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Abstract

The problem we deal with arises in the theory of heat propagation in materials
with memory. We consider the identification of both the relaxation kernel and the
time dependence of the heat source for an integro–differential equation of parabolic
type. We prove an existence and uniqueness theorem, global in time, for the ab-
stract version of the problem and we give an application to the concrete case. The
novelties of this work are: the choice of the functional setting (spaces of bounded
functions with values in an interpolation space) and existence and uniqueness re-
sults, global in time, which are not easy to obtain for inverse problems.
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approach, heat equation with memory, identification of the memory kernel and of
the heat source, global in time results.

1 Introduction

Integro–differential parabolic inverse problems constitute an important class since one of
the classical models is represented by the heat equation for materials with memory. In
several problems in physics and chemistry the heat equation with memory is coupled with
one or more parabolic or hyperbolic equations, ruling further state variables, in particular
in the theory of phase transition for materials with memory we find several models that
have been recently studied from several view points: for instance, as direct problems
in Hilbert spaces and as dynamical systems (long time behavior). We list here in the
following, without claim of completeness, some papers and books in which one can find
some models and results involving the heat equation: [1, 2, 3, 4, 5, 6, 7, 8, 18, 19, 20, 22,
26, 27, 28]. The list of references related to inverse integro-differential parabolic problems
is long and we recall just some of the papers that share our strategies and methods, based
on analytic semigroup theory, fixed point arguments and optimal regularity theorems,
such techniques where first used in [24].

In the papers [12, 13, 16, 17] the authors study inverse problems for the heat equation
with memory in non smooth domains and with memory kernels depending on time and
on one space variable, in Hölder and Sobolev (of fractional order) spaces. In [15] has been
proposed a unified approach for fully non linear problems which contains as particular
cases the theory of combustion of materials with memory and some models of spread of
disease, again in the setting of Hölder and Sobolev spaces. In [9, 10, 11, 21] the authors
treat inverse problems for a model in population dynamics and for phase-field models in
the Hölder setting.
In [14] the authors have used for the first time the same spaces used here but with no
weights, so they obtain local in time results for a population dynamic model. In the recent
and interesting paper [23], the authors consider an inverse problem for a phase field model
and they prove an existence and uniqueness (under conditions) result global in time in a
Hilbert space.

The novelties of this work are: the choice of the functional setting (spaces of bounded
functions with values in an interpolation space) and existence and uniqueness results,
global in time, which are not easy to obtain for inverse problems. We point out that
the functional setting we have assumed leads to solutions of the problem which are less
regular in time and more regular in space, compared with the existent literature on this
topic. Our global in time result is proved for an abstract version of the problem and then
we give an application to the concrete case.

For sake of simplicity we limit ourself to the heat equation with memory but the
estimates we have obtained in Section 3 can be applied to get global in time results for
more general linear models with convolution kernels.

We now formulate the problem we are going to investigate. Let Ω be an open bounded
set in R3 with a suitably regular boundary (to be specified in the sequel) and T > 0. We
can easily deduce the evolution equation for the temperature u by the continuity equation
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(for (t, x) ∈ [0, T ]× Ω)

Dtu(t, x) + div J(t, x)− f0(t, x) = 0, (1.1)

where the vector J denotes the density of heat flow per unit surface area per unit time
and f0 is the heat source per unit volume per unit time in Ω. We recall that the well
known Fourier’s law for materials with memory is given by

J(t, x) = −k∇u(t, x)− k′
∫ t

0

h(t− s)∇u(s, x) ds, (1.2)

where we suppose that the diffusion coefficient k is a positive real number and for sake
of simplicity the coefficient k′ is assumed to be equal to 1. The convolution kernel h,
which accounts for the thermal memory, is supposed to depend on time, only. To obtain
the equation ruling the evolution of the temperature we replace (1.2) into the continuity
equation (1.1) and we get

Dtu(t, x) = div [k∇u(t, x) +

∫ t

0

h(t− s)∇u(s, x) ds] + f0(t, x). (1.3)

We now have to focus our attention on the fact that the memory kernel h is not a
physical observable. This is the fact that motivates the inverse problem because h has
to be considered unknown. A further difficulty arises when the heat source is placed in a
fixed position of the material but the time dependence is not known. We suppose that

f0(t, x) = f(t)g(x) (1.4)

where g(x) is a given datum, but f(t) has to be considered a further unknown of the
problem.
To determine, simultaneously, both the unknown functions h, f and the temperature u
we need, for example, additional measurements on the temperature on suitable parts of
the material, that can be represented in integral form (see (1.6)). We are now in position
to state our problem.

Problem 1.1. (The Inverse Problem (IP)) Determine the temperature u : [0, T ]×Ω −→
R, the diffusion coefficient k and the functions h : [0, T ] −→ R, f : [0, T ] −→ R satisfying
system 




Dtu(t, x) = k∆u(t, x) +
∫ t

0
h(t− s)∆u(s, x) ds + f(t)g(x),

u(0, x) = u0(x), x ∈ Ω,
∂u

∂ν
(t, x) = 0, (t, x) ∈ [0, T ]× ∂Ω,

(1.5)

with the additional conditions
∫

Ω

u(t, x)µj(dx) = Gj(t), ∀t ∈ [0, T ], j = 1, 2, (1.6)

where g, u0, G1, G2 are given data and µ1 and µ2 are finite Borel measures in C(Ω).

The plan of the paper is the following.
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• Section 2 contains the functional setting of our problem and the statements of the
main abstract and concrete results.

• In Section 3 we prove some fundamental estimates in weighted spaces which are of
crucial importance to get global in time results.

• Section 4 contains a suitably equivalent reformulation of the Inverse Abstract Prob-
lem in terms of Volterra integral equations of the second kind.

• In Section 5 we prove, via fixed point argument, the main result of this paper,
i.e. Theorem 2.5, which is a consequence of the preliminary results obtained in the
previous sections.

