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Summary Extracellular matrix (ECM) homeostasis is strictly maintained by a coordi-
nated balance between the expression of matrix metalloproteinases (MMPs) and their
specific inhibitors (TIMPs). Our study was focused on the simultaneous measurement
of the expression profile of MMP9 mRNA and its principal inhibitor, TIMP-1, in 100 non
small cell lung cancers (NSCLC) and in corresponding adjacent non malignant tissues.
The measurement was performed with a multiplex quantitative RT-PCR assay based
on TaqMan assay, using two probes labelled with different fluorocromes. We found
that both MMP9 and TIMP-1 mRNAs were significantly higher in NSCLC (P < 0.0001) in
comparison to corresponding controls as well as the MMP9/TIMP-1 ratio (P = 0.014).
MMP9 and TIMP-1 mRNA expression was highly correlated in cancer samples (r = 0.73,
P < 0.0001). The analysis in the two main histotypes revealed a significant increase of
MMP9 mRNA in adenocarcinomas in comparison to normal tissues (P = 0.006) but not
in squamous cell carcinomas, while TIMP-1 mRNA showed a significative increase both
in adenocarcinomas and in squamous cell carcinoma samples (P = 0.02 and 0.01, re-
spectively). Both MMP9 and TIMP-1 mRNAs were significantly correlated to lymphnode
invasion and cancer stage. Survival analysis revealed that high levels of expression of
MMP9 mRNA, but not of TIMP-1, were significantly associated to an unfavourable out-
come in NSCLC patients in toto (P = 0.017). In addition our results showed that high
levels of MMP9 expression are of independent prognostic impact in operable NSCLC.
Our data seem to demonstrate a simultaneous and coordinated up-regulation of MMP9
and TIMP-1 expression at the mRNA level in NSCLC, even if this phenomenon seems
variable according to the histotype. In addition, the increase of MMP9/TIMP-1 ratio
may reflect an unbalance of their production in affected tissues. The increased ex-
pression of the two mRNAs, even not necessarily equate their enzymatic activities,
seems to parallel a major cancer aggressiveness.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Lung cancer is the commonest cause of cancer
death in Europe and United States. The major sub-
type of lung cancer is non small cell lung cancer
(NSCLC) which includes adenocarcinoma, squamous
cell carcinoma, and large cell (undifferentiated)
carcinoma. The histological type is determinant
in establishing prognosis, since subjects with the
same stage of disease can show a markedly differ-
ent progression [1]. Cancer progression involves
changes in cell-to-cell adhesion as well as in the
interaction between malignant cells and extracel-
lular matrix (ECM). While benign disorders main-
tain continuous basement membrane, invasive
carcinomas have an architectural disorganisation
characterised by a discontinuous basement mem-
brane, with zones of matrix loss surrounding the
invading tumour cells. Thus, the degradation of
basement membrane component appears to be
an early event during the metastatic cascade [2].
The ability of malignant cells to invade and metas-
tasize to different tissue compartments was sup-
posed to be strictly associated to the expression
of matrix metalloproteinases (MMPs), responsible
for the degradation of the principal constituents
of the ECM. It appears now evident that most
MMPs, as in the case of MMP-9, play an important
role even in the early stages of carcinogenesis,
prior to basement membrane degradation. MMPs
are implicated in cell growth via the activation of
mitogenic factors, remodelling, angiogenesis and
selection of apoptosis-resistant cells [3—5]. During
the pre-malignant stages, stromal and inflamma-
tory cells are responsible for an early secretion of
MMPs, while during tumor progression, cancer cells
directly control their production [5].
MMPs consist of a family of proteinases with dif-

ferent substrate specificity. In many pathological
conditions, modifications of their expression profile
causes the lost of balance in the ECM homeostasis.
Several studies demonstrated the association be-
tween MMP9 and tumour progression in breast [6—
9], colorectal [9] and prostate cancer [10]. MMP9,
also known as gelatinase B, is a 92 kDa type IV colla-
genase secreted as inactive glycosylated precursor
and subsequently activated by the removal of 73
amino acids at the NH2 terminus. Because of the
ability to degrade the major component of the ECM
and basement membrane, its overexpression facil-
itates the metastatic spread [11]. Growth factors
(TGF�, TGF�, TNF�, EGF), cytokines (interleukin
1 and 4), and hormones (progesterone, retinoids)
are responsible for the pre-translational control of
MMP9 expression [11,12]. At the post-translational
level, all MMPs are under the control of specific

