i), one similarly shows that the produgt. 1) K. (X, T), isfinite. o
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By Proposition3.4, there is an induced isomorphism (of' R-modules, not a ring
isomorphism due to the compaosition with pushforwards)

[] KiX?. T — Ki(X, T)a. (10)
oce?(T)

As shown in Lemma.8, the product morphismx x T — T induces a morphism

076+ KL(X?, T)y —> KL(X?, T)geom® R(0)A. (11)

PROPOSITION3.5
Foranyo € €(T), 61, is an isomorphism.

Proof
We writefx  for 61 » in order to emphasize the dependence of the map on the spac
We proceed by Noetherian induction o&7. Let X’ € X be aT-invariant closed
subspace, and let us suppose thd) (s an isomorphism wittX replaced by any -
invariant proper closed subspageof X’. By Thomason’s generic slice theorem for
torus actions (se€lThl, Prop. 4.10]), there exist &-invariant nonempty open sub-
schemdJ c X/, a (necessarily diagonalizable) subgrdumf T, and aT -equivariant
isomorphism

U=UxT/T xU/T)~U/T)x" T.

SinceU is nonempty and” acts onX with finite stabilizers;T’ is finite overk and,
obviously,At' € A.LetZ? = Z = X\ U. Since

——> K (Z°, T, KX, T)g ————— > K, (U, T)y ———>

02,0 \L Oy o l 0U,0 l

—> KL(Z%, T)geom® R(a)a —> KL(X"?, T)geom® R(0)a —= KLU, T)geom® R(o)a —>=

is commutative, by the induction hypothesis and the five-lemma it is enough to shc
thatéy » is an isomorphism. By Morita equivalence theorem (se€3[ Prop. 6.2])
and [Th1, Lem. 5.6],K, (U, T) ~ K, (U/T) ®z R(T’), so it is enough to prove that

Ospeck.o : K(Spedk, Ty = R(T)), — K{(Spedk, T')geom® R(0)a
= R(T")geom® ﬁ(CT)A

is an isomorphism. But this follows immediately from Corollang(i) and (iii). o

Combining Propositio3.5with (10), we get an isomorphism

Ox1: [[ KLUX7. Tgeom® R(@)a —> KL(X, T)a. (12)
o€?(T)
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The following lemma is a variant offh5, Lem. 3.2], which already proves it after
tensoring withQ.

LEMMA 3.6

Let X be a Noetherian regular separated algebraic space over k on which a sp
k-torus acts with finite stabilizers, and let € ¢ (T). Let X° denote the regular
o-fixed subscheme, let j; X? < X be the regular closed immersion (s€enp,
Prop. 3.1]), and let# (j,) be the corresponding locally free conormal sheaf. Then,
for any T -invariant algebraic subspace Y of Xhe cap-product

A1(A (o)) N (=) KLY, T)e —> KL (Y, T)s
is an isomorphism.
Proof

We proceed by Noetherian induction on cloSedhvariant subspace$ of X°. The
statement is trivial folY = @, so let us supposé nonempty and

A1(A(Jo)) N (=)t KU(Z, T)e —> KU(Z, T)o

an isomorphism for any propér-invariant closed subspace of Y. By Thoma-
son’s generic slice theorem for torus actions (s&el] Prop. 4.10]), there exist a
T-invariant nonempty open subschelheZ Y, a closed (necessarily diagonalizable)
subgroupl’ of T, and aT -equivariant isomorphism

U =U~T/T x U/T).

SinceU is nonempty and acts onX with finite stabilizersT’ is finite overk. Using
the localization sequence and the five-lemma, we reduce ourselves to showing the

-1 (A (o)) N (=) : KLU, Ty — KLU, T),

is an isomorphism. For this, it is enough to show that (the restrictioh.af). 4" (j,))
isaunitinKo(U, T), >~ Ko(U/T)a ® R(T’), (see [Th3, Prop. 6.2]). Decomposing
A (jo) according to the characters ®f, we may write, shrinkindJ if necessary,

A (o) = P o0/r © %,
pef’

where.Z), is the line bundle attached to tA€-charactero andr, > 0, and there-
fore A_1(A (js)) = ]_[pef,(l — p)'»in Kg(U/T) ® R(T’). The localization map
R(THA = R(T")y ~ ﬁ(a),\ coincides with the composition

R(T)A =5 R(0)a =5 R(0)a
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of the restriction tar followed by the projection (see Cdt.3), and then

(idkow/T)s ®T) (A (1)) = €D ) ® %
x€a\{0}
in Kog(U/T)a ® R(o)a, Where the summand omits the trivial character since the de

composition of 47(j,) according to the characters @thas vanishing fixed subsheaf
A (jo)o (see, e.g., Th5, Prop. 3.1]). Therefore,

1 ((dio/mys 8T (A (o)) = [ @—x",
x€a\{0}

and it is enough to show that the image of- 1y in R(o)a via P, is a unit for any
nontrivial charactey of o. Now, the image of such ain

Alt]

C:)

(¥ being thelo |th cyclotomic polynomial) is of the forrit') for some 1< | < |/,

where[—] denotes the class mdxl,|; therefore the cokernel of the multiplication by
1—[t']in A[t] /(@) is

ﬁ(O')A ~

Al

(@, 1—th)
since®|,| and(1 —t') are relatively prime im[t] for 1 < | < |o|. Thus 1—[t']is a
unitin A[t],/(®s|), and we conclude the proof of the lemma. O

We are now able to prove our main theorem@®e= T.

THEOREM3.7
If X is a regular Noetherian separated k-algebraic space, then

WUy T Ki(X, T)p — H K«(X?, T)geom® ﬁ(U)A
oe?(T)

is an isomorphism oR(T)-algebras.

Proof

Recall (see appendix) th#t, (X, T) >~ K/ (X, T) andK.(X?, T) ~ K.(X?,T),
since bothX and X are regular (seeTh5, Prop. 3.1]). Sincebx T is an isomor-
phism of RT)-modules, itis enough to show that the compositgaT o ®x T is an
isomorphism. A careful inspection of the definitionslot T and®x 1 easily reduces
the problem to proving that, for ary € €'(T), the composition

KL(X7, Ty 225 KL(X, T)o - KL(X7, T)q
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is an isomorphismj, : X° < X being the natural inclusion. Singg is regular,
there is a self-intersection formula

i5 0 Jox (=) = A—1(A (Jo)) N (), (13)

4 (js) being the conormal sheaf associategi,tpand we conclude by Lemn®a6. To
prove the self-intersection formulad), we adapt Th5, proof of Lem. 3.3]. First, by
PropositiorB.4(i), j»+ is anisomorphism, so it is enough to prove thatj jo«(—) =
jox(A—1(4 (jo)) N (=)). By the projection formula (see Prop. A.5), we have

ja*j:jo*(_) = ja*j:(l) n ja*(_) = ja* J:(ﬁX) N ja*(_)
= jox(Oxo) N jox(=) = jox(i5(Oxs) N (-)).

Now, as explained in the appendix, to compjjjéf’x-) we choose a complek™* of
flat quasi-coherenB-equivariant modules oiX which is quasi-isomorphic t@'xo,
and then

j3(0x0) = [[F(FH]1 = [F* ® Oxe1= Y _(-D'[H'(F* ® Ox0)].
i

But F* is a flat resolution of¢’xs, so H' (F* @ Oxo) = Tori‘ﬁx(ﬁxa, Oxo) =~
/\i</1/(jg), where the last isomorphism (se8GA6 Exp. VII, par. 2.5]) is natural
and hencd -equivariant. Thereforg,:(Oxs) = A_1(.#(j»)), and we conclude the
proof of the theorem. O

4. The main theorem: The case oG = GL «
In this section we use the result férx 1 to deduce the same result foix gL,

THEOREM4.1
Let X be a Noetherian regular separated algebraic space over a field k on whic
G = GLy k acts with finite stabilizers. Then the map definedin (

“IJX,G : K*(x7 G)A((_;,x)
— [] (KeX*,C0))geom®a e RO aex,)" ¢, (14)
ASA(C))]

is an isomorphism dR(G)-algebras and the product on the right is finite.

Throughout this section, entirely devoted to the proof of Theofeinwe simply
write G for GLn k, A for A, x), andT for the maximal torus of diagonal matrices
in GL, k. First, let us observe that we can choose each ¥ (G) contained inT.
Moreover, A x) = AG,X)-
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We need the following three preliminary lemmas (Lerhg, 4.3, 4.4).