2 Definitions and main results

The results that we are going to recall in this section hold in the case X is a Banach
space with norm ‖ · ‖. Let T > 0, we denote by C([0, T ]; X) the usual space of continuous
functions with values in X, while we denote by B([0, T ]; X) the space of bounded functions
with values in X. B([0, T ]; X) will be endowed with the sup–norm

‖u‖B([0,T ];X) := sup
0≤t≤T

‖u(t)‖ (2.1)

and C([0, T ]; X) will be considered a closed subspace of B([0, T ]; X).
We will use the notations C([0, T ];R) = C([0, T ]) and B([0, T ];R) = B([0, T ]).
By L(X) we denote the space of all bounded linear operators from X into itself

equipped with the sup–norm, while L(X;R) = X ′ is the space of all bounded linear
functionals on X considered with the natural norm. We set N0 := N ∪ {0}.
Definition 2.1. Let A : D(A) ⊆ X → X, be a linear operator, possibly with D(A) 6= X.
Operator A is said to be sectorial if it satisfies the following assumptions:

• there exist θ ∈ (π/2, π) and ω ∈ R, such that any λ ∈ C \ {ω} with |arg(λ−ω)| ≤ θ
belongs to the resolvent set of A.

• there exists M > 0 such that ‖(λ − ω)(λI − A)−1‖L(X) ≤ M for any λ ∈ C \ {ω}
with |arg(λ− ω)| ≤ θ.

The fact that the resolvent set of A is not void implies that A is closed, so that D(A)
endowed with the graph norm becomes a Banach space.

According to the definition of sectorial operator it is possible to define the semigroup
{etA}t≥0, of bounded linear operators in L(X), so that t → etA is an analytic function
from (0,∞) to L(X) satisfying for k ∈ N the relations

dk

dtk
etA = AketA, t > 0, (2.2)

and
AetAx = etAAx, x ∈ D(A), t > 0. (2.3)
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Moreover, for k ∈ N0, ε > 0, there exist positive constants Mk,ε, such that

‖tkAketA‖L(X) ≤ Mk,εe
(ω+ε)t, t > 0. (2.4)

For more details see for example [25, 29, 30]. Let us define the family of interpolation
spaces (see [25] or [32]) DA(θ,∞), θ ∈ (0, 1), between D(A) and X by

DA(θ,∞) =
{

x ∈ X : |x|DA(θ,∞) := sup
0<t<1

t1−θ‖AetAx‖ < ∞
}

(2.5)

with the norm
‖x‖DA(θ,∞) = ‖x‖+ |x|DA(θ,∞). (2.6)

It is straightforward to verift that, if T > 0, k ∈ N, f ∈ DA(θ,∞), t ∈ (0, T ], then

‖AketAf‖ ≤ C(T, k)‖f‖DA(θ,∞)t
θ−k. (2.7)

We also set
DA(1 + θ,∞) = {x ∈ D(A) : Ax ∈ DA(θ,∞)}, (2.8)

DA(1 + θ,∞) turns out to be a Banach space when equipped with the norm

‖x‖DA(1+θ,∞) = ‖x‖+ ‖Ax‖DA(θ,∞). (2.9)

If θ ≤ ξ ≤ 1 + θ and x ∈ DA(1 + θ,∞),

‖x‖DA(ξ,∞) ≤ C(θ, ξ)‖x‖1+θ−ξ
DA(θ,∞)‖x‖ξ−θ

DA(θ+1,∞), (2.10)

with C(θ, ξ) independent of x. Optimal regularity results and the analytic semigroup
theory are fundamental tools in the study of direct and inverse parabolic problems. Our
strategy is to formulate the abstract version of the inverse problem in terms of a system
of equivalent fixed point equations. Several optimal regularity results are at our disposal
for such equivalent formulation. Consider the following optimal regularity result for the
Cauchy Problem (CP):

{
u′(t) = Au(t) + f(t), t ∈ [0, T ],
u(0) = u0.

(2.11)

Let A : D(A) → X be a sectorial operator and θ ∈ (0, 1). In [25], [30] we can find the
proofs of the following results:

Theorem 2.2. (Strict solution in spaces B([0, T ];DA(θ,∞))) For any f ∈ C([0, T ]; X)∩
B([0, T ];DA(θ,∞)), u0 ∈ DA(θ+1,∞) the Cauchy problem (CP) admits a unique solution
u ∈ C1([0, T ]; X) ∩ C([0, T ];D(A)) ∩ B([0, T ];DA(θ + 1,∞)).

Remark 2.3. We point out that the fundamental fact that leads us to prove global in
time results is the idea of introducing the weighted spaces Bλ([0, T ];DA(θ,∞)). In the
next section we give all the necessary estimates to prove them.
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2.1 The main abstract result

Problem 2.4. (Inverse Abstract Problem (IAP)) Let A be a sectorial operator in X.
Determine a real number k and three functions u, h, f , such that

(α)

{
u ∈ C2([0, T ]; X) ∩ C1([0, T ];D(A)),
Dtu ∈ B([0, T ];DA(1 + θ,∞)), D2

t u ∈ B([0, T ];DA(θ,∞)),
(β) h ∈ C([0, T ]),
(γ) f ∈ C1([0, T ]),

satisfying system

{
u′(t) = kAu(t) +

∫ t

0
h(t− s)Au(s)ds + f(t)g, t ∈ [0, T ],

u(0) = u0,
(2.12)

and the additional conditions:

〈u(t), φj〉 = Gj(t), t ∈ [0, T ], j = 1, 2, (2.13)

where φj (j = 1, 2) are given bounded linear functionals on X, and Gj, u0, g are given
data.

We study the (IAP) under the following assumptions:

(H1) θ ∈ (0, 1), X is a Banach space and A is a sectorial operator in X.

(H2) u0 ∈ DA(1 + θ + ε,∞), for some ε ∈ (0, 1− θ).

(H3) g ∈ DA(θ + ε,∞), for some ε ∈ (0, 1− θ).

(H4) φj ∈ X ′, for j = 1, 2.

(H5) Gj ∈ C2([0, T ]), for j = 1, 2.