tissue inhibitors of metalloproteinases (TIMPs)
that bind in proximity of the catalytic domain of
MMPs, preventing substrate attachment [13]. TIMPs
are not only simple regulators of MMP activity,
but they have multifunctional roles that include
growth promoting activity [13] and inhibitory ef-
fects on angiogenesis [14]. Thus, an overexpres-
sion of these inhibitors may be indicative of the
stromal cell response to the malignant expan-
sion, but is also probable that tumoral cells them-
selves directly secrete TIMPs to control their own
growth [4,13]. Four members of TIMPs were iden-
tified. They inhibit all MMPs, forming non covalent
complexes with the active forms. Among them,
TIMP-1 has a selective binding with the pro-MMP-9
and is considered the main inhibitor for MMP-9
[13,15]. The detection of MMP9 expression has
been performed in lung cancer by immunohisto-
chemistry [1,7,15—19], zymography [9,10,18,20],
immunoenzymatic assays [21] and Northern anal-
ysis [8,15]. Increased plasma levels of MMP-9 pro-
tein were also detected in lung cancer patients
[22,23].
Our study was mainly focused on the evalua-

tion of the expression profile of MMP9 and TIMP-1,
at the mRNA level, and the clinical relevance of
their measurement in lung cancer. To better clarify
the reciprocal variation of expression of the two
genes, we developed a single-well, single-standard,
dual-probe real-time RT-PCR.

2. Materials and methods

2.1. Tissues samples and cell line

The study group consisted of 100 consecutive pa-
tients (82 males and 18 females; age range from
46 to 81 years) who underwent surgical excision for
NSCLC in the Surgical Department of Careggi Hos-
pital (Florence). NSCLC samples and correspond-
ing non affected tissues, used as normal controls
and obtained from the same patient, were imme-
diately snap-frozen in liquid nitrogen. Lung cancer
tissues were collected from the invasive periphery
of the tumour to excludemore internal area, poten-
tially necrotic. Normal control tissues were taken
at 3—5 cm far from cancer during lobectomy and 5—
7 cm in pneumonectomy. Comparable tissue sam-
ples were processed for routine histological exam-
ination. Clinico-pathological features of patients,
assessed according to the WHO classification [24]
and the TNM staging system, are listed on Table 1.
For RNA extraction, tissues were disrupted by ho-

mogenisation in 600�l of guanidine isothiocyanate-
containing lysis Qiagen buffer (QIAGEN, Milan,
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Table 1 MMP9 and TIMP-1 mRNA expression in NSCLC and corresponding normal tissues

Patients MMP9 mRNA (mean (S.E.)) TIMP-1 mRNA (mean (S.E.)) Ratio MMP9/TIMP-1 (mean (S.E.))

Normal Cancer Pa Normal Cancer Pa Normal Cancer Pa

Total 100 1.7 × 107 (3.2 × 106) 6.1 × 107 (1.1 × 107) 0.0001 2.9 × 108 (3.6 × 107) 7.6 × 108 (9.9 × 107) 0.00001 0.06 (0.0094) 0.107 (0.017) 0.014

Hystology
Adenocarcinoma 40 1.6 × 107 (4.0 × 106) 6.0 × 107 (1.4 × 107) 0.006 3.7 × 108 (7.9 × 107) 8.3 × 108 (1.7 × 108) 0.02 0.047 (0.008) 0.084 (0.015) 0.026
Squamous cell 43 2.0 × 107 (5.9 × 106) 5.4 × 107 (1.8 × 107) 0.07 2.6 × 108 (3.5 × 107) 5.8 × 108 (1.4 × 108) 0.015 0.064 (0.014) 0.137 (0.035) 0.06
Adenosquamous 17 1.6 × 107 (8.6 × 106) 8.7 × 107 (3.3 × 107) 0.017 1.7 × 108 (3.7 × 107) 1.1 × 109 (2.4 × 108) 0.002 0.086 (0.044) 0.063 (0.008) 0.5
Pb 0.9 0.9 0.4 0.4 0.07 0.076