If o, 7 C T are dual cyclic subgroups, they are conjugate unde6ttig-action
if and only if they are conjugated via an element in the Weyl gr§ug-or any group
schemeH with a dual cyclic subgroup < H, we denote bym!! the kernel of
R(H)p, — ﬁ(a)A and byR(ﬂ)Tm the completion of RH) with respect to the
idealm!!.

The following lemma is essentially a variant of Lemih& for o -localizations.

LEMMA 4.2
Let G= GLnk, let T be the maximal torus of G consisting of diagonal matrices, anc
let X be an algebraic space on which G acts with finite stabilizers.
0] For any essential dual cyclic subgroupC T, the morphisms
wo,geom: K, (X7, CG(U))geom®R(CG(o))A R(T)a — KL(X?, T)geom
wo : KL (X7, Cs(0)), ®RCao)a R(TIa — KL(XT, T),

induced by T Cg(o) are isomorphisms.
(ii) For any essential dual cyclic subgroapc T,

mSe@)N . K/(X?,Ca(0)), =0, N >0,
and the morphism induced by Cg (o),

& 1 KL(X7, Ca(0)), ® R(Mae — KLX?, T),,

R(Ca ()0
is an isomorphism.
Proof

(i) Since Gs (o) is isomorphic to a product of general linear groups dvand since
T is a maximal torus in €(o), by Lemma2.9the canonical ring morphism

K (X, Cs(0)) ®r(Cs(0)) R(T) — KL(X,T) (15)

is an isomorphism. IH € G is a subgroup scheme, we denote 8y the multi-
plicative subset of RH), consisting of the elements sent to 1 by the canonical ring
homomorphism RH), — R(o)A. By (15), w, coincides with the composition
Ki(X7, Ce(0)), ®Rrca@ns R(Ta
~ KLU(X7. T) ®reatons ((855)MR(Ca(0))n) ®Rcs@na RTMIa
id ®vy o = o
—% KL(X?, Co(@)) ®Rcsions () R(Ma = KLXT, T,
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where
Vo : (2N IR(Ca(0)) , ®RCs@na R(TMa = (SHIR(MA  (16)

is induced byT — Cg(o) and the last isomorphism follows from%); the same is
true forw, geom Therefore, it is enough to prove that and

Vo geom: (ST 7IR(Cs(0)) , ®R(Ca(ona R(Ta = (S 7IR(T)A
are isomorphisms; that is, 8 denotes the image (ﬁfG(”) via the restriction map

thenST /1 consists of units ifiS;) "R(T) 4 for r = 1 andr = o. If A, denotes the
Weyl group of Gs (o), which is a product of symmetric groups, we hau€B(o)) ~
R(T)2- and therefore

(ST6@)~IR(Cg(0)) , = ((S)™IR(T)A)>

since RT) is torsion free. Moreover, there is a commutative diagram

() R(Cs(0)), =  (S)IR(T)a

| =

R(a = (SH7R(@)A & e (SH™IR(T)A

whereyr is induced by, and the isomorphisrﬁ(r),\ A (S;r)—lR(r)A is obtained
from Propositior3.1and Corollary3.3. If we define the map

M : (S)TIR(T)s — ((S)IR(T)A)™,
t— []a¢.

geAq
it is easily checked that fay € (S;) R(T)4, & is a unit if M(£) is a unit, and that
¥ (M(€)) = 1 implies that is a unit in((S;) "*R(T))%°. Butg is A,-equivariant,
and therefores| /1 consists of units itiS;) *R(T) for r = 1 oro.
(i) Since RCg(0)) — R(T) is faithfully flat, by (i) it is enough to prove that

m)ONKL(X?, T)e =0 for N > 0. (17)

But (17) can be proved using the same technique as in the proof of, for exampl
Proposition3.5, that is, Noetherian induction together with Thomason'’s generic slic
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theorem for torus actions. The second part of (ii) follows, arguing as in (i), from th
fact that (L6) is an isomorphism since

-

K.(X?, Ca(0)), @R( ) R(Cs(0)), , = Ki(X?, Ca(0)),,

Cs(o)

KL(X?, T)o ®ry, R(Maw =~ KLX7, T),. O

If 0,7 C T are dual cyclic subgroups conjugated un@k), they are conjugate
through an element of the Weyl grosh and we writer =g, o; moreover, we have
mC = m& because conjugation by an elemenSir(actually, by any element i@ (k))
induces the identity morphism dR-theory and, in particular, on the representation
ring. Then there are canonical maps

RG)ac ®re, RMa—  [[ RMa.  (18)
7 dual cyclid ~sh?
R(CG(U))A,(I QRN R(TIA — R(Maq. (19)

LEMMA 4.3
Maps (L8) and (L9) are isomorphisms.

Proof

Since RG) = R(T)S — R(T) is finite, the canonical maR(E)\A,(, ®R(G)A
__—  mG __—  mG
R(T)A, — R(T)Am" (where R(T)Am" denotes thenff-adic completion of the

R(G)-module RT),) is an isomorphism. Moreover,(B)s = (R(T)2)S implies

h
- JmeRMA= N JmI= () =l

7 dual cyclic 7 dual cyclic
Z%S_.O’ r%s_l(f
and, by Corollary3.3()), m{ + m!, = R(T), if = # 7. By the Chinese remainder
lemma, we conclude that §) is an isomorphism.
Arguing in the same way, we get that the canonical map

R(Cc(@)), , ®RCatons RMa — ] RMar

T dgal cyclic
a0
is an isomorphism, wher, = S,NCg(0) is the Weyl group of G (o) with respect
to T and we writer ~,_ o to denote that ando are conjugate through an element
of As. But A, C Cg(o), so thatr ~,_, o if and only if r = o, and we conclude
that (L9) is an isomorphism. O
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LEMMA 4.4
For any essential dual cyclic subgroupC G, the canonical morphism
R(G)ao — R(Ca(@)), ,

is a finiteétale Galois cover (se&S[GAL Exp. V]) with Galois groupwg (o).

Proof
Since RT) is flat over RG) = R(T)S, we have

R(G)r.0 = R(G) a0 ®R(G), (RMA)T
~ (R(G)a,0 ®RG)a R(T)A)Sn
——\S
~( [T RMa)™
7 dual cyclic
r%&o‘
the last isomorphism being given in Lemma. By Lemma2.10, we get
R(G)s ~ (R(T),) ™,

whereS, acts on the set of dual cyclic subgroupslofvhich areS,-conjugated tar
and whereS, , denotes the stabilizer of. Analogously, denoting by, the Weyl
group of G5 (o), by Lemma4. Z(ii) we have

—

R(CG (U))A’O' = R(CG (U))A,a ®R(CG(0))A

~ (R(CG/(U\))A,a ®R(Cg () R(T)A)AU
~ (RMao)™.

(R(T)a)™

where the last isomorphism is given by Lemra. From the exact sequence
1> Ay — Sio — wg(o) > 1,

we conclude that
RG)a.0 = (RCa(0)a0)""". (20)

By [SGAL Prop. 2.6, Exp. V], it is now enough to prove that the stabilizers of ge
ometric points (i.e., the inertia groups of points) of SﬁE(CG/(a\))A,U) under the
wg (o)-action are trivial.

First, let us observe that S[:(&{G)A) is a closed subscheme of
SpeQR(CG/(o\))A,U). This can be seen as follows. It is obviously enough to
show that ifs denotes the order af, the map

Alt]

Ty . R(CG(G))A —> R(U)A = m
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is surjective. First, consider the case wheris contained in the center &.
Since Ro), is of finite type overA, we show that for any prinfep t s the
induced map
7s.p : R(Cs(0)),, ® Fp — R(0)x @ Fp

is surjective. Note that iE denotes the standarddimensional representation G,
ms sends/\" E to ({)t". If p { n, thenr,, p is surjective (in factzr, (E) = nt and
nis invertible inFp). If p | n, let us writen = gm, with g = p' and p { m. Since
(s,q) = 1,t9is aring generator of &) s, and to prover,, p is injective, it is enough
to show thatp t (g) This is elementary since the binomial expansion of

A+ X)" =134 XH™M

in Fp[X] yields (2) = min Fp. For a generab C T, let Cg(o) = ]_['izlGLdi,k,
where) di = n, and leto; denote the image af in GLg x, i = 1,...,l. Since
o C ]_['i:1 oi is an inclusion of diagonalizable groups, the induced map

R(ll_[oi> - ®R(0i) — R(0)
i=1 i=1

is surjective (e.g., se&S[EA3 Vol. 11]). But R(Cg(0))a — R(o), factors as

[ |
R(Cc(0)), = QR(GLy a4 — Q)RGi)a — R©@)a,

i=1 i=1
and also the first map is surjective (by the previous case, sinisecontained in the
center of Glg k and|o;i| divides|o|). This proves that Speﬁ(o)A) is a closed sub-
scheme of SpQR(CG/(a\))A,a). SinceR(Cao\))A,o is the completion of RCg (o))
along the ideal

ker(R(Ca(0))a — R(0)a),

any nonempty closed subscheme of S(rmce/(a\)),\,g) meets the closed sub-
scheme Spqu(o),\). To prove thatwg (o) acts freely on the geometric points of
SpedR(CG/(o\))A,U), it is then enough to show that it acts freely on the geometric
points of SpeR(c),).

