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Small world effects in evolution
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For asexual organisms point mutations correspond to local displacements in the genotypic space, while other
genotypic rearrangements represent long-range jumps. We investigate the spreading properties of an initially
homogeneous population in a flat fitness landscape, and the equilibrium properties on a smooth fitness land-
scape. We show that a small-world effect is present: even a small fraction of quenched long-range jumps makes
the results indistinguishable from those obtained by assuming all mutations equiprobable. Moreover, we find
that the equilibrium distribution is a Boltzmann one, in which the fitness plays the role of an energy, and
mutations that of a temperature.
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I. INTRODUCTION

Darwinian evolution on asexual organisms acts by t
mechanisms:mutations, which increase the genetic diversit
and selection, which fixes and reduces this diversity. W
classify mutations into point mutations, corresponding to
cal displacements on the genotypic space~defined more ac-
curately in the following!, and other types of mutation o
rearrangement, which imply larger jumps. Mutations a
quite rare, so we can safely assume that for each gener
at most only one mutation occurs. From a biological point
view, this discussion applies to unicellular asexual org
isms, for which there is no distinction between somatic a
germ cells. Moreover, we do not consider the possibility
recombination~exchange of genetic material!. For nonre-
combinant~asexual! organisms, the combined effects of r
production and mutations correspond to a random walk
the genotypic space. Even sexual~recombinant! populations
do transmit asexually some part of their genotype, such
mithocondrial ory-chromosome DNA, to which the follow
ing analysis applies. Furthermore, we assume a constan
vironment.

We schematize the effects of selection by the selec
reduction of the survival probability. Selection results fro
several constraints and can affect the frequency of cer
genotypes, or even eliminate them from the population.
classify the components of selection into static and dyna
ones. In the first class we put the constraints that are in
pendent of the population distribution, such as the functi
ality of a certain protein or the tuning of a metabolic pa
The static part of the selection is equivalent to the concep
‘‘fitness landscape’’@1,2#. The dynamic part of the selectio
originates from the competition among individuals. We a
sume in this schematization that the competition arises o
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because the population shares some external resource t
evenly distributed, i.e., we disregard the effects of interin
vidual competition@3,4#. In this limit the effects of competi-
tion do not depend on the distribution of genotypes, a
simply limit the total size of the population.

The most important effects of the selection can be roug
schematized by assuming that certain genotypes are for
den, so that they are eliminated from the accessible sp
Let us consider for the moment that evolution takes place
a flat fitness landscape. In this framework, there are no in
actions among individuals: the evolution is given by t
simple superposition of all possible lineages. The probabi
distribution of the population in the genotypic space a
given time can be obtained by summing over all possi
individual ‘‘histories’’ in a way similar to the path integra
formulation of statistical mechanics@5#. In this view, the
phylogenetic lineage of an individual is given by the pa
connecting the genotypes of ancestors.

This assumption has to fail somewhere, since otherw
evolution would be equivalent to a diffusion process, witho
anything favoring the formation of species. It is often a
sumed that speciation events are rare and occur in a
short time@6#, either due to some change in the fitness lan
scape~caused by an external catastrophe like the fall o
large meteorite, or by an internal rearrangement induced
coevolution! or because small isolated populations, escap
from competition, are free to explore their genotypic spa
~genetic drift! and find a path to a higher fitness peak@7#.
Therefore, it is usually assumed that one can reconstruc
diverging time of two species from their genotypic distan
from a single speciation event@8#.

It is known, however, from recent investigations about t
small-world phenomenon@9# that diffusion is seriously af-
fected even by a small fraction of long-range jumps@10–12#.
This fact could have dramatic consequences in our un
standing of the large-scale evolution mechanism. If the sh
range mutations are dominant, the evolution is equivalen
a diffusion process in the genotypic space. Assuming that
©2001 The American Physical Society14-1
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fitness landscape is formed by mountains separated by
leys, and that the crests of the mountains are almost flat,
the large-scale evolution is dominated by the times neede
cross a valley by chance, while the short scale is domina
by the neutral exploration of crests@6,13#.