(H6) We set

M :=

(
< Au0, φ1 > < g, φ1 >
< Au0, φ2 > < g, φ2 >

)
(2.14)

and we suppose that the matrix M is invertible. We define

M−1 :=

(
a11 a12

a21 a22

)
. (2.15)

Observe that owing to (H6) the system

{
k0 < Au0, φ1 > +f0 < g, φ1 >= G′

1(0),
k0 < Au0, φ2 > +f0 < g, φ2 >= G′

2(0),
(2.16)

has a unique solution (k0, f0).

(H7) We require that
k0 > 0.
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(H8) v0 := k0Au0 + f0g ∈ DA(1 + θ,∞).

(H9) < u0, φj >= Gj(0), < v0, φj >= G′
j(0), j = 1, 2.

The main abstract result is the following:

Theorem 2.5. Assume that conditions (H1)-(H9) are fulfilled. Then Problem 2.4 has a
unique (global in time) solution (k, u, h, f), with k ∈ R+, and u, h, f satisfying conditions
(α), (β) and (γ).

Proof. See Section 5.

2.2 An application

We choose as reference space
X = C(Ω), (2.17)

where Ω is an open bounded set in R3 with boundary of class C2(1+θ+ε), for some θ ∈
(0, 1/2), ε ∈ (0, (1/2)− θ). We define





D(A) = {u ∈
⋂

1≤p<+∞
W 2,p(Ω) : ∆u ∈ C(Ω), Dνu|∂Ω = 0},

Au := ∆u, ∀u ∈ D(A).
(2.18)

It was proved by Stewart (see [31]) that A is a sectorial operator in X. Then we recall
the following characterizations concerning the interpolation spaces related to A (see [25]):

DA(ξ,∞) =

{
C2ξ(Ω), if 0 < ξ < 1/2,
{u ∈ C2ξ(Ω) : Dνu|∂Ω = 0}, if 1/2 < ξ < 1.

(2.19)

It is known that, if 0 < ξ ≤ θ + ε, we have

DA(1 + ξ,∞) = {u ∈ C2(1+ξ)(Ω) : Dνu|∂Ω = 0}. (2.20)

So we consider the Inverse Problem 1.1 under the following assumptions:

(K1) Ω is an open bounded set in R3 with boundary of class C2(1+θ+ε), for some θ ∈
(0, 1/2), ε ∈ (0, (1/2)− θ).

(K2) u0 ∈ C2(1+θ+ε)(Ω), Dνu0|∂Ω = 0.

(K3) g ∈ C2(θ+ε)(Ω).

(K4) For j = 1, 2, µj is a bounded Borel measure in Ω. We set, for ψ ∈ X,

< ψ, φj >:=

∫

Ω

ψ(x)µj(dx). (2.21)

(K5) Suppose that (H5) holds.

(K6) Suppose that (H6) holds with φj (j = 1, 2) defined in (2.21) and A defined in (2.18).
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(K7) Suppose that (H7) holds.

(K8) v0 := k0∆u0 + f0g ∈ C2(1+θ)(Ω), Dνv0|∂Ω = 0.

(K9) Suppose that (H9) holds.

Applying the main result of the paper (Theorem 2.5), we deduce the following:

Theorem 2.6. Assume that conditions (K1)-(K9) are satisfied. Then the Inverse Problem
1.1 has a unique (global in time) solution (k, u, h, f), such that

u ∈ C2([0, T ]; C(Ω)) ∩ C1([0, T ];D(A)),
Dtu ∈ B([0, T ]; C2(1+θ)(Ω)), D2

t u ∈ B([0, T ]; C2θ(Ω)),
h ∈ C([0, T ]),
f ∈ C1([0, T ]),
k ∈ R+,

with A defined in (2.18).

3 The weighted spaces

In this section we introduce some crucial estimates that will be essential to obtain existence
and uniqueness global in time of a solution for our inverse problem. Let λ > 0, T > 0,
θ ∈ (0, 1). If f ∈ B([0, T ]; X), we set

‖u‖Bλ([0,T ];X) := sup
0≤t≤T

e−λt‖u(t)‖. (3.1)

We denote by Cλ([0, T ]; X) the space C([0, T ]; X) equipped with the norm ‖ · ‖Bλ([0,T ];X).
We will use the notations Cλ([0, T ];R) = Cλ([0, T ]) and Bλ([0, T ];R) = Bλ([0, T ]). We
now prove some useful estimates in these weighted spaces for the solution of the Cauchy
problem given by Theorem 2.2.

Theorem 3.1. Let A : D(A) → X be a sectorial operator, θ ∈ (0, 1). Let us suppose that
f ∈ C([0, T ]; X) ∩ B([0, T ];DA(θ,∞)). Then the following estimates hold:

‖etA ∗ f‖Cλ([0,T ];X) ≤ C0

1 + λ
‖f‖Cλ([0,T ];X); (3.2)

if θ ≤ ξ ≤ 1 + θ,

‖etA ∗ f‖Bλ([0,T ];DA(ξ,∞)) ≤ C(θ, ξ)

(1 + λ)1+θ−ξ
‖f‖Bλ([0,T ];DA(θ,∞)), (3.3)

with C0 and C(θ, ξ) independent of f and λ.

Proof. In the following section the symbol C, sometimes with an index, will denote dif-
ferent positive constants.
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We show (3.2). Owing to (2.4), we have

e−λt‖etA ∗ f(t)‖ = e−λt‖ ∫ t

0
e(t−s)Af(s) ds‖

≤ M0‖f‖Cλ([0,T ];X)

∫ t

0
e(ω+1−λ)s ds

≤ C0

1+λ
‖f‖Cλ([0,T ];X).

(3.4)

To get (3.3), owing to (2.10), it suffices to consider the cases ξ = θ and ξ = 1 + θ. If
ξ = θ, we have:

e−λt|etA ∗ f(t)|DA(θ,∞)

= e−λt sup0<τ<1 τ 1−θ‖ ∫ t

0
Ae(t+τ−s)Af(s)ds‖.

If t > s > 0 and τ ∈ (0, 1) , we have

e−λtτ 1−θ‖Ae(t+τ−s)Af(s)‖ ≤ e−λt|e(t−s)Af(s)|DA(θ,∞)

≤ C1e
−λt|f(s)|DA(θ,∞)

≤ C1e
−λ(t−s)‖f‖Bλ([0,T ];DA(θ,∞)),

so we get
e−λt|etA ∗ f(t)|DA(θ,∞) ≤ C1‖f‖Bλ([0,T ];DA(θ,∞))

∫ t

0
e−λ(t−s)ds

≤ C2

λ
‖f‖Bλ([0,T ];DA(θ,∞)).

