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Some global in time results
for integrodifferential parabolic
inverse problems

Fabrizio Colombo, Davide Guidetti
and Vincenzo Vespri

Abstract We discuss a global in time existence and uniqueness result for an
inverse problem arising in the theory of heat conduction for materials with mem-
ory. The novelty lies in the fact this is a global in time well posed problem in the
sense of Hadamard, for semilinear parabolic inverse problems of integrodifferen-
tial type.

1 Introduction

In this paper we discuss some strategies we can use in the study of parabolic
integrodifferential inverse problems. The choice of the strategy depends on
what type of nonlinearities are involved. We consider the heat equation for
‘materials with memory since it is one of the most important physical examples
to which our methods apply. Other models, for instance in the theory of
population dynamics, can also be considered within our framework. We recall,
for the sake of completeness, the heat equation for materials with memory.
Let © be an open and bounded set in R® and T be a positive real number.
The evolution equation for the temperature v is given, for (f,z) € [0,7] x Q,
by

Deult, z) = kAult, z) + /t h{t — s)Au(s,z) ds + F{u(t, z)), (1.1)
0

where k is the diffusivity coefficient, h accounts for the memory effects and F' is
the heat source. In the inverse problem we consider, besides the temperature
u, also h as a further unknown, and to determine it we add an additional
measurement on u represented in integral form by

/ﬂ $(e)ult, ) dz = Gt), Ve [0,T], (1.2)
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where ¢ and G are given functions representing the type of device used to mea-
sure u (on a suitable part of the body Q) and the result of the measurement,
respectively. We associate with (1.1)—(1.2) the initial-boundary conditions, for

example of Neumann type:

{ w(0,z) = @g(m), z €, : (13)
Dyu(t,z) =0, (t,2)€[0,7] x9Q,

v denoting the outward normal unit vector.
So one of the problems we are going to investigate is the following.

PROBLEM 1.1 (The Inverse Problem with two types of nonlinearities):
determine the temperature u : [0, T} x @ — R and the convolution kernel

R [0,T] x @ — R satisfying (1.1)-(1.3).

In the case when F is independent of u, but depends only on # and on i,
we assume that the heat source is placed in a given position, but its time
dependence is unknown, so we can suppose that

F(t,z) = f(t)g(z),

where f has to be determined and g ig a given datum. Then we also assume
that the diffusion coefficient % is unknown. The seeond inverse problem we

will study is as folows.

PROBLEM 1.2 (An inverse problem with a nonlinearity of convolution
type): determine the temperature u : [0,T] xQ — R, the diffusion coefficient
k and the functions ki : [0,T} — R, f:[0,T] — R satisfying the system

o

Dou(t, z) = kAu(t, z) + f§ hit — 8)Au(s, ) ds + f(t)g(z),

u{0,z) = uplx), = €L, (1.4)
Bu
5(1&,3:) =0, {t,z)ecl[0,T]x 05,
with the additional conditions
[ uttosan) =G0, el 5=12, (15)
¥

where g, ug, G1, G are given data and y; and po are finite Borel measures
in C{€1).

REMARK 1.1 The additional conditions considered for Problem 1.2 (cf.
(1.5)) is more general than the one considered for Problem 1.1 (cf. (1.2)). This

is due to the fact that in Problem 1.2 we will choose the space of continuous
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functions as reference space. Such a setting has the advantage to allow addi-
tional measurements of the temperature also on the boundary of 2, while in
the LP-setting (if we consider additional measurements of type (1.5)), one is
compelled to make further measurements inside the body. In fact, for Problem
1.2 the measure p; (1 < 7 < 2) is Borel measure in Q, eg., concentrated on
the surface 8Q, while, in the other case, ¢ (cf. (1.2)) is an element of L ()

with 1/p+ 1/p =1.

Several identification problems involving the heat equation with memory
have been faced and solved in the recent years; see for example 4, 5, 6, 8, 9,
12, 14] and the literature therein. The type of results we find are theorems of
local in time existence and uniqueness for the solution of the inverse problem
considered. What is still an open problem is to find global in fime existence
and uniqueness theorems for a sufficiently large class of nonlinearities that
involve the function F{u(Z, x)).

Since in this paper we want to show what kind of difficulties we have to over-
come to solve Problem 1.1 (Problem 1.2, even though it has more unknowns,
from a technical view point is a particular case) we make the following classifi-
cation of the difficulties one has to face when dealing with this kind of inverse
problems.

The main dlfﬁculty arises because there are two types of nonlinearities:
one is in the convolution term f h{t — s)Au(s, z) ds, while the second one is
obviously due to the nonlinear function F(u(t, z)).

There are several papers in which nonlinearities of convolution type have
been studied. In particular, in [10, 11] the authors prove global in time results,
in suitable weighted spaces, for convolutlon kernels that depend also on one
space variable.

Such spaces are the natural tool to face inverse problems in which there are
only nonlinearities of convolution type.

The presence of the nonlinear function F'(u(t, z)) of the unknown u leads
us to look for a.priori estimates for the unknowns u and A, so that from a
local in time result we obtain a global in time one.

