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Small world effects in evolution
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For asexual organisms point mutations correspond to local displacements in the genotypic space, while other
genotypic rearrangements represent long-range jumps. We investigate the spreading properties of an initially
homogeneous population in a flat fithess landscape, and the equilibrium properties on a smooth fitness land-
scape. We show that a small-world effect is present: even a small fraction of quenched long-range jumps makes
the results indistinguishable from those obtained by assuming all mutations equiprobable. Moreover, we find
that the equilibrium distribution is a Boltzmann one, in which the fithess plays the role of an energy, and
mutations that of a temperature.
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[. INTRODUCTION because the population shares some external resource that is
evenly distributed, i.e., we disregard the effects of interindi-
Darwinian evolution on asexual organisms acts by twovidual competition{3,4]. In this limit the effects of competi-
mechanismsmutations which increase the genetic diversity, tion do not depend on the distribution of genotypes, and
and selection which fixes and reduces this diversity. We simply limit the total size of the population.
classify mutations into point mutations, corresponding to lo- The most important effects of the selection can be roughly
cal displacements on the genotypic spédefined more ac- schematized by assuming that certain genotypes are forbid-
curately in the following, and other types of mutation or den, so that they are eliminated from the accessible space.
rearrangement, which imply larger jumps. Mutations arelLet us consider for the moment that evolution takes place in
quite rare, so we can safely assume that for each generati@nflat fitness landscape. In this framework, there are no inter-
at most only one mutation occurs. From a biological point ofactions among individuals: the evolution is given by the
view, this discussion applies to unicellular asexual organsimple superposition of all possible lineages. The probability
isms, for which there is no distinction between somatic andlistribution of the population in the genotypic space at a
germ cells. Moreover, we do not consider the possibility ofgiven time can be obtained by summing over all possible
recombination(exchange of genetic mateialFor nonre- individual “histories” in a way similar to the path integral
combinant(asexual organisms, the combined effects of re- formulation of statistical mechanid$]. In this view, the
production and mutations correspond to a random walk oPhylogenetic lineage of an individual is given by the path
the genotypic space. Even sexi(acombinantpopulations ~ connecting the genotypes of ancestors.
do transmit asexually some part of their genotype, such as This assumption has to fail somewhere, since otherwise
mithocondrial ory-chromosome DNA, to which the follow- evolution would be equivalent to a diffusion process, without
ing analysis applies. Furthermore, we assume a constant e@dything favoring the formation of species. It is often as-
vironment. sumed that speciation events are rare and occur in a very
We schematize the effects of selection by the selectivshort time[6], either due to some change in the fitness land-
reduction of the survival probability. Selection results fromScape(caused by an external catastrophe like the fall of a
several constraints and can affect the frequency of certail@rge meteorite, or by an internal rearrangement induced by
genotypes, or even eliminate them from the population. W&oevolution or because small isolated populations, escaping
classify the components of selection into static and dynamié®0m competition, are free to explore their genotypic space
ones. In the first class we put the constraints that are indégenetic drifi and find a path to a higher fitness peal.
pendent of the population distribution, such as the functionTherefore, it is usually assumed that one can reconstruct the
ality of a certain protein or the tuning of a metabolic path.diverging time of two species from their genotypic distance
The static part of the selection is equivalent to the concept offom a single speciation evef].
“fitness landscape]1,2]. The dynamic part of the selection It is known, however, from recent investigations about the
originates from the competition among individuals. We as-small-world phenomenof®] that diffusion is seriously af-

sume in this schematization that the competition arises onlfected even by a small fraction of long-range jurip8—12.
his fact could have dramatic consequences in our under-