Next, we consider the case ξ = 1 + θ. We start by estimating A(etA ∗ f) in Cλ([0, T ]; X):

e−λt‖A(etA ∗ f)(t)‖ ≤ e−λt
∫ t

0
‖Ae(t−s)Af(s)‖ ds

≤ C1‖f‖Bλ([0,T ];DA(θ,∞))

∫ t

0
e−λ(t−s)

(t−s)1−θ ds.
(3.5)

If λ > 0, we observe that

∫ t

0
e−λ(t−s)

(t−s)1−θ ds =
∫ t

0
e−λs

s1−θ ds

≤ ∫ +∞
0

e−λssθ−1ds
= λ−θ Γ(θ).

So, we have obtained

‖A(etA ∗ f)‖Bλ([0,T ];X) ≤ C

(1 + λ)θ
‖f‖Bλ([0,T ];DA(θ,∞)). (3.6)

It remains to estimate A(etA ∗ f) in Bλ([0, T ];DA(θ,∞)); if λ > 0, τ ∈ (0, 1), 0 < s < t ≤
T , we have

e−λtτ 1−θ‖A2e(τ+t−s)Af(s)‖ ≤ e−λtτ 1−θ‖A2e(τ+t−s)A‖L(DA(θ,∞);X)‖f(s)‖DA(θ,∞)

≤ e−λ(t−s)τ 1−θ‖A2e(τ+t−s)A‖L(DA(θ,∞);X)‖f‖Bλ([0,T ];DA(θ,∞))

≤ Ce−λ(t−s) τ1−θ

(τ+t−s)2−θ ‖f‖Bλ([0,T ];DA(θ,∞)).
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So we get the estimates

e−λt|A(etA ∗ f)(t)|DA(θ,∞)

= e−λt sup
0<τ<1

τ 1−θ‖AeτAA
∫ t

0
e(t−s)Af(s)ds‖

≤ C‖f‖Bλ([0,T ];DA(θ,∞)) sup
0<τ<1

τ 1−θ
∫ t

0
e−λs

(τ+s)2−θ ds

(3.7)

and
τ 1−θ

∫ t

0
e−λs

(τ+s)2−θ ds =
∫ t/τ

0
e−λτs

(1+s)2−θ ds

≤ ∫ +∞
0

1
(1+s)2−θ ds.

This concludes the proof.

Theorem 3.2. Let λ ≥ 0, h ∈ C([0, T ]) and u ∈ C([0, T ]; X)∩B([0, T ];DA(θ,∞)). Then
there exists C > 0, independent of T , λ, h, u, such that, if

h ∗ u(t) :=

∫ t

0

h(t− s)u(s)ds, (3.8)

h ∗ u ∈ C([0, T ]; X) ∩ B([0, T ];DA(θ,∞)) and satisfies the following estimate:

‖h ∗ u‖Bλ([0,T ];DA(θ,∞)) ≤ C min
{

T‖h‖Bλ([0,T ])‖u‖Bλ([0,T ];DA(θ,∞)),

(1 + λ)−1‖h‖Bλ([0,T ])‖u‖B([0,T ];DA(θ,∞)),

(1 + λ)−1‖h‖B([0,T ])‖u‖Bλ([0,T ];DA(θ,∞))

}
.

(3.9)

Proof. If 0 ≤ t ≤ T , we have

‖e−λt(h ∗ u)(t)‖ ≤ ∫ t

0
e−λ(t−s)|h(t− s)|e−λs‖u(s)‖ds

≤ min
{

T‖h‖Bλ([0,T ])‖u‖Bλ([0,T ];X),∫ t

0
e−λsds‖h‖Bλ([0,T ])‖u‖B([0,T ];X),∫ t

0
e−λsds‖h‖B([0,T ])‖u‖Bλ([0,T ];X)

}

≤ C min
{

T‖h‖Bλ([0,T ])‖u‖Bλ([0,T ];X),

(1 + λ)−1‖h‖Bλ([0,T ])‖u‖B([0,T ];X),

(1 + λ)−1‖h‖B([0,T ])‖u‖Bλ([0,T ];X)

}
.

Moreover, if τ ∈ (0, 1), we have

e−λt‖τ 1−θAeτA(h ∗ u)(t)‖ ≤ ∫ t

0
e−λ(t−s)|h(t− s)|e−λs‖τ 1−θAeτAu(s)‖ds

≤ min{T‖h‖Bλ([0,T ])‖u‖Bλ([0,T ];DA(θ,∞)),∫ t

0
e−λsds‖h‖Bλ([0,T ])‖u‖B([0,T ];DA(θ,∞)),∫ t

0
e−λsds‖h‖B([0,T ])‖u‖Bλ([0,T ];DA(θ,∞))}

≤ C min{T‖h‖Bλ([0,T ])‖u‖Bλ([0,T ];DA(θ,∞),
(1 + λ)−1‖h‖Bλ([0,T ])‖u‖B([0,T ];DA(θ,∞)),
(1 + λ)−1‖h‖B([0,T ])‖u‖Bλ([0,T ];DA(θ,∞))}.

These estimates imply the conclusions immediately.
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Theorem 3.3. Let f ∈ B([0, T ]; X). Assume that f(0) = 0 and suppose that f is
continuous in 0. Then

lim
λ→+∞

‖f‖Bλ([0,T ];X) = 0.

In particular, if h and u satisfy the assumptions of Theorem 3.2, then

lim
λ→+∞

‖h ∗ u‖Bλ([0,T ];DA(θ,∞)) = 0.