Stage
1 50 1.3 × 107 (2.8 × 106) 3.4 × 107 (6.5 × 106) 0.007 2.4 × 108 (2.6 × 107) 5.1 × 108 (6.6 × 107) 0.0002 0.049 (0.008) 0.08 (0.012) 0.043
2 18 2.8 × 107 (1.2 × 106) 7.0 × 107 (2.8 × 107) 0.087 3.0 × 108 (1.1 × 108) 6.5 × 108 (2.0 × 108) 0.1 0.111 (0.049) 0.198 (0.616) 0.3
3 32 2.3 × 107 (7.8 × 106) 9.6 × 107 (3.1 × 107) 0.027 3.9 × 108 (9.8 × 107) 9.8 × 108 (2.2 × 108) 0.015 0.057 (0.013) 0.073 (0.013) 0.3
Pb 0.2 0.05 0.2 0.05 0.1 0.003

T
T1 26 1.5 × 107 (5.0 × 106) 3.2 × 107 (1.3 × 107) 0.2 2.1 × 108 (3.5 × 107) 2.8 × 108 (5.0 × 107) 0.2 0.057 (0.012) 0.151 (0.042) 0.047
T2 60 2.1 × 107 (5.3 × 106) 7.3 × 107 (1.7 × 107) 0.002 3.1 × 108 (4.5 × 107) 8.4 × 108 (1.2 × 108) 0.0001 0.067 (0.016) 0.08 (0.441) 0.01
T3 + T4 14 1.7 × 107 (6.0 × 106) 5.4 × 107 (3.3 × 107) 0.3 4.0 × 108 (2.0 × 108) 7.2 × 108 (2.4 × 108) 0.3 0.049 (0.016) 0.081 (0.036) 0.4
Pb 0.7 0.3 0.3 0.02 0.8 0.078

Lymphnodes
N− 58 1.3 × 107 (2.6 × 106) 3.4 × 107 (5.9 × 106) 0.002 2.5 × 108 (2.7 × 107) 5.2 × 108 (6.3 × 107) 0.0001 0.049 (0.007) 0.086 (0.013) 0.018
N+ 42 2.6 × 107 (7.6 × 106) 9.5 × 107 (2.6 × 107) 0.01 3.7 × 108 (8.4 × 107) 9.0 × 108 (1.8 × 108) 0.007 0.081 (0.023) 0.116 (0.027) 0.3
Pb 0.06 0.01 0.1 0.03 0.1 0.3

Grade
High 14 2.0 × 107 (7.9 × 106) 2.3 × 107 (8.9 × 106) 0.8 2.5 × 108 (5.0 × 107) 4.1 × 108 (9.8 × 107) 0.2 0.067 (0.019) 0.188 (0.091) 0.2
Medium 68 1.8 × 107 (4.7 × 106) 6.6 × 107 (1.5 × 107) 0.002 2.9 × 108 (4.8 × 107) 7.4 × 108 (1.1 × 108) 0.0002 0.067 (0.014) 0.096 (0.017) 0.15
Low 18 1.6 × 107 (5.3 × 106) 7.3 × 107 (2.8 × 107) 0.06 3.4 × 108 (1.0 × 108) 8.1 × 108 (1.8 × 108) 0.04 0.038 (0.008) 0.079 (0.017) 0.03
Pb 0.9 0.4 0.8 0.3 0.5 0.1

a t-test for paired samples.
b One-way ANOVA.
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Italy) added with �-merchaptoethanol. Total RNA
was extracted with QIAshredder and Rneasy MiniKit
Qiagen® columns. RNA was then eluted from
columns with 50�l of Rnase free water. Sample
were treated with Rnase free DNAse Set QIAGEN® to
eliminate DNA. Total RNA concentrations were de-
termined with the GeneQuant spectrophotometer
(Pharmacia). RNA extracted from HT1080 fibrosar-
coma cell line was used to generate an external
reference curve for the simultaneous measurement
of both MMP9 and TIMP-1 mRNA expression. This
cell line was chosen in a wide panel of human cell
lines, since the two mRNAs were expressed exactly
at the same levels. In fact, in ten consecutive ex-
periments we obtained comparable Ct values for
MMP9 and TIMP-1 mRNAs starting from 25 ng total
RNA (20.2 ± 0.6 and 20.4 ± 0.6, respectively). The
integrity of total RNA was verified in all samples
(normal and cancer samples) by evaluating GAPDH
mRNA expression with the Pre-Developed TaqMan
Assay Reagent, GAPDH endogenous control kit from
Applied Biosystems (Foster City, CA, USA).