standing of the large-scale evolution mechanism. If the short-
*Electronic address: bagnoli@dma.unifi.it range mutations are dominant, the evolution is equivalent to
"Electronic address: bezzi@sissa.it a diffusion process in the genotypic space. Assuming that the
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fitness landscape is formed by mountains separated by vathort-range ones to give essentially the mean-field results.
leys, and that the crests of the mountains are almost flat, then In Sec. IV, we show that the effects of mutations and
the large-scale evolution is dominated by the times needed tgelection can be separated in the limit of a very smooth fit-
cross a valley by chance, while the short scale is dominatetiess landscape and mean-field long-range mutations. In this
by the neutral exploration of credi§,13]. approximation we obtain analytically the result that the
Vice versa, if the long-range mutations are importamasymptotic probability distribution is a Boltzmann equilib-
(eventually amplified by the small-world mechanisrthe  fium one, in which the fitness plays the role of energy and
time needed to connect two genotypes does not depend dﬂutatlons Correspond to temperature. We Compute numeri-
their distance nor on the shape of the fitness landscape af@lly the asymptotic probability distribution for several fit-
the fithess maxima are quickly populated. Moreover, in thig'ess landscapes, finding that the equilibrium hypothesis is
scenario, the speciation phenomenon should not be ascrib&gfified. As a nontrivial example of small-world effects in
to the “discovery” of a preexisting niche, but rather to the €volution, we checked numerically that this scenario still
formation of that niche in a given ecosystem due to internalolds for a sparse long-range mutation matrix. Conclusions
interactions(coevolution or external physical changdsa- and perspectives are drawn in the last section.
tastrophep After formation, the niche is quickly populated

because of long-range mutations. In this framework, allopat- Il. THE MODEL

ric speciation| 7] loses its fundamental importance, and sym- -

patric speciation due to coevoluti¢h4,15 becomes a plau-  In order to be specific, let us assume that the genotype of
sible alternative. an individual is represented by a Boolean string of lerigth

In order to evaluate quantitatively the relevance of thesén this way, the genotypic space is a Boolean hypercube with
speculations, we introduce an individual-based model of ar" nodes.
evolving population. We assume that the genetic information The genotype of an individual is represented by a string
(the genotype of an individual is represented by a binary X=(X1,Xz, ... X_) of L Boolean symbols;=0,1. Each po-
string x=(Xy,Xo, . . . X.) of L symbolsx;=0,1 (multilocus  Sition corresponds to a locus whose gene has two allelic
model with two alleles In this way we are modeling haploid forms. In this way we are modeling haplofdnly one copy
organisms, i.e., bacteria or viruses, or, more appropriatelyf each geneorganisms, i.e., bacteria or viruses, or, more
more archaic, prebiotic entities. The choice of a binary cod@ppropriately, more archaic, prebiotic entities. The genotype
is not fundamental but certainly makes things easier. It caan also be viewed as a spin configuration. In this case we
be justified by thinking of a purine-pyrimidine coding, or of use the symbotr;=2x;—1.
“good” and “bad” alleles for geneg(units of genetic infor- We consider two kinds of mutation: point mutations,
mation. In this second version, 0 represents a good gene anghich interchange a 0 with a 1, and all other mutations,
1 a bad one. This is a sort of “minimal model” which is Which do not alter the length of the genotyfieansposition
often used to model the evolution of genetic populationsand inversions We define the distancé(x,y) between two
[14-18. For bacteria, there are indications that major andyenotypex andy as the minimal number of point mutations
minor codons work in such a wdt9]. The genotypic space needed to pass fromto y (Hamming distance
is thus a Boolean hypercube bfdimensions, and each indi-
vidual sits on a corner of this cube, according to its genotype. L
The 2~ corners of this hypercube represent all possible geno- d(x,y) =2, (xi—yi)2.
types, which are at a maximum distance equadl.to =1