Proof. Let ε > 0 and δ > 0 be such that, if 0 ≤ t ≤ δ, then ‖f(t)‖ ≤ ε. So, if 0 ≤ t ≤ δ,
we have e−λt‖f(t)‖ ≤ ε. If δ ≤ t ≤ T ,

e−λt‖f(t)‖ ≤ e−δλ‖f‖B([0,T ];X) ≤ ε

if λ is sufficiently large. If h and u satisfy the conditions of Theorem 3.2, we have, from
Theorem 3.2, for 0 < δ ≤ T ,

‖h ∗ u‖B([0,δ];Dθ(A)) ≤ Cδ‖h‖B([0,T ])‖u‖B([0,T ];DA(θ,∞)),

so that the first part of the statement is applicable.

4 An equivalent fixed point system

In this section we reformulate Problem 2.4 in terms of the equivalent nonlinear fixed point
system (4.10). In proving Theorem 4.2 we find out a set of regularity and compatibility
conditions on the data that makes the inverse problem well posed. Moreover, starting
from the equivalent fixed point system we obtain existence and uniqueness results for
system (IAP) via the Contraction Principle.

To this aim, we start by introducing some notations. We set

A0 := k0A. (4.1)

As k0 > 0, see (H7), A0 is a sectorial operator in X. Next, we set, for t ∈ [0, T ],

h1(t) := a11G
′′
1(t) + a12G

′′
2(t), (4.2)

w1(t) := a21G
′′
1(t) + a22G

′′
2(t), (4.3)

v(t) := etA0v0. (4.4)

We immediately observe that h1 and w1 belong to C([0, T ]) and, owing to Theorem 2.2,
v ∈ C([0, T ];D(A)) ∩ B([0, T ];DA(1 + θ,∞)). Next, we define, again for t ∈ [0, T ],

h(t) := h1(t)− k0a11 < Av(t), φ1 > −k0a12 < Av(t), φ2 >, (4.5)

w(t) := w1(t)− k0a21 < Av(t), φ1 > −k0a22 < Av(t), φ2 > . (4.6)

Of course, h and w belong to C([0, T ]). Finally, we introduce the following (nonlinear) op-
erators, defined for every (v, h, w) ∈ [C([0, T ];D(A))∩B([0, T ];DA(1+θ,∞))]×C([0, T ])×
C([0, T ]):
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R1(v, h, w)(t) := etA0 ∗ (hAu0 + wg + h ∗ Av)(t), (4.7)

R2(v, h, w)(t) := −k0[a11 < AR1(v, h, w)(t), φ1 > +a12 < AR1(v, h, w)(t), φ2 >]
−a11 < h ∗ Av(t), φ1 > −a12 < h ∗ Av(t), φ2 >
−a11 < h ∗ AR1(v, h, w)(t), φ1 > −a12 < h ∗ AR1(v, h, w)(t), φ2 >,

(4.8)
R3(v, h, w)(t) := −k0[a21 < AR1(v, h, w)(t), φ1 > +a22 < AR1(v, h, w)(t), φ2 >]

−a21 < h ∗ Av(t), φ1 > −a22 < h ∗ Av(t), φ2 >
−a21 < h ∗ AR1(v, h, w)(t), φ1 > −a22 < h ∗ AR1(v, h, w)(t), φ2 > .

(4.9)
We observe that R2 and R3 are well defined, because

R1(v, h, w) ∈ C([0, T ];D(A)) ∩ B([0, T ];DA(1 + θ,∞)).

Moreover, R2(v, h, w) and R3(v, h, w) both belong to C([0, T ]).
Now we can introduce the following problem:

Problem 4.1. Determine three functions v, h, w, such that

(α′) v ∈ C([0, T ];D(A)) ∩ B([0, T ];D(1 + θ,∞)),
(β′) h ∈ C([0, T ]),
(γ′) w ∈ C([0, T ]),

satisfying system 



v = v +R1(v, h, w),

h = h +R2(v, h, w),
w = v +R3(v, h, w).

(4.10)

Theorem 4.2. (Equivalence) Let A be a sectorial operator in the Banach space X and
θ ∈ (0, 1). Let us assume that the data g, u0, φj and Gj (j = 1, 2) satisfy the conditions
(H1)-(H9) . Suppose that k, u, f , h satisfy Problem 2.4, with k ∈ R and u, f , h fulfilling
the regularity conditions (α), (β), (γ). Then

(I) k = k0;
(II) the triplet (v, h, w), where v = u′, w = f ′ satisfies the conditions (α′), (β′), (γ′)

and solves Problem 4.1;
(III) conversely, if (v, h, w), with the above regularity, is a solution of the Problem 4.1,

then the triplet (u, h, f), where u = u0 + 1 ∗ v, f = f0 + 1 ∗ w, satisfies the regularity
conditions (α), (β), (γ) and solves Problem 2.4 with k = k0.

Proof. Let (u, h, f) satisfy the regularity conditions (α), (β), (γ) and solve Problem 2.4,
with k ∈ R. Applying φj (j = 1, 2) to the first equation in (2.12) and, taking t = 0, we
get

k < Au0, φj > +f(0) < g, φj >= G′
j(0).

Employing (H6), we immediately obtain

k = k0, f(0) = f0. (4.11)
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So (I) is proved. Now we set

v := u′, w := f ′.

Then v ∈ C1([0, T ]; X) ∩ C([0, T ];D(A)) ∩ B([0, T ];DA(1 + θ,∞)), v′ ∈ B([0, T ];DA(1 +
θ,∞)), w ∈ C([0, T ]). In particular, (v, h, w) satisfies (α′), (β′), (γ′). Differentiating the
first equation in (2.12) and, using (4.11) and (H8), we obtain

{
v′(t) = k0Av(t) + h(t)Au0 + h ∗ Av(t) + w(t)g, t ∈ [0, T ],
v(0) = v0.

(4.12)

Applying φj (j = 1, 2) to the first equation in (4.12), we get, for t ∈ [0, T ],

h(t) < Au0, φj > +w(t) < g, φj >= G′′
j (t)−k0 < Av(t), φj > − < h∗Av(t), φj > . (4.13)

It follows that

h(t) = h1(t)− k0[a11 < Av(t), φ1 > +a12 < Av(t), φ2 >]
−a11 < h ∗ Av(t), φ1 > −a12 < h ∗ Av(t), φ2 >,

(4.14)

w(t) = w1(t)− k0[a21 < Av(t), φ1 > +a22 < Av(t), φ2 >]
−a21 < h ∗ Av(t), φ1 > −a22 < h ∗ Av(t), φ2 > .