Actually, more is true: the mag : Spec¢R(c)s) — Spec€A) is a (Z/SZ)*-
torsor . In fact, if Spe¢2) — Spec€A) is a geometric point, the corresponding geo-
metric fiber ofq is isomorphic to the spectrum of

Q]
1_[ (t—ai) l_[ ¢

o €lLs(Q) o €Mis(S2)

*Recall thato is essential; hencs is invertible in A.
TRecall that the constant group scheme associate@ teZ)* is isomorphic to Aut(o).
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and(Z/sZ)* acts by permutation on the primitive rogis(2), by o — o, (k, s) =
1. In particular, the action of the subgrougs (o) C (Z/sZ)* on Spe¢R(c),) is
free. O

PROPOSITIONA.5
The canonical morphism

KL(X.G)a — [] (KLX?, Cal0))o) "
ASA(C))]

is an isomorphism.
Proof
By Lemma2.9, the canonical ring morphism
Ki(X, G) ®ree) R(T) — KL (X, T)
is an isomorphism. Since(®) — R(T) is faithfully flat, it is enough to show that
Ki(X, T)a = KL (X, G)a ®RrG), R(T)a

— [T (KX, Ca(0))0)"*"” ®rie), RT)A
0% (G)

is an isomorphism. By Propositigh4(ii), we are left to prove that

[T (KiX?.Ca@)0)"®” ®ren RTMa = [] KiX. T (20)

0% (G) o dual cyclic
oCT

For anyt € €(G) (r € T, as usual), we have
KL (X*. Ca(1)), ORGIn, R(T)a.z
~ / —

= (KX", Co () @iy, .

~ (KL(X", Ce(0): B, RCa(m)ar) ®

R(CE(T\))AJ) ®R(/G)\A,r Rﬁ)\l\,r

RCa@)a. RDA-

By Lemma4.4, for anyR@r-moduleM, we have

M &, R(Ca(1), . = we(®) x M

since a torsor is trivial when base changed along itself. Therefore,

KL(X", Co(0), ®xgm, R(Max

~ wg (1) x (KL(XT, Co(1)): ® RMa:) (22)

R(CG (M)A
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with wg(r) acting on left-hand side by left multiplication omg(z). Applying
Lemma4.Zii) to the left-hand side, we get
KL(X™, Ce(0), @grr, R = wa(?) x KL(X, T,
and taking invariants with respect iz (7),
(K;(Xf, Ce (1)) ®R(/G)\A,.[ R(/T)\Ar)we(f) ~ KL(XT, T)s. (23)

Comparing 21) to (23), we are reduced to proving that for amye ¢ (G) there is an
isomorphism

(K;(XG, CG(O'))O)wG(O) ®R(G)A R(T)A
~ 1 (KX Cotone @, RDne)".
7 dual cyclic s

RGO

SinceR(T) 4. is flat overR(G),.. and wg(z) acts trivially on it, we have (see
[SGAT)

(KLXT, Co(t))r By, R(TMae)"*”
~ (KUXT, Co(m)ae) " ®ggrm, RMar-
By Lemma4.3, we have isomorphisms
(KL(X?, C(6))5)"**” ®r(), R(Ta
~ (KL(X7, Ca(@))s)"*” @G, RG)a.0 ®R@)4 R(TIA
~ [T (Kix?. Cotone) "™ O, RDr-

7 dual cyclic
‘[%51 o

(Recall thatR(G)s » = R(G), . for anyt ~s. o, sincem® = m®.) For each
, , S o T

7, choosing an elemenj € S, such thatgog~! = ¢ determines an isomorphism
KL(X?,Cg(0))s =~ K,(X", Cs(1)); Whose restriction to invariants

(KL(X7, Ca(0)))"* = (KL(X, Co())r) """
is independent of the choice gf Therefore, we have a canonical isomorphism
(KL(X?, Ca(0))0)"*"” ®r(e), R(T)A
[T (KiX*,Ce0))0)"” @y, RMac

[

7 dual cyclic
I%Sna
~ [T (KX Come)""™ @ggrm, RMar
7 dual cyclic

I%Snd
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as desired. O

SinceK. (X, G) ~ K (X, G) andK.(X?,Cg(0)) ~ K/ (X?,Cg(c)), comparing
Proposition4.5with (14), we see that the proof of Theorefril can be completed by
the following.

PROPOSITION4.6
For anyo € %(G), the morphism given by Lemn2a8 and induced by the product
Cs(o) x o — Cg(0),

Oca(0).0 * KL(X7,Ca(0)), — KL(X?, Ca(0))4eom® R(@)A.

geom

is an isomorphism.

Proof
To simplify the notation, we writé, for 6c;s),.. AS usual, we may suppose
contained inT. Since G (o) is isomorphic to a product of general linear groups
overk, we can takel as its maximal torus, and by Lemnaad, the canonical ring
morphism

K.(X, Ca(0)) ®r(ca(o) R(T) —> KL(X, T)

is an isomorphism. Moreover,(Rg (o)) — R(T) being faithfully flat, it is enough
to prove thab, ® idr(t) is an isomorphism. To prove this, let us consider the com-
mutative diagram

oo 0, ®id -
KL(X?,Cg(0)), ®Rcana R(Ma —— (KL(X, Ce(0))geom® R(6)4) ®Rr(Cs@na R(T)A

- ]

KL(X?, T, KL(X?, T)geom® R(0)a

where

. K+ (X, Cc(0))geom ® R(0)4 is an RCg(0))s-module via the coproduct
ring morphismAc; ) : R(Cg(0))a — R(Cg(0))a ® R(o)a (induced by
the product G (o) x 0 — Cg(0));

. w, 1S the canonical map induced by the inclusibn— Cg(o) and is an
isomorphism by Lemma.z;
. 0t o Is an isomorphism as shown in the proof of Theorem

. Yo Sends(x @ u) @ t to (At (1) - X1) ® u, for x € Ky (X7, Cs(0))geom
ueR()a,t € R(TA, AT : R(T)s — R(T)A ®R(0) 4 being the coproduct
induced by the produdt x o — T.

So we are left to prove thak is an isomorphism.
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First, let us observe that Ris aring,A — A’ is a ring morphism, anl is an
A-module, there is a natural isomorphism

(M ®z R) ®ag,8 (A ®z R) — (M ®a A)Qz R,
MRr)® @ ry) — (MR a’) rirs.

Applying this toM = K.(X?, Cg(0))geom R = R(0)a, A = R(Cg(0)a, A =
R(T) and using Lemmd.2, we get a canonical isomorphism

f:KL(X?, T)geom® R(0) A
—> (KL(X", C6(0))geom® R(@)A) ®Ricg (o) 0R@)s (RTa @R@)A), (24)
where we have denoted BR(T) s ® R(c)4) the RCg(0))s ® R(0) s-algebra
res®id : R(Cg(0)), ® R(6)a —> R(T)a ® R(0)a.