The problem that arises with both nonlinearities is that the weighted spaces
are not suitable in treating the nonlinear term F'(u(t,z)). What has been
done in the recent paper {7] is to find methods that allow us to treat both
nonlinearities simultaneously.

In the case where we are looking for a local in time solution there is a
wide class of function spaces in which it is possible to set our problem; see
for example [4, 5, 6, 12, 14, 20, 22], but in the case we have to find a priori
estimates just a few spaces are useful to this aim.

In this paper we present global in time results in the space of bounded
functions with values in an interpolation space for a problem that involves
only the nonlinearity of convolution type and then we show the very recent
results in the Sobolev setting in the case there are both type of nonlinearities.
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In the literature we can find the recent paper [21], in which the authors prove
a, conditioned global in time result for a phase-field model using a different
strategy with respect to ours that suits well for the particular coupling of the
equations of the phase-field system they consider. This is due to the fact that
the two types of nonlinearities belong to two different equations.

Our final target is to generalize the technique developed in [7] to the dif-
ferent phase-field models that we can find in the literature; see for example
[2, 3, 16, 20, 24, 23].

Let us explain what are the main differences in dealing with one or two
types of nonlinearities showing the strategies we use.

In the case when the term F' is a given datum that does not depend on
the temperature u, or as in Problem 1.2 where F = fg with f unknown, we
use the weighted spaces, to be introduced in the sequel, and we proceed as

follows.

(1) In the case it is possible to formulate our problem in at least two func-
tion spaces, we consider an abstract formulation of the inverse problem
relating it to a Banach space X. This is not strictly necessary if the
results hold just in the case when X can be uniquely chosen.

(2) We choose a functional setting. For example we can take the space of

bounded functions on [0,T] or the Sobolev spaces on [0, T} with values

" in the Banach space X and we select the related optimal regularity
theorem for the linearized version of the problem.

{3) We prove that the abstraét version of the problem is equivalent to a
suitable fixed point systern.

(4) Since the fixed point system contains integral operators, we have to
ostimate them in the weighted spaces we are considering {(exponential
weight ¢, o ¢ R¥, t € [0,T] is usually used). The estimates for the
integral operators must be such that suitable constants depending on o

approaches zero ags .o — 0.

(5) By the Contraction Principle we prove that the equivalent problem has
a unique solution, so we get existence and uniqueness of a solution to

our inverse problem.
(6) We apply the abstract results to the concrete problem.

Let us come to the doubly nonlinear case in which F depends on u. The
main idea to solve the problem in this case is to prove that there exists a local
in time solution of the inverse problem in Sobolev spaces without weights,
then we linearize the convolution term and we find a priori estimates for u
and for the convolution kernel h. More precisely we proceed as follows.

(a) In this case we do not give an abstract formulation since at the moment
we are able to prove our results only in the Sobolev setting.
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(b) We use the Sobolev spaces W*2(0, T; LP(Q)).

{c) Analogue to (3), but the concrete system is considered instead of the
abstract one.

(d) The fixed point system contains integral operators; we have to estimate
them in the Sobolev spaces we have chosen.

{e) We apply the Contraction Principle fo prove that there exists a unique
local in lime solution. Thanks to the equivalence theorem previously
obtained we get local in time existence and uniqueness of the solution to
our inverse problem. We prove a global in time uniqueness result without
the condition that &, be bounded. '

(f) We linearize the convolution term thanks to the local in time existence
and uniqueness theorem. We observe that a unique solution (4, A) exists
in [0,7] for some 7 > 0. We set v-(¢) = v(r + t) and h.(t) = A(r + 1)
and consider, for 0 < £ < 7, the splitting

]

T4+t R ~
f (T +t —s}Avu(s,x)ds = h, * AD(E,z) + h* Av, (¢, T) + F(E, 3),
0

where the symbol # stands for the convolution (see belgw) and F(t, z)
is a given data depending on the known functions (&, ). This way of
rewriting the convolution term allows us to avoid the weighted spaces
that have a bad behavior when we deal with the nonlinearity F'{u).

(g) We deduce the a priori estimates for v, (t) and 7. (¢) for 0 < ¢ < 7. with
the condition 7}, be bounded. In a finite number of steps we extend the
solution to the interval [0, 7.

2  Functional settings and preliminary material

Let X be a Banach space with norm {| - || and let T > 0. We denote by
C([0,7]; X) the usual space of continuous functions with values in X, while
we denote by B([0,T]; X) the space of bounded functions with values in X.
B(I0,T]; X) will be endowed with the sup-norm

% Ly = 1 2.1
)l 5¢10,77;2) Ogl%llu()ﬂ (2.1)

and C([0,77]; X) will be considered a closed subspace of B([0,7]; X). We will
use the notations C'([0,T];R) = C([0,7]) and B([0,T);R) = B([0,T]). By
L(X) we denote the space of all bounded linear operators from X into itself
equipped with the sup—norm, while £(X;R) = X’ is the space of all bounded
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linear functionals on X considered with the natural norm. We set Ny :=
NU{0}. fseZ s> 2weset WgP(Qd) = {f € W*»(Q) : D, f = 0}. We
denote by By () (s > 0,1 < p,q < +00) the Besov spaces. The symbol
(-,)op stands for the real interpolation functor (0 < 8 < 1, 1 £ p < +00).
For all h € L*(0,T) and f: {0,T) — X we define the convolution