Vice versa, if the long-range mutations are importa
~eventually amplified by the small-world mechanism!, the
time needed to connect two genotypes does not depen
their distance nor on the shape of the fitness landscape
the fitness maxima are quickly populated. Moreover, in t
scenario, the speciation phenomenon should not be asc
to the ‘‘discovery’’ of a preexisting niche, but rather to th
formation of that niche in a given ecosystem due to inter
interactions~coevolution! or external physical changes~ca-
tastrophes!. After formation, the niche is quickly populate
because of long-range mutations. In this framework, allop
ric speciation@7# loses its fundamental importance, and sy
patric speciation due to coevolution@14,15# becomes a plau
sible alternative.

In order to evaluate quantitatively the relevance of th
speculations, we introduce an individual-based model of
evolving population. We assume that the genetic informat
~the genotype! of an individual is represented by a bina
string x5(x1 ,x2 , . . . ,xL) of L symbolsxi50,1 ~multilocus
model with two alleles!. In this way we are modeling haploi
organisms, i.e., bacteria or viruses, or, more appropriat
more archaic, prebiotic entities. The choice of a binary co
is not fundamental but certainly makes things easier. It
be justified by thinking of a purine-pyrimidine coding, or o
‘‘good’’ and ‘‘bad’’ alleles for genes~units of genetic infor-
mation!. In this second version, 0 represents a good gene
1 a bad one. This is a sort of ‘‘minimal model’’ which i
often used to model the evolution of genetic populatio
@14–18#. For bacteria, there are indications that major a
minor codons work in such a way@19#. The genotypic space
is thus a Boolean hypercube ofL dimensions, and each ind
vidual sits on a corner of this cube, according to its genoty
The 2L corners of this hypercube represent all possible ge
types, which are at a maximum distance equal toL.

In the next section, we formalize the model and introdu
the mathematical representation of mutation mechanis
Then, in Sec. III, we consider the consequences of short-
long-range mutations for a flat fitness landscape. In the lo
range case all genotypes are connected, regardless of
mutual distance: this case can be considered the equiv
of a mean-field approximation. We derive analytically t
rate of spreadingv and the characteristic spreading timet of
a genetically homogeneous inoculum in the short-ra
(vs ,ts) and long-range (v l ,t l) cases. In the first case,vs is
independent of the genotype lengthL, andts grows linearly
with L; the opposite happens in the long-range case. Cle
this different behavior has dramatic evolutionary con
quences asL becomes large.

In general, however, only a small set of all possible lon
range mutations is observed in real organisms. We thus c
pute numerically the rate of spreadingv in a mixed short-
range and sparse long-range case. A small-world effect
be observed: in the limit of large genotype lengths, a van
ing fraction of long-range mutations cooperates with
02191
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short-range ones to give essentially the mean-field resul
In Sec. IV, we show that the effects of mutations a

selection can be separated in the limit of a very smooth
ness landscape and mean-field long-range mutations. In
approximation we obtain analytically the result that t
asymptotic probability distribution is a Boltzmann equilib
rium one, in which the fitness plays the role of energy a
mutations correspond to temperature. We compute num
cally the asymptotic probability distribution for several fi
ness landscapes, finding that the equilibrium hypothesi
verified. As a nontrivial example of small-world effects
evolution, we checked numerically that this scenario s
holds for a sparse long-range mutation matrix. Conclusi
and perspectives are drawn in the last section.

II. THE MODEL

In order to be specific, let us assume that the genotyp
an individual is represented by a Boolean string of lengthL.
In this way, the genotypic space is a Boolean hypercube w
2L nodes.

The genotype of an individual is represented by a str
x5(x1 ,x2 , . . . ,xL) of L Boolean symbolsxi50,1. Each po-
sition corresponds to a locus whose gene has two all
forms. In this way we are modeling haploid~only one copy
of each gene! organisms, i.e., bacteria or viruses, or, mo
appropriately, more archaic, prebiotic entities. The genot
can also be viewed as a spin configuration. In this case
use the symbols i52xi21.