It is an elementary fact that there are mutually inverse isomorphiging ), Bc o),
andarT, BT fitting into the commutative diagrams

R(Cs(0)), ®R(0)a (25)

R(Cg(0)) , acg o)

M

R(Cs(0)), ® R(0)a

R(T)s ® R(0)a (26)

=

R(T)a aT

\EQ\\

R(T)s ® R(0)a

and compatible with restriction maps induced by— Cg(o). This is exactly the
dual assertion to the general fact that “an actibix Y — Y is isomorphic oveiX to

the projection on the second factopprH x Y — Y,” for any group schemél and

any algebraic spacé. From 25) we get an isomorphism

@: (R(Cs(0))a ®R(0)a) ®rCa0)s R(TIa —> R(T)a ® R(0)a,
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where(R(Cg(0))a ® R(0)4) denotes the FC (o)) o-algebra
Acs(o) - R(Cs(0)), = R(Cc(0)) , ® R(@)a-
Therefore, if we denote b§R(T)x ® R(0)4)” the RCg(0))a ® R(o)a-algebra
(res®id) o a1 : R(C(0)) , ® R(0)a —> R(T)a ® R(@)a,
the composition

(KL(X7, C6(0))geom® R(@)a) ®R(Co(@)a R(T)A
= (KL(X?, C(0))geom® R(0)4)

® ((R(CG (©@)a ® ﬁ(U)A)/ ®R(Cg(0))a R(T)A)
R(Cg(0))A®R(0)a
- ) ~
9% (KL(X? Co(0))geom® R(0) )
®  RMaeR@M)
R(Cg(0))A®R(0)a
id ®/3T ’ @ ~
- (K*(X , Cc(0))geom® R(O')A)
X (R(T)s ® R(o)4)
R(Cg(0)aA®R(0)a
~ KL(X7, T)geom® R(0) A

is an isomorphism and it can be easily checked to coincide #ith O

5. The main theorem: The general case
In this section, we use Theorefl to deduce the same result for the action of a
linear algebrai&-groupG, having finite stabilizers, on a regular separated Noetherial
k-algebraic spacX. We write A for A, x).

We start with a general fact.

PROPOSITIONS.1

Let X be a regular Noetherian separated k-algebraic space on which a linear alge
braic k-group G acts with finite stabilizers. Then there exists an integer Qlsuch
thatif a;, ..., an € Ko(X, G)geomhave rank zero on each connected component o
X, then the multiplication bi][iN=1 g on K (X, G)geomis zero.

In particular, we have the following.
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COROLLARY 5.2
Let X be aregular Noetherian separated k-algebraic space with a connected action
a linear algebraic k-group G having finite stabilizers. Then the geometric localizatio

rko,geom: Ko(X, G)geom—> A

of the rank morphism has a nilpotent kernel.

Proof of Propositiorb. 1
Let us choose a closed immersiGn— GL k (for somen > 0). By Morita equiva-
lence,

K.(X, G) =~ K.L(X x© GLnk. GLnk)

and

Ko(X, G) ~ Ko(X x© GLnk, GLnk).
Moreover, A x,6aL,,GLoy = A- Leté = Xx/s € Ki(X, G)geom With X €
K.(X,G)p ands € rk=1(1) where rk : R(G) — A is the rank morphism,
and letaj = /s with i € Ko(X,G)s ands € rk~ (1) fori = 1,...,N.
Let us consider the elemenigl in K. (X =G GLn.k, GLnk)geom andej/1 in
Ko(X x© GLn.k, GLnk)geomfori =1, ..., N. Since the canonical homomorphism

K;(X x© GLn k. GI-n,k)geom—> K;(X» G)geom
is a morphism of modules over the ring morphism
Ko(X x© GLn k. GLn,k)geom—> Ko(X, G)geom

if the theorem holds fo6 = GLy x and if N is the corresponding integer, the product
[Tj @i /1 in Ko(X, G)geomannihilatesx/1 € K; (X, G)geomand a fortiori[ [; & an-
nihilatesg in K, (X, G)geom S0, we may assum® = GLq k. Let T be the maximal
torus of diagonal matrices i@. By Lemma4.X(i) with o = 1, there are isomorphisms

w1,geom: Ko(X, GLn k)geom®RGLy 4 R(T)a = Ko(X, T)geom
KL (X, GLn.k)geom®R(GLy )4 R(T)A = K(X, T)geom
Since RGLy k) — R(T) is faithfully flat and the diagram

ko, geom® id
Ko(X, GLn k)geom®RGLn )4 R(T)A T L A ®R(GLyx R(T)A

(Ul,geoml J«idA Qrkr

Ko(X, T)geom —_— A
rko,geom
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commutes, we reduce ourselves to proving the propositioGfer T, a split torus.

To handle this case, we proceed by Noetherian inductionXorBy [Th1,
Prop. 4.10], there exist &-invariant nonempty open subschepe U — X, a
closed diagonalizable subgroiip of T, and aT -equivariant isomorphism

Ux~T/T x U/T).

SinceU is nonempty andl' acts onX with finite stabilizers,T’ is finite overk
andK/ (U, T) ~ K/ (U/T) ®gr) R(T'), by Morita equivalence theorem (se&h,
Prop. 6.2]). Lef : Z — X be the closed complementdfin X, and letN’ be an in-
teger satisfying the proposition for bothandU . Consider the geometric localization
sequence

K.(Z, T)geomi> KL(X, T)geomj—> KL (U, Tgeom
and lets € K/ (X, T)geom Letay, ..., axn € Ko(X, T)geom By our choice ofN’,

jangr- ... can UE) =0;

thusan 1 - ... - agn NE = i, (n) for somen in K (Z, T)geom BY the projection
formula, we get

a-...-an UE :i*(i*(al)-‘..'i*(aN/)Un),

which is zero by our choice dfi” and by the fact that rank morphisms commute with
pullbacks. ThusN = 2N’ satisfies our proposition. O

Remark 5.3

By Corollary5.2, K (X, G)geomiS isomorphic to the localization &€, (X, G), atthe
multiplicative subsetrko) ~1(1), where rlg : Ko(X, G)ao — A is the rank morphism.
Therefore, ifX is regular,K (X, G)geomdepends only on the quotient stack/G]
(see LMB]) and not on its presentation as a quotient.

The main theorem of this paper is the following.

THEOREM5.4

Let X be a Noetherian regular separated algebraic space over a field k, and let
be a linear algebraic k-group with a sufficiently rational action on X having finite
stabilizers. Suppose, moreover, that for any essential dual cyclic k-subgroup sche
o C G, the quotient algebraic space/Gg (o) is smooth over k (which is the case if,
e.g., G is smooth or abelian). The(G) is finite, and the map defined iB)(

Uxe: KX, Ga — [ (Ku(X, C(0))geom® R(e)2)"*,
0 (G)
is an isomorphism oR(G)-algebras.
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Remark 5.5
In Section 5.1 we also give less restrictive hypotheseS ander which Theorerd.4
still holds.

Note also that ifX has the G-equivariant resolution property” (i.e., any-
equivariant coherent sheaf is tleequivariant epimorphic image of@-equivariant
locally free coherent sheaf), then in Theoremione can replace o€, with Quillen
K -theory ofG-equivariant locally free coherent sheaves. This happens, for exampl
if X is a scheme an@ is smooth or finite (se€lh3)).

5.1. Proof of Theorem 5.4
Let us choose, for sone a closed immersio® — GLj k and consider the algebraic
space quotient

Y = GLnk x®X.
We claim that if the theorem holds foar with the induced Gk k-action, then it holds
for X with the givenG-action. First, let us note thatis separated. The action mgp:
G x (GLpk xX) = (GLnk x X) x (GLn k x X) is proper (hence a closed immersion)
since its composition with the separated map

P123: GLnk XX x GLpk XX — GLpk x X x GlLp

(here we use thaX is separated) is just jdxa, wherea is the action map ofs on
GLn k; hence it is proper (se€[5Al, Rem. 5.1.7], which obviously carries over to
algebraic spaces). L& = X x GLy k. In the Cartesian diagram

PxyP —— PxP

[

Y — YXxY
Ay

P xy P>~ G x Psincer : P — Y is aG-torsor, andr is faithfully flat; therefore,
Ay is a closed immersion; that i¥,is separated.

Note thatA(Y,GLn,k) = A.

Consider the morphism defined if)(

Ux G KX, G)a — [] (Ku(X%. Ca(0)geom® R(o)a)"* . (27)
IS A(C))]

By Theorem4.1, the map

Uy gLy ¢ Ki(Y, GLnk)a

— ] (KeY?. CoLyy(0))geom® R(p)a )t
p€E(Glnk)
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is an isomorphism, and by the Morita equivalence theorem (5e& [Prop. 6.2]),
Ki(Y,GLnk)a = Ki(X,G)a. We prove the theorem by constructing an isomor-
phism

[T (Ka(Y’. C0))geom® Rp))"Sos”
P (Glnk)

— J] (Ku(X?. Ca(0))geom® R(@)4)"* " (28)
0% (G)

commuting with thel’s and Morita isomorphisms.

Leta : €(G) — € (GLnk) be the natural map. Y* # @, there exists a dual
cyclic subgroupy € G, GL, k-conjugate top (and X? # ¢); therefore,Y? =
unlessp € im(«), and we may restrict the first product iad) to thosep in the image
of & and suppose i) € % (G) as well. The following proposition describes the
Y*’s that appear.

