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Impaired angiotensin II–extrac
ellular signal-regulated kinase
signaling in failing human ventricular myocytes
Pietro Amedeo Modestia, Gian Gastone Neri Serneria, Tania Gamberia,
Maria Boddia, Mirella Coppoa, Gianluca Luccheseb, Mario Chiavarellib,
Giulia Bottaia, Francesco Marinoa, Camilla Tozzettia, Gian Franco Gensinia

and Alessandra Modestia
Angiotensin II was reported to induce insulin-like growth

factor-I and endothelin-1 gene expression and peptide

release by ventricular cardiomyocytes. However, the

progression from cardiac hypertrophy to failure in humans

is characterized by a reduced myocyte expression of

insulin-like growth factor-I and endothelin-1,

notwithstanding the enhanced cardiac generation of

angiotensin II. In the present study we investigated the

functional status of the signaling pathways responsible for

angiotensin II-induced endothelin-1 and insulin-like

growth factor-I formation in human ventricular myocytes

isolated from patients with dilated (n U 19) or ischemic

(n U 14) cardiomyopathy and nonfailing donor hearts

(n U 6).

In human nonfailing ventricular myocytes, angiotensin II

(100 nmol/l) induced insulin-like growth factor-I and

endothelin-1 gene expression, and peptide release was

mediated by extracellular signal-regulated kinase

activation and inhibited by extracellular signal-regulated

kinase antagonism (PD98059, 30 mmol/l), endothelin-1

formation being partially reduced also by c-Jun N-terminal

kinase inhibition (SP600125, 10 mmol/l); insulin-like

growth factor-I and endothelin-1 formations were

unaffected by the inhibition of p38 mitogen-activated

protein kinase (SB203580, 10 mmol/l) and Janus tyrosine

kinase 2 (AG490, 10 mmol/l). In failing myocytes,

angiotensin II failed to induce insulin-like growth factor-I

and endothelin-1 formation; angiotensin II-induced

extracellular signal-regulated kinase activation was

significantly impaired (S88% vs. controls) although c-Jun

NH2-terminal kinase activation was preserved. The

impaired extracellular signal-regulated kinase
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phosphorylation in failing myocytes was associated with

increased myocyte levels of mitogen-activated protein

kinase phosphatases.

Therefore, the altered growth factor production in failing

myocytes is associated with a significant derangement in

intracellular signaling. J Hypertens 26:2030–2039 Q 2008
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Introduction
Angiotensin (Ang) II induces endothelin-1 (ET-1), and

insulin-like growth factor-1 (IGF-I) formation in isolated

ventricular myocytes. Early growth factor formation fol-

lowing the application of mechanical stimuli is also

mediated by Ang II as suggested by the observation that

the inhibition of type I receptors for Ang II inhibited

early growth factor (ET-1 and angiotensinogen) over-

expression in stretched myocytes in vitro [1] and in

experimental models of acute cardiac overload in vivo
[2,3]. However, in patients with aortic valve disease,

the progression from compensatory hypertrophy to heart

failure is characterized by reduced gene expression of

ventricular myocytes and cardiac formation of insulin-like

growth factor-1 (IGF-I) and ET-1 [4], notwithstanding

a significant increase in cardiac Ang II generation [4].

The capability of myocytes to express IGF-I and ET-1

following Ang II stimulation is finally lost in ventricular

myocytes isolated from failing explanted human hearts

[5]. These data and the absence of differences in Ang II
rized reproduction of this article is prohibited.
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Table 1 Characteristics of individuals investigated

NF (n¼6) ICM (n¼14) DCM (n¼19)

Age (years) 46�7 59�5M 51�13M

Sex (M/F) 4/2 11/3 13/6
BSA (m2) 1.87�0.12 1.91�0.14 1.88�0.20
SAP (mmHg) 118�8 111�11 115�9
LVEDDI (mm/m2) 26�3 38�5M 42�6M

LVESDI (mm/m2) 22�4 32�5M 36�5M

LVMI (g/m2) 107�15 221�36M 250�60M

EF (%) 63�5 22�8M 19�7M

ESS (Kdyne/cm2) 70�9 181�36M 195�15M

Vcf (s�1) 1.16�0.17 0.52�0.2M 0.48�0.17M

CI [l/(m2�min)] 2.13�0.48 1.95�0.50
LVEDP (mmHg) 22�7 26�9
MPAP (mmHg) 33�11 37�12