We consider two kinds of mutation: point mutation
which interchange a 0 with a 1, and all other mutatio
which do not alter the length of the genotype~transposition
and inversions!. We define the distanced(x,y) between two
genotypesx andy as the minimal number of point mutation
needed to pass fromx to y ~Hamming distance!:

d~x,y!5(
i 51

L

~xi2yi !
2.

All possible genotypes of lengthL are distributed on the 2L

vertices of a hypercube. A point mutation corresponds t
unit displacement on that hypercube~short-range jump!.

The occurrence of point mutations in real organisms
pends on the identity of the symbol and on its position on
genotype; in the present approximation, however, we ass
that all point mutations are equally likely. Moreover, sin
the probability of observing a mutation is quite small, w
impose the condition that at most one mutation is possibl
one generation. The probability of observing a point mu
tion from genotypey to genotypex is given by the short-
range mutation matrixMs(x,y). Denoting byms the prob-
ability of a point mutation per generation, we have

Ms~x,y!5H 12ms if x5y

ms

L
if d~x,y!51

0 otherwise.

~1!
4-2
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SMALL-WORLD EFFECTS IN EVOLUTION PHYSICAL REVIEW E64 021914
Other types of mutation correspond to long-range jum
in the genotypic space. The simplest approximation cons
in assuming all mutations equiprobable. Let us denote bym l
the probability per generation of this kind of mutation. T
long-range mutation matrixMl(x,y) is defined as

Ml~x,y!5H 12m l if x5y

m l

2L21
otherwise.

~2!

In the real world, only some kinds of mutation are actua
observed. We model this fact by replacingM l with a sparse
matrix M̂ l . We introduce the sparseness indexs, which is the
average number of nonzero off-diagonal elements ofM̂ l .
The sum of these off-diagonal elements still givesm l . In this
caseM̂ l is a quenched sparse matrix, andM l can be consid-
ered the average of the annealed version.

After considering both types of mutation, the overall m
tation matrix isM5M lM s or M5M̂ lM s for the quenched
version.

We model our population at the level of the probabil
distribution of genotypesp[p(t), thus disregarding spatia
effects. The evolution equation forp is

p8~x!5

A~x!(
y

M ~x,y!p~y!

Ā
, ~3!

where the selection functionA(x) corresponds to the averag
reproduction rate of individuals with genotypex, and Ā
5(xA(x)p(x) is the average reproduction rate of the pop
lation @1,2,20,21#. We write A(x) in an exponential form
A(x)5exp@V(x)#, and we denoteV(x) thefitness landscape.

The selection does not act directly on the genotype,
rather on thephenotype~how an individual appears to oth
ers!. The phenotype of a given genotype can be interpre
as an array of morphological characteristics. We consider
simplest case, in which the phenotype is univocally de
mined by the genotypex, which is not the general case, sin
polymorphism or age dependence is usually present.
general mapping between genotype and phenotype is lar
unknown and is expected to be quite complex. The effect
some genes are additive~nonepistatic!, while others can in-
teract in a simple~control genes! or complex~morphologic
genes! way.

A possible way of approximating these effects is to u
the following form for the fitnessV(x):

V~x!5
H
L (

i 51

L

s i1
J

L21 (
i 51

L21

s is i 111Kh~x!, ~4!

whereh(x) is a random function ofx, uniformly distributed
between21 and 1@^h(x)h(y)&5dxy#. The ‘‘field’’ term H
represents a nonepistatic contribution to the fitness, in wh
all genes have equal weight. The ‘‘ferromagnetic’’ termJ
represents simple interactions between pairs of genes~even
though in general those are not symmetric! and corresponds
02191
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to a weakly rough landscape. Finally,K modulates a widely
rough landscape and can be thought of as an approxima
of the effects of complex~spin-glass-like! interactions
among genes.