(4.15)

Now we apply the variation of parameter formula to (4.12), to get

v(t) = v(t) + etA0 ∗ (hAu0 + h ∗ Av + wg)(t)
= v(t) +R1(v, h, w)(t),

(4.16)

hence, from (4.14)-(4.15), we obtain

h = h +R2(v, h, w),

w = w +R3(v, h, w).

So (v, h, w) satisfies Problem 4.1. On the other hand, assume that v, h, w satisfy condi-
tions (α′), (β′), (γ′) and system (4.10). As v0 ∈ DA(1 + θ,∞) and hAu0 + h ∗Av + wg ∈
C([0, T ]; X) ∩ B([0, T ];DA(θ,∞)), we have that v ∈ C1([0, T ]; X) ∩ C([0, T ];D(A)) ∩
B([0, T ];DA(1 + θ,∞)) and solves system (4.12). From (4.10), we obtain also that (4.14),
(4.15) and (4.13) are satisfied. Applying φj (j = 1, 2) to the first equation in (4.12), we
get

< v′(t), φj >= G′′
j (t), t ∈ [0, T ]. (4.17)

Now we set u := u0 +1 ∗ v and f := f0 +1 ∗w. Then, owing to (H2), u satisfies (α), while
f satisfies (γ). Observe also that the first equation in (4.12) can be written in the form

u′′ = Dt(k0Au + h ∗ Au + fg). (4.18)

As u′(0) = v0 and f(0) = f0, from (H8) we obtain that system (2.12) is satisfied, with
k = k0. Finally, applying (H9) and (4.17), we can conclude that even (2.13) is satisfied.
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5 Proof of Theorem 2.5

To prove Theorem 2.5, we shall employ the following:

Lemma 5.1. Assume that conditions (H1)-(H9) are satisfied.
Let R1, R2, R3 be the operators defined in (4.7), (4.8), (4.9), respectively. Then there

exists C > 0 such that, ∀λ ≥ 0, ∀v, v1, v2 ∈ C([0, T ];D(A)) ∩ B([0, T ];DA(1 + θ,∞)),
∀ h, h1, h2 ∈ C([0, T ]), ∀w, w1, w2 ∈ C([0, T ]),

‖R1(v, h, w)‖Bλ([0,T ];DA(1+θ,∞)) ≤ C[‖h ∗ Av‖Bλ([0,T ];DA(θ,∞))

+ (1 + λ)−ε(‖h‖Bλ([0,T ]) + ‖w‖Bλ([0,T ]))

+ (1 + λ)−1(‖h− h‖Bλ([0,T ]) + ‖v − v‖Bλ([0,T ];DA(1+θ,∞)))

+ ‖h− h‖Bλ([0,T ])‖v − v‖Bλ([0,T ];DA(1+θ,∞)];
(5.1)

‖R1(v1, h1, w1)− R1(v2, h2, w2)‖Bλ([0,T ];DA(1+θ,∞))

≤ C[‖h1 − h2‖Bλ([0,T ])‖v1 − v‖Bλ([0,T ];DA(1+θ,∞))

+‖h2 − h‖Bλ([0,T ])‖v1 − v2‖Bλ([0,T ];DA(1+θ,∞))

+(1 + λ)−ε(‖h1 − h2‖Bλ([0,T ]) + ‖w1 − w2‖Bλ([0,T ]))
+(1 + λ)−1‖v1 − v2‖Bλ([0,T ];DA(1+θ,∞))];

(5.2)

and, if i ∈ {2, 3},

‖Ri(v, h, w)‖Bλ([0,T ]) ≤ C(‖R1(v, h, w)‖Bλ([0,T ];DA(1+θ,∞))

+(1 + λ)−1‖h‖Bλ([0,T ])

+‖h− h‖Bλ([0,T ])‖R1(v, h, w)‖Bλ([0,T ];DA(1+θ,∞)));
(5.3)

‖Ri(v1, h1, w1)−Ri(v2, h2, w2)‖Bλ([0,T ])

≤ C(‖R1(v1, h1, w1)−R1(v2, h2, w2)‖Bλ([0,T ];DA(1+θ,∞))

+(1 + λ)−1‖h1 − h2‖Bλ([0,T ]) + ‖h1 − h2‖Bλ([0,T ])‖R1(v1, h1, w1)‖Bλ([0,T ];DA(1+θ,∞))

+‖h2 − h‖Bλ([0,T ])‖R1(v1, h1, w1)−R1(v2, h2, w2)‖Bλ([0,T ];DA(1+θ,∞))).
(5.4)

Proof. Owing to (H2)-(H3) and Theorem 3.1 (applied replacing θ with θ + ε and ξ with
1 + θ), we have, for some C1 > 0, independent of λ, h, w,

‖etA0 ∗ (hAu0 + wg)‖Bλ([0,T ];DA(1+θ,∞)) ≤ C1(1 + λ)−ε(‖h‖Bλ([0,T ]) + ‖w‖Bλ([0,T ])). (5.5)

Moreover, employing again Theorem 3.1 and Theorem 3.2, we have

‖etA0 ∗ (h ∗ Av)‖Bλ([0,T ];DA(1+θ,∞))

≤ C2‖h ∗ Av‖Bλ([0,T ];DA(θ,∞))

≤ C2(‖h ∗ Av‖Bλ([0,T ];DA(θ,∞)) + ‖(h− h) ∗ Av‖Bλ([0,T ];DA(θ,∞))

+‖h ∗ A(v − v)‖Bλ([0,T ];DA(1+θ,∞)) + ‖(h− h) ∗ A(v − v)‖Bλ([0,T ];DA(θ,∞))

≤ C3[‖h ∗ Av‖Bλ([0,T ];DA(θ,∞)) + (1 + λ)−1(‖Av‖B([0,T ];DA(θ,∞))‖h− h‖Bλ([0,T ])