In the next section, we formalize the model and introduce ) o
the mathematical representation of mutation mechanismé\!l possible genotypes of length are distributed on the'2
Then, in Sec. Ill, we consider the consequences of short- an¢ertices of a hypercube. A point mutation corresponds to a
long-range mutations for a flat fitness landscape. In the longénit displacement on that hypercutghort-range jump
range case all genotypes are connected, regardless of their The occurrence of point mutations in real organisms de-
mutual distance: this case can be considered the equivaleR€Nnds on the identity of the symbol and on its position on the
of a mean-field approximation. We derive analytically thegenotype; in the present approximation, however, we assume
rate of spreading and the characteristic spreading timef ~ that all point mutations are equally likely. Moreover, since
a genetically homogeneous inoculum in the short-rangéhe probability of observing a mutation is quite small, we
(vs, 7o) and long-rangey ,m) cases. In the first case, is impose the c_ond|t|0n that at r_n_ost one mutz_itlon is p_OSS|bIe in
independent of the genotype lendthand 7, grows linearly ~ ON€ generation. The probability of.obs'ervmg a point muta-
with L; the opposite happens in the long-range case. Clearljion from genotypey to genotypex is given by the short-
this different behavior has dramatic evolutionary consefange mutation matrbMg(x,y). Denoting by us the prob-

quences a& becomes large. ability of a point mutation per generation, we have
In general, however, only a small set of all possible long-
range mutations is observed in real organisms. We thus com- 1-ps ifx=y
pute numerically the rate of spreadimgin a mixed short- “
range and sparse long-range case. A small-world effect can M(X,y) = TS if d(x,y)=1 (1)
be observed: in the limit of large genotype lengths, a vanish-
ing fraction of long-range mutations cooperates with the 0 otherwise.
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Other types of mutation correspond to long-range jumpso a weakly rough landscape. Finallj, modulates a widely
in the genotypic space. The simplest approximation consistsugh landscape and can be thought of as an approximation
in assuming all mutations equiprobable. Let us denotgpy of the effects of complex(spin-glass-lik¢ interactions
the probability per generation of this kind of mutation. The among genes.
long-range mutation matriM,(x,y) is defined as

Ill. SPREADING AND SMALL-WORLD EFFECTS ON A

1=w ifx=y FLAT FITNESS LANDSCAPE
Mi(x.y)= K otherwise. 2) In this section we study the case of a flat fithess landscape
2t-1 (no selectioh, i.e., H=7=K=0. In this way we are model-

) ) ing the evolution on the crest of a mountain, assuming that

In the real world, only some kinds of mutation are actually 5| geleterious mutations are immediately letkiile part of
observed. We model this fact by replacig with a sparse  the genotype that can originate this kind of mutation is not
matrix M, . We introduce the sparseness indewhich isthe  considereyl and that we can neglect the small variation of
average number of nonzero off-diagonal e|ementg\7|q,f fithess along the crest. This landscape is the one usually con-
The sum of these off-diagonal elements still giygs In this ~ sidered in the theory of neutral evolutiph3]. Let us assume
casel\7l| is a quenched sparse matrix, avg can be consid- that this crest is colonlzgd by a founde_r delme- ge_notyplcally
ered the average of the annealed version. homogeneogssa S peak in the genotypic distributionWe

After considering both types of mutation, the overall mu-Want to obtain the average time needed to populate the crest

. o - according to the different mutation schemes. Since the fitness
tation matrix isM=M ;Mg or M=M Mg for the quenched _ —
version. landscape is flatA is a constant.

We model our population at the level of the probabiliy Ve are interested in the behavior pft), which is the
distribution of genotypep=p(t), thus disregarding spatial 2verage distance of the population from a given starting

effects. The evolution equation foris genotypexo, i.e.,
AX) D M(x,y)p(y) p(t)=2 P(X,t)d(X,Xo). )
y
p'(X)= = : € _ . .
A We introduce the spreading velocityas

where the selection functiof(x) corresponds to the average dp

reproduction rate of individuals with genotype and A TS H)'

=2,A(X)p(x) is the average reproduction rate of the popu-

lation [1,2,20,2]. We write A(x) in an exponential form In the Appendix we obtain the spectral properties of the