III. SPREADING AND SMALL-WORLD EFFECTS ON A
FLAT FITNESS LANDSCAPE

In this section we study the case of a flat fitness landsc
~no selection!, i.e.,H5J5K50. In this way we are model-
ing the evolution on the crest of a mountain, assuming t
all deleterious mutations are immediately lethal~the part of
the genotype that can originate this kind of mutation is n
considered!, and that we can neglect the small variation
fitness along the crest. This landscape is the one usually
sidered in the theory of neutral evolution@13#. Let us assume
that this crest is colonized by a founder deme genotypic
homogeneous~a d peak in the genotypic distribution!. We
want to obtain the average time needed to populate the c
according to the different mutation schemes. Since the fitn
landscape is flat,Ā is a constant.

We are interested in the behavior ofr(t), which is the
average distance of the population from a given start
genotypex0, i.e.,

r~ t !5(
x

p~x,t !d~x,x0!. ~5!

We introduce the spreading velocityv as

v5
]r

]t U
t50

.

In the Appendix we obtain the spectral properties of t
mutation matricesM s andM l . The corresponding spreadin
velocities in the limit of small time intervalt compared to the
characteristic spreading timets5L/2ms ~short range! and
t l51/m l ~long range! arevs5ms , Eq. ~A3!, andv l5Lm l /2,
Eq. ~A4!. If short- and long-range mutations coexist, one h
v5vs1v l , Eq. ~A5!.

One can approximate the behavior of real biological s
tems by considering a mixture of short-range mutatio
which occur with a relatively high frequency, and spar
long-range mutations, with sparseness indexs.

We investigated the sparse case by numerical simulati
for some genotype lengthsL. As shown in Fig. 1, as soon a
the sparseness indexs.0, the numerical value ofv becomes
very close to the mean-field one, Eq.~A5!. Notice that the
average distance from the inoculum,r(t), is rather insensi-
tive to the distribution ofp. The actual distribution can be
quite different from the one obtained with the mean-fie
matrix M l .

This transition may be interpreted as an indication o
small-world effect, and that there exists a first-order tran
tion at s50 @22#. However, the standard deviation of th
spreading velocity,S(v), appears to diverge ats50 with an
exponent 1/2, as shown in Fig. 2.

These results suggest the presence of a small-world
nomenon in evolution: the rare and sparse long-range m
4-3
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FRANCO BAGNOLI AND MICHELE BEZZI PHYSICAL REVIEW E64 021914
tions cooperate synergetically with the short-range one
give essentially a mean-field effect. We checked that the
vious results hold also for a nonflat~but smooth! fitness land-
scape (ms51025, m l51024 and H51024, J50, K50).
Again, as soon ass.0, the spreading velocity increase
from the short-range values to the mean-field ones.

Our findings agree qualitatively with those in the liter
ture @10,11#, although we used a slightly different setup. I
stead of rewiring links we added long-range jumps and
mutation matrix~which is the adjacency matrix of the prob
lem! in general is not symmetric for the long-range pa
Moreover, we are more interested in metric properties~the
spreading velocity! than geometrical ones~the ‘‘chemical
distance’’!.

IV. EQUILIBRIUM PROPERTIES AND SMALL-WORLD
EFFECTS ON A SMOOTH FITNESS LANDSCAPE

In the following we shall study the effects of the coope
tion between short-range and sparse long-range mutation
the equilibrium properties of the model.

Let us study the model in the presence of a smooth st

FIG. 1. The spreading velocityv vs sparsenesss for three values
of the genotype lengthL; m l51024, ms51023, flat fitness land-
scape. The dashed lines indicate the mean-field valuev5ms

1Lm l /2. Average over 100 runs.

FIG. 2. The standard deviationS(v) of the spreading velocityv
vs sparsenesss for three values of the genotype lengthL; m l

51024, ms51023, flat fitness landscape. The dashed line rep
sents the lawS(v);s21/2. Average over 100 runs.
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fitness landscape. In this case the fitnessA does not depend
explicitly on the distributionp, and Eq.~3! can be linearized
by using unnormalized variablesz(x,t) satisfying

z~x,t11!5(
y

A~y!M ~x,y!z~y,t !, ~6!

with the correspondence

p~x,t !5
z~x,t !

(
y

z~y,t !

.