R f(t) == ./0. h{t — s)f(s)ds,

whenever the integral has a meaning. Let p € [1,4+00), m € Ng; if f €
Wm™2(0,T; X) (see [1]), we set ,

. m—1
1 wmeoroey = 9 IFP O x + 177 [ zs 0,35)-
. j=0

For the sake of brevity we define the Banach space

X(T,p) = WhP(0, T, 17(0)) 0 LP(0, T W22(),
where T € R*, p € [1, —|—oo] Ifue X(T,p) We. set

lullxerp = lullwerorieq)y + lullzeorwee @)

We now give the definition:

DEFINITION 2.1 Let A:D{(A) C X — X be a linear operator, possibly
with D(A) # X. Operator A is said to be sectorial if it satisfies the following

assumptions: :

o there exist 0 € (w/2,7) and w € R, such that any A € C\ {w} with
larg(A — w)| < 8 belongs to the resolvent set of A.

s there exists M > 0 such that ||(A — w)(A — A) ™ gxy < M for any
A € C\ {w} with larg(A ~w)| < 8.

The above definition of sectorial operator is important to define the semi-
group of bounded linear operators {e*4};>0, in £(X), so that t — e** is an
analytic function from (0, +00) to £(X).

Let us define the family of interpolation spaces (see [23] or [29]) Da(f, o),
# e (0,1), between D(A) and X by

DA0,0) = { € X : lelpaooo) == sup Al <o} (22)

with the norm

[llD4(8,00) = Il + (2D 8,00)- (2.3)
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We also set
Da(l+0,00) = {2 € D(A) : Az € Dy(0,00)}. {2.4)
D4{1+ 8, co) turns out to be a Banach space when equipped with the norm
126,00 = 2] + 1 A2]1D0 6,00 (2.5)
For Problem 1.2 we will use the following optimal regularity result: '

THEOREM 2.1 (Optimal regularity in spaces B{[0,7]; Da(f,c0)}) Let X
be a Banach space. Consider the Couchy Problem:

(GP) { u’(t) - Au(t) * f(t)’ i€ [O:T}:

u(O) = Uug,

‘(2.6)

where A : D(A) — X is a sectorial operator and 8 € (0,1). For any f €
C([0, T; X)NB({0,T}; Da(f, 00)), up € Da(0+1,00) the Cauchy problem (CP)
admits a unique solution u € C*([0,7]; X)NC([0,T}; P(A))NB([0, T]; Dalf+
1, 00)}. :

Proof. See the book [23] or the original paper [27].

As we have discussed in the introduction for Problem 1.1 at the moment we
have the only possibility to choose Sobolev spaces, if we want a global in time
result. For this reason we do not formulate the inverse problem in an abstract
setting. As a consequence the optimal regularity result we are in need of is
formulated just for the concrete case.

THEOREM 2.2 (Optimal regularity in spaces X (T, p)) Let A be the Laplace
operator and ky € RT. Consider the problem

Dyu(t,z) = koAult, z) + F(t,z), (t,z) € [0,T] x é,
Dyu(t,z')y=0, ' (t,7') € [0,T] x 892, (2.7)
u(0,z) = up(z), z €.

Then, if p € (1, +00), F € LP(0,T; LP(2)) and ug € (LP(Q), WEP(2) ) —1/p,00
(2.7) has a unique solution u € X(T,p). Moreover, for all Ty € RT, there
erists C(Ty) € R, such that, if 0 < T < Ty,

el x () < CE)IFlizoo,mzr @)y + ol poywir@y_syp,): ~ (2:8)

Proof. Tt is that of Theorem 8.1 in [15].
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From Theorem 3.5 in [17], we have that, for p € (1, +00):

B2~/ if 1<p<3,
(LP(Q), W5 ())1-1/p.p = 2(-1/r)
(2.9) 1

3 The main results

We present in the following subsections the results we have obtained in the
case we deal only with the nonlinearity of convolution type and the case in
which both nonlinearities are involved. The space of bounded functions is used
in the first case, while the Sobolev setting is used in the second case.

3.1 The case of one nonlinearity of convolution type

We give the Inverse Problem 1.2 an abstract formulation and then we apply
the abstract Theorem 3.1 to the concrete case.

PROBLEM 3.1 (Inverse Abstract Problem (IAP)) Let A be a sectorial
operator in X. Determine a positive number k and three functions u, h, f,

- such that
u € C*([0,T); X) N C*([0, T;; D(4)),
( Dy e B([0,T); Da(l +86, oo)),' DZu € B([O, T); Da(8,0)),

(8) h € C([0,T]),

() £ € CH(O,T)), | : :
satisfying the system
{ W/ () = kAu(t) + [} h(t — s)Au(s)ds + f(t)g, t€[0,T), 5.1)

u(0) = uo,

and the additional conditions:

(ult), 9;) = G5(2), tE€ 0,71, i=1L12, (3.2

where ¢; (7 =1,2) are given bounded linear functionals on X, and G5, uo, g
are given data. '

We study the (IAP) under the following assumptions:

(H1) 0 € (0,1), X is a Banach space and A is a sectorial operator in X..
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(H2) up € Da(l + 6 +¢,00), for some e € (0,1 - &)
(H3) g € D40 +¢,00), for some € € (0,1~ 0).
(H4) ¢; € X', for j=1,2.