BSA, body surface area; CI, cardiac index; DCM, dilated cardiomyopathy; EF,
ejection fraction; ESS, end systolic stress; ICM, ischemic cardiomyopathy;
LVEDDI, left ventricular end diastolic diameter index; LVEDP, left ventricular
end diastolic pressure; LVESDI, left ventricular end systolic diameter index; LVMI,
left ventricular mass index; MPAP, mean pulmonary arterial pressure; NF, nonfail-
ing; SAP, systolic aortic pressure; Vcf, mean midwall velocity of circumferential
fiber shortening. MP<0.05 vs. NF.
type 1 (AT1) and type 2 (AT2) receptor populations

between nonfailing and failing human ventricular myo-

cytes [5] might lead to the hypothesis that the progression

to failure is characterized by an alteration of intracellular

signaling pathways. Different studies investigated

protein amounts and activity of the three branches of

the mitogen-activated protein kinase (MAPK) family,

extracellular signal-regulated kinase (ERK), c-Jun

N-terminal kinase (JNK), and p38MAPK, in whole

homogenated human failing hearts [6,7]. In isolated

human failing ventricular myocytes, the activation of

the Ang II–Janus tyrosine kinase (JAK) 2 pathway was

recently reported [8], but information regarding

the Ang II–ERK signaling is lacking. This aspect

might be relevant because ERK is known to regulate

myocyte survival [9,10] and increases the expression of

transcription factors, which recognize specific DNA

region binding in the promoter of both IGF-I [11] and

ET-1 [12] genes. IGF-I promotes myocyte formation

and attenuates myocyte death after infarction [13].

Likewise, ET-1 is required for cardiomyocyte survival

in vivo [14] and was reported to mediate the positive

inotropic effect of Ang II [15]. MAPK activity is nega-

tively regulated by dual-specificity MAPK phosphatases

(MKPs) that are expressed in the heart and are induced

by mitogen and stress stimuli [16]. Cardiac overexpres-

sion of MKP3 was recently reported to potently block

ERK, predisposing the heart to decompensation and

failure after long-term pressure overload [17].

The present study was therefore performed to investigate

the functional status of Ang II–ERK signaling and of

protein phosphatases (MKP1, MKP2, MKP3) in failing

human myocytes.

Patients and methods
Study population
Patients with heart failure due to idiopathic dilated car-

diomyopathy (DCM, n¼ 19) or ischemic cardiomyopathy

(ICM, n¼ 14) belonging to New York Heart Association

(NYHA) class III (DCM, n¼ 11 and ICM, n¼ 8) or class IV

(DCM, n¼ 8 and ICM, n¼ 6) and scheduled to undergo

cardiac transplantation were prospectively investigated. A

recent history (less than 6 months) of myocardial infarction

and echocardiographic evidence of valve or congenital

heart disease were exclusion criteria. Diagnosis of DCM

or ICM was based on clinical and echocardiographic exam-

ination, cardiac catheterization, and coronary angiography.

Myocardial tissue was obtained from a noninfarcted por-

tion of the left ventricular free wall during cardiac trans-

plantation. Cardiac specimens were also obtained from the

same cardiac region of six donors with no history or signs of

heart disease and whose hearts could not be transplanted

for noncardiac reasons (nonfailing hearts) (Table 1). The

study protocol complies with the principles of the Helsinki

declaration, was approved by our institution, and all

patients gave their informed written consent to participate
opyright © Lippincott Williams & Wilkins. Unauth
in the study. Echocardiographic and hemodynamic meas-

urements were performed as previously described [4].

Myocyte isolation
All studies were performed on freshly isolated ventricular

myocytes. After explantation, the heart was placed in

cardioplegic solution and immediately transferred to

the laboratory.