2.2. Quantification of MMP9 and TIMP-1
mRNA

The measurement of MMP9 and TIMP-1 mRNA
was performed by using a multiplex quantitative
real-time RT-PCR method, based on TaqManTM

technology. Probe and primers were selected by
the proprietary software ‘‘Primer Express’’ (PE Ap-
plied Biosystems). For the detection of MMP9 mRNA
the following probe and primers were chosen (NCBI
accession code: AF148064): probe 984, 5′-TAC CGC
TAT GGT TAC ACT CGG GTG GC-3′, labelled with
FAM, which hybridises on exon 2; forward primer
130, 5′-CCT GGA GAC CTG AGA ACC AAT C-3′ located
on exon 1 and reverse primer 1013, 5′-GAT TTC GAC
TCT CCA CGC ATC-3′ located on exon 2. For the
detection of TIMP-1 mRNA we selected the specific
probe 66: 5′-CCA GAG AAC CCA CCA TGG CCC C-3′,
labelled with VIC, which hybridises on the exon
1 and exon 2 junction region; forward primer 47,
5′-TCC AGC GCC CAG AGA GAC-3′, located on exon
1 and reverse primer 167, 5′-AAC AGG ATG CCA
GAA GCC AG-3′ located on exon 2 (NCBI accession
codes: L47357 and L47361). All the enzymes and
reagent used for the reverse-transcription and PCR
reaction were provided by PE Applied Biosystems
(Milan, Italy). Four hundred nanograms of total
RNA were reverse-transcribed in 80�l of final vol-
ume in a reaction mixture containing 10�l TaqMan
RT buffer 1×, 5.5mM MgCl2, 500�M each dNTPs,
2.5�M random hexamers, 0.4U/�l RNase inhibitors
and 1.25U/�l MultiScribe reverse transcriptase.

The profile of the one-step reverse transcription re-
action was 10′at 25 ◦C, 30′ at 48 ◦C and 2′ at 95 ◦C.
The PCR reaction was performed in 25 ng cDNA, in
a reaction mix containing 300 nM of forward primer
and 900 nM of reverse primer (for both genes),
12.5�l Universal Master Mix and 200 nM of each flu-
orescent probe. The two probes were added in all
reaction wells for the simultaneous measurement
of the two target genes. Plates were treated 2′ at
50 ◦C, 10′ at 95 ◦C and then submitted to 40 cycles
of amplification at 95 ◦C for 15 s, 60 ◦C for 60 s in
the ABI Prism 7700 Sequence Detector PE Applied
Biosystems. Standard curves for MMP9 and TIMP-1
mRNAs consisted of serial 1/10 dilutions from
2.5 × 107 to 2.5 × 102 fg HT1080 total RNA. Results
were expressed as fg of HT1080 RNA/�g total RNA.

2.3. Statistical analyses

Statistical analysis was carried out using the SPSS
software package (SPSS INC, Chicago, IL). Statisti-
cal differences between groups were assessed by
t-test analysis. For analysis of follow-up data, life
table curves were calculated using Kaplan-Meier
method and survival distribution were compared
by log-rank statistics. The primary end point was
cancer-related survival, as measured from the
date of surgery to the time of last follow-up or
cancer-related death. The joint effects with al-
ready recognised prognostically relevant variables
were examined via Cox proportional hazard anal-
ysis. pT-status, pN-status, tumor histology and
tumor grading were entered stepwise forward into
the model to test these covariables for possible
joint effects with high/low levels of MMP9 mRNA
expression. Differences were considered statisti-
cally significant with P < 0.05.

3. Results

3.1. Real-time detection of MMP9 and
TIMP-1 mRNAs

The intra-assay variability of our methods, deter-
mined in 10 replicates of a cancer sample assayed
in a single experiment and expressed in terms of
coefficient of variation of Ct value, was 1.6% for
MMP9 and 1.3% for TIMP-1. The inter-assay variabil-
ity, obtained by 13 repetitions of the same sample
in different experiments, was 3.0% for MMP9 and
3.9% for TIMP-1.
MMP9 and TIMP-1 mRNAs were expressed in all

cancers and normal tissues. As shown in Table 1,
the expression of MMP9 and TIMP-1 mRNAs were
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Fig. 1 Linear relationship between MMP9 and TIMP-1 mRNAs in NSCLC (white dots) and in their corresponding normal
control tissues (black dots).