PROPOSITIONS.6

Let X be a Noetherian regular separated algebraic space over a field k, and let

be a linear algebraic k-group with a sufficiently rational action on X having finite

stabilizers. Suppose, moreover, that for any essential dual cyclic k-subgroup sche

o C G, the quotient algebraic space/Gg (o) is smooth over k. Let G- GLp

be a closed embedding, lete im(«) be an essential dual cyclic subgroup, and let

Y = GLnx x©X be the algebraic space quotient for the left diagonal action of G. If

CoLny.c(p) € €(G) denotes the fibax~1(p), then

0] choosing for eacly € ¢cL,,,c(p) an element y, € GLjk(K) such that
up,gou;}, = p (in the obvious functor-theoretic sense) determines a uniqui
isomorphism of algebraic spaces over k,

o & ]_[ NaL, (o) xNe(©@) xo __, ye,

0 EGGL, k.G (P)
(i)  CoLyk,c(p) isfinite.

Proof
Part (ii) follows from (i) sinceY” is quasi-compact. The proof of (i) requires several
steps.

(a) Definition of |,. If o € ¢GL,,.c(p), let_4; be the presheaf on the category
Schyk of k-schemes which associateslto— Sped the set

NGLy (0)(T) x X (T)
Ne(@)(T)

No(T) =
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since Ns (o) acts freely on N, (o) x X7 (on the left), the flat sheaf associated to
Ny 18 NoL, (o) xNe@ X7 Let Y# be the presheaf on Sghwhich associates to
T — Sped the set
GLnk(T) x X(T)
G(T)
— T,vr € p(T), [r A1/, X7/] = [A1/, XT’]}§

Y0 (T) = {[A, x] € VT’

the flat sheaf associated ¥ is Y* (e.g., see[pG, Chap. II, §1, n. 3)). Ifu,, €
GLnk(k) is such thamp,aou;y%, = p (in the obvious functor-theoretic sense), the
presheaf map

’j\p,o N —> ’Y\p,
Tp.0(T) 1 A(T) 3 [B,X] —> [Up.» B, x] € Y°(T)

is easily checked to be well defined. Lgt, : NgL, (0) xNe@) X — Y? denote
the associated sheaf map, and define- HoechLn () Jo,o-

(b) The map 4 induces a bijection on geometric pointShis is an elementary
check. Lett € YP(Q2) be a geometric point. Then there exist an fppf coligr—
Spec2 and an elemeritA, x] € VP(TO) representing. Therefore, for eacii — Ty
and eachr € p(T) there existg € G(T) such that

rArg ! = Ar,
OXT = XT.

ThenA~1p A defines (functorially oveTy) a dual cyclic subgroup schemgof G,
over To. Sinceo( is isomorphic to some@n, 1,, it descends to a dual cyclic subgroup
o’ of G overk which is GL, k-conjugate top sinceTop — Spec2 has a section
and Gl i satisfies our rationality conditiofRC) (see Rem2.X(i)). By definition of
6Ly .G (p), there exists a unique € 4L, ,.c(p) Which isG-conjugated ta’ over
k; that is,

go'gt=0
(functorially) for someg € G(k). Sinceo € %cL,.c(p), there is an element
U € GLnk(k) such thatusu=® = p. Therefore,u"Ag~! restricted toT is
in NoL,,(0)(To), gx € X?(To), and if [u"tAg1, gx]~ denotes the element in
(NoLy () xNe@ X)(Q) represented by the elemeinttAg=2, gx] in .45 (To),
we havej, , (2)([u=tAg™1, gx]™) = £ by definition of j, . Thus, j, () is surjec-
tive.

Now, letn € (Ngi, (o) xNe@ X)) (resp.,ii’ € (NgL, (o)) xNe@")
X”’)(Q)) for o ando’ in 4GL,,.c(p). Choosing a common refinement, we can as-
sume that there exists an fppf covey — Spec such thaty (resp.,n’) is repre-
sented by an elemenB, y] € .45 (To) (resp.,[B", y'] € A5/(To)). If j,(2)(n) =
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i (2)(n"), there exists an fppf covéll — To such thafu, , B, y] = [u, ,B’, ¥']
in GLp k(T1) x X(T1)/G(Ty); that is, there is an elemegte G(T;) such that

UpoBgt=u,,B in GLnk(T1),
gy=y inX(T).

Then it is easy to check that = g~1o”’g overT; and, as in the proof of surjectivity
of j,(€), sinceTy — Spec2 has a section an@ satisfies our rationality condition
(RC), o ando’ are G-conjugated ovek as well, and therefore = ¢’ as elements
iN €GL,,.G(p). In particular,g € Ng(0)(T1) and[B, y] = [B’, y']in .45 (Ty). Since
Tp — SpecQ is still an fppf cover, we have = " and j, () is injective.

(c)Each |, » is a closed and open immersidhis enough to show that eagh »
is an open immersion because in this case it is also a closed immeY<idiging
quasi-compact. Sinced\, (o) acts on bOth]—[UE(gGLn,k,G(P) NoL, (o) xNe@ X
andY” and sincej, is equivariant, it will be enough to prove thgs , is an open
immersion. We prove first thait, , is injective and unramified and then conclude
the proof by showing that it is also flat (in fact, &tle injective map is an open
immersion).

(c1) The map j , is injective and unramifiedt is enough to show that the inverse
image undetlj, , of a geometric point is a (geometric) point. Consider the commuta
tive diagram

NoL, () X X —— Glny xX

°| I
NoLy(0) xNe®) Xp —— Y
10°)p.p
wherel andi, : Y” — Y are the natural inclusions and wheper are the natural
projections. Let/p be a geometric point of in the image of ;0 j,, ,; using the action
of NaL, () 0N Na, (p) xNe®) XP andY”, we may suppose tha is of the form
[1, Xo] € YP(R2), with Q an algebraically closed field ang € X*(£2). Obviously,
(L X0) € NgL, (p) xNet) XP(Q) is contained inj, % (yo), and, by faithful flatness

of p, j,1(yo) = (1. xo) if
p (L x0) = 7 1(yo) N (NoL,  (p) xNe@ XP). (29)

But G(Q) >~ 7 1(yo) viag (971, g%) and Nz(p)(2) =~ p~((L x0)) viah
(h~1, hxg); therefore, 29) follows from Ng (o) = NgL,(0) N G.

(c2) The map j , is flat. This fact is proved in Section 5.2, where we also sin-
gle out a more general technical hypothesis for the actio® ah X under which
Propositions.6 still holds. O
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The remaining part of this subsection is devoted to the conclusion of the proof
Theoremb.4 using Propositiors.6. First we show that Propositidn &(ii) allows one
to define a canonical isomorphism

[T (Ke(Y.CoLyy(0))geom® R(p)a )" Hnx
PG%)(GLn,k)

~ J] (KeNoLy,(0) xNe@ X7, Co,, (0))geom® R(0)a) o0k ;
IS A(©)]

next we show, using Lemnial(Q that each factor in the right-hand side is isomorphic
to

(Kw(CoLy i (0) x5 X7, Col, 4 (0))geom® R(0), ).
The conclusion (i.e., the isomorphisrag]) is then accomplished by establishing,

for any regular Noetherian separated algebraic sgaoa whichG acts with finite
stabilizers, a “geometric” Morita equivalence

K*(GLn,k XGZ, GLn,k)geomZ Ky (Z, G)geom

First, note that the choice of a family, , | 0 € %GL,,.c(p)} of elements
Upc € GLnk(K) such thatup,(,ou;}I = p, which uniquely defineg, in Proposi-
tion 5.6, also determines a unique family of isomorphisms

{int(Uy.0) : CoLn(P) = CoLak(@)|o € CoLnwc(P)}

(where intu, ) denotes conjugation ly, ), and this family gives us an action of
CGLnYk(Io) on
[ Noty (o) xNe@ x°

0 E€CGL k.G (P)

(since Nsi, (o), and then G, (o), acts naturally on ¥, (o) xNe©@ X by left

multiplication on Ns,,  (0)). With this action,j, becomes a €, (0)-equivariant
isomorphism, and since ifit, ,) induces an isomorphism (Rg,, (0)) =

R(CqL, «(0)) commuting with rank morphismg, induces an isomorphism

Ks (Y7, CoLni(0) geom® R(0)A
~ 1—[ Ky (oL, (0) x"6@ X°. CGLn,k(U))geom® R(o)a

0ELGL, .G (P)

which, by definition of the action of 8, (o) on each N, (o) xNe(@) X induces



K-THEORY OF ACTIONS WITH FINITE STABILIZERS 41

an isomorphism

(K*(Y'O’ CGLn,k(P))geom@) ﬁ(p)A)wGank(p)
= l_[ (K« (NLnk (@) s NEE) 3, CoLnx(0))geom® ﬁ(G)A)wGLn'k(U).