Myocytes were isolated with the enzymatic digestion

method as previously described [5,8]. Briefly, a coronary

artery branch was cannulated and perfused for 10 min

with a calcium-free basic buffer (blood washout) com-

posed of Jocklik modified minimal essential medium

(MEM Joklik) supplemented with glutamine (Sigma

G5763, Sigma Chemical Co., St. Louis, Missouri, USA)

(0.3 g/l), taurine (Sigma T0625) (1.25 g/l), HEPES

(Sigma H3375) (2.9 mmol/l), insulin (20 U/l), penicillin–

streptomycin (Sigma P3539, 50 U/ml and 0.05 mg/ml,

respectively) 5 ml/l, and CaCl2 (7.5 mmol/l), pH 7.4. The

basic buffer was previously leaked through filters of 0.2 mm

pore size. Perfusion was then switched to collagenase

solution, composed of 0.5 mg/ml of Worthington type II

collagenase (100 units/ml) in basic buffer supplemented

with CaCl2 30 mmol/l (20 ml/min for 20–25 min). The

collagenase-perfused tissue was then minced and tissue

was collected in tubes containing basic buffer supple-

mented with bovine serum albumin (0.5%), CaCl2
(0.3 mmol/l), and taurine (10 mmol/l). Individual myocytes

were then released from the tissue by mechanical agita-

tion. The suspension was filtered through a sterile gauze to

separate cells from tissue mass. The populations of cells

were then washed using two complete cycles of low-speed

centrifugation. The dispersed cells were finally preplated

for 30 min to minimize fibroblast contamination. Typical

preparations contained 60–70% rod-shaped, quiescent
orized reproduction of this article is prohibited.
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Ca2þ-tolerant myocytes that had well defined, regular

cross-striations and sarcomere patterns.

Staining of sarcomeric alpha-actinin and myosin was

performed using antisarcomeric alpha-actinin mono-

clonal antibodies (mAbs) at a dilution of 1 : 800 and rabbit

polyclonal antiskeletal myosin mAbs at a dilution of

1 : 200 (both from Sigma Chemical Co.), respectively.

Samples were then washed in PBS/1% bovine serum

albumin three times for 5 min each. Secondary detection

was carried out by incubation for 30 min at room

temperature with a 1 : 200 dilution of fluorescein-

conjugated or rhodamine-conjugated, noncross-reactive,

goat antimouse or antirabbit antibodies, respectively.

According to their appearance under phase contrast

microscopy and by immunocytochemical staining, non-

myocyte cells were found to account for less than 2% of

the total cells [5,8].

Angiotensin II stimulation and measurement of
insulin-like growth factor-I and endothelin-1
After isolation, myocytes (105 cell/ml) were suspended

in Dulbecco’s Modified Eagle’s Medium supplemented

with penicillin G (10 000 U/ml) and streptomycin

(10 mg/ml) under an atmosphere of 95% air and 5%

CO2 at 378C. Myocyte levels of AT1 and AT2 transcripts

were quantified with reverse transcriptase-PCR, using

glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

as internal standard [5].

To investigate the relative role of the two angiotensin

receptor subtypes, myocytes were preincubated for

30 min with selective AT1 or AT2 receptor antagonists

(valsartan, 1 mmol/l or PD123319, 1 mmol/l, respectively).

To investigate the relative role of the different intra-

cellular pathways in the Ang II-mediated activation

of IGF-I and ET-1 gene expression and peptide

release, nonfailing myocytes were preincubated

(60 min) with inhibitors of ERK (PD98059, 30 mmol/l),

JNK (SP600125, 10 mmol/l), p38 MAPK (SB203580,

10 mmol/l) and JAK2 (AG490, 10 mmol/l). Preliminary

experiments using the trypan blue exclusion method

had shown that no toxic effects were detected when

the myocytes were incubated for as long as 6 h with the

various inhibitors of intracellular signaling pathways.

Myocytes were then stimulated with Ang II (100 nmol/l)

[5,18]. At baseline and after 2 h, the conditioned media

and myocytes were separated by centrifugation and

immediately frozen in liquid nitrogen.

IGF-I and preproET (ppET)-1 mRNA expression and

peptides released in the conditioned media were measured

with reverse transcriptase-PCR and radioimmunoassay

(Peninsula Lab, San Carlos, California, USA) as previously

described in detail [4,5].
opyright © Lippincott Williams & Wilkins. Unautho
Studies of the angiotensin II intracellular signaling
pathways
After 5, 10, 20, 30, and 60 min of incubation under the

conditions described above, the reaction samples

were washed in ice-cold PBS and lysed in ice-cold lysis

buffer (50 mmol/l Tris-HCl, 150 mmol/l NaCl, 1 mmol/l

sodium orthovanadate, 100 mmol/l NaF, 2 mmol/l

EGTA, 1% NP40, 1 mmol/l PMSF, pH 7.5) supple-

mented with Protease Inhibitor Cocktail (P8340, Sigma)

and Phosphatase Inhibitor Cocktail (P5726, Sigma).