significantly higher (P = 0.0001 and 0.00001, re-
spectively) in lung cancers than in correspond-
ing normal tissues. The levels of MMP9 mRNA in
lung cancers were positively related to tumor
stage (P = 0.05) and lymphnode status (P = 0.01),
whereas no statistical difference was detected on
the basis of tumor size and differentiation. The
expression of TIMP-1 mRNA in lung cancer showed
a correlation with stage disease (P = 0.05), tu-
mor size (P = 0.02) and lymphnode involvement
(P = 0.03), but not with cancer differentiation. In
addition, we found a weakly correlation between
MMP9 and TIMP-1 mRNA expression in normal sam-
ples (r = 0.37, P < 0.001), whereas this relation-
ship was more evident in cancer samples (r = 0.73,
P < 0.00001) (Fig. 1). Finally, we evaluated the
variation of MMP9/TIMP-1 ratio in normal and can-
cer tissues, as an index of reciprocal changes of
the expression of the two genes. We found that the
ratio was significantly higher (P = 0.014) in can-
cer tissues (0.107 ± 0.017) than in corresponding
normal tissues (0.06 ± 0.01).
When results were evaluated according to cancer

histotype, we found that in adenocarcinomas MMP9
mRNA levels were significantly higher (P = 0.006)
in cancer tissues than in corresponding normal
samples, whereas in the squamous group the dif-
ference between normal and tumoral samples was
not significant. Conversely, for TIMP-1 mRNA ex-
pression, the difference was statistically signifi-
cant both for squamous cell carcinomas (P = 0.01)
and for adenocarcinomas (P = 0.02). In the mixed
group of adeno-squamous cancers, both MMP9 and

TIMP-1 mRNAs were significantly higher in cancers
(P = 0.017 and 0.002, respectively). Finally, we
found a significant increment of the MMP9/TIMP-1
ratio in adenocarcinomas (P = 0.026) but not in
squamous cell carcinomas in comparison to their
normal counterparts. In adeno-squamous group
the ratio was not significantly different in paired
tissues.

3.2. Survival analyses

The median follow-up duration was 25 months
(range = 2—43 months). Patients were strati-
fied according to the median levels of MMP9
and TIMP-1 mRNA expression (2.2 × 107 and
4.2 × 108 fg of HT1080 RNA/�g total RNA, re-
spectively). Survival analysis of cancer-related
death was obtained by comparing patients with
high expression (≥median value) versus patients
with low expression (<median value). According
to this division, we found a significant correla-
tion between high expression of MMP9 mRNA and
unfavourable outcome (log-rank test, P = 0.017)
(see Fig. 2). This difference was not observed for
TIMP-1 expression levels (P = 0.06). Interestingly,
separate Kaplan-Meyer analyses of patients clas-
sified on the basis of histotype (adenocarcinomas
versus squamous/adenosquamous cell carcino-
mas) have shown that high MMP9 expression was
significantly correlated with adverse outcome in
the group of squamous/adenosquamous cell car-
cinomas (P = 0.001) but not in adenocarcinomas
(P = 0.5).
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Table 2 Univariate and multivariate analysis of MMP-9 prognostic value in 100 NSCLC

Risk factor Univariate analysis
P valuea

Multivariate analysisb

Relative risk 95% Cl P value

pT status 0.030 1.641 0.77—3.51 0.202
pN status 0.010 1.129 0.26—4.81 0.870
Tumor stage 0.001 1.823 0.78—4.26 0.166
High MMP9 mRNA expressionc 0.022 2.833 1.16—6.91 0.022

a P-values of univariate analyses were determined by log-rank test.
b Stepwise multivariate analysis was performed using the Cox proportional-hazard model.
c Samples were stratified according to the median value of the 100 NSCLC (high expression = MMP-9 mRNA ≥2.2 ×
107 fg HT1080 RNA/�g total RNA; low expression = MMP-9 mRNA <2.2 × 107 fg HT1080 RNA/�g total RNA).