In vectorial terms, Eq.~6! can be written as

z~ t11!5MAz ~ t !, ~7!

whereMxy5M (x,y) andAxy5A(x)dxy .
When one takes into consideration only point mutatio

(M[M s), Eq. ~6! can be read as the transfer matrix of
two-dimensional Ising model@23–25#, for which the geno-
typic elements i(t) corresponds to the spin in rowt and
column i, and z(s,t) is the restricted partition function o
row t. The effective HamiltonianV ~up to constant terms! of
a possible genealogical history$x(t)% or $s(t)% from time
1<t<T is

V5 (
t51

T21 S g(
i 51

L

s i~ t !s i~ t11!1V„x~ t !…D , ~8!

whereg52 ln@ms/(12ms)#.
This unusual two-dimensional Ising model has long-ran

coupling along the row~depending on the choice of the fi
ness function! and ferromagnetic coupling along the tim
direction ~for small short-range mutation probability!. In or-
der to obtain the statistical properties of the system one
to sum over all possible configurations~stories!, eventually
selecting the right boundary conditions at timet51. The
bulk properties of Eq.~8! cannot be reduced in general to th
equilibrium distribution of a one-dimensional system, sin
the transition probabilities among rows do not obey detai
balance. Moreover, the temperature-dependent Hamilto
~8! does not allow an easy identification between energy
selection, and temperature and mutation, which is naiv
expected by the biological analogy with an adaptive walk

A. Long-range mutations

Let us first consider the long-range mutation case. Eq
tion ~7!, reformulated according to Eq.~3!, corresponds to

z~ t1t!5~AM l !
tz~ t !.

Since it is easier to consider the effects ofA and M l sepa-
rately, let us study in what limit they commute. The norm
the commutator on the asymptotic probability distributionp
is

uu@AM l #uu5(
xy

u@AM l #xyp~y!u,-
4-4
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FIG. 3. Numerical check for long-range mutations. In the simulations we setL58, m l50.1, andms50. We variedH ~a,b!, J ~c,d!, and
K ~e,f!, setting all other parameters to zero.~a! H50.01, J50, K50; ~b! H50.001, J50, K50; ~c! H50, J50.01, K50; ~d! H
50, J50.001, K50; ~e! H50, J50, K50.1; ~f! H50, J50, K50.01. In the figurest indicates the number of generations,me the
reciprocal of the slope of linear regression.
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and it is bounded bym lc, wherec5maxxyuAxx2Ayyu. In the
limit m lc→0 ~i.e., a very smooth landscape!, to first order in
c we have

~AM l !
t5AtM l

t1O~t2m lc!At21M l
t21 ,

which is analogous to the Trotter product formula.
When t is of order 1/m l , M l

t is a constant matrix with
elements equal to 1/2L, and thusM lp is a constant probabil
ity distribution. If m l is large enough, (AM l)

t5AtM l
t .

The asymptotic probability distributionp̃ is thus propor-
tional to the diagonal ofA1/m l:

p̃~x!5C expS V~x!

m l
D , ~9!
02191
i.e., a Boltzmann distribution with HamiltonianV(x) and
temperaturem l . This corresponds to the naive analogy b
tween evolution and equilibrium statistical mechanics.
other words, the genotypic distribution is equally populat
if the phenotype is the same, regardless of the genoty
distance since we used long-range mutations.

We have checked this hypothesis numerically, by iterat
Eq. ~3! for a time T large enough to be sure of havin
reached the asymptotic state. We plotted the logarithm of
probability distributionp̃(x) versus the value of the Hamil
tonian V(x). We computed the slope 1/me of the linear re-
gression. The quantityme is the effective ‘‘temperature’’ of
the probability distribution according to the equilibrium h
pothesis.

The results for the mean-field mutation matrixM l are
shown in Fig. 3. We see that the equilibrium hypothesis
well verified in the limit m l@c; and that convergence i
4-5
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FIG. 4. Numerical check for short-range mutations. In the simulations we setL58, m l50, andms50.1. We variedH ~a,b!, J ~c,d!, and
K ~e,f!, setting all other parameters to zero.~a! H50.1, J50, K50; ~b! H50.01, J50, K50; ~c! H50, J50.01, K50; ~d! H50,
J50.001, K50; ~e! H50, J50, K50.01; ~f! H50, J50, K50.001. In the figurest indicates the number of generations,me the
reciprocal of the slope of linear regression.
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faster for a rough landscape. In all cases the effective t
peratureme is close to the expected value, i.e., to the mu
tion ratem l .