0 E€6GL .G (P)

(30)
Now, if j, is induced, as in Proposition6, by another choice of a familjv,, » |
0 € CGLG(p)} of elementsv, , € GLpk(K) such thatvp,(,avpj}, = p, then
v;},up,cr € NoL, (o) (k) and there is a commutative diagram

(U_J&U o)
NGLn,k(U) xNG(@) xo po P NGLn.k(O’) x Ne(@) xo

X\ /
YP
Therefore, isomorphisnB() on the invariants is actualipdependenof the choice

of the family{u,, » | o € GoL,4.c(0)}. SincebeL,,.c(p) = a~1(p) and, as already
observedY” = ¢ unlessp € im(«), this gives us a canonical isomorphism

l_[ (K*(Yp’ CoLnk (P))geom® ﬁ(p)/\)we"“vk(m
p€? (GLn k)

~ [] (KiNoLy, (o) xNe@ X, CaL,, (0))geom® Ri@)) "k,
oe?(G)
Now, let us fixo € ¢(G), and let us choose a set C NgL,,(0)(k) such that
the classes imgL, (o) of the elements in7 constitute a set of representatives for
thewg(o)-orbits inwgL, (0); < is a finite set. Since

CGLn_k(O‘) xC6(@) X0 NGLn,k(G) xNe(©@) xo
is an open and closed immersion, the morphism

]_[CG'-n,k(O') x©e(@) X7 — NgLp () xNe@) X7,
o

[C, XIp e — [A - C, X]

(in the obvious functor-theoretic sense), which is easily checked to induce an is
morphism on geometric points, is an isomorphism. Therefore, there is an induc
isomorphism

[ TK(CoLni(0) X X7, CoL,4(0)) yoom® RO A
o

~ Ky (NotLny (0) XN X7, Coly (0)) geom® RO A

geom



42 VEZZOSI and VISTOLI

Sincewgl, (o) acts transitively on with stabilizerwg (o), by Lemma2.10we get
a canonical isomorphism

(K*(NGLn,k(G) SEEIDE CoLnk (9))geom® ﬁ(U)A)WGLn’k(U)
= (K*(CGLn’k(U) x Ce(@) X, CGLn,k(U))geom® ﬁ(U)A)wG(U)_
Since, by Morita equivalence (segf{3, Prop. 6.2]),
K*(CGLn'k(O') XCG(O') XO" CGLnk(O‘)) ~ K*(XU, CG(O’))’ (31)

to conclude the proof of Theorem4 we need only show that the natural morphism

K (CoLn (@) x € X7, CoLy(0)) goom = Ki(X", Ca(0)) yoom ~ (32)
induced by 81) is still an isomorphism. Since the diagram
K*(GLn»k S, GLn,k)geom —— K*(CGLn,k(G) xCe(@) X, CGLn,k(U))geom

S

Ky (X9, CG(a))geom

is commutative and, by Morita equivalence,

K (CaLny (@) X% X7, CaL, ()
~ Ky (GLnk x kP Cg,, (0) x%@ X7, GLyk)
~ K*( GLn’k XCGLn'k(U) Xa, GLn,k )7
to show thats is an isomorphism it is enough to prove that for any regular separate

algebraic spac& on whichG acts with finite stabilizers, Morita equivalence induces
an isomorphism

K« (GLnk XGZ, GLn k) geom == K« (Z, G)geom (33)

since in this case bot andy are isomorphisms.

Let 7 : R(GLnk) — R(G) be the restriction morphism, let : R(G) —
Ko(Z, G) be the pullback alongZz — Sped, let rkK : R(GLhx) — A and
rk : R(G) — A be the rank morphisms, and I8t = (rk’)~1(1), S = (rk)~1(1),
andT = 7 (S) C S, the following diagram commutes:

1 rko,T
T Ko(Z,G)p —= A

Ko(Z, G)geom
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where rlgeom and rky 1 denote the localizations of the rank morphismy rk
Ko(Z,G)a — A. By Morita equivalence, the natural map (which commutes with
the induced rank morphisms)

Ko(GLnk x®Z, GLnk)geom — T Ko(Z, G)a

is an isomorphism, and then, by Proposition, ker(rko T : T 1Ko(Z,G)p — A)
is nilpotent. Now, ifs € S, then rlg 1 (p(s)/1) = rk(s) = 1, and therefore

T 'Ko(Z.G)a — Ko(Z. G)geom
and
Ko(GLn k XGZ, GLn,k)geom—> Ko(Z, G)geom

are both isomorphisms. Sind€, (GL « xC2Z, GLnk)a is naturally aKo(GLnk
xCZ, GLn k) A-module and an BGL,, k) o-module via the pullback ring morphism

Pt R(GLnka — Ko(Glnk x6Z, GLnk)a,
we have

K;(GLn,k XGZ, GI—n,k)geom
~ K(GLnk x®Z, GLnk) A ®Ko(GLny x67.6Ln 0 Ko(GLnk x®Z. GLn k)geom
= K;(Z’ G)A ®Ko(z,6)a Ko(GLnk XGZ» GLn,k)geom
~ K. (Z,G)p ®Ko(z.G)a Ko(Z, G)geom
= K;(Z’ G)geom

which proves 82), and we conclude the proof of Theorém. O

5.2. Hypotheses on G
In this subsection we conclude the proof of Propositici showing that (this is part
(cp) of the proof)

jp,p . NGLn,k(,O) xNG(0) xp __, yp

is flat. This is the only step in the proof of Propositioi where we make use of the
hypothesis that the quotient algebraic sp@¢€g (o) is smooth ovek. Actually, our
proof works under the following weaker hypothesis. Batenote the spectrum of the
dual numbers ovek,

S = Speckle]),

and for anyk-group schemeH, let ﬁl(S, H) denote thek-vector space of isomor-
phism classes of pail®® — S, y), whereP — Sis anH-torsor andy is ak-rational
point on the closed fiber d?. Then Propositiors.6, and hence Theorem4, still
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holds with hypothesis
(S) for any essential dual cyclic subgroup scheme G, the quotientG/Cg (o)
is smooth ovek
replaced by the following:
(S) for any essential dual cyclic-subgroup scheme € G, we have
dimH' (S, Ca(0)) = dim (H'(S, G))°.

First we prove thaj, , is flat assumingS') holds. Then we show that (S) implies
(S). Sincep : Ngi,  (p) x XP = NgL, (p) xNe®) X# s faithfully flat, it is enough
to prove thatlp = jp.p o pisflat. Letwr : GLyx xX — Y be the projection, and let

f:GLhk xX xG — GLpk xX,
(A, x,9) — (Ag"t, g%).
Consider the following Cartesian squares:

u

U %ﬂ n'_l(Yp)CH GLn’k X X (34)
| |
NGL, () x X? j S Y

+p

Sincer is faithfully flat, it is enough to prove that, is flat. But the squares

U+ Glnk xX x G — > GLnk xX (35)

T

NGLn,k(/O) x XPC—— Gl k x X —Y
are Cartesian and (in the obvious functor-theoretic sense)
U={(A X 9 €GLykxX x G|JA ™ pA=p,x € X*} = NoL, (p) x X* x G.
Moreover, ifP = {A € GLyk | A"1pA C G}, the map

77HYP) = {(A, %) € NoL, (p) x X|ATpAC G, x e XA PA} — P x X,
(A, X) —> (A, AX)
is an isomorphism. Therefore, we are reduced to proving that the map

Vo Ny (p) x XP x G — P x X?,
(A, X, 9) —> (AgL, Ax)
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is flat. But since the diagram

NG, ((p) x XP x G L P xXP

Pf13l lprl

NGL,(0) x G —_— P
©p
(where®,(A, g) = (Ag™1)) is easily checked to be Cartesian, it is enough to show
that / , is flat. To do this, let us observe thatacts by conjugation on Glx /G
(quotient by theG-action on Glg k by right multiplication), and we have a Cartesian
diagram
PC—> GLn,k

(GLhk /G)PC—sGLnk /G

Thent is aG-torsor and®, is G-equivariant. Thus, the following commutative dia-
gram, in which the vertical arrows af&-torsors,