A(X)=exdV(x)], and we denot¥(x) thefitness landscape mutation matricedl andM,. The corresponding spreading
The selection does not act directly on the genotype, buvelocities in the limit of small time intervalcompared to the

rather on thephenotypehow an individual appears to oth- characteristic spreading time,=L/2u¢ (short rangg and

ers. The phenotype of a given genotype can be interpreted; =1/u, (long range arev=us, Eq.(A3), andv,=Lu,/2,

as an array of morphological characteristics. We consider thEq. (A4). If short- and long-range mutations coexist, one has

simplest case, in which the phenotype is univocally detery =y +v,, Eq. (A5).

mined by the genotype, which is not the general case, since  One can approximate the behavior of real biological sys-

polymorphism or age dependence is usually present. Theems by considering a mixture of short-range mutations,

general mapping between genotype and phenotype is largelyhich occur with a relatively high frequency, and sparse

unknown and is expected to be quite complex. The effects dbng-range mutations, with sparseness index

some genes are additiyaonepistatig, while others can in- We investigated the sparse case by numerical simulations,
teract in a simplegcontrol genesor complex(morphologic  for some genotype lengths As shown in Fig. 1, as soon as
geneg way. the sparseness indsx- 0, the numerical value af becomes

A possible way of approximating these effects is to usevery close to the mean-field one, E@5). Notice that the
the following form for the fitnes¥/(x): average distance from the inoculupi(t), is rather insensi-

tive to the distribution ofp. The actual distribution can be
quite different from the one obtained with the mean-field
matrix M, .

This transition may be interpreted as an indication of a
where (x) is a random function o%, uniformly distributed  small-world effect, and that there exists a first-order transi-
between—1 and 1[(7(x) 7(y))= d,]. The “field” term H  tion ats=0 [22]. However, the standard deviation of the
represents a nonepistatic contribution to the fitness, in whickpreading velocityS(v), appears to diverge at=0 with an
all genes have equal weight. The “ferromagnetic” tegh  exponent 1/2, as shown in Fig. 2.
represents simple interactions between pairs of géexan These results suggest the presence of a small-world phe-
though in general those are not symmetaad corresponds nomenon in evolution: the rare and sparse long-range muta-

H L T L-1
V)= 2 ot 2 ot Kn(), (@)
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18 x 10 . . - fitness landscape. In this case the fitnAsdoes not depend
17 x 104 explicitly on the distributiorp, and Eq.(3) can be linearized
16 x 10~ by using unnormalized variablegx,t) satisfying
15 x 104
| txio 2(x,t+1)=2 AY)M(xy)z(y,1), ()
13 x 104 Y
12x 1074 with the correspondence
11 x 104 ( t)
Z(X,
10 x 10~ p(x,t)= ———.
—4 1 1 Il
9107 5 10 15 20 % z(y,t)
S

FIG. 1. The spreading velocity vs sparsenessfor three values  In vectorial terms, Eq(6) can be written as
of the genotype length; w,=10"%, u=10 3, flat fitness land-
scape. The dashed lines indicate the mean-field valeeu Z(t+1)=MAz(1), (7)
+Lw,/2. Average over 100 runs.
whereM,,=M(x,y) andA,,=A(X) &y .
tions cooperate synergetically with the short-range ones to When one takes into consideration only point mutations
give essentially a mean-field effect. We checked that the pretM =M5), Eq. (6) can be read as the transfer matrix of a
vious results hold also for a nonflétut smooth fitness land-  two-dimensional Ising modg23—-29, for which the geno-
scape f1s=1075, 4,=10 % and’ H=10"% 7=0, K=0). typic elemento;(t) corresponds to the spin in rowand
Again, as soon as>0, the spreading velocity increases columni, and z(_o-,t) is the rgstncted partition function of
Our findings agree qualitatively with those in the litera- @ Possible genealogical histofx(t)} or {of(t)} from time
ture[10,11], although we used a slightly different setup. In- 1St<T is
stead of rewiring links we added long-range jumps and our -1
mutation matrix(which is the adjacency matrix of the prob- V= 2
lem) in general is not symmetric for the long-range part. =1
Moreover, we are more interested in metric properfibg
spreading velocity than geometrical oneghe “chemical wherey= —In[us/(1—ug].
distance”). This unusual two-dimensional Ising model has long-range
coupling along the rowdepending on the choice of the fit-
ness function and ferromagnetic coupling along the time
direction (for small short-range mutation probabilityn or-
der to obtain the statistical properties of the system one has
In the following we shall study the effects of the coopera-to sum over all possible configuratiofstories, eventually
tion between short-range and sparse long-range mutations selecting the right boundary conditions at timre 1. The
the equilibrium properties of the model. bulk properties of Eq(8) cannot be reduced in general to the
Let us study the model in the presence of a smooth statiequilibrium distribution of a one-dimensional system, since
the transition probabilities among rows do not obey detailed