Lysates were kept on ice and then sonicated four times

for 5 s. After centrifugation, protein concentration in the

supernatant fraction was assessed using Bradford’s

method.

Measurement of mitogen-activated protein kinase activity

Activated ERK dually phosphorylated on T202/Y204 was

immunoprecipitated from lysate-stimulated cells and

used to measure the incorporation of [g-33P]ATP into

a specific p44/42 MAPK substrate (synthetic peptide,

KRELVEPLTPAGEAPNQALLR) [19].

JNK activity was assayed using a nonradioactive method

(Cell Signaling Technology, Beverley, Massachusetts,

USA) [20]. Briefly, cell lysate (200 mg of protein) was

incubated overnight at 48C with 2 mg glutathione-S-

transferase (GST)–c-Jun protein beads. Complexes

were collected, washed, and resuspended in 50 ml kinase

lysis buffer with 100 mmol/l ATP. Samples were incu-

bated for 30 min at 308C and the reaction was terminated

with sample buffer. After separation with 10% sodium

dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE), western blot was performed using anti-

phospho-c-Jun antibody.

Western blotting studies

Samples (25 mg proteins) were then separated with 8%

SDS-PAGE. The gel was then transferred to nitrocellu-

lose membrane (Hybond-ECL, Amersham Biosciences,

Piscataway, New Jersey, USA) and blocked by incubation

for 1 h at room temperature in tris-buffered saline with

Tween-20 (TTBS, pH 7.4) and 5% skimmed milk powder.

Membranes were then incubated overnight at 48C with

polyclonal rabbit antihuman ERK, polyclonal rabbit anti-

human phospho-ERK (Cell Signaling Technology,

Beverly, Massachusetts, USA) [21], polyclonal rabbit

antihuman MKP1 (sc-1199 Santa Cruz, Santa Cruz,

California, USA), MKP2 (sc-10797 Santa Cruz), and

MKP3 (sc-28902 Santa Cruz). The nitrocellulose mem-

branes were then washed twice for 10 min with TTBS

and incubated for 30 min with goat antirabbit or sheep

antimouse immunoglobulin G (IgG) (as appropriate)

horseradish peroxidase conjugate antibody (Amersham

Biosciences). After extensive washing, the bound antibody

was visualized using a chemioluminescent detection

system.
rized reproduction of this article is prohibited.
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Fig. 1

(a) Expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ppET-1, and IGF-I genes by ventricular cardiomyocytes isolated from the
hearts of donors (NF, n¼4), and patients with dilated (DCM, n¼12) or ischemic cardiomyopathy (ICM, n¼9) after 2 h incubation with buffer (Buff) or
Ang II (100 nmol/l). Effects of inhibitors of ERK (PD098059, 30 mmol/l), JNK (SP600125, 10 mmol/l), JAK2 (AG490, 10 mmol/l), and p38MAPK
(SB203580, 10 mmol/l). Representative reverse transcriptase-PCR experiments. (b, c) Release of big ET-1 (b) and IGF-I (c) in the conditioned media
after 2 h stimulation with Ang II (100 nmol/l) for myocytes isolated from controls (n¼6), DCM (n¼19), and ICM (n¼14). Data were normalized using the
peptides released by unstimulated cells. Effects of ET-1 antagonist (BQ123, 10 mmol/l), and inhibitors of ERK (PD098059, 30 mmol/l), JNK (SP600125,
10 mmol/l), JAK2 (AG490, 10 mmol/l), and p38MAPK (SB203580, 10 mmol/l). yP<0.05 vs. myocytes incubated with buffer (saline); �P<0.05 vs. Ang
II-stimulated myocytes. (d) Expression of mRNAs for GAPDH, AT1, and AT2 receptor subtypes in ventricular myocytes isolated from donors (NF) and
failing (ICM, DCM) hearts. Left panel: representative reverse transcriptase-PCR experiments. Right graph: densitometric Ang II receptor/GAPDH (ATR/
GAPDH) mRNA ratio (empty bars, AT1; filled bars, AT2) in myocytes isolated from NF (n¼4), ICM (n¼12), and DCM (n¼9) hearts. Ang II, angiotensin
II; AT1, angiotensin II type 1; AT2, angiotensin II type 2; DCM, dilated cardiomyopathy; ERK, extracellular signal-regulated kinase; ET-1, endothelin-1;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ICM, ischemic cardiomyopathy; IGF-I, insulin-like growth factor-1; JAK2, Janus tyrosine kinase 2;
JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; NF, nonfailing; ppET-1, prepro endothelin-1.
Statistical analysis
Data are expressed as mean�SD. Autoradiograms were

analyzed using an image analyzer. Comparisons

between groups were performed using one-way analysis
opyright © Lippincott Williams & Wilkins. Unauth
of variance and student’s t test, followed by the