(H5) G; € C¥([0,T)), for j =1,2.

(H6) The matrix
< Aug, 1 > < g, >
Mo S0 91 ! (3.3)
< AUU,¢2 > < g,_¢2 >

is invertible and its inverse is defined by

M= (all | am) : (3.4)

(H7) We require that the linear system

{ko < Aug, ¢ > +fo < g, 61 >= G1(0), (35)
ko < Aug, p2 > +fo < g, ¢2 >= G3(0),

has a unique solution (kg, fo) with ko > 0.
(H8) vp = koAug + fog € Da(l+0, 00).
(H9) <ug,d; >=G4(0), <wo,¢;>=G5(0), j=12
REMARK 3.1 Owing to (H6) the first component kg of the solution (ko, fo)
is positive if and only if

1
M—M[GQ(O) < g, 92 > —GH(0) < g, >] > 0.

The main abstract result is the following:

THEOREM 3.1 Assume that conditions (H1)-(H9) are fulfilled. Then
Problem 8.1 has a unigue (global in time) solution (k, u, h, [}, with k € Rt,
and u, h, f satisfying conditions (o), (8) and (7).

Proof. See Section 4 for the main steps of the proof or Section 5 in [13] for
all the details.

An application to the concrete case. We choose as reference space

X =C@), (3.6)
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where ( is an open bounded set in R™ (in the introduction we have considered
the physical case n = 3, but the result holds for any n € N) with boundary of
class C20+0+€)  for some § € (0,1/2), £ € (0, (1/2) — 8). We define

D(A) = {u wr(Q) : Au e C(), Dyulsg=0¢,
{() {elsgw () : Aue C@), Dyuloa =0} -

Au = Au, Yu € D(A).

Tt was proved by Stewart (see [28]) that A is a sectorial operator in X. Then
we recall the following characterizations concerning the interpolation spaces

related to A (see {23]):

C(), if 0<&<1/2,
Da(€,00) = — ) (38)
{UEC%(Q) : D,,’u.lag———‘()}, if 1/2<f<1.
Consequently, if 0 < & < 0 + ¢, we have
C Da(l+£,00) = {u e CPTIQ) : Dyulsn = 0} (3.9)

So we congider the Tnverse Problem 1.2 under the following assumptions:

(K1) Q is an open bounded set in R™ with boundary of class C20+0+e) for
some 8 € (0,1/2), £ € (0,(1/2) - 6).

(K2) ug € CHIH84)(Q),  Dyuglaq = 0.
(K3) g € C?6+)(10).
(K4) For § = 1,2, uj is a bounded Borel measure in Q. We set, for ¢ € X,

<y >i= fn_ ()13 (). (3.10)

(K5) Suppose that (H5) holds.

(K6) Suppose that (H6) holds with ¢; (7 = 1,2) defined in (3.10) and A
defined in (3.7).

(KT7) Suppose that (HT7) holds.
(KS) vy = koAU.[] -+ fog S 02(1+9) (-ﬁ), D,,’Uolag =0.
(K9) Suppose that (H9) holds.

Applying Theorem 3.1 we immediately deduce:

THEOREM 3.2 Assume that conditions (K1)-(K9) are satisfied. Then the .
Inverse Problem 1.2 has o unigue (global in time) solution (k,u,h, f), such

T e o e

et A

tl
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et & C2((0, 71 C@) N CH(0, T D(A)),

Dyu € B(Jo,T}; C20+9 (),  Diu € B([0,THC*(Q)),
heC(0,T]), feCY0,T]), keRT,
A being defined in (8.7).

3.2 'The case of two nonlinearities

We solve the Inverse Problem 1.1 under the following conditions on the data:

(I1) € is an open bounded subset of R", lying on one side of its boundary
A%, which is a submanifold of R™ of class C*.

(I2) p € (1,+00), n €N, with n < 2p.
(I13) wo € W5"(9).
(I4) ¢ € W2P'(Q). We sel 1) := Ag.
(I5) F € C®(R).
(I6) wg 1= Aug + Flug) € (LP(Q), WEP(0)h-1/p.p-
(I7) g € W2P(0,T).
(18) ®(uo) = g(0) and &(vo) = g'(0)-
(19) @(Aug) == [, {x)Auo(z)dz # 0.
(110) F, is bounded.

THEOREM 3.3 (Global in time). Let the assumptions (11)-(110) hold. Let
T >0 and p > 2. Then Problem 1.1 has a unique solution

(u, ) € [W22(0, T; LP(Q)) N WE#(0, T; WHP())] x LP(0, T).

Proof. See Section 5 for the main steps of the proof or Section 7 in [7] for
all the details.

4 The strategy for nonlinearity of convolution type
in weighted spaces

We now want to show in a more explicit way how we obtain our results
sketching some proofs. We follow the list in the introduction.
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Step (1). The abstract formulation is Problem 3.1.