+‖h‖B([0,T ])‖v − v‖Bλ([0,T ];DA(1+θ,∞))) + ‖h− h‖Bλ([0,T ])‖v − v‖Bλ([0,T ];DA(1+θ,∞))],
(5.6)
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with C2 and C3 independent of λ, v, h. So (5.1) follows from (5.5) and (5.6). Concerning
(5.2), we have

‖etA0 ∗ ((h1 − h2)Au0+ (w1 − w2)g)‖Bλ([0,T ];DA(1+θ,∞))

≤ C1(1 + λ)−ε(‖h1 − h2‖Bλ([0,T ]) + ‖w1 − w2‖Bλ([0,T ])).
(5.7)

Next, always using Theorems 3.1 and 3.2, we have

‖etA0 ∗ (h1 ∗ Av1− h2 ∗ Av2)‖Bλ([0,T ];DA(1+θ,∞))

≤ C2‖h1 ∗ Av1 − h2 ∗ Av2‖Bλ([0,T ];DA(θ,∞))

≤ C2(‖(h1 − h2) ∗ Av‖Bλ([0,T ];DA(θ,∞))

+‖h ∗ A(v1 − v2)‖Bλ([0,T ];DA(θ,∞))

+‖(h1 − h2) ∗ A(v1 − v)‖Bλ([0,T ];DA(θ,∞))

+‖(h2 − h) ∗ A(v1 − v2)‖Bλ([0,T ];DA(θ,∞)))
≤ C4[(1 + λ)−1(‖Av‖B([0,T ];DA(θ,∞))

‖h1 − h2‖Bλ([0,T ]) + ‖h‖B([0,T ])‖v1 − v2‖Bλ([0,T ];DA(1+θ,∞)))
+‖h1 − h2‖Bλ([0,T ])‖v1 − v‖Bλ([0,T ];DA(1+θ,∞)))

+‖h2 − h‖Bλ([0,T ])‖v1 − v2‖Bλ([0,T ];DA(1+θ,∞)))],

(5.8)

with C4 independent of λ, v1,v2, h1, h2. So (5.2) follows from (5.7) and (5.8). The formulas
(5.3) and (5.4) can be shown analogously. Concerning (5.3), it is convenient to observe
that

h ∗ AR1(v, h, w) = (h− h) ∗ AR1(v, h, w) + h ∗ AR1(v, h, w),

while (5.4) follows from the identity

h1 ∗ AR1(v1, h1, w1)− h2 ∗ AR1(v2, h2, w2)
= (h1 − h2) ∗ AR1(v1, h1, w1)

+(h2 − h) ∗ A[R1(v1, h1, w1)−R1(v2, h2, w2)]

+h ∗ A[R1(v1, h1, w1)−R1(v2, h2, w2)].

(5.9)

Proof of Theorem 2.5. Let λ ≥ 0. We set

Y (λ) := (Cλ([0, T ];D(A)) ∩ Bλ([0, T ];DA(1 + θ,∞))× Cλ([0, T ])2, (5.10)

endowed with the norm

‖(v, h, w)‖Y (λ) := max{‖v‖Bλ([0,T ];DA(1+θ,∞)), ‖h‖Bλ([0,T ]), ‖w‖Bλ([0,T ])}, (5.11)

with v ∈ Cλ([0, T ];D(A)) ∩ Bλ([0, T ];DA(1 + θ,∞)), h ∈ Cλ([0, T ]), w ∈ Bλ([0, T ]), with
the norm (5.11) we have that Y (λ) becomes a Banach space. Let λ ≥ 0, ρ > 0 and set

Y (λ, ρ) := {(v, h, w) ∈ Y (λ) : ‖(v, h, w)− (v, h, w)‖Y (λ) ≤ ρ}. (5.12)

Then, for every ρ > 0, Y (λ, ρ) is a closed subset of Y (λ).
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Now we introduce the following operator N : if (v, h, w) ∈ Y (λ), we set

N(v, h, w) := (v +R1(v, h, w), h +R2(v, h, w), w +R3(v, h, w)), (5.13)

clearly N is a nonlinear operator in Y (λ).
Now we show that Problem 2.4 has a solution (k, u, h, f), with the regularity properties
(α), (β), (γ).
Applying Theorem 4.2, we are reduced to look for a solution (v, h, w) of system (4.10),
satisfying the conditions (α′), (β′), (γ′). This is equivalent to look for a fixed point of N
in Y (λ), for some λ ≥ 0.
First step : We show that there exists ρ1 > 0, such that, if 0 < ρ ≤ ρ1, there exists
λ1(ρ) ≥ 0, so that, for λ ≥ λ1(ρ), N(Y (λ, ρ)) ⊆ Y (λ, ρ).
In fact, if (v, h, w) ∈ Y (λ, ρ), we have, applying (5.1) and (5.3),

‖R1(v, h, w)‖Bλ([0,T ];DA(1+θ,∞)) ≤ C[‖h ∗ Av‖Bλ([0,T ];DA(θ,∞))

+(1 + λ)−ε(2ρ + ‖h‖C([0,T ]) + ‖w‖C([0,T ]))
+2(1 + λ)−1ρ + ρ2]

≤ C1[‖h ∗ Av‖Bλ([0,T ];DA(θ,∞))

+(ρ + 1)(1 + λ)−ε + ρ2],

for i ∈ {2, 3},
‖Ri(v, h, w)‖Bλ([0,T ]) ≤ C2{(1 + ρ)[‖h ∗ Av‖Bλ([0,T ];DA(θ,∞))

+(ρ + 1)(1 + λ)−ε + ρ2]

+(1 + λ)−1(ρ + ‖h‖C([0,T ]))}
≤ C3(1 + ρ)[‖h ∗ Av‖Bλ([0,T ];DA(θ,∞))

+(ρ + 1)(1 + λ)−ε + ρ2],

with C1, C2, C3 independent of λ and ρ. Now we choose ρ1 > 0, such that, if 0 < ρ ≤ ρ1,

max{ C1ρ
2, C3(1 + ρ)ρ2 } < ρ. (5.14)

Then, owing to Theorem 3.3, for any ρ ∈ (0, ρ1], there exists λ(ρ) ≥ 0, such that, if
λ ≥ λ(ρ) and (v, h, w) ∈ Y (λ, ρ)

‖N(v, h, w)− (v, h, w)‖Y (λ) = max{ ‖R1(v, h, w)‖Bλ([0,T ];DA(1+θ,∞)),
‖R2(v, h, w)‖Bλ([0,T ]),
‖R3(v, h, w)‖Bλ([0,T ]) }
≤ ρ.