A multivariate analysis was performed to evalu-
ate whether the correlation between high MMP9 ex-
pressing and shortened cancer-related survival re-
sulted from an association of MMP9 expression with
other prognostically relevant factor or whether
it could maintain its prognostic value. High MMP9
expression, pT status, pN status and tumor stage
were tested for possible prognostic joint effects.
This Cox regression analysis demonstrated that high
MMP9 expression was a significant and independent
prognostic parameter for shortened cancer-related
survival in patients with NSCLC (P = 0.022). The
relative risk for cancer related death was 2.8-fold
increased in case of MMP9 expression higher than
2.2 × 107 fg of HT1080 RNA/�g total RNA compared
to low expressing tumours (95% Cl = 1.16—6.91).
Comparison of the relative risks of high MMP9
mRNA expression, pT status, pN status and tu-
mor grading showed that MMP9 expression was the
strongest prognostic parameter (Table 2). A similar
trend was observed when we repeated the uni-
variate/multivariate analysis in the group of squa-
mous/adenosquamous cell carcinomas (n = 60).
Once again MMP-9 mRNA expression maintained its

Table 3 Univariate and multivariate analysis of MMP-9 prognostic value in squamous and adenosquamous cell
carcinomas (n = 60)

Risk factor Univariate analysis P valuea Multivariate analysisb

Relative risk 95% Cl P value

pT status 0.640 1.042 0.36—3.04 0.939
pN status 0.059 0.987 0.13—7.61 0.990
Tumor stage 0.032 1.939 0.64—5.91 0.244
High MMP9 mRNA expressionc 0.018 3.451 1.05—11.32 0.041

a P-values of univariate analyses were determined by log-rank test.
b Stepwise multivariate analysis was performed using the Cox proportional-hazard model.
c Samples were stratified according to the median value of the 100 NSCLC (high expression = MMP-9 mRNA ≥2.2 ×
107 fg HT1080 RNA/�g total RNA; low expression = MMP-9 mRNA <2.2 × 107 fg HT1080 RNA/�g total RNA).

significance as independent prognostic parameter
for shortened cancer-related survival (P = 0.041),
with a relative risk of 3.4% (95% Cl = 1.05—11.32)
(Table 3). No significance was found in the group
of patients with adenocarcinoma (n = 40, data not
shown).

4. Discussion

The key role of TIMPs in exerting their control on
the ECM has prompted investigations in the devel-
opment of competitive, reversible and broad spec-
trum synthetic MMP-inhibitors. Even if preclinical
studies showed compelling results, the following
human clinical trials have been disappointing [3].
However, clinical trials with MMP inhibitors in NSCL
cancers were performed only in patients in ad-
vanced stage and were irrespective of the analysis
of the expression patterns of the entire family of
MMPs [25—27]. As recently stated by Bonomi [28],
a combined therapy with MMP-inhibitors agents
should be limited to patients with MMP overex-
pression and pharmacological treatments should



Simultaneous measurement of MMP9 and TIMP1 mRNA 177

MMP9 mRNA expression in NSCLC
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Fig. 2 Cumulative cancer-related survival in patients
with high MMP-9 mRNA expression ( ≥ 2.2 × 107 fg of
HT1080 RNA/�g total RNA) compared to patients with
low MMP-9 mRNA expression ( < 2.2 × 107 fg of HT1080
RNA/�g total RNA) in: (A) 100 NSCLC; (B) 40 adenocar-
cinomas; and (C) 60 squamous/adenosquamous cell lung
carcinomas. Survival distributions were calculated using
Kaplan-Meier method and compared by log-rank analysis.

be tailored accordingly. For this type of treatment,
the measurement of expression of the target MMP
in tumor, in comparison to the adjacent non cancer
tissue, may identify patients eligible for a specific
MMP inhibitor therapy [19]. Even if an increased
MMP mRNA expression may not be associated to
an increased enzymatic activity, because of the
necessity of the activation of MMP latent forms,
an alteration of MMPs and TIMPs expression in can-

cer tissues could reflect an altered balance in the
control of ECM, which is always a feature of ma-
lignant disease [5]. For this reason, our study was
focused on the simultaneous measurement of MMP9
and TIMP-1 mRNA expression in NSCLC. Informa-
tion about the balance between the expression of
these genes may be relevant for their application
as prognostic factor and in selective cancer ther-
apy. For this specific purpose, the development
of a duplex quantitative RT-PCR assay, based on
the use of a single external standard, appeared
particularly relevant for the absolute comparison
of the two mRNAs, which are expected to have a
coordinated expression in human tumours. The use
of a duplex approach eliminates the expected vari-
ability between separated assays, while the use of
a single standard provides a tool for the accurate
comparison between the expression of two genes.
Our data revealed that at the mRNA level, TIMP-1