B. Short-range mutations

The above results hold only qualitatively for pure sho
range mutations as shown in Fig. 4. The small dispersion
points in the figure implies that the genotypes can be divi
into evenly populated groups sharing approximately
same fitness. This is always the case for the additive fitn
landscape (H contribution!, since in this case the position o
symbols in the genotype has no influence, and the sh
range mutations are able to homogenize the distribution
side a group. This is only approximately valid for theJ
contributions, since in this case the fitness depends on p
of symbols, while mutations act only on single symbo
02191
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However, as shown in Fig. 4~d!, the homogeneous state
reached for a sufficiently high mutation probability. Finall
the homogeneous state is never reached for the very ro
landscape case (H contribution!, even though the linear re
lation is satisfied on average.

In order to obtain a quantitatively correct prediction, o
has to consider that the resulting slopeme is related to the
second largest eigenvaluel1 of the mutation matrix bym
512l1. When the fitness depends only on the ‘‘extern
field’’ term H, in the asymptotic state the short-range mu
tions connect groups of equal fitness. This fact is reflected
the vanishing dispersion of points in Figs. 4~a! and 4~b!.

In all cases, we expect that in the limit of a very smoo
landscapeme tends toward the limiting value 2ms /L of Eq.
~A2!. This limit is reached faster when only the additiveH
term is present. This implies that for a large genotyp
the effective temperature due to short-range mutations
4-6
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TABLE I. Effective temperatureme for several values of the genotype lengthL and parameters of the
fitnessV(x), Eq. ~4!. Herems50.1, m l50.01; the row labeledH stands forH50.1, J5K50, and the row
labeledJ stands forJ50.1, H5K50, the row labeledK stands forK50.1, H5J50. We report the value

of me
(0) for sparsenesss50 ~only small-range mutations! and the average valuem̄e for s.sc , wheresc is

estimated visually from the plot of data~see also Fig. 5!.

V L56 L58 L510 L512

me
(0)

m̄e
sc me

(0)
m̄e

sc me
(0)

m̄e
sc me

(0)
m̄e

sc

H 0.035 0.045 3 0.025 0.035 3 0.020 0.030 2 0.017 0.027
J 0.071 0.082 4 0.053 0.063 4 0.042 0.052 4 0.035 0.045
K 0.080 0.105 6 0.090 0.105 6 0.096 0.107 6 0.098 0.111
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vanishing.
In the opposite case, when the selection is strong,

application of the matrixA ‘‘rotates’’ the distributionp in a
way that is essentially random with respect to the Fou
eigenvectors ofM s . Thus, the effective second eigenvalue
the mutation matrix is given by 12ms , obtained by averag
ing over all the eigenvalues of Eq.~A2!. Consequently, we
obtainme.ms . This limit is reached faster in the case of
strongly disordered fitness landscape, i.e., in the limit
largeK. When only theJ term is present, one observes
intermediate case.

C. Small-world effects

Let us now consider the case of a sparse long-range
tation matrix, coupled to a stronger short-range matrix, i
ms@m l . We performed simulations withms50.1 and m l
50.01, L56, 8, and 10, and varyings. The results are sum
marized in Table I.

The effects of the two kinds of mutation are additiv
implying that, for smallm l , the distributions are visually
similar to the short-range case, Fig. 4. However, as soons
is greater than a thresholdsc , the effective temperatureme
increases by the expected long-range contributionm l . This
increment is very relevant when the effect of short-ran
mutations is vanishing, i.e., for smooth landscapes (H andJ
contributions! and large genotypes. The effect is less relev
in the disordered case (K contributions!, since in this case
the contribution to the effective temperature by the sm
range mutations does not decrease with increasingL.