Second step : We show that there exists ρ2 > 0, such that, if 0 < ρ ≤ ρ2, there exists
λ2(ρ) ≥ 0, so that, if λ ≥ λ2(ρ), and (v1, h1, w1) and (v2, h2, w2) are elements of Y (λ, ρ),

‖N(v1, h1, w1)−N(v2, h2, w2)‖Y (λ) ≤ 1

2
‖(v1, h1, w1)− (v2, h2, w2)‖Y (λ). (5.15)

Indeed, let ρ ∈ (0, ρ1] and λ ≥ λ1(ρ). Then, by (5.2) and (5.4), we have

‖R1(v1, h1, w1)− R1(v2, h2, w2)‖Bλ([0,T ];DA(1+θ,∞))

≤ C[ρ(‖h1 − h2‖Bλ([0,T ]) + ‖v1 − v2‖Bλ([0,T ];DA(1+θ,∞)))
+(1 + λ)−ε(‖h1 − h2‖Bλ([0,T ]) + ‖w1 − w2‖Bλ([0,T ]))
+(1 + λ)−1‖v1 − v2‖Bλ([0,T ];DA(1+θ,∞))]
≤ 2C[ρ + (1 + λ)−ε + (1 + λ)−1]‖(v1 − v2, h1 − h2, w1 − w2)‖Y (λ).
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and , for i ∈ {2, 3},
‖Ri(v1, h1, w1)− Ri(v2, h2, w2)‖Bλ([0,T ])

≤ C4(1 + ρ)[ρ + (1 + λ)−ε + (1 + λ)−1]
×‖(v1 − v2, h1 − h2, w1 − w2)‖Y (λ),

with C4 independent of λ and ρ. Now, we choose ρ2 ∈ (0, ρ1], in such a way that

max{ 2Cρ, C4ρ(1 + ρ) } < 1/2. (5.16)

Then,for any ρ ∈ (0, ρ2], there exists λ2(ρ) ≥ 0, such that, if λ ≥ λ2(ρ) and (v1, h1, w1)
and (v2, h2, w2) in Y (λ, ρ), we have (5.15).
Third step: existence of a solution. We apply the results of the two previous steps: we fix
ρ ∈ (0, ρ2}) and λ ≥ max{λ1(ρ), λ2(ρ)}. Then N maps Y (λ, ρ) into itself and, restricted
to this subset, is a contraction. Then Banach’s fixed point theorem allows to conclude
that there exists a unique (v, h, w) ∈ Y (λ, ρ), which is a fixed point for N . From the
equivalence Theorem 4.2, we conclude that a solution exists.
Fourth step: uniqueness of a solution . Let (kj, uj, hj, fj) (j = 1, 2) be solutions of
Problem 2.4. We want to show that they coincide. We already know that k1 = k2 = k0.
We set

vj := u′j, wj := f ′j, j = 1, 2. (5.17)

Then, owing to Theorem 4.2, v1 and v2 belong to C([0, T ];D(A))∩B([0, T ];DA(1+θ,∞)),
w1 and w2 are in C([0, T ]), and (v1, h1, w1) and (v2, h2, w2) are both fixed points of N .
For j = 1, 2, we have, owing to (5.1),

‖vj − v‖Bλ([0,T ];DA(1+θ,∞)) = ‖R1(vj, hj, wj)‖Bλ([0,T ];DA(1+θ,∞))

≤ C[‖h ∗ Av‖Bλ([0,T ];DA(θ,∞))

+(1 + λ)−ε(‖hj‖Bλ([0,T ]) + ‖wj‖Bλ([0,T ]))

+(1 + λ)−1(‖hj − h‖Bλ([0,T ]) + ‖vj − v‖Bλ([0,T ];DA(1+θ,∞)))

+‖hj − h‖Bλ([0,T ])‖vj − v‖Bλ([0,T ];DA(1+θ,∞))].

Applying Theorem 3.3 and observing that R2(vj, hj, wj)(0) = 0, we have

lim
λ→+∞

‖hj − h‖Bλ([0,T ]) = 0,

so we conclude that

lim
λ→+∞

‖vj − v‖Bλ([0,T ];DA(1+θ,∞)) = lim
λ→+∞

‖R1(vj, hj, wj)‖Bλ([0,T ];DA(1+θ,∞)) = 0.

From (5.3), we obtain, for i ∈ {2, 3},
‖Ri(vj, hj, wj)‖Bλ([0,T ]) ≤ C(‖R1(vj, hj, wj)‖Bλ([0,T ];DA(1+θ,∞))

+(1 + λ)−1‖hj‖Bλ([0,T ])

+‖hj − h‖Bλ([0,T ])‖R1(vj, hj, wj)‖Bλ([0,T ];DA(1+θ,∞))),

so that we conclude that, for j = 1, 2,

lim
λ→+∞

‖(vj, hj, wj)− (v, h, w)‖Y (λ) = 0. (5.18)

17



Now we choose λ sufficiently large, so that

max{‖(vj, hj, wj)− (v, h, w)‖Y (λ) : j = 1, 2} ≤ ρ ≤ ρ2, (5.19)

and, if necessary, we increase λ in such a way that λ ≥ max{λ1(ρ), λ2(ρ)} and (5.19)
continues to hold. Then (v1, h1, w1) and (v2, h2, w2) are both fixed points of N in Y (λ, ρ).
We conclude that they coincide.
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lag, Basel, 1995.

[26] A. Novick–Cohen, The Cahn-Hilliard equation: mathematical and modeling perspec-
tives, Adv. Math. Sci. Appl., 8 (1998), 965–985.

[27] A. Novick–Cohen, Conserved phase–field equations with memory, in Curvature
Flows and related Topics, 1994, GAKUTO Internat. Ser. Math. Sci. Appl., Vol 5,
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