Tukey multiple-range comparison test, as appropri-

ate. A P value of 0.05 was considered statistically

significant.
orized reproduction of this article is prohibited.
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Results
Signaling pathways involved in the angiotensin
II-induced endothelin-1 and insulin-like growth
factor-I production by human nonfailing myocytes
Ang II stimulation of nonfailing myocytes enhanced

ET-1 and IGF-I gene expression (Fig. 1a) as well as

peptide release in the incubation medium (Fig. 1b and c).

The Ang II-induced increase in big ET-1 or IGF-I

formation in nonfailing myocytes was mediated by the

AT1 receptor as the response was selectively inhibited by

valsartan (Fig. 1b and c). Conversely, the release of

both big ET-1 and IGF-I was unaffected by the specific

antagonist for the type A ET-1 receptor subtype (BQ123)

(Fig. 1b and c), thus excluding an autocrine/paracrine

effect of ET-1.

The release of big ET-1 induced by Ang II (100 nmol/l)

in nonfailing myocytes was abolished by the ERK inhibi-

tor PD98059 and reduced (50%) following the JNK

inhibition (SP600125) (Fig. 1b). ERK inhibition also

blocked the formation of IGF-I in Ang II-stimulated

nonfailing myocytes (Fig. 1c). The effects of ERK

antagonism on IGF-I and ET-1 expression in control

myocytes were also confirmed at transcription level
opyright © Lippincott Williams & Wilkins. Unautho

Fig. 2

(a) ERK activation in Ang II (100 nmol/l) stimulated nonfailing (NF) myocytes
in NF myocytes and in myocytes isolated from ICM and DCM patients are
course of the ratios of phosphorylated to total ERK (p-ERK/ERK) for nonfa
Effects of AT1 (Valsartan) and AT2 (PD123319) selective antagonists on ER
failing myocytes (ICM, n¼14; DCM, n¼19). Ang II, angiotensin II; DCM, d
ischemic cardiomyopathy; NF, nonfailing; p-ERK, phosphorylated extracellu
yP<0.05 vs. NF myocytes.
(Fig. 1a). Conversely, big ET-1 and IGF-I release were

unaffected by p38 MAPK and JAK2 inhibitors

(SB 203580 and AG 490, respectively) (Fig. 1b and c).

Ang II stimulation failed to enhance ET-1 and IGF-I

production in human ventricular failing myocytes both

from DCM and ICM hearts (Fig. 1) as previously demon-

strated [5]. Reverse transcriptase-PCR studies confirmed

that the altered response was not related to AT1 and AT2

changes in gene expression in isolated failing myocytes

(Fig. 1d).

Altered angiotensin II-mediated extracellular signal-
regulated kinase activation in human failing myocytes
Ang II induced a prompt phosphorylation of ERK in

nonfailing human ventricular myocytes, which signifi-

cantly increased after 5 min (þ24% vs. nonstimulated

myocytes, P< 0.05), peaked at 10 min (þ100%, P< 0.05)

and returned to baseline at 60 min (Fig. 2a and b). ERK

enzymatic activity was also enhanced by Ang II (þ117% vs.

controls after 10 min, P< 0.05) (Fig. 2c). The rises in both

ERK phosphorylation and enzymatic activity were abol-

ished by AT1 antagonism (Fig. 2a and c), whereas AT2

inhibition did not affect the ERK response to Ang II
rized reproduction of this article is prohibited.