By increasing the weight of the sparse long-range mu
tions, the probability distribution also becomes similar to t
long-range case, Fig. 3. We performed simulations withms
50.1 andm l50.1, L56,8,10, and varyings. The results are
shown in Table I. Notice that the value ofsc ~estimated vi-
sually from the plot of data! is rather insensitive toL and the
parameters of the fitnessV(x).

We quantified the distance between the resulting distri
tion and the Boltzmann one Eq.~9! through the computation
of the average square difference from linear regression,x2.
In Fig. 5 we show thatx2 becomes very small as soon ass
.sc , which seems to vanish withL→`.

This implies that, for large genotypes, a vanishing fract
of long-range mutations, coupled to small-range ones, is
ficient to establish the statistical mechanics analogy of se
tion and mutations.
02191
e

r
f

f

u-
.,

,

s

e

t

l-

-
e

-

n
f-
c-

V. CONCLUSIONS

We studied some simple models of asexual populati
evolving on a smooth fitness landscape, in the presenc
point mutations~small-range jumps in genotypic space! and
other genetic rearrangements~long-range jumps!.

We computed analytically the spreading velocity of
initially homogeneous inoculum on a flat fitness landsca
for the short-range and the long-range mean-field~all muta-
tions equiprobable! cases. Since in a real situation only
small set of all possible mutations can occur, we also c
sidered the quenched version of the long-range mutation
trix. In this case we showed that a small-world effect
present, since even a small number of quenched long-ra
jumps makes the results indistinguishable from those
tained by assuming all mutations equiprobable. These res
still hold for a smooth fitness landscape.

We investigated this issue further, studying the equil
rium properties of the system in the presence of a smo
fitness landscape. In this framework, it was possible to sh
that the equilibrium distribution is a Boltzmann one,
which the fitness plays the role of an energy, and mutati
that of a temperature. We checked this result numerically
different fitness landscapes, and a mean-field long-range
tation mechanism. As in the previous case, a small-wo
phenomenon appears, since similar results can be obta

FIG. 5. Scaling of the average square difference from lin
regression,x2, vs sparsenesss, for three values of the genotyp
lengthL; m l50.1, ms50.1, H50, J50, K50.1. Averages taken
over 20 runs.
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using a combination of sparse long-range and short-ra
mutations.

We wish to acknowledge our participation in the Dyna
ics of Complex Systems@26# group. The numerical simula
tions were performed using the computational facilities
INFM PAIS 1999-G-IS-Firenze.

APPENDIX: SPECTRAL PROPERTIES OF THE
MEAN-FIELD MUTATION MATRICES

Both M s andM l , Eqs.~1! and ~2!, are Markov matrices
Moreover, they are circular matrices, since the value o
given element does not depend on its absolute position
only on the distance from the diagonal. This means that t
spectrum is real, and that the largest eigenvalue isl051.
Since the matrices are irreducible, the corresponding eig
vectorj0 is nondegenerate, and corresponds to the flat di
bution j0(x)51/2L. In analogy with circular matrices in th
usual space, one can obtain their complete spectrum u
the analog of Fourier transform in a Boolean hypercu
space. Let us define the ‘‘Boolean scalar product’’(:

x(y5 % i 51
L xiyi ,

where the symbol% represent the sum modulus two~XOR!
and the multiplication can be substituted by anAND ~which
has the same effect on Boolean quantities!. This scalar prod-
uct is obviously distributive with respect to theXOR:

~x% y!(z5~x(z! % ~y(z!.

Note that the operationx% y is performed bitwise betwee
the two genotypes: (x% y) i5xi % yi .

Given a functionf (x) of a Boolean quantityxP$0,1%L, its
‘‘Boolean Fourier transform’’ isf̃ (k) (kP$0,1%L)

f̃ ~k!5
1

2L (
x

~21!x(k f ~x!.

The antitransformation operation is determined by the d
nition of the Kronecker delta

dk05
1

2L (
x

~21!x(k,

and is given by

f ~x!5(
k

~21!x(k f̃ ~k!.