is more expressed than MMP9 (about 10-fold) in
lung cancers as well as in corresponding normal
tissues. The expression of MMP9 and TIMP-1 mRNAs
was upregulated in lung cancers in comparison to
their control tissues. In addition, we found that
the MMP9/TIMP-1 ratio was significantly increased
in cancers in comparison to normal tissues, re-
flecting an unbalancing of their production. When
we analysed results separately, in the two main
NSCLC histotypes, a different expression profile
was evident. In lung adenocarcinomas MMP9 and
TIMP-1 mRNAs were significantly higher than in
corresponding normal tissues. However, in these
tumours, the increase of MMP9 expression, poten-
tially connected with the invasive mechanisms of
cancer, is not accompanied by a parallel increase of
the expression of its inhibiting partner, TIMP-1. This
trend is reflected by the significant increase of the
MMP9/TIMP-1 ratio in cancer tissues. Conversely,
in squamous cell carcinomas, MMP-9 mRNA expres-
sion was not significantly up-regulated, whereas
TIMP-1 was found significantly increased in can-
cer tissues. The increase of mRNA expression of
TIMP-1 was able to counteract any modification of
MMP9 expression, as demonstrated by the lack of
significant variations of MMP9/TIMP-1 ratio in this
group. The reason of this histological-dependent
expression profile of two genes may be put in re-
lation to the major biological aggressiveness of
adenocarcinomas in comparison to squamous cell
carcinomas. Finally, in the mixed adeno-squamous
cancer group, MMP9 and TIMP-1 were significantly
increased in comparison to normal tissues, without
any modification of their ratio. In addition MMP9
and TIMP-1 mRNA expression appeared correlated
both in normal and cancer tissues. In particular,
the high relationship found in lung cancers seems
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to confirm that the mechanisms regulating their
gene expression are highly coordinated, so that the
up-regulation of MMP9 expression is accompanied
by a proportional increase of TIMP-1 expression.
Survival analysis of cancer-related death re-

vealed that high levels of expression of MMP9
mRNA, but not of TIMP-1, were significantly as-
sociated to an unfavourable outcome in NSCLC
patients. The division of our patients according
to their histotype clearly demonstrated that the
predictivity of MMP9 mRNA expression was ef-
fectively significant in squamous/adenosquamous
cell carcinomas (P = 0.01) but not in adenocarci-
nomas (P = 0.5). In addition, our results showed
that high levels of MMP9 expression are of inde-
pendent prognostic impact in operable NSCLC. A
similar trend was observed when we repeated the
univariate/multivariate analysis in the group of
squamous/adenosquamous cell carcinomas: MMP-9
mRNA expression maintained its significance as
independent prognostic parameter for shortened
cancer-related survival. No significance was found
in the group of patients with adenocarcinoma.
These data, obtained for the first time in quan-

titative real-time RT-PCR approaches, are in
agreement with the recent data, obtained with
immunohistochemical staining for MMP-9, showing
an association between its expression and patient
survival [1,19,29,30]. In addition, we also observed
that MMP9 expression represents an independent
prognostic marker, as recently stated [19]. How-
ever, in contrast to this study, we found a good
correlation with some of the commonest clinical
features in lung cancer patients. Both MMP9 and
TIMP-1 expression was significantly related to lym-
phnode status. A significant increase of their ex-
pression was also evident in advanced tumor stage,
as well as in tumours with increased size. No sig-
nificant relation with cancer differentiation was
found.
In conclusion our data seem to demonstrate a si-

multaneous and coordinated up-regulation of MMP9
and TIMP-1 expression at the mRNA level, in NSCLC,
even if this phenomenon seems variable according
to the histotypes. The increased expression of the
two mRNAs, even if not necessarily reflected by
an increase of their enzymatic activity, seems to
be connected to a major cancer aggressiveness,
as demonstrated by their significant correlation
with lymphnode involvement and advanced tumor
stage. In addition for the first time, our data seem
to indicate a prevalent prognostic relevance of
MMP9 in squamous/adenosquamous cell carcino-
mas, whereas in adenocarcinomas this parameter
seems of no clinical value. Future studies, based
on the simultaneous evaluation of several MMPs in

the same patients, should elucidate the profile of
their expression and their clinical relevance.
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