©p
NGLn'k(p) x G ——— P

prll lr

NeL,  (0) — (GLnk/G)”?
P

(wherey, (A) = [A] € GLn k /G) is Cartesian, and we may reduce ourselves to prove
that y, is flat. Now, observe that &, , (o) acts on the left of both &, (o) and
(GLnk /G)? in such a way thay, is N, (0)-equivariant. Therefore, it is enough
to prove thaty, is flat when restricted to the connected component of the identity it
NeL,, (), thatis, that the map

Xy - CoLnk(p) —> (GLnk /G)”

is flat. Now, Gs,,, (0) = (GLn k)”, Wherep acts by conjugation; bottGLn x)” and
(GLnk /G)? are smooth byTh5, Prop. 3.1] (since Gh.x and Gl k /G are smooth);
each fiber OfX/G has dimension equal to diiGg(p)) becausex;) is CoL,(0)-

equivariant for the natural actions; and all the fibers are obtained(fxgml([l]) =

Ca(p) by the G, (0)-action. Thereforex;) is flat if

dim (CGLn‘k(p)) =dim (CG (,0)) + dim ((GLn,k /G)’O). (36)
Note that, in any case,

dim (CoL,, (0)) < dim(Cg(p)) + dim ((GLnk /G)”). (37)
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Since Gly i is smooth, dind(GLnk /G)?) = dimk(T1(GLnk /G)?), where T de-
notes the tangent space at the class efGL, x. Moreover, sincé_-ll(S, GlLnk) =0,
there is an exact sequencekevector spaces

0 — Lie(G) —> Lie(GLnk) —> T1(GLnk/G) — H(S,G) - 0  (38)

which, p being linearly reductive ovek, yields an exact sequence @finvariants

0— Lie(G)? —> Lie(GLnk)” —> T1(GLnk /G)® —> H(S,.G)” — 0. (39)
But GLy i is smooth, so

dimy (Lie(GLnk)?) = dim(GLnk)” = dim (CeL, (0)).
and, since Li€Cg(p)) = Lie(G) N Lie(CoL, (), We get
dimy (Lie(G)”) = dim (Lie(Cg(p)))-

By (39), we get

dimy (F(S, G)*) = dimk (T1(GLnk /G)?) — dim (CoL, . (0))
+ dimy (Lie(Ca(p)))
— dim ((GLak /G)?) — dim (CoL,, (»)) + dim (Ca(p))
+ dimg (Lie(Cg(p))) — dim (Ca(p)); (40)

hence 86) is satisfied if
dimy (F'(S. G)?) = dimy (Lie(Cg(p))) — dim (Cg (p)). (41)

But
dimi (F™(S. Ca(p))) = dimy (Lie(Ca (p))) — dim (Ca (p))
by the exact sequence (analogous®) (vith G replaced by G(p))

0 — Lie(Cg(p)) — Lie(GLnk) —> T1(GLnk/Ca(p))
— H'(S.Ca(p)) = O;

hence {1) holds by hypothesigS). We complete the proof of Propositicn6 by
showing that (S) impliegS). Since G (p) € G, we have a natural map

e : H'(S. Ca(p)) — H'(S. G)",
and by ¢0) and 37), we get

dimy (FY(S. G)?) = dimk (F'(S. Ca(p))). (42)
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Now, if (S) holds, that is, ifG/Cg(p) is smooth, and ifP — S, y] is a class in
ﬁl(S, G)?, P/Cg(p) — Sis smooth andy induces a point in the closed fiber of
P/Cc(p) — S, we may reduce the structure group te @), thus showing that is
surjective. By {2), we conclude that is an isomorphism, and this impligS).

5.3. Final remarks

PROPOSITIONS.7
Let X be a Noetherian regular separated algebraic space over k, and let G be a fini
group acting on X. There is a canonical isomorphism ¢GRalgebras

Ki(X, G)geom® Z[1/IG|] =~ K. (X)® ® Z[1/IG|].

Proof
Since ker(rk : Ko(X) — HO(X, Z[1/|G]])) is nilpotent by Corollarys.2, the canon-
ical homomorphism

7 Ke(X, G) — Ky (X)®

induces a ring homomorphism (still denotedsb¥)
7" 1 Ki(X, G)geom® Z[1/IG] — K.(X)® @ Z[1/|G]].
Moreover, the functor
Ty : F —> @g*ﬁ,
geG
defined on coherent’x-modules, induces a homomorphism

e KLOXO® @ Z[L/IG[] — KL(X, G)geom® Z[L/|G],
and (recalling thak (X, G) ~ K/ (X, G)) we obviously get
' (F) = |G| - Z.
On the other hand, we have
T (F) = F @ m.Ox.

But rk(r.0x) = |G|, and thereforer,7* is an isomorphism, too, because of Corol-
lary 5.2. O

As a corollary of this result and of Theorei, we recover Yil, Th. 1], which was
proved there in a completely different way.
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We conclude the paper with a conjecture expressing the fackth@(, G)geom
should be theK -theory of the quotienX/G, if X/G is regular, after inverting the
orders of all the essential dual cyclic subgroup§of

CONJECTURES.8

Let X be a Noetherian regular separated algebraic space over a field k, and let
be a linear algebraic k-group acting on X with finite stabilizers in such a way tha
the quotient X G exists as a regular algebraic space. Let N denote the least commc
multiple of the orders of all the essential dual cyclic subgroups of G, and let
Z[1/N]. If p: X — X/G is the quotient map, the composition

K+(X/G)a — Ku(X,G)a —> K(X, G)geom

is an isomorphism.

Remark 5.9
Bertrand Toen pointed out to us that{f/ G is smooth, it follows from the results of
[EQ] that the composition

Ko(X/G) ® Q — Ko(X, G) ® Q —> Ko(X, G)geom® Q

is an isomorphism.

Appendix. Higher equivariant K-theory of Noetherian regular separated alge-
braic spaces

In this appendix we describe thé-theories we use in the paper and their relation-
ships. We essentially follow the example &[T, Sec. 3]. We also adopt the language
of [ThTr].

Let us remark that it is strongly probable that there exist equivariant versions
most of the results inThTr, Sec. 3]. In particular, there should exist a higlker
theory of G-equivariant cohomologically bounded pseudocoherent complexés on
(resp., ofG-equivariant perfect complexes &) for any quasi-compact algebraic
spaceZ having most of the alternative models describedTinTr, Pars. 3.5-3.12].
The arguments below can also be considered as a first step toward an extensiol
[ThTr, Lems. 3.11, 3.12] to the equivariant case on algebraic spaces. However,
keep the paper to a reasonable size, we have decided to give only the results we n
and, moreover, we have made almost no attempt to optimize the hypotheses.

We would also like to mention the papef [in particular, Section 1) in which,
among many other results, the general techniqueslofi] are used as guidelines for
the K -theory of arbitrary Artin stacks.
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We work in a slightly more general situation than required in the rest of the pape

Let Sbe a separated Noetherian scheme, an@ le¢ a group scheme affine over
Swhich is finitely presented, separated, and flat c&véfe denote bys-AlgSpeq the
category of regular Noetherian algebraic spaces separate@ it an action ofG
over Sand equivariant maps.

Definition A.1

If X € G-AlgSpeq We denote byK..(X, G) (resp.,K. (X, G), resp.,KNaVe(x, G))
the WaldhauserK -theory of the complicial bi-Waldhausen category (s€&T[1])
#1,x of complexes of quasi-cohere@-equivariant&’x-modules with bounded co-
herent cohomology (resp., the Quilldg-theory of the abelian category db-
equivariant coherenf’x-modules, resp., the Quillel -theory of the exact category
of G-equivariant locally free coherertx-modules).

PROPOSITIONA.2
Let Z — S be a morphism of Noetherian algebraic spaces such that the diagon
Z — Z xgs Z is affine, and let H— S be an affine group space acting on Z. Let
Z be an equivariant quasi-coherent sheaf on Z of finite flat dimension; then the
exists a flat equivariant quasi-coherent sheg&fon Z together with a surjective H-
equivariant homomorphis¥’ — Z.

In particular, if Z is regular, this holds for all equivariant quasi-coherent sheaves
FonZ.

The hypotheses of Proposition A.2 ensure that the usual morphisgH — ZxsZ

is affine. In fact, the projectio xs H — Z is obviously affine, the projection

Z xs Z — Z has affine diagonal, so this follows from the elementary fact that if
Z — U — V are morphisms of algebraic spacg&s,~ V is affine, andJ — V has
affine diagonal, theZ — U is affine. Consider the quotient staék = [Z/H] (see
[LMBY]); the argument above implies that the diagogal> 2 x 52 is affine. Since

an H-equivariant quasi-coherentz-module is the same as a quasi-coherent module
over.Z, now Propositiorb.3 follows from the more general result below.