One can easily verify that the Fourier vectorsjk(x)
5(21)x(k are eigenvectors of bothM l andM s , with eigen-
values

l051,

lk512m l2
m l

2L21
~A1!
02191
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for the long-range case, and

l051,

lk512
2msd~k,0!

L
~A2!

for the short-range case, whered(x,y) is the Hamming dis-
tance between genotypesx andy.

The computation ofr(t), Eq. ~5!, is easily performed in
Fourier space, using the analog of the Parsifal theorem:

(
x

f ~x!g~x!5(
x

(
k

(
k8

f̃ ~k!g̃~k8!~21!x((k % k8)

52L(
k

(
k8

f̃ ~k!g̃~k8!dkk852L(
k

f̃ ~k!g̃~k!,

where we have used the propertyk % k850 if and only if
ki5ki8 for each componenti. Let us denote byen the unit
vector along directionn, i.e., (en) i5dni .

The Fourier transform of the distanced(x,y) is obtained
considering that (21)(x% y)(en gives 1 if xn5yn and 21
otherwise; thus

d~x,y!5
1

2 S L2 (
n50

L21

~21!(x% y)(enD .

We obtain

d̃x0
~k!5

1

2L (
x

d~x,x0!~21!x(k

5
1

2L

1

2 (
x

S L2 (
n50

L21

~21!(x% x0)(enD ~21!x(k

5
L

2
dk02

1

2 S (
n50

L21

~21!x0(enD
3S (

x
~21!x((k % en)D

5
L

2
dk02

1

2 (
n50

L21

~21!x0(endken
;

i.e.,

d̃x0
~k!55

L/2 if k50

21/2 if k5en and ~x0!n50

1/2 if k5en and ~x0!n51

0 otherwise.

The probability distributionp(x,t) can be expanded on
the eigenvector basisjk(x) of M :

p~x,0!5(
k

akjk~x!5(
k

ak~21!x(k
4-8



ack
ree.

SMALL-WORLD EFFECTS IN EVOLUTION PHYSICAL REVIEW E64 021914
and

p~x,t !5M tp~x,0!5(
k

aklk
t jk~x!,

i.e.,

p̃~k,t !5aklk
t .

Thus

r~ t !5(
k

d̃x0
~k! p̃~k,t !5(

k
d̃x0

~k!aklk
t

5
L

2
l0

t 1 (
n50

L21
1

2
aen

len

t .

If at t50 the distribution is concentrated atx050
@p(x,0)5dx0# then ak51 for all k. In both the short- and
long-range cases,len

does not depend onn @see Eqs.~A1!

and ~A2!#, and thus

r~ t !5
L

2
~l0

t 2l1
t !.

For the short-range case we have

rs~ t !5
L

2 F12S 12
2ms

L D tG5
L

2 H 12expF t lnS 12
2ms

L D G J
.

L

2 F12expS 2
t

ts
D G ,
on

,

02191
and the characteristic spreading time ists5L/2ms . For t
small compared withts (L→`) we have

rs~ t !.mst[vst. ~A3!

For long-range mutations we have

r l~ t !5
L

2 F12S 12m l2
m l

enL21D tG.
L

2 F12expS 2
t

t l
D G

with t l51/m l . For t!t l (m l→0) we have

r l~ t !.
Lm l

2
t[v l t. ~A4!

The behavior ofr(t) for short times, vanishing mutation
probabilities, and large genotypes, Eqs.~A3! and ~A4!, is
rather trivial. In these approximations one can neglect b
mutations, and obtain the same results on a Cayley t
However, the full analysis gives the exact behavior ofr(t)
for all times.

In the mixed case one hasM5M sM l . SinceM s andM l
share the same eigenvectors,l5lsl l and, in the previous
approximations,

v5vs1v l . ~A5!
f-
n
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@23# I. Leuthäusser, J. Stat. Phys.48, 343 ~1987!.
@24# P. Tarazona, Phys. Rev. A45, 6038~1992!.
@25# T. Wiehe, E. Baake, and P. Schuster, J. Theor. Biol.177, 1

~1995!.
@26# http://www.docs.unifi.it/
4-9