. Representative western blots of phosphorylated (p-ERK) and total ERK
shown. ERK activation in NF is abolished by AT1 antagonism. (b) Time
iling (NF, n¼6) and failing myocytes (ICM, n¼14; DCM, n¼19). (c)
K1/2 activity in Ang II-stimulated myocytes in nonfailing (NF, n¼6) and
ilated cardiomyopathy; ERK, extracellular signal-regulated kinase; ICM,
lar signal-regulated kinase. �P<0.05 vs. unstimulated myocytes;
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Fig. 3

JNK activity in Ang II-stimulated (100 nmol/l) myocytes. (a) Time course
of JNK activity assayed by phosphorylation of c-Jun. Representative
western blot from nonfailing (NF) myocytes is shown. (b)
Representative western blots showing the effects of AT1 (valsartan)
and AT2 (PD123319) selective antagonists on nonfailing and failing
(ICM and DCM) myocytes. (c) Bar graph shows the effects of AT1
(valsartan) and AT2 (PD123319) selective antagonists on JNK activity
in Ang II-stimulated nonfailing (NF, n¼6) and failing myocytes (ICM,
n¼14; DCM, n¼19). Ang II, angiotensin II; DCM, dilated
cardiomyopathy; ICM, ischemic cardiomyopathy; JNK, c-Jun N-terminal
kinase; NF, nonfailing. �P<0.05 vs. unstimulated myocytes.
(Fig. 2c). Conversely, Ang II stimulation failed to

increase ERK phosphorylation at all experimental times

in the failing myocytes from both DCM and ICM hearts

(Fig. 2a and b). The ERK enzymatic activity of the failing

myocytes only marginally increased in response to Ang II

stimulation (þ31% after 10 min, P< 0.05) (Fig. 2c).

JNK activity in nonfailing myocytes was increased by

Ang II stimulation in as little as 10 min (þ160% vs.

baseline, P< 0.05); it peaked at 20 min (175%, P< 0.05)

and returned to baseline after 60 min (Fig. 3a). The

enhancement in JNK activity was abolished by the AT1

antagonist (Fig. 3b and c). In contrast with the ERK

pattern, JNK activity increased following Ang II stimu-

lation in both DCM (þ189%, P< 0.05) and ICM myocytes

(þ142%, P< 0.05) (Fig. 3b and c).
opyright © Lippincott Williams & Wilkins. Unauth
Ang II stimulation resulted in increased myocyte levels of

MKP1 (60 min), MKP2 (60 min), and MKP3 (30–60 min)

only in nonfailing myocytes (Fig. 4). Western blot

analysis revealed higher levels of MKP1, MKP2, and

MKP3 in failing myocytes than in nonfailing unstimu-

lated ones (Fig. 4).

Discussion
The present study reveals for the first time an altered

myocyte intracellular response to Ang II in heart failure

independent from changes in membrane receptors. The

impaired Ang II-induced IGF-I and ET-1 release by

human failing ventricular myocytes is associated with

an impaired Ang II–ERK signaling.

Angiotensin II–extracellular signal-regulated kinase
signaling mediates insulin-like growth factor-I and
endothelin-1 release
Differently from what has been observed in other

species, Ang II does not acutely enhance contractility

of human and rat left ventricular myocytes [22–25]. In

addition, Ang II 10–11 to 10–7 mol/l failed to elicit Ca2þ

influx responses in adult rat ventricular cardiomyocytes

[26]. However, when incubation time was prolonged

(>15 min), Ang II induced a concentration-dependent

increase in rat myocyte contractility, an effect completely

blocked by ET-1 antagonists [15,27]. Likewise, the pro-

gressive increases in force and in Caþ transients occurring

over 15 min in stretched papillary muscles were blocked

by both AT1 and endothelin receptor antagonists [28].

In-vivo studies in pig heart showed that the early release

of Ang II stored in the cardiomyocyte cytoplasm granules

[3] was followed by an increase in the mRNA of pre-

proET-1 and angiotensinogen with final ET-1 release

and recovery of cardiac contractility [2]. ET-1 gene

expression and peptide release, as well as the recovery

of contractility, were all abrogated by AT1 receptor

blockade [3]. Therefore, the participation of growth

factors in mediating the inotropic effect of Ang II was

demonstrated in ventricular myocytes, multicellular

preparations and in in-vivo studies. It is now considered

that Ang II-induced release of ET-1 activates the

Naþ/Hþ exchanger in an autocrine/paracrine fashion

promoting the influx of Ca2þ [27] and intracellular alka-

linization, which further improves the responsiveness of

myofilaments to calcium [29]. These changes finally

result in increased contractility [30]. However, the

relative role of the different intracellular pathways acti-

vated by Ang II in causing ET-1 release by human

myocytes remains to be defined.