PROPOSITIONA.3

Let S be a Noetherian algebraic space, and46tbe a Noetherian algebraic stack
over S with affine diagonal. Le¥ be a quasi-coherent sheaf of finite flat dimension on
Z; then there exists a flat quasi-coherent sh&fon 2" together with a surjective
homomorphisn¥#’ — %#.
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Proof
Take an affine schemg with a flat morphismf : U — 27; then f is affine, and, in
particular, the pushforward, on quasi-coherent sheaves is exact. Consider a quas
coherent sheaf# on 2 of finite flat dimension, with the adjunction mag —
f. f*.Z. This map is injective; call? its cokernel. Clearly, the flat dimension of
f. f*.7 is the same as the flat dimension®f we claim that the flat dimension @
is at most equal to the flat dimension.@f. Now, if there were a sectio®” — U of
f, then the sequence

0—- % - f,f*7 250

would split and this would be clear. However, to compute the flat dimensic ofe
can pull back to any flat surjective map £ ; in particular, after pulling back tt,
we see thatf acquires a section, and the statement is checked. Blasvan affine
scheme, so we can take a flat quasi-coherent sheah U with a surjective map
u: P — f*#.Call.#’ the kernel of the compositiofi, # — f,{*%# — 2;then
Z' surjects onta#, and it fits into an exact sequence® %' — .22 - 2 — 0.
But f.Z is flat over 2", so the flat dimension of?’ is less than the flat dimension
of 2, unless2 is flat. But since the flat dimension ¢ is at most equal to the flat
dimension of#, we see that the flat dimension &F is less than the flat dimension
of #, unless% is flat. The proof is completed with a straightforward induction on
the flat dimension of7. O

THEOREMA.4
Let X be an object in GMgSpy. The obvious inclusions of the following compli-
cial biwaldhausen categories induce homotopy equivalences on the Waldhausen

theory spectra K (X) = K(# x), i = 1,2,3. In particular, the corresponding
Waldhausen K-theories,ﬁl’%(x, G) coincide.
0] #1.x = (complexes of quasi-coherent G-equivariafik-modules with

bounded coherent cohomology).
(ii) #> x = (bounded complexes in & Cohy).
(i)  #3.x = (complexes of flat quasi-coherent G-equivarigt-modules with
bounded coherent cohomology).
Moreover, the Waldhausen K-theory of any of the categories above coincid
with Quillen K-theory K (X, G) of G-equivariant coherenf’x-modules.

Proof

By [Th2, Par. 1.13], the inclusion o> x in #1 x induces an equivalence Kf-theory
spectra. Propositiof.3, together with ThTr, Lem. 1.9.5] (applied t&z = (flat G-
equivariant@’x-modules) and = (G-equivariant&’x-modules)), implies that for
any objectE* in #7 x there exist an objedE* in #3 x and a quasi-isomorphism
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F* == E*. Therefore, by ThTr, Par. 1.9.7 and Th. 1.9.8], the inclusion’#§ x in
#4.x induces an equivalence &f-theory spectra.

The last statement of the theorem follows immediately frdinZ Par. 1.13, p.
518]. O

Since any complex it#3 x is degreewise flat any is regular (hence boundedness of
cohomology is preserved under tensor prodydhe tensor product of complexes
makes the Waldhauseld-theory spectrum of#3 x into a functorK ® from G-
AlgSpeq to ring spectra, with product

KOAK® —— KO,

exactly as described iThTr, Par. 3.15]. In particular, by Theorens, K, is a functor
from G-AlgSp,c4to graded rings. In the same way, the tensor product with complexe
in #3.x gives a pairing

KO@AKD - kO
between the corresponding functors fr@pAlgSpeq to spectra, so tha{f)(x, G)

becomes a module over the rimgﬂs)(x, G) functorially in (X, G) € G—AIgSpreg.
We denote the corresponding cap-product by

N: KX 6 @ KP(X,G) — KD (X, G),

which becomes the ring product K. (X, G) with the identifications allowed by
Theorem5.3. Note that there is an obvious ring morphism: KQaive(X, G —
K2 (X, G), and if

nnave . KPAVE(X, G) ® K, (X, G) — KL(X, G)
denotes the usual “naive” cap-product on Quilkertheories, there is a commutative
diagram
KDave(x, G) @ K. (X, G) o> K.(X, G)
7]®Ul lu
KP (X, 6) @K (X, 6) —— KX 6)

whereu is the isomorphism of Theorem3. Because of that, we simply write for
both the naive and nonnaive cap-products. Note that, as showim#Par. 1.13, p.
519],K.(—, G) (and therefor& (X, G) under our hypotheses) is a covariant functor

*In fact, this is a nonequivariant statement and a local property in the flat topology, so it reduces to t
same statement for regular affine schemes, which is elementary (seeS&lsa).
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for proper maps irG-AlgSpg on the other hand, since any map G¥AlgSpq
has finite Tor-dimensionkK..(—, G) is a controvariant functor frons-AlgSpeq to
(graded) rings. In fact, iff : X — Y is a morphism inG-AlgSp,, the same
argument in ThTr, Par. 3.14.1] shows that there is an induced pullback exact functc
f* . #4y — #4x, and then we use Theorem A.4 to identi> (—, G) with
Ki(—, G).

PROPOSITIONA.5 (Projection formula)
Let j: Z — X be aclosed immersion in BlgSp,e Then, ife is in K. (X, G) and
BinK.(Z,G), we have

(I*@NB) =anjuB)
in K.(X, G).
Proof
Sincej is affine, j, is exact on quasi-coherent modules and therefore induces an exa
functor of complicial bi-Waldhausen categorigs: #1,z — #1.x (the condition of

bounded coherent cohomology being preserved by regularifyasfd X). Therefore,
the maps

(@ B) — jx(i"@nB),
(o, B) > N [ (B)

from K. (X, G) x Ki(Z,G) to K.(X,G) ~ K.(X,G) are induced by the exact
functors#3 x x #1.z — #1.x,

(F*, E") — j«(I*(F") ® E¥),

(F*, E") — F*"® j«(E". (43)
But for any equivariant quasi-coherent shgafon X and¥ on Z, there is a natural
(hence, equivariant) isomorphism

x(*" 7 ®9) = F Q9

which, again by naturality, induces an isomorphism between the two functats)in (

therefore, we conclude by hTr, Par. 1.5.4]. O

Remark A.6
Since we need the projection formula only for (regular) closed immersion in this p:
per, we have decided to state the result only in this case. However, sincEhBy [
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Par. 1.13 p. 519]K,(X, G) coincides also with Waldhauséf-theory of the cat-
egory #4 x of complexes ofG-equivariant quasi-coherent injective modules Xn
with bounded coherent cohomology, therefore, by TheoBefn it also coincides
with WaldhauserK -theory of the categorys x complexes ofG-equivariant quasi-
coherent flasque modules dhwith bounded coherent cohomology. For any proper
mapf : X — Yin G-AIgSpreg, we have an exact functdy, : #5 x — #5.y, which
therefore gives a “model” for the pushforwarfg : K.(X, G) — K,(Y, G) (cf.
[ThTr, Par. 3.16]). Now, the proof ofThTr, Prop. 3.17] should also give a proof of
Proposition3 with j replaced by any proper map @-AlgSp.4 because it only uses
[ThTr, Th. 2.5.5], which obviously holds foX andY Noetherian algebraic spaces,
and [SGA4, Exp. XVII, par. 4.2], which should give a canonicatequivariant Gode-
ment flasque resolution of any complex Gfequivariant modules on any algebraic
space inG-AlgSp,g since it is developed in a general topos.

It is very probable that Theorem 3 and therefore the functoriality with respect to
morphisms of finite Tor-dimension still hold without the regularity assumption on the
algebraic spaces. On the other hand, it should also be true thabvaitid X as above
(therefore, X regular), the WaldhauseK -theory of the category oG-equivariant
perfect complexes oiX coincides withK/ (X, G). This last statement should fol-
low (with a bit of work to identifyK (X, G) with the Waldhauser -theory of G-
equivariant pseudocoherent complexes with bounded cohomolo¥y fsom [J, Th.
1.6.2].

AcknowledgmentsWe wish to thank the referee for useful and precise remarks. W
also thank Bertrand Toen, who pointed out the content of Refmaro us.
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