Step (2). The functional setting is the space of bounded function with values
in an interpolation space, see () for the function u.

Step (3). We reformulate Problem 3.1 in terms of the equivalent nonlinear
fixed point system (4.10). In proving Theorem 4.1 we find out a set of regular-

ity and compatibility conditions on the data that makes the inverse problem
well posed. To this aim, we start by introducing some notations. We set

Ay = koA - ’ ' (41)

As ko > 0, see (H7), Ap is a sectorial operator in X. Next, we set, fort € [0, 71,

El(t) = allG"i’(t) + CL12G’2’(?3), (4.2)
@1@) == aglG'l'(t) + aggGg{t), (4.3)
T(t) == 0. (4.4)

We immediately observe that Ay and @i belong to C([0,T]) and, owing to

Theorem 2.1, 7 € C([0, T]; D(A)) N B([0,T]; Da(l + 8, 00)). Next, we define,
again for ¢t € 0,77,

H(t) = ﬁl(t) — kot < Aﬁ(t), 1 > —kot12 < Aﬁ(t), 2 >, (4.5)

w(t) == (t) — kpag1 < Aﬁ(t): 1 > —koage < Aﬁ(t), ¢s > . (46)
Of course, i and @ belong to C([0,T]). Finally, we introduce the follow-
ing (ponlinear) operators, defined for every (v,h, w) € [C([0,T];P(4)) N
B0, T Da(1 + 6,00))] x C([0,]) x C([0,T)):

Ra(v, h, w)(t) = €40 % (hAug +wg + h = Av)(2), (4.7

7?,2('0, h, ’UJ)(t) = —kg[an < AR;[('U, h, w)(t),¢1 >

+ayn < AR1(v, h, w)(2), d2 >]

—ay1 < h* Aﬁ(t), ¢ >

—01g < Rk Aﬁ(t), ¢2 >
—ayy < Ak AR (T), h,'w)(t), >
—Q30 < A ¥ AR, (’U, h, ’LU) (t), s >, (48)

Fr
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Rs(v, by w)(t) := —kolaz < AR1(v, b, w){t), ¢1 >
Tage < ARi(v, h,w)(t), d2 >]
—ag1 < h* AT(t), ¢ >
—ago < h* AT(t), b2 >
—agy < hx AR (v, hyw)(8), 1 >
—ago < h* ARy (v, h,w)(t), 2 > .
We observe that Ro and R are well defined, because
R1(v, h,w) € C([0,T]; D(A)) N B([0, TT; Da(l+8,00)).
“Moreover, Ra(v, h,w) and Rs(v, b, w) both belong to C (Jo,T}).
Now we can introduce the following problem:
PROBLEM 4.1 Detér*mine three functions v, h, w, such that
(o) e C0,7];P(4)) N B(0, T}; D(1 + 6, 00)),
(8" heC(o, 1],
() wec1,

satisfying the system

v =70+ Ri(v, b, w),
h =h+ Ra(v, h,w),
w =T+ Ra(v, b, w)

47

(4.9)

(4.10)

THEOREM 4.1 (Equivalence) Let A be a sectorial operator in the Banach
space X and @ € (0,1). Let us assume that the data g, ug, ¢; and G5 (1 =1,2)
satisfy the conditions (H1)-(H9). Suppose that k, u, f, h satisfy Problem 3.1,
with k € Re and u, f, b fulfilling the reqularity conditions (o), (8), (7). Then

(I) k= ko, the triplet (v, h,w), wherev = u', w= f' satisfies the conditions

(@), {8, (') and solves Problem 4.1;

(II) conversely, if (v, h,w), with the above reqularity, is a solution of the
Problem 4.1, then the triplet (u, h, f), where u = uo+1*v, f=fot1lxw,
satisfies the regularity conditions (), (B), (v} and solves Problem 3.1

with k = ko.

Proof. It is Theorem 4.2 in [13] and it is based on Theorem 2.1.
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Step (4). Fundamental estimates for the integral operators Ry, j = 1,2,3, in

the weighted space.
We introduce some crucial estimates that will be essential to obtain global

in fime existence and uniqueness of a solution to our inverse problem. Let
A>0,T>0,8€(0,1).If f € B([0,T}; X), we set

il g o, 7156y += S e M u(t)]). (4.11)

We denote by Cy\([0,T]; X) the space C([0,T]; X) equipped with the norm

Il - 18 o, 73:) - |

We will use the notations C,([0,T];R) = C,{([0,T]) and By([0,T|;R) =
B, ([0, T}). We now state some useful estimates in these weighted spaces for
the solution of the Cauchy problem given by Theorem 2.1. We will list in the

following theorems what kind of estimates we are in need of.

THEOREM 4.2 Let A : D(A) — X be a sectorial operator, § € (0,1).
Let us suppose that f € C([0, T]; X) N B0, T); Da(f, c0)). Then the following
estimates hold: :

L, C
[l = Fllen o < T‘_'l_%”f“O,\({O,T];X); (4.12)

f@<E<1+ 0,

c(,¢)

”em * fllgago,110a(8,00)) < W'lfIIBA(IOsT]ipA(gsW))’ (4.13)

with Co and C(8,£) independent of f and .
Proof. It is that of Theorem 4.3 in [13].