L
721 oV a(t+1)+VX(1) |, ®)

IV. EQUILIBRIUM PROPERTIES AND SMALL-WORLD
EFFECTS ON A SMOOTH FITNESS LANDSCAPE

2-10 . . . . . balance. Moreover, the temperature-dependent Hamiltonian
iz %‘21 o (8) does not allow an easy identification between energy and
g-11 £33 L;}/‘,’ B selection, and temperature and mutation, which is naively

expected by the biological analogy with an adaptive walk.

A. Long-range mutations

Let us first consider the long-range mutation case. Equa-
tion (7), reformulated according to E¢B), corresponds to

Z(t+7)=(AM,)"z(t).

915 . ! . . . Since it is easier to consider the effectsfofand M, sepa-
1 2 4 8 16 32 64 rately, let us study in what limit they commute. The norm of
8 the commutator on the asymptotic probability distributfpn
is

FIG. 2. The standard deviatid(v) of the spreading velocity
vs sparseness for three values of the genotype length
=104, us=10"3, flat fitness landscape. The dashed line repre- AM . 1ll= AM
sents the laws(v) ~s~ 2 Average over 100 runs. el xEy LA 1P,
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FIG. 3. Numerical check for long-range mutations. In the simulations wes&, u,=0.1, andus=0. We variedH (a,b, 7 (c,d), and
K (e,f), setting all other parameters to zef@) H=0.01, 7=0, K=0; (b) H=0.001, 7=0, K£=0; (c) H=0, J=0.01, K=0; (d) H
=0, J=0.001,K=0; (el H=0, J=0, K£=0.1; (f) H=0, J=0, K£=0.01. In the figureg indicates the number of generations, the

reciprocal of the slope of linear regression.

and it is bounded by c, wherec=max,|A,,—A|. In the
limit u;,c—0 (i.e., a very smooth landscap¢o first order in
c we have

(AM))"™=A"M+O(PwC)A™ M[

which is analogous to the Trotter product formula.

When 7 is of order 1f,, M/ is a constant matrix with
elements equal to 1Y2and thusM,p is a constant probabil-
ity distribution. If u is large enough,AM)"=A"M/ .

The asymptotic probability distributiop is thus propor-
tional to the diagonal oAV

~ V(X)
p(x)=C exr1< ) : 9

M

i.e., a Boltzmann distribution with Hamiltonia¥w(x) and
temperatureu, . This corresponds to the naive analogy be-
tween evolution and equilibrium statistical mechanics. In
other words, the genotypic distribution is equally populated
if the phenotype is the same, regardless of the genotypic
distance since we used long-range mutations.

We have checked this hypothesis numerically, by iterating
Eq. (3) for a time T large enough to be sure of having
reached the asymptotic state. We plotted the logarithm of the

probability distributionﬁ(x) versus the value of the Hamil-
tonian V(x). We computed the slope [4{ of the linear re-
gression. The quantity. is the effective “temperature” of
the probability distribution according to the equilibrium hy-
pothesis.