According to the present findings, ERK antagonism com-

pletely abolished ET-1 and IGF-I peptide release, extend-

ingpreviousobservationsobtainedinneonatalratmyocytes

to adult human cells [31]. Conversely, JNK inhibition

caused only a minor reduction in ET-1 release with no

effects on IGF-I release. In addition, the lack of increase in
orized reproduction of this article is prohibited.
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Fig. 4

Effects of Ang II (100 nmol/l) stimulation on the expression of MKP1, MKP2, and MKP3 in myocytes isolated from nonfailing (NF, left) and DCM
(right) hearts. Upper panels: representative western blots. Lower graphs: mean levels of MKP in NF (empty bars) and DCM myocytes (filled bars) at
different times. Values are expressed as percentage vs. baseline values in unstimulated cells. DCM, dilated cardiomyopathy; MKP, mitogen-activated
protein kinase phosphatases. �P<0.05 vs. baseline values.
ET-1 and IGF release following JNK inhibition excludes a

possible inhibitory effect of JNK on growth factor release.

In conclusion, these experiments confirm the redundant

role of JNK in ET-1 release [32,33] that is conceivable with

the effect of JNK downstream from ERK [34].

Altered angiotensin II–extracellular signal-regulated
kinase activation in failing myocytes
Evidence obtained in humans suggests that this mech-

anism may be altered in the progression to failure. The

reduction in cardiac contractility characterizing the tran-

sition from hypertrophy to failure in patients with aortic

valve disease was indeed found to be associated with

reduced cardiac production of IGF-I and ET-1 [4], not-

withstanding the progressive increase in Ang II cardiac

generation. In patients with heart failure, the progressive

reduction in contractility, marked by the increase in left

ventricular stress, was finally associated with reduced
opyright © Lippincott Williams & Wilkins. Unautho
cardiac production of growth factors (IGF-I and ET-1)

and progressive increase in Ang II cardiac generation [5].

In failing hearts, a reduced myocyte expression of ET-1

and IGF-I genes was observed by in-situ hybridization,

and the capability of Ang II to induce ET-1 and IGF-I

gene activation and peptide release was finally lost in

ventricular myocytes isolated from end-stage failing

hearts [5].

The present results reveal, for the first time, that this

pattern of response is associated with a blunted ERK

activation and a preserved JNK response to Ang II

stimulation. No significant differences were found

between DCM and ICM myocytes, thus indicating that

ERK impairment is inherent in heart failure.

ERK is now considered to be a protective signaling

pathway [9,10], its deletion predisposing the heart to
rized reproduction of this article is prohibited.
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decompensation and failure [17]. In addition, IGF-I [13]

and ET-1 [14] regulate myocyte survival, so that the

altered myocyte response to Ang II might favor the

progression to failure. In our nonfailing myocytes, the

MKP activation occurring at 30–60 min closely corre-

sponds to ERK and JNK dephosphorylation. MKP1,

MKP2, and MKP3 have been found to be increased in

human failing hearts [7] and according to the present data

are also increased in failing myocytes. The relative

excess of phosphatases might thus contribute to ERK

impairment in human failing myocytes. However, the

lack of differences between the pattern of the three

MKP investigated, as well as the normalcy of Ang II–

JNK activation in failing myocytes, does not support a

primary role for the altered MKP pattern in determining

the ERK impairment.

The observed reduced ERK response to Ang II might

also attract interest in possible alterations in Ang

II-induced Ca mobilization in failing myocytes, an aspect

indeed not covered by our experiments. Unlike JNK, the

ERK1/2 response to Ang II was indeed reported to be

influenced by the release of calcium from inositol 1,4,5-

trisphosphate (IP3)-sensitive intracellular stores (sarco-

plasmic reticulum) both in vascular smooth muscle cells

[35,36] and in cardiomyocytes isolated from neonatal rats

[37]. However, although a reduced calcium release from

intracellular stores was consistently observed in human

failing ventricular myocytes [38–41], we did not specifi-

cally investigate Ca mobilization in our study, so the

possible participation of this mechanism can only be

hypothesized. Therefore, these experiments, although

not clarifying in detail the mechanisms involved in the

reduced ERK response in failing myocytes, provide

evidence in support of a direct link between the impair-

ment of an important intracellular pathway and reduced

growth factor formation in human failing myocytes.