THEOREM 4.3 Let A > 0, h € C([0,T]) and u € C([0,T]; X) n B([0,T);
Da(6,00)). Then there exists C > 0, independent of T', A, h, u, such that, if

t
hoxu(t) = f ht— s)u(s)ds, (4.14)

: 0
hxue C[0,7; X)NB([0, T Pa(f, o)) and satisfies the following estimate:

= ul|B, (0,74 a8,00)) S Cmiﬂ{ TRl sy o, 1 35 (0, 77;0.4 (8,000
(1 + X)) Hklls, qo,mn 1l B0, 270 46,000

(L + 207 Ik llseorpllults, om0 (s,oo))}-
(4.15)

Proof. It is that of Theorem 4.4 in [13].

[l
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The above theorems give us the possibility to estimate the operators R,
i=1,2,3.

LEMMA 4.1 Assume that conditions (H1 J-(H9) are satisfied. Let Ry, Ra,
R3 be the operators defined in (4.7), (4.7), (4.8), respectively. Then there ex-
ists O > 0 such that, for allX > 0, v,v1,v2 € C([0,T7; D(A)NB([0, T7; Pal{l+
8,2)), h,h1,ha € C([0,T]) and w, w1, w2 € c(10,T]) we have

R (v, b, w)il B, (10,71:D4 (1+6,00) < C[lih * AB| g (jo,71P4 8,000
+(1+ N lklls, o, + Iwhiasorn)
HL+ M)A - Allsa o
+lv - BBy o, 11P a(1+0,000)

H|k — Bl o ll? — Pl B (021D A 140,000
(£.16)

R (w1, b1, wr) — Ra(va, he, w2)llBs (0,704 (146.00))
< Clilha — hallms oo — Tlaa (o 1pa (8,000
+ ||ha — Rllgy o lvr — v2llBacio,11iDa(1+0.000)
(1 + N2 (ha — 2llmygo + llwr — w2llsy o)

(L4 A Ml = vallss (0,7 a(8,000 s (4.17)
and, if i € {2,3},

[Ri(w, by wlagoT)y
< C[IR1{v, b, w)llB, (j0,77sPa (148,000 T 1 "?*'A)—l”hHEA([O,TD
+ 1k = Bllas oz 1R (v, By ) 133 qo 1124 G000 5 (4.18)
[Ri(u1, b1, 1) = Ra(va, ha,wa)lBaito,70)
< C[IIR1(v1, b, wr) — Ra(vz, ha, wa) B (071D (1+8,00)
+ (14 A) Mk = Rl o)
+1lB1 — hallz, oy IR (v, Ass w1l Bs (o, 71Da(146,00))

k2 — lls, g0, IR (w1, hay wi) — Ra(ws, he, w2) |18, (10,750 (140,000 (419)

Proof. It is that of Lemma 5.1 in [13] and it is based on Theorems 4.2 and
4.3.
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Step 5. By the Contraction Principle we prove Theorem 3.1. Let A > 0. We
sef

Y(3) = (Ca([0, 71 D(4)) N BA(0, TH; Da(l + 6,00)) x Ca((0, TT)?,  (4.20)
and we endow it with the norm

I Cvs By w)llyay = max{|[v||s, (10,7104 (1-+0,000)s Nl Bx 0,77y, “w”Bz\(fO»T]()}’ )
4.21

with v € Cy\ ([0, T]; D(A)) N Br([0,T]; Pal{l + 8,00)), kh € C»([0,T]) and w €
Cx([0,T]). With the norm (4.21) Y(X) becomes a Banach space.
Let A >0, p > 0 and set

Y(hp0) = {0, hw) € YN : (v, h,w) — @B, B)llvy Sp}. (4.22)

Then, for every p > 0, Y (), p) is a closed subset of Y(A).
Now we introduce the following operator N: if (v, h,w) € Y (\), we set

N(v, b, w) = (T+ Ri(v, h,w), h + Ra(v, h,w), T + Ra(v, b, w)). (4.23)
Clearly N is a nonlinear operator in Y'(A). -
Now we show that Problem 3.1 has a solution (k,u, h, f), with the regularity

properties (), (8), (7).
Applying Theorem 4.1, we are reduced to locking for a solution (v, h,w) of

system (4.10), satisfying the conditions (o), (8'), (¥'). This is equivalent to
looking for a fixed point of N in Y()), for some A > 0. For the details see

Section 5 in [13].
Step (6). An application of the abstract result is Theorem 3.2.

5 The strategy for the case of two nonlinearities
in Sobolev spaces
‘We show the main ideas on which is based the global in time result for the
doubly nonlinear problem.
Step (a)—(b). We consider in this case the concrete formulation of the prob-
lem since the correct functional setting is the Sobolev space
X(T,p) = WHP(0, T; LP()) N LP(0, T; W2 (52)).