The results for the mean-field mutation matiik, are
shown in Fig. 3. We see that the equilibrium hypothesis is
well verified in the limit x,>c; and that convergence is
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FIG. 4. Numerical check for short-range mutations. In the simulations wie=s8&t, u;=0, andus=0.1. We variedH (a,b, J (c,d), and
K (e,f, setting all other parameters to zefa) H=0.1, 7=0, K£=0; (b) H=0.01, /=0, K=0; (c) H=0, J=0.01, £=0; (d) H=0,
J=0.001, £=0; (e) H=0, J=0, £=0.01; (f) H=0, J=0, K£=0.001. In the figured indicates the number of generations, the
reciprocal of the slope of linear regression.

faster for a rough landscape. In all cases the effective temHowever, as shown in Fig.(d), the homogeneous state is
peratureu, is close to the expected value, i.e., to the muta+eached for a sufficiently high mutation probability. Finally,
tion rateu, . the homogeneous state is never reached for the very rough
landscape caseH contributior), even though the linear re-
lation is satisfied on average.

In order to obtain a quantitatively correct prediction, one

The above results hold only qualitatively for pure short-has to consider that the resulting slopg is related to the
range mutations as shown in Fig. 4. The small dispersion ofecond largest eigenvalug of the mutation matrix byu
points in the figure implies that the genotypes can be divided=1—X\;. When the fithess depends only on the “external
into evenly populated groups sharing approximately theield” term 7, in the asymptotic state the short-range muta-
same fitness. This is always the case for the additive fithestons connect groups of equal fithess. This fact is reflected by
landscape ¥ contribution), since in this case the position of the vanishing dispersion of points in Figgagand 4b).
symbols in the genotype has no influence, and the short- In all cases, we expect that in the limit of a very smooth
range mutations are able to homogenize the distribution inlandscapeu, tends toward the limiting value2;/L of Eq.
side a group. This is only approximately valid for tiigg  (A2). This limit is reached faster when only the additite
contributions, since in this case the fitness depends on paiterm is present. This implies that for a large genotypes
of symbols, while mutations act only on single symbols.the effective temperature due to short-range mutations is

B. Short-range mutations
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TABLE I. Effective temperatureu, for several values of the genotype lendgttand parameters of the
fitnessV(x), Eq. (4). Hereus=0.1, ;= 0.01; the row labele@ stands for{=0.1, 7=K=0, and the row
labeled.7 stands for7=0.1, H=K=0, the row labeledC stands forC=0.1, H= 7= 0. We report the value
of u{? for sparseness=0 (only small-range mutatiopsand the average valye, for s>s;, wheres; is
estimated visually from the plot of dataee also Fig. b

\% L=6 L=8 L=10 L=12

0 - 0 - 0 - 0 -
:u(e ) Me Sc /L(e ) Me Sc /U“(e ) Me Sc M(e ) Me Sc

H 0.035 0.045 3 0.025 0.035 3 0.020 0.030 2 0.017 0.027 2
J 0.071  0.082 4 0.053 0.063 4 0.042 0.052 4 0.035 0.045 3
K 0.080 0.105 6 0.090 0.105 6 0.096 0.107 6 0.098 0.111 3

vanishing. V. CONCLUSIONS

In the opposite case, when the selection is strong, the We studied impl dels of | lati
application of the matribA “rotates” the distributionp in a ¢ studied some simple models of asexual populations