The selective ERK impairment we observed in failing

cardiomyocytes differs from studies obtained in homogen-

ated human failing hearts, the latter giving conflicting

results. Samples obtained from patients with heart failure

either due to coronary artery disease or idiopathic dilated

cardiomyopathy revealed an increase in all three MAPKs

[42]. In comparison, levels of activated ERK were

unchanged in heart samples from patients with heart fail-

ure secondary to ischemic heart disease, whereas levels of

JNK and p38 MAPK activation were significantly

increased [6]. In patients with idiopathic dilated cardio-

myopathy, no increase in ERK activity in failing hearts was

reported [7], notwithstanding a three-fold increase in the

protein level for ERK. In the same study, JNK and p38

MAPK protein levels were not different in failing hearts

although the activity of both was decreased [7]. More

recently, reduced ERK activation was found in the hearts

of hypertensive patients who developed heart failure [43].

Different patterns of MAPK activation in homogenated
opyright © Lippincott Williams & Wilkins. Unauth
heart were thus observed in patients with different causes

of the disease. Indeed, no true discrepancy may exist

because we investigated the pattern of response to Ang

II rather than the ‘status’ of the whole myocardium and the

two aspects cannot be compared. The use of isolated

human ventricular myocytes certainly constitutes an

advance because the present findings suggest that, regard-

less of the cause of the disease, the impaired Ang II–ERK

signaling might play a causative role in the loss of Ang II

physiological activity on human failing myocytes.

Rather than indicating a total downregulation of Ang II

effects, the present findings support the existence of a

complex alteration in Ang II-mediated intracellular sig-

naling in failing cardiomyocytes. In other cell types, the

signaling cascade linking the activation of the nuclear

transcriptional changes and cell growth to Ang II type I

receptor stimulation was found to include the phos-

phorylation of JAK2, a soluble tyrosine kinase [44] also

involved in the transmission of the inflammatory processes

[45]. Recent data showed that Ang II was unable to activate

JAK2 in human nonfailing myocytes, whereas it did acti-

vate the same pathway in the failing myocytes [8]. The

enhanced ROS generation appeared to be the essential

factor for JAK2 activation in the failing myocytes [8].

Although Ang II-mediated ROS generation was also found

to be involved in JNK activation with no effect on ERK1/2

[46], we did not extensively investigate the role of ROS in

the preserved JNK response due to the limited availability

of human myocytes. In conclusion, the complex of these

data clearly indicates the occurrence of a derangement of

Ang II signaling in failing cardiomyocytes, supporting the

use of Ang II antagonism in this clinical setting.

Study limitations
The possibility that we isolated a selected group of

myocytes cannot be excluded although a similar unin-

tentional selection has to be hypothesized also in con-

trols. However, the selected population, although ‘robust’

enough to survive the stress of isolation, shows different

characteristics when compared with adult nonfailing

myocytes. Therefore, although present results cannot

be extended to the organ level, they identify important

functional aspect of active cardiac cells, that is, the

capability of myocytes to react to the enhanced Ang II

production in heart failure [5].

Ang II-mediated signal transduction to AT1 receptors

may result from the effects of Ang II on contaminating

fibroblasts. A high prevalence of contaminating fibro-

blasts (>10%) has been reported when neonatal rat

cardiac cells are isolated and cultured [47]. Although

the possibility that myocyte samples may be contami-

nated by other cell types cannot be excluded in any

study investigating isolated myocytes, our studies were

performed with the use of adult cells, and our cell

suspensions were preplated to reduce the number of
orized reproduction of this article is prohibited.
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contaminating fibroblasts because, unlike myocytes iso-

lated from neonatal rats, adult myocytes do not attach to

culture plates. In addition, we used freshly isolated cells

to avoid the progressive increase in the prevalence of

contaminating fibroblasts with culture [48]. Finally, cell

suspensions obtained in the three groups did not signifi-

cantly differ with regard to the number of nonmyocyte

cells identified by their appearance under phase contrast

microscopy and by immunocytochemical staining.

Failing myocytes were obtained from patients receiving

a variety of drugs, including AT1 antagonists. A

possible interference of retained AT1 antagonists with

Ang II–ERK activation can be excluded because the

Ang II–JNK signaling was unchanged in the same

human failing myocytes.

Conclusion
The present findings reveal, for the first time, an import-

ant derangement of Ang II signaling in human failing

ventricular cardiomyocytes with a severe impairment of

the ERK pathway. Although the present cross-sectional

study does not allow the role of ERK impairment in the

single patient to be defined clearly, the altered myocyte

response might favor the progression to failure.
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