Step (c). An equivalent reformulation of the problem is the following:

THEOREM 5.1 Let the assumptions (I11)-(19) hold. Let u and h verify
the conditions

u € WAP([0, T]; ZP(Q)) n WHP([0, T, W22((2)),  h e LP([0,T]), (5.1)
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and solve the system (1.1)}-(1.3). We set v := D, so v and h salisfy the
conditions

v € WhP(0, T; LP(Q)) N L2(0, T; W2P(Q)), heLP(0,T]).  (5.2)

Then v and h solve the system (5.4) and (5.6). On the other hand, let v, h
satisfy the conditions (5.2) and solve the system (5.4) and (5.6). If we set
u = ug + 1 * v, then u, h verify the conditions (5.1) and solve the system

(1.1)~(1.8).

Proof. We split the proof into two steps.
Step 1. Suppose that the problem (1.1)~(1.3) has a solution

u e W22(0,T5 L2(®) N\ WH2(0, T, W(@), h e LP(0,7).

We set
Diult, z) == v(t, z), (5.3)

and we differentiate the first equation in {1.1) to get
Dywlt,z) = Av(t,z) + h(t)Aug + h + Av(t, x)
+ Fy(uo(z) + 1 * v(t, z))u(t, z),
v(0,z) := vy = Aug(z) + Fluo(z)), € L,
Dyovl(t,z) =0, t€[0,T], z €00

Tf (11)—(19) hold, obviouély we have v € W2(0, T; LP(Q))NL2(0, T; W2P(Q))
and h € LP(0,T). Apply now functional & (cf. (I9)) to the first equation and,
keeping in mind that ®{D,u){t) = ¢'(t) and (D7u)(t) = ¢"(t}), we get

- g" () = 2[Au(E, )] + A(t)D[Auo(-)]
 thw ®[AU(t, )] + OlF(uo() + 1xult, N, ). (5.5)

(5.4)

' We can write, sétting x 1 = ®[Aug(-)] #0,
h(t) = Xgﬂ(t) - X@[Fu(uﬁ(') + 1x* ‘U(tr '))'U(ﬁ, )]
——X@[A'U(t, )] — xh* (I){A'U(ta )] (56)

Step 2. Suppose now that v € WL2(0,T; LP(Q)) N LP(0,T; WP(2)) and
h e LP(0,T) satisfy system (5.4) and (5.6). Since Du(t,z) = v(t,z) we
observe that the first equation in (5.4) can be rewritten as

i Dy[Dsult, z) — Ault,z) — h* Au(t,z) — Fu(t,z))] =0,

which gives

Du(t,z) — Ault, z) — h * Ault, z) — F(u(t,z)) = C(z). (5.7)
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Setting £ = 0, we have
vol{z) — Aug(z) ~ f(ua(z)) = C(2),

so we get C' = 0. So, from equation (5.7) we deduce the first equation in {1.1).
Consider the equation for A in (5.5), it can be written as:

Dig'(£) = Def®[Au(t, )] + b+ B[Au(t, ) + S[F(ut, ). (6:8)

This gives
c+g'(t) = ®[Au(t, )] + b x @[Au(t, ] + S[F(ult, ).

At t =0 we have :
c+g'(0) = B[Auo() + F(uo())]
Since Aug(z) + Flug(z)) = wo and ¢'(0) = ®|vy] we get ¢ = 0. Then the

equation
Dy ®iu(t,)] = ¢'(t)

becomes
¢ + @fuft, )] = g(b).
Setting ¢ = 0 and recalling the compatibility condition B[u(0)] = g(0), we get

¢ =0 so that
Blu(t, )] = g(2)-

Step (d). We get the preliminary lemmas that are necessary to estimate the
operators entering in the equivalent reformulation of the problem.

THEOREM 5.2 Let X be a Banach space, p € (1,+00), T € R*, h €
L?(0,7), f € LP(0, 7 X). Thenh* f € I?(0,7;.X) and

B fllzeex <7 7P IRl I llze 0.5%)-
Proof. It is that of Theorem 3.2 in [7].

THEOREM 5.3 Let X be a Banach space, 7 € RY, p € (1,400), z €
WLe(0,1; X), with 2(0) = 0. Then

=1/7) (5.9)

[2llzeeomoy S 7 zllwre .

V2| o om0y < 22T |2llwre o,z (5.10)

Proof. It is that of Theorem 3.3 in [7].
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THEOREM 5.4 Under the conditions (I1) and (I2), W2P(8) is continu-
ously embedded in C{SY) and is a space of pointwise multipliers for W*¥ (Q),

fors=0,1,2.
Proof. It is that of Theorem 3.4 in [7].

THEOREM 5.5 Under the assumptions (11),(12) and (I3), if S € C*(R),
then the map v — S o v is of class C® from W2P(Q) into itself. Moreover,
for all k € No, (S0 -)®) is bounded with values in LF(WHP(Q), W2P(Q)) in
every bounded subset of WP(Q)).

. Proof. It is that of Theorem 3.5 in [7].

THEOREM 5.6 Assume that (I1) and (I2) are satisfied, § € C®(R),
ug € W2P(Q). Let Re RY, 0 < 7 < T and let Vi and V3 be elements of

X(r,p) such that

V- T2, < R.
e (Villemwee@) <

Then
BS(uo + 1% Vi)Vi — 8(xo0 + 1 % Va)Vall e 0,ms2o(02))

< CR,T)r VPV — Vol (-
Proof. It is that of Theorem 3.6 in [7].