way that is essentially random with respect to the Fourietevf)lvIng on a smooth fltnes_s Iandgcape, in the presence of
eigenvectors okl . Thus, the effective second eigenvalue of POINt mutationssmall-range jumps in genotypic spacnd
the mutation matrix is given by u., obtained by averag- Other genetic rearrangemeritsng-range jumps
ing over all the eigenvalues of EGA2). Consequently, we .\.Ne computed analyucally the spreadln_g velocity of an
obtain = us. This limit is reached faster in the case of a initially homogeneous inoculum on a flat fithess landscape,
strongly disordered fitness landscape, i.e., in the limit offor the short-range and the long-range mean-fieltimuta-
large K. When only the7 term is present, one observes antions equiprobablecases. Since in a real situation only a
intermediate case. small set of all possible mutations can occur, we also con-
sidered the quenched version of the long-range mutation ma-
C. Small-world effects trix. In this case we showed that a small-world effect is
: present, since even a small number of quenched long-range
_Let us now consider the case of a sparse Iong-ran_ge_mlfl]mps makes the results indistinguishable from those ob-
tation matrix, coupled to a stronger short-range matrix, i.e.,_. . . .
: : S tained by assuming all mutations equiprobable. These results
pe=pu . We performed simulations withu=0.1 and i oy poi'tor 4 smooth fitness landscape
=0.01,L=6, 8, and 10, and varying The results are sum- . . o s o
marized in Table . We investigated this issue further, studying the equilib-
rium properties of the system in the presence of a smooth

The effects of the two kinds of mutation are additive, f | his £ ki ol h
implying that, for small,, the distributions are visually 1Mess landscape. In this framework, it was possible to show

similar to the short-range case, Fig. 4. However, as so@n asthat the equilibrium distribution is a Boltzmann one, in

is greater than a threshol}, the effective temperaturg, which the fitness plays the role of an energy, and mutations

increases by the expected long-range contribufipn This that of a temperature. We checked this result numerically for

increment is very relevant when the effect of short-rangdlifferent fitness landscapes, and a mean-field long-range mu-
mutations is vanishing, i.e., for smooth landscapésapd tation mechanism. As in the previous case, a small-world

contributions and large genotypes. The effect is less relevanP€nomenon appears, since similar results can be obtained
in the disordered case&(( contributions, since in this case

the contribution to the effective temperature by the small- 35 x 10 . . T

range mutations does not decrease with increalsing 33 f:g f
By increasing the weight of the sparse long-range muta-  30%10* [ L=100
tions, the probability distribution also becomes similar to the o5 . ¢ | .
long-range case, Fig. 3. We performed simulations with
=0.1 andy;=0.1,L=6,8,10, and varying. The results are ~_ 20x10* - 7
shown in Table I. Notice that the value sf (estimated vi- = 15104 L i
sually from the plot of datais rather insensitive th and the 1
parameters of the fitnes4(x). 10 x 10% | .
We quantified the distance between the resulting distribu-
tion and the Boltzmann one E() through the computation 5x10* - 5 ]
of the average square difference from linear regressién, 0.0 m
In Fig. 5 we show thay? becomes very small as soon ss 0 5 10 15 20
>s., which seems to vanish with— . s

This implies that, for large genotypes, a vanishing fraction F|G. 5. Scaling of the average square difference from linear
of long-range mutations, coupled to small-range ones, is Sukegression 2, vs sparseness, for three values of the genotype
ficient to establish the statistical mechanics analogy of seledengthL; u,=0.1, us=0.1, H=0, J=0, £=0.1. Averages taken
tion and mutations. over 20 runs.
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using a combination of sparse long-range and short-rang®r the long-range case, and

mutations. L
)\ =4,
We wish to acknowledge our participation in the Dynam- 0
ics of Complex Systemg26] group. The numerical simula- 21d(k,0)

tions were performed using the computational facilities of A= (A2)

INFM PAIS 1999-G-IS-Firenze. L

for the short-range case, wheiéx,y) is the Hamming dis-
APPENDIX: SPECTRAL PROPERTIES OF THE tance between genotypggand y.
MEAN-FIELD MUTATION MATRICES The computation op(t), Eq. (5), is easily performed in

Both M, andM,, Egs.(1) and(2), are Markov matrices. Fourier space, using the analog of the Parsifal theorem:

Moreover, they are circular matrices, since the value of a

given element does not depend on its absolute position bud>, f(x)g(x)=2>, > >, T(k)g(k’)(—1)*®kek)

only on the distance from the diagonal. This means that their * x ko

spectrum is real, and that the largest eigenvalugqis 1.