THEOREM 5.7 Let p € (1, +00), Q satisfying (H1), ¢ € L' (), r € R™.
We define in LP(0, T; LP{2)) the operator

BU16) = [ #(o)f(t )i

_ Q

Ifu € X(r,p), we consider the map u — ®{Au]. Then ®|Au] € L?(0,7) and
[8[Au]||zr0,r) < w(T)lullx () (5.11)

with w(r) > 0, independent of u, and lir%w(f) = 0.

Proof. It is that of Theorem 3.7 in [7].

Step (e). The local in time existence theorem and the global in time unique-
ness theorem without the condition F, bounded.
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THEOREM 5.8 (Local in time existence and uniqueness). Let the assump-
tions (I1)-(19) hold. Then there exists T € {0,T), depending on the data, such
that the inverse problem (1.1)-(1.3) has a unigue solution

(u, k) € [WHP(0,r; LP(S)) N WhP(0, 7, WHP(Q))] x LP(0, 7).

Proof. It is that of Theorem 2.1 in [7] and its proof is based on Theorems
2.2 and 5.2-5.7.

THEOREM 5.9 (Global in time uniqueness). Let the assumptions (I1)=.

(19) hold. If 7 € (0,T], and if the inverse problem in Definition 1.2 has two
solutions (uj, h;) € W2P(0,7; LP(2)) N wLe(0,7; W2P(Q)) x LP(0,7), J €
{1,2}, then uy = ug and hq = hs.

Proof. Tt is that of Theorem 2.2 in [7] and its proof is based on Theorems
2.2 and 5.2-5.7. '

Step (f). We linearize the convolution term. From the local in time existence
and unigueness theorem we observe that a unique solution @, h exists in [0, 7]
for some 7 > 0. So we can consider the equations:

( Dyw(r +1t,x) = Aot + t,2) + h{T +1)Auo
+f0T+t A(T +t — 8)Av(s, z)ds + Fy(ug(z) +-1 % v{T 4+, z))o(r + %),
v(r,z) = u-(z), z€8,

Dolr+tz)=0 t& [0,T], = € O,

| Dol +¢,0)] = [, dlx)u(r +1, z)de = g'(r+1), t€[0,T]

-

(5.12)
We define the new unknowns

wn®) = o(r+0), he() =h(r+1), g:(8) =g(r+12), (5.13)

and we observe that
T+t

Lsv(r+t,x) = /{;TH v(s)ds = /OT (s)ds +/T v(s)ds

. fo " (s)ds + /0 " s ()

where we have set s — 7 = s’ and defined

To(z) = up(z) + 1 %0, 3).

So
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So we can rewrite
Fu(uo(®) + 1% (7 +£,2)) u(r +,3) = Fu(o() + 1% v,(t,)) v, (¢, 2).

Tet now 0 < £ < 7. Thanks to the gplitting

T4+1
j h{r +t—s)Av(s,z)ds
0

S fT t—l—‘rA
z/ h('r—l-t—s)Aﬁ(s,x)ds-l-/ (T +t — s)Av(s, z)ds
0 T
t T _
::/ hf(t——s)Aﬁ(s,sc)ds—i—f (7 +t — 8)AU(s, z)ds
0 t

[
—I—f h(T +1t — s)Au(s, z)ds (5.14)
and setting 5§ — 7 = &', we have
[ L%
/ (T -+t — 8)Av(s,z)ds = / h{t — s")Au, (s, z)ds.
T 0

Consequently, the convolution termn becomes linear in the unknowns involved
in the convolution so that the system becomes:

[ Divr(t,z) = Av, (¢, 2) + b () Aug + hr * AT(E, 1)

+h * Avy(8,3) + Fy(fio(z) + 1 % vt x))v, (¢, 2) + F(t,2)

{ v (0,2} =u (z), =€, : (5.15)
Dy (t,z)=0, te[0,7], ze€df,

Olu,(t, )] i= [ dlalvs(t,2)ds = g1 (B), € [0,7],

where we have set

“

F(t,z) = f:ﬁ(r +t — 8)AG(s, z)ds.

Steps (g) and (h). We deduce the o priori estimates for v, and h,.
The idea is to get — thanks to the fact that F, is bounded - the a priori
estimates for the unknowns v, and A,. The proof is hased on the following

lemma.

LEMMA 5.1 Assume that the assumptions (11)-(110) are fuifilled, p > 2.
Let (B,h) € X(7,p) x I2(0,7) be a solution of (5.4)-(5.6} in [0,7] x Q, with
0 <7 < T. Then, there exists C > 0, such that, for all § & (0,7 A (T~ 71)], if
(v,h) € X(1+6,p) x LP(0, 7+ 4) is a solution of (5.4)—(5.6) in [0,7+ 6] x Q,
then

vz il x (r46,9) + Al L0 r00) < C.
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Proof. Tt is that of Lemma 7.3 in [7].

Now, in a finite number of steps we can extend the solution to the interval
[0,T}. For all the details see Section 7 in [7].
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