Since the matrices are irreducible, the corresponding eigen- =23 > F(k)g(k') S =2 F(k)g(k),
vector &, is nondegenerate, and corresponds to the flat distri- kKo K

bution &,(x) =1/2-. In analogy with circular matrices in the where we have used the propekpk’=0 if and only if

usual space, one can obtain their complete spectrum using "~ , . .
the analog of Fourier transform in a Boolean hypercubic:rk?_ki for each componerit Let us denote by, the unit

_Let us define the “Bool | duet’ vector along directiom, i.e., (€)= 6y, . _ _
Space. het tis define fe “Eoolean scaiar pro The Fourier transform of the distandéx,y) is obtained

xOy=o" xvi, considering that € 1)*®Y%% gives 1 if x,=y, and —1
otherwise; thus
where the symboib represent the sum modulus twxOR)
and the multiplication can be substituted by am (which B
has the same effect on Boolean quantjtidhis scalar prod- d(x.y)= 2
uct is obviously distributive with respect to thx®r:

L-1
L— E (— 1)(X®y)®en
n=0

We obtain
(xey)Oz=(xO2)®(yOz).

Note that the operatior®y is performed bitwise between ax (k)= i 2 d(X,XO)(—l)XOk
the two genotypes:x@y),=X;®Vy; . ° 2"
Given a functionf (x) of a Boolean quantitx e {0,1}", its

L-1
“Boolean Fourier transform” isf (k) (ke {0,1}%) :iL% > (L— S (—1)xexOe | (—1)xOk
2 X n=0
~ 1
fk)=— > (-1 (x). L 1S
(=21 2 (=10 Lo S (L apeea
2 2\ =0
The antitransformation operation is determined by the defi-
nition of the Kronecker delta % E (—1)*Okoey)
X
1 L-1
- —1)xOk L
Ot Ex: =1 =5%0 3 n§=:O (— 1) 5y ;

and is given by

ie.,
f(x)=2 (-1 (k). L/2 if k=0
' ~ —1/2 if k=e, and (Xp),=0
One can easily verify that the Fourier vectogg(x) Gheo(K) = 1/2 if k=e, and (xg),=1
=(—1)*“* are eigenvectors of bot, andMy, with eigen- 0 otherwise

values

The probability distributionp(x,t) can be expanded on

No=1, the eigenvector basig(x) of M:

(A1) p(x,0>=; akfk(x>=; ay(—1)xk

021914-8
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and
p(x,t):M‘p(x,0)=; AN E(X),
ie.,
Pk, =a\k.
Thus
p()=2 Gy (K)P(k,) = 2 dy (K)ah
L
=5 Ao+ 2 Ea%xgn

If at t=0 the distribution is concentrated a{=0
[p(X,0)=6,0] thena,=1 for all k. In both the short- and
long-range cases,, does not depend on [see Eqs(Al)

and(A2)], and thus
L t t
p()=5 (Ao~ Ay).

For the short-range case we have

ps<t>=§[ (1‘ M) %'“exp[“”(l‘ 255)”

0
l—-exp — —
Ts

L
T2

PHYSICAL REVIEW E64 021914

and the characteristic spreading time7ig=L/2u,. Fort
small compared withrg (L—) we have
ps(t)=pus=vdt. (A3)

For long-range mutations we have

oo

Fort<m7 (u;—0) we have

L
Pl(t)=§[1—(1—m—

with 71=1/y, .

L
pi(t)=—— M ——t=ut. (A4)

The behavior ofp(t) for short times, vanishing mutation
probabilities, and large genotypes, E@A3) and (A4), is
rather trivial. In these approximations one can neglect back
mutations, and obtain the same results on a Cayley tree.
However, the full analysis gives the exact behaviop(f)
for all times.

In the mixed case one hi =M M,. SinceM4 andM,
share the same eigenvectokss A\ and, in the previous
approximations,

v=vstv). (